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C h a p t e r  3  

Constraining Dynamic Properties of Mantle2 

3.1 Need for Assimilation of Time-Dependent Data in Real Problems  

Unlike atmospheric or oceanographic problems where many parameters within the 

interior of the flow can be measured and calibrated in situ, dynamic parameters for the 

mantle convection problem are obtained indirectly. A good example of such a parameter is 

the depth dependence of mantle viscosity, unfortunately a parameter that remains uncertain 

[Walcott, 1973; Hager and Clayton, 1989; Steinberger and O’Connell, 2000; Mitrovica 

and Forte, 2004]. This of course is problematic for the adjoint problem described in 

Chapter 1, because what viscosity should be used for the recovery of initial conditions? 

Another critical parameter for recovery is the magnitude of the temperature  (density) 

within the anomalies. Clearly, important constraints can be placed on this problem from 

seismic tomography, but high-pressure, high-temperature laboratory experiments have not 

achieved the ability to uniquely map seismic into thermal anomalies. Thus, even for simple 

convection models, we should consider these basic model parameters to have uncertainty 

when the adjoint method is used to infer initial conditions.  

As discussed in Chapter 1, a quantitative description of the time dependence of 

mantle flow requires time-dependent constraints. Here I will explore the surface dynamic 

                                                
2 This chapter is based on: 1) Liu L. and M. Gurnis (2008), Simultaneous Inversion of 

Mantle Properties and Initial Conditions Using an Adjoint of Mantle Convection, J. of 

Geophy. Res., 113, B08405, doi:10.1029/2008JB005594. 
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topography, a different type of observation from plate motions used in earlier studies 

[Lithgow-Bertelloni and Richards, 1998]. With the adjoint method implemented in 

CitcomS, we can compute the prior history of thermal anomalies for a given viscosity 

model and present-day mantle thermal structure. From the restored history, we then 

predict dynamic topography that can be constrained through stratigraphic constraints, such 

as tectonic subsidence from boreholes [Heller et al., 1982; Pang and Nummedal, 1995], 

paleo shorelines [Bond, 1979; Sandiford, 2007; DiCaprio et al., 2009], and sediment 

isopachs [Cross and Pilger, 1978]. Given these additional observational constraints, there 

is the opportunity to place limits on mantle viscosity and temperatures.  
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3.2 Dynamic Topography Constrains Uncertain Mantle Properties 

For this study, we designed two sets of synthetic experiments, one for a simple 

one-layer mantle with uniform viscosity, and the other for a two-layer mantle viscosity 

structure. 

3.2.1 One-Layer Mantle 

First let us consider a mantle with a uniform viscosity throughout. On the top 

surface of the convection model, dynamic topography, h, is defined from  

 (12) 

where  is the total normal stress in the radial direction and  is the density contrast 

across the top surface (implicitly assuming that air overlies the solid mantle). At any instant 

of time, normal stress  is proportional to the temperature scaling (see Eq. 3). For an 

inverse problem where we use the present-day seismic tomography to interpret mantle 

temperature structure,  is the temperature magnitude obtained by mapping seismic 

velocity variations to thermal anomalies. Together with Eq. (12), we relate dynamic 

topography with a temperature scaling via a time-dependent coefficient  with units, m/K. 

The quantity  describes the response of surface dynamic topography with a scaled 

temperature distribution and mantle rheology structure.  

 (13) 

The rate of change of dynamic topography , however, is related to the absolute viscosity 

of the mantle when the geometry of the thermal anomaly remains fixed [Gurnis et al., 2000]. 

Specifically, in the energy equation (Eq. 4), the rate of change of the temperature anomaly 
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 is proportional to the product of and mantle flow speed  (i.e., ). In 

a Stokes fluid,  is proportional to and inversely proportional to mantle viscosity . 

