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ABSTRACT 

Quantifying the relationship between subsolidus mantle convection and surface evolution is 

a fundamental goal of geophysics. Toward this goal progress has been slow due to 

incomplete knowledge of the earth’s internal structure and properties. While seismic 

tomography reveals details on internal 3D structure of the present mantle, evolution of the 

subsolidus mantle during the geological past remains elusive. This thesis attempts to solve 

the time inversion of mantle convection using the adjoint method based on present-day 

seismic images and geological and geophysical observations dictating the past evolution of 

solid earth. 

The adjoint method, widely used in meteorological and oceanographic predictions, can be 

applied to mantle convection for the recovery of unknown initial conditions through the 

assimilation of present-day mantle seismic structure. We propose that an optimal first guess 

to the initial condition can be obtained through a simple backward integration (SBI) of the 

governing equations thus lessening the computational expense. By incorporating time-

dependent surface dynamic topography in addition to present-day mantle structure, the 

adjoint method is improved so as to constrain uncertain mantle dynamic properties and 

initial condition simultaneously. The theory is derived from the governing equations of 

mantle convection and validated by synthetic experiments for a single- and two-layer 

viscosity mantle within regionally bounded spherical shells. For both cases, we show that 

the theory can constrain mantle properties with errors arising through the adjoint recovery 

of the initial condition. For the two-layer model, there is a trade-off between the 

temperature scaling and lower mantle viscosity. 

By assimilating seismic structure and plate motions in the inverse mantle convection 

model, we reconstruct Farallon plate subduction back to 100 Ma. We put constraints on 

basic mantle properties, including both the depth dependence of mantle viscosity and slab 

buoyancy, by predicting proxies of dynamic topography evident in the stratigraphy of the 

North American Cretaceous western interior seaway. Models that fit stratigraphy well 

require the Farallon slab to have been flat lying in the Late Cretaceous, consistent with 
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geological reconstructions. The models predict an extensive zone of shallow-dipping 

subduction extending beyond the flat-lying slab farther east and north, while the limited 

region of subducting flat slab resembles an oceanic plateau. In order to test the hypothesis 

of oceanic plateau subduction and its relationship to the Laramide orogeny, we compare the 

inverse convection model with plate reconstructions. Two prominent seismic anomalies on 

the Farallon plate recovered from inverse models coincide with paleogeographically-

restored positions of conjugates to the Shatsky and Hess plateaus when they subducted 

beneath North America. The distributed shortening of the Laramide orogeny closely 

tracked the passage of the Shatsky conjugate beneath North America, while the effects of 

Hess conjugate subduction were restricted to the northern Mexico foreland belt. We find 

that Laramide uplifts were consequences of the removal, rather than the emplacement, of 

the Shatsky conjugate, and we predict that these subducted plateaus should be detectable by 

the USArray seismic experiment. 

The inverse convection models predict a continuous vertical motion history of western 

U.S., which is further validated by constraints on the vertical motion of the Colorado 

Plateau since the Cretaceous. With the arrival of the flat-lying Farallon slab, dynamic 

subsidence swept from west to east over the western U.S., peaking at 86 Ma within the 

Colorado Plateau. This eastward migrating dynamic subsidence is consistent with a 

recently compiled backstripping study that shows a long-wavelength residual subsidence 

shifting to the east, coincident with the passage of the flat slab beneath North America in 

our inverse model. Two stages of uplift followed the removal of the Farallon slab below the 

Colorado Plateau: one in the latest Cretaceous, and the other in the Eocene, with a 

cumulative uplift of ~1.2 km; the former represents the Laramide uplift which also marks 

the initial uplift of the entire western U.S. Both the descent of the slab and buoyant 

upwellings raised the Colorado Plateau to its current elevation during the Oligocene. A 

locally thick lithosphere enhances coupling to the upper mantle so that the Colorado 

Plateau has a higher topography with sharp edges. Our models also predict that the plateau 

tilted downward to the northeast before the Oligocene, caused by northeast-trending 

subduction of the Farallon slab, and that this northeast tilting diminished and reversed to 

the southwest during the Miocene in response to buoyant upwellings. 
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Overall, this thesis shows that the adjoint models with data assimilation are useful in 

linking surface evolution to deep mantle processes both over North America and areas 

beyond. While more research is clearly needed to construct a more earth-like model, this 

thesis presents an important advance in data-oriented geodynamic models. 
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C h a p t e r  1  

Introduction 

One of the ultimate goals of geophysics is to understand subsolidus mantle 

convection and its relationship with surface observables, both geophysical and geological. 

