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Abstract

In the first part of this thesis, we demonstrate the benefits of network coding for

optimizing the use of various network resources.

We first study the problem of minimizing the power consumption for wireless

multiple unicasts. A simple XOR-based coding strategy is considered for reducing

the power consumption. We present a centralized polynomial time algorithm that

approximately minimizes the number of transmissions for two unicast sessions. We

extend it to a greedy algorithm for general problem of multiple unicasts.

Previous results on network coding for low-power wireless transmissions of mul-

tiple unicasts rely on opportunistic coding or centralized optimization to reduce the

power consumption. Thus we propose a distributed strategy for reducing the power

consumption with wireless multiple unicasts. Our strategy attempts to increase net-

work coding opportunities without the overhead required for centralized design or

coordination. We present a polynomial time algorithm using our strategy that max-

imizes the expected power savings with respect to the random choice of sources and

sinks on the wireless rectangular grid.

We study the problem of minimum-energy multicast using network coding in mo-

bile ad hoc networks (MANETs). The optimal subgraph can be obtained by solving

a linear program every time slot, but it leads to high computational complexity.

We present a low-complexity approach, network coding with periodic recomputation,

which recomputes an approximate solution at fixed time intervals, and uses this solu-

tion during each time interval. We analyze the power consumption and the complexity

of network with this approach.

Recently, several back-pressure type optimization algorithms with network coding
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are presented for multiple unicasts and multicast. Such algorithms are distributed

since decisions are made locally at each node based on feedback about the size of

queues at the destination node of each link. We develop a back-pressure based dis-

tributed optimization framework, which can be used for optimizing over any class of

network codes. Our approach is to specify the class of coding operations by a set

of generalized links, and to develop optimization tools that apply to any network

composed of such generalized links.

In the second part of this thesis, we study the capacity of single-source single-sink

noiseless networks under adversarial attack on no more than z edges. Unlike prior

papers, which assume equal capacities on all links, we allow arbitrary link capacities.

Results include new upper bounds, general transmission strategies, and example net-

works where those bounds are tight. We introduce a new method for finding upper

bounds on the linear coding capacities of arbitrary networks and show that there

exists networks where the capacity is 50% greater than the best rate that can be

achieved with linear coding. We also demonstrate examples where, unlike the equal

link capacity case, it is necessary for intermediate nodes to do coding, nonlinear error

detection or error correction in order to achieve the capacity. We introduce a new

strategy called “guess-and-forward” and employ this strategy on a sequence of net-

works designed to provide increasingly complex generalizations of the cut-set bounds.

The first is a two-node network with multiple feedback links. The second is a four-

node acyclic network. The third is a family of ‘zig-zag’ networks. In the first two

cases, the guess-and-forward strategy achieves the capacity. For zig-zag networks, we

derive the achievable rate of guess-and-forward strategy.
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Chapter 1

Introduction

A new paradigm for operating a network, network coding was first introduced Ahlswede

et al. in paper [1],which generalizes traditional routing by allowing each node to per-

form arbitrary operations on its inputs to generate the node’s output. It was shown

that the capacity of the network is equal to the size of the minimum cut that sep-

arates the source and any terminal. In a subsequent work, Li et al. [2] proved that

linear network codes are sufficient to achieve the capacity of the network. An al-

gebraic framework for linear network codes on directed graphs was developed by

Koetter and Medard [3]. This framework was used by Ho et al. [4, 5] to construct

random distributed network coding, which achieves the network capacity with prob-

ability exponentially approaching 1 with the code length. Jaggi et al. [6] proposed a

polynomial-time algorithm for systematically finding feasible network codes. Oppor-

tunistic XOR coding, which allows coding between packets across different sessions,

is proposed in [7].

Recently, it was shown that network coding can be used for optimizing the use

of network resources. In [6, 8, 9], the authors investigate the problem of achieving

the optimal throughput using network coding with multicast sessions. They show

that, although computing optimal multicast throughput with routing involves solving

NP-complete problems, the maximum multicast throughput and the corresponding

optimal multicast strategy can indeed be computed efficiently in polynomial time.

In [7,10–12] the authors demonstrate the benefits of network coding for power saving

in wireless networks, which is an important advantage over traditional routing. Sev-
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- ¾

¾ -

v1 v2 v3

v1 v2 v3

m1,3 m3,1

m1,3 ⊕m3,1

Figure 1.1: Transmitting messages m1,3 and m3,1 from v1 to v3 and v3 to v1, respec-
tively, requires three transmissions with network coding and four without.

eral polynomial time algorithms are presented that minimize the power consumption

in wireless networks with network coding. In [13,14], different optimization trade-offs

in wireless networks with network coding are studied.

In Chapter 2, we demonstrate the benefits of network coding for optimizing the

use of various network resources and propose several optimization algorithms.

In Section 2.1 and 2.2, we study a centralized and distributed design of network

codes for low-power wireless multiple unicasts, respectively. It was shown that net-

work coding is useful for information exchange [11], as illustrated in Fig 1.1. In

the given example, node v1 wishes to communicate a single packet of information to

node v3 while node v3 wishes to communicate a single packet to node v1. We label

these packets as m1,3 and m3,1, respectively. Without network coding, meeting the

given pair of demands requires four transmissions: each source transmits to node v2

(2 transmissions), and then v2 transmits first one and then the other message to its

intended sink (2 more transmissions). With network coding we obtain a savings in

energy – here simply measured by counting the number of transmissions required.

The savings is achieved because in this case node v2 can pass along both messages

in a single coded transmission. Precisely, nodes v1 and v3 transmit packets m1,3 and

m3,1 to node v2 (two transmissions); node v2 takes the bit-wise binary sum of its

two received packets (m1,3 ⊕m3,1) and then broadcasts the sum (one transmission).
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Since both nodes v1 and v3 are within transmission range of node v2, both receive

the mixture packet (m1,3 ⊕m3,1). Node v1 decodes m3,1 by taking the binary sum of

m1,3 ⊕m3,1 and its known value of m1,3. Node v3 similarly knows m3,1 and receives

m1,3 ⊕ m3,1, from which it can decode m1,3. The given strategy generalizes from

single packet transmissions across a two-hop network to information flows across a

path with arbitrarily many hops. We call this strategy reverse carpooling. We use

the word “carpooling” because the method allows two messages to effectively share a

ride through the network: after an initial set-up period, every time an internal node

transmits, it transmits a bit-wise binary sum of the next packet that it intends to

send forward and the next packet that it intends to send backward along the path.

For long paths and long sequences of packets the savings approaches a factor of two.

We call it “reverse” carpooling because the strategy only applies when the informa-

tion flows that want to share a ride are traveling opposite directions. In addition

to the reverse carpooling advantage, network coding is useful at network crossroads,

such as the bottleneck of the wireless butterfly example of [15] or other scenarios

where overheard information may provide opportunities for coding [16]. An example

of particular interest is shown in Fig. 1.2. Here a single packet (x1,4) passes from node

v1 to node v4, another (x3,6) from node v3 to node v6, and a third (x5,2) from node

v5 to node v2, The routing solution requires a minimum of six transmissions as each

node transmits its known packet to node v7, which then sends each message along

separately. In the network coding solution, here called 3-star coding, node v7 finds the

bit-wise binary sum x1,4 ⊕ x3,6 ⊕ x5,2 and sends that value to all three receivers in a

single broadcast transmission. In this case, node v2 overhears node v1’s transmission

of x1,4 simply because it is one of v1’s neighbors; it likewise overhears x3,6 due to

its proximity to v3. Node v2 can therefore combine its overheard messages with the

coded packet x1,4 ⊕ x3,6 ⊕ x5,2 to decode the desired message x5,2. Nodes v4 and v5

likewise overhear the messages that don’t interest them and use those to decode their

desired packets from x1,4 ⊕ x5,2 ⊕ x3,6.

Each application of the 3-star coding strategy gives a savings of two transmissions.

The same approach likewise applies when k ≥ 2 paths cross, provided that the cross
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Figure 1.2: 3-star coding: si wants to transmit packet xi to ti (1 ≤ i ≤ 3) and tj
overhears from si (j 6= i). Node v broadcasts x1⊕x2⊕x3 to t1, t2, and t3 and it gives
a savings of two transmissions.

configuration allows each of the intersection outputs to overhear the message that it

doesn’t require. Consider k different session’s packets p1, p2,..,pk at a node v that

have distinct next-hop nodes v1,..,vk respectively. For each next-hop node vi, if it is

the previous-hop node of packet pj or it overheard packet pj from the transmission

of its previous-hop node from opportunistic listening for ∀j 6= i, coded packet p =

p1 ⊕ p2 ⊕ . . . ⊕ pk is broadcast to all the next-hop nodes v1,..,vk at node v. The

savings from such a crossing, here called a k-star, is k−1 transmissions. The wireless

butterfly network of [15] is one such example. The savings from such a crossing, here

called a 2-star, is a single transmission.

In Section 2.1, we first propose a centralized algorithm using reverse carpool-

ing that minimizes the number of transmissions for two unicasts. We extend this

to the polynomial time greedy algorithm for general multiple unicasts problem. In

Section 2.2, we present a distributed strategy using reverse carpooling for reducing

the expected power consumption for wireless multiple unicasts. Our approach in-

creases the reverse carpooling opportunities without requiring central coordination.

A wireless rectangular grid is used as a simple network model. The proposed tech-

nique designates “reverse carpooling lines” analogous to a collection of bus routes in

a crowded city. Each individual unicast then chooses a route from its source to its

destination independently but in a manner that maximizes the fraction of its path
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spent on reverse carpooling lines. Intermediate nodes apply reverse carpooling op-

portunistically along these routes. Our network optimization attempts to choose the

reverse carpooling lines in a manner that maximizes the expected power savings with

respect to the random choice of sources and sinks.

Section 2.3 introduces a new low complexity approach, network coding with pe-

riodic recomputation. In [12, 17], it is shown that network coding can be used for

achieving the minimum cost coded subgraph for multicasting in mobile ad hoc net-

works (MANETs). The optimal solution can be obtained by solving a linear program

every time slot, but it leads to high computational complexity. This motivates us to

develop our approach with low complexity. In our approach, we recompute a subop-

timal coded subgraph at fixed time intervals, and use this solution during each time

interval although the network topology changes in MANETs. We obtain a simple

theoretical cost bound on the gap between our solution and the optimal cost. We

also analyze its computational complexity with an interior-point method, and show

how our results can be applied to trade off performance and complexity in a given

network scenario.

In Section 2.4, we investigate a back-pressure approach for network optimization

with network coding. Most of the previous work focused on developing back-pressure

type algorithms for multicast routing, session scheduling, and rate allocation, which

maintain a queue for each session’s packets at each node, and a route based on queue

gradients that form by the addition of packets to sources and their removal from

sinks [18–25]. However, in the case without network coding, the algorithms are signif-

icantly more complex and harder to implement, even for wired networks. By combin-

ing network coding with back-pressure approach, several distributed polynomial-time

algorithms for optimizing the network resources are presented recently in [26–29]. We

propose a back-pressure based distributed optimization framework, which can be used

for optimizing over any class of network codes, including reverse carpooling and star

coding. Our approach is to specify the class of coding operations by a set of gener-

alized links, and to develop optimization tools that apply to any network composed

of such generalized links. We prove that our algorithm achieve the stability for any
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input rates within the capacity region.

In the second part of this thesis, we study the problem of error correction for

network codes when links in the network may have unequal link capacities.

Network error-correction was first studied by Yeung and Cai [30,31] in the context

of multicast network coding [1–3] on networks with unit-capacity links. Mixing the

information content from different packets can increase the multicast throughput, but

it can also potentially increase the impact of malicious links or nodes that corrupt

data transmissions, since a single corrupted packet, mixed with other packets in

the network, can corrupt all of the information reaching a destination. In the equal

capacity link scenario, the Singleton bound is tight and linear network error-correcting

codes suffice to achieve the capacity, which equals C − 2z where C is the min-cut of

the network [31, Theorem 4]. The problem of network coding under Byzantine attack

was also investigated in [32], which gave an approach for detecting arbitrary errors

under random network coding. Construction of codes that can correct errors up to the

full error-correction capability specified by the Singleton bound was presented in [33].

A variety of alternative models of adversarial attack and strategies for detecting and

correcting such errors appear in the literature. Examples include [34–41].

Here we consider network error correction with unequal link capacities. (A similar

model, where adversaries control a fixed number of nodes in a network of arbitrary-

capacity links rather than a fixed number of edges is studied in [42].) The unequal

link capacity problem is substantially different from the problem studied by Yeung

and Cai in [30, 31] since the rate controlled by the adversary varies with his edge

choice. For the equal link capacities case, coding only at the source and forwarding

at intermediate nodes suffices to achieve the capacity for any single-source and single-

sink network. In contrast, for networks with unequal link capacities, we show that

network error correction is needed even for a single-source and single-sink network.

Specifically, the network error correction problem concerns reliable information

transmission in a network with the adversary who arbitrarily corrupts the packets

sent on some set of z links. The location of the adversarial links is fixed for all time

but unknown to the network user. A z-error-correcting network code is defined as
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follows: if the total number of links in the network that may be corrupted by errors

is at most z, then the source message can be recovered by the sink node.

The z-error correcting network capacity, henceforth simply called the capacity, is

the supremum over all rates achievable by z-error correcting codes. Here we define

a z-error link correcting code for a single-source and single-sink network to be a

code that can recover the source message at the sink node if there are at most z

adversarial links in the network; the code must work no matter what the capacity of

the adversarial links.

We propose a new cut-set upper bound for the error-correction capacity for general

acyclic networks. The standard cut-set bounding approach effectively treats all nodes

on the same side of a given cut as a single super node. We therefore develop our cut-

set bound by first studying the two-node network shown in Fig. 1.3. In this network,

the source node can transmit packets to the sink node along the forward links and the

sink node can send information back to the source node along the feedback links. We

begin by characterizing the capacity of this network. However, this cut-set abstraction

is insufficient to fully capture the effect of network topology relative to the cut since it

assumes that all feedback is available to the source node and all information crossing

the cut in the forward direction is available to the sink. We therefore introduce the

four-node acyclic network shown in Fig. 1.4 as a step towards generalizing the cut-set

bound. In this acyclic network, source node S and its neighbor node B lie on one side

of a cut that separates them from sink node U and its neighbor A. As in the cut-set

model, we allow unbounded reliable communication from source S to its neighbor

B on one side of the cut and from node A to sink U on the other side of the cut;

this differs from the original cut-set assumption only in that the communication is

undirectional. We derive the capacity of this four-node network and use our result

to generalize the cut-set bound. Since the resulting bound, like its predecessor, fails

to capture the general network cut capacity, we introduce the zig-zag network model

shown in Fig. 1.5 to generalize our four-node acyclic network model. Nodes Ai and Bi

can communicate reliably with unbounded rate to Ai+1 and Bi+1, respectively. The

links from Ai to Bi represent feedback across the cut. This model more accurately
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captures the behavior of any cut with k feedback links across the cut.

We first propose a new cut-set upper bound which applies to general acyclic net-

works. For networks with unequal link capacities, this bound tightens the generalized

Singleton bound given in our earlier work in [43] and independently in [42]. We

consider a variety of linear and nonlinear coding strategies useful for achieving the

capacity of the example networks. We present a method for upper bounding the linear

coding capacity of an arbitrary network and prove the insufficiency of linear network

codes to achieve the capacity. We also give examples of single-source and single-sink

networks for which intermediate nodes must perform coding, nonlinear error detec-

tion or error correction in order to achieve the network capacity. We then introduce

a new coding strategy called “guess-and-forward.” In this strategy, an intermediate

node which receives some redundant information from multiple paths guesses which

of its upstream links controlled by the adversary. The intermediate node forwards

its guess to the sink which tests the hypothesis of the guessing node. We investigate

this strategy with a variety of example networks. We show that guess-and-forward

achieves network capacity on the two-node network with multiple feedback links, as

well as the proposed family of four-node acyclic networks. Finally, we apply guess-

and-forward strategy to the zig-zag networks, deriving a general achievable rate region

and presenting conditions under which that bound is tight. This work also appears

in [43,44].
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Figure 1.4: Four node acyclic networks: unbounded reliable communication is allowed
from source S to its neighbor B on one side of the cut and from node A to sink U on
the other side of the cut, respectively. There are feedback links from A to B.
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Figure 1.5: k-layer zig-zag network: Ai and Bi can communicate reliably with un-
bounded rate to Ai+1 and Bi+1, respectively.(S = B0, U = Ak+1). The links from
Ai to Bi represent feedback across the cut. This model more accurately captures the
behavior of any cut with k feedback links across the cut.
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Chapter 2

Network resource optimization

2.1 Centralized design of network codes for low-

power wireless multiple unicasts

2.1.1 Introduction

Figure 2.1: The nodes of the network lie on the vertices of a triangular lattice.

In this section, we investigate the use of reverse carpooling strategy for wireless

multiple unicasts. As shown in Chapter 1, even for transmission of independent

messages, reverse carpooling strategy provides a potential energy saving benefits for

multiple unicasts in wireless networks. Effros et al. [10] present a recursive centralized

algorithm that employs a dynamic programming argument for optimizing the power

consumption using reverse carpooling and star-coding. However, the complexity of

this algorithm makes its solution impractical for large networks and this motivates

us to develop low computational complexity algorithms for the same problem.
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Figure 2.2: Reverse carpooling.

A wireless triangular grid is used as a simplified network model, as shown in

Fig. 2.1. Each node corresponds to a vertex of a triangular grid, and it can broadcast

information only to its six neighbor nodes. Each node directly receives all transmis-

sions sent by its six neighbors. Thus there is direct communication only along edges

connecting a node and its neighbor in the graph.

First, we propose a centralized algorithm that approximately minimizes the num-

ber of transmissions for two unicast sessions. This heuristic algorithm finds the min-

imal cost solution in O(1) time. We extend this to obtain a greedy algorithm for

general problem with multiple unicast sessions. The complexity of our greedy algo-

rithm is O(n3) where n is the number of unicast sessions. We show by simulations

that the algorithm reduces the power consumption significantly as the number of

unicast sessions increases on the wireless triangular grid.

2.1.2 Preliminaries

2.1.2.1 Network

We define a triangular grid G = (V , E) as the set of vertices V = {a(1,0) + b(1
2
,
√

3
2

)

: a, b ∈ Z} where Z denotes the set of integers and the set of directed edges E=

{(v, v′) : ‖v − v′‖ = 1} where for any v, v′ ∈ V , (v, v′) denotes the arc connecting

v and v′. Thus each node has six incident and six outgoing edges, each of length
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1. The head and tail of edge e = (vi, vj) are denoted by vj = head(e) and vi =

tail(e), respectively. Together, the edges in E form lines at angles 0, 60◦, and 120◦

from the horizontal, as shown in Fig. 2.1; we call these lines grid lines. A path is an

ordered list of connected edges. Precisely, for any path P = (e1, e2, .., ek), we require

e1, e2, .., ek ∈E and head(ei) = tail(ei+1) for 1 ≤ i ≤ k − 1. For any 1≤ i ≤ j ≤ k,

we call P ′ = (ei, ei+1, .., ej) a sub-path of P = (e1, e2, .., ek) and write P ′ ⊆ P . When

tail(ei) = head(ej) for some i≤j, we call sub-path P ′ = (ei, ei+1, .., ej) a self-loop.

We restrict our attention to paths without self loops; Lemma 2.1 shows that for our

purposes, there is no loss of generality in this restriction. We use l(P ) =
∑

e∈P ‖e‖=
|P | to denote the length of path P . For any distinct vertices v,v′∈V , we use P(v, v′)

to denote the set of all paths from v to v′ in G, SP (v, v′) = arg minP∈P(v,v′){l(P )} to

denote the shortest path from v to v′, and d(v, v′) = l(SP (v, v′)) to denote the length

of the shortest path.

2.1.2.2 Unicast

In a unicast session, a single source vertex s ∈ V transmits information to a single

destination vertex t ∈ V . In this paper, we consider multiple unicast sessions on

a shared triangular grid. We specify a multiple unicast problem by describing the

source and the destination for each unicast. For example, U= {(s1, t1), (s2, t2),...,

(sn, tn)} is an n-unicast problem.

2.1.2.3 Reverse carpooling

Given a multiple unicast problem U= {(s1, t1), (s2, t2),...,(sn, tn)}, a candidate solu-

tion S= {P1, ...., Pn} is a list of paths such that Pi ∈P (si, ti) for each i. For any edge

e = (v, v′)∈E , we use eR = (v′, v) to denote the reversal of edge e. Likewise, for any

path P = (e1, e2, ..ek), we use PR= (eR
k , eR

k−1, ..., e
R
1 ) to denote the reversal of path P .

In candidate solution S, the opportunity to apply reverse carpooling arises when two

paths, say Pi and Pj, contain sub-paths P ′
i ⊆ Pi and P ′

j ⊆ Pj satisfying (P ′
i )

R = P ′
j .

Such a sub-path is called a reverse carpooling segment. Note that reverse carpooling

may not actually occur between sub-paths P ′
i and P ′

j if one of them is involved in
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Figure 2.3: Reverse carpooling solution of two unicast sessions with one reverse car-
pooling segment and four branches.

reverse carpooling with another sub-path. Since paths Pi and Pj may reverse carpool

along multiple non-consecutive segments, we use K(Pi, Pj) to denote the number of

reverse carpooling segments shared by Pi and Pj and rk(Pi, Pj) to denote the kth sub-

path shared by Pi and Pj. If K(Pi, Pj) = 1, we simplify our notation to r(Pi, Pj) =

r1(Pi, Pj). The sub-paths are numbered according to the order in which they appear

in the first path (path Pi in rk(Pi, Pj)). Each sub-path is as long as possible, and the

sub-paths are disjoint.

To make these definitions precise, let Pi = (e
(i)
1 , ..., e

(i)
l(Pi)

) and Pj = (e
(j)
1 , ..., e

(j)
l(Pj)

).

The following discussion defines tk and lk = l(rk(Pi, Pj)) to be the start point (in Pi)

and length, respectively, of rk(Pi, Pj) (provided that Pi and Pj have at least k reverse

carpooling segments).

Initialize t0 = 0, and l0 = 1. Then for each subsequent k≥1 for which tk−1 + lk−1≤
l(Pi), let

tk = min[{n ∈ {tk−1 + lk−1, ..., l(Pi)} : e(i)R
n ∈ Pj}

∪ {l(Pi) + 1}].
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Figure 2.4: Illustration of cost of edge (v, v′): 5 unicasts use edge (v, v′) and 4 unicasts
use edge (v′, v). Combined contribution of edges (v, v′) and (v′, v) to our estimated
cost is 5.

If tk≤l(Pi), let

lk = min{n ∈ {1, ..., l(Pi)− tk} : e
(i)R
tk+n /∈ Pj}.

Then rk(Pi, Pj) = (e
(i)
tk

, ..., e
(i)
tk+lk−1). We define branches Bijk as Bijk = (e

(i)
tk−1+lk−1

, ..., e
(i)
tk−1)

if tk> tk−1 + lk−1, and Bijk = φ otherwise.

If tk>l(Pi), then Pi and Pj share fewer than k reverse carpooling segments, Bijk

= (e
(i)
tk−1+lk−1

, ..., e
(i)
l(Pi)

), and the process stops. Fig. 2.3 shows an example with one

reverse carpooling segment and four branches.

2.1.2.4 Network cost

The cost of a candidate solution is the energy consumed in a wireless network that

transmits a single information stream along each path Pi∈S. When n = 1 (a single

unicast session), we estimate the cost of candidate solution S = {P1} by the number

of transmissions required to send a single packet from s1 to t1 along path P1. Thus

the cost of P1 is the number of edges in path P1, which equals l(P1). When n>1, the

opportunity for reverse carpooling may arise. We approximate the cost saved using
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reverse carpooling by counting the link between nodes v and v′ only once for each

time we apply reverse carpooling along (v, v′) and (v′, v). For candidate solution S,

the number of reverse carpooling opportunities along edge e using solution S is

R(S, e, eR) = min

{∑
P∈S

1(e ∈ P ),
∑
P∈S

1(eR ∈ P )

}
.

Thus the resulting cost across edge e and eR using candidate solution S is approxi-

mated as

C(S, e, eR) =
∑
P∈S

1(e ∈ P ) +
∑
P∈S

1(eR ∈ P )−R(S, e, eR)

= max

{∑
P∈S

1(e ∈ P ),
∑
P∈S

1(eR ∈ P )

}
,

giving a total cost

C(S) =
1

2

∑
e∈E

{
C(S, e, eR)

}
.

Fig. 2.4 gives an example. Edge(v, v′) appears in five paths (P1, P3, P5, P7, P9).

Edge (v′, v) appears in four paths (P2, P4, P6, P8). Thus R(S, (v, v′)) = R(S, (v′, v))

= 4, and the combined contribution of edges (v, v′) and (v′, v) to our estimated cost

C(S) is 5.

The difference between the approximate cost C(S) and the actual number of

transmissions for a candidate solution S is at most the number of reverse carpooling

segments. We show in Section 2.1.3 that the number of reverse carpooling segments

is at most 1 for two unicasts problem. Fig. 2.5 illustrates the difference between cost

and number of transmissions. Each network is a candidate solution in which reverse

carpooling can be applied. Nodes a, b, c, and d can all apply reverse carpooling in the

first network. In the second network, only nodes b and c can apply reverse carpooling.

Reverse carpooling is not possible at nodes a and d in this example because nodes t1
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Figure 2.5: Reverse carpooling is possible at nodes a,b,c,and d in the first network.
In the second network, reverse carpooling is not possible at nodes a, and d because
t2 cannot overhear the transmission from s1 and t1 cannot overhear the transmission
from s2. Thus the first network requires 6 transmissions, while the second network
requires 8 transmissions. In both networks, we approximate the cost of S as C(S)
= 7. In general, for a reverse carpooling segment of n links shared by two unicast
sessions, the actual number of transmissions is n± 1 while the approximate cost is n.
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Figure 2.6: Illustration of a 4-exit loop and a 2-exit loop.

and t2 are too far away from nodes s2 and s1, respectively, to overhear the information

that they would need to unmix a joint transmission. Thus the first network requires 6

transmissions, while the second network requires 8 transmissions. In both networks,

we approximate the cost of S as C(S) = 7. In general, for a reverse carpooling

segment of n links shared by two unicast sessions, each of the n − 1 intermediate

nodes can satisfy both of its neighbors with a single transmission. However, the two

end nodes may or may not be able to achieve a savings of this type. Thus, the actual

number of transmissions is n ± 1 while the approximate cost is n. We approximate

the number of transmissions by the cost C(S) throughout the paper. In Sections 2.1.3

and 2.1.4, we propose two polynomial time algorithms to minimize cost for two and

multipe unicast sessions respectively.

2.1.2.5 Loop

In Sections 2.1.3, we show that for any two unicast sessions problem, there exists an

optimal solution S∗ for which no single path P ∗
i ∈S∗ contains a self-loop and for which

any two paths P ∗
i , P ∗

j ∈S∗ satisfy K(P ∗
i , P ∗

j )≤1. The following definitions are useful

in that discussion. Given any two paths Pi and Pj for which K(Pi, Pj)≥2, Pi and Pj

form K(Pi, Pj)− 1 loops between their reverse carpooling segments. These loops can
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take two possible forms. In the first case, illustrated in Fig. 2.6(a), rk(Pi, Pj) and

(rk(Pi, Pj))
R are both closer to the sources of their respective paths than rk+1(Pi, Pj)

and (rk+1(Pi, Pj))
R. In the second case, illustrated in Fig. 2.6(b), rk(Pi, Pj) is closer to

the source of Pi than rk+1(Pi, Pj) (this must always be true by definition of rk(Pi, Pj)),

but (rk+1(Pi, Pj))
R is closer to the source of Pj than (rk(Pi, Pj))

R. In the former case,

the loop contains reverse carpooling segments rk(Pi, Pj) and rk+1(Pi, Pj) (and their

reversals) and two branches Bijk and Bjim. The two unicast sessions enter and exit

the loop along four independent branches. We therefore call this loop a 4-exit loop,

here denoted by L(Pi, Pj, k, m) = (rk(Pi, Pj), Bijk, rk+1(Pi, Pj), Bjim).

In the latter case, two branches, say Bijk and Bjim, of Pi and Pj form a loop;

reverse carpooling segments rk(Pi, Pj) and rk+1(Pi, Pj) (and their reversals) form the

entrances and exits of this loop. We therefore call this loop a 2-exit loop. We use

L′(Pi, Pj, k,m) = (Bijk, Bjim) to denote this 2-exit loop.

We show that there always exists a minimal cost solution for multiple unicasts

that contains no self-loops.

Lemma 2.1 Given a n-unicast problem U = {(s1, t1), .., (sn, tn)}, there exists a min-

imal cost solution S∗ = (P1, .., Pn) that contains no self-loops.

Proof. Suppose that P1 has a self-loop P11 = (e
(1)
i , .., e

(1)
j ) ⊆ P1. We define an

alternative solution S ′ = (P ′
1, P2, .., Pn) with P ′

1 = P1 − P11. Then,

C(S ′) ≤ C(S ′ ∪ P11) = C(S∗) ≤ C(S ′) + l(P11).

