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Abstract

This thesis consists of two parts. Part I deals with the development of first principles
methodologies. Part II deals with applications of atomistic simulations, i.e. quantum
mechanics and molecular dynamics simulations.

Part I includes two topics. One is generalized gradient correction for the density
functional theory which constitutes Chapter 2. The other is first principle pseudopo-
tentials which is covered in Chapter 3 and 4. Chapter 3 develops the density functional
theory version used mostly in solid state physics, while Chapter 4 develops the Ab
initio version used mostly in chemistry. Part II also includes two topics. One is the
fullerenes formation mechanism which is covered in Chapter 5 and 6. Chapter 5 deals
with their thermodynamical properties and Chapter 6 discusses their formation pro-
cesses. The other is the lattice properties for the Y BayCu3O7 high-T, superconductor
which is covered by Chapter 7. Also, in Chapter 1 we summarize the hierarchy models
for materials simulations and review the state-of-the-art tools at various levels of that
hierarchy.

Predicting the band gap from first principles has been hindered by the complexity
of the systems and the flaws in the simplified theories. The most successful first
principle theory, i.e. DFT, gives a value about the 2/3 of the measured one. ! This
is partly due to the approximate nature of the functionals used in DFT calculations.
It has long been known that HOMOs calculated with LDA, the most commonly used
DFT, is far from ionization potential. 2 In Chapter 2, after analyzing the nature of
gradient corrected functional for DF'T, we proposed a new exchange energy functional.
The new functional is tested on several atoms and molecules and found to reproduce
the Hartree-Fock eigenvalues to a good accuracy. With the incorporation of correlation

energy in DF'T, we can hope that the new functional would lead to a new and efficient

'Hartree-Fock, on the other hand, gives energy band gap twice as large as the measured one.
2It can be shown that the exact functional would give Koopman’s theorem in DFT.
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way of predicting energy band gaps for all the materials from first principles.

All chemistries involve mainly valence electrons. The effect of inner shells, shield-
ing the nucleus Coulomb potential and providing Pauli repulsions to support the
valence electrons, can be implemented by a potential called effective core poten-
tial(ECP). Since valence electrons of different angular momentum would experience
different Pauli repulsion of the core electrons, this ECP is angular momentum de-
pendent. This leads to a nonlocal potential and requires three-center integrals, which
scales quadratically with the size of the system. On the other hand, the wave nature
of electrons allows us to lower the resolution in describing the potential. By using
a set of Gaussian functions to replace real-space grid in representing the ECP, we
factorized the three-center integral into a sum of products of two-center integrals. We
have found a set of Gaussian functions that gives accuracy of better than 0.01leV for
all the elements in the periodic table, sufficient for all ECP calculations. The new
method scales linearly with the system size. At 128 atoms, the cost is 1/15 of the old
ECP method. This cleared a bottleneck for first principle programs that use ECP to
study heavy elements.

Why Cpgo fullerenes are so stable and how this highly symmetric molecule is formed
in the super-heated vapor is the two most fundamental questions in fullerene research.
Prompted by the recent observations of the monocyclic ring and bycyclic rings as in-
termediates, we performed DFT calculations on the ring isomers and fullerene isomers
of carbon clusters of various sizes. From it we extracted a force field (FF) for molecu-
lar dynamics simulations. This FF is used to calculate the free-energies at different
temperatures. Based on our analysis of the physical forces that drive the carbon clus-
tering and isomerization, we describe an evolution process for fullerene formation that
is consistent with all the observations so far. With a combined DFT/MD method we
are able to provide the energetics for a complete path of fullerene formation. Hint for
synthesis improvement are suggested.

High-Tc superconductors are ceramics. To improve their mechanical and electrical
properties, we conducted a molecular dynamics simulation for the ¥ BayCusO, super-

conductor. We derived a ionic-covalent force field from fitting the experimental data.
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Our FF is able to reproduce the structure and Raman modes accurately. The FF pre-
dictions of isotope shifts of Raman frequencies, phonon dispersion spectra, phonon
density of states, elastic stiffness constants, and volume thermal expansion are all in

fairly good agreement with experiments.
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Part 1

Sharpening the Simulation Tool



Chapter 1 Advances in Simulation

Methods

1.1 Hierarchy of Models in Materials Simulation

Materials are used for their varieties of properties. Some are used for their strength on
a macroscopic scale to build bridges. Other are used for their microscopic shapes and
affinity for making drugs. The goal of material simulation is to map out the property-
structure relationship of materials. For the diversity of properties we always use
models, which correlate with the length scale of the properties involved, see Figure 1.1.

