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C h a p t e r  6  

Broader Implications and Discussions 

6.1 Subduction Evolution Beyond North America 

In Chapters 4 & 5, we discussed the application of the adjoint models to the 

evolution of North America, including an initial inversion of Farallon subduction consistent 

with the WIS, model validation using vertical motion proxies from the Colorado Plateau 

and WIS basins, and a prediction of possible oceanic plateau subduction through 

comparison with plate reconstructions and structural geology. As noted earlier, these 

models were global but with the calibration restricted to North America. Therefore, the 

model that best fits the constraints from North America may also provide some useful 

directions on relating surface evolution to internal dynamics over other parts of the world. 

Several snapshots of the recovered mantle structures from our preferred adjoint 

model are displayed in Figure 48. The map view display is centered over the Pacific Ocean, 

where different color contours outline the restored plates and slabs at different depths (Fig. 

48). These solutions are obtained after five forward-adjoint iterations starting with an SBI 

first guess (Fig. 19), and incorporate the North American-restricted stress guide that 

mechanically couples the Farallon slab to the Farallon Plate. Model parameters including 

mantle viscosities and slab density are constrained by predicting the WIS stratigraphy 

(Chapters 4 and 5). During the conversion of seismic anomalies to buoyancy, we remove 

the low velocity signals and consider the high velocity anomalies as subducting oceanic 

slabs. Due to the uneven sampling of seismic ray paths for mantle structures, the slab image 
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is not smooth and the recovered features near the surface are also irregular (Fig. 48). 

Most of the widespread sheet-like high velocity mantle anomalies are restored onto main 

oceanic plates especially the Pacific, Farallon, Nazca and Indian plates (Fig. 48), consistent 

with the oceanic origin of these slabs.  

Overall, the surface high velocity anomalies pulled out along subduction zones to 

the west and south of the Pacific Ocean (against Japan, Philippines and Australia) are the 

most voluminous, consistent with the large area and fast subduction speed of the Pacific 

plate throughout the Cenozoic. Going backward in time, a clear Nazca anomaly is restored 

up at 30 Ma that keeps expanding in area until the Late Cretaceous, while the Farallon 

anomaly does not reach the surface until 70 Ma. Within the Indian Ocean, two separate 

segments of high velocity anomalies are restored, each at a different time: the anomaly 

against western Australia and Southeast Asia is subducting since ~50 Ma, while the 

subduction age of the segment to the south of India appears to be older than this time. Both 

the depth and lateral distance from subduction zones of the remnant slabs revealed by 

seismic tomography affect their mechanical coupling to the surface, and therefore, their 

recovered ages of subduction: slabs close to the trench with shallow depth are most 

strongly coupled to surface plate motions, and translate onto the surface the fastest, such as 

those surrounding the Pacific; slabs at larger depth are more loosely connected to the 

surface at present-day, whose recovery takes a longer time, such as the anomaly south of 

India; slabs that are both deep in the mantle and shifted laterally relative to the trench from 

which they were subducted are nearly completely decoupled from the surface oceanic plate 

at present, and an appropriate recovery to their original position on the surface has to be 
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aided with a stress guide, which also takes the longest time, and one such example is the 

Farallon anomalies beneath North America.  
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Figure 48. Reconstructed global subduction systems from the adjoint model at four 

different geological times. The background temperature is at 179 km depth, with color contours 

indicating slab edges at different depths.  

The area of the Pacific Ocean decreases since the Cetaceous due to the retreat of 

trenches along its western and eastern margins (Fig. 48). During the subduction of oceanic 

plates, continents move toward the trench, override previously subducted slabs, and 

experience dynamic subsidence. As can be seen from the discussion in Chapter 4 and 5, 

North America has been such an example where the westward migration of the continent 

over the subducting Farallon slabs has led to a dynamic subsidence sweeping from west to 

east across the entire continent. Since a westward motion also occurred on South America, 

the continent may have experienced similar vertical motions. Recently, in collaboration 

with the research group at Sydney University, we analyzed dynamic topography output 

from the inverse model over South America, and the predicted vertical motion along the 

Amazon River (Fig. 49). The eastward migrating subsidence center followed by regional 

uplift in northwest South America, due to the continent’s progressive overriding of sinking 

slabs with the decrease in age of the subducting plate partly responsible, provides an 

explanation to the reversal of the Amazon River drainage system during the Late Miocene 

[Shephard et al., 2010]. Possible future study areas could include Australia and Southeast 

Asia where trench retreat also occurred (Fig. 48).  