If C(S ′) < C(S), we obtain a contradiction since S∗ is optimal by assumption. Oth-

erwise, C(S ′) = C(S∗), and we can remove P11 without increasing cost. By repeating

this argument, we can remove all self-loops while maintaining the optimal cost C(S∗).
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Figure 2.7: Illustration of proof of Theorem 2.2: (a) S∗ = (P1, P2, P3) contains a 4-
exit loop L(P1, P2, k,m). (b) Redirecting both P1 and P2 as shown removes rk(P1, P2)
and rk+1(P1, P2) and decreases the cost of the solution.

2.1.3 Two unicast sessions problem

This section presents a polynomial-time algorithm that finds an optimal cost solution

for two unicast sessions (s1, t1), (s2, t2) on a triangular grid.

Lemma 2.1 and Theorem 2.2 help to characterize the form of an optimal solution

for two unicast sessions.

Theorem 2.2 Given a two-unicast problem U = {(s1, t1), (s2, t2)}, if S∗ = (P1, P2)

is a minimal cost solution, then K(P1, P2)≤1, i.e., there is at most one reverse car-

pooling segment shared by P1 and P2.

Proof. The proof is by contradiction. Suppose that S∗ = (P1, P2) is an optimal

solution with K(P1, P2)>1. Then S∗ either contains a 2-exit loop or a 4-exit loop.

First, suppose that S∗ = (P1, P2) contains a 4-exit loop L(P1, P2, k, m) = (rk(P1, P2),

B12k, rk+1(P1, P2), B21m), as shown in Fig. 2.7(a). Let x = C(S∗)−C(L(P1, P2, k,m)).

Then

C(S∗) = x + l(rk(P1, P2)) + l(rk+1(P1, P2)) + l(B12k) + l(B21m).

As shown in Fig. 2.7(b), redirecting P1 down B21m and P2 down B12k (which re-
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moves both reverse carpooling segments) decreases the cost of the solution, thereby

contradicting the optimality of (P1, P2). Let S ′ = (P ′
1, P

′
2) where

P ′
1 = (P1 − (rk(P1, P2) ∪B12k ∪ rk+1(P1, P2))) ∪B21m,

P ′
2 = (P2 − ((rk+1(P1, P2))

R ∪B21m ∪ (rk(P1, P2))
R)) ∪B12k.

Then C(S ′) = C(S∗)− l(rk(P1, P2))− l(rk+1(P1, P2)) <C(S∗) since l(rk(P1, P2))>0

and l(rk+1(P1, P2))>0 by definition of a reverse carpooling segment. This gives the

desired contradiction.

Now suppose that S∗ = (P1, P2) contains a 2-exit loop L′(P1, P2, k, m) = (B12k,

B21m), as shown in Fig. 2.6(b). The following argument shows that directing both

paths down one side of the loop decreases the cost. This gives a contradiction (since S∗

is optimal by assumption) and therefore proves that S∗ cannot contain a 2-exit loop.

Without loss of generality, assume that l(B12k)≥l(B21m) and define an alternative

solution S ′ = (P ′
1, P2) with

P ′
1 = P1 −B12k ∪ (B21m)R.

Then, P1 and P2 can reverse carpool along B21m and thus C(S ′) = C(S∗)−l(B12k)<

C(S∗), which gives the desired result.

Given any a, b, c ∈V that are not collinear, we use 4abc to denote the triangle

with corners at a, b, and c. We use ∠a to denote the angle between lines (b, a) and

(c, a), ∠b to denote the angle between lines (a, b) and (c, b), and ∠c to denote the

angle between lines (a, c) and (b, c).

Theorem 2.3 For any a, b, c ∈V that are not collinear, we can find the largest set

P = {x ∈ V : d(a, x) + d(b, x) + d(c, x)

≤ d(a, y) + d(b, y) + d(c, y),∀y ∈ V}
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Figure 2.8: Lemma 2.4 of Theorem 2.3. First portion of proof: If c is above ga,0, then
gb,0 6∈4abc. If c is below gb,0, then ga,0 6∈4abc. If c is between ga,0 and gb,0, then ga,0,
gb,0 6∈ 4abc.

in O(1) time.

Before proving the theorem, we prove a lemma that bounds the number of grid

lines contained in ∠a, ∠b, and ∠c of 4abc. If any side of the triangle corresponds to

a grid line, then we count that grid line only once. The following notation is useful

for that discussion. For each v ∈{a, b, c} and θ ∈{0◦, 60◦, 120◦}, let gv,θ denote the

grid lines at angle θ through vertex v. We write g ∈4abc to specify that grid line g

is contained in one or more of the angles in 4abc and for each θ∈{0◦, 60◦, 120◦} and

v ∈{a, b, c}, define

Gθ = {gv′,θ : v′ ∈ {a, b, c}, gv′,θ ∈ 4abc}.

Gv = {gv,θ′ : θ′ ∈ {0◦, 60◦, 120◦}, gv,θ′ ∈ 4abc}.

We prove the desired result by first proving that |Gθ|≤1 and then proving that |Gθ|≥1

for each θ∈{0◦, 60◦, 120◦}. (Here, |A| denotes the number of distinct elements in set

A.) Both proofs are by contradiction.

Lemma 2.4 Given any a, b, c ∈ V that are not collinear, |Gθ| = 1 for each θ ∈
{0◦, 60◦, 120◦}, and | ∪v∈{a,b,c} Gv| = | ∪θ∈{0◦,60◦,120◦} Gθ| = 3.

Proof.
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Figure 2.9: Case 1 of Theorem 2.3: ∠a,∠b,∠c contain one gridline respectively, ga,60,
gb,0, and gc,120. These grid lines form an equilateral triangle 4uvw.

Suppose that |Gθ|>1 for some θ∈{0◦, 60◦, 120◦}. Without loss of generality, we

label ga,θ and gb,θ as distinct elements of Gθ. Grid lines ga,θ and gb,θ are parallel lines.

Let a be the higher of the two and recall that (a, b) is one side of 4abc (See Fig. 2.8).

If c is above ga,θ, then gb,θ 6∈ 4abc, which gives a contradiction. If c is below gb,θ,

then ga,θ 6∈ 4abc, which again gives a contradiction. If c lies between ga,θ and gb,θ,

then ga,θ, gb,θ 6∈ 4abc gives the final contradiction and completes the first portion of

our proof.

Now suppose that |Gθ| = 0 for some θ∈{0◦, 60◦, 120◦}. If |{ga,θ, gb,θ, gc,θ}|<3, then

assume without loss of generality, that ga,θ = gb,θ. This implies that ga,θ is collinear

with line (a, b) and is therefore contained in 4abc, which gives a contradiction. If

|{ga,θ, gb,θ, gc,θ}| = 3, then ga,θ, gb,θ, and gc,θ are distinct parallel grid lines. We assume

without loss of generality that gc,θ is the center line. (See Fig. 2.8). Then gc,θ∈4abc,

which gives the desired contradiction.

Proof of Theorem 2.3: Lemma 2.4 allows us to break the proof into three cases.

Case 1) maxv∈{a,b,c} |Gv| < 3.

In this case, we show that the desired set contains all vertices in a triangle

formed by ∪v∈{a,b,c}Gv. By Lemma 2.4, | ∪v∈{a,b,c} Gv| = 3 and |Gθ| = 1 for each

θ∈{0◦, 60◦, 120◦}. Since maxv∈{a,b,c} |Gv| < 3, these grid lines form an equilateral

triangle. We label u, v, w ∈ V are the triangle corners closest to a, b, and c, re-

spectively and the grid lines in ∪v∈{a,b,c}Gv as guv, gvw, and guw, where guv is the
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grid line that contains u and v. Let l denote the side length for 4uvw. We show

d(a, x)+d(b, x)+d(c, x) is constant for all x∈4uvw (that is all x∈V that lie in triangle

4uvw or on its boundary). We then show that for any x∈4uvw and y /∈4uvw,

d(a, y) + d(b, y) + d(c, y) > d(a, x) + d(b, x) + d(c, x).

To prove these results, first note that for any vertex x∈4uvw, there exists a shortest

path between a and x that passes through u. The shortest paths from b to x and c

to x can likewise pass through v and w, respectively. Let l0, l60, and l120 be the side

lengths for the three equilateral triangles formed by intersecting gx,θ with the sides of

4uvw. (See Fig. 2.9.) Then l = l0 + l60 + l120, and

d(a, x) + d(b, x) + d(c, x)

= (d(a, u) + l120 + l60) + (d(b, v) + l60 + l0)

+(d(c, w) + l0 + l120)

= d(a, u) + d(b, v) + d(c, w) + 2l.

Therefore, d(a, x) + d(b, x) + d(c, x) is constant for any vertex x∈4uvw.

For any y /∈4uvw, two of the three grid lines in {gy,0, gy,60, gy,120} form an equi-

lateral triangle with the nearest one of guv, gvw, and guw, as shown in Fig. 2.10.

We assume that y is above guw. We use ly to denote the side length of that tri-

angle and y′ to denote one of the nearest corner of triangle from 4uvw. Since

d(a, u) + d(c, u) = d(a, c) as shown in Fig. 2.10 and Fig. 2.11,

d(a, y) + d(c, y) ≥ d(a, c) = d(a, u) + d(c, u).

In addition, since y is above guw, d(b, y′)≥d(b, u). Thus,

d(b, y) = d(b, y′) + ly > d(b, y′) ≥ d(b, u).
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Figure 2.10: Case 1 of Theorem 2.3: Any point outside of the triangle uvw cannot be
a solution.
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Figure 2.11: Case 1 of Theorem 2.3: Any point outside of the triangle uvw cannot be
a solution.
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Figure 2.12: Case 2 of Theorem 2.3: ∠a contains three grid lines. a is the unique
solution point.

Then

d(a, y) + d(b, y) + d(c, y)

≥ d(a, u) + d(b, y′) + d(c, u) + ly

> d(a, u) + d(b, u) + d(c, u)

= d(a, u) + d(b, v) + d(c, w) + 2l.

Case 2) One of ∠a, ∠b, and ∠c contains three grid lines.

In this case, we show that P contains only the corner of 4abc that contains the

triangle’s three grid lines. We assume that ∠a contains three grid lines ga,0, ga,60,

and ga,120, and b is below ga,0 and above ga,60 as shown in Fig. 2.12. Then ∠b and ∠c

contain no grid lines. We show that for any y 6=a,

d(a, y) + d(b, y) + d(c, y) > d(a, b) + d(a, c).

Since b is below ga,0 and above ga,60 and c is above ga,0 and below ga,60, there exists a

shortest path between b and c that passes through a. Thus, d(b, c) = d(b, a) + d(a, c),

and

d(b, y) + d(c, y) ≥ d(b, c) = d(a, b) + d(a, c).
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Figure 2.13: Reverse carpooling solution S(b, c).

In addition, d(a, y)>0. Therefore,

d(a, y) + d(b, y) + d(c, y)

> d(a, b) + d(a, c).

This gives the desired result.

In two cases, the result follows from the fact that the time complexity of finding

Gθ is O(1).

In theorem 2.5, we find locations of rc(s1, t2) and rc(s2, t1) to obtain the optimal

cost reverse carpooling solution and compare its cost with the cost of the shortest

paths solution, l = d(s1, t1)+ d(s2, t2). If l is less than the cost of the optimal reverse

carpooling solution, the optimal solution is the shortest paths solution. Otherwise,

we choose the optimal cost reverse carpooling solution.

Theorem 2.5 Given a two unicast problem U = {(s1, t1), (s2, t2)}, we can find a

minimal cost solution S∗ = (P1, P2) in O(1) time.

Proof. By Theorem 2.2, for two unicast sessions (s1, t1) and (s2, t2) , there exists

an minimal cost solution S∗ = (P1, P2) for which K(P1, P2)≤1. If K(P1, P2) = 0, using

a shortest path for each unicast session gives the optimal solution. We use (SP (s1, t1),

SP (s2, t2)) to denote the shortest path solution. Otherwise, S∗ contains exactly one

reverse carpooling segment r(P1, P2). Let r(P1, P2) = (e
(1)
k , e

(1)
k+1, ..., e

(1)
k+m−1).

We use rc(s1, t2) = tail(e
(1)
k ) and rc(t1, s2) = head(e

(1)
k+m−1) to denote the two

endpoints of r(P1, P2). As shown in Fig. 2.13, let b and c denote rc(s1, t2) and rc(t1, s2)

respectively for brevity. Given locations of b and c, the reverse carpooling solution is
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S(b, c) = (P1, P2) where

P1 = SP (s1, b) ∪ r(P1, P2) ∪ SP (c, t1),

P2 = SP (s2, c) ∪ (r(P1, P2))
R ∪ SP (b, t2),

and

C(S(b, c)) = l(SP (s1, b)) + l(SP (t2, b)) + l(SP (b, c))

+ l(SP (s2, c)) + l(SP (t1, c)). (2.1)

We use S ′ = (P ′
1, P

′
2) to denote the minimal cost reverse carpooling solution. We

compare C(S ′) with l = d(s1, t1) + d(s2, t2). If C(S ′)≤l, then S∗ = S ′. Otherwise,

S∗ = (SP (s1, t1), SP (s2, t2)). For a reverse carpooling solution with given b to be

optimal, the location of c must satisfy

d(c, b) + d(c, t1) + d(c, s2) ≤ d(p, b) + d(p, t1) + d(p, s2)

for all p∈V . By the construction in the proof of Theorem 2.3,

(i) If ∠b in 4bs2t1 contains more than one grid line,then c = b. In this case, b

= rc(s1, t2) = rc(t1, s2) for some b. The corresponding reverse carpooling solution

is S ′ = (P ′
1, P

′
2) where P ′

1 = (SP (s1, b) ∪ SP (b, t1), and P ′
2 = (SP (s2, b) ∪ SP (b, t2).

Then, the reverse carpooling segment length l(r(P1, P2)) = 0. Since there is no cost

reduction for reverse carpooling, the shortest paths solution is at least as good.

(ii) If ∠s2 in 4bs2t1 contains more than one grid line,then c = s2.

(iii) If ∠t1 in 4bs2t1 contains more than one grid line,then c = t1.

(iv) Otherwise, when each angle in 4bs2t1 contains one grid line as shown in Fig.

2.14, we assume that ∠s2 in 4bs2t1 contains gs2,α and ∠t1 in 4bs2t1 contains gt1,β

where α, β ∈(0◦, 60◦, 120◦), α 6= β. We use aα,β to denote the intersection between

gs2,α and gt1,β. Then, by Theorem 2.3, we can get c = aα,β.
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Figure 2.14: Each angle in 4bs2t1 contains one grid line.

Thus, we only need to consider the following set of possible locations for c : I

= {s2, t1, a0◦,60◦ , a0◦,120◦ , a60◦,0◦ , a60◦,120◦ , a120◦,0◦ , a120◦,60◦}. For each c ∈ I, we use

b(c) ∈ V to denote the corresponding location for the other end point b of the reverse

carpooling segment. Then, we can find b(c) ∈ V such that

d(b(c), c) + d(b(c), s1) + d(b(c), t2) ≤ d(p, c) + d(p, s1) + d(p, t2)

for all p∈V in O(1) time, by Theorem 2.3. By comparing the costs of the reverse

carpooling solutions, given by (2.1), for these 8 possibilities for c, we can obtain

the minimum cost reverse carpooling solution, i.e. C(S ′) = minC∈I{C(S(b(c), c)}.
Finally, we compare C(S ′) with l and obtain an optimal cost solution.

2.1.4 General multiple unicasts problem

In this section, we generalize our problem to general multiple unicasts problem and

introduce a greedy algorithm to obtain an approximate solution. In Section 2.1.3,

we described a polynomial time algorithm which finds an optimal cost solution for

the two unicast sessions problem. Based on this algorithm, we present a greedy

algorithm to obtain a suboptimal solution for n-unicast sessions (s1, t1),...,(sn, tn) on

the triangular grid.

We define a metric mij, (i, j ∈ {1, ..n}, i 6= j) and a selection function I. We use
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S(i,j) to denote an optimal cost solution obtained by applying Theorem 2.5 to two

unicast sessions (si, ti) and (sj, tj). Let mij = d(si, ti) + d(sj, tj) − C(Sij). Given

(si, ti) and (sj, tj), mij denotes the difference between the cost of the shortest paths

solution and the optimal cost. The selection function I : N ⊂ (1, 2, ..n) → NxN

chooses a pair of indices in N which maximizes the metric mij. Precisely,

I(N) = arg max
i,j∈N

{mij}.

We use CS to denote the current solution and N ⊂(1, 2, ..n) to denote a set of

indices which are not used in the current solution at each step. In each step of the

algorithm, we update two sets CS and N using the selection function I. Then, we

remove I(N) from N and add SI(N) to CS at each step. Finally, at the end of the

algorithm, we obtain a suboptimal solution CS = S = (P1, .., Pn).

N ← {1, 2, ..., n}
CS ← ∅

While |N |>1
N = N−I(N)
CS = CS∪I(N)

endwhile
If N = {k} (1 ≤ k ≤ n)

return CS = CS ∪ SP (sk, tk)
else

return CS
endif

Theorem 2.6 The time complexity of the above greedy algorithm is O(n3).

Proof. If |N | = 1, greedy algorithm returns the shortest paths solution. Oth-

erwise, in each step, the selection function I chooses any pairs of indices among N

to compute a metric corresponding these indices and selects a pair of indices which

maximizes a metric. By Theorem 2.5, it takes O(1) time to compute a metric for

given two unicast sessions. Thus, the time-complexity is O
((|N |

2

))
in each step. In

the worst case, the maximum metric is 0 and thus |N | is decreased by one at each
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Figure 2.15: Simulation result: As the number of unicast sessions is increased,
E(C(Sn)

Ln
) is decreased.

step. In this case, the time-complexity is

O(
n∑

i=1

(
n− i

2

)
) = O(n3).

2.1.5 Simulation

In order to determine the effectiveness of reverse carpooling, we constructed a sim-

ulation environment which models operation on the wireless triangular grid. Given

a wireless triangular grid, we choose the locations of unicast sessions uniformly at

random on the grid and compare the average network cost between a suboptimal

solution obtained by the greedy algorithm of Section 2.1.4 and the shortest paths

solution without network coding.

Given n-unicast problem U = ((s1, t1), .., (sn, tn)), we use Sn to denote a subopti-

mal solution obtained by our greedy algorithm. Let Ln =
∑n

i=1 l(SP (si, ti)) denote

the cost of the shortest paths solutions. Our evaluation uses the performance met-

ric E(C(Sn)
Ln

) which is the average ratio between the cost of the suboptimal solution

obtained by our greedy algorithm and the cost of the shortest paths solution.

We use a triangular grid G = (V , E) as the set of vertices V = {a(1,0) + b(1
2
,
√

3
2

)
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Figure 2.16: Simulation result: We extend the result in Fig. 2.8. When 100 unicast
sessions are chosen uniformly at random on the grid, E(C(Sn)

Ln
) is 0.69.

: −5 ≤ a ≤ 5,−10 ≤ b ≤ 10} and randomly choose the locations of a given number

of unicast sessions. Fig. 2.15 indicates that when 20 unicasts are chosen uniformly at

random on the graph G, the average cost of the greedy reverse carpooling solution

is 0.79 times that of the shortest paths solution. As the number of unicast sessions

increases, E(C(Sn)
Ln

) decreases. This result agrees with our intuition that the number

of opportunities to apply reverse carpooling increases with the number of unicast

sessions in a given network. As shown in Fig. 2.16, when n = 100, E(C(Sn)
Ln

) is 0.69.

When n is sufficiently large, E(C(Sn)
Ln

) approaches 0.5, which is the best possible ratio

between the reverse carpooling solution and the shortest path solution.

2.1.6 Conclusion

In this section, we have studied the problem of low-power transmission for wireless

multiple unicasts on triangular grid. We have presented O(1) time algorithm to obtain

approximately optimal solutions which minimize the number of transmissions for two

unicast sessions. By extending the algorithm for two unicasts problem, we presented a

O(n3) time greedy algorithm to obtain an approximate solution for n-unicast sessions

problem. From simulations, we have shown that our algorithm reduces the power

consumption significantly for multiple unicasts on a wireless triangular grid.
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2.2 Distributed design of network codes for low-

power wireless multiple unicasts

2.2.1 Introduction

Previous results on network coding for low-power wireless transmissions of multiple

unicasts rely on opportunistic coding or centralized optimization to reduce the power

consumption. While our greedy algorithm in Section 2.1 runs in polynomial time, it

requires a central controller.

In this section, we develop a distributed strategy for reducing the expected power

consumption for multiple unicasts in a network coded wireless network. Our strategy

attempts to increase network coding opportunities without the overhead required for

centralized design or coordination. A wireless rectangular grid is used as a simple

network model. As in [45], a single node sits on each vertex of a rectangular grid, and

each node can broadcast information only to its four nearest neighbors. The goal is

to transmit a distinct data stream from each transmitter to its corresponding receiver

in this shared network environment. Power savings are achieved using the reverse

carpooling strategy again.

Our strategy is to attempt to increase the number of coding opportunities by des-

ignating “reverse carpooling routes” in central locations and choosing unicast routes

to maximize the fraction of the path spent on carpooling routes without increasing

individual path lengths. The hope is that careful route choice will maximize the ex-

pected number of reverse carpooling opportunities. Intermediate nodes apply reverse

carpooling opportunistically along these routes. Our network optimization attempts

to choose the reverse carpooling lines in a manner that maximizes the expected power

savings with respect to the random choice of sources and sinks.

This section is organized as follows. In Section 2.2.3, for each network model,

we design a reverse carpooling edge set E1 ⊆ E. Together, the edges in E1 form

reverse carpooling routes. We first design E1 so that each reverse carpooling route is

a horizontal grid line. We call this reverse carpooling route a row reverse carpooling
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line and this network model a row model. We begin by proposing a distributed route

choice algorithm for an arbitrary row model and analyzing the edge use distribution

of our algorithm. We then optimize the reverse carpooling line placement to minimize

the resulting expected cost.

In Section 2.2.4, we design E1 to contain both horizontal and vertical grid lines.

We again propose an algorithm, analyze the resulting edge use distribution, and

optimize the line choice.

2.2.2 System Model

We define a rectangular grid Gm = (V,E) as the set of vertices V = {a(1, 0)+b(0, 1)}
: 0 ≤ a, b ≤ m} and the set of directed edges E= {(v, v′) : ‖v − v′‖ = 1} where

for any v, v′ ∈ V , (v, v′) denotes the arc connecting v and v′. The head and tail of

edge e = (vi, vj) are denoted by vj = head(e) and vi = tail(e), respectively. We call

the horizontal and vertical lines formed by E grid lines. A path is an ordered list of

connected edges. Precisely, for any path P = (e1, e2, .., ek), we require e1, e2, .., ek ∈ E

and head(ei) = tail(ei+1) for 1 ≤ i ≤ k− 1. We use l(P ) =
∑

e∈P ‖e‖= |P | to denote

the length of path P . For any distinct vertices v,v′∈V , we use P(v, v′) to denote the

set of all paths from v to v′ in Gm, P∗(v, v′) = arg minP∈P(v,v′) l(P ) to denote the set

of the shortest paths from v to v′, and d(v, v′) to denote the length of the shortest

path from v to v′.

We use the same definition for the network cost with reverse carpooling as that

in Section 2.1.

2.2.3 Row Models

The optimal configuration of the reverse carpooling lines may depend on factors like

the size of the network, the number of unicasts, the distribution on unicasts, etc. We

assume that n unicasts U = {(s1, t1), .., (sn, tn)} are chosen uniformly at random on

the wireless rectangular grid Gm and begin by exploring simple row models. Given

a wireless rectangular grid Gm, we use a t-tuple (0 ≤ h1 < h2 < .. < ht ≤ m)
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to denote the locations of t row reverse carpooling lines. (For convenience, h0 = 0

and ht+1 = m + 1.) We define the reverse carpooling edge set E1 = {((i, hj), (i +

1, hj)), ((i + 1, hj), (i, hj)) : 0 ≤ i ≤ n − 1, 1 ≤ j ≤ t}. Then edges in E1 form t row

reverse carpooling lines.

2.2.3.1 Path Choice Algorithm

The proposed algorithm finds a shortest path Pi ∈ P∗(si, ti) that maximizes the

fraction of the path spent on the row reverse carpooling lines. Let si = (six, siy) and

ti = (tix, tiy) and choose 0 ≤ p, q ≤ t so that hp ≤ siy < hp+1 and hq ≤ tiy < hq+1.

Case 1) p = q. Here Pi is the unique path in P∗(si, ui) × P∗(ui, ti) where ui =

(tix, siy).

Case 2) p < q. Here Pi is the unique path in P∗(si, vi) × P∗(vi, wi) × P∗(wi, ti),

where vi = (six, hp+1) and wi = (tix, hp+1).

Case 3) p > q. Here Pi is the unique path in P∗(si, xi) × P∗(xi, yi) × P∗(yi, ti),

where xi = (six, hp) and yi = (tix, hp).

2.2.3.2 Edge Use Distribution

Together, the edge set and path choice strategy impose a traffic distribution ri(e) for

each e ∈ E where ri(e) is the probability that e ∈ Pi. Since each unicast session

is chosen uniformly at random and follows the same strategy to determine a path,

ri(e) = r1(e) for all 1 ≤ i ≤ n. To obtain r1(e), we calculate the fraction of possible

unicasts (s1, t1) ∈ V 2 for which e ∈ P1. Fix 0 ≤ p, q ≤ t so that hp ≤ s1y < hp+1, and

hq ≤ t1y < hq+1.

Case 1) e = ((a, b), (a + 1, b)), e /∈ E1. Since e /∈ E1, hi < b < hi+1 for some

0 ≤ i ≤ t. Thus, e ∈ P1 if and only if 0 ≤ s1x ≤ a, s1y = b, a + 1 ≤ t1x ≤ m, and

hi ≤ t1y < hi+1. Therefore, r1(e) = (a+1)(m−a)(hi+1−hi)
(m+1)4

.

Case 2) e = ((a, b), (a+1, b)) and e ∈ E1. Since e ∈ E1, b = hi for some 1 ≤ i ≤ t.

If hi−1 ≤ s1y < hi, then e ∈ P1 if and only if 0 ≤ s1x ≤ a, a + 1 ≤ t1x ≤ m, and

hi ≤ t1y ≤ m, as shown in Fig. 2.17(a). If s1y = hi, then e ∈ P1 if and only if

0 ≤ s1x ≤ a, a + 1 ≤ t1x ≤ m, and 0 ≤ t1y < hi+1. If hi < s1y < hi+1, then e ∈ P1 if
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Figure 2.17: Case 2 in the calculation of edge use distribution r1(e). (a) hi−1 ≤ s1y <
hi and (b) hi < s1y < hi+1.

and only if 0 ≤ s1x ≤ a, a + 1 ≤ t1x ≤ m, and 0 ≤ t1y < hi, as shown in Fig. 2.17(b).

If s1y < hi−1 or s1y ≥ hi+1, then e /∈ P1. Thus,

r1(e) =

[
(a + 1)(m− a)(hi − hi−1)(m + 1− hi)

(m + 1)4

+
(a + 1)(m− a)(hi+1 − hi)(hi + 1)

(m + 1)4

]
.

Case 3) e = ((a + 1, b), (a, b)).

By the symmetry of our algorithm, r1((a+1, b), (a, b)) = r1((m−a−1, b), (m−a, b)).

By cases 1 and 2 above, r1((m−a−1, b), (m−a, b)) = r1((a, b), (a+1, b)). Therefore,

r1((a + 1, b), (a, b)) = r1((a, b), (a + 1, b)).

Case 4) e = ((a, b), (a, b + 1)). Fix 0 ≤ i ≤ t so that hi ≤ b < hi+1. In this case,

e ∈ P1 only if 0 ≤ s1y ≤ b and b + 1 ≤ t1y ≤ m. If 0 ≤ s1y < hi, then e ∈ P1 if

and only if 0 ≤ s1x ≤ m, t1x = a, and b + 1 ≤ t1y ≤ m, as shown in Fig. 2.18(a). If

hi ≤ s1y ≤ b and hi+1 ≤ t1y ≤ m, then e ∈ P1 if and only if s1x = a, 0 ≤ t1x ≤ m, as

shown in Fig. 2.18(b). If hi ≤ s1y ≤ b and b + 1 ≤ t1y < hi+1, then e ∈ P1 if and only
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Figure 2.18: Case 4 in the calculation of r1(e). (a) 0 ≤ s1y < hi (j ≤ i) and (b)
hi ≤ s1y ≤ b and hi+1 ≤ t1y ≤ m.
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Figure 2.19: Case 5 in the calculation of r1(e). (a) hi+1 ≤ s1y ≤ m (j ≥ i + 1) and
(b) b + 1 ≤ s1y < hi+1 and 0 ≤ t1y < hi.

if 0 ≤ s1x ≤ m, t1x = a.

r1(e) =
(b + 1)(m− b)

(m + 1)4

[
hi(m + 1)

(b + 1)

+
(b + 1− hi)

(b + 1)

(
(m + 1− hi+1)(m + 1)

(m− b)

+
(m + 1)(hi+1 − b− 1)

(m− b)

)]

=
(b + 1)(m− b)

(m + 1)3
.