With the advances in quantum chemistry and molecular dynamics, for the first time it

Time(second)

103 “

Engineering
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10" Mechanics
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Figure 1.1: The hierarchy models for materials simulation.
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is now possible to calculate from first principles properties at the various length and
time scales.

In the hierarchy of models one level of theory provides the “reasons” and calculates
parameters for the coarser grained theory. In turn itself needs a more microscopic
theory to provide the underlying mechanism for its axiomatical parameters. For two
theories in this ladder, we sometimes refer to the coarser one as the phenomenological
theory and to the finer grain one as the microscopic one. The grain sizes correlate with
the time, space and energy. At one end one has the finest grain for the small distance,
short time and high energy, while at the other end, one has large distance, long time
and low energy for the coarse grain.

The “fundamental” parameters in a theory of a certain grain size are determined
either through measurements of that grain size or through the predictions from the finer
grained theory. The former, top down approach, is inductive and involves statistical
analysis; the later, bottom up approach, is deductive and involves dynamics.

At each level there are correlation functions that connect both sides. They are
intrinsic properties for the upper theory but averaged properties in the lower one. -
The most profninent exampie is the equilibrium probability distribution of microscopic
states. !

Both quantum physics and the classical physics have the property of scale in-
variance. Hierarchy models are not about the simple scale transformations. The
hierarchy models deal with the exploding complexity that comes with the increase of
length scales and time scales. It studies the emerging coarse grained variables and the
laws governing them, e.g., how the behavior of the four valence electrons of carbon
atom is related to the yield of Cgg fullerenes in an arc.

In this section we will review some of the commonly used methods for moving up

and down this ladder.

!Just like curvature is an intrinsic quantity characterizing the curved space without having to
embed them in the space of higher dimension.
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1.1.1 Coarse Graining in Quantum Mechanics

In quantum mechanics the coarse graining is usually done by taking the partial trace.
The remaining ones would be the Hilbert space we are interested in. For example,
Born-Oppenheimer approximation trace out the electronic degree of freedom and study
the nucleus motion (by virtue of the disparate scales, visible light versus infra-red
in energy and sub-femtosecond versus sub-picosecond in time). The emerging coarse
grained variables is the potential energy surface (PES) for the nuclei. Another example

is the commonly used one-particle Hamiltonian,

hl{oi}] = Trjer. (Vijer. | H| Vi), (1.1)

with the Hamiltonian

MnZAeQ n o n 2

H=%ivg+zz ) (12)

i=1 A=1i=1 TiA =153 Tij

All but one of the degrees of freedom have been summed out, leading to a single-
particl'e theory. The coarse grained variables |¢;) emerge from the fine grained many-
particle wavefunction |¥).

In most cases partial trace is impractical, because we don’t have |¥) to start
with. Instead of performing the sum in (1.1) from (k.. |H|¥;jk...) one can model
the h[{¢}] based on the known behaviors of ¢. Examples are the BCS theory of
superconductivity, [1] soliton theory of polyacetylyne, [2] etc..

Most of the coarse graining is done with modeling. Partial trace is the overall

formalism but in practice it is usually performed within a given model.

1.1.2 Coarse Graining in Classical Physics

Standard formalism of coarse graining in classical mechanics is by virtue of center of
mass theorem and in classical electrodynamics by multipole expansion.

e Center of mass theorem says that the motion of a large molecule obeys the
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R.=F, /M where R, is the coordinate of the center of mass. The kinetic energies of
the random motion of the atomic constituents is incorporated into M via Ej/c?.

e For a point afar the electromagnetic field of a charge distribution p(r) could be
derived from the superposition of fields from a point charge, a dipole, a quadropole,
an octopole, etc.. In so doing one can enlarge the length scale, from microscopic to
mesoscopic.

Most of the coarse graining, however, are done with either mapping or modeling
or averaging.

e In continuum elastics, by expand the displacement in the long wave limit, one

can map the elastic constants, Cyq, Cs3, Cis, ..., etc. to the interatomic potential. [17]

= 1
Caﬁm\ = _2V Z ¢aﬂ(ol/€)7‘k77“k,\- (1.3)
a i

e Modeling the dielectric constant € from atomic polarization o [4]

e = l+4my (1.4)
Na

= 144 .
A @ /3)Na

1.1.3 Statistical Physics — from Jaynes, Landau to Wilson

A microscopically random state corresponds
to the macroscopically homogeneous state. Low
symmetry at one resolution leads to high symmetry

phase of a coarser resolution.