In addition, the morphology and geographic distribution of recovered seismic 

structures may provide constraints (or feedback) on the imposed plate motions in places 

where direct measurement from paleo-magnetic data is unavailable. For example, because 
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the seafloor at the active spreading center has zero age, this part of the oceanic plate 

represents a discontinuity in the thermal structure of lithosphere, with the part closer to the 

ridge having less negative buoyancy. Morphology of the recovered Pacific thermal 

anomalies does not seem to follow this character of a spreading center: in the vicinity of the 

imposed Izanagi-Pacific ridge, the restored anomalies on the Pacific side shows a strong 

signature continued from the older part of the plate (Fig. 48, at 70 Ma), instead of giving 

rise to a weaker-than-ambient signal due to decrease in the age of the lithosphere. Several 

possible reasons can lead to this inconsistency between recovered thermal anomalies and 

assumed plate motion history. First, the seismic image beneath East Asia, especially at 

small scales (~200 km), may still not be well resolved, although increasing agreements 

among different models are obtained [Grand, 2002; Zhao, 2004; Li et al., 2008]. Second, 

the dynamic properties of the inverse model, including the scaling from velocity 

perturbation to density anomalies and the depth-dependence of mantle viscosity, may vary 

geographically, such that the values constrained in North America (Chapter 4) are different 

from those beneath East Asia; consequently, the recovered Pacific subduction process is 

not appropriate. A third possibility is that the imposed plate motions are not accurate; in 

fact, the timing of subduction of the Izanagi-Pacific spreading center against Japan was 

inferred based on a sequence of idealized assumptions that may not hold true [Whittaker et 

al., 2007], while the mismatch between the restored Pacific anomalies with imposed ridge 

positions (Fig. 48) may suggest that this ridge could have subducted earlier than assumed. 

These speculations, of course, are subject to future study with a systematic investigation on 

the compatibility of the imposed plate motions with recovered seismic anomalies 

associated with past subduction.  
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Apparently the inverse models still need further improvement, especially better 

realizations of the convergent plate boundaries, which is crucial for recovery of subduction 

zones. Overall, the model shown in Figure 48 seems to have recovered subduction 

geometries along most of the trenches reasonably well, but small-scale artificial features 

along subduction zones exist (i.e., cold anomalies get entrained under the overriding plates, 

where in reality subducted slabs only come from the oceanic plate). This is not the case for 

North America where its boundary with the Farallon plate is explicitly parameterized as a 

low-viscosity zone overlying a high-viscosity stress guide, so that the thermal anomalies 

can become completely restored onto the Farallon plate. Future models should seek a better 

treatment of all the plate boundaries, especially subduction zones, as expanded on below. 
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Figure 49 Modeled change in continental elevation of South America at the equator for five 

stages (from Shephard et al., in review). Note the eastward propagating change from subsidence to 

uplift in the Pebas Sea area after 33 Myrs ago, accompanied by an accentuation of subsidence at the 

mouth of the evolving Amazon River. Gray band indicates the approximate longitudinal extent of 

the Pebas Sea at this latitude (adapted from Marshall and Lundberg, 1996). 
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6.2 Limitations of the Current Adjoint Models  

In this thesis, I explored the adjoint data assimilation techniques applied in mantle 

convection. Stitching together various observational constraints, including both static and 

time-dependent ones, the adjoint inversion has been shown to be useful in solving 

geophysical and geological problems. Several important problems have been explained by 

inverting the present-day seismic tomography image of mantle subject to forced plate 

motions on the surface. Although promising, the models are still primitive due to both 

simplifications in physics and limited model resolutions. The major limitations of the 

adjoint models are as follows.  

6.2.1 Poorly Resolved Boundary Layers 

 In the adjoint models purely based on seismic tomography, the surface and lower 

(core-mantle boundary) thermal boundary layers (TBL) are not entirely appropriate. 

Because seismic velocity anomalies revealed by tomographic inversion represents 

perturbations relative a reference one-dimensional velocity model (e.g., Grand [2002] used 

a hybrid model where the upper mantle is based on Grand & Helmberger [1984] and lower 

mantle PREM [Dziwonski & Anderson, 1981]), the resolved seismic image tends to fail in 

delineating the exact configuration of the upper and lower mantle boundaries. 