Considering Eq. (13), we obtain  

   (14) 

For an inverse problem where  and  are unknowns, and h(t) and are data 

constraints, we simplify the problem by rewriting Eq. (14) with Eq. (13) 

 (15) 

where h1=h(t1), with t1 representing present-day time;  (or ’) is a kernel that describes the 

response of the rate of change of surface dynamic topography assuming a specific mantle 

viscosity;  has units of Pa/m. Instantaneously, when the temperature and viscosity 

structures remained unchanged, Eq. (15) was validated numerically for systems with 

temperature- and depth-dependent viscosities [Gurnis et al., 2000]. 

Because h(t) and  are potentially two independent constraints, and Eq. (13) and 

(15) each has an independent unknown,  and , respectively, the independent unknowns 

might be recoverable. By using h1 instead of h(t) on the right-hand side of Eq. (14), we 

attempt to partially decouple this two-variable, two-constraint system. Essentially, we use 

the magnitude of topography h(t) to constrain  (Eq. 13), and use its rate of change  to 

constrain (Eq. 15). 

The left-hand sides of equations (13) and (15) are time dependent.  On the right-hand-

side of the equations, the time dependence has been collapsed into the two kernels,  and , 
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which are evaluated numerically. At any moment of time,  and  can be found from the 

solution of Eq. (2)  (4) and are dependent on the viscosity and temperature distribution. 

Evaluation of  requires two successive solutions of Eq. (2)  (4) so that  can be found. 

Assuming the “structure” of the present-day temperature field is the same as the 

structure obtained from seismic tomography, we now show how Eq. (13) and Eq. (15) can 

be incorporated within an iterative scheme to solve for the unknowns and based on 

observed and predicted h(t) and . Define j to be the index of a loop used to refine 

temperature and viscosity, while i remains the index over time as it was in the forward-

adjoint looping (Sec. 3). At any given time i in loop j, the numerical values of the two 

kernels  and  are computed as , , respectively. Here we 

treat two kernels as implicit Green’s functions. and  are updated by a method that is 

similar to back-projection used in seismic topography [Rowlinson and Sambridge, 2003], 

the difference being the use of implicit coefficients (  and ) in this case. 

 (16) 

 (17) 

where m and n are the numbers of sample points within the time series and are potentially 

different because of the different number of constraints on topography and its rate of 

change; subscript d refers to data (observational constraints); and are two damping 

factors with values < = 0.5.  
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This iteration is at a higher level than that of forward-adjoint looping and we 

refer to it as the outer iteration. Essentially, seismic tomography at the present day is used to 

constrain the geometry or depth distribution but not the precise amplitude of mantle 

temperature anomalies, and the forward-adjoint looping is used to find that geometry during 

earlier times. The outer looping is used to refine both the scaling between seismic velocity 

variations and temperatures (or density) and the viscosity distribution. The whole procedure 

is divided into two parts: 

(i) Inner loop: While and (without varying temperature dependence) remain 

constant, perform an adjoint calculation to recover the initial condition with the SBI first 

guess, and predict the dynamic topography during the final iteration.  

(ii) Outer loop: Update and  via (16) and (17) through the mismatch of the 

predicted and target dynamic topography and its rate of change. 

The whole procedure is terminated upon convergence of the two model parameters.  

In a synthetic experiment, a cold spherical anomaly sinks from top to bottom of the 

mantle within a 3D spherical region; the system has initial (Fig. 7A) and final reference 

states (Fig. 7B).  On the top surface, topography is sampled directly above the center of the 

anomaly.  
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Figure 7 3D models with a single viscosity layer (modeled with a 33 33 33 mesh). Reference 

thermal states at 16 Ma (A) and the present (B). (C) First guessed initial condition with a simple 

backward integration (SBI). (D) Recovered initial condition with the adjoint method after 50 

iterations. (E) RMS residuals for the initial and final states based on the adjoint method.  (F) The 

predicted dynamic topography histories based on an SBI first guess and the adjoint method, 

compared against the reference dynamic topography. All calculations assume a known viscosity 

structure. 