Jaynes’ Information Theory of Statistical Mechanics

Assuming that the thermodynamic entropy and information-theory entropy to be the
same concept, Jaynes in 1957 showed that statistical mechanics can be derived from

the maximum entropy principle. [5]
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Suppose all we know is the expectation value of the function f(z):

(f(2) = _zf:lpif(m, (1.6)

where p; is the unknown probability of having value z; subjecting to the constraint

Ypi=1 (1.7)

On the basis of this information, what is the expectation value of the function g(z), i.e.
(g9(x))? The most unbiased, nonsubjective estimate would be to maximize our “ignor-
ance”. Shannon showed [6] that there is unambiguous criterion for representing the
amount of uncertainty. He proofed that the quantity which is positive, which increases

with increasing uncertainty, and is additive for independent sources of uncertainty, is

S(pr..pn) = —K Zpilnpi, (1.8)

where K is a positive constant. This is just the expression for entropy as found in

statistical mechanics. Jaynes thus proposed the following:

In making inferences on the basis of partial information we must use that
probability distribution which has mazimum entropy subject to whatever is

known.

Using Lagrangian multipliers for the constraint maximization, one gets
D = e_/\—lif(xi). (19)

The constants A and p are determined by substituting into the constraints ( 8.57) and

(8.77),

(@) = —%an(u), (1.10)



A= InZ(y), (1.11)

where
Z(p) =" e, (1.12)

Given information about the state of the system, if
pi = e ) (1.13)

becomes exceedingly small, then one can view (f(z;)) as a constraint and build models
based on such condition. This is another formal way of saying how you can focus on

a smaller block of Hilbert space, i.e., a formal foundation of model building.

The Hierarchy of Coarse Graining

Suppose a system is described by the Hamiltonian H. Eigenstates are characterized

by {¥,}, and eigenvalues E,,. The partition function is
Z =Y eFbn (1.14)
n

If at one level there appears a ¢(r) that is discernible and thus could be used as a
state variable then we say that we need a new parameter to describe the system (we
don’t need it if there is no discernible pattern on that resolution). Landau called this
kind of parameter the order parameter, since it is when the order appears that the
symmetry breaks requiring a new variable for describing it.

From the grain level below it, when order parameter appears, we need to do coarse

graining with the constraint {¢(r)}. Thus

Z=> > ePEn (1.15)
{$(r)} ne{p(r)}

where n is the most microscopic state index. ¢(r) is the macroscopic state description,
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since r is macroscopic coordinate (macroscopically small but microscopically large).
n € {¢(r)} denotes the constraint in summing over the microscopic states n.
One can apply this constrained summation to obtain a hierarchy of summations,

from the most microscopic states to the macroscopic state:

2 =33 Y et (1.16)

,667 aeﬂ nea
2(0) = 2 Z(B;y) = e A (1.17)
pey B
Z(B)=> Z(e;8) = Ze“l"(z(a;ﬂ)) (1.18)
acf a

Z(7), Z(B), etc. are sometimes called the partial trace. Defining free energy F(/3) by:

AMF(B) = In(Z(B;7))- (1.19)
We have:
Z(y) =) e?FO), (1.20)
Bey
Z(B) =Y e MA@, (1.21)
a€ep

The expressions of the free energy depend on the level of coarse graining. For instance,

F(6) = (1/N)in(2(8)), F(e) = H(a), etc.. Ify = (T,V,N) f = ¢(q) and a =



{pi, i}, then we have:

Z(T,V,N) = / Dé(q)e-XTVNFls()] (1.22)
@}V, N)
with
Flé(q)] = in / 1,dp;dqe @) H({piai)) (1.23)
{pi,qi}€d(a)

Landau-Ginzburg Theory

Landau proposed a phenomenological theory. Instead of calculating the F[¢(q)] in
( 1.23) from a finer grain (e.g., from H({p;, q;})), he modeled, with some symmetry
consideration, the F'[¢(q)] with polynomials,

F¢] = a¢® +bs* +c|Vo|* + ..., (1.24)

Equations ( 1.22) and ( 1.24) constitute an empirical method for studying the phe-
nomenon on the length scale of {q}.