Case 5) e = ((a, b + 1), (a, b)). Fix 0 ≤ i ≤ t so that hi ≤ b < hi+1. In this case,
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e ∈ P1 only if b + 1 ≤ s1y ≤ m and 0 ≤ t1y ≤ b. If hi+1 ≤ s1y ≤ m, then e ∈ P1

if and only if 0 ≤ s1x ≤ m, t1x = a, and 0 ≤ t1y ≤ b, as shown in Fig. 2.19(a). If

b + 1 ≤ s1y < hi+1 and 0 ≤ t1y < hi, then e ∈ P1 if and only if s1x = a, 0 ≤ t1x ≤ m,

as shown in Fig. 2.19(b). If b + 1 ≤ s1y < hi+1 and hi ≤ t1y ≤ b, then e ∈ P1 if and

only if 0 ≤ s1x ≤ m, t1x = a.

r1(e) =
(m− b)(b + 1)

(m + 1)4

[
(m + 1− hi)(m + 1)

(m− b)

+
(hi+1 − b− 1)

(m− b)

(
hi(m + 1)

(b + 1)

+
(b + 1− hi)(m + 1)

(b + 1)

)]

=
(b + 1)(m− b)

(m + 1)3
.

2.2.3.3 Expected Network Cost

We compute the expected network cost for the row model when n unicasts U =

{(s1, t1), .., (sn, tn)} are chosen uniformly at random on Gm. We use S to denote

the candidate solution for U obtained by our strategy and t(n, i, j, e) to denote the

probability that i unicasts traverse e and j unicasts traverse eR (0 ≤ i + j ≤ n). No

unicast can contain both e and eR in its path using our path choice algorithm. Thus

each unicast either uses edge e (with probability r1(e)), uses edge eR (with probability

r1(e) = r1(eR)), or uses neither (with probability 1 − r1(e) − r1(eR) = 1 − 2r1(e)).

Thus

t(n, i, j, e) =

(
n

i

)(
n− i

j

)
(r1(e))i+j(1− 2r1(e))n−i−j.

We compute the expected network cost EC(S) as follows.

For any (i, k) satisfying 0 ≤ 2k + i ≤ n, k + i unicasts use e and k unicasts use eR

with probability t(n, k + i, k, e). Likewise, k unicasts use e and k + i unicasts use eR

with probability t(n, k, k + i, e) = t(n, k + i, k, e). In both cases, C(S, e, eR) = k + i.

Since we considered i = 0 in both cases, by the definition of the network cost, we



39

h1

hk

hk+1

(a)

ht

hk

hk+1

(b)

Figure 2.20: Given hk and hk+1, optimizing (h1, ..., ht) is equivalent to optimizing
(h1, .., hk−1) in (a) and (hk+2, .., ht) in (b).

obtain

EC(S) =
∑
e∈E

1

2
EC(S, e, eR)

=
∑
e∈E

1

2



bn

2
c∑

k=0

(
2

n−2k∑
i=0

(k + i)t(n, k, k + i, e)

)

− k · t(n, k, k, e)] . (1)

2.2.3.4 Results

In this section, we first present a low-complexity algorithm that optimizes the reverse

carpooling line placement to minimize the expected cost given a number of unicasts.

Then, we demonstrate the performance of our algorithm.

Our goal is to optimize the locations of t reverse carpooling lines (0 ≤ h1 <

h2 < .. < ht ≤ m) for n unicasts on Gm. We use Eh and Ev to denote the sets

of all horizontal and vertical edges, respectively. Since the edge use distribution of

any vertical edge is independent of (h1, ..., ht), from (1), EC(S) = f(h1, ..., ht) + M

where f(h1, ..., ht) =
∑

e∈Eh

1
2
EC(S, e, eR) and M =

∑
e∈Ev

1
2
EC(S, e, eR). Finding

(h1, ..., ht) to minimize f(h1, ..., ht) minimizes EC(S). The following algorithm finds

this optimal (h1, ..., ht) by recursively dividing the problem into smaller and smaller

independent subproblems.
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Fix q ≥ 1. Let t = 2q+1 − 2 and r = 2q − 1. For convenience, h−1 = h0 = 0 and

ht+1 = ht+2 = m + 1.1 Suppose that k = t
2

and the locations of the kth and (k + 1)th

reverse carpooling lines are given by hk = i1 and hk+1 = i1 + d1 (d1 ≥ 1). Since r1(e)

for each e ∈ E depends on at most three closest reverse carpooling lines, r1(e) is a

function of either (h1, . . . , hk+1) or (hk, . . . , ht) for each e ∈ E. Thus, given hk and

hk+1, the objective function f can be decomposed as

f(h1, .., ht) = f
(1)
1 (h−1, . . . , hk+1) + f

(1)
2 (hk, . . . , ht+2),

where functions f
(1)
1 and f

(1)
2 are independent when hk and hk+1 are fixed. Here

f
(1)
1 (0, 0, h1, . . . , hk+1) =

∑

e∈E
(1)
1

1

2
EC(S, e, eR) and

f
(1)
2 (hk, . . . , ht,m + 1,m + 1) =

∑

e∈E
(1)
2

1

2
EC(S, e, eR)

where E
(1)
1 = {((a, b), (a + 1, b)), ((a + 1, b), (a, b)) : 0 ≤ a < m, 0 ≤ b < hk+1} and

E
(1)
2 = {((a, b), (a + 1, b)), ((a + 1, b), (a, b)) : 0 ≤ a < m, hk+1 ≤ b ≤ m}.

The given formulation breaks our optimization problem into two subproblems.

The first subproblem contains k + 1 reverse carpooling lines (0 ≤ h1 < h2 < .. <

hk+1 ≤ m) with hk = i1 and hk+1 = i1 + d1, as shown in Fig. 2.20(a). The goal here

is to choose (h1, . . . , hk−1) to minimize f
(1)
1 (0, 0, h1, . . . , hk−1, i1, i1 + d1). The second

subproblem contains k + 1 reverse carpooling lines (0 ≤ hk < hk+1 < . . . < ht ≤ m)

with hk = i1 and hk+1 = i1 + d1, as shown in Fig. 2.20(b). The goal here is to

choose (hk+2, . . . , ht) to minimize f
(1)
2 (i1, i1 + d1, hk+2, . . . , ht,m + 1,m + 1). The

added parameters h−1 = h0 = 0 and ht+1 = ht+2 = m + 1 are included so that each

subproblem is bounded above and below by two reverse carpooling lines. Searching

over all possible values of i1 and d1 and then optimizing f
(1)
1 (0, 0, h1, . . . , hk−1, i1, i1 +

d1) and f
(1)
2 (i1, i1 + d1, hk+2, . . . , ht,m + 1,m + 1) guarantees the optimal solution.

1We include h−1, h0, ht+1, and ht+2 in this characterization for symmetry, as will become clear
in the following discussion.
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Function lq(a, b, c, d)
if i = 0

return l0(a, b, c, d) =
∑

e∈Eb,d

1
2
EC(S, e, eR) (2)

where Eb,d = {((j, k), (j + 1, k)),((j + 1, k), (j, k)):
0 ≤ j < m, b ≤ k < d} and the expected cost
EC(S, e, eR) for each e ∈ Eb,d is calculated
assuming reverse carpooling lines only at locations
a, b, c, and d.

else
return min(x,y) [li−1(a, b, x, y) + li−1(x, y, c, d)]
over all (x, y) s.t. b + 2i − 2 < x < y < c− 2i + 2.

Figure 2.21: Function lq(a, b, c, d) finds the optimal 2q+1 − 2 reverse carpooling lines
between two upper reverse carpooling lines at locations c and d and two lower reverse
carpooling lines at locations a and b and returns its expected cost.

To optimize f
(1)
1 (0, 0, h1, . . . , hk−1, i1, i1 + d1) and f

(1)
2 (i1, i1 + d1, hk+2, . . . , ht,m +

1,m+1), we again apply the same approach – first fixing the two central line locations

and then breaking each problem into two independent subproblems

f
(1)
1 (0, 0, h1, . . . , hk−1, i1, i1 + d1)

= f
(2)
1 (0, 0, h1, . . . , hl−1, i2, i2 + d2)

+f
(2)
2 (i2, i2 + d2, . . . , i1, i1 + d1),

f
(1)
2 (i1, i1 + d1, hk+2, . . . , m + 1)

= f
(2)
3 (i1, i1 + d1, hk+2, . . . , hk+l−2, i3, i3 + d3)

+f
(2)
4 (i3, i3 + d3, hk+l+1, . . . , m + 1).

Function lq(a, b, c, d) shown in Fig. 2.21 captures the recursive approach. Running

lq(a, b, c, d) finds the optimal 2q+1 − 2 reverse carpooling lines between two upper

reverse carpooling lines at locations c and d and two lower reverse carpooling lines at

locations a and b and returns its expected cost.

Theorem 2.7 When n unicasts are chosen uniformly at random on Gm, lq(0, 0, m+

1,m + 1) finds the optimal locations for t = 2q+1 − 2 row reverse carpooling lines in
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Table 2.1: Optimal reverse carpooling lines placement on the G10.
n t∗ (h∗1, .., h

∗
t )

n < 55 2 (3,7)
n ≥ 55 3 (2,5,8)

Table 2.2: Optimal reverse carpooling lines placement on the G12.
n t∗ (h∗1, .., h

∗
t )

n < 40 2 (4,8)
40 ≤ n < 110 3 (3,6,9)
n > 110 3 (2,5,9)

time O(qm6 + n2m6).

Proof. The optimality of our algorithm follows immediately from its search of

all possible line placements. The run-time relies on the storage of all intermediate

values li(a, b, c, d) used in calculating lq(0, 0, m+1,m+1); since many of these values

are used repeatedly, we avoid repeated computation by keeping a table of known

values and calling the function only when the value is unknown. We calculate the run

time as follows. For each 1 ≤ i ≤ q and each needed (a, b, c, d), we find li(a, b, c, d) as

li−1(a, b, x, y)+li−1(x, y, c, d) for the optimal choice (x, y) of the two central carpooling

line locations. Since there are q values of i, O(m4) values of (a, b, c, d), and O(m2)

values for (x, y), these calculations run in time O(qm6). From (1) and (2), calculation

of l0(a, b, c, d) for each (a, b, c, d) runs in time O(m2n2), giving total run-time O(qm6+

n2m6).

Tables 2.1 and 2.2 show the optimal number of reverse carpooling lines (t∗) and

their optimal locations (h∗1, .., h
∗
t∗) for n unicasts chosen uniformly at random on G10

and G12, respectively.

Fig. 2.22 plots the normalized cost EC(S∗)/ED(U) as a function of the num-

ber of unicasts, n, where S∗ is the solution given by our algorithm and ED(U) =

E
∑n

i=1 d(si, ti) is the expected distance between sources and sinks for the unicasts

U = {(s1, t1), .., (sn, tn)}. In both cases, the normalized cost decreases as the number

of unicast sessions increases. Also included are the corresponding normalized costs

when no reverse carpooling lines are included and pure opportunistic coding is em-
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Figure 2.22: Normalized cost on G10 and G12.

ployed. Our algorithm yields as much as 7% improvement over pure opportunistic

coding when n < 40 in both cases. When n is large, traffic is sufficiently large that

reverse carpooling opportunities arise even without the introduction of reverse car-

pooling lines. As a result, the percentage improvement over opportunistic coding

decreases as n increases.

2.2.4 Row and Column Model

To increase the opportunities to apply reverse carpooling, we next add column reverse

carpooling lines to the previous model. Given a wireless rectangular grid Gm, we use

a t-tuple (0 ≤ h1 < h2 < .. < ht ≤ m) and a k-tuple (0 ≤ r1 < r2 < .. < rk ≤ m) to

denote the locations of t row and k column reverse carpooling lines, respectively. (For

convenience, h0 = r0 = 0 and ht+1 = rk+1 = m + 1.) The reverse carpooling edge set

is E1 = {((i, hj), (i+1, hj)), ((i+1, hj), (i, hj)), ((rp, i), (rp, i+1)), ((rp, i+1), (rp, i)) :

0 ≤ i ≤ m − 1, 1 ≤ j ≤ t, 1 ≤ p ≤ k}.

2.2.4.1 Path Choice Algorithm

The proposed algorithm finds a shortest path Pi ∈ P∗(si, ti) that maximizes the

fraction of the path spent on the reverse carpooling lines. Choose 0 ≤ c, d ≤ k

and 0 ≤ f, g ≤ t so that rc ≤ six < rc+1, hf ≤ siy < hf+1, rd ≤ tix < rd+1, and

hg ≤ tiy < hg+1.
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Figure 2.23: Case 2 in the path choice algorithm (a) when f > g and (b) when f < g.

Case 1) c = d or f = g. Pi is the unique path in P∗(si, ui) × P∗(ui, ti) where

ui = (tix, siy).

Case 2) c < d and f 6= g. If f > g, Pi is the unique path in P∗(si, vi)×P∗(vi, wi)×
P∗(wi, xi)×P∗(xi, ti) where vi = (rc+1, siy), wi = (rc+1, hg+1), and xi = (tix, hg+1), as

shown in Fig. 2.23(a).

If f < g, Pi is the unique path in P∗(si, yi) × P∗(yi, zi) × P∗(zi, li) × P∗(li, ti)
where yi = (rc+1, siy), zi = (rc+1, hg), and li = (tix, hg), as shown in Fig. 2.23(b).

Case 3) c1 > c2 and d1 6= d2. We define unicast (s′i, t
′
i) for which s′i = ti and

t′i = si. Then, by case 2), we can obtain a shortest path P ′
i for (s′i, t

′
i). In this case,

we set Pi = (P ′
i )

R.

2.2.4.2 Edge Use Distribution

As in Sec. III-B, we determine r1(e) for e ∈ E.

Case 1) e = ((a, b), (a + 1, b)), e ∈ E1. Since e ∈ E1, rp ≤ a < rp+1 and b = hq for

some 0 ≤ p ≤ k and 1 ≤ q ≤ t, respectively. If 0 ≤ s1x < rp and s1y ≤ t1y, e ∈ P1 if

and only if 0 ≤ s1y ≤ b, a+1 ≤ t1x ≤ m, and b ≤ t1y < hq+1, as shown in Fig. 2.24(a).

If 0 ≤ s1x < rp and s1y > t1y, e ∈ P1 if and only if b ≤ s1y ≤ m, a + 1 ≤ t1x ≤ m,

and hq−1 ≤ t1y < b, as shown in Fig. 2.24(b). If rp ≤ s1x ≤ a, e ∈ P1 if and only if

s1y = b, a + 1 ≤ t1x ≤ m, and 0 ≤ t1y ≤ m, as shown in Fig. 2.25(a). If s1x > a, then
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Figure 2.24: Case 1 in the calculation of edge use distribution r1(e) when 0 ≤ s1x < rp.
(a) s1y ≤ t1y and (b) s1y > t1y.
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Figure 2.25: (a) Case 1 in the calculation of edge use distribution r1(e) when rp ≤
s1x ≤ a. (b) Case 2 in the calculation of edge use distribution r1(e) when 0 ≤ s1x < rp.

e /∈ P1. Thus,

r1(e) =

[
rp(b + 1)(m− a)(hq+1 − b)

(m + 1)4

+
rp(m + 1− b)(m− a)(b− hq−1)

(m + 1)4

+
(a + 1− rp)(m− a)(m + 1)

(m + 1)4

]
.

Case 2) e = ((a, b), (a + 1, b)) and e /∈ E1. Since e /∈ E1, rp ≤ a < rp+1 and

hq < b < hq+1 for some 0 ≤ p ≤ k and 0 ≤ q ≤ t, respectively. If 0 ≤ s1x < rp, then

e ∈ P1 if and only if s1y = b, a + 1 ≤ t1x ≤ m, and hq ≤ t1y < hq+1, as shown in
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Fig. 2.25(b). If rp ≤ s1x ≤ a, then e ∈ P1 if and only if s1y = b, a + 1 ≤ t1x ≤ m, and

0 ≤ t1y ≤ m. If s1x > a, then e /∈ P1. Thus,

r1(e) =

[
rp(m− a)(hq+1 − hq)

(m + 1)4

+
(a + 1− rp)(m− a)(m + 1)

(m + 1)4

]
.

Case 3) e = ((a + 1, b), (a, b)). We use X(e) to denote the set of (s1, t1) such

that e ∈ P1. We show that there is an one to one correspondence between X(e) and

X(eR). Choose 0 ≤ c, d ≤ k and 0 ≤ f, g ≤ t so that rc ≤ s1x < rc+1, rd ≤ t1x < rd+1,

hf ≤ s1y < hf+1, and hg ≤ t1y < hg+1. When c = d or f = g, e ∈ P1 if and only if

eR ∈ P ′
1 for (s′1, t

′
1) = ((t1x, s1y), (s1x, t1y)). When c 6= d and f 6= g, by the symmetry

of our path choice algorithm, e ∈ P1 if and only if eR ∈ P ′
1 for (s′1, t

′
1) = (t1, s1).

Thus, there exists an one to one correspondence between X(e) and X(eR) and thus

|X(e)| = |X(eR)|. Then we can calculate r1(e) = r1(eR) from cases 1 and 2.

Case 4) e = ((a, b), (a, b + 1)), e ∈ E1. Since e ∈ E1, a = rp and hq ≤ b < hq+1 for

some 1 ≤ p ≤ k and 0 ≤ q ≤ t, respectively. Choose 0 ≤ c, d ≤ k and 0 ≤ f, g ≤ t as

we did in case 3. If c = d, then e ∈ P1 if and only if rp ≤ s1x < rp+1, 0 ≤ s1y ≤ b,

t1x = a, and b + 1 ≤ t1y ≤ m. If f = g and c 6= d, then e ∈ P1 if and only if

0 ≤ s1x < rp or rp+1 ≤ s1x ≤ m, hq ≤ s1y ≤ b, t1x = a, and b + 1 ≤ t1y < hq+1. If

f < g and c < d and when hq+1 ≤ t1y ≤ m, then e ∈ P1 if and only if rp−1 ≤ s1x < a,

0 ≤ s1y ≤ b, and a ≤ t1x ≤ m, as shown in Fig. 2.26(a). If f < g and c < d and

when b + 1 ≤ t1y < hq+1, then e ∈ P1 if and only if 0 ≤ s1x < a, 0 ≤ s1y < hq, and

t1x = a, as shown in Fig. 2.26(b). If f < g and c > d and when 0 ≤ s1y < hq, then

e ∈ P1 if and only if a ≤ s1x ≤ m, rp−1 ≤ t1x < a, and b + 1 ≤ t1y ≤ m, as shown in

Fig. 2.27(a). If f < g and c > d and when hq ≤ s1y ≤ b, then e ∈ P1 if and only if

s1x = a, 0 ≤ t1x < a, and hq+1 ≤ t1y ≤ m, as shown in Fig. 2.27(b). If f > g, then
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Figure 2.26: Case 4 in the calculation of edge use distribution r1(e) when c < d and
f < g. (a) hq+1 ≤ t1y ≤ m and (b) b + 1 ≤ t1y < hq+1.
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Figure 2.27: Case 4 in the calculation of edge use distribution r1(e) when c > d and
f < g. (a) 0 ≤ s1y < hq and (b) hq ≤ s1y ≤ b.
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Figure 2.28: Case 5 in the calculation of edge use distribution r1(e) when c 6= d and
f 6= g (a) c < d and (b) c > d.

e /∈ P1. Thus,

r1(e) =

[
(rp+1 − rp)(b + 1)(m− b)

(m + 1)4

+
(m + 1− rp+1 + rp)(b + 1− hq)(hq+1 − b− 1)

(m + 1)4

+
(m + 1− hq+1)(a− rp−1)(b + 1)(m + 1− a)

(m + 1)4

+
(hq+1 − b− 1)ahq

(m + 1)4

+
hq(m + 1− a)(a− rp−1)(m− b)

(m + 1)4

+
(b + 1− hq)a(m + 1− hq+1)

(m + 1)4

]
.

Case 5) e = ((a, b), (a, b + 1)) and e /∈ E1. Since e /∈ E1, rp < a < rp+1 and

hq ≤ b < hq+1 for some 0 ≤ p ≤ k and 0 ≤ q ≤ t, respectively. If c = d, then e ∈ P1

if and only if rp ≤ s1x < rp+1, 0 ≤ s1y ≤ b, t1x = a, and b + 1 ≤ t1y ≤ m. If f = g

and c 6= d, then e ∈ P1 if and only if 0 ≤ s1x < rp or rp+1 ≤ s1x ≤ m, hq ≤ s1y ≤ b,

t1x = a, b+1 ≤ t1x < hq+1. If c < d and f 6= g, then e ∈ P1 if and only if 0 ≤ s1x < rp,

0 ≤ s1y < hq, t1x = a, and b + 1 ≤ t1y < hq+1, as shown in Fig. 2.28(a). If c > d

and f 6= g, then e ∈ P1 if and only if s1x = a, hq ≤ s1y ≤ b, 0 ≤ t1x < rp, and
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Table 2.3: Optimal row and column reverse carpooling lines placement on the G8.
n t∗ (h∗1, .., h

∗
t ) k∗ (r∗1, .., r

∗
k)

n < 20 3 (2,4,6) 2 (3,5)
20 ≤ n 3 (2,4,6) 2 (2,5)

hq+1 ≤ t1y ≤ m, as shown in Fig. 2.28(b). Thus,

r1(e) =

[
(rp+1 − rp)(b + 1)(m− b)

(m + 1)4

+
(m + 1− rp+1 + rp)(b + 1− hq)(hq+1 − b− 1)

(m + 1)4

+
rphq(hq+1 − b− 1)

(m + 1)4

+
(b + 1− hq)rp(m + 1− hq+1)

(m + 1)4

]
.

Case 6) e = ((a, b + 1), (a, b)). As in case 3, we show that there exists one to

one correspondence between X(e) and X(eR). When c = d or f = g, e ∈ P1 if and

only if eR ∈ P ′
1 for (s′1, t

′
1) = ((s1x, t1y), (t1x, s1y)). When c 6= d and f 6= g, e ∈ P1 if

and only if eR ∈ P ′
1 for (s′1, t

′
1) = (t1, s1). Then X(e) = X(eR) and we can calculate

r1(e) = r1(eR) from cases 4 and 5.

2.2.4.3 Results

Let n unicasts U = {(s1, t1), .., (sn, tn)} be chosen uniformly at random on the wireless

rectangular grid Gm. Table 2.3 shows the optimal number of row and column reverse

carpooling lines (t∗) and (k∗), and their optimal locations (h∗1, .., h
∗
t∗) and (r∗1, .., r

∗
k∗)

for m = 8. To obtain the optimal reverse carpooling line placement in this case, we

search over all possible choices of (h1, .., ht) and (r1, .., rk) for 1 ≤ t, k ≤ m and choose

the one that minimizes the expected network cost. Since we cannot decompose the

optimization problem into independent subproblems in this case, we cannot apply the

algorithm from previous section.
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Figure 2.29: Normalized cost on G8.

Fig. 2.29 plots the normalized cost as a function of the number of unicasts. The

normalized cost decreases as the number of unicast sessions increases. Corresponding

normalized cost when pure opportunistic coding is employed is also included. Our

algorithm yields as much as 7% improvement over pure opportunistic coding when

n < 30. Similar to the result presented in Sec 2.2.3, the percentage improvement over

opportunistic coding decreases as n increases.

2.2.5 Conclusion

In this section, we have presented a distributed strategy for reducing the expected

power consumption for multiple unicasts in a network coded wireless network. We use

the rectangular grid as a simple network model and apply a simple network coding

strategy called “reverse carpooling,” which uses only XOR and forwarding opera-

tions. Our strategy is to attempt to increase the number of coding opportunities

by designating “reverse carpooling routes.” Each individual unicast chooses a route

from its source to its destination independently but in a manner that maximizes the

fraction of the paths spent on the reverse carpooling lines without increasing indi-

vidual path lengths. Intermediate nodes apply reverse carpooling opportunistically

along these routes. This approach increases the reverse carpooling opportunities of

an opportunistic network code without requiring central coordination.

We have proposed distributed route choice algorithms for row model and row and



51

column model respectively, and analyzed the edge use distribution of our algorithms.

Then we can optimize the reverse carpooling line placement to minimize the resulting

expected cost. When all reverse carpooling lines are rows, we present a recursive

algorithm that optimizes the line choice in time O(qm6 + n2m6) where m is the grid

size, n is the number of unicasts, and 2q+1 − 2 is the number of reverse carpooling

lines. This algorithm yields as much as 7% improvement over pure opportunistic

coding when n < 40. When reverse carpooling lines include both rows and columns,

we optimize the line choice by brute force search and our strategy also yields 7%

improvement over pure opportunistic coding when n < 30.

2.3 Network coding with periodic recomputations

for minimum energy multicasting in MANETs

2.3.1 Introduction

In this section, we consider the problem of establishing minimum-energy multicast

connections using network coding in mobile ad hoc networks (MANETs). In a static

ad hoc network, this problem can be formulated as a linear program for linear and

separable cost functions [12,17], unlike the case without coding which is NP-hard [46–

51]. However, in a mobile scenario, where the locations of nodes in the network change

over time, it may still be computationally unattractive to solve the linear optimization

at every time slot.

We present a low-complexity approach, network coding with periodic recomputa-

tion, which recomputes an approximate solution at fixed time intervals, and uses this

solution during each time interval. This approach comes from an intuition that when

network topology changes slowly, small perturbations occur in the original optimiza-

tion problem and the original solution remains relatively close to the new optimal

solution. In the strategy, time is divided into equal intervals and a suboptimal so-

lution is computed at the first time slot of each interval. As the network topology

changes slowly, we use the resulting coding subgraph as a suboptimal solution during



52

each interval. We first derive a bound on the maximum percentage deviation from

the optimal cost in terms of the percentage deviation in the cost vector coefficients.

For complexity analysis, we assume that barrier and interior-point method is used

to solve a linear program at the first time slot of each interval. When we recompute

a solution, we can use the suboptimal solution in the preceding interval as a good

initial solution of the linear program at each fixed interval. By combining our cost

bound with this warm start strategy, we obtain a bound on the complexity.

Finally, we derive a combined bound that minimizes the time complexity bound

subject to the condition that suboptimal solution in the interval achieves a given opti-

mality gap during the interval. By solving this optimization problem approximately,

we have the qualitative insights and this matches the result obtained from example

network scenario.

This section is organized as follows. Section 2.3.2 introduces the system model

and formulates the problem. We describe our periodic recomputation approach in

Section 2.3.3. In Section 2.3.4, we derive the theoretical cost bound and the time-

complexity from interior-point method with a warm-start strategy. We also optimize

the normalized complexity subject to the condition that suboptimal solution in the

interval achieves a given optimality gap during the interval. We obtain the general

qualitative insights by solving this optimization problem and confirm this with an

example network scenario.

2.3.2 Problem formulation

Here we formulate the minimum-energy multicast problem with network coding in

MANETs using linear programming. We adopt the framework from [17] which models

a wireless network with a directed hypergraph H = (N ,A), where N is the set

of nodes and A is the set of hyperarcs. Each hyperarc (i, J) represents a loseless

broadcast link from node i to nodes in nonempty set J ⊂ N . ziJ denotes the rate at

which coded packets are injected into hyperarc (i, J). The rate vector z consisting

of entries ziJ defines a coding subgraph for the multicast connection. A linear and
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separable cost function F maps valid rate vectors to real numbers. di,j denotes the

Euclidean distance between nodes i and j in the network and we assume for simplicity

that ciJ = maxj∈J di,j. Then, network cost F (z) =
∑

(i,J)∈A ciJziJ . The source node

s transmits packets at a positive, real rate R to a nonempty set of sink nodes T .

We extend the above formulation to the problem in MANETs by introducing a

discrete time dimension. As nodes move, the network topology and link costs change

over time. We periodically update the hyperarc set, assuming that any two nodes i

and j are connected if di,j < D, where D is a given threshold distance. We use c
(k)
iJ

and A(k) to denote the cost of hyperarc (i, J) and the hyperarc set at the kth time

slot, respectively. Then the optimization problem at the kth time slot in MANETs

can be formulated as follows:

min
∑

{(i,J)∈A(k)}
c
(k)
iJ z

(k)
iJ

z
(k)
iJ ≥

∑

{j∈J}
x

(t,k)
iJj ,∀(i, J) ∈ A(k), t ∈ T

∑

{J |(i,J)∈A(k)}

∑

{j∈J}
x

(t,k)
iJj −

∑

{j|(j,I)∈A(k),i∈I}
x

(t,k)
jIi = σ

(t)
i ,

∀i ∈ N , t ∈ T.

x
(t,k)
iJj ≥ 0,∀(i, J) ∈ A(k), j ∈ J, t ∈ T

(2.2)

where

σ
(t)
i =





R if i = s

−R if i ∈ T

0 otherwise.

We use L(k) to denote this linear program (2.2) at the kth time slot. By solving

L(k), we obtain the global optimal solution (X(k))∗ = {x(t,k)
iJj |(i, J) ∈ A, j ∈ J, t ∈ T}.

