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C h a p t e r  2  

Adjoint Method in Mantle Convection1 

2.1 Theoretical Basis of the Adjoint Method 

The adjoint method for data assimilation is a gradient-based inversion, which is 

particularly useful for inverting nonlinear dynamic systems. Derivation of the adjoint 

method for an evolving system is based on perturbation theory, where a mismatch in the 

model output against observation is attributed to an error in the model input, with their 

relation approximated as a first order derivative (gradient) of the least-squared mismatch 

with respect to the input. To formulate the concept mathematically, consider an initial 

value problem in which all the governing equations and boundary conditions are perfectly 

known and numerical errors are negligible. Any mismatch in the prediction should be 

attributed to errors in the initial condition (i.e., model input). This relation can be simply 

expressed as , where J is a scalar cost function, which defines the 

mismatch of prediction from data and  is the initial variable that potentially carries error. 

If an explicit form of the expression can be obtained, then the perturbation (i.e., 

error)  associated with the initial condition can be retrieved.  

                                                
1 This chapter is based on: 1) Liu L. and M. Gurnis (2008), Simultaneous Inversion of 

Mantle Properties and Initial Conditions Using an Adjoint of Mantle Convection, J. of 

Geophy. Res., 113, B08405, doi:10.1029/2008JB005594. 2) Liu, L. and M. Gurnis (2010), 

Adjoint method and its application in mantle convection, Earth Science Frontiers (Chinese 

with English abstract), in press. 
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Specifically, we define the cost function J as a function of temperature T  

J = (Tp Td )
2dvdt

t ,V

 (1)  

where  is the predicted temperature,  is the actual temperature (with the subscript d 

denoting data), t is time, and V is volume. In mantle convection,  is available only at the 

present day t1, so effectively J is a delta function in the time domain with a nonzero value 

at t1. 

The governing equations for mantle convection, assuming an incompressible and 

Newtonian fluid, are 

   (2) 

 (3) 

 (4) 

where  is velocity,  dynamic pressure,  dynamic viscosity,  ambient mantle 

density,  coefficient of thermal expansion, temperature anomaly,  gravitational 

acceleration,  temperature, and  thermal diffusivity.  

If we assume T(t0) is the only variable that brings error into our prediction, our 

goal, in order to retrieve this quantity, is to obtain the expression J / T(t0) , where t0 

refers to the initial time. This expression can be obtained through a constraint condition of 

the energy equation by introducing the adjoint variable (a Lagrangian multiplier) that 

forms a Lagrangian function L  

  

L = J + (
T

t
+

 
u T 2T)dvdt

t ,V

 (5) 
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A perturbation in L corresponds to perturbations in J and T. Subsequently, we will use  

to denote the perturbed quantities. 

  

L = J + (
T

t
+

 
u T 2 T)

t,V

dvdt  (5’) 

In principle, the velocity u should also contribute to this perturbation since it depends on T 

(see Eq. 3 and Bunge et al. [2003]), but we choose to neglect the velocity dependence in 

Eq. (5’).  This is because, first, a full differentiation of Eq. (5) leads to a coupled system of 

the adjoint and forward models that is numerically changing to implement [Bunge et al., 

2003]; second, inaccuracy from omission of the u dependence in Eq. (5’) is diminished by 

the variational approach to the single temperature-adjoint solution through iterative 

schemes we will describe. By applying integration by parts over time and space to Eq. (5’) 

with prescribed boundary conditions, we obtain 

           

  

L = J + ( T)dv
V t0

t1

T(
t
+

 
u +

2 )dvdt
t ,V

 (5”) 

When L  0, all terms associated with T should vanish (  is nonzero only at t0 and t1). 

Therefore, for any instant of time between t0 and t1, we have 

J

T
= (

t
+

 
u +

2 )
t,V

dvdt  (6) 

This is called the adjoint equation or adjoint operator. 