Compositional differences between continental and oceanic lithosphere further complicate 

the interpretation of tomography image. Consequently, the structure of the adjoint models, 

converted from seismic velocity anomalies, does not have a realistic lithosphere, both for 

oceanic plates whose thermal structure is dominated by secular cooling, or continental 
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whose vertical temperature gradient is more gradual than that of an oceanic plate. In 

practice, we removed the upper 200 km of mantle from the seismic image, resulting in a 

“hot” surface (Fig. 48). The models, therefore, did not properly simulate the thermal 

evolution of the lithosphere or the core-mantle boundary. A possible solution is to prescribe 

a top TBL before running the inverse model (Fig. 50), as we will discuss later [Section 

6.3.1 & 6.3.3]. The same issue for the bottom TBL arises in dealing with lowermost mantle 

dynamics and heat transfer across the core-mantle boundary (CMB), where a reasonable 

expression of the temperature jump from the mantle to the core is essential [Bunge, 2005; 

McNamara and Zhong, 2005; Leng and Zhong, 2008]. 

Besides the thermal evolution of lithosphere, mechanical deformations are also of 

great interests. Future models based on the adjoint method could attempt to assimilate a 

proper definition of continental structures in order to model geological processes within the 

subducting and overriding plates during active subduction. Recent developments in this 

direction with forward models include simulating backarc basin evolution [DiCaprio et al., 

2009], mantle wedge process and orogenic deformation [Farrington et al., 2010; Rey and 

Müller, 2010], and fracture of subducting plate inducing possible slab dehydration 

[Faccenda et al., 2009]. Toward a prediction that can be compared directly with geology, 

rather than making inferences based on qualitative correlations as we did for explaining the 

Laramide (Chapter 5), future adjoint models must be improved in representing lithosphere 

structures. 



 148

6.2.2 Uncertain Interpretation of Seismic Tomography 

Conversion of seismic velocity anomalies into buoyancy is crucial for the dynamic 

evolution of the inverse models. During the past decades, increasing consistencies emerge 

from different tomography models, especially on structures with large spatial scales (>500 

km) in areas with good data coverage [Van der Hilst et al., 1997; Grand, 2002; Zhao, 2004; 

Ren et al., 2007; Li et al., 2008]. However, existing tomography models still show 

considerable discrepancies in resolving mantle structures at small scales (e.g., features with 

a dimension of a couple hundred kilometers), due to both the uneven seismic sampling and 

different resolving powers of inversion techniques [e.g., Grand, 2002]. By comparing 

different tomography inversions, we find that the Farallon remnant slabs in the lower 

mantle beneath North America are well resolved, with both the dimensions and magnitude 

of anomalies consistent among different models. However, the agreement on upper mantle 

Farallon slabs is much worse, especially among global tomographies. In fact, even the 

recent high-resolution regional tomography models based on the USArray seismic 

experiment still show substantial disagreements [Roth et al., 2008; Burdick et al., 2008; 

Tian et al., 2009], but this situation is likely to be improved given the fact that the surface 

coverage of USArray is still expanding to the east coast. Consequently, the results we 

present based on the adjoint models are mostly dealing with the North American evolution 

prior to the Oligocene time, when the present-day lower mantle Farallon slabs were close to 

the surface. Because the poorly resolved upper mantle structures do not form a coherent 

tabular slab system that could allow stresses to transmit along the length of the slab, we had 

to implement a parameterized stress-guide in order to bring the lower mantle slabs back 



 149

onto the surface. A comprehensive study exploring the recent tectonic and geologic 

evolution during the past 30 million years will require a better-resolved upper mantle image 

beneath North America, especially those related to the subducted Farallon plate.  

Another issue is how to appropriately interpret the low velocity anomalies from 

seismic inversions. In our models, we removed all the low velocity anomalies from the 

seismic image when converting into density, essentially assuming that these structures are 

neutrally buoyant. This assumption is not necessarily valid, given the putative role mantle 

upwelling plays in terms of driving convection, both in enhancing the long-term mantle-

scale flow velocity by forming a ‘superplume’ above the CMB [e.g., Zhang et al., 2010] 

and in generating focused plume conduits that may form surface hotspots [e.g., Smith et al., 

2009]. Although the bulk of the large low velocity provinces above the CMB is considered 

to be chemical in origin based on their seismic properties [Ishii and Tromp, 1999; Masters 

et al., 2000; Ni et al., 2002] and their stability in the lower mantle [McNamara and Zhong, 

2005; Torsvik et al., 2008], they seem to also possess some extra buoyancy driving mantle 

flow [Lithgow-Bertelloni and Silver, 1998; Gurnis et al., 2000; Simmons et al., 2007]. 