Let C(k) = {c(k)
iJ |(i, J) ∈ A} and (Z(k))∗ = {z(k)

iJ |(i, J) ∈ A} be the network cost vector

at time k and the optimal rate vector corresponding to the optimal solution (X(k))∗,

respectively. An optimal solution for the problem in MANETs can be obtained by
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solving (2.2) for every time slot, but it leads to high computational complexity.

2.3.3 Algorithm

Instead of solving (2.2) every time slot, we consider a suboptimal period recomputa-

tion strategy with lower computational complexity.

Algorithm 1 Algorithm for network coding with periodic recomputation

if k ≡ 0 mod(pw)

Reconstruct a hyperarc set A(k). Given c
(k)
iJ and A(k),

solve L(k) with an optimality gap εk using interior-
point method and obtain a suboptimal solution
(Z(k), X(k)).

else if k ≡ 0 mod(p)

Given c
(k)
iJ and A(k), solve L(k) with an optimality gap εk

using interior-point method. We use (Z(k−p), X(k−p))
as a feasible warm start point of interior-point
method and obtain a suboptimal solution (Z(k), X(k)).

else
(Z(k), X(k)) = (Z(k1·p), X(k1·p)) where k1 = bk

p
c.

end if

In the algorithm, time is divided into intervals where each interval contains p time

slots. We recompute an approximate solution in the first time slot of each interval

using interior point method and use the resulting coding subgraph as a suboptimal

solution during each interval. We assume that the hyperarc set is reconstructed

every w intervals, i.e., every pw time slots, and remains the same over w intervals.

Reconstructing the hyperarc set periodically can cause loss of optimality, but it allows

us to use the solution computed at the first time slot of the interval as a feasible

suboptimal solution over the interval. When k ≡ 0 mod (pw), we recompute the

suboptimal solution (Z(k), X(k)) by solving L(k) using interior-point method until an

optimality gap εk is achieved, as shown in (2.3).

∑

{(i,J)∈A}
ck
iJzk

iJ ≤
∑

{(i,J)∈A}
ck
iJ(zk

iJ)∗ + εk. (2.3)

In this case, we use any feasible solution as a starting point of interior-point method.
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When k ≡ 0 mod (p) and k 6≡ 0 mod (pw), we solve L(k) with an optimality gap εk

using interior-point method. Here we can use a suboptimal solution (Z(k−p), X(k−p))

computed at the first time slot of the previous interval as a feasible warm start

point of interior-point method since the hyperarc set remains the same. When k 6≡
0 mod (p), we use the suboptimal solution computed at the first time slot of the

interval which contains the kth time slot as a feasible suboptimal solution. Since by

assumption only coefficients of the network cost vector change during each interval,

the set of feasible solutions remain the same in the interval. Therefore, we can use the

coding subgraph obtained in the first time slot of the interval as a feasible suboptimal

solution during each interval.

2.3.4 Analysis

2.3.4.1 Theoretical Cost Bound

We derive a theoretical bound on the performance gap between our suboptimal solu-

tion and the optimal solution. In our algorithm, a suboptimal solution is computed

in the first slot of each interval, whose cost deviates from the optimal by at most a

given optimality gap. We find a bound on the resulting loss when we use the same

solution over the entire interval despite changes in the objective function coefficients.

First, we introduce a useful Lemma by Oguz [52]. This lemma upper bounds the

maximum percentage deviation in the objective function from optimality in terms of

the percentage deviation in the objective function coefficients when we stick to the

same solution. We consider the following two instances of a general form optimization

problem:

min z1 = {C1X|X ∈ S},

min z2 = {C2X|X ∈ S}.

where Ck = (ck
1, .., c

k
n) ∈ Rn

+ is an objective coefficient vector for k = 1, 2 and S is an

arbitrary closed and bounded, nonempty set in Rn
+. Let X∗

1 and X∗
2 be the optimal
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solutions of the above two problems with z1 = C1X
∗
1 and z2 = C2X

∗
2 , respectively.

We assume that c1
i = 0 implies c2

i = 0.

Lemma 2.8 If
|c1

i − c2
i |

c1
i

≤ ε

for all i such that c1
i 6= 0, then

z2 − z3

z2

≤ 2ε

1− ε
.

where z3 = C2X∗
1 .

Proof. Please see [52].

We extend the above Lemma 2.8 to the following result which states that small

perturbations in the network cost vector during the interval leave the suboptimal

solution computed at the start of the interval, relatively close to the optimal solutions

in the interval.

Lemma 2.9 If C(mp)Z(mp) ≤ C(mp)(Z(mp))∗ + εmp and

max
(i,J)∈A

max
0≤j≤p

|c(mp)
iJ − c

(mp+j)
iJ |

c
(mp)
iJ

= δmp, then

C(mp+l)Z(mp) ≤ 1 + δmp

1− δmp

C(mp+l)(Z(mp+l))∗ + (1 + δmp)εmp,

for ∀ 0 ≤ l ≤ p.

Proof. Since
|c(mp)

iJ −c
(mp+j)
iJ |

c
(mp)
iJ

≤ δmp for ∀(i, J) ∈ A and ∀ 0 ≤ j ≤ p for which

c
(mp)
iJ 6= 0,

(1− δmp)C
(mp) ≤ C(mp+l) ≤ (1 + δmp)C

(mp), ∀0 ≤ l ≤ p.

By postmultiplying (Z(mp+l))∗ and Z(mp) to the left and right inequalities respectively,

(1− δmp)C
(mp)(Z(mp+l))∗ ≤ C(mp+l)(Z(mp+l))∗, (2.4)
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C(mp+l)Z(mp) ≤ (1 + δmp)C
(mp)Z(mp).

Since C(mp)Z(mp) ≤ C(mp)(Z(mp))∗ + εmp,

C(mp+l)Z(mp)

≤ (1 + δmp)C
(mp)Z(mp)

≤ (1 + δmp)(C
(mp)(Z(mp))∗ + εmp)

≤ (1 + δmp)(C
(mp)(Z(mp+l))∗ + εmp).

The last inequality is obtained from the optimality of (Z(mp))∗. Then, by (2.4),

C(mp+l)Z(mp) ≤ 1 + δmp

1− δmp

C(mp+l)(Z(mp+l))∗ + (1 + δmp)εmp,

for ∀ 0 ≤ l ≤ p.

This bounds the optimality gap over the interval in terms of the maximum per-

centage deviation in the cost vector coefficients during the interval and the optimality

gap of our suboptimal solution at the first time slot of the interval.

2.3.4.2 Complexity

When the suboptimal solution is recomputed at the first time slot of each interval, the

linear program (2.2) can be solved using barrier and interior-point method as shown

in [8,9]. Convergence analysis of barrier and interior-point method for the linear

optimization problem is given in e.g. [8, Sec. 11.5], where computational complexity

is defined in terms of the total number of Newton iterations. In the first time slot

of each interval, the linear optimization problem is a slight perturbation of that of

the previous time interval as network topology changes slowly. When the hyperarc

set is not changed, we can use the suboptimal solution in the preceding interval

as the feasible warm-start point for interior point method at the first time slot of

the following interval. Combining our cost bound with a warm-start strategy using
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interior point method gives a worst-case bound on the number of Newton iterations

required to achieve a given optimality gap. (Z(k)(0), X(k)(0)) and q(k) are used to

denote the feasible starting subgraph for L(k) and the optimal cost of L(k), respectively.

From [8-9], an upper bound on the total number of Newton steps for L(k), N (k), is

given as follows:

N (k) = G

⌈√
M log2(

(C(k)Z(k)(0)− C(k)(Z(k))∗)
εk

)

⌉

≤ G

(√
M log2(

C(k)Z(k)(0)− q(k)

εk

) + 1

) (2.5)

where M is the number of inequalities in L(k), εk is the required optimality gap, and

G = 11.5.

In our algorithm, the suboptimal solution (Z(mp), X(mp)) is recomputed at time

mp for ∀m ≥ 0. Since the hyperarc set is reconstructed every w intervals, the feasible

solution set is accordingly changed every w intervals. Thus, if m ≡ 0(mod w), we first

find any feasible solution of L(mp) and start interior-point method from that point.

Otherwise, (Z(m−1)p, X(m−1)p) is used as the suboptimal solution during the interval

((m − 1)p,mp − 1), and it is also used as a feasible starting point of interior-point

method at time mp, i.e. (Z(mp)(0), X(mp)(0)) = (Z(m−1)p, X(m−1)p). Here we define

the normalized complexity during the interval (mp, (m+1)p−1) as the total number

of Newton iterations at the first time slot of the interval divided by the interval length,

i.e. N(mp)

p
. By combining Lemma 2.9 with (2.5), we can obtain an upper bound on

the normalized complexity as follows.

Theorem 2.10 For m 6≡ 0 mod w, the normalized complexity over interval (mp, (m+

1)p− 1) is at most

G

p

(√
M log2

(
f(δ(m−1)p, ε(m−1)p, εmp, q

(mp))
)

+ 1
)

,
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where

f(δ(m−1)p, ε(m−1)p, εmp, q
(mp))

=

2δ(m−1)p

1−δ(m−1)p
q(mp) + (1 + δ(m−1)p)ε(m−1)p

εmp

.

Proof. Since m 6≡ 0( mod w), (Z(mp)(0), X(mp)(0)) = (Z(m−1)p, X(m−1)p). Then,

from (2.5),

N (mp)

p

≤ G

p

(√
M log2(

C(mp)Z(mp)(0)− q(mp)

εmp

) + 1

)

=
G

p

(√
M log2(

C(mp)Z(m−1)p − q(mp)

εmp

) + 1

)
.

(2.6)

From Lemma 2.9,

C(mp)Z(m−1)p − q(mp)

≤ 1 + δ(m−1)p

1− δ(m−1)p

q(mp) + (1 + δ(m−1)p)ε(m−1)p − q(mp)

=
2δ(m−1)p

1− δ(m−1)p

q(mp) + (1 + δ(m−1)p)ε(m−1)p

= εmpf(δ(m−1)p, ε(m−1)p, εmp, q
(mp)).

(2.7)

Then,

N (mp)

p

≤ G

p

(√
M log2

(
f(δ(m−1)p, ε(m−1)p, εmp, q

(mp))
)

+ 1
)

.
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Corollary 2.11 If we require a fractional performance gap εmp

q(mp) = r for ∀m ≥ 0 in

the first time slot of each interval, then for each interval (mp, (m + 1)p− 1), m 6≡ 0

mod w, the normalized complexity is at most

G

p

(√
M log2(g(δ(m−1)p, r)) + 1

)
,

where

g(δ(m−1)p, r) =
2δ(m−1)p + (1 + δ(m−1)p)r

(1− δ(m−1)p)r
.

Proof. From Theorem 2.10,

f(δ(m−1)p, ε(m−1)p, εmp, q
(mp))

=
2δ(m−1)p

(1− δ(m−1)p)r
+

(1 + δ(m−1)p)ε(m−1)p

εmp

.

By (2.4) in the proof of Lemma 2.9,

(1− δ(m−1)p)C
(m−1)p(Z(mp))∗ ≤ C(mp)(Z(mp))∗.

From the optimality of (Z(m−1)p)∗, we obtain

(1− δ(m−1)p)q
(m−1)p

= (1− δ(m−1)p)C
(m−1)p(Z(m−1)p)∗

≤ (1− δ(m−1)p)C
(m−1)p(Z(mp))∗

≤ C(mp)(Z(mp))∗ = q(mp).

Then,
q(m−1)p

q(mp)
=

ε(m−1)p

εmp

≤ 1

1− δ(m−1)p

. (2.8)
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and thus,

f(δ(m−1)p, ε(m−1)p, εmp, q
(mp))

≤ 2δ(m−1)p + (1 + δ(m−1)p)r

(1− δ(m−1)p)r

= g(δ(m−1)p, γ).

Therefore,

N (mp)

p

≤ G

p

(√
M log2

(
f(δ(m−1)p, ε(m−1)p, εmp, q

(mp))
)

+ 1
)

≤ G

p

(√
M log2(g(δ(m−1)p, r)) + 1

)
.

Corollary 2.11 gives an upper bound on the normalized complexity that grows

logarithmically with 1
r
. This result matches the intuition that the amount of compu-

tation increases as higher precision is required.

2.3.4.3 Combined optimization

In this section, we consider an optimization problem which minimizes the normalized

complexity subject to the condition that suboptimal solution in the interval achieves

a given optimality gap during the interval.

We assume that the rate of the hyperarc cost change is at most α for any hyperarc

in the network. Then, we obtain

max
(i,J)∈A

max
0≤j≤p

|c(mp)
iJ − c

(mp+j)
iJ |

c
(mp)
iJ

= δmp ≤ pα = d, (2.9)

where d denotes the upper bound on the percentage change of the hyperarc cost in
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each interval. As in Corollary 2.11, a fractional performance gap at the beginning of

each interval is εmp

q(mp) = r.

In this section, we obtain a combined bound by optimizing the complexity bound

subject to the cost bound in terms of d and r.

We first express the upper bound on the optimality gap during the interval.

From Lemma 2.9,

C(mp+l)Z(mp) ≤ 1 + δmp

1− δmp

C(mp+l)(Z(mp+l))∗ + (1 + δmp)εmp

≤ 1 + d

1− d
C(mp+l)(Z(mp+l))∗ + (1 + d)εmp.

Then,

C(mp+l)Z(mp) − C(mp+l)(Z(mp+l))∗

C(mp+l)(Z(mp+l))∗

≤ 2d

1− d
+

(1 + d)εmp

C(mp+l)(Z(mp+l))∗
.

=
2d

1− d
+

(1 + d)εmp

q(mp+l)
.

(2.10)

To compute (1+d)εmp

q(mp+l) , we derive following inequalities.

q(mp+l) = C(mp+l)(Z(mp+l))∗

≥ (1− δmp)C
(mp)(Z(mp+l))∗

≥ (1− d)C(mp)(Z(mp+l))∗

≥ (1− d)C(mp)(Z(mp))∗

= (1− d)q(mp).

(2.11)
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First inequality comes from (2.4) in the proof of Lemma 2.9 and the second inequality

is true since δmp ≤ d. The last inequality comes from the optimality of (Z(mp))∗. Since

εmp

q(mp) = r,
εmp

q(mp+l)
=

qmp

q(mp+l)
· εmp

q(mp)
≤ r

(1− d)
. (2.12)

From (2.10) and (2.12), we obtain the upper bound on the optimality gap in terms

of d and r as follows :

C(mp+l)Z(mp) − C(mp+l)(Z(mp+l))∗

C(mp+l)(Z(mp+l))∗
≤ 2d

1− d
+

(1 + d)r

(1− d)
. (2.13)

Now we express the complexity bound. From (2.9) and Corollary 2.11,

g(δ(m−1)p, r) =
2δ(m−1)p + (1 + δ(m−1)p)r

(1− δ(m−1)p)r

≤ 2d + (1 + d)r

(1− d)r
,

(2.14)

and the normalized complexity is at most

G

p

(√
M log2(g(δ(m−1)p, r)) + 1

)

≤ G

p

(√
M log2(

2d + (1 + d)r

(1− d)r
) + 1

)

=
αG

d

(√
M log2(

2d
1−d

+ (1+d)r
1−d

r
) + 1

)
,

(2.15)

where the first inequality comes from (2.14).

Now we can formulate the combined bound by minimizing the normalized com-

plexity subject to the condition that suboptimal solution in the interval achieves a

given optimality gap R during the interval.
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min
αG

d

(√
M log2(

2d
1−d

+ (1+d)r
1−d

r
) + 1

)

s.t
2d

1− d
+

(1 + d)r

(1− d)
≤ R

d, r ≥ 0,

(2.16)

where the objective function comes from (2.15) and the first constraint comes from (2.13).

2.3.4.4 Approximation for small optimality gap

Here we obtain approximate solutions of (2.16) which provide qualitative insights for

small required optimality gap R << 1.

Since the normalized complexity decreases with d and r, while the cost bound

increases with d and r, the inequality constraint is satisfied with equality in the

optimal solution which is easy to obtain numerically. We substitute d = R−r
R+r+2

into

the objective function in (2.16). Then we obtain a simple optimization problem

min
αG(R + r + 2)

R− r

(√
M log2(

R

r
) + 1

)

s.t r ≤ R

(2.17)

To compute the optimal solution, we differentiate the objective function. Then,

(2R + 2)

(√
M log2(

R

r
) + 1

)
− (R2 − r2 + 2(R− r))

√
M

r
= 0. (2.18)

Since r ≤ R and R is sufficiently small, we first ignore R2 − r2 and obtain

(R + 1)

(√
M log2(

R

r
) + 1

)
− (R− r)

√
M

r
= 0. (2.19)
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Figure 2.30: Scenario: 5 rooms are distributed over large area. Distance between
any two rooms is sufficiently large. Each room contains two nodes and each node is
connected to at least one node in a different room.

Since R << 1, above is simply approximated as follows :

(
log2(

R

r
) +

1√
M

)
− R− r

r
= 0, (2.20)

and we finally obtain
R

r
− log(

R

r
) = 1 +

1√
M

. (2.21)

From (2.21), given M , d and r increase roughly linearly with R. Since d = pα

from (2.9) and r is the fractional optimality gap at the beginning of the interval, as

the optimality gap during the interval R decreases, p and r also decrease linearly and

thus we should recompute the solution more often and more accurately.

Given R, from (2.21), as the number of inequalities in the optimization problem

M increases, r increases and d decreases. Thus when the number of inequalities

increases, we should recompute the solution more often with lower accuracy.

2.3.4.5 Example

In this section, we consider an example network scenario and solve the optimization

problem (2.16) numerically. The results match our qualitative insights obtained in

the previous section.
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We consider a scenario in which m square rooms are distributed over same area,

as shown in Fig. 2.30. Each room contains several nodes, total n nodes. Hypergraph

H = (N ,A) is defined on this network. To communicate with nodes in different

rooms, for any hyperarc (i, J), we assume that the set of destination nodes J contains

at least one node contained in a different room from i. d0 is used to denote the

minimum distance between any two rooms. Then, by the definition of hyperarc cost,

ciJ ≥ d0 for ∀(i, J) ∈ A. Here we use a mobility model based on a two-dimensional

random walk model. The initial location of each node is given, and each node in

each room moves as a random walker on a two-dimensional lattice. Each node has a

probability of 1
4

of moving to a position above, below, to the left, or to the right of its

current position with step size β every time slot. When a node reaches a boundary

of the room, it is reflected. Since any hyperarc has cost at least d0 and each link cost

can be changed at most 2β per each time slot,

δmp = max
(i,J)∈A

max
0≤s≤p

|c(mp)
iJ − c

(mp+s)
iJ |

c
(mp)
iJ

≤ 2βp

d0

.

(2.22)

Thus we substitute 2β
d0

into α which is the maximum rate of hyperarc cost change

in (2.9), and obtain the same optimization problem in (2.16).

As shown in Fig. 2.31, when 2β
d0

= α = 10−3 and M = 1000, the optimal fractional

performance gap at the start of the interval, r∗, grows almost linearly with the upper

bound of fractional optimality gap during the interval, R. Given r∗ and R, since

d = pα = R−r
R+r+2

, the optimal length of the interval is p∗ = d
α

= R−r∗
(R+r∗+2)α

. As shown

in Fig. 2.32, p∗, also grows almost linearly with R. These results match our qualitative

insights in Section 2.3.4.4.
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Figure 2.31: Optimal fractional performance gap at the start of the interval, r, versus
R, an upper bound on the fractional optimality gap over each interval, when α = 10−3

and M = 1000.
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Figure 2.32: Optimal length of interval, p∗, versus R when α = 10−3 and M = 1000.
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2.3.5 Conclusion

In this section, we have analyzed network coding with periodic recomputation for

minimum energy multicasting in MANETs. In this approach, we recompute an ap-

proximate solution at fixed time intervals, and use this solution during each time

interval although the network topology changes. We have obtained a simple theo-

retical cost bound on the gap between our solution and the optimal cost. We have

combined our cost bound with warm-start strategy to obtain the bound on the com-

plexity using interior-point method. Finally, we have derived a combined bound that

minimizes the time complexity bound subject to the condition that suboptimal solu-

tion in the interval achieves a given optimality gap during the interval. By solving

this optimization problem, the optimal length of the interval and the fractional op-

timality gap at the first time slot of the interval increase roughly linearly with the

optimality gap during the interval. We have confirmed this qualitative insight with

example network scenario.

2.4 Network optimization framework using back-

pressure approach

2.4.1 Introduction

Most of the previous work in network optimization assumes a flow model for trans-

mission with fixed input rates and link capacities. However, in real networks, traffic

is usually bursty because either the sources generate traffic in bursts or the network

nodes employ queuing and scheduling across multiple sessions. Then we have to con-

sider not only routing and network coding but also scheduling of flows of different

sessions.

In [18–25], several back-pressure type algorithms are proposed for the multiple

unicasts problem without coding, in which nodes use the queue length information of

neighboring nodes to make routing decisions. Packets are adaptively routed through-
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out the network in response to congestion information. This approach is called back-

pressure type since heavily loaded nodes downstream push back and slow down the

flow coming down from nodes upstream. The back-pressure algorithm is resilient to

link failures and topological changes. Such a back-pressure approach is generally op-

timal in the sense that it allows transmission at the maximum possible arrival rates

into the network for which the queues at the various network nodes are still stable.

Moreover, it is shown that the algorithms are distributed since decisions are made

locally at each node based on feedback about the size of queues at the destination

node of each link.

However, in the case without network coding, the algorithms are significantly

more complex and harder to implement, even for wired networks. By combining

network coding with back-pressure approach, several distributed polynomial-time al-

gorithms for optimizing the network resources have been presented recently. In [27],

dynamic-back-pressure algorithms for multicast routing, network coding, power allo-

cation, session scheduling, and rate allocation across correlated sources, which achieve

stability for rates within the capacity region, are presented. In [26], for wired and wire-

less networks, off-line and online back pressure algorithms for finding approximately

throughput-optimal network codes within the class of network codes restricted to

XOR coding between pairs of flows. In [29], another dynamic back-pressure routing-

scheduling-coding strategy for inter-session network coding is introduced.

Observe that most of the previous works have a common frame in their stories.

Given any optimization problem with a specified class of network codes, the authors

first design virtual queues at each node in the network and implement generalized

links between queues such that any routing and specified coding/decoding operation

in the original network corresponds to the transmission between virtual queues over

a generalized link. For instance, in [27], each node has just one virtual queue for each

sink of each multicast session and there is a generalized link between two neighbor

nodes which is designed for the transmission of packets destined to the same sink of

the same session. Given a queue and generalized link design, a back-pressure type

algorithm for routing, network coding, and scheduling is proposed. Finally, they have
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shown that the algorithms stabilize the network for all input rates within the capacity

region. This common frame in previous works motivates us to construct an general

optimization framework with back-pressure approach.

Our main contribution is to propose a back-pressure based distributed optimiza-

tion framework, which can be used for optimizing over any class of network codes,

including pairwise XOR coding problem, and reverse carpooling and star coding prob-

lem. Our approach is to specify the class of coding operations by a set of generalized

links, and to develop optimization tools that apply to any network composed of such

generalized links. Our framework covers any optimization problem with class of net-

work codes for which virtual queues and generalized links can be designed to satisfy

following condition : each generalized link e is associated with a transmission set

Pe of pairs (O,D) such that packets from each queue in the set O are transformed

into an equivalent number of packets in each queue in the set D via e. We present a

dynamic back-pressure type algorithm in which routing, network coding, and schedul-

ing decisions are made locally by comparing, for each link, the difference in length

of corresponding virtual queues. It is shown that our algorithm does not allow the

length of any queue in the network to increase infinitely and achieve the stability for

any input rates within the capacity region. In our stability proof, we can choose any

degree of potential function while the square function of the queue length was used

as potential function in previous works [26, 27]. We also minimize the upper bound

on the queue length, and show that our minimized upper bound on the queue length

improves the previous bound.

2.4.2 Preliminaries

2.4.2.1 queue and generalized link design

We consider a network as a directed graph, G = (N , E). Let N = |N | and E = |E|.
There is a set of communication sessions C sharing the network. We assume that

each session c ∈ C is associated with a source node sc and an arrival process of

exogenous session c packets to be transmitted to each of a set Tc ⊂ N − sc. To
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apply back-pressure framework to network optimization problem, we have to design

a set of conceptual queues and generalized links between queues appropriately. We

consider a generalized network G ′ comprising a set N of nodes, with a set E ′ of

generalized communication links. We assign the designed queues at each node in this

generalized network and there is a virtual transmission between the sets of queues

over generalized links. Each generalized link e ∈ E ′ is associated with a transmission

set Pe of pairs (O,D) such that packets from each queue in the set O are transformed

into an equivalent number of packets in each queue in the set D via e. In this paper,

we consider a network optimization problem with class of network codes that satisfies

the following condition.

Condition 2.12 there is a one to one correspondence between any sequence of events

(routing, coding, decoding, and etc.) in the original coding network and the sequence

of events through a generalized link on the generalized network.

2.4.2.2 Model, approach, and notation

We consider the network optimization problem in time-varying networks. We assume

that time is slotted with time slots of duration T . We also assume that the channel

conditions are fixed over the duration of a slot, and known at the beginning of the

slot. For each communication session c, we define a source queue U c
sc

at the source

node sc and a overflow queue Ū c. rc denotes the input rates within the capacity region

of session c. We use Q to denote the set of all queues in this generalized network

apart from the overflow queues. For any queue Q ∈ Q, we use Q(t) to denote the

length of queue Q at time t. We use xQ and yQ to denote the total allocated flow

rate into and out of queue Q respectively. We assume that all generalized links in

E ′ have capacity of at most µ. Let M denote the maximum possible increase or

decrease rate of queue length in Q during each time unit, i.e, xQ(t), yQ(t) ≤ M for

Q ∈ Q, ∀t. (In [26], M = 5µ. In Section 2.4.3.1, M = µ.) V denotes the maximum

length of source queue. A is used to denote the maximum length of any queue on

the generalized network we will derive later. For simplicity, we assume that |O| ≤ 2
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Figure 2.33: Reverse carpooling : (a) Transmitting messages m1,3 and m3,1 from v1

to v3 and v3 to v1, respectively, requires three transmissions with network coding and
four without. (b) Generalize reverse carpooling for two unicast sessions which overlap
in opposite directions.

for any transmission set (O,D) ∈ Pe and |O| = 1 when e ∈ E is a real link. Each

queue Q ∈ Q has a potential LQ(t) = (Q(t))k+1 at time t , where k depends on the

network optimization problem. Let U c(t) denote the length of overflow queue Ū c for

each session c at time t. The potential of overflow queue is defined as (k+1)V k ·U c(t).

Thus, the total potential is defined as follows:

L(t) =
∑
Q∈Q

Q(t)k+1 + (k + 1)V k
∑

c

U c(t).

2.4.3 Optimization problems

Here we introduce network optimization problems with a specified class of network

codes that we mainly focus on in this paper. We first consider optimization problems

using reverse carpooling and star coding strategies. We also consider optimization

problems with pairwise XOR coding strategy. In this section, for each coding strat-

egy, we design the queue and generalized links to apply our distributed optimization

framework.

2.4.3.1 Reverse carpooling and star-coding

We consider simple network coding strategies reverse carpooling and star-coding

shown in Chapter 1. As shown in [7, 10, 53, 54], these strategies can be used for

power saving and increasing the throughput in wireless networks.
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Figure 2.34: (a) 2-star coding : p1 and p2 want to transmit packets x1 and x2 to m1

and m2 respectively. Since m2 overhears transmission from p1 and m1 overhears from
p2, v transmits x1 ⊕ x2 to m1 and m2. This saves a single transmission. (b) 3-star
coding: si wants to transmit packet xi to ti (1 ≤ i ≤ 3) and tj overhears from si

(j 6= i). Node v broadcasts x1 ⊕ x2 ⊕ x3 to t1, t2, and t3 and it gives a savings of two
transmissions.

We present the design of queues and generalized links for reverse carpooling and

star-coding strategies that satisfies condition 2.12. Wireless broadcast links are de-

noted (a, Z), where a is the originating node and Z is the set of destination nodes.

We use C to denote the set of unicast sessions. Now we simply design virtual queues

as following:

· Q
cN(a,Z)
i : uncoded session c packets stored at node i which are transmitted

from hyperarc (a, Z) where N(a, Z) = {a} ∪ {b : b ∈ Z}.
For each session c, we also define a source queue U c

sc
at the source node sc and

a overflow queue Ū c. When we apply reverse carpooling or star-coding strategy, a

node make a decision on which of its queued packets to code and transmit, based

on packets’ next-hop nodes and which of these packets have been overheard by the

next-hop nodes. Thus, for each packet in the queue, we have to keep track of its

previous-hop node and hyperarc which was used for its previous transmission. Then

our following queue design minimizes the number of queues on the network.