To illustrate the effect of forward-adjoint iteration on dynamic topography, we ran 

the inner loop described above assuming that the temperature scaling and the absolute value 

of viscosity are known. The SBI initial guess (Fig. 7C) is more diffused in comparison to the 

finally recovered initial condition after 50 iterations (Fig. 7D). The adjoint method reduces 

the RMS residuals for the initial and final states by about a factor of 3 and 5, respectively 
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(Fig. 7E). Consequently, the associated dynamic topography curves from t0 to t1 are also 

notably different (Fig. 7F). The curve from the SBI case deviates from the reference much 

more than the one from the recovered solution, with a maximum deviation in magnitude by 

35% vs. 5% of the reference value at 16 Ma. Although the SBI is a good method to find the 

best first guess for the forward-adjoint looping, the experiment demonstrates that the simple 

backward advection of the anomaly (SBI) does not perfectly predict the evolution of 

dynamic topography. 

We then started the outer loop with two initial models (Cases AH1 and AH2) in 

which the temperature scaling and mantle viscosity  had “guessed values” that were 

different from the reference ones. The initially guessed parameters of Case AH1 (Fig. 8A, B 

at loop 1) were such that its effective Rayleigh number was equal to the actual Ra for the 

reference state while Case AH2 (Fig. 8E, F at loop 1) had an effective Rayleigh number four 

times smaller. In both cases, we applied the two-level looping algorithm. The inner loop was 

applied so that the iteration always started with the SBI first guess, and the number of 

forward-adjoint iterations increased as the index of the outer loop increased. We applied this 

simplification because the first recovered initial condition was not well known before the 

constraints on h(t) and  were applied. Due to the initially under-estimated temperature 

scaling  in both AH1 and AH2, the first predicted temporal dynamic topography curves 

had small magnitudes and slopes. By applying the outer loop upon the predicted and 

reference dynamic topography (Fig. 8C, G), we updated model parameters  and . The 

difference in magnitudes of topography h(t) forced  to increase in both cases where AH2 

increased faster due to a larger difference. Differences in slope  normalized by present- 
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day magnitude of topography h1 updated the viscosity. The apparently smaller slope in 

AH1 was actually larger than that of the reference when normalized by h1, and hence forced 

the viscosity to increase. The initial smaller slope for dynamic topography in AH2 forced 

the viscosity to decrease, and the smaller magnitude forced temperature to increase, 

overshooting the reference temperature. The overshot was corrected as the viscosity also 

approached the true value. As a result, for both Case AH1 and AH2, the temporal (Fig. 8C, 

G) and spatial (Fig. 8D, H) distribution of dynamic topography converged to the target 

curves as the two incorrectly guessed model parameters converged to the reference values 

after a finite number of loops (Fig. 8A, B and E, F). Most of the model corrections occurred 

within the first 10 outer loops. 

As discussed in Chapter 1, due to the artificially defined initial condition and low 

resolution of meshing, the recovered initial condition by the adjoint method is not exact, 

even with the same model that generates the reference states (Fig. 7D). This effect shows up 

in the recovered model parameters as a deviation of viscosity from the reference value by 

about 2% and that of the temperature scaling by about 1%. However, the final solutions in 

both Case AH1 and AH2 are almost identical, indicating the two-level algorithm can both 

recover initial conditions and unknown material properties. 

Under highly controlled set of circumstances, this test shows that the history of the 

dynamic topography is a valuable constraint on mantle viscosity and magnitude of present 

day mantle thermal structures. We will then explore the limitations of this conclusion under 

more realistic conditions. 
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Figure 8 Recovery of model parameters using dynamic topography for models with a single layer. 