One can get the equilibrium distribution ¢o(q) by the most probable method. The
largest contribution in the integral in ( 1.22) comes from the ¢(q) that minimize the
F[¢(q)]. This ¢o(q) is the equilibrium state and it can be derived via solving the

Euler-Lagrangian equation,

SF[4(q)]

Sola) * =" 12

This is the famous Ginzburg-Landau theory.

Wilson’s Renormalization Group Theory

Yet another way of doing coarse graining is by scale transformation. This method is

appropriate for situations where scaling law is everything, e.g., near the critical point
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of a continuum phase transition.

Consider a spin system described by the Hamiltonian

H=K,)_S:S;. (1.26)

i<j
One way of doing coarse graining is through the decimation of the variables {S;} upon
scaling transformation. After one iteration of decimation(i.e., partial trace within block
and cast the resulting Hamiltonian H(!) into the same form as H), the spin variables
becomes {S{"} and the coupling constant becomes K. 2 The relationships among

the coupling constants { K®} of different grain levels,
KO+ = p@O () (1.27)

describes the coarse graining.
Under the cutoff approximation(see footnote), the same f holds between any ad-

jacient level of coarse graining, i.e.,
fO =60 = = O (1.28)

Thus the coarse graining process is reduced to a recursion relation. The sequence of
f@ is called renormalization group and is denoted by Ry, 3

At critical points, the wvalue of coupling constant K should be independent of
the level of coarse graining. One can thus identify the K with the fixed point of

renormalization transformation Ry, and find it by solving
K*=R.K". (1.29)

Equation ( 1.27) constitutes the method of doing coarse graining near the critical

?During decimation, extra interaction can arise. For example, the next nearest neighbor interac-
tion, which is absent in the original Hamiltonian, can occur. Thus one need to do cutoff in casting
the coarse grained Hamiltonian into the same form as the physical Hamiltonian.

3{R .} is actually a semigroup since there is no inverse operation.
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points. It is very powerful to treat a class of problems that have the property of
self-similarity, e.g., calculation of the critical exponents. It was invented by Kadan-
off, Fisher and Wilson in the 70s to study the phase transition and critical phe-
nomenon. [27] However, equation ( 1.27) is not valid when the system is away from
the critical point. When the system is away from the critical point, there is no self-
similarity. Then the characteristic length scale is the guide line to model the coarse

graining.

1.2 Review of the First Principles Methods

In this chapter we review the quantum chemistry method.

Quantum mechanics is the fundamental law governing all the material properties.
Solving quantum mechanics equations for the system containing a large number of
interacting particles constitute the subject of the first principle method. Over the
years, the algorithms, both physically based and pure numerical, coupled with the
development in computer hardware technology, has advanced to a stage that it can
study the property of close to a hundred atom system. Advances in speed allows
us to do larger systems, while advances in accuracy allow us to raise the predictive
power (higher resolution). The current quantum chemistry (QC) methods grow into
two branches which have different formal roots. One is Hartree-Fock based method
(HF, RHF and UHF, MP2, MP4, CI, MCSCF, GVB, etc.. [20] The other is the
density function theory (DFT), an economic tool that recently acquired significant
improvement in accuracy.

The Schodinger equation
H|¥) = E|T) (1.30)

with the omnipotent Hamiltonian

-—h? i ZAe

H=g 2 Vit >3 ZZ— (1.31)

A=1i=1 TiA i=1 j>i 1ij
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and the antisymmetric property of |¥) for the indistinguishable fermions, encode all
the chemistry and physical property of materials.

N —electron wave function |¥) can be expanded in the space spanned by basis as,

W)= > Cu,.n~¢:10:203...0n). (1.32)
{#1,025--s¢n}

Antisymmetric property of |¥) is implemented as

|¢10203....0N) = Y sgn(P)|d1) ® |h2) ® ... ® |¢n), (1.33)

PeSy

where S, is the symmetric group of order N, |#;) are single particle states. Using its
eigenvalue to denote the single-particle state, |@;) could be |r), |k), or any |n), etc..

For example, if |¢;) = |r) we have Ciy n = ¥(ry,r,....,Ty) in ( 1.32).

1.2.1 Hartree-Fock Method

When the electron correlation is not strong, we can form a single-particle picture.