Steady progress has been made as we increase our ability to image the earth’s internal 

structures. Development of seismic tomography has provided significant insights into 

mantle convection. From global seismic tomography, we see not only large-scale low-

velocity anomalies rising from the CMB and high-velocity belts correlated with ancient 

subduction zones [Su et al., 1994; Li and Romanowicz, 1996; Masters et al., 2000], but also 

structures like subducted oceanic slabs extending into the lower mantle [Grand et al., 1997; 

Van der Hilst et al., 1997; Ritsema et al., 2004; Li et al., 2008]. Deep-rooted columnar low 

seismic velocity structures, associated with surface hot spots, may have been detected and 

could be indicative of active mantle plumes [Montelli et al., 2004, Zhao, 2004; Nolet et al., 

2007]. Closer to the surface, regional tomography has imaged active subduction zones 

showing high seismic velocity slabs overlain by low velocity mantle wedges [Zhao et al., 

1997; Huang and Zhao, 2006; Sigloch et al., 2008; Roth et al., 2008]. Although very 

informative, tomographic images only provide a snapshot of mantle convection, the final 

instant of an evolving system. 

In order to constrain the time dependence of mantle convection, other geophysical 

observations beyond seismic imaging and gravity that extend into the time domain are 

needed. An important constraint comes from the velocity of plates and their time 

dependence that can be predicted in global flow models [Lithgow-Bertelloni and Richards, 
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1998]. Another possibility comes from surface topography (through stratigraphy and 

relative sea level) that has been used as a constraint on time-dependent models of mantle 

convection [Gurnis, 1993; DiCaprio et al., 2009], some with assimilated plate motions 

[Gurnis et al., 1998]. Furthermore, predicting the present-day mantle seismic structures 

through forward models also helps to constrain past geologic events [Bunge and Grand, 

2000] and explain uncertain mantle anomalies [McNamara and Zhong, 2005].  

However, previous models of mantle convection have all faced the difficulty of 

incorporating reasonable initial conditions. For example, Bunge et al. [1998] assumed a 

quasi steady-state mantle structure achieved by imposing the Cretaceous plate motion for a 

relatively long time before allowing time-dependent plate kinematics to start. This 

assumption is potentially problematic since plate motions change continuously. Gurnis et al. 

[1998] used an initial condition at 140 Ma in a model of the Australian region based on the 

earlier geological evolution. These initial conditions cannot reproduce the exact structures of 

present-day mantle.  

On the other hand, Steinberger and O’Connell [2000] and Conrad and Gurnis 

[2003] utilized a simple backward integration of the convection equations to predict past 

mantle structure by advecting the current mantle structures back in time, while neglecting 

thermal diffusion. This method, however, limits its application, because neglecting thermal 

diffusion will lead to the accumulation of artifacts at thermal boundaries with time [Ismail-

Zadeh et al., 2004]. Inferring the initial condition of a diffusive process through a simple 

reversal of time is problematic because it leads to exponentially growing numerical errors, 

which is called an ill-posed problem. 
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A promising approach to recovering initial conditions is through the use of an 

adjoint method widely adopted in meteorology and oceanography [Talagrand and Courtier, 

1987] and recently introduced into mantle convection [Bunge et al. 2003; Ismail-Zadeh et 

al., 2004]. The method constrains the initial condition by minimizing the mismatch of a 

prediction to observation iteratively in a least-square sense. Through synthetic experiments, 

Bunge et al. [2003] and Ismail-Zadeh et al. [2004] separately demonstrated that the initial 

condition could be effectively recovered with iterative solver schemes. However, the 

application to geophysical problems remained limited, because earlier tests all assumed that 

the initial condition is the only unknown in the system, which is obviously not true. In fact, 

both the rheology and effective Rayleigh number of the mantle, two key parameters 

governing the vigor of convection, are still uncertain, and this prohibits a unique recovery of 

the past mantle structure since the solution strongly depends on these mantle properties. On 

the other hand, the computational expense of earlier adjoint algorithms is high, especially 

for large- 3D models. 

In this thesis, I will summarize our work on improving the adjoint method by 

expanding the category of data constraints for assimilation and applying the method with 

real data. In Chapter 2, we describe the theoretical basis of the adjoint method in mantle 

convection and its implementation in computational software. By bringing in time-

dependent observations, i.e., surface dynamic topography, the adjoint method can be used to 

constrain uncertain mantle dynamic properties, while simultaneously recovering the 

unknown initial conditions of mantle, as we show in Chapter 3. While in Chapter 4, with the 

improved adjoint inversion technique, we perform the first inversions of mantle convection 
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based on data (including seismic tomography, plate motions, and stratigraphy as proxy for 

dynamic topography). The model was tailored for recovering the Farallon plate subduction 

back to the Late Cretaceous. In Chapter 5, by combining the adjoint models with plate 

reconstructions and structural features, we argue that the mechanism causing flattening of 

the Farallon slab was subduction of two oceanic plateaus, whose passage beneath North 

America had led the formation of the enigmatic Laramide orogenic event. This chapter also 

discusses the vertical motion evolution of the western and eastern U.S. accompanying the 

Farallon subduction, and implication of the inverse model on quantifying evolution of the 

western interior basins. In Chapter 6, I first provide a broader discussion on subduction 

evolution during the past beyond North America based on the adjoint model we have 

developed, followed by a summary of limitations of the current inverse models and some 

possible future improvements.  

 

 