The starting model has either the same effective Rayleigh number (A D, Case AH1) or a Rayleigh 

number four times smaller (E H, Case AH2) than the reference value. All results plotted with 

respect to the outer loop index (k) and are computed from the last iteration of the inner (forward-

adjoint) looping. Shown from top to bottom are the temperature scaling (A, E), viscosity (B, F), 

temporal evolution of dynamic topography recorded at one point on the surface (C, G), and 

latitudinal profile of dynamic topography across the center of the surface at 16 Ma (D, H). 
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3.2.2 Two-Layer Mantle 

We now consider the geophysically more relevant possibility of a layered mantle 

viscosity [Hager, 1984; Mitrovica and Forte, 1997]. We used a two-layer mantle and 

attempted to recover three variables: (present-day temperature anomaly), (upper 

mantle viscosity), and (lower mantle viscosity). Given this potentially underdetermined 

problem, we determine what we might hope to recover. 

For a thermal anomaly within the upper mantle, the upper mantle viscosity controls 

the flow velocity, , and the evolving dynamic topography. Assuming that the density 

anomaly has not yet entered the lower mantle the system has only two variables,  and 

, just like the isoviscous mantle discussed above. This assumption is not entirely true 

since the h does depend on the ratio of upper to lower mantle viscosity [Richards and Hager, 

1984; Hager, 1984]. Approximately, we still have the linear relation between h(t) and , 

Eq. (13), and the following relation for , which is similar to Eq. (14) 

 (18) 

For a density anomaly within the lower mantle, the flow speed  is approximately inversely 

proportional to , and the surface normal stress that defines h(t) is proportional to . So 

Eq. (13) becomes 

 (19) 

where , is the ratio of upper to lower mantle viscosity. Consider a static 

situation in which we neglect time dependence, Eq. (19) is nonlinear due to the fact that  = 
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( ), while Eq. (13) is linear since  is not a function of . This implies the inverse 

problem for a two-layer viscosity mantle is more nonlinear than for a single layer mantle. 

The relation , together with Eq. (19), leads to the expression  

 (20) 

where h1 is dynamic topography at the present day. Again, we use h1 instead of h(t) on the 

right-hand side of Eq. (20) to avoid the sharing of data constraints. In fact, Eq. (18) and (20) 

are equivalent: replace  with h1 in Eq. (18) and Eq. (20) is obtained. This shows that the 

rate of change of dynamic topography should be a good constraint on the upper mantle 

viscosity.  

Rearranging and discretizing Eq. (20) lead to 

 (21) 

For the other two variables, and , we have constraint equations (13) and (19). 

Ideally, we could use Eq. (13) to constrain  by assimilating topographic data associated 

with density anomalies crossing the upper mantle through Eq. (16). Equation (19) could be 

used to constrain by topographic data with lower mantle anomalies iteratively  

 (22) 

In Eq. (21) and (22), m and l are the numbers of sample points within the time series; and 

are two damping factors with values < = 0.5; two kernels  and 
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; vi and wi are weighting functions that change with time. We assumed 

that vi (wi ) decreases (increases) linearly from i = 1 to l. 

However, because a thermal anomaly will move faster in the upper mantle than in 

the lower mantle, a topographic history would be more heavily weighted in time for the 

lower mantle, where  largely trades off with when using the dynamic topography 

(see Eq. 19). In other words, temperature anomaly and lower mantle viscosity are coupled 

for most of the topographic record.  

Therefore, in order to simultaneously invert for all three variables, we should avoid 

the trade-off between temperature scaling and lower mantle viscosity. We designed a three-

level iterative scheme which solves for all three parameters while minimizing potential 

trade-offs between them: 

(i) Inner level: While , and  remain fixed, perform forward-adjoint 

looping to recover the initial condition.  

(ii) Middle level: While  remains fixed, update and via Eq. (21) and (22) 

through the mismatch of the predicted and target dynamic topography and its rate of change. 

(iii) Outer level: Update according to Eq. (16). 

The whole procedure is terminated upon convergence of the three model parameters.  