Namely, we can find a set of optimal single-particle {|¢;)}, such that

|¥) = |p1¢2....0N)- (1.34)

Hartree-Fock wavefunction |¥HF) is defined as the best such wavefunction in the sense
that it gives the lowest ground state energy Eo = (¥|H|T).
Putting

¢1(x1)  @a(x1) o On(x1)
$1(x2)  @a(x2) ... on(x2)
1

(I)(I'll‘g....rN) = <I'11‘2..,.1‘N|¢1¢2¢3....¢N> = \/—]\—ﬂ ’ " . (]

.35)

d1(xn) da(xn) o dn(xn)
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into the above expectation value of H, expressing each orbital with a set of L functions

(called basis set) {x,.},

¢ = E;Ciuxu, (1.36)
and doing variation with respect to {C;,} under the constraint,
(THFEHF) =1, (1.37)
leads to an Euler-type of equation:
Y HuCon = En' Y SCon: (1.38)
Or
FC =ESC (1.39)

for short. E is a diagonal matrix of eigenvalues. The equation 1.39 is called the
Roothaan equation. If we choose |x,) to be continuous basis |r), the sum Y, be-
comes integral [ dr, the variation changes from 0/9C,, to 6/d¢,(r), and we have the

differential-integral equation formalism,

(xl ¢n Xl + Z /d |¢m X2 ]¢n( )_ Z [/dX2¢m(X2)*¢n(X2)]¢m(X1)

m#n |1‘1 | m#n |I'1 — I‘Ql
= 6n¢n(xl)
(1.40)
Fock operator
F(1) =h(1)+ > Jn(l) = Kn(1) (1.41)

is the sum of a one-particle operator h(1) and an effective one-electron potential op-
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erator called Hartree-Fock potential v#F (1) =3, Ju(1) — Kn(1)

F|¢n> = €n|¢n>' (1.42)

This is the famous Hartree-Fock equation. It is the workhorse of first principle method.
Of course QM is independent of the representation used to describe it. In molecular
study Roothaan equation is usually solved.

To form the Fock matrix F We need to evaluate these kind of matrix elements:
by = / drxi(r — Ra)V?x;(r — Rp) (1.43)
and

Vijkl://drdrIXi(r_RA)Xj(r—‘RB)I’I%r,]Xk(r_RC)Xl(r—RD)- (1.44)

Since |x;) are not orthogonal to each other we have the overlapping matrix
Sy = [ drxi(r = Ra)x(r - Rp) (1.45)
Roothaan equation can be solved by symmetrization and diagonalization.
(STFS™7)(S2C;) = (S2C)). (1.46)

For the purpose of developing the perturbation methods we ask the following ques-
tion: Is there an approximate Hamiltonian for which |¥) is an exact eigenvector? The

answer is yes:
N
Hy = Z f@). (1.47)
Then

H=Hy+V (1.48)
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with
szf—szF(i). - (149

The Hartree-Fock energy

Ey = (UIF|Ho|UHF) + (UHF|V]THE) (1.50)
= Y e+ (THFV|THF) (1.51)

n
= E® +EM. (1.52)

So the zeroth order is the eigenvalue sum and the first order is the normal elimination

of the double counting.

1.2.2 Beyond Hartree-Fock —Perturbation Schemes

Rayleigh-Schrodinger scheme

(6 + M + o Hy + VTP + A 80, (1.53)

First split Hamiltonian into Hy and V' with Hy having the properties of (a) It covers
majority of the H and (b) Its eigenfunction is known or easy to solve. Then use the
eigenvectors of Hy to form a space in which to correct for the residue V. For example,
if Hy is taken as Hartree-Fock Hamiltonian (equation refeq:hfh), then ¢¢ would be the

Hartree-Fock wavefunction.

M Z @OV |s”)

0
20 _ g A0 L0 (1.54)

where () are Slater determinants made from combination of orbitals, occupied as
well as virtual, and V' is from equation 1.49. The E;, can be expressed in terms of
matrix elements of Fock operator, an expression first derived by Moset-Ploset and are

now called MP2 theory for the second order formula.
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Feynman-Dyson Scheme

(Wo| H|Wo) = (o|U(—00,0)HU(0, —00)[®o) (1.55)

start from asymptotically turning on the interaction term, analogous to scattering
problem. At t — —oo the eigenfunction is ®o(r). At t = 0 it is |¥g). Using Wick’s
theorem and the property that the [qﬁa, ngS,g] = iG4p is a C—number, this leads to the
Feynman-Dyson perturbation expansion, which is relativistic invariant.