Similarly, the low velocity anomalies beneath North America also seem to be thermal-

chemical in origin. On the one hand, prediction of the present-day topography of the 

Colorado Plateau (Chapter 5) requires extra buoyancy associated with the low velocity 

anomaly beneath the western U.S. On the other hand, magnitudes of dynamic subsidence 

inferred from regional vs. global sea-level curves suggest that the low velocity anomaly 

below the U.S. east coast should have little thermal buoyancy, implying a composition-

dominant origin of this anomaly. We suggest that a quantitative understanding of the extra 
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buoyancy associated with the low velocity anomalies beneath North America is subject 

to future research.  

In fact, most tomography models agree better on the high velocity structures than 

the low velocity ones [Grand, 1997; Li et al., 2008], and this indicates that the nature of 

mantle upwellings is less well understood than that of downwellings. Special attention is 

needed in dealing with upper mantle structures, where melting may also occur. One good 

example is the low velocity anomalies revealed by recent regional tomography models 

beneath western U.S., including the structures below Yellowstone [e.g., Burdick, 2008; Sun 

and Helmberger, 2010] and Colorado Plateau [Wang, 2007].  A quantitative estimate of 

composition and properties of these anomalies based on an inverse approach may require 

an extensive constraining process such as investigating the resulting dynamics on the 

surface including topography and geoid, heat flow, and a detailed history of magmatism 

and regional geology. An alternative approach is to simulate melting with forward models 

following laboratory or petrological empirical relations. Recent work focuses on 

subduction zones [Kincaid and Hall, 2003; Gorczyk et al., 2007; Hebert et al., 2009; Zhu et 

al., 2009] and mid-ocean ridges [e.g., Katz et al., 2006; Katz, 2008; Ito and Behn, 2008], 

while a trend is also observed in modeling sub-continental melting processes [Hernlund et 

al., 2008; Conrad et al., 2010]. 
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6.2.3 Simplification in Physical Assumptions 

In order to keep the number of unknowns small, we have assumed a simple mantle 

structure during the inversion of the Farallon subduction. For example, the model has a 

three-layer viscosity structure, without any phase transformations or possible chemical 

anomalies. Through forward models, we find that the phase change at 660 km depth plays a 

smaller role in controlling Farallon plate subduction, compared with the total buoyancy 

associated with the slabs. Since the Olivine-Spinel phase transformation at ~410 km depth 

tends to enhance subduction while the Spinel-Perovskite phase change at 660 km depth 

tends to slow down the subducting slabs, the net buoyancy effects of these two competing 

phase changes is playing a minor role controlling the overall speed of subduction, given 

that the slab is strong enough to transmit thermal buoyancy along the length of the slab 

[e.g., Billen, 2008]. Phase transformations will affect the morphology of slabs when the 

slab rheology varies along its length and thermal buoyancy diminishes (say, due to young 

slab ages). Because these phase changes occur at different depths (above and below the 

mantle transition zone), the down-going slab will experience a torque that can deform the 

flow pattern locally by causing slab thickening or buckling within the transition zone [e.g., 

Christensen, 1996; Tetzlaff & Schmeling 2000; Cízkova et al. 2002]. Therefore, in a more 

realistic model, these physical processes still need be incorporated. Other phase changes 

may also be considered in future models, including a possible post-peroviskite 

transformation at the core-mantle boundary [Sidorin et al., 1999; Hernlund et al., 2005] and 

the basalt-ecologite transformation at the base of the lithosphere [Ringwood and Green, 
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1966], which may affect subduction dynamics through changing the density and 

rheology of slabs [e.g., Ji and Zhao 1994].  

Although the influence of phase changes may be secondary compared to the overall 

buoyancy of thermal anomalies, both the adiabatic compressibility of the mantle with depth 

and the decreasing thermal expansion coefficient at higher pressures can affect convection 

[e.g., Hansen et al., 1994]. Another factor that influences slab morphology is rheology: 

with varying slab strength relative to the surrounding mantle, the subducting slabs will 

evolve into different geometries [e.g., Billen, 2008; Stegman et al., 2010]. It is, therefore, 

important to explore the effects of rheology on the style of subduction and generation of 

surface plates [Zhong and Gurnis, 1996; Tackley, 2008; Stegman et al., 2010], especially 

for the development of fully dynamic inverse models (i.e., the prediction rather than the 

imposition of surface plate motions, see next section for more discussion). However, we 

realize that, within the adjoint models, a sophisticated realization of complex slab rheology 

as that used in forward models [e.g., Billen, 2008] is limited by the intrinsically low 

resolution images obtained by seismic tomography. A possible solution is through a hybrid 

model with explicitly defined upper mantle slabs embedded in the adjoint models (see 

section 6.3.3). 