For any hyperarc (a, Z), the transmission set P(a,Z) is defined as follows:

· P(a,z) = {(Qc1N(p1,Z1)
a , Q

c1N(a,Z)
m1 )∪(Q

c2N(p2,Z2)
a , Q

c2N(a,Z)
m2 ) . . . (Q

ckN(pk,Zk)
a , Q

ckN(a,Z)
mk )

: ci ∈ C,M = {m1, ..,mk} ⊂ Z,M − {mi} ⊂ N(pi, Zi)}.
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Figure 2.35: Pairwise XOR coding

We can check that the above queue and generalized link design satisfies the con-

dition 2.12. Any reverse carpooling and star-coding event on the original network

corresponds to some transmission set on the generalized network defined above. For

instance, when we apply 2-star coding in Fig. 2.34(a), the transmission set assigned

to hyperarc (a, {m1,m2}) is P(a,Z) = {(Qc1N(s1,Z1)
a , Q

c1N(a,Z)
t1 )∪(Q

c2N(s2,Z2)
a , Q

c2N(a,Z)
t2 )}

on the generalized network where m2 ∈ Z1, m1 ∈ Z2, and Z = {m1, m2}. Then there

is a one to one correspondence between this 2-star coding in the original network and

the transmissions through generalized link on the generalized network. For reverse

carpooling in Fig. 2.33(a), the transmission set assigned to hyperarc (v2, Z) where

(v1, v3) ∈ Z is P(v2,Z) = {(Qc1N(v1,Z1)
v2 , Q

c1N(v2,Z)
v3 ) ∪ (Q

c2N(v3,Z1)
v2 , Q

c2N(v2,Z)
v1 )}.

Based on this queue and generalized link design, we show that our optimization

framework in Section 2.4.4 gives the optimal solution and achieves the stability.

2.4.3.2 Pairwise XOR coding

In this section, we consider network coding across multiple unicasts, using the class

of pairwise XOR codes in [26,55,56]. In this class of codes, network coding is limited
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to XOR coding between pairs of uncoded packets. Two uncoded packets of different

sessions can be coded together to form a joint poison packet in order to share capacity

on one or more hops. The joint poison packet is subsequently replicated to form two

identical individual poison packets whose routes branch. Then these are met by corre-

sponding remedy packets and decoded to form the original uncoded packets. In [26],

they develop online back-pressure algorithm for finding approximately throughput-

optimal network codes within the class of network codes restricted to XOR coding

between pairs of flows, for wired and wireless networks. In a dynamic online setting,

the instantaneous source arrival rates and link capacities/constraints may vary er-

godically. In this problem, we assume that each session’s elementary flow undergoes

coding/decoding at most one time. We show that our back-pressure framework can

be used to solve this pairwise XOR coding problem. Using our framework, it is able to

stabilize all queues in the network for any stabilizable set of exogenous source rates.

Here we design queue and generalized link for pairwise XOR coding problem as

follows:

· U c
i : Uncoded session c packets at node i which did not undergo coding and

decoding yet.

· U cv
i : Uncoded session c packets at node i also stored at node v. These packets

also did not undergo coding and decoding yet.

· W c
i : Uncoded session c packets at node i which has undergone coding and

decoding, and cannot be coded anymore.

· P
{cv,c′v′}
i : Joint poison packets at node i for session c and c′ which are also

stored at nodes v and v′, respectively.

· P cv
i : Individual poison packets at node i.

· Rcv
k : Remedy packets for session c at node k which was requested from indi-

vidual poison packet at node v.

Based on above queue design, we can also define generalized link E ′ and corre-

sponding transmission set. As shown in Fig. 2.35, for a coding link e at a node j, Pe =

{({U cv
j , U c′v′

j }, P {cv,c′v′}
j )}. For a branching link e at a node i, Pe = {(P {cv,c′v′}

i , {P cv′
i , P c′v

i })}.
For a requesting link e at a node k, Pe = {(P cv′

k , Rck
v′ )}. For a decoding link e at node
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k, Pe = {(Rck
k ,W c

k )}. For a real link (a, b) ∈ E , P(a,b) consists of pairs (U c
a, U

c
b ), pairs

(U cv
a , U cv

b ), pairs (U c
a, U

ca
b ), pairs (P

{cv,c′v′}
a , P

{cv,c′v′}
b ), pairs (P cj

a , P cj
b ), pairs (W c

a ,W c
b ),

and pairs (Rcj
a , Rcj

b ). For a wireless link (a, Z), the transmission set contains all pairs

in P(a,b), b ∈ Z as well as pairs (P
{cv,c′v′}
a , {P cv′

b , P ′c′v
b }) and (U c

a, U
cb′
b ) where b, b′ ∈ Z.

The example of data flow for the above queue and generalized link is shown in

Fig. 2.35. From [26], the above queue and generalized link design also satisfies the

condition 2.12.

2.4.4 back-pressure framework

In this section, we propose a general back-pressure algorithm in which nodes maintain

a queue for each session’s packets at each node, and a route based on queue gradients

that form by the addition of packets to sources and their removal from sinks. Then

we prove the stability of our algorithm for any input rates within the capacity region.

2.4.4.1 back-pressure algorithm

We consider any transmission (O,D) over generalized link e ∈ E ′ whereO = {Q1
o, ..., Q

m
o }

and D = {Q1
d, ..., Q

n
d} (m ≤ 2). We define the weight of transmission (O,D) ∈ Pe at

time t as follows,

w
(t)
(O,D) =

∑
Q∈O

L′Q(t)−
∑
Q∈D

L′Q(t)

= (k + 1){
∑
Q∈O

Q(t)k −
∑
Q∈D

Q(t)k}

In each time slot (t, t + T ], the following steps are carried out:

1) For each generalized link e ∈ E ′, choose the pair (O,D) ∈ Pe that maximizes

w
(t)
(O,D). Then transfer across the chosen pair (O,D), at the instantaneous rate of link

e.

2) Remove all packets from queues at sink nodes for each session.

3) Add rc units to the source queues for each session.
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4) After completing steps 1-3 at time (t + T )−, for each session c ∈ C, transfer

packets between the source queue and the overflow queue Ū c of each session c, so as

to maximize U c
sc

((t + T )+) subject to a maximum length constraint of V .

2.4.4.2 Proof of stability

Lemma 2.13 Rebalancing policy in step 4 does not increase the potential L(t).

Proof. We first describe the detail of the rebalancing policy in step 4 and show that

potential function is not increased in this step. At time t = 0, U c
sc

= Ū c = 0. Let t−

and t+ denote the time instant just before and after rebalancing, respectively. Let

W c(t) = min{V − U c
sc

(t−), Ū c(t−)}

where V represents an upper bound on source queue length, enforced by policy. In

this rebalancing policy, at time t+, W c(t) packets are added to U c
sc

and subtracted

from Ū c(t−), i.e.,

U c
sc

(t+) = U c
sc

(t−) + W c(t),

Ū c(t+) = Ū c(t−)−W c(t).

Let Lc(t) = (U c
sc

)k+1 +(k+1)V kŪ c(t). From the above policy, the increased potential

in step 4 is

∑
c

(Lc(t+)− Lc(t−)) =
∑

c

((U c
sc

(t−) + W c(t))k+1 − (U c
sc

(t−))k+1 − (k + 1)V kW c(t)).
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If V < U c
sc

(t−), W c(t) = V − U c
sc

(t−) < 0. Thus,

Lc(t+)− Lc(t−) = V k+1 − U c
sc

(t−)k+1 − (k + 1)V k(V − U c
sc

(t−))

= (V − U c
sc

(t−))(V k + ... + U c
sc

(t−)k − (k + 1)V k)

≤ 0.

Otherwise, V ≥ U c
sc

(t−) and 0 ≤ W c(t) ≤ V −U c
sc

(t−). To prove that the potential

is not increased, we use the following inequality :

(x + δ)k+1 − xk+1 ≤ δ(k + 1)(x + δ)k

for δ ≥ 0.

Since W c(t) ≥ 0 and U c
sc

(t−) + W c(t) ≤ V ,

Lc(t+)− Lc(t−) = (U c
sc

(t−) + W c(t))k+1 − U c
sc

(t−)k+1 − (k + 1)V kW c(t)

= (k + 1)W c(t)(U c
sc

(t−) + W c(t))k − (k + 1)V kW c(t)

≤ 0.

Therefore, Lc(t+) ≤ Lc(t−).

Before introducing the lemma which gives the maximum length of any queue, we

first define the backtracking approach which will be used in the proof of lemma.

Consider any transmission (O,D) which happened between time t− T and t over

generalized link e ∈ E ′ where O = {Q1
o, ..., Q

m
o } and D = {Q1

d, ..., Q
n
d} (m ≤ 2). When

we backtrack the flow from any queue Qj
d ∈ D at time t such that data is transmitted

from queues in O, we choose Qi
o ∈ O such that Qi

o has the maximum queue length

among queues in O at time t − T before transmission occurs, i.e., Qi
o(t − T ) =

max1≤p≤m Qp
o(t− T ), and move to chosen queue at time t− T .

Note that in our back-pressure policy, it transfers data in directions where the
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-

q

1Q1
o Q1

d

Q1
o

Q2
o

Q1
d

(a) (b)

Figure 2.36: Backtracking approach: (a) Transmission pair (O,D) on the generalized
link e where |O| = |D| = 1. Using the backtracking approach for this example, we
move from Q1

d(t) to Q1
o(t− T ). (b) Transmission pair (O,D) on the generalized link

e where |O| = 2 and |D| = 1. Using the backtracking approach for this example, we
move from Q1

d(t) to max(Q1
o(t− T ), Q2

o(t− T )).

forward differential backlog is nonnegative, i.e.,
∑

1≤i≤m(ai)
k − ∑

1≤j≤n(bj)
k ≥ 0.

The length of any queue Q ∈ Q can be increased at most TM during each time slot.

Here we give examples for our backtracking procedure. When |O| = |D| = 1

as shown in Fig. 2.36(a), as in the queue and generalized link design for reverse

carpooling and the star-coding problem, we move from Q1
d(t) to Q1

o(t− T ) using our

backtracking approach. Then,

Q1
d(t) ≤ Q1

d(t− T ) + MT ≤ Q1
o(t− T ) + MT.

Second inequality comes from the fact that the forward differential backlog is non-

negative, (Q1
o(t− T ))k ≥ (Q1

d(t− T ))k. Similarly, when |O| = 1 and |D| = p ≥ 1, for

any Qj
d ∈ D,

Qj
d(t) ≤ Qj

d(t− T ) + MT ≤ Q1
o(t− T ) + MT. (2.23)

since (Q1
o(t− T ))k ≥ ∑p

i=1(Q
i
d(t− T ))k ≥ (Qj

d(t− T ))k.

When |O| = 2 and |D| = 1 as shown in Fig. 2.36(b), as in the coding link
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transmission for pairwise XOR coding in Section 2.4.3.2, we move from Q1
d(t) to

max(Q1
o(t− T ), Q2

o(t− T )) using the backtracking approach. Then,

Q1
d(t) ≤ Q1

d(t− T ) + MT

= (Q1
d(t− T )k)

1
k + MT

≤ (Q1
o(t− T )k + Q2

o(t− T )k)
1
k + MT

≤ (2 ·max(Q1
o(t− T )k, Q2

o(t− T ))k)
1
k + MT,

which is equivalent to

Q1
d(t) ≤ 2

1
k max(Q1

o(t− T ), Q2
o(t− T )) + MT. (2.24)

Lemma 2.14 Under our algorithm, the length of any queue cannot exceed a constant

which depends on the parameters of the network optimization problem.

Proof.

First consider the network optimization problem where queue and generalized links

are designed such that any data is transmitted from one-queue to one-queue over real

link, as the reverse carpooling and star-coding problem in Section 2.4.3.1 and the

dynamic multicast with intra-session network coding [27]. When we backtrack the

data flow from any queue Q of the session c, since every data transmission is from

one-queue to one-queue of the same session’s, we reach the source queue U c
sc

after

passing at most N − 1 real links. Thus, applying (2.23) recursively N − 1 times from

our backtracking procedure gives

Q(t) ≤ V + (N − 1)MT. (2.25)

Now we consider a pairwise XOR coding problem in Section 2.4.3.2. In this

problem, each elementary flow undergoes coding/decoding at most one time from the

source to the sink and every transmission is from one-queue to one-queue of the same
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Figure 2.37: Example of case 2 in the proof of Lemma 2.14: we derive the maximum
length of queue W c′

k using our backtracking approach by following transmissions in
reverse order.

session’s except the transmission over coding link from the queue and generalized link

design. For any queue Q, we derive an upper bound on Q(t) by using the backtracking

approach recursively.

Case 1) When we backtrack the flow from Q of the session c, we do not pass the

coding link and reach the source queue of the same session.

In this case, the flow we are backtracking does not undergo coding/decoding.

Then every transmission is from one-queue to one-queue of the same session’s over

real link. We pass at most N − 1 real links until we reach the source queue U c
sc

. As

in (2.25), Q(t) ≤ V + (N − 1)MT.

Case 2) When we backtrack the flow from the queue Q of the session c, we pass

the coding and decoding link one time, respectively.

First consider the example in Fig. 2.37. Suppose that we want to derive the

maximum length of queue W c′
k at time t using our backtracking approach. We apply

backtracking procedure from W c′
k (t) until we reach the source queue of session c, U c

sc
,

by following transmissions shown in Fig. 2.37 in reverse order. Here time index for
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queue length has been omitted for brevity.

When flow is transmitted from Rc′k
k to W c′

k over decoding link {(Rc′k
k ,W c′

k )}, back-

tracking approach gives

W c′
k ≤ Rc′k

k + MT. (2.26)

Similarly, we apply our backtracking approach sequentially to remedy packet

transmission (Rc′k
v , Rc′k

k ), requesting link Pe = {(P c′v
k , Rc′k

v )}, individual poison packet

transmission (P c′v
i , P c′v

k ), branching link {(P {cv,c′v′}
i , {P cv′

i , P c′v
i })}, joint poison packet

transmission (P
{cv,c′v′}
j , P

{cv,c′v′}
i ), before reaching the coding link at node j. Since all

of these links are from one-queue to one or two-queue, by applying (2.23) recursively,

we obtain

Rc′k
k ≤ P

{cv,c′v′}
j + 5MT. (2.27)

From equations (2.26) and (2.27),

W c
k ≤ P

{cv,c′v′}
j + 6MT. (2.28)

At coding link {({U cv
j , U c′v′

j }, P {cv,c′v′}
j )}, assume that the length of queue U cv

j is larger

than that of U c′v′
j , i.e., U cv

j ≥ U c′v′
j . From our backtracking approach in Fig. 2.36(b),

we move from P
{cv,c′v′}
j to U cv

j , and (2.24) gives

P
{cv,c′v′}
j ≤ 2

1
k U cv

j + MT. (2.29)

We apply again our backtracking approach sequentially from U cv
j to the source

queue U c
sc

over real links transmissions (U c
v , U

cv
j ) and (U c

sc
, U c

v). This gives

U cv
j ≤ U c

sc
+ 2MT. (2.30)

From equations (2.28), (2.29), (2.30),

W c
k ≤ 2

1
k (U c

sc
+ 2MT ) + 7MT. (2.31)
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Since U c
sc
≤ V , we finally obtain

W c
k ≤ 2

1
k (V + 2MT ) + 7MT. (2.32)

Now we generalize above example to complete the proof in this case. Assume

that the elementary flow of session c is coded with the elementary flow of session

c′ at coding link X = ({U cv
Y , U c′v′

Y }, P cv,c′v′
Y ) at node Y . We start from the queue Q

of session c and backtrack the data flow to the queue of the same session’s until we

reach the coding link X. Before reaching the coding link, since each elementary flow

undergoes coding/decoding at most one time, we pass at most N − 1 real links, one

branching link, one requesting link, and one decoding link (*). From our queue and

generalized link design, all of this transmissions are from one-queue to one or two-

queue. At coding link X, we apply backtracking approach as shown in Fig. 2.36(b).

Then we backtrack from P cv,c′v′
Y to one of U cv

Y and U c′v′
Y which has larger queue length.

Since each elementary flow undergoes coding at most one time, after moving one of

U cv
Y and U c′v′

Y , we backtrack the chosen session’s flow until we reach the source queue

by passing at most N−1 real links (**). For instance, if we move from P cv,c′v′
Y to U c′v′

Y

in backtracking, we pass at most N −1 real links until we reach the source queue U c′
s′c

.

Now we derive the upper bound on Q(t) by computing the maximum queue length

subsequently from the source queue using backtracking procedure described above.

Let a denote the maximum length of queues U cv
Y and U c′v′

Y , and b denote the length

of the queue P cv,c′v′
Y in our backtracking procedure. From (**), by applying equa-

tion (2.23) N − 1 times recursively, the maximum length of queue between U cv
Y and

U c′v′
Y is less than or equal to the length of the source queue plus (N − 1)MT , i.e.,

a ≤ V + (N − 1)MT. (2.33)

At coding link, we apply (2.24) and obtain

b ≤ 2
1
k a + MT. (2.34)
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From the queue P cv,c′v′
Y to the queue Q, we pass at most N − 1 + 3 = N + 2

generalized links by (*) such that each link transmits data from one-queue. Thus,

applying (2.23) N + 2 times recursively gives

Q(t) ≤ b + (N + 2)MT. (2.35)

From equations (2.33), (2.34), (2.35), we obtain that

Q(t) ≤ 2
1
k (V + (N − 1)MT ) + (N + 3)MT. (2.36)

This completes the proof.

Now we propose the main theorem in this work.

Theorem 2.15 Given a queue and generalized link design, if input rates (rc + ε) are

achievable on the original network for some ε > 0, then back-pressure policy stabilizes

the system for rate (rc).

Proof. In Lemma 2.13, we have shown that step 4 does not increase L(t). So we

focus on the change in potential across steps 1-3. The queues evolve according to

Q(t + T ) ≤ max{Q(t)− TyQ(t), 0}+ TxQ(t). (2.37)

We omit the time indexes t from xQ(t) and yQ(t) for brevity. Let DQ(t) = (k +

1)T (yQ − xQ)Q(t)k.

Here is the outline of proof. We first show that

LQ(t + T )− LQ(t) = Q(t + T )k+1 −Q(t)k+1 ≤ C − 2DQ(t) (2.38)
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for ∀Q ∈ Q, where C is a positive constant which will be defined later. Then,

E{L(t + T )− L(t)} ≤
∑
Q∈Q

E{LQ(t + T )− LQ(t)}

≤
∑
Q∈Q

E{C − 2DQ(t)}

= |Q|C − 2D(t),

where D(t) = E{∑Q∈QDQ(t)} = E{∑Q∈Q(k + 1)T (yQ − xQ)Q(t)k}. Here D(t)

corresponds to drift terms in [26,27]. After proving (2.38), we show that back-pressure

algorithm maximizes D(t) and the stability of our back-pressure algorithm is shown

by comparison with a randomized policy [26, 27, 57]. Finally we prove E(L(t)) ≤
|Q||A|k+1 for ∀t, where A denotes the maximum queue length.

Case i) Q(t) ≥ TyQ.

From (2.37),

LQ(t + T )− LQ(t) ≤ (Q(t) + T (xQ − yQ))k+1 − (Q(t))k+1.

Case i - a) Q(t) > 2kMT .

Let α = T (xQ − yQ). Since Q(t) > 2kMT ,

|α|
Q(t)

=
|T (xQ − yQ)|

Q(t)
≤ T |max(xQ, yQ)|

Q(t)
≤ TM

2kMT
=

1

2k
. (2.39)



86

LQ(t + T ) ≤ (Q(t) + T (xQ − yQ))k+1

= Q(t)k+1(1 +
T (xQ − yQ)

Q(t)
)k+1

= Q(t)k+1(1 +
α

Q(t)
)k+1

= Q(t)k+1


 1

1− (
α

Q(t)

1+ α
Q(t)

)




k+1

.

From (2.39), |α|/Q(t) ≤ 1/(2k) and thus

1− (k + 1)(

α
Q(t)

1 + α
Q(t)

) > 0. (2.40)

Then,

LQ(t + T ) ≤ Q(t)k+1


 1

1− (
α

Q(t)

1+ α
Q(t)

)




k+1

≤ Q(t)k+1


 1

1− (k + 1)(
α

Q(t)

1+ α
Q(t)

)




= Q(t)k+1(
Q(t) + α

Q(t)− kα
)

= Q(t)k+1(1 +
(k + 1)α

Q(t)− kα
).

Second inequality comes from 1
(1−x)t ≤ 1

1−tx
for 0 ≤ x < 1

t
and (2.40).
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From (2.39), Q(t)− kα ≥ Q(t)− k|α| ≥ Q(t)/2 and thus,

LQ(t + T ) ≤ Q(t)k+1(1 +
(k + 1)α

Q(t)− kα
)

≤ Q(t)k+1 + 2(k + 1)αQ(t)k

= Q(t)k+1 + 2(k + 1)T (xQ − yQ)Q(t)k

= Q(t)k+1 − 2DQ(t).

Therefore,

LQ(t + T )− LQ(t) ≤ −2DQ(t).

Case i - b) Q(t) ≤ 2kMT .

Since Q(t) ≤ 2kMT and |T (xQ − yQ)| ≤ TM ,

|DQ(t)| = |(k + 1)T (yQ − xQ)Q(t)k| ≤ (k + 1)(MT )k+1(2k)k. (2.41)

LQ(t + T )− LQ(t) ≤ (Q(t) + T (xQ − yQ))k+1 −Q(t)k+1

= (k + 1)T (xQ − yQ)Q(t)k +
k+1∑
i=2

(
k + 1

i

)
(T (xQ − yQ))iQ(t)k+1−i

≤ −DQ(t) +
k+1∑
i=2

(
k + 1

i

)
(MT )i(2kMT )k+1−i

= −DQ(t) + (MT )k+1((1 + 2k)k+1 − (2k)k+1 − (k + 1)(2k)k)

≤ −2DQ(t) + (MT )k+1((1 + 2k)k+1 − (2k)k+1 − (k + 1)(2k)k)

+(k + 1)(MT )k+1(2k)k

= −2DQ(t) + C,

where C = (MT )k+1((1+2k)k+1−(2k)k+1). First inequality is from (2.37) and second

inequality comes from |T (xQ − yQ)| ≤ TM and Q(t) ≤ 2kMT . Third inequality is
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from (2.41).

Since C > 0, from cases i) - a) and i) - b),

LQ(t + T )− LQ(t) ≤ −2DQ(t) + C.

Case ii) Q(t) < TyQ.

Since |T (yQ − xQ)| ≤ TM and Q(t) < TyQ ≤ TM ,

|DQ(t)| = |(k + 1)T (xQ − yQ)Q(t)k| ≤ (k + 1)TM(TyQ)k ≤ (k + 1)(TM)k+1. (2.42)

LQ(t + T )− LQ(t) ≤ (TxQ)k+1 − (Q(t))k+1

≤ (MT )k+1

≤ −2DQ(t) + (2k + 3)(TM)k+1.

First and second inequalities are derived from (2.37) and xQ ≤ M , respectively.

The last inequality is from (2.42).

Since C = (MT )k+1((1 + 2k)k+1 − (2k)k+1) > (2k + 3)(TM)k+1 for k > 1, in this

case, we also derive

LQ(t + T )− LQ(t) ≤ −2DQ(t) + C.

From cases i) and ii), we have shown that

LQ(t + T )− LQ(t) ≤ −2DQ(t) + C

for ∀Q ∈ Q.
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Then,

E{L(t + T )− L(t)} ≤
∑
Q∈Q

E{LQ(t + T )− LQ(t)}

≤
∑
Q∈Q

E{C − 2DQ(t)}

= |Q|C − 2D(t),

where

D(t) = E{
∑
Q∈Q

DQ(t)} = E{
∑
Q∈Q

(k + 1)T (yQ − xQ)Q(t)k}. (2.43)

Since input rates (rc + ε) are feasible on the original network for some ε > 0 and

there is one to one correspondence between any sequence of events in the original

coding network and the sequence of events through generalized link on the generalized

network from condition 2.12, as in [26,27,57], there exists some value ζ of the vector

of flow variables that satisfies

yQ − xQ =





ε if Q = U c
sc

for some c

0 Otherwise.

(2.44)

For a randomized policy which does power allocation and scheduling based on this

solution vector ζ, analogously to the algorithm of [26,27], from (2.43) we have

Drand(t) = (k + 1)Tε
∑

c

(U c
sc

(t))k. (2.45)
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Next, we consider our back-pressure algorithm. We can rewrite D(t) as follows :

D(t) =
∑
Q∈Q

(k + 1)T (yQ − xQ)Q(t)k

=
∑

e∈E ′

∑

(O,D)∈Pe

rt
(O,D)(

∑
Q∈O

L′Q(t)−
∑
Q∈D

L′Q(t))

=
∑

e∈E ′

∑

(O,D)∈Pe

rt
(O,D)w

t
(O,D),

where rt
(O,D) denotes the transmission rate of (O,D) at time t.

Since the back-pressure algorithm maximizes D(t),

Dback−pressure(t) ≥ Drand(t). (2.46)

Then from (2.45) and (2.46), we obtain

E{L(t + T )− L(t)} ≤ |Q|C − 2Dback−pressure(t)

≤ |Q|C − (k + 1)Tε
∑

c

(U c
sc

(t))k.

If U c(t) = 0 for all c, then

L(t) =
∑
Q∈Q

Q(t)k+1 ≤ |Q||A|k+1,

where A denotes the maximum queue length defined in Lemma 2.14.

Otherwise, if U c(t) > 0 for some c, then U c
sc

(t) = V , and

E{L(t + T )− L(t)} ≤ |Q|C − (k + 1)TV kε.



91

Setting

V =

( |Q|C
(k + 1)Tε

) 1
k

=

( |Q|(MT )k+1((1 + 2k)k+1 − (2k)k+1)

(k + 1)Tε

) 1
k

(2.47)

gives E{L(t + T )− L(t)} ≤ 0. By induction on the number of time slots, we obtain

E{L(t)} ≤ |Q||A|k+1

for all t and the queues are stable.

Before concluding this section, we consider the choice of k +1, which is the degree

of potential function. Though our stability proof works for any integer k, we want to

choose k that minimizes the upper bound on the queue length defined in the proof of

Lemma 2.14. From (2.47), the maximum length of the source queue is

V < 2kMT (
k|Q|

ε
)

1
k ≤ 4kMT (

|Q|
ε

)
1
k , (2.48)

where the first inequality comes from (1 + 2k)k+1 − (2k)k+1 < k(k + 1)(2k)k and the

second inequality comes from k
1
k ≤ 2 for any integer k.

For the reverse carpooling and star-coding problem, and the multicast with intra-

session network coding problem where every transmission is from one-queue to one-

queue over real link, from (2.25), the upper bound on any queue length is A =

V +(N −1)MT = 4kMT ( |Q|
ε

)
1
k +(N −1)MT . By differentiating the above equation,

A is minimized when k = ln( |Q|
ε

). Thus we choose k = dln( |Q|
ε

)e or bln( |Q|
ε

)c. In this

case, when T = 1, the upper bound on any queue length is

A = 4 ln(
|Q|
ε

)Me + (N − 1)M. (2.49)

We can compare this bound with the bound presented in [27] where k = 1 is chosen.

From the proof of Theorem 8a in [27], when N is sufficiently large, the bound on the
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queue length A′ is given as follows :

A′ =
NM2τmax

ε
+ (N − 1)M (2.50)

where τmax is the maximum number of sinks in any multicast session. From (2.49)

and (2.50), A ≤ A′ if 4 ln( |Q|
ε

)e < NMτmax

ε
. When each node can have at most C1

queues, i.e., |Q| < C1N , and M > 1, for sufficiently large N , we obtain 4 ln(C1N
ε

)e <

N
ε

< NMτmax

ε
and thus A ≤ A′.

For the pairwise XOR coding problem, from (2.36), the upper bound on the queue

length is

A = 2
1
k (V + (N − 1)MT ) + (N + 3)MT

= 2
1
k (4kMT (

|Q|
ε

)
1
k + (N − 1)MT ) + (N + 3)MT.

(2.51)

We choose k that minimizes (2.51) by solving numerically. When |Q|
ε

is sufficiently

large, k = ln(2|Q|
ε

). In this case,

A ≤ 4 ln(
2|Q|

ε
)Me + (3N − 1)M. (2.52)

We can also compare this bound (2.52) with the bound presented in [27] where

k = 1 is chosen. From the proof of Theorem 3 in [26], when N is sufficiently large,

the upper bound on the queue length is

A′′ =
18N2M2

ε
+ 5M. (2.53)

Therefore, A ≤ A′′ if

4 ln(
2|Q|

ε
)e + (3N − 6) <

18N2M

ε
. (2.54)

When each node can have at most C1 queues, and M > 1, for sufficiently large



93

N , we obtain

4 ln(
2C1N

ε
)e + (3N − 6) <

2N

ε
+ 3N − 6 <

18N2M

ε
. (2.55)

Thus A ≤ A′′.

As shown above, our queue length bound is O(ln(N
ε
)) while bound in [26] is O(N2

ε
).