The Schrédinger scheme leads to MP2, MP3, MP4, etc. and is normally used to
calculate the total energy of ground state. The Feynman scheme leads to the Dyson

equation and is normally used for studying the excitation spectrum.

1.2.3 Density Functional Theory

Hohenberg and Kohn noticed that at the nondegenerate ground state there is one

energy and one electron density. [7]

Eolpo] = [ po(@)v(x)dr + Folpo], (1.56)

where the functional Fy[po] is a universal functional of the electron system, independent
of external field v. Since Fp[po] is universal, people had hoped of finding THE Fy|pq],
that, upon entering the po, gives the correct ground state energy. But the real work is
how to find this py, the ground state density. Unlike the Lagrangian L(¢, ¢, t), whose
Euler-Lagrangian equation is used to find the behavior of the dynamical variable ¢;(t),
the uniqueness of Fy[po] by definition is a property of the ground-state itself.

Levy [8] realized this and constructed an operational definition for F[p] using an

operator which involves only electron system, T + V.,
Flp] = Ming_,,(¥|T + V|T). (1.57)

From now on we will understand the functionals F'[p], T[p], V[p] as the constraint
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search definition of Levy.

Kohn and Sham [11] proposed mapping the unknown F'[p] to a fictitious independ-
ent electron system having the same density p. Then one can take the ride with this
independent electron system to the ground state py and Fy[po]. Since at the ground
state there is only one py and one Ej, we reach our destination. For this independent

electron system(IES),

™ol =3 (il - %V2|¢i> (1.58)
with
N
p(r) =3 filei(r)l?, (1.59)

where f; is the occupation number. Coulomb potential energy is the normal one,

Jp] = %/drdr’%. (1.60)

They then put the residue kinetic energy due to correlation, exchange energy and cor-

relation potential energy into one term called exchange-correlation energy functional:

Eyelp] = Tlp] = T™[p] + Veelp] — J[p]- (1.61)

Kohn-Sham then model this E,.[p] by the expression of homogeneous electron gas

having the same density p. So the final functional is
Elp] = T™[p] + J[p] + Exzc[o] + Eeailp]- (1.62)

This functional leads to an Euler-Lagrangian equation

1
[—§V2 + Vegt + /dr{rp—(—r2"| + Vze(T) | U = €10 (1.63)



with
6 Ezelp]
Uge(T) = 5o(r) (1.64)
and
N
r) = Zfz-lsbi(r)ﬁ (1.65)

which need to be solved self-consistently. This is the famous Kohn-Sham scheme. The

total energy Ej, is

Ewlp] =S en 2/d dr 'p /drvu (1.66)

n

Levy’s operational definition of F[p] has no practical meaning. To get the exact
E..[p] we resort to perturbation theory. From the last section on perturbation we

have,
(Wo|H|Wo) = (@o|U(—00,0)HU (0, —00)|D0). (1.67)
One can view DFT as an empirical way of modeling
He = U(=00,0)HU(0, —00) (1.68)

which involves the self-consistently incorporation of p(r) from |®g)
In turn, perturbation provides the formal link between E,.[p] and H. The insight of
the origin of E,. can lead to improvement over the current functionals. Improvement

of E,. will be the subject of Chapter 2.
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B p"(r)

-1/2 V2 Ve(r) =4np He M= p ]

Yooy

[-1/2y2+V +V, +u,, 0]V, =€y,
Wn = Z an(b-

j J

% (H;—§S)C, =0

H; = Jdr o, [-1/2 V+ Ve+V, +ch]q>j

S, = dr ¢xro(m

v

P (D=2 | W (r)|

Figure 1.2: The self-consistent solution of the Kohn-Sham equation
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Potentail Basis Sets Core Electrons E.c[p]
periodic plane-waves all electron LDA
non-periodic numerical grid pseudopotential Xa
APWwW® VWN
Slater-type orbitals BLYP
Gaussian-type orb. B3LYP
Gaussian-plane waves GGA

¢ Augmented Plane-waves.

Wavefunction update Geometry update
Conjugate Gradient Analytical derivative
DIIS numerical derivative
Linear Response(C-P) Car Parrinello

Harris Functional

Table 1.1: The implementation choices of the DFT calculation by each part.