For an explicit example, we consider a 2D model that simulates a subduction 

scenario, where a fragment of a cold slab sinks from the upper mantle into the low mantle 

over a period of 36 Myr (Fig. 9A, B). The dynamic topography is recorded at the surface at 

some point on the “overriding” plate. We assume that the top surface is fixed; if the plates 

are moving then the observational record of topography is in the plate frame [Gurnis et al., 
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1998] and using the mismatch between observed and predicted quantities will be more 

involved than what the experiment given below suggests. 

 

 

Figure 9 Same as Fig. 7 except for 2D models (on a 129 129 mesh) with a two-layer viscosity. The 

dashed lines (A D) indicate the upper and lower mantle interface. 

To avoid numerical artifacts, we generated the initial condition by first defining a 

smooth slab on the surface and then allowing the slab to sink to the position shown in Fig. 

7a. A fine resolution mesh with a 129 129 grid is used, to mimic the trench-normal cross-

section. We compared the SBI first guess (Fig. 9C) and the recovered solution (Fig. 9D) 

through the same model that generates the reference states, with residual curves shown in 

Fig. 9E. The SBI first guess is visually diffused while the recovered solution is nearly 
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identical to the reference initial state. Moreover, the dynamic topography associated with 

the SBI estimate deviates from the reference by about 20% at 36 Ma while that with the 

recovered solution is less than 1%. This indicates that the recovered initial condition with 

simple forward-adjoint looping is almost perfect if the viscosity and temperature scaling are 

known a priori. 

Since the inner level involving the forward-adjoint looping has been described in 

Section 2.2.1, we focus our discussion on the middle and outer levels. For the middle level, 

we show several cases with different  values, where upper and lower mantle viscosities 

are recovered from several initial guesses. 

 In a set of experiments, we chose  at its reference value but incorrectly guessed 

both viscosities. We tried two starting viscosity models, AH3 and AH4, that were both 

guessed to be isoviscous with ( , ) = (5, 5) and (20, 20), respectively, while the target 

had a layered viscosity, ( , ) = (1, 10) (Fig. 10A, C). Because the initial upper/lower 

mantle viscosity ratio was overestimated in both models, Eq. (19) implies that the present-

day dynamic topography should be overpredicted, as verified as loop 1 in Fig. 10B, D. Since 

 was controlled by the magnitude of topography during the later part of its evolution, the 

over predicted magnitude of h caused to increase (Fig. 10A, C). Since the upper mantle 

viscosity  was over-estimated in both AH3 and AH4, the rate of the change of 

topography was small during the early stages of evolution (Fig. 10B, D). This difference 

forced to decrease quickly in both cases. Changes in both  and likewise reduced 

their ratio. As a result, in AH3, both viscosities changed monotonically (Fig. 10A), while in 
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AH4, first overshot the target (Fig. 10C). This overshoot happened because  was 

forced to increase at the beginning due to an initially overpredicted h, but as  decreased 

the viscosity ratio went below the reference, h became underpredicted, which led to the final 

decrease of . As the viscosities converged, the topographic evolution conformed to the 

target in both cases after a finite number of loops (Fig. 10B, D). We conclude that the 

solution is potentially robust as it does not depend on the initial models. Additional 

experiments demonstrate that solution errors of both upper and lower mantle viscosities are 

within 1%.  

 

Figure 10 A two-level looping for recovery of both viscosities and initial condition, with 

temperature scaling at its reference value. Evolution of upper and lower mantle viscosities with 

respect to middle loop index (j) for Case AH3 (A) and AH4 (C), with dotted lines indicating the 
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reference values. (B, D) Convergence of temporal dynamic topography recorded at one point for 

Case AH3 and AH4, respectively.  