6.2.4 Limited Applications with Forced Convection 

As mentioned in the previous section, the adjoint models we developed use 

prescribed surface velocities rather than predicting them by the internal convection of the 

mantle, i.e., a forced convection. With surface plate motions imposed as boundary 
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conditions, mantle flows close to the surface (e.g., within the lithosphere) are largely 

passive, while convection at larger depth is more subject to internal buoyancy forces. 

Consequently, these models have limited applications in exploring the driving mechanism 

of motions of tectonic plates, which has been an import unresolved question. Potentially, 

uncertainties or errors associated with plate reconstructions can be mapped into model 

results, although some of these artifacts can be ruled out through comparisons with 

tomography image [Bunge and Grand, 2000] or together with geology [Van der Meer et 

al., 2010]. 

While imposed velocity boundary conditions take plate motions as constraints, a 

fully dynamic model treats them as predictions, which, by comparison to the observed 

values, inform us of the driving mechanism of plate tectonics and mantle convection [e.g., 

Stadler et al. 2010]. In order to construct a fully dynamic model, special attention must be 

paid to slab rheology and numerical resolution. The essence of plate tectonics is that the 

surface shell of the earth can be divided into quasi-rigid pieces that are moving relative to 

each other with most of the deformation occurring at their boundaries. This requires a 

proper rheology that generates plate-like kinematics with either prescribed weak zones 

between strong slabs [Zhong and Gurnis, 1996] or yielding stresses that allow certain parts 

of the rigid plate to weaken [Tackley, 2008]. On the other hand, mesh resolution and 

computational cost are additional limitations for large-scale numerical models. This is 

especially the case in models with a more realistic parameterization of plate boundaries 

including faults or orogenic deformations. More discussion about this issue can be found in 

the next section. 
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6.3 Some Thoughts on Future Model Development  

Given the limitations of the current models and possible developments of data and 

techniques, future geodynamic models with data assimilation may be improved in the 

following aspects. 

6.3.1 Tomography: Push the Limit of Resolution 

Global tomography models usually have poor resolving power for fine-scale 

features, because both their long ray path inside the mantle and coarse data coverage on the 

surface cause smoothing of the inverted seismic image [e.g., Ritsema et al., 2007]. 

Regional tomography, with shorter ray path and denser coverage of receivers, reveals the 

local structures better. Recent development of tomographic inversions based on finite-

frequency sensitivity kernels using multiple frequency bands may resolve structures better 

[Sigloch et al., 2008; Li et al., 2008]. Toward a realistic representation of mantle structure, 

the most promising approach is adjoint tomography, which avoids the blurring effect of 

seismic inversion by solving for the seismic wave field in a domain with full 3-D seismic 

velocity anomalies. Such model have increased wave speed variations up to several tens of 

percents, much larger than the standard perturbations expressed in traditional tomography 

[Tape et al., 2009]. The adjoint tomography, however, is computationally expensive, and 

has only been applied locally. 

With the continuing deployment of the USArray seismic network across the U.S., 

several high-resolution tomography models have appeared in the literature [Sigloch et al., 

2008; Burdick et al., 2008; Roth et al., 2008; Tian et al., 2009]. Various features have been 

detected beneath the western U.S., including a parallel-subducting slab doublet related to 
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the Juan de Fuca plate subduction [e.g., Burdick et al., 2008; Roth et al., 2008], a 

controversial high velocity anomaly below Nevada [West et al., 2009], and plume-like low 

velocity anomalies around Yellowstone [Sigloch et al., 2008; Burdick et al., 2008; Roth et 

al., 2008; Sun and Helmberger, 2010]. These new generation of regional tomography 

models provides a chance for the adjoint convection model to recover the recent evolution 

of subduction along western North America. 