1.2.4 Implementations

SCF Procedure

Implementation Choices

The advances in implementations of each part of the above procedure have enlarged
the power of the first principles machinery. Some of these are based on physics of the
electron systems, some on numerical algorithms.

In table 1.1 we listed several choices for each part of a DFT computation program.

For the content of Table 1.1, E,.[p] will be the subject of Chapter 2; Pseudopo-
tential will be discussed in Chapter 3 and Chapter 4. Wavefunction updating and
geometry updating will be covered in Appendix. So here we just briefly discuss the
boundary condition and the basis sets, i.e., the optimal representation.

Representation choices

First, symmetry allows us to block diagonalize the Fock operator, thus significantly
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cuts down the size of the matrix.

system symmetry group representation

Atom Ky, s,p,d,f,....,
Molecule Point group A1,By,Ey, ...,
Crystal Space group ILA,....,

Take the crystal for example. To a good approximation a single electron in crystal
experiences an averaged periodic potential. We can impose the translation symmetry
to simplify calculations. [14]

Plane waves |k) has the periodic boundary condition built in. |k) is the index of

the irreducible representation of space group. Using the Bloch function as basis,

a(l9) = 7 3y (Ry), (1.69)
the orbitals in crystal is
L
l¢nk> = Zunab(a(k))- (1.70)

Minimizing (¢x|H |¢x)/{Px|Pk) leads to secular equation,

L
> Hop(K)ung = Enctina (1.71)
B
with the matrix element
1 (R R
Hap(k) = 1 3 R (. (R)) s (Ry)), (1.72)
ij

which is of the size of the basis set employed for the unit cell. Thus, knowledge of the
translational symmetry reduces the size of the Hamiltonian matrix from 1023 x 1023

to L x L.

Within the irreducible representation of the system’s symmetry group, one still
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o . . o . —or2
has choices over which basis set to use. Gaussian functions z™y"2% %" have been

—iGT and some augementation have been the

the choices for molecules, plane-waves e
choices for crystals, while numerical grid r has been used only for atoms. Recent
pseudo-spectra technology and dual-space Gaussian technology for crystals employed
the optimal combinations of these three representations. [15, 15| These optimizations
are based on the physical pictures of atoms in crystals or atoms in molecules. From
a numerical algorithm point of view, different types of basis functions correspond to
different numerical grids, just like the one used in finite element for fluid mechanics.
The optimal grid is always problem dependent, requiring the foresight of what the
systems should be like. 4
Car-Parrinello’s Ab initio Molecular Dynamics

Electrons move at a speed three orders of magnitude faster than ions, they can
follow ionic movement almost instantaneously. Electron orbitals, therefore, change
at the same rate as ions except at some transition regions. When ions are standing
still orbitals do not change since orbital indices are good quantum numbers of the
electronic Hamiltonian under BO approximation. When Car and Parrinello noticed
that electronic orbitals are dynamic variables of the time scale of ions, 3 they designed
a dynamics whereby one propagates electronic orbitals alongside the ions, instead of
doing self-consistent calculation to get them. [15] The elimination of self-consistent
loop significantly cut down the cost, allowing the molecular dynamics to be performed
with the ab initio PES, which now has a finite thickness. However, the stability of
such dynamics depends on the step size 6R. In a section of appendix we will discuss
the nature of such dynamics. We will show that the time step in the Car-Parrinello

scheme is limited by the extent of validity of linear response.

“In a broader sense, the grid optimization is similar to choosing the sample space in Monte Carlo,
designing the wiring of a neural net, finding eigenvectors, etc..(among these symmetry is the obvious
first step.) They constitute the very procedure of modeling.

Selectron can respond to external field with high frequency, now this external field is the field
produced by {§R;}
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1.3 Review of the Molecular Dynamics Method

All molecular dynamics (MD) and Monte Carlo (MC) methods take PES as its input.
How to get this PES constitutes the subject of the next section. In this section we

shall focus on the MD procedure itself.

1.3.1 NTP Dynamics

All MD assumes ergodicity. To simulate finite temperature properties one must gen-
erate configurations according to the (N,V,T) ensemble. This can be achieved by
incorporating a larger system as heat bath.

By introducing variables to represent the degree of freedom of the heat bath and
other external constraints, one can build an extended system. The Hamiltonian cor-
responding to this extended system still generate a microcanonical ensemble. One
can build the extended system in such a way that trajectory average of the exten-
ded system is formally equivalent to the average over the trajectories of the original

Hamiltonian Hy weighted by the corresponding Boltzmann factor.