With another set of experiments with all target values as those just described (AH3 

and AH4), we incorrectly guessed  so that it was either smaller (AH5) or larger (AH6) 

than the true value by 50%. AH5 started with an initially isoviscous state, ( , ) = (5, 

5) (see Fig. 11A, loop 1); and AH6 started with a higher viscosity, ( , ) = (20, 20) 

(see Fig. 11C, loop 1). The initial models were chosen such that their effective Rayleigh 

numbers were not too far from the target values. Parameter recovery in these two cases was 

similar to what we observed above. Although the viscosity ratio  was the same in both 

AH5 and AH6, the present-day dynamic topographies were different in loop 1, in proportion 

to the different temperature scaling  (Eq. 19). Consequently, lower mantle viscosities 

evolved very differently when the temperature was incorrectly guessed. In both Case 

AH5 and AH6, converged solutions for both viscosities and dynamic topography were 

obtained. However, although the recovered upper mantle viscosities were always close, 

there was a tradeoff between lower mantle viscosity and the temperature scaling, as 

expected from Eq. (19). With more tests on different initial viscosity models, we found that 

the solutions were robust in that the converged viscosities oscillated around some mean 

values by no more than 5%. Deviations of the topographic evolutions from the target are 

instructive (Fig. 11B, D): Due to the tradeoff between  and , the later portion of the 

predicted curve (closer to present day) always matched the reference curve; however the 

early portion of the curves were never well predicted since did not trade off with . 
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Specifically, the earliest portion of the curve was flatter than the reference when was 

smaller, and steeper when  larger. 

 

Figure 11 Same as Figure 10, except that the temperature scaling is either smaller (A, B, Case AH5) 

or larger (C, D, Case AH6) than the reference value by 50%. 

This deviation in topographies during the early part of evolution is the basis of an 

outer level iteration for the update of . When  is incorrect, lower mantle viscosity 

trades off with temperature, upper mantle viscosity does not; in theory, dynamic topography 

can never be predicted exactly if  is incorrect. Eq. (13) and (18) imply that different , 

lead to different early topographic evolutions. In practice, we used the very simple relation 

described by Eq. (13) to update , constrained from the deviation described above. The 

iterative relation is given by Eq. (16), where n is the number of data points within the time 

period when this deviation occurred. Instead of using the absolute magnitude of dynamic 
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topography, we used the amount of change of topography from the initial time to the n
th

 

point. Essentially, we use the difference in the slope at the initial stage of subduction.  

As an example, we used the values of in AH5 and AH6 as two starting guesses 

for the temperature scaling, and then applied an additional outer loop (calling these new 

cases, AHT1 and AHT2). The procedure for the outer loop is described above. Note that 

with different values of , the converged dynamic topography had different slopes at 

initial times. We calculated the mismatch between the predicted and reference dynamic 

topography over the early part of topographic evolution and applied Eq. (16) to update . 

Consequently, the deviated topographic curves in both AHT1 (Fig. 12A) and AHT2 (Fig. 

12E) moved toward the reference as the number of outer loops increased. Convergence of 

’s were shown in Fig. 12B and F with respect to outer loop, where the symbol size was 

proportional to the residual between predicted and reference dynamic topography. Both the 

evolution of topography and that of indicated a correct convergence. To show the 

interior process of this three-level looping scheme, we picked some value of  during the 

evolution as an example. For this , we plotted the updating mantle viscosities, i.e., the 

middle level loop (Fig. 12C, G). When the two viscosities converged, the corresponding 

RMS residuals between predicted and target mantle thermal structure at the initial and final 

(present-day) time also converged (the innermost loop, Fig. 12D, H). These experiments 

illustrate well that when  is incorrect, recovered  is also incorrect; recovered mantle 

initial conditions based on these model parameters are far from the reference initial since the 

RMS residuals remain large (compare Fig. 12D, H with Fig. 9E). By fitting the slope of the 

topography (Fig. 12A, E), was constrained to converge. The recovered temperature 
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scaling in both cases approximated its target value within 1%. How closely the final 

solution fits the reference values will be affected by the discretization of data and the form 

of weighting functions in Eq. (16), (20), and (21). In the final solution, all recovered model 

parameters have errors less than 1%, where the lower mantle viscosity linearly trades off 

with temperature scaling. 