2.4.5 Conclusion

We have proposed a back-pressure based distributed optimization framework with

network coding. Our framework can be used for optimizing over any class of net-

work codes, including pairwise XOR coding problem, and reverse carpooling and star

coding problem. Our approach is to specify the class of coding operations by a set

of generalized links, and to develop optimization tools that apply to any network

composed of such generalized links. We propose a dynamic back-pressure algorithm

in which routing, network coding, and scheduling decisions are made locally by com-

paring the weights of transmission pairs on each generalized link. We first present the

upper bound on the queue length for each optimization problem and prove that our

algorithm achieves the stability for any input rates within the capacity region when

there is a one to one correspondence between any sequence of events in the original

coding network and the sequence of events through generalized link on the general-

ized network. In previous works, sum of the square of the queue length was used

as potential function. In our framework, the stability proof works for any degree of

potential function and we can choose the degree of potential function that minimizes

the upper bound on the queue length. Moreover, our minimized upper bound on the

queue length improves the previous bound.
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Chapter 3

Network error correction with
unequal link capacities

3.1 Introduction

In this chapter, we study the capacity of single-source single-sink noiseless networks

under adversarial attack on no more than z edges. Unlike prior papers, which assume

equal capacities on all links, we allow arbitrary link capacities. The unequal link

capacity problem is substantially different from the problem studied by Yeung and

Cai in [30,31] since the rate controlled by the adversary varies with his edge choice. For

the equal link capacities case, coding only at the source and forwarding at intermediate

nodes suffices to achieve the capacity for any single-source and single-sink network.

In contrast, for networks with unequal link capacities, we show that network error

correction is needed even for a single-source and single-sink network.

In Section 3.3, we propose a new cut-set upper bound which applies to general

acyclic networks. For networks with unequal link capacities, this bound tightens

the generalized Singleton bound given in our earlier work in [43] and independently

in [42]. In Section 3.4, we consider a variety of linear and nonlinear coding strategies

useful for achieving the capacity of the example networks. We present a method for

upper bounding the linear coding capacity of an arbitrary network and prove the

insufficiency of linear network codes to achieve the capacity. The proof provides an

example for which the capacity achieved using nonlinear error detection at an inter-
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mediate node is 50% greater than the linear coding capacity. A similar example for

the problem with Byzantine attack on nodes rather than edges appears in [42]. We

also give examples of single-source and single-sink networks for which intermediate

nodes must perform coding, nonlinear error detection or error correction in order to

achieve the network capacity. We describe a simple greedy algorithm for error correc-

tion at intermediate nodes. We then introduce a new coding strategy called “guess-

and-forward.” In this strategy, an intermediate node which receives some redundant

information from multiple paths guesses which of its upstream links is controlled by

the adversary. The intermediate node forwards its guess to the sink which tests the

hypothesis of the guessing node. Section 3.5 investigates this strategy with a variety

of example networks. We show that guess-and-forward achieves network capacity on

the two-node network with multiple feedback links, as well as the proposed family

of four-node acyclic networks. Finally, we apply guess-and-forward strategy to the

zig-zag networks, deriving a general achievable rate region and presenting conditions

under which that bound is tight.

3.2 Preliminaries

Consider any single-source and single-sink acyclic communication network G = (V , E)

with unequal link capacities. Source node s transmits information to the sink node u.

For each node v ∈ V , we use γ+(v) = {(c, v) : (c, v) ∈ E} and γ−(v) = {(v, c) : (v, c) ∈
E} to denote the sets of incoming and outgoing edges for node v. Let r(l) denote the

capacity of edge l ∈ E . We assume that the code alphabet X is equal to GF (q) for

some prime power q. An error vector on any link l ∈ E is a vector el containing r(l)

symbols in code alphabet X . The output yl of link l equals the modulo q sum of the

input xl to link l and the error el applied to link l. We say that τ error links occur in

the network if el 6= 0 on τ links.

Definition 3.1 A network code is z-error link-correcting if the source message can

be recovered by the sink node provided that the adversary controls at most z links.

Thus a z-error link-correcting network code can correct any τ adversarial links for
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τ ≤ z.

As in [30, 31], we can consider a linear network code V for a single-source and a

single-sink network that assigns a linear subspace Lv(a) to each node a ∈ V and a set

of r(l) column vectors {vτ (l)1, v
τ (l)2, .., v

τ (l)r(l)} to each link l ∈ E in the network.

Denote by Ga the matrix whose columns are the vectors assigned to the input links

of node a. For any linear network code V , there exists a set of r(l) column vectors

{cτ (l)1, c
τ (l)2, .., c

τ (l)r(l)} such that vτ (l)i = Gac
τ (l)i. Then we can define a linear

network code φ based on any linear network code V as in [31]. Let

φ̃l(w) = {〈w, vτ (l)i〉 : 1 ≤ i ≤ r(l)}

denote the error-free output of link l when the network input is w. We again use

vector el to denote the errors on link l and e = (el : l ∈ E) to denote the entire

network error. If an error vector e occurs, its components are added to the link

inputs. Then the output of a link l is a function of both the network input w and the

error vector e. We denote that output by ψl(w, e). With this notation, a sink node u

cannot distinguish between the case where w is the network input and error e occurs

and the case where w′ is the network input and error e′ occurs if and only if

(ψl(w, e) : l ∈ Γ+(u)) = (ψl(w
′, e′) : l ∈ Γ+(u)). (3.1)

Let N(e) = |{l ∈ E : el 6= 0}| denote the number of links in which an error occurs.

We say that any pair of input vectors w and w′ are z links separable at sink node u

if (3.1) does not hold for any pair of error vectors e and e′ such that N(e) ≤ z and

N(e′) ≤ z. [31, Lemma 1] establishes the linear properties of ψl(w, e) for networks

with unit link capacities. This results extends directly to networks with arbitrary

link capacities.

Lemma 3.2 For all l ∈ E , all network inputs w and w′, error vectors e and e′, and

µ ∈ GF (q),

ψl(w + w′, e + e′) = ψl(w, e) + ψl(w
′, e′)
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and

ψl(µw) = µψl(w).

From Lemma 3.2,

ψl(w, e) = ψl(w, 0) + ψl(0, e) = φ̃l(w) + θl(e).

Thus ψl(w, e) can be written as the sum of a linear function of w and a linear function

of e.

Let (A,B) be a partition of V , and define the cut for the partition (A,B) by

cut(A,B) = {(a, b) ∈ E : a ∈ A, b ∈ B}.

The quantity m(A) =
∑

(a,b)∈cut(A,B) r(a, b) is called the volume of cut(A,B). The cut

cut(A, B) separates nodes a and b if a ∈ A and b ∈ B. We use CS(a, b) to denote

the set of cuts between a and b and c(a, b) to denote the minimum volume of a cut

between a and b.

3.3 Upper bound

First, we state the generalized Singleton upper bound which is presented in [43]. A

similar upper bound for the problem of adversarial attack on nodes rather than edges

appears independently in [42]. We then propose a new cut-set upper bound, which can

be applied for general acyclic networks. For networks with unequal link capacities,

this bound tightens the generalized Singleton bound. As examples, we analyze these

bounds for both the four-node acyclic network and the zig-zag network.

Lemma 3.3 (Generalized Singleton bound) Consider any z-error correcting network

code with source alphabet X in an acyclic network G. Consider any set S consisting

of 2z links on a source-sink cut Q such that none of the remaining links on Q are
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downstream of any link in S. Let M be the total capacity of the remaining links. Then

log |X| ≤ M · log q.

Proof. We assume that |X| > qM , and show that this leads to a contradiction.

For brevity, let Q = {l1, .., lK(Q)} where S = {lK(Q)−2z+1, ...lK(Q)} and links in

S are in the coding order of the given network code. Since |X| > qM , from the

definition of M , there exist two distinct symbols x, x′ ∈ X such that φ′li(x) = φ′li(x
′)

∀i = 1, .., K(Q)− 2z. So we can write

O(x) = {y1, .., yK(Q)−2z, u1, .., uz, w1, .., wz},

O(x′) = {y1, .., yK(Q)−2z, u
′
1, .., u

′
z, w

′
1, .., w

′
z}.

We will show that it is possible for the adversary to produce exactly the same outputs

at all the channels on Q when errors are occurred at most z links on Q.

Assume the input of the network is x. The adversary will inject errors on z links

lK(Q)−2z+1, . . . , lK(Q)−z in this order as follows. First the adversary applies an error

on link lK(Q)−2z+1 to change the output from u1 to u′1. Then the output of links

(lK(Q)−2z+2, .., lK(Q)) may be affected, but not the outputs of links (l1, .., lK(Q)−2z).

Let u′i(j) and w′
i(j) denote the outputs of links lK(Q)−2z+i and lK(Q)−z+i, respectively

after the adversary has injected errors on link lK(Q)−2z+j, where j = 1, 2, .., t with

u′1(1) = u′1. Then the adversary injects errors on link lK(Q)−2z+2 to change its output

from u′1 to u2. This process continues until the adversary finishes injecting errors

on z links lK(Q)−2z+1, .., lK(Q)−z and the output of this channel changes from O(x)

to {y1, .., yK(Q)−2z, u
′
1, .., u

′
z, w

′
1(t), .., w

′
z(t)}. Now suppose the input is x′. We can

follow a similar procedure by injecting errors on z links lK(Q)−z+1, .., lK(Q). Then the

adversary can produce the outputs

{y1, .., yK(Q)−2z, u
′
1, .., u

′
z, w

′
1(t), .., w

′
z(t)}.
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Thus, sink node u cannot reliably distinguish between the source symbol x and x′,

which gives a contradiction.

Any set of links S on the cut Q is said to satisfy the downstream condition if none

of the remaining links on the cut Q are downstream of any link in S.

Given a Q = cut(P,V − P ), let QR denote the set of feedback links of the cut.

Given a set of m ≤ z feedback links W ⊂ QR and a set of k ≤ z −m forward links

F ⊂ Q, we use NF,W
z,m,k(Q) to denote the upper bound obtained from Lemma 3.3 with

z −m − k adversarial links on the cut Q after erasing W and F from the graph G.

Let

Nz,k,m(Q) = min
{F⊂Q,|F |=k≤z−m}

min
{W⊂QR,|W |=m≤z}

NF,W
z,k,m(Q).

Then we define Nz(Q) as follows.

Nz(Q) = min
0≤k≤z−m

min
0≤m≤z

Nz,k,m(Q).

Lemma 3.4 Consider any z-error correcting network code with source alphabet X in

an acyclic network.

log |X| ≤ min
Q∈CS(s,u)

{Nz(Q)} · log q

Proof. For any cut Q ∈ CS(s, u), the adversary can choose to erase a set W ⊂ QR

feedback links and a set F ⊂ Q of forward links where |W | = m ≤ z and |F | = k ≤
z − m. Applying Lemma 3.3 on Q after erasing W and F gives the upper bound

NF,W
z,k,m(Q). By taking the minimum over all such cuts, we obtain the above bound.

The following examples illustrate how above upper bound tightens the generalized

Singleton bound. We first consider a four-node acyclic network as shown in Fig. 3.1.

In each example, unbounded reliable communication is allowed from source S to its

neighbor B on one side of the cut and from node A to sink U on the other side of the

cut, respectively. There are feedback links with arbitrary capacities from A to B.

When we compute the generalized Singleton bound, for any cut Q, we choose

and erase 2z links in the cut such that none of the remaining links in the cut are

downstream of chosen 2z links. Then we sum the remaining link capacities and take
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Figure 3.1: Four-node acyclic network: unbounded reliable communication is allowed
from source S to its neighbor B on one side of the cut and from node A to sink U on
the other side of the cut, respectively. (a) There are 2 links of the capacity 10 from
S to A and 4 unit-capacity links from B to U . (b) There are 5 links of the capacity
3 from S to A. There are 2 links of the capacity 2 and 3 links of the capacity 1 from
B to U .

the minimum over all cuts. Because of the downstream condition, when the link

capacities between S and A are much larger than the link capacities between B and

U as shown in Fig. 3.1 (a), Singleton bound may not be tight. When z = 2, the

generalized Singleton bound gives upper bound 20. However, when the adversary

declares that he will use two forward links between S and A, we obtain the erasure

bound 4.

We consider the network in Fig. 3.1 (b). Suppose that z = 2. Applying the

generalized Singleton bound gives upper bound 16. If the adversary erases one of the

forward links between S and A and we apply the generalized Singleton bound on the

remaining network, then our upper bound is improved to 15. The intuition behind

this example is that when the adversary erases p ≤ z large capacity links which do

not satisfy the downstream condition, applying the generalized Singleton bound on

remaining network with (z − p) adversarial links can give tighter bound.

For the 2-layer zig-zag network in Fig. 3.2, when z = 4, min-cut is 37 and the gen-

eralized Singleton bound gives upper bound 27. Suppose that the adversary declares
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Figure 3.2: 2-layer zig-zag network: unbounded reliable communication is allowed
from S to B, from B to D, from A to C, and from C to U respectively. There is a
sufficiently large number of feedback links from A to B. There is one feedback link
from C to D.

that he will use feedback link between C and D, and forward link with capacity 6

between S and A. By applying the generalized Singleton bound on remaining network

with two adversarial links, we obtain 37-6-(3+3+3+3)=19. The intuition behind this

example is that the links between B and C and the links between D and U have the

same topological order by erasing the single feedback link between C and D. Since

the generalized Singleton bound is obtained by erasing 2z links on the cut such that

none of the remaining links on the cut are downstream of any erased links, by erasing

the single feedback link between C and D, we can have tighter Singleton bound even

with a fewer number of adversarial links. Moreover, before applying Singleton bound,

we first erase the link with capacity 6 which is the largest between S and A as we did

in example in Fig. 3.1(b).

Now we introduce another cut-set upper bound. For any cut Q = (P,V − P )

and a set of nodes A ⊆ V − P , let FA(Q) = {(a, b) ∈ E : a ∈ P, b ∈ A} ⊂ Q and

WA(Q) = {(a, b) ∈ E : a ∈ A, b ∈ P} ⊂ QR to denote the set of all forward and

feedback links incident to nodes in A, respectively. Let |WA(Q)| = mA(Q).



102

Suppose for a cut Q, there exists a set of nodes A ⊆ V −P such that mA(Q) ≤ z.

For any k ≤ z −mA(Q), choose any set of k links PA(Q) ⊆ FA(Q). Then choose any

set of z−k−mA(Q) links RA(Q) ⊂ Q−PA(Q) that satisfies the downstream condition

on Q. Let ZA(Q) = PA(Q) ∪ RA(Q). Similarly, for any set of nodes B ⊆ V − P − A

such that mB(Q) ≤ z, choose any set of p ≤ z −mB(Q) links PB(Q) ⊆ FB(Q) and a

set of z−p−mB(Q) links RB(Q) ⊆ Q−ZA(Q)−PB(Q) that satisfies the downstream

condition on Q. ZB(Q) = PB(Q) ∪RB(Q).

Lemma 3.5 Let M denote the total capacity of the remaining links on Q−ZA(Q)−
ZB(Q). Then,

log |X| ≤ M · log q.

Proof. We assume that |X| > qM , and show that this leads to a contradiction.

Let K(Q) denote the number of links on the cut Q. Since |X| > qM , from the

definition of M , there exist two distinct codewords x, x′ ∈ X such that error-free

outputs on the links in Q − ZA(Q) − ZB(Q) are the same. Let a = |ZA(Q)| and

b = |ZB(Q)|. So we can write

O(x) = {y1, .., yK(Q)−a−b, u1, .., ua, w1, .., wb},

O(x′) = {y1, .., yK(Q)−a−b, u
′
1, .., u

′
a, w

′
1, .., w

′
b},

where (y1, .., yK(Q)−a−b) denotes the error-free outputs on the links in Q − ZA(Q) −
ZB(Q), (u1, .., uk) and (u′1, .., u

′
k) denote the error-free outputs on the links in PA(Q)

for x and x′ respectively, and (uk+1, .., ua) and (u′k+1, .., u
′
a) denote the error-free out-

puts on the links in RA(Q) for x and x′ respectively. Similarly, let (w1, .., wp) and

(w′
1, .., w

′
p) denote the error-free outputs on the links in PB(Q) for x and x′ respec-

tively, and let (wp+1, .., wb) and (w′
p+1, .., w

′
b) denote the error-free outputs on the links

in RB(Q) for x and x′ respectively. We will show that it is possible for the adversary

to produce exactly the same outputs at all the channels on Q when errors occur on at

most z links. When codeword x is sent, we use Bl(x) to denote the error-free output

on feedback link l.
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Figure 3.3: Four node acyclic network: There are 4 links of the capacity 2 from S to
A. There are 3 links of the capacity 2 and 1 link of the capacity 4 from B to U .

Assume the input of network is x. The adversary chooses feedback links set WA(Q)

and forward links set ZA(Q) as z adversarial links. First the adversary applies errors

on PA(Q) to change the output from ui to u′i for ∀1 ≤ i ≤ k and causes each feedback

link l ∈ WA(Q) to transmit Bl(x). Since all feedback links in WA(Q) transmit the

error-free output, when the output ui on any link in PA(Q) is changed, the outputs

of downstream links of it are not affected. Thus (u1, .., uk) is changed to (u′1, .., u
′
k)

without affecting the outputs of any other links. Then the adversary applies errors

on RA(Q) to change the output from (uk+1, .., ua) to (u′k+1, .., u
′
a). Since the links in

RA(Q) satisfy downstream condition, the outputs of any other links are not affected.

Sink finally observes {y1, .., yK(Q)−a−b, u
′
1, .., u

′
a, w1, .., wb}.

When codeword x′ is transmitted, the adversary chooses feedback links set WB(Q)

and forward links set ZB(Q) as z adversarial links. The adversary applies errors on

them to change (w1, .., wb) to (w′
1, .., w

′
b) without affecting the outputs on other links as

shown above. Then output is changed from O(x′) to {y1, .., yK(Q)−a−b, u
′
1, .., u

′
a, w1, .., wb}.

Thus, the sink node u cannot reliably distinguish between the codewords x and x′,

which gives a contradiction.
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Given a cut Q, we consider all possible sets (ZA(Q), ZB(Q)) on the Q satisfying

the condition on Lemma 3.5. We choose sets (ZA(Q)∗, ZB(Q)∗) among them that have

the maximum total link capacities and define Mz(Q) to be the sum of the capacities

of the links on Q which are not in (ZA(Q)∗, ZB(Q)∗). This gives the upper bound

log |X| ≤ min
Q∈cut(s,u)

Mz(Q) · log q.

The following example shows that we can obtain tighter upper bound using

Lemma 3.5. For example network in Fig. 3.3, when z = 3, Lemma 3.4 gives up-

per bound 9. However, Lemma 3.5 gives tighter upper bound 8 when ZA(Q)∗ is

composed of 2 forward links of the capacity 2 and feedback link from A to B, and

ZB(Q)∗ is composed of 3 forward links of the capacity 2.

Now we derive the generalized cut-set upper bound that unifies Lemma 3.4 and

Lemma 3.5. Given a cut Q, we choose the set of m ≤ z feedback links W ⊂ QR and

the set of k ≤ z − m forward links F ⊂ Q. We use CF,W
z,m,k(Q) to denote the upper

bound obtained from Lemma 3.5 with z −m− k adversarial links on the cut Q after

erasing W and F from original graph G. Let

Cz,k,m(Q) = min
{F⊂Q,|F |=k≤z−m}

min
{W⊂QR,|W |=m≤z}

CF,W
z,k,m(Q).

Then we define Cz(Q) as follows.

Cz(Q) = min
0≤k≤z−m

min
0≤m≤z

Cz,k,m(Q).

This gives the following upper bound.

Theorem 3.6 (Generalized cut-set upper bound) Consider any z-error correcting

network code with source alphabet X in an acyclic network.

log |X| ≤ min
Q∈CS(s,u)

Cz(Q) · log q
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3.4 Coding strategies

We consider a variety of linear and nonlinear coding strategies useful for achieving the

capacity of the example networks. We show the insufficiency of linear network codes

for achieving the capacity in general, by providing a method for upper bounding the

linear coding capacities of an arbitrary network. We also demonstrate examples of

networks with a single source and a single sink where, unlike the equal link capacity

case, it is necessary for intermediate nodes to do coding, nonlinear error detection or

error correction in order to achieve the capacity. We then introduce a new coding

strategy, guess-and-forward, and show the optimality of this scheme in some examples.

3.4.1 Insufficiency of linear network code

Here we show that there exists a network where the capacity is 50% greater than the

best rate that can be achieved with linear coding. We consider the single source and

the single sink network in Fig. 3.4, where source s aims to transmit the information

to a sink node u. We index the links and assume the capacities of links as shown in

Fig. 3.4. For a single adversarial link, our upper bound from Theorem 3.6 is 2.

Lemma 3.7 Given a network in Fig. 3.4, for a single adversarial link, rate 2 is

asymptotically achievable with nonlinear error detection strategy, whereas scalar linear

network code achieves at most 4/3.

Proof. We first illustrate the nonlinear error detection strategy as follows. Source

wants to transmit two packets (X,Y ). We send them in n channel uses, but each

packet has only n− 1 bits. We use one bit as a signaling bit. We send (X,Y ) down

all links in the top layer. In the middle layer, we do the following operations:

(1) Send the linear combination of X and Y , aX + bY , down link l4.

(2) Send X down both links l5 and l6.

(3) Send Y down both links l7 and l8.

(4) Send a different linear combination of X and Y , cX + dY , down link l9.

At the bottom layer, we do the following operations:
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Figure 3.4: A single source and a single sink network: all links on the top layer have
capacity 2. All links on the middle and bottom layer have capacity 1. When z = 1,
the capacity of this network is 2 while linear network codes achieve at most 4/3.

(1) Forward the received packet on link l10.

(2) Send a 1 followed by X on link l11 if the two copies of X match, send a 0

otherwise.

(3) Send a 1 followed by Y on link l12 if the two copies of Y match, send a 0

otherwise.

(4) Forward the received packet on link l13.

We can show that the above nonlinear error detection strategy allows a sink node

to decode (X,Y ). Suppose that (a, b) and (c, d) are independent. Then coding vectors

on any two links on the bottom layer are independent and they satisfy with MDS

(maximum distance separable) properties. If nothing was sent down both l11 and

l12, the decoder can recover (X, Y ) from the information received on links l10 and

l13. If nothing was sent down only on l11, then the outputs of l12 and l13 should not

be corrupted and the decoder can recover (X,Y ). Similarly, the decoder can decode

correctly when nothing was sent down only on l12. If all the links in the bottom layer

received symbols, there is at most one erroneous link on the bottom layer, which has

MDS code. Thus we can achieve rate 2− 2
n

with error detection strategy.
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Now we show that scalar linear network code can achieve at most rate 4/3. Sup-

pose that we want to achieve linear coding capacity k/n by transmitting k symbols

reliably by using scalar linear network code φ during n time slots. To show the in-

sufficiency of linear coding for achieving this capacity, from (3.1), it is sufficient to

prove that there exist pairs (w, e) and (w′, e′) for linear network code φ such that

(ψl(w, e) : l ∈ Γ+(u)) = (ψl(w
′, e′) : l ∈ Γ+(u)),

N(e), N(e′) ≤ 1. Since the above equation is equivalent to

(φ̃l(w − w′) : l ∈ Γ+(u)) = (θl(−e + e′) : l ∈ Γ+(u)),

by linearity, it is enough to find x and e′′ such that x ∈ X , N(e′′) ≤ 2, and

(φ̃l(x) : l ∈ Γ+(u)) = (θl(e
′′) : l ∈ Γ+(u)), (3.2)

where X denotes a source alphabet and |X | = qk. We will show that there exists

(x, e′′) satisfying the above equation when errors occur on the links l1 and l3 in error

vector e′′.

Let M1 and M2 denote transfer matrices between a and u, and between b and

u during n time slots respectively. To transmit k symbols reliably in this network,

both M1 and M2 should have rank at least k, i.e., rank(M1) ≥ k and rank(M2) ≥ k.

Otherwise, when the adversarial link is on the top layer, the maximum achievable rate

is at most min{rank(M1), rank(M2)} from data processing inequality and it gives us

a contradiction.

Let e1 and e2 denote the errors occurring on links l1 and l3, respectively. Errors

on e1 propagates to l10 and l11, and errors on e2 propagate to l12 and l13. We use

4n× k matrix Gu to denote the transfer matrix between s and u during n time slots.

Its columns are global coding vectors assigned on l10, l11, l12, and l13.
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From (3.7), we have following set of equations

Gux =


 M1 0

0 M2


 (e1, e2)

τ = M · e′′.

If rank(Gu) < k, then there exists some x1 6= 0 such that Gux1 = 0. Then

(x, e1, e2) = (x1, 0, 0) satisfies above equation. Actually, this network code is a bad

code itself since we cannot distinguish any pair of source messages w and w′ such that

w − w′ = x1 even when there are no error links in the network.

Otherwise, rank(Gu) = k. Since rank(M1) ≥ k and rank(M2) ≥ k, rank(M) ≥
2k. Then A = {Gux : x ∈ X} and B = {Me′′ : e′′ ∈ GF 4n(q)} are both linear

subspaces of GF 4n(q), and dim(A) = k and dim(B) ≥ 2k.

Let {x1, .., xk} denote the basis of X . Then {Gux1, .., Guxk} is the basis of A. Simi-

larly, since rank(M) ≥ 2k, there exist 2k vectors {y1, .., y2k} such that {My1, .., My2k}
is a subset of basis of B.

If 3k > 4n, since both A and B are linear subspaces of GF 4n(q), there exists

(a1, .., ak, b1, .., b2k) 6= (0, ..., 0) such that

k∑
i=1

ai(Guxi) +
2k∑

j=1

bi(Myi) = 0.

If (a1, .., ak) = (0, ..., 0) or (b1, .., b2k) = (0, ..., 0), then it contradicts the linear inde-

pendence of basis. Thus, (a1, .., ak) 6= (0, ..., 0) and (b1, .., b2k) 6= 0. Then,

k∑
i=1

ai(Guxi) +
2k∑

j=1

bi(Myi)

=
k∑

i=1

Gu(aixi) +
2k∑

j=1

M(biyi)

=
k∑

i=1

Gu(aixi)−
2k∑

j=1

M(−biyi)

= 0.
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Therefore, we have found nonzero x =
∑k

i=1 aixi and (e1, e2)
τ = −∑2k

j=1(−bjyj) such

that Gux = Me′.

In [42], it is shown that rate 4/3 is achievable asymptotically using simple linear

codes. It completes the proof.

Corollary 3.8 Given a network in Fig. 3.4, for a single adversarial link, vector linear

network code can achieve at most 4/3.

Proof. For a network code using vector transmission, the outgoing edges of each

node carries vectors of alphabet symbols which are a function of the vectors carried

on the incoming edges to the node. We consider a vector linear code that groups m

symbols into a vector. As in Theorem 2, we define (4n)m× km generator matrix Gu

between s and u. Transfer matrices M1 and M2 are also defined in the same way, and

rank(M1) ≥ km and rank(M2) ≥ km. As in the proof of Theorem 1, when k > 4n
3

,

we can show that there exist vectors (x, e1, e2) (x 6= 0) satisfying

Gux = (M1 · e1, M2 · e2).

3.4.1.1 Upper bound on the linear coding capacity

We propose a method that gives an upper bound on the linear coding capacity for

arbitrary networks. Suppose that we want to transmit k symbols reliably by using

scalar linear network code φ during n time slots. To show the insufficiency of linear

coding for achieving the rate k/n, it is sufficient to find x ∈ X and e′′ such that

|X | = qk, N(e′′) ≤ 2z and

(φl(x) : l ∈ Γ+(u)) = (θl(e
′′) : l ∈ Γ+(u)). (3.3)

Let Ωu = cut{V − {u}, u} denote the cut between the sink node u and all other

nodes. C1 =
∑

l∈Ωu
r(l) denotes the volume of Ωu. Suppose that there exists a cut Ω
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which contains p ≥ 2z links and there are m disjoint sets of links (L1, . . . , Lm) such

that 2z ≥ m(p−2z), Li ⊂ Ω, |Li| = p−2z, Li∩Lj = ∅, and Ω(L1)∪ . . .∪Ω(Lm) = Ωu

where Ω(Li) denotes the set of links in Ωu such that symbols on Li can be propagated.

We prove that C1/(m + 1) is an upper bound of linear coding capacity by showing

that there is (x, e′′) that satisfies (3.3) when error vector e′′ consists of error links in

(L1, . . . , Lm).

We use ei to denote an error vector on Li. Let θi(ei) = (θl(ei) : l ∈ Ω(Li))

denote the output on Ω(Li) ⊆ Ωu given ei. Given a linear network code φ, let Mi

denote a transfer matrix between Li and Ω(Li). i.e., θi(ei) = Mi · ei. To transmit k

symbols reliably in this network, Mi should have rank at least k, i.e., rank(Mi) ≥ k

for 1 ≤ i ≤ m. Given an error vector e′′ = (e1, . . . , em) on the cut Ω, since θl(e) =
∑

{j:l∈Ω(Lj)} θl(ej) for l ∈ Ωu, we obtain following equation

(θl(e
′′) : l ∈ Ωu) = A · (θ1(e1), . . . , θ

m(em))τ (3.4)

which is equivalent to

(θl(e
′′) : l ∈ Ωu)

= A




M1 .. .. 0

0 M2 .. ..

.. .. .. ..

0 .. 0 Mm




(e1, .., em)τ

= A ·M · (e′′)τ .