In practice, J / T  is nonzero only at the final time (t1) in a mantle convection 

model when the mismatch between prediction and data is made. In effect, the term J / T  

represents the residual temperature field at the final time. Therefore, the adjoint energy 
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equation (Eq. 6) is the same as the forward energy equation (Eq. 4) except for the 

diffusion term that has an opposite sign. This difference also means Eq. (6) is numerically 

unstable in describing a forward-time evolution, but ideal for representing a backward-

time process. If we consider t as always being forward in time while substituting Eq. (1), 

then the differential form of Eq. (6) becomes 

  
( t)

 
u 2 2(Tp Td )t1

= 0  (6’) 

where 2(Tp Td )t1  is a forcing term at t1. So, with Tp Td  describing the residual field at 

the final instant of time (which also provides a state for the system to start with), Eq. (6’) 

represents a backward-in-time advection-diffusion process.  

It can be seen that with Eq. (6), Eq. (5”) can be reduced to 

 L = ( T)dv
V t0

t1

 (7) 

Alternatively, 

L

T(t0)
= (t0)

V

dv  (7’) 

Eq. (7’) indicates that the gradient of the Lagrangian function L with respect to the initial 

temperature can be explicitly expressed as the adjoint quantity at the initial time. Since the 

Lagrantian function is an augmented (constrained) cost function, as can be seen from Eq. (5) 

where the zero valued constraint (Eq. 4) is prescribed at both t0 and t1, we can conclude that 

the same gradient relation as shown in Eq. (7’) also holds for the cost function J.  
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J

T(t0)
= (t0)

V

dv  (7”) 

This equation eventually allows for the following numerical algorithm to be reached. 

For more references, this adjoint of the energy equation has been derived for 

meteorological [Sun et al., 1991; Sirkes and Tziperman, 1997] and mantle convection 

problems [Bunge et al., 2003; Ismail-Zadeh et al., 2004]. 

In order to reverse a nonlinear process like mantle convection, iterative solvers are 

inevitable. We interleaved the backward adjoint calculation with a forward solution of the 

energy and momentum equations within an iterative procedure similar to that proposed by 

Bunge et al. [2003].  

Our convention for subscript refers to time (0 for initial; 1 for present) while those 

for superscripts refer to the number of iterations. The number of iterations is determined by 

the accuracy to which we desire our prediction to satisfy data.  Specifically these are 

described in the steps followed: 

 (i) Solve the forward problem with all three governing equations (Eq. 2 to 4) with 

initial condition ( , where n is the iteration number) and predict . The first 

initial condition  is potentially arbitrary. Store the velocity field for all time steps.  

(ii) Compute the mismatch  and its gradient ; solve the adjoint energy 

equation (Eq. 7) with the velocity stored in (i) from t1 to t0 and obtain .  
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(iii) Update the initial field: , where  is a damping 

factor (defined as in Ismail-Zadeh et al. [2004] except that we took a simple form assuming 

 only depends on n), with an adjustable integer 

  (8) 

In general, the coefficient  can also be a constant with values no more than 0.5, in order to 

reduce overshoots. 

       

Figure 1 Illustration of the forward- adjoint iterative solver. T0 and T1 represent the reference initial 

and final states, respectively. u
n
 is velocity for the 

n
th iteration, which is solved during the forward 

run and read in from storage during the adjoint run. 

Figure 1 illustrates the whole workflow of this iterative solver for a synthetic test. 

We assume that the true mantle temperature in both the past and present are known, which 

we call reference states. This past mantle state is the solution (target) we seek by applying 
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the adjoint method, and the present state is the function we try to match with the forward 

predictions. The reference states are generated by a forward run that solves the normal 

convection equations (Eqs. 2, 3, 4). The forward and adjoint iterations follow the procedures 

described above. Iterations stop upon convergence or when the mismatch is small enough. 
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2.2 Numerical Implementation of the Adjoint Method 

2.2.1 Solving 1D Linear Problems 

Before we apply the adjoint method to more complex problems, we first design a 

very simple example: to invert a 1D kinematic thermal-diffusion problem, through which 

we illustrate the workings of the adjoint method. This simulation is carried out with a code 

based on the finite-element method (FEM) written in the programming language Matlab.  

Imagine the reference initial condition is a thermal upwelling, e.g., a mantle plume, 

situated in the lower mantle sometime in the geological past (Fig. 2A), which is also the 

target solution we seek by inverting the present-day “observed” structure of this upwelling. 

For simplicity, only the forward energy equation (Eq. 4) and its adjoint operator (Eq. 7) are 

solved, with a prescribed velocity field. Without having to solve the advection term in Eq. 

(4), this is essentially a linear problem.  