I have started to develop such a high-resolution inverse convection model based on 

the tomography of Burdick et al. [2008] to reverse the subduction process beneath western 

U.S. since the Miocene. The effective temperature anomalies scaled from tomography is 

shown along a east-west profile at 41°N (Fig. 50). A temperature-dependent viscosity with 

lateral variations by four orders of magnitude is used, and a thermal boundary layer on top 

is included. Inversion to the past based on this model is still ongoing research. 

Regional high resolution tomography models below the western U.S. based on 

either different datasets [Burdick et al., 2008 vs. Tian et al., 2009] or different inversion 

techniques [Roth et al., 2008 vs. Burdick et al., 2008] show significant consistency for the 

major features, especially the upper mantle slab structures. Eventually this will help to 

construct a coherent image of the Farallon subduction by connecting the upper and the 

lower mantle structures. This may also provide a chance for a more realistic reconstruction 

of the Farallon subduction, where the stress-guide discussed in Chapter 4 is no longer 

necessary. 
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Figure 50 E-W cross-section along latitude 41°N in western U.S. upper mantle, showing its 

present-day buoyancy field. (Top) Temperature anomaly converted from seismic image of Burdick 

et al. [2008]. A thermal boundary layer is added, and the Juan de Fuca slab redirected to its surface 

plate at the trench (~236°E longitude). Vertical axis shows normalized radius. (Bottom) The 

viscosity structure based on a temperature-dependent rheology (relative to 10
21

 Pa s) and the density 

driving flow field (arrows) with the plate motion imposed as boundary conditions on top. 

6.3.2 Constraints: Multiple Datasets 

So far, we have attempted assimilation of several different datasets into the inverse 

model, including seismic tomography, plate motions and surface dynamic topography. We 

also adopted qualitative constraints from structural geology after the fact for further model 

validation, but have not established a formal algorithm allowing strict assimilation of these 

datasets. 
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In theory, any observation related to the dynamics of the mantle could constrain 

the model. On the other hand, application of these constraints is restricted by limitations of 

the numerical models. As more powerful and adaptive algorithms are created in future 

simulation software, more types of data can be brought in, which will make the model more 

earth-like. With the current computational ability of the software CitcomS, other 

observations like the geoid [Zhong et al., 2008] can be extended into our predictions. 

Future inverse models with data assimilation should follow this trend, as is the same path 

the general circulation models in meteorology and oceanography have covered. 

As every single simulation approach has its own limitation in terms of assimilating 

data and representing the earth, mutual consistencies between different modeling 

techniques are an important alternative measure of the validity of a physical model. The 

adjoint models, by satisfying various data with distinct natures, have the potential to better 

explain the evolution of solid earth than traditional means. With the several existing 

limitations improved, such as realistic boundary layers, more complete physical 

assumptions and higher numerical resolutions (Section 6.2.1), the adjoint models will 

gradually move toward this goal. 

6.3.3 Algorithm: Hybrid Models 

By purely assimilating seismic images, the inverse model cannot represent the 

thermal boundary layers of the mantle properly. This is because tomography inversions 

based on body waves (representing the majority of such models), especially for global 

tomography, have little sensitivity to shallow structures like the crust, because the ray paths 
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are largely vertical at shallow depth [e.g., Grand, 2002; Burdick et al., 2008]. Therefore, 

the adjoint convection models converted from tomography also do not have a realistic 

lithosphere structure. Since most geophysical and geological observations are recorded at 

the earth’s surface, an appropriate representation of the lithosphere is important, especially 

for future high-resolution models with extensive data assimilation. A possible way to solve 

this problem is to prescribe the lithosphere via traditional forward modeling techniques and 

maintain this constraint during the adjoint iterations, so that not only are major mantle 

structures captured based on scaled seismic images, but that fine features along boundary 

layers can also be expressed through explicit definitions with forward modeling (e.g., Fig. 

50). In this case, the iterative procedure of the adjoint inversion will need to be updated so 

that it does not overwrite the forward constraints.  

Another advantage of hybrid models is to help increase local numerical resolutions. 

As global models based on traditional uniform meshing are computationally expensive, and 

regional models suffer from artificially imposed vertical boundaries, new mathematical 

concepts for more efficient calculation must be generated. One approach has been to use a 

nested model where a coarse global model contains a finer regional one [Tan et al., 2006]. 

An alternative means is adaptive mesh refinement and coursing (AMR) techniques, which 

allow realization of local features with high resolutions while maintaining the total number 

of mesh grids largely the same [Burstedde et al., 2008; Stadler et al. 2010]. Implementation 

of these techniques is likely to improve the power of future geodynamic models greatly. 
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