 

Figure 12 The three-level looping algorithm shown for Case AHT1 (A D) and AHT2 (E H), with i, 

j and k denoting the index of inner, middle, and outer loops, respectively. Shown are evolution of 

topography at the earliest time (A, E) and temperature scaling (B, F) with respect to outer loop, 

convergence of upper and lower mantle viscosities versus middle loop, and RMS residuals for both 

initial and final states of temperature fields for chosen temperature scaling and viscosities. In B and 
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F, the size (area) of the open circles correspond to the mismatch between magnitudes of predicted 

and reference dynamic topography in A and E, respectively.  All dashed lines indicate the target 

values. 

In summary, our experiments show that, given a temporal record of surface dynamic 

topography and the present-day mantle seismic tomography showing the geometry of 

anomalies, this three-level looping scheme allows the recovery of all three mantle dynamic 

parameters, including upper mantle viscosity, lower mantle viscosity, and the magnitude of 

the temperature anomaly scaled from seismic perturbations.  

3.2.3 Discussion 

Combined with dynamic topography observations, the application of the adjoint 

method can be expanded so that not only can past mantle structures be recovered but also 

constraints placed on mantle properties. Based on the governing equations, we developed 

multi-level iteration schemes that constrain both mantle thermal anomalies (the scaling 

between seismic velocity and temperature or density) and absolute values of upper and 

lower mantle viscosities. With synthetic experiments, we show that our algorithm is stable 

and robust. It is worthwhile to note that although this algorithm allows all three model 

parameters to vary while the final solution remains unique (the uniqueness depends on the 

recovering power of the adjoint method). In practice, however, we should take advantage of 

a priori knowledge of these quantities, which will reduce the calculation time substantially. 

This will be essential for large 3D models, which are always computationally expensive. 
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Synthetic experiments are ideal, and realistic modeling is limited by other factors, 

including the availability and quality of data. Dynamic topography can be spatially and 

temporally incomplete, but a complete record is not required for convergence. For example, 

the dynamic topography constraints on Australian vertical motion since the Cretcaeous are 

limited to specific intervals of time [Gurnis et al., 1998; DiCaprio et al., 2009]. Rate of 

change of dynamic topography associated with upper mantle thermal structures is especially 

useful and requires better data coverage both in time and in space. Given these features, our 

method may work well when applied to realistic modeling problems, for example, 

reconstructing the subduction history of the Farallon plate underneath North America, using 

the stratigraphic record on the continent of North America and tomographic images under 

the continent. Errors associated with recovered dynamic topography from stratigraphy will 

propagate into the solution of lower mantle viscosity and temperature scaling, mainly due to 

the fact that these two quantities strongly trade off.  

The physical significance of this study is two-fold. First, it is a new way to calculate 

mantle viscosities, which is almost perfect in synthetic tests as discussed in this paper. This 

method has an equally good recovery of both upper and lower mantle viscosity, not like 

glacial rebound models sampling mostly the upper mantle. Furthermore, our method puts 

constraints on the absolute viscosities of the mantle, while previous geoid studies constrain 

the upper-lower mantle viscosity ratio only. Second, when using real data including seismic 

tomography, the constraint on the temperature to seismic velocity scaling by this method 

can be important for understanding the relation between seismic velocities and temperature 

and pressure under mantle conditions. As discussed later in the recovery of past Farallon 

subduction processes, we can put constraints on the flat slab subduction mechanism by 
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tracking an initial buoyant oceanic plateau whose extra buoyancy has slowed the sinking 

of the slab, causing flattening, and that the relation of the plateau composition and seismic 

properties can be further measured via extensive seismic ray tracing and waveform fitting. 