As Fig. 2B illustrates, the first guess of the initial condition has little correlation with 

the reference, so does the first prediction. This creates the largest mismatch between 

prediction and observation (i.e., residual temperature) among all iterations (Fig. 2B and C). 

The first correction to the initial condition, generated by advecting this large residual back to 

the initial time, is also the largest among all iterations. The initial condition, after five 

updates, becomes much closer to the reference while the mismatch decreases. After 15 

iterations, the solution and target converge with a small mismatch. The convergence process 

is also reflected through a global root-mean-squared (RMS) residual (Fig. 2 C) for the initial 

and final states that decay exponentially with iterations.  
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Figure 2 Adjoint inversion of a 1D linear advection-diffusion process. A. Reference initial (solid) 

and final (dashed) states, the bold arrow indicates the direction of the prescribed velocity. Both axes 

are dimensionless. B. The iterative procedure solving the initial condition. Left column shows the 

forward runs, while the right shows the adjoint runs. Three different iterations are shown. C. Global 

root-mean-squared residuals from both the initial and final states, as a function of iterations. Note the 

vertical axis is on a log scale. 



 

 

14

Additional tests with different first guesses show that the solution is independent 

of prior information about the true initial condition. This indicates the adjoint method 

convergences to the true solution unconditionally for this linear inverse problem, consistent 

with inversion theory [Tarantola, 2005].  

2.2.2 Solving 3D Nonlinear Problems 

For spherical problems, we have implemented the adjoint algorithm into software 

using the finite element and designed specifically for mantle convection,  CitcomS [Zhong et 

al., 2000; Tan, et al., 2006]. The version of CitcomS used here solves the equations within a 

spherical geometry and scales well on large parallel computers. Our changes were made to 

CitcomS version 2.1.0 obtained from the Computational Infrastructure for Geodynamics 

(https://geodynamics.org).  

Upon implementation of the adjoint method within CitcomS, we hope to obtain a 

good solution to the initial condition while reducing the computational cost as well. Two 

sets of numerical experiments are designed that used the forward-adjoint looping to estimate 

initial conditions. The first set has a uniform viscosity ( =1), a constant ambient mantle 

temperature, and a Rayleigh number of 1.0 10
8
. The second set of experiments has a 

layered viscosity, a top thermal boundary layer, and a higher Rayleigh number.  

The model domain is: colatitude [1.27, 1.87], longitude [0.0, 0.6] (both in 

radians), and radius (normalized by outer radius of the earth) r [0.55, 1]. Boundary 

conditions for the forward model are:   
 

n 
 

u = 0 and 
 

n 
 

u tg = 0  on all boundaries, where   
 

n  
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is the outer normal vector,   
 

u  the velocity vector, and 
  

 
u tg  the tangential velocity; the 

surface and core-mantle boundary (CMB) are isothermal, while the sidewalls have zero heat 

flux, 
 

n T = 0 . The adjoint model has zero adjoint temperature on the surface and CMB, 

and zero adjoint heat flux on the sidewalls. The Rayleigh number is  

Ra = mg Ro
3 T

o

 (9) 

where T is the temperature drop from CMB to surface. Time is non-dimensionalized, with 

the actual time t related to the model time t’ by  

t =  t Ro
2 /  (10) 

All symbols with their dimensional values are listed in Table 1. Hereafter, all physical 

quantities are normalized with their dimensional values, if not noted separately.  

2.2.2.1. Models within a single layer 

In the first set (Set I) of experiments, the reference states include an initial condition 

(Fig. 3A) that has a spherical hot anomaly in the lower part of mantle (with a maximum 

temperature increase of T = 0.3 at the center and a Gaussian temperature profile across the 

center). The final condition was produced by running the model forward for 9 Myr (Fig. 