Here a matrix A depends on the graph topology. For instance, when L1 = l1

and L2 = l3 in Fig. 3.4, Ω(L1) ∪ Ω(L2) = Ωu and Ω(L1) ∩ Ω(L2) = ∅. Since M ·
(e′′)τ = (θl10(e1), θl11(e1), θl12(e2), θl13(e2)) ,and θl(e

′′) = θl(e1) for l ∈ {l10, l11} and

θl(e
′′) = θl(e2) for l ∈ {l12, l13}, A = I4n. Since we assume that errors on (L1, . . . , Lm)

can be propagated to any link in Ωu, i.e., Ω(L1) ∪ . . . ∪ Ω(Lm) = Ωu, A has always
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Figure 3.5: A single source and a single sink network: the link capacity in this network
is as follows: r(l1) = r(l2) = r(l3) = r(l4) = 4, r(l5) = ... = r(l10) = 2. All the links
in the middle layer have capacity 1. Error correction at Y3 and Y4 is necessary for
achieving the capacity.

full rank.

We use Gu to denote the generator matrix between s and u. Then (3.3) is equiv-

alent to

Gux = A ·M · (e′′)τ . (3.5)

Since rank(M) =
∑m

i=1 rank(Mi) ≥ km and A has full rank, rank(AM) = rank(M) ≥
km.

If rank(Gu) < k, then there exists some x1 6= 0 such that Gux1 = 0. Then

(x, e′′) = (x1, 0) satisfies (3.3) and this network code is a bad code itself.

When rank(Gu) = k, since rank(M) ≥ mk, we can always find (x, e′′) satisfy-

ing (3.3) when k + mk > C1. Thus, the upper bound on the achievable linear coding

capacity is C1/(m + 1).

3.4.2 Error correction at intermediate nodes

We give an example in which error correction at intermediate nodes is used for achiev-

ing the capacity. The intuition behind our approach is that error correction at in-
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termediate nodes can reduce the error propagation to the links in the bottom layer

and MDS code assigned on the bottom layer gives the correct output. We consider

a single source-destination network in Fig. 3.5. For a single adversarial link, upper

bound from Theorem 3.6 is 8. From Sec. IV-A, the upper bound on the linear coding

capacity is
∑10

i=5 r(li)/(m + 1) = 6.

Lemma 3.9 Given the network in Fig. 3.5, for a single adversarial link, rate 8 is

achievable using error correction at intermediate nodes.

Proof. Without loss of generality, all nodes forward the received information except

Y3 and Y4. We first assign (12, 8) MDS code (a, b, . . . , l) on the bottom layer links

and apply (4,2) MDS code at each decision node, e.g., assign (e, f, e + f, e + 2f)

and (g, h, g + h, g + 2h) on incoming links to Y3 and Y4 respectively. Then we can

assign codewords on all links in the network since all nodes except Y3 and Y4 are

forwarding. If the adversarial link is on the middle or bottom layer, at most two

errors are propagated to the sink node and MDS code assigned on the bottom layer

gives the correct output. If adversarial link is on the top layer, at most two errors

are propagated to the sink node through forwarding nodes Y1, Y2, Y5, and Y6. Since

at most one error is incoming to Y3 and Y4 respectively, (4,2) MDS code applied

at each decision node gives error-free output (e, f) and (g, h). Therefore, when the

adversarial link is on the top layer, at most two errors are propagated to the sink and

(12,8) MDS code returns the correct output.

Now we generalize the approach with error correction at intermediate nodes.

Given an acyclic network G = (V , E), we use cG(s, i) and cG(i, u) denote the min-cut

between the source s and i, and the min-cut between i and the sink u in G, respec-

tively. We assume that there is a fixed set of nodes N ⊂ V such that cG(s, i) ≥ cG(i, u)

for ∀i ∈ N and error correction can be applied only at nodes in N . For instance, in

Fig. 3.5, N = {Y3, Y4}. Let d(G, i) = cG(s, i)− cG(i, u) denote the difference between

the max-flow from s to i and the max-flow from i to u.
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Algorithm 2 Algorithm for error correction at intermediate nodes
M ← N
CS ← ∅
G ′ = G

While |M | ≥ 1
M = M − I(G ′,M)
CS = CS ∪ SI(G′,M)

G ′ = G ′ − SI(G′,M)

endwhile
If |M | = 0

return CS
elseif d(G ′, i) = 0 for all i ∈ M

return CS
endif

The selection function I(G, N) chooses a node i ∈ N on G which maximizes d(G, i).

Precisely,

I(G, N) = arg max
i∈N

{d(G, i)}.

Here is the outline of our greedy algorithm with error correction at intermediate

nodes. Given an acyclic network G and the set of error correction nodes N , we

choose a node i = I(G, N) that maximizes d(G, i) on G. Since cG(s, i) is the max-flow

from s to i, we can find cG(s, i) paths so that each path carries one symbol from

s to i. Likewise, we also find cG(i, u) paths from i to u. Let SI(G,M) denote the

subgraph composed of the above paths. We assign a (cG(s, i), cG(i, u)) MDS code

on SI(G,M). We subtract SI(G′,M) from G and add it to CS which denotes that the

union of subgraph codewords are already assigned. We also subtract i from N and

repeat above procedure until N = ∅ or there is no node i ∈ N such that d(G, i) > 0.

Precise description of the algorithm is shown in algorithm 2. Since max-flow can be

computed in polynomial-time, this algorithm is a polynomial-time greedy algorithm.

3.4.3 Coding at intermediate nodes

Here we give an example of a single source single sink network, shown in Fig. 3.6, for

which linear coding at intermediate nodes rather than error correction or detection is

used for achieving the capacity. For a single adversarial link, the upper bound from
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Figure 3.6: A single source and a single sink network: all links on the top or middle
layer have capacity 1. All links on the bottom layer have capacity 2. In this network,
coding at intermediate nodes is necessary for achieving the capacity but not error-
detection and correction.

Theorem 3.6 is 4.

Lemma 3.10 Given the network in Fig. 3.6, for a single adversarial link, coding at

intermediate nodes achieves the rate 4.

Proof. To achieve rate 4, any four links on the top layer should carry 4 inde-

pendent packets. Otherwise, when adversarial link is on the top layer, source cannot

transmit 4 packets reliably. Then data processing inequality gives us contradiction.

Similarly, any two links on the bottom layer should carry 4 independent packets. Since

Yi is connected to at most four different nodes among (X1, .., X6) for ∀1 ≤ i ≤ 4 and

all links in the middle layer have capacity 1, each of Y1, Y2, Y3, and Y4 receives all

independent information. Thus we cannot apply simple error-detection or correction

at Y1, Y2, Y3, and Y4. Suppose that only forwarding strategy is used on this net-

work. Then we show that rate 4 is not achievable. There are six symbols on the top

layer. Since we use only forwarding, these are forwarded to the bottom layer. Since

bottom layer links have total capacity 8, there are at least two same symbols on the

bottom layer links. This contradicts that any two links on the bottom layer should
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carry 4 independent pieces of information to achieve rate 4. Therefore forwarding is

insufficient for achieving the rate 4 in this network.

Now we show that a generic linear network code, where intermediate nodes do

coding achieve rate 4. From [58, Ch 19], generic network code can be constructed

with high probability by randomly choosing the global encoding kernels provided

that the base field is much larger than sufficient. So when we apply random linear

network code on this network, it is generic with high probability when q is very

large. If adversarial link is on the top or middle layer, then each capacity 2 on the

bottom layer is equivalent to two unit capacity links. Then all links in the network

have capacity one and this problem is reduced to the equal link capacities problem.

From [31], rate 6 − 2 × 1 = 4 is achievable. From [58, Theorem 19.32], since the

min-cut between s and (Yi, Yj) is at least 4 for ∀1 ≤ i 6= j ≤ 4, in a generic network

code the global encoding kernels on any two links on the bottom layer are linearly

independent and they satisfy with MDS property. Thus an error on the last layer can

be corrected.

3.4.4 Guess-and-forward

Here we introduce a new achievable coding strategy guess-and-forward. In this strat-

egy, an intermediate node which receives some redundant information from multiple

paths guesses which of its upstream links is controlled by the adversary. The inter-

mediate node forward its guess to the sink which tests the hypothesis of the guessing

node. Here we show the optimality of this strategy in following example.

Consider the four-node acyclic network shown in Fig. 3.7. From Theorem 3.6,

when z = 2, upper bound is 7. Now we show that rate 7 is achievable in this network.

Let W and Ŵ denote the symbols sent by S and received by A respectively. W is

sent reliably from S to B and Ŵ is sent reliably from A to U . Guess-and-forward

strategy for this example network is as follows.

At each time step, S and B together send a (11, 7) MDS code to A and U across

the cut cut({S,B}, {A,U}). Since feedback link has capacity 6, A sends its code-



116

S

U

A B

¼
¼

ª

j

U
R

N

j
U

jU

-
¼ªªªª

2
2

2

6

11
1

11

∞

∞

Figure 3.7: Four node acyclic networks: this network consists of 3 links of capacity
2 from S to A, 5 links of capacity 1 from B to U , 1 link of capacity 6 from A to B.
Given the cut ({S,B}, {A,U}), unbounded reliable communication is allowed from
source S to its neighbor B on one side of the cut and from node A to sink U on the
other side of the cut, respectively.

word symbols Ŵ to B along feedback link l. For feedback link l, let Pl denote the

information received by B on l. B compares Pl with W which is received from S.

If Pl 6= W , then B obtains a guess Xl identifying the locations of adversarial links

between S and A assuming Pl is reliable. B sends the claim (Xl, Pl) to U along each

link between B and U using repetition code. If Pl = W , B does not send anything.

The above strategy is applied at each time step. B sends claims only when it guesses

at least one adversarial forward link which is different from forward links guessed at

previous time steps.

Lemma 3.11 Given the network in Fig. 3.7, rate 7 is achievable.

Proof. Since there are 5 ≥ 2z + 1 links from B to U , any claim (Xl, Pl) can be sent

reliably from B to U using a repetition code.

Case 1) sink receives some claim (Xl, Pl).

The sink compares Pl with Ŵ which is received from A reliably. If Pl 6= Ŵ , then

feedback link transmitting Pl is adversarial and the sink ignores it. Otherwise, Pl is

reliable. Since the claim is sent, the sink knows that Pl = Ŵ 6= W and that guess Xl
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is correct. Thus the sink identifies at least one forward adversarial link from S to A,

which is subsequently ignored.

Case 2) no claims are sent.

In this case, we show that the correct output is achieved without using any claims.

B does not sent any claim when it receives W from each feedback link. There are

two possibilities.

a) All links between S and A and feedback link are uncorrupted.

b) Some links between S and A are corrupted and feedback link is corrupted such

that feedback link transmits error-free output.

In a), feedback link transmits W to B. In b), A sends Ŵ 6= W but the feedback

link changes it to W so that B does not send any claims. We first consider all sets

of 7 forward links on the cut. There are
(
8
7

)
= 8 such sets of links. Each set has

total capacity of at least 9. For each such set L, the sink check the consistency of the

output of rate 7 obtained from L. We also consider all sets of 6 links such that each

set includes all 3 links between S and A and any 3 links between B and U . There are
(
5
3

)
such sets. The sink also checks the consistency of the output of rate 7 for each

set.

Case 2 - a) there is no set of 7 links giving consistent output.

In this case, there are more than 1 forward adversarial links on the cut. Since

z = 2, all two adversarial links are forward links and thus possibility b) cannot hold.

Then a) is true and there are at most two forward adversarial links with capacity 1

on the cut. We obtain correct answer from our (11,7) MDS code.

Case 2 - b) there is no set of 6 links that include all 3 links from S to A and give

consistent output.

In this case, possibility b) is true. Then there is at most one forward adversarial

link on the cut. We obtain a correct answer from our (11,7) MDS code.

Case 2 - c) There exist both 7 links set L1 giving consistent output and 6 links

set L2 that include all 3 links between S and A and give consistent output.

It is clear that
∑

l1∈L1∩L2
r(l1) ≥ 7 for any L1 and L2. Thus L1 and L2 give the

same consistent output. Since at least one of a) and b) is true, this output is correct.
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From cases 1-2, since z = 2, B needs to send claim at most 2 times to obtain the

correct output.

3.5 Example networks

In this section, we employ the guess-and-forward strategy on a sequence of networks

designed to provide increasingly complex generalizations of the cut-set bounds. The

first is a two-node network with multiple feedback links. The second is a four-node

acyclic network. The third is a family of ‘zig-zag’ networks. In the first two cases,

the guess-and-forward strategy achieves the capacity. For zig-zag networks, we derive

the achievable rate of guess-and-forward strategy and present conditions under which

this bound is tight.

3.5.1 Two-node network

We characterize the error-correction capacity of a two-node network with multiple

feedback links by using guess-and-forward strategy. A two-node network shown in

Fig. 3.8 is composed of n forward links with arbitrary capacity and m feedback links

with arbitrary capacity. In Lemma 3.12, we first characterize the capacity of this

network when each forward link has capacity 1. We extend this result to Theorem 3.13

when each forward link has arbitrary capacity.

Lemma 3.12 Consider the two-node network shown in Fig. 3.8 such that each for-

ward link has capacity 1. Let C denote the error-correction capacity with z adversarial

links. If n ≤ 2z, C = 0. Otherwise, C = min{n− z, n− 2(z −m)}.

Proof.

Case 1) n ≤ 2z.

Suppose that all z adversarial links are among the forward links and C > 0. We

show a contradiction. Since C > 0, there are two codewords X = (x1, .., xn) and Y =

(y1, .., yn) that can be sent reliably. When X is sent along forward links and leftmost

z links are adversarial, the adversary changes X to X ′ = (y1, .., ybn/2c, xbn/2c+1, .., xn)
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Figure 3.8: two-node network G with n forward links and m feedback links.

so that first bn/2c bits of X ′ are the same as that of Y . Similarly, when Y is sent

along forward links and rightmost z links are adversarial, the adversary changes Y

to Y ′ = (y1, .., ybn/2c, xbn/2c+1, .., xn) so that the last dn/2e bits of Y ′ are the same as

that of X. Then sink receives the same observations for the two codewords. Since

information on feedback links is determined by what the sink receives, source also

cannot get any different information from feedback links. Thus the two codewords

cannot be distinguished and this contradicts C > 0.

Case 2) n > 2z.

We first show the converse. If z adversarial links are all forward links, then the

capacity is less than or equal to n − z. If all m ≤ z feedback links are adversarial,

the remaining network is a two-node network composed of n unit capacity forward

links with z −m adversarial links whose capacity is n − 2(z −m) from [31]. Thus,

the upper bound is C = min{n− z, n− 2(z −m)}.
Now we apply our guess-and-forward strategy to achieve rate C as follows. We

consider two cases.

Case 2 - a) m ≤ z
2
.

Step 1) In each time slot, the source s sends an (n, n − 2(z −m)) MDS code on

the n forward links. Since m ≤ z/2, n − 2(z −m) ≤ n − z. Thus for any received
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n signals, there exist n − 2(z −m) uncorrupted signals. If all
(

n
n−2(z−m)

)
subsets of

received symbols decode to the same message, this message is correct. Otherwise,

the sink sends the n received signals to the source s on each feedback link using a

repetition code.

Step 2) Based on the received information on each feedback link, the source tries

to identify the bad forward links. Thus, for each feedback link, the source obtains

a claim regarding the location of forward adversarial links which is correct if that

feedback link is not adversarial.

Step 3) This step consists of m rounds, each composed of a finite number of time

slots. In the ith round, the source sends the claim obtained from the ith feedback link

together with what it received on that feedback link to the sink. This information can

be sent reliably to the sink using a repetition code because n − 2z > 0. If what the

source received matches what the sink sent, the ith feedback link was not corrupted

and the associated claim is correct. Using this claim, the sink can decode the message

as well as identify at least one of the forward adversarial links. If all m feedback links

were corrupted, the sink knows that there are only z−m forward adversarial links and

since we are using a (n, n− 2(z −m)) MDS code the message is correctly decodable

at the sink.

Note that we only need to use above scheme the first 2m times the sink sees

inconsistency at step 1. The reason is that from steps 1-3, the sink either figures out

that all feedback links are adversarial or identifies at least one forward adversarial link.

If all feedback links are bad, they are ignored and the (n, n−2(z−m)) MDS code gives

us the correct output. If there are k ≤ 2m forward adversarial links, after the first k

times the sink sees inconsistency at step 1, all forward adversarial links are identified

subsequently and no further inconsistency is seen among the remaining forward links.

Otherwise, when there are more than 2m adversarial links, the sink finds 2m forward

adversarial links and ignores them. Then from [31], the rate n − 2m − 2(z − 2m) =

n− 2(z −m) can be achieved using the remaining forward links only.

Case 2 - b) m > z
2
.
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In each time slot, the source s sends an (n, n − z) MDS code on the n forward

links. For any received n signals, there exist n − z uncorrupted signals. If all
(

n
n−z

)

subsets of received symbols decode to the same message, this message is correct. As

in the case 2-a, from steps 2-3, the sink either concludes that all feedback links are

adversarial or identifies at least one forward adversarial link. If all m feedback links

were corrupted, there are only z −m < z/2 bad forward links and subsequently only

the forward links are used to achieve the rate n− z. Otherwise, the above scheme is

used at most z times inconsistency is seen at step 1, after which the sink has identified

all bad forward links and the remaining forward links suffice to achieve rate n− z.

Now we generalize the above result to the general case when each forward link has

also arbitrary capacity.

Theorem 3.13 Consider the two-node network shown in Fig. 3.8 with arbitrary link

capacities. Let Dp denote the sum of the p smallest forward link capacities. The

error-correction capacity is

C =





0 if n ≤ 2z

min{Dn−z, Dn−2(z−m)+} if n > 2z.

Proof. We use the similar proof in Lemma 3.12 for the case n ≤ 2z. Suppose

that C > 0 and we show a contradiction. Since C > 0, there are two codewords X

and Y that can be sent reliably. When X is sent along forward links and leftmost z

links are adversarial, the adversary changes X to X ′ so that the outputs of leftmost

bn/2c links of X ′ are the same as that of Y . Similarly, when Y is sent along forward

links and rightmost z links are adversarial, the adversary changes Y to Y ′ so that

the outputs of rightmost dn/2e links of Y ′ are the same as that of X. Then the two

codewords cannot be distinguished and contradicts C > 0.

Consider the case n ≥ 2z. We first show the converse. When sink knows z

adversarial links are the z largest capacities forward links, the maximum achievable

capacity is Dn−z. When m ≤ z and all m feedback links are adversarial, there are

z−m adversarial forward links such that locations are unknown. In this scenario, the
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Figure 3.9: Four node acyclic networks: unbounded reliable communication is allowed
from source S to its neighbor B and from node A to sink U , respectively. This network
consists of a links of arbitrary capacity from S to A, b links of arbitrary capacity from
B to U . From A to B, there are m feedback links and each feedback link has the
minimum capacity.

best achievable rate is Dn−2(z−m)+ , which is the sum of n− 2(z−m) smallest forward

link capacities [43, Theorem 1].

We use D to denote the sum of all n forward link capacities. For achievability,

when m ≤ z/2, source sends (D,Dn−z) MDS code to sink. When m > z/2, source

sends (D,Dn−2(z−m)+) MDS code to sink. By using the same strategy in the proof of

Lemma 3.12, we can achieve the rate C.

3.5.2 Four-node acyclic network

In this section, we investigate our guess-and-forward strategy with a four-node acyclic

network. In the two-node network, this cut-set abstraction is insufficient to fully cap-

ture the effect of network topology relative to the cut since it assumes that all feedback

is available to the source node and all information crossing the cut in the forward di-

rection is available to the sink. We therefore introduce the four-node acyclic network

shown in Fig. 3.9 as step towards generalizing the cut-set too. In this acyclic network,



123

source node S and its neighbor node B lie on one side of a cut that separates them

from sink node U an its neighbor A. As in the cut-set model, we allow unbounded

reliable communication from source S to its neighbor B on one side of the cut and

from node A to sink U on the other side of the cut; this differs from the cut-set

assumption only in that the communication goes one way only.

This network is composed of a set of a forward links {l1, .., la} with arbitrary

capacities from S to A, a set of b forward links {la+1, .., la+b} with arbitrary capacities

from B to sink U , a set of m feedback links from A to B for which each feedback link

has capacity h which will be derived in following Section 3.5.2.1. C1 =
∑

l∈(l1,..,la) r(l)

and C2 =
∑

l∈(la+1,..,la+b)
r(l) denotes the sum of forward link capacities from S to A,

and from B to U , respectively. Let C = C1 + C2. Cz is the upper bound on this

network obtained from Theorem 3.6.

In [44], we have shown that rate Cz is asymptotically achievable on this four-node

acyclic network when each feedback link has capacity of at least C1. Here we show

that rate Cz is achievable even when each feedback link has smaller capacity than

C1. In Section 3.5.2.1, we first consider a coding strategy at node A and formulate

the linear optimization problem which gives the minimum capacity of each feedback

link. Then we show that rate Cz is asymptotically achievable with smaller feedback

link capacity than C1 using our guess-and-forward strategy in Section 3.5.2.2.

3.5.2.1 Coding strategy at node A

Suppose that (S, B) sends (C, Cz) MDS code across the cut to (A, U). We consider

the encoding strategy at node A and derive the minimum capacity of each feedback

link. Suppose that node A receives the vector of symbols Ŵ = (Ŵl1 , . . . , Ŵla) from

S where Ŵl = (p1
l , . . . , p

r(l)
l ) denotes the codewords on link l ∈ {l1, . . . , la}. We

first assume that node A transmits, on each feedback link to B, the same set of

codewords each of which is a linear combination of codewords received on a single

link from S to A. Precisely, for any forward link li, node A transmits on each feedback

link g(Ŵli) = (g1
li
(Ŵli), . . . , g

ki
li

(Ŵli)) where gj
li
(Ŵli) is a single linear combination of

Ŵli = (p1
li
, . . . , p

r(li)
li

). For instance, given a network in Fig. 3.10(a), A transmits
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Figure 3.10: Four node acyclic networks: (a) z = 2 and feedback link transmits
(a1 + a2, b1 + b2, c1 + c2). (b) z = 3. Assume that (a1, .., a6), (b1, .., b6), (c1, .., c4),
(d1, .., d4), and (e1, e2, e3) are transmitted on forward links (l1, .., l5) from S to A,
respectively. Feedback link also transmits the sum of codewords on each forward
link.

g(Ŵ ) = (g(Ŵl1), g(Ŵl2), g(Ŵl3)) where g(Ŵl1) = a1 + a2, g(Ŵl2) = b1 + b2, and

g(Ŵl3) = c1 + c2.

Here, we define the degree of freedom of forward link l between S and A as follows.

Definition 3.14 Consider the vector of symbols Ŵl received on forward link l from

S to A and assume that node A transmits k linear combinations of Ŵl, g(Ŵl) =

(g1
l (Ŵl), . . . , g

k
l (Ŵl)). Let Ml denote the r(l)× k encoding matrix at A for link l such

that Ŵl · Ml = g(Ŵl). Then the degree of freedom of link l, f(l), is defined as the

capacity of link l minus the rank of the matrix Ml, i.e., f(l) = r(l)− rank(Ml). For

any forward link l between B and U , we simply define the degree of freedom f(l) as

the link capacity, i.e., f(l) = r(l).

For example, in Fig. 3.10(a), since feedback link transmits (a1 + a2, b1 + b2, c1 +

c2), f(l) = 1 for all forward links from S to A. In Fig. 3.10(b), since feedback

link transmits (
∑6

i=1 ai,
∑6

i=1 bi,
∑4

i=1 ci,
∑4

i=1 di,
∑3

i=1 ei), f(l1) = f(l2) = 5, f(l3) =

f(l4) = 3, and f(l5) = 2.



125

From the definition of degree of freedom, node A sends

h =
∑

l∈{l1,..,la}
(r(l)− f(l)) = C1 −

∑

l∈{l1,..,la}
f(l) (3.6)

codewords to B along each feedback link.

Now we introduce our coding strategy at node A as follows.

Node A is allowed to choose any g(Ŵ ) which satisfies two following conditions on

the degree of freedom of links.

Condition 3.15 Given any set A1 composed of 2z forward links,
∑

l∈A1
f(l) ≤ C −

Cz.

Condition 3.16 Given any set A2 composed of z forward links and A3 composed of

z −m forward links such that A2 ∩ A3 = ∅, ∑
l∈A2

f(l) +
∑

l∈A3
r(l) ≤ C − Cz.

Condition 3.15 means that the sum of the degree of freedom of any 2z forward links

are less than or equal to C −Cz. Condition 3.16 means that the sum of the degree of

freedom of any z links plus the sum of any z −m link capacities is less than or equal

to C − Cz. In the proof of Lemma 3.19 and 3.20, we show that these two conditions

are necessary to prove the tightness of our upper bound in Theorem 3.6. For example

network in Fig. 3.10(a), z = 2 and the upper bound Cz = 6. 3 codewords sent by

A satisfies the above two conditions, and feedback capacity 3 is sufficient. Likewise,

when z = 3 and the upper bound Cz = 9 in the network Fig. 3.10(b), 5 codewords

sent by A also satisfies the above two conditions. In [44], the minimum required

capacity for each feedback link to achieve rate Cz is the sum of all forward link

capacities between S and A, which is 6 and 23 for the networks in Fig. 3.10(a) and

(b), respectively.

Finally, we formulate a linear optimization problem which gives the minimum

capacity of each feedback link, based on conditions 3.15 and 3.16.
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min h = C1 −
a∑

i=1

f(li)

f(li) ≤ r(li), ∀1 ≤ i ≤ a + b
∑

l∈M

f(l) ≤ C − Cz, M ⊂ E , |M | ≤ 2z

∑

l∈N1

r(l) +
∑

l∈N2

f(l) ≤ C − Cz,

N1, N2 ⊂ E , |N1| ≤ z −m, |N2| ≤ z,N1 ∩N2 = ∅

(3.7)

Objective function h is defined in equation (3.6). First inequality constraint is

the link capacity constraint. Second and third constraints come from condition 3.15

and 3.16, respectively. We can check that solving above optimization problem for the

networks in Fig. 3.10(a) and (b) gives the feedback link capacity 3 and 5, respectively.

3.5.2.2 Guess-and-forward strategy

We first prove the following useful lemma.

Lemma 3.17 Given the four-node acyclic network in Fig. 3.9, let t denote the sum

of 2z largest degree of freedom of links in the network. When the adversary introduces

error on z forward links subject to the constraint that codewords on feedback links are

unchanged, there exists (C, C− t) generic linear code that corrects these z error links.

Proof. See the appendix.

Since the sum of 2z largest degree of freedom is at most C − Cz from the condi-

tion 3.15, we obtain C − t ≥ Cz.

Now we introduce a guess-and-forward strategy for the four-node acyclic network

shown in Fig. 3.9 that is used for achieving the rate Cz.

At each time step, S and B together send a (C,Cz) MDS code, obtained from

Lemma 3.17, to A and U across the cut cut({S, B}, {A,U}). Let W and Ŵ denote

the codewords S sends to A, and A received from S, respectively. Using the coding

strategy in Section 3.5.2.1, A sends g(Ŵ ) to B along each feedback link using a
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repetition code. For each feedback link l, let Pl denote the information received by B

on l. B compares Pl with g(W ). If Pl 6= g(W ), then B obtains a guess Xl identifying

the locations of adversarial links between S and A assuming Pl is reliable. B sends

the claim (Xl, Pl) to U along each link between B and U using repetition code. If

Pl = g(W ), B does not send anything. The above strategy is applied at each time

step. B sends claims only when Xl guesses at least one forward adversarial link which

is different from forward links guessed from l at previous time steps.

We show that this strategy achieves rate Cz asymptotically by proving following

Lemma 3.19 and 3.20.

We first introduce a definition which is used in the proof of lemmas.

Definition 3.18 Given a set of any k forward links L = {l1, . . . , lk} in the four-node

acyclic network, we say L gives consistent output if
∑

l∈L r(l) ≥ Cz and the decoded

output from any Cz code symbols on L is the same.

Lemma 3.19 Given the four-node network in Fig. 3.9 such that b ≥ 2z + 1, rate Cz

is achievable.

Proof. Since b ≥ 2z + 1, any claim (Xl, Pl) can be sent reliably from B to U using

a repetition code. The details of proof are presented in the appendix.

Lemma 3.20 Given the four-node network in Fig. 3.9 such that b ≤ 2z, rate Cz is

achievable.

Proof. When b ≤ 2z, reliable transmission of claims from B to U is not guaran-

teed. Thus we cannot use the same technique used in the proof of Lemma 3.19. The

proof is presented in the appendix.

3.5.3 Zig-zag network

In this section, we consider a more general family of zig-zag networks which capture

the behavior of any cut with k feedback links more accurately. We present conditions

under which our upper bound is tight and derive a general achievable bound.
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Figure 3.11: k-layer zig-zag network: given the cut cut({S,B1, .., Bk}, {A1, .., Ak, U}),
Ai and Bi can communicate reliably with unbounded rate to Ai+1 and Bi+1, respec-
tively. (S = B0, U = Ak+1). The links from Ai to Bi represent feedback across the
cut. This model more accurately captures the behavior of any cut with k feedback
links across the cut.