The inherent power of our inverse method is that a single density anomaly rises (sinks) 

through the whole mantle and at each depth samples the viscosity through the rate at which 

dynamic topography changes. Inherent in this idea is that the magnitude of the density 

anomaly remains fixed. Of course, the assumption of a constant density difference at each 

depth is unlikely to be true for mantle convection because the mantle is compressible and 

different materials will compress at different rates as they ascend (descend) through the 

mantle (e.g., Tan and Gurnis [2007]). Another complexity is the possible temporal variation 

of mantle viscosity structures before and after certain geophysical processes, say subduction, 

as is not included in our model either. To further constrain these complexities, the adjoint 

model should be expanded to allow for assimilation of more independent data constraints, as 

is one of the future goals this kind of model should move into.  

The recovery of initial conditions, two viscosities, and the temperature scaling, from 

only dynamic topography and the shape of the present day temperature structure (i.e., 

“seismic tomography”) appears to be underdetermined. However, for the synthetic 

experiments this is not the case. The reason is that we have a set of dynamic topography 

values: One value of dynamic topography places some constraints on the temperature 

scaling while two dynamic topographies early in the evolution constrain the shallow 

viscosity (for example), while two dynamic topographies later in the evolution constrain the 

deeper viscosity. Together, the set of data leads to the recovery of the viscosities, 

temperature scaling, and initial condition. In reality, however, the problem might be 
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underdetermined because the number of unique dynamic topography values will be 

limited and the mantle presumably has a more complex viscosity structure than simulated by 

a two-layer model. On the other hand, we also realize that for the synthetic experiments 

carried out earlier, only one single record of the dynamic topography is used. But in reality, 

many more geographic sites with extracted dynamic subsidence signals are available, 

although they may not span the whole time sequence; there are other types of constraints 

besides signals from isolated points, for example, the distribution, wavelength, and 

magnitude of subsidence will provide extra constraints.  

Another issue for problems tailored to the observational record is plate motions, which 

are an important constraint on mantle flow [e.g., Hager and O’Connell, 1979]. When 

dynamic topography is used in the inverse procedure, plate motions complicate the problem 

since the stratigraphic record moves with respect to the rising and sinking mantle anomalies 

[Gurnis et al., 1998]. Therefore, a transfer function between the two reference frames is 

needed. In solving the real geophysical problem, say the Farallon subduction, a software 

package dealing with the transformation of reference frames has been developed, and the 

moving plates no longer represent a barrier for the inversion. 

We want to emphasize that the use of tomography-based adjoint methods is not the 

only way to infer the internal state of mantle at earlier times and we realize that there are 

two other means to arrive at such “initial conditions”. In plate-motion constrained mantle 

flow models, mantle structures can be estimated by a “forward approach” in which a flow 

model is started earlier in time and then integrated forward to the time of interest [Bunge et 

al., 1998; Bunge et al., 2002]. Initial conditions can also be inferred via a tectonic approach 
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based on generating the internal state at a previous time from some combination of 

surface observations (such as proxies for the configuration of plates, the position of 

subduction, or hot-spot volcanism). For example, based on the orientation of Mesozoic 

subduction, Gurnis et al. [1998] developed an initial condition at 130 Ma and then forward 

simulated convection beneath Australia. Bunge and Grand [2000] used the geological 

arguments that the Farallon slab was flat lying at ~80 Ma and then forward modeled flow 

beneath North America.  These methods complement the inverse models and have different 

sources of errors. The forward and inverse approaches shared two sources of error: 

subduction parameterization and radial viscosity structure. However, forward models were 

sensitive to uncertainties in the plate reconstruction further back in time while inverse 

models were sensitive to error in reconstructions from the time of interest to the present. We 

suspect that uncertainty (e.g., the range of structural models permissible at any given time) 

can be better estimated by comparing the results from these three different methods of 

generating paleo mantle structures. Consequently, we believe that the adjoint and inverse 

methods we have developed here should be used in conjunction with the forward and 

tectonic approaches. Together, these methods will allow a new generation of global and 

dynamic models to be developed that have well constrained initial conditions. 