3B). These two reference states are the targets we attempted to predict with the adjoint 

method. All models are computed on a 33 33 33 grid. We assumed n0  = 1 in Eq. (8), for 

the forward-adjoint looping. 
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Table 1: Summary of Model Parameters 

Parameter Symbol Value 

Radius of the earth Ro 6371 km 

Gravitational acceleration g 9.81 m s

Reference mantle density m 3300 kg m
-3

 

Reference viscosity o 10
21

 Pas 

Coefficient of thermal 

expansion 

 10
-6

 m
2
 s

-1

Thermal expansity  3x10

Super-adiabatic temperature 

drop from CMB to surface 

T 393˚C (Set I); 1965˚C (Set II) 

 

All iterations were started with different first guesses to the target initial condition 

(each of these guesses constituted different cases, A1 A6, with “A” denoting adjoint 

method). Either we assumed a uniform temperature, a temperature that was a function of the 

actual initial condition, or generated an estimate through a simple backward integration of 

the governing equations (hereafter, we refer to this state of the system the SBI). The SBI 

was obtained by integrating the governing equations from t1 to t0 while reversing the sign of 

gravity from the forward calculation. The initial guesses were arranged in order of how 

close they are to the target initial condition (Table 2). Specifically, Case A1 had a nearly 

isothermal condition with a tiny perturbation. Case A2 had an anomaly with the same center 

as the target, but with a smaller volume (1/8 ) and hence buoyancy. Cases A3 had the same 

shape and buoyancy compared to the target, but the center was shifted upward by 500 km. 
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Case A4 also had the same shape and buoyancy as the target but its center was shifted 

horizontally by 400 km. Case A5 had the same center but the anomaly had a larger volume 

(2.4 ) and hence buoyancy. Case A6 used the SBI first guess to obtain the first guess. 

Table 2: Description of the thermal anomaly structures in the reference initial state and 

various first guesses 

 
Geometry Center           

( , , r) 

Diameter
¶
 

(Dimensionless

) 

Magnitude 

( T) 

Reference Sphere (1.57, 0.3, 0.7) 0.3 0.3 

Case A1 Sphere (1.57, 0.3, 0.7) 0.3 0.001 

Case A2 Sphere (1.57, 0.3, 0.7) 0.15 0.5 

Case A3 Sphere (1.57, 0.3, 0.78) 0.3 0.3 

Case A4 Sphere (1.57, 0.39, 0.7) 0.3 0.3 

Case A5 Sphere (1.57, 0.3, 0.7) 0.4 0.3 

Case A6 SBI
§
  -- -- -- 

Note: SBI
§
 means simple backward integration, i.e., reverse the sign of gravity and run the forward 

model from the present-day mantle structure for the same amount of time.  

¶
: 

 
Diameter of the spherical anomaly, normalized by Ro, radius of the earth. 

 

For comparison, we ran all cases for 50 iterations while tracking the recovered initial 

conditions. These retrieved initial conditions were noticeably different, and the recoveries in 
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Case A4 to A6 (Fig. 3F H) were better than those in A1 to A3 (Fig. 3C E). Case A6 

gave the best recovery (Fig. 3H). The root-mean-squared (RMS) residuals between the 

recovered initial conditions and the target initial (Fig. 4A), and those between the predicted 

and target final (Fig. 4B) decreased with the number of iterations. The terminal (at n = 50) 

residuals for both the initial and final states (Fig. 4A, B), decreased from Case A1 to A6 as 

the first guess more closely reflected the target initial condition. The SBI first guess (A6), 

especially, started the first iteration with residuals far smaller than the others and the 

residuals with the final state remained small in comparison to the other cases (Fig. 4A, B). 

The rate of convergence was also dependent on the initial guess: the closer the first guess to 

the target initial condition, the faster the convergence (Fig. 4A, B). The case based on an 

SBI first guess was one of the fastest converging cases and required the least number of 

iterations to converge. If the final solution is achieved when the slope of the residual 

between predicted and target final decreases to below a specified small value, then solving 

for the initial condition with the SBI first guess is almost an order of magnitude faster than 

the others.  The convergence of Case A1, with the nearly isothermal initial condition, is far 

smaller than A6 using the SBI first guess and much of this difference arises from the 

organization of the forward-adjoint looping. For Case A1, the adjoint temperature at t1 is 

nearly the negative of the final temperature, in other words, almost possessing the same 

buoyancy used in the strict reverse calculation (SBI first guess). However, when the adjoint 

temperature in A1 is advected from t1 to t0, the stored velocity field from the forward 

calculation is used, but this velocity field is quite different from the actual. The SBI first 
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guess overcomes this limitation by using the velocity field from the actual backward 

calculation. 