We call the network shown in Fig. 3.11 a k-layer zig-zag network. Ai and Bi can

communicate reliably with unbounded rate to Ai+1 and Bi+1, respectivley. (S = B0,

U = Ak+1). Thus, reliable transmission with unbounded rate is possible from Ai to

Aj, and from Bi to Bj for ∀i < j. We use Fi and Wi to denote the set of forward links

and feedback links from Bi−1 to Ai, and from Ai to Bi, respectively. Let |Fi| = bi

and |Wi| = mi. In this network, we assume that each feedback link from Ai to Bi

has a sufficient capacity to forward the information Ai received from Bi−1 to Bi. It is

clear that the four-node network is 1-layer zig-zag network. Given a k-layer zig-zag

network G, we use Cz to denote the upper bound on G obtained from Theorem 3.6.

Now we consider following strategy which is similar to that for a four-node net-

work. We use C to denote the sum of all forward link capacities.

At each time step, S and (B1, .., Bk) together send a (C, Cz) MDS code to (A1, .., Ak)

and U across the cut cut({S,B1, .., Bk}, {A1, .., Ak, U}). For 1 ≤ i ≤ k, Ai sends its

codeword symbols Ŵ to Bi along each feedback link using a repetition code. For each

feedback link l, let Pl denote the information received by Bi along on l. Bi compares
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Pl with W which is received from S. If Pl 6= W , then Bi obtains a guess Xl identify-

ing the locations of adversarial links between Bi−1 and Ai assuming Pl is reliable. Bi

sends claim (Xl, Pl) to Ai+1 along each link using repetition code. If Pl = W , Bi does

not send anything. For all 2 ≤ j ≤ k, Aj sends any received claim from Bj−1 to the

sink reliably. The above strategy is applied at each time step. Bi sends claims only

when Xl guesses at least one adversarial forward link which is different from forward

links guessed from l at previous time steps.

For a four-node acyclic network in Fig. 3.9, Lemma 3.19 shows that our bound is

tight when claim is sent reliably from node B to the sink U , i.e., b ≥ 2z + 1. Using

our strategy, we simply extend this result for the zig-zag network as follows.

Lemma 3.21 Given a family of k-layers zig-zag networks such that bi ≥ 2z + 1 for

2 ≤ i ≤ k + 1, rate Cz is achievable.

Proof. Since bi ≥ 2z +1 for 2 ≤ i ≤ k +1, any claim (Xl, Pl) can be sent reliably

from Bi−1 to Ai using repetition code. Then Ai sends this claim reliably to sink U .

As in the proof of Lemma 3.19, we first show that at least one adversarial link is

removed whenever sink receives some claim, in case 1. We also show that correct

output is always achievable when no claims are sent in case 2.

Case 1) sink receives some claim (Xl, Pl).

Assume that feedback link l is between Aj and Bj, and Bj sends this claim to

Aj+1. In this case, we use the same strategy as in the case 1 in Lemma 3.19. Then

we show that the sink removes at least one bad link whenever it receives claim.

Case 2) no claims are sent to the sink.

Here we extend the case 2 in the proof of Lemma 3.19. There are following

possibilities for zig-zag network such that no claims are sent:

a) All forward links in (F1,..,Fk) and feedback links in (W1,..,Wk) are not cor-

rupted.

b) For some {i1, .., ip} ⊆ {1, 2, .., k} such that mi1 + ..+mip ≤ z, all feedback links

in (Wi1 , .., Wip) are corrupted and some forward links in (Fi1 , .., Fip) are corrupted.

The furthest downstream forward links in Fk+1 can be also corrupted. For ∀j /∈
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{i1, .., ip, k + 1}, links in Fj and Wj are not corrupted.

Let N = {(i1, .., ip)|1 ≤ i1 < .., < ip ≤ k, mi1 + ..+mip ≤ z}∪{∅}. (Note that {∅}
corresponds to the possibility in a)). From a) and b), there are total |N | possibilities.

Exactly only one of them is true. Now we describe how a correct solution with rate Cz

can be obtained. We check the consistency of the output for each possibility. For each

(i1, .., ip) ∈ N , we check that there are K − (z− (mi1 + .. + mip)) forward links giving

consistent output such that removed (z− (mi1 + .. + mip)) forward links are elements

of Fi1 ∪ ..∪ Fip ∪ Fk+1. We use G(i1, .., ip) to denote the the set of such forward links

giving consistency. If there are no such K− (z− (mi1 + ..+mip)) forward links giving

consistency, we remove (i1, .., ip) from N and ignore corresponding possibilities.

Now we show that only tuples (i1, .., ip) such that G(i1, .., ip) gives the correct

consistent output remain in N . Since at least one remaining tuple gives the correct

output, it is sufficient to prove that for any remaining (i1, .., ip) ∈ N and (j1, .., jr) ∈
N , G(i1, .., ip) and G(j1, .., jr) gives the same output. This is equivalent to show that

the sum of capacities of forward links which are contained in both G(i1, .., ip) and

G(j1, .., jr) are at least Cz, i.e.,

∑

l∈G(i1,..,ip)∩G(j1,..,jr)

r(l) ≥ Cz.

G(i1, .., ip) gives K− (z− (mi1 + ..+mip)) forward links giving consistent output such

that removed (z− (mi1 + ..+mip)) forward links are in Fi1 ∪ ..∪Fip ∪Fk+1. Similarly,

G(j1, .., jr) gives K − (z − (mj1 + .. + mjr)) forward links giving consistent output

such that removed (z − (mj1 + .. + mjr)) forward links are in Fj1 ∪ .. ∪ Fjr ∪ Fk+1.

In this case, from the definition of cut-set upper bound in Lemma 3.5, sum of the

capacity of forward links assumed to be correct by both G(i1, .., ip) and G(j1, .., jr)

are at least Cz. Since each guess gives consistent output, these two guesses gives the

same output. Since any two remaining guesses in N give the same consistent output,

all remaining guesses give the same output.

We derive another condition under which our bound is tight.
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Figure 3.12: Reduced zig-zag network G ′ such that mt > z and bt+1 ≥ 2z +
1, . . . , bk+1 ≥ 2z + 1. This graph is obtained from G by erasing all feedback links
in W1 ∪W2 . . . ∪Wt−1.

Lemma 3.22 Given a family of k-layers zig-zag networks such that mt > z and

bj ≥ 2z + 1 for ∀j ≥ t + 1 for any 1 ≤ t ≤ k, rate Cz is achievable.

Proof. We consider a reduced zig-zag network G ′ shown in Fig. 3.12 which is

obtained from given a k-layer zig-zag network by erasing m1 + .. + mt−1 feedback

links W1 ∪ ..∪Wt−1. We use C ′
z to denote the upper bound on G ′ from Theorem 3.6.

Since G ′ is weaker than G, it is sufficient to show that C ′
z ≥ Cz and C ′

z is achievable

on G ′.
Step 1) We show that Cz ≤ C ′

z.

We first compute C ′
z on G ′ from Theorem 3.6. Suppose that C ′

z is obtained by

choosing and A∗ = {Ai1 , .., Aip} ⊆ {At+1.., Ak} and B∗ = {Aj1 , .., Ajr} ⊆ {At+1, .., Ak}−
A∗ and applying Lemma 3.5 after erasing k forward links set F ∗, m feedback links set

W ∗. It is sufficient to prove that choosing the same F ∗, W ∗, A∗, and B∗ on original

graph G gives the same upper bound C ′
z.

Since mt > z, At 6∈ A∗ and At 6∈ B∗ from the definition of upper bound in

Lemma 3.5. Then PA∗ ⊆ FAi1
∪ .. ∪ FAip

⊂ Ft+1 ∪ . . . ∪ Fk, PB∗ ⊆ FAj1
∪ .. ∪ FAjr

⊂
Ft+1 ∪ . . . ∪ Fk.
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Since mt > z and bk+1 > z, no matter what W ∗ is erased on G ′, chosen downstream

links RA∗ and RB∗ are in Ft+1 ∪ .. ∪ Fk, i.e., RA∗ , RB∗ ∈ Ft+1 ∪ . . . ∪ Fk.

Thus, ZA∗ = PA∗ ∪RA∗ ⊂ Ft+1 ∪ .. ∪ Fk and ZB∗ = PB∗ ∪RB∗ ⊂ Ft+1 ∪ .. ∪ Fk.

Since all erased forward links in ZA∗ ∪ZB∗ are in Ft+1 ∪ ..∪Fk for G ′, erasing the

same F ∗, W ∗, ZA∗ , and ZB∗ on original graph G also gives the same upper bound C ′
z

for G. Since Cz is the minimal upper bound for G, Cz ≤ C ′
z.

Step 2) We show that rate Cz is achievable.

From Lemma 3.21, since bt+1 ≥ 2z + 1, . . . , bk+1 ≥ 2z + 1 and Cz ≤ C ′
z, rate Cz is

achievable on G ′. Thus, given a zig-zag network G, we first ignore all feedback links

between Ai and Bi (1 ≤ i ≤ t− 1) and apply the same achievable strategy for G ′.
From steps 1) and 2), we complete the proof.

Now we derive an achievable rate of guess-and-forward strategy for any zig-zag

network.

We use GI to denote the zig-zag network obtained from original G by erasing all

feedback links in Wi such that i 6∈ I. Let b(i, j) =
∑j

t=i+1 bi denote the number of

forward links between i th layer and jth layer. Supersets P , Q, and R are defined as

follows.

P = {{i}|1 ≤ i ≤ k},
Q = {{i1, .., it}|{i1, .., it} ⊂ {1, .., k}, b(1, i1) ≥ 2z + 1,

b(i1, i2) ≥ 2z + 1, .., b(it, k + 1) ≥ 2z + 1},
R = {{i1, .., it}|{i1, .., it} ⊂ {1, .., k},mi1 > z,

b(i1, i2) ≥ 2z + 1, .., b(it, k + 1) ≥ 2z + 1}.

Lemma 3.23 Given the network in Fig. 3.11, rate maxI∈P∪Q∪R CI is achievable.

Proof. We first show that rate C{i} is achievable for 1 ≤ i ≤ k. We ignore all

feedback links except the feedback links in Wi. Then applying the same achievability
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strategy for four-node acyclic network gives the rate C{i} from Lemma 3.19 and 3.20.

For any subset I ∈ Q, we ignore all feedback links except the feedback links in

Wi such that i ∈ I. Then from Lemma 3.21, rate CI is achievable. Similarly, for any

subset I ∈ R, rate CI is achievable from Lemma 3.22. This completes the proof.
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Chapter 4

Conclusion and Future Work

In the first part of this thesis, we demonstrate the benefits of network coding for opti-

mizing the use of various network resources. We first study the problem of minimizing

the power consumption for wireless multiple unicasts. We consider a simple XOR-

based coding strategy, reverse carpooling, which can be used to reduce the number of

transmissions and the corresponding power consumption. We investigate the use of

this scheme on a wireless triangular grid network. We propose a centralized algorithm

that approximately minimizes the number of transmissions for two unicasts and ex-

tended this to obtain a polynomial time greedy algorithm for the general problem

with multiple unicasts.

We also present a distributed strategy for reducing the power consumption in a

network coded wireless network with multiple unicasts. Our strategy attempts to

increase network coding opportunities without the overhead required for centralized

design or coordination. The proposed technique designates “reverse carpooling lines”

such that intermediate nodes apply reverse carpooling opportunistically along these

routes. We show that our optimization algorithm chooses the reverse carpooling lines

in a manner that maximizes the expected power savings in polynomial time.

We study the problem of minimum-energy multicast using network coding in mo-

bile ad hoc networks (MANETs). Instead of solving a linear program every time

slot, we present a low-complexity approach, network coding with periodic recompu-

tation, which recomputes an approximate solution at fixed time intervals, and uses

this solution during each time interval. We obtain a simple theoretical cost bound
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on the gap between our solution and the optimal cost, and analyze the complexity

using a warm-start method. It is shown how our results can be applied to trade off

performance and complexity in a given network scenario.

We further develop a back-pressure based distributed optimization framework,

which can be used for optimizing over any class of network codes, including pairwise

XOR coding, reverse carpooling, and star-coding. Our approach is to specify the

class of coding operations by a set of generalized links, and to develop optimization

tools that apply to any network composed of such generalized links. We show that

our algorithm achieves the stability for any input rates within the capacity region.

Lastly, we study the capacity of single-source single-sink noiseless networks under

adversarial attack on no more than z edges. In this work, we allow arbitrary link

capacities, unlike prior papers. We propose a new cut-set upper bound for the error-

correction capacity for general acyclic networks. This bound tightens previous cut-

set upper bounds. For example networks where the bounds are tight, we employ

both linear and nonlinear coding strategies to achieve the capacity. We present a

method for upper bounding the linear coding capacity of an arbitrary network and

prove the insufficiency of linear network codes to achieve the capacity in general.

We also show by example that there exist single-source and single-sink networks for

which intermediate nodes must perform coding, nonlinear error detection or error

correction in order to achieve the network capacity. This is unlike the equal link

capacity case, where coding only at the source suffices to achieve the capacity of

any single-source and single-sink network. A new strategy, guess-and-forward is then

introduced. We first find the capacity of the two-node network by employing guess-

and-forward. Guess-and-forward is also applied to the proposed family of four-node

acyclic networks, showing it achieves the network capacity. Finally, for a class of so

called zig-zag networks, we derive achievable rate of guess-and-forward and present

conditions under which that bound is tight.

With the increasing demand for wireless multimedia services and high-speed In-

ternet access, we expect to see increasing interest in exploiting network coding in

network design, which offers both theoretical and practical benefits. The study in
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this thesis only scratches the tip of the iceberg and many important problems remain

to be answered.

In Section 2.1 and Section 2.2, we have developed the centralized and distributed

algorithms for low-power multiple wireless unicasts. Since our proposed algorithms

are defined on specific network topologies, we hope to develop a general algorithm

which applies for any network topology. When a lot of unicast sessions share the

wireless grid network, some links can be shared by the optimal paths solution of

different sessions and thus network congestion may occur. Thus, one open problem

is to formulate a new optimization framework which jointly optimizes the expected

power saving using reverse carpooling and the network congestion cost.

We have developed a new low-complexity approach, network coding with periodic

recomputation, in Section 2.3. We can apply our approach to other network opti-

mization problems in MANETs to reduce the computational complexity. If the set

of feasible solutions does not change every time slot, we can directly use our periodic

recomputation approach. It is interesting further work to extend our results to the

case where this does not hold, and to analyze the performance-complexity tradeoff

of other algorithms. We can also consider another method to solve a linear program

instead of interior-point method and analyze its complexity with our approach.

In Chapter 3, we have studied the problem of error correction for network codes

with unequal link capacities. Further work includes characterizing the capacity region

of a four-node acyclic network when the capacity of feedback links is small. It would

also be interesting to study more conditions in zig-zag network under which our upper

bound is tight. This may give us new achievability results. Though our new bound

tightens the previous one, the cut-set bound is still not achievable in general for an

example network given in [59]. Investigating the network for which there exists a gap

between achievable capacity and the upper bound from our result can give us a new

insight for developing tighter cut-set upper bound or another achievable strategy. It

is worth thinking to apply our approach for high probability error correction with a

causal adversary model in [41].
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Chapter 5

Appendix

Proof of Lemma 3.17 : Since the adversary controls forward links such that codewords

on feedback links are unchanged, from the definition 3.14, the degree of freedom of

errors that the adversary can control for any forward link l is at most f(l). We prove

this lemma by simply extending [31, Theorem 4] which is for the equal link capacities

case to the unequal link capacities case.

Let M denote the transfer matrix whose columns are the coding vectors assigned

to links. Then, the difference set is

∆(V, z)

= {(θl(e)− θl(e
′)) ·M−1 : l ∈ Γ+(u), N(e) ≤ z, N(e′) ≤ z}

= {θl(e− e′) ·M−1 : l ∈ Γ+(u), N(e) ≤ z, N(e′) ≤ z}
= {θl(d) ·M−1 : l ∈ Γ+(u), N(d) ≤ 2z},

where N(e) denotes the number of links error e occurs and θl(e) denotes the output

of error vector e at the sink with zero-input.

Last equality comes from {e− e′ : N(e) ≤ z, N(e′) ≤ z} = {d : N(d) ≤ 2z}.
We use p to denote the maximum number of different error vectors when the
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adversary controls 2z links. Since ∆(V, z) = {θl(d) ·M−1 : l ∈ Γ+(u), N(d) ≤ 2z},

|∆(V, z)| ≤ p ·
2z∑
i=0

(
a + b

2z

)
.

Since t is the sum of 2z largest degree of freedom, p ≤ (q − 1)t. Thus,

|∆(V, z)| ≤ (q − 1)t

2z∑
i=0

(
a + b

2z

)
.

After computing the size of the difference set ∆(V, z), we can apply exactly the

same argument as in [31, Theorem 4] and complete the proof.

Proof of Lemma 3.19:

Since b ≥ 2z + 1, any claim (Xl, Pl) can be sent reliably from B to U using a

repetition code. In case 1, we first show that at least one adversarial link is removed

whenever sink receives some claim. From our strategy, the case that no claims are

sent from B occurs only when codewords received on each feedback link are equal to

g(W ) where W is an uncorrupted codeword sent by S to B. In case 2, we show that

rate Cz is achievable even when no claims are sent from B.

Case 1) sink receives some claim (Xi, Pi).

The sink compares Pi with g(Ŵ ) which is received from A reliably. If Pi 6= g(Ŵ ),

then feedback link transmitting Pi is adversarial and the sink ignores it. Otherwise,

Pi is reliable. Since the claim is sent, the sink knows that Pi = g(Ŵ ) 6= g(W ) and

that guess Xi is correct. Thus the sink identifies at least one adversarial link between

S and A, which is subsequently ignored.

Therefore, in this case, the sink removes one bad link whenever B sends claims.

Case 2) no claims are sent.

From our strategy, the case that no claims are sent from B occurs only when

codewords received on each feedback link are equal to g(W ) where W is uncorrupted

codeword sent by S to B. Since A transmits g(Ŵ ) to B, there are three following

possibilities in this case.
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a) All links between S and A and all feedback links are uncorrupted. Then Ŵ = W

and g(W ) is reliably transmitted.

b) Some links between S and A are corrupted so that A receives g(Ŵ ) 6= g(W )

from S, but the adversary controls all feedback links such that each feedback link

changes g(Ŵ ) to g(W ).

c) Some links between S and A are corrupted such that codewords A sends along

each feedback link are unchanged, i.e., Ŵ 6= W and g(Ŵ ) = g(W ). All feedback links

are reliable and B receives g(W ).

If a) is true, all links between S and A and all feedback links are uncorrupted.

Then there exists a set of (a+b−z) forward links on the cut such that this set includes

all a links between S and A and some b−z links between B and U , and gives consistent

output with rate Cz. (Note that the sum of capacities of any (a+ b− z) forward links

is larger than or equal to Cz from the definition of our bound in Theorem 3.6.) If b)

is true, all m feedback links are corrupted. Then there exist a set of (a + b− z + m)

forward links on the cut that gives consistent output with rate Cz. If c) is true, then

we obtain the correct output from (C, Cz) MDS code in Lemma 3.17.

Based on the above analysis, we give following simple decoding algorithm. We

prove the correctness of this algorithm as follows.

Algorithm 3 Decoding algorithm for achieving rate Cz when no claims are sent.

IF there is a set L1 which is composed of a + b − z + m forward links and gives
consistent output,

THEN the output with rate Cz from L1 is correct.
ELSE IF there is a set L2 which is composed of all a forward links from S to A

and some b− z forward links from B to U , and gives consistent output,
THEN the output with rate Cz from L2 is correct.

ELSE the output with rate Cz obtained from (C, Cz) MDS code is correct.
END IF

Case 2 - a) there is a set L1 composed of (a + b − z + m) forward links giving

consistent output.

In this case, we show that output with rate Cz obtained from L1 is correct. First

we prove that output from L1 is correct when b) or c) is true. If b) is true, all m

feedback links are corrupted and thus L1 contains at least (a+ b−z +m)− (z−m) =
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a + b − 2(z − m) uncorrupted links. From the definition of our upper bound in

Lemma 3.4, the sum of capacities of any a + b− 2(z−m) forward links is larger than

or equal to Cz. Since L1 gives consistent output, the output is correct. If c) is true,

L1 contains at most z corrupted links. From the condition 3.16, for any set A1 ⊂ L1

composed of z links, the sum of degree of freedom of z links in A1 plus the sum of

capacities of z −m forward links not included in L1 is less than or equal to Cz, i.e.,
∑

l∈A1
f(l)+

∑
l∈E−L1

r(l) ≤ C−Cz. Thus, L1 contains at least rate C−(C−Cz) = Cz

uncorrupted output and the output is correct.

Case 2 - a - i) there is no set of (a + b− z) links that includes all a forward links

from S to A and gives consistent output.

In this case, a) cannot hold and thus b) or c) is true. Thus output from L1 is

correct.

Case 2 - a - ii) there exists a set L2 composed of (a + b − z) forward links that

includes all a links from S to A and gives consistent output.

We first show that L1 and L2 gives the same consistent output. L1∩L2 is obtained

from the cut by erasing z forward links from B to U that L2 does not include and z−m

forward links L1 does not include. From the definition of our bound in Lemma 3.5,
∑

l∈L1∩L2
r(l) ≥ Cz. Thus L1 and L2 give the same consistent output. Since L2 gives

the correct output when a) is true, and L1 and L2 give the same consistent output

in this case, output from L1 is correct when a) is true. Moreover, we have already

shown that L1 gives the correct output if b) or c) is true. Therefore, L1 always gives

correct output.

Case 2 - b) there is no set of (a+b−z+m) forward links giving consistent output.

In this case, there are more than z−m adversarial forward links on the cut. Thus

b) cannot hold and a) or c) is true. If there is no set of (a + b− z) forward links that

includes all a links from S to A and gives consistent output, then c) is true. From

Lemma 3.17, output obtained from (C,Cz) MDS code is correct. Otherwise, suppose

that there exists a set L2 composed of (a + b − z) forward links that includes all a

links from S to A and gives consistent output. We show that output obtained from

L2 is correct.
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If a) is true, since all links between S and A and all feedback links are uncorrupted,

L2 contains at most z corrupted forward links between B and U . From the definition

of the Singleton bound, the sum of capacities of a links between S and A plus sum of

any b− 2z forward links between B and U is larger than or equal to Cz. Thus, from

uncorrupted a links between S and A and some b− 2z links between B and U which

are not corrupted, we obtain the correct output rate Cz. Since L2 gives consistent

output, the decoded output is correct.

If c) is true, the adversary controls some forward links from S to A such that each

feedback link transmits g(W ), and L2 contains at most z unknown corrupted links.

From condition 3.15, the sum of any 2z degree of freedom of links are less than or

equal to C −Cz. Since degree of freedom of any forward link from B to U is equal to

the link capacity, the sum of degree of freedom of z truly corrupted links in L2 and

the sum of z forward links between B and U which are not included in L2 is less than

or equal to C − Cz. Therefore, L2 contains at least C − (C − Cz) = Cz uncorrupted

symbols. Since L2 gives consistent output, the decoded output from L2 is correct.

Therefore, either a) or c) is true, L2 gives the correct output.

Proof of Lemma 3.20:

Since b ≤ 2z, a claim (Xl, Pl) for any feedback link l is not reliably transmitted

to the sink and adversarial links between B and U can corrupt this claim arbitrarily.

Thus, the sink can receive different claims on different incoming links. Let G(l) be the

set of distinct claims {(Xl1, Pl1), .., (Xlk, Plk), Y } where Y denotes that no claims are

received. Here is the outline of the proof. We first show that at least one adversarial

link is removed except when b > z and the sink receives no claim on all b links for

all feedback links. When b > z and the sink receives no claim on all b links, since all

b links cannot be corrupted at the same time, the sink knows that B does not send

any claim. This case exactly corresponds to the case 2 in the proof of Lemma 3.19

and we achieve the correct output. This completes the proof. Note that the same

guess-and-forward strategy in Section 3.5.2.2 is used.

First we show that any uncorrupted (a + b− 2z) forward links between S and A

give the correct decoded output with rate Cz. From the definition of Singleton bound,
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after erasing b ≤ 2z links between B and U and any set of 2z − b links between S

and A, the sum of the remaining link capacities are larger than or equal to Cz. Thus

any uncorrupted (a + b− 2z) links between S and A give the correct message.

Now we assume that (Xli, Pli) is received on ni links and Y is received on nk+1

links (n1 + .. + nk+1 = b). First we ignore any (Xli, Pli) claiming that there are more

than z − (b− ni) adversarial links between S and A. Since Xli is shown on ni links,

believing Xli implies more than z adversarial links on the cut which is a contradiction.

Thus, each of remaining claim (Xlj, Plj) specifies a set Lj which is composed of at

least (a − (z − (b − ni))) = a + b − z − ni links between S and A claimed to be

correct by (Xlj, Plj). For each such claim, we check the consistency of the decoded

outputs of Lj. We show that if there exist two different claims (Xli, Pli) and (Xlj, Plj)

both corresponding to consistent outputs, then those two outputs should be the same.

Since |Li| = a + b− z − ni, |Lj| = a + b− z − nj, and |Li ∪ Lj| ≤ a,

|Li ∩ Lj| ≥ (a + b− z − ni) + (a + b− z − nj)− a

≥ a + b− 2z.

As we mentioned at the beginning of the proof, the sum of capacities of any (a+b−2z)

link between S and A is larger than or equal to Cz. Therefore Li and Lj give the

same consistent output.

Suppose that we have figured out that a set of links L gives the correct consistent

decoded output. In this case, we add remaining links not included in L sequentially

to L, and check the consistency of any decoded output with rate Cz. If outputs are

no more consistent, the added link is adversarial (*).

Now we show that at least one adversarial link is removed except when b > z and

the sink receives no claim on all b links for all feedback links.

Case 1) all claims are ignored or none of the remaining claims give consistent

output or all claims (Xli, Pli) that give consistent output satisfy that Pli 6= Ŵ

In this case, there are only two possibilities.
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a) Feedback link l is adversarial.

b) Feedback link l is reliable and all b links between B and U are adversarial.

If b > z, then b) cannot hold and feedback link l is adversarial. We remove it. If

b ≤ z, the sink checks the consistency of outputs from each set of (a + b − z) links

between S and A. If no (a+b−z) links set give consistency, then there are more than

z − b adversarial links between S and A. Thus a) is true and we remove feedback

link l. Otherwise, there exists a set L of (a + b − z) links giving consistency. Since

this set contains at most z corrupted links, and thus includes at least (a + b − 2z)

uncorrupted links between S and A. Then the sum of capacities of uncorrupted links

are larger than or equal to Cz. Thus L gives correct output rate Cz. From (*), we

can detect forward adversarial links in this case.

Case 2) there exists a claim (Xli, Pli) giving consistent output and Pli = Ŵ .

We show that output obtained from claim (Xli, Pli) should be correct. If there is at

least one uncorrupted link showing (Xli, Pli), then feedback link l is also not corrupted

since Pli = Ŵ , and this claim gives correct output rate Cz. Otherwise, if all ni links

showing this claim are adversarial, in which case, there are at most z−ni adversarial

links between S and A. Then Li includes at least (a+b−z−ni)−(z−ni) = a+b−2z

uncorrupted links, and thus give correct consistent output. From (*), we can also

detect adversarial links in this case.

Case 3) only Y gives consistent output and b < z.

In this case, a set of all a forward links from S to A gives consistent output. a

links between S and A include at least a − z ≥ a + b − 2z uncorrupted links since

b < z. Thus we obtain correct consistent output from a links and detect adversarial

links from (*).

Case 4) only Y gives consistent output, b > z, and at least one of b links between

B and U show claim different from Y , i.e., nk+1 < b.

Case 4 - a) nk+1 < b− z.

If feedback link l is reliable, the links showing claims different from Y are adver-

sarial. Thus there are more than b − nk+1 > z adversarial links and it contradicts.

Thus feedback link l is adversarial and we remove it.
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Case 4 - b) b− z ≤ nk+1 ≤ z.

Y is shown on nk+1 ≥ b− z links and b− nk+1 ≥ b− z links show claims different

from Y . Thus there are at least b − z adversarial links between B and U . Then

there are at most 2z − b adversarial links between S and A and at least a + b − 2z

uncorrupted links. Thus we also obtain correct output from a links and use (*) to

detect adversarial links.

Case 4 - c) z < nk+1 < b.

Since nk+1 > z, feedback link l transmits g(Ŵ ) = g(W ) to B and B does not send

any claim. Thus, the links showing claims different from Y are all adversarial.

For cases 1-4, we have shown that at least one adversarial link is removed when

b > z and the sink receives some claim different from Y for any feedback link.

To complete the proof it is now sufficient to show that correct output can be

achieved when b > z and the sink receives no claim for all feedback links l. Since

b > z, at least one link between B and U is uncorrupted. Since all b links show Y ,

this means that each feedback link transmits g(Ŵ ) = g(W ) and B does not send any

claim. This case corresponds to the case 2 in Lemma 3.19. Therefore, we can obtain

the correct output.
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