 

Figure 3 Three-dimensional forward-adjoint models (with a 33 33 33 mesh) for a mantle with a 

single-layer viscosity and uniform background temperature. Shown is temperature for vertical cross-

sections along lines of latitude through center of the domain. Reference thermal states at 9 Ma (A) 

and present (B). (C to H) Retrieved initial states at 9 Ma using six different initial guesses (Case 

A1 A6, Table 2). For all cases, 50 forward-adjoint iterations were used. 
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Figure 4 Convergence of the models shown in Fig. 3. (A) Root-mean-squared (RMS) residuals of 

recovered initial conditions with respect to the reference initial versus iteration. (B) RMS residuals of 

the predicted final conditions with respect to the reference final versus iteration. 

Since the solutions are dependent on the first guess, finding the optimal one is 

important to decrease the computational cost while obtaining a reasonable solution. Because 

the SBI first guess gives the best solution to the initial condition, both in terms of the 

terminal residual and the rate of convergence, we consider this to be a useful means to 
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obtain an optimal first guess. Another advantage of obtaining the first guess via the SBI is 

that it requires no a priori information of the solution. Algorithmically, it is also easy to 

obtain. 

2.2.2.2. Models with thermal boundary layers and depth- and temperature-

dependent viscosities  

The second set (Set II) of experiments is geophysically more realistic with a top 

thermal boundary layer (TBL) representing the lithosphere and a four-layer mantle with 

temperature-dependent viscosity. The TBL has an error function temperature profile typical 

of 40 Ma oceanic lithosphere. The viscosities for lithosphere, asthenosphere, transition zone, 

and the lower mantle, without temperature-dependence, are 10, 1, 10, and 40, respectively. 

The temperature dependence of viscosity is  

T = o exp(
1

T + 0.3
1) (11) 

where T is temperature-dependent viscosity and o  is the depth-dependent prefactor. This 

results in an order of magnitude decrease in viscosity from T=0 to 1. Compared to Set I, we 

used a higher Rayleigh number at 5.0 10
8
.  

The target initial condition has the same thermal anomaly as that in model Set I, only 

that it has a TBL on top (Fig. 5A). The target final condition (Fig. 5B) is 52 Myr after the 

anomaly had risen through the asthenosphere and eroded the lithosphere. We named six 

different cases as AL1 to AL6 (L denoting lithosphere). The first guesses in Case AL1 to 

AL5 had the same anomaly structures as described in Table 2, and they all had the same 
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TBL as in the target initial. Case A6 is with the SBI first guess. Comparatively, these first 

guesses in AL1 AL5 had more information on the target initial than those in A1 A5, 

because we assumed the correct TBL in these guess. On the other hand, Case AL6 (using 

the SBI first guess) had less information on the initial condition because the TBL had to be 

entirely recovered with the forward-adjoint looping. All models were realized with a 

49 49 49 mesh with an under resolved lithosphere spanned with just two mesh points.  
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Figure 5 Three-dimension forward-adjoint models (with a 49 49 49 mesh) for a model with a 

radially stratified viscosity and a top thermal boundary layer. Shown is temperature through vertical 

cross-sections. Reference states at 51.5 Ma (A) and present (C). (B) Radial viscosity profiles in the 

reference initial condition. (D to I) Retrieved initial states from six different initial guesses (AL1–

AL6) after 50 iterations. 

Since these models are more complex, and thus more nonlinear, than models in Set 

I, a smaller damping factors  with no = 2 is adopted, in order to avoid overcorrection in the 

iterative process. We integrated the forward and adjoint equations for 50 iterations to obtain 

the solutions (Fig. 5C H). Since the temperature field includes a TBL and a lower mantle 

anomaly, a small residual would entail recovering both well. The comparison of recoveries 

in these cases is not as obvious as that of only a rising Stokes sphere (Set I). Case AL5 with 

the closest initial guess also accumulated substantial errors through the nonlinear interaction 

between the rising spherical anomaly and the thermal erosion of the lithosphere. Case AL4 

and AL6 both gave good recoveries with the smallest residuals between recovered and target 

initial condition (Fig. 6A), and AL6 among all cases had smallest residual between predict 

and target final condition (Fig. 6B). The SBI first guess (AL6) also led to fastest 

convergence, and most of the residuals were reduced within the first 10 iterations. From 

both the residuals and rate of convergence, we concluded that the SBI still gives the best 

initial guess even in such a complex model.  
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Figure 6 Same as Fig. 4 except for the models shown in Fig. 5. 
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Other experiments showed that by increasing no, hence decreasing , we could 

decrease the terminal residuals of the initial condition in AL1 to AL5 upon convergence, 

some of which (AL4 and AL5) could be even smaller than in AL6, indicating a better 

recovery, but the terminal residual of the final condition in AL6 was always the smallest. 

However, for these tests, we had to increase the number of iterations to obtain the same 

amount of reduction of residuals; in other words, we reduced the rate of convergence 

substantially in A1 to A5, while A6 always had the fastest convergence and smallest 

residuals during most of the iterations. This indicates that the SBI first guess always 

produces good solutions with the least computational cost 

 

2.2.3 Discussion  

Inferring initial conditions with adjoint methods for mantle convection seems 

inherently ambiguous compared to atmospheric circulation problems where direct 

constraints on initial conditions from measurements in the system interior are used.  Using a 

technique similar to that in Bunge et al. [2003], we first inferred initial conditions via the 

looping between forward and adjoint calculations to minimize the difference between a 

prediction and the final state of the mantle (a state that can be determined from seismic 

tomography). An optimal convergence requires some constraint on the initial condition. 

Starting the first forward calculation with an isothermal mantle was less efficient than with 

an initial guess obtained by the simple backward integration (SBI) of the convection 

equations that starts with present-day structure. Even when a Stokes sphere interacts with 



 26

and distorts a thermal boundary layer, where diffusion is important, the SBI first guess 

continues to provide a good estimate for the initial condition.  

The adjoint method is an iterative gradient method that solves for a linearized 

problem. For the final solution to reach the global minimum in the residual space, the trial 

solution in the first iteration must be close to the true solution. Since the SBI initial guess 

makes use of present-day mantle information, this inverse of mantle convection 

approximates the true solution to first order. Therefore, the SBI initial guess guarantees a 

good solution with the adjoint method, as long as the model has not been run so long that 

diffusion at boundary layers dominates the problem. However, the approximation of initial 

conditions based on SBI will face difficulty when the anomalies reach a thermal boundary 

layer (TBL) and gradually diffuse away, which means an SBI estimate will not provide the 

same amount of buoyancy force. This is the natural limit for the adjoint method [Ismail-

Zadeh et al., 2004]. 

The SBI initial guess is close to optimal for most mantle convection problems 

because advection dominates thermal diffusion with typical Peclet numbers ~10
3
. To best 

approximate the true solution, an initial guess must capture its total buoyancy and geometry 

that we demonstrated with several numerical experiments in which either the buoyancy was 

underestimated or the initial location was incorrect. In these cases, the trial solutions all have 

large initial errors that must be iteratively removed with forward-adjoint looping. An 

idealized case with the correct initial location and buoyancy that is close to the actual initial 

condition recovers the initial condition nearly as well as with the SBI first guess. Since the 

SBI first guess involves the solution of the three conservation equations (Eq. 2 4), we 
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obtain a condition that has almost the same total buoyancy as that in the true solution and 

with its geometry defined through the coupled solution of flow and advection; this initial 

guess will, of course, lead to a good solution.  

Seismology has revealed that the mantle has both low and high velocity regions that 

putatively represent a complex combination of thermal and chemical anomalies [Masters et 

al., 2000; Ishii and Tromp, 1999; Ni et al., 2002]. In these real cases where mantle 

anomalies have irregular geometry and amplitude, arbitrary initial guesses can hardly 

capture the true solution in the first place, and the SBI initial guess will be especially 

beneficial in retrieving a reasonable representation of the true initial condition.  

However, it is worthwhile to point out that the tests performed in this chapter all 

assume that mantle properties, including the viscosity distribution, constitutive relation, and 

mantle density anomalies are perfectly known. In other words, these are idealized situations, 

which do not exist in the earth. For geophysical problems, many other unknowns need to be 

solved. Besides the dynamic properties like mantle viscosity and density anomaly, chemical 

composition and its temporal variation are other questions requiring solution. The numerical 

experiments shown in this chapter all treat mantle density anomalies as being thermal in 

origin, and possible chemical heterogeneities are not considered. In the upcoming chapters, I 

will try to address several of these issues. 