(N, P, H) dynamics

[23, 17] In
1 N N
Lo(r, i‘) = 5777/21'@ . r, - Z ’U,(T'ij), (173)
i=1 1<j=1

replacing the coordinates r; by the scaled coordinates p; = r;/V'/3, and considering

the following Lagrangian,

PN | S 1.
L(p: Q. Q) = 5mQ** 3 pi- pi = 37 w(@py) +5MQ* —aQ  (174)
=1 i<j=1
leads to the Hamiltonian form:
oL
= N (175)



I, = — (1.76)

H(pN, 7V, Q,1) = (2mQ**)~ ZW T + Z (QY3pi;) + (2M)™MT1% + aQ(1.77)

i<j=1

The dynamics of L generates the trajectories {p(t), 7(t), Q(t),I1(¢)}. Anderson
showed 8 that average along this trajectory, which is the (N,V,E) average of the scaled
system, for any function F'(r™,p",V), is formally equivalent to (IV, P, H) average of
F along the trajectory of the original L.

(N, T, P) dynamics

Nosé defined the virtual variables (q;, p;, s, V, t) as follows, [5]

q = V'iq, (1.78)
Pi
t

¢ = /dt/s, (1.80)

where (q';,p';, 8, V,t') are real variables. Write the Hamiltonian in terms of virtual

variables as,

2

H = 1/3 ps v -
Z o V2/3 7 O(V0Q) + o5 o gkTIns + 5 + PV (1.81)

Take the virtual variable as canonical variables, the Hamiltonian equations

dq; oOH p;
dt ~ Op;  miV2Bs’ (1.82)

F=cC / dp" dr™ / dQdIl S[H(p",=",Q,1) — EIF(Q'*p", 7"V /Q'*;Q)

Fypg =C / dv / drVdp" §[H(N,p"; V) + PV — HIF(N,pV; V)

F =Fnpy.
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(1.83)

leads to a set of dynamical equations in terms of virtual variables. Replacing the
virtuals back by the real variable leads to the dynamics equation for the real variables,
which produce trajectories in real variables. Again, using the standard coarse graining

method of integrating out the variables in the partition function we have:

7 = / dpydVdp,ds / dpdad(H — E)
= / dpydVdp,ds / dpdqd[Ho(p';, d';) +13/(2Q) + gkTlns + pi,/(2W) + P.gV — E)]

N+1
= ¢ [av [ dp'dqexp [— (3 ; )(Ho(p'i,q'i)wemV—E) . (1.84)

So, for virtual time sampling, with g=3N+1, the equilibrium distribution function is

p(P',q,V) = exp{—[Ho(p,q) + PeaV]/ET}. (1.85)

Because of the momentum and angular momentum conservatidn, the ensembles pro-
,c}uced by the above MD method are slightly different from the usual statistical mech-
anical ensembles.

Whether Nosé dynamics is just a way of generating canonical ensembles or whether
it also represents a physically meaningful dynamics of the system was investigated by
K. Cho and J. D. Joannopoulos, [20] who showed that the thermostat parameters @
in Equation( 1.74) can be chosen to obtain the real physical dynamics.

In Chapter 6 we will use the (N, 7T, H) dynamics to estimate the attempting fre-
quency for carbon cluster reactions. In Chapter 7 we will use it to calculate the

thermal expansions.

Correlation Functions

Correlation functions tell us a postari how the microscopic variable should be averaged
to give macroscopic transport properties. They are the bridges between macro and mi-

cro world. On the one hand, they represent the intrinsic properties of the macroscopic
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system, and on the other hand they can be determined from averaging the microscopic
configurations. For quantum mechanical many-electron system, correlation function
of various observables are directly related to two-particle Green’s functions, which
boil down to the expectation value of creation and annihilation operators and which
can be calculated through Feynman-Dyson perturbation. For classical mechanics the
average is done over the trajectories. They are not determined directly from FF,
rather they are from the trajectories generated by FF.” Now that we have an efficient
way of generating ensembles, we can calculate the correlation functions at any tem-
perature. Furthermore, as contrast to the Monte Carlo method, MD allows one to
calculate the temporal correlation function. The relationship between correlation and
the linear response properties was derived by Kubo in 1959. [19] For example, the

electrical conductivity is related to the current-current correlation.

) = Sy (1) Vib(e) — Vo (<)) — A (<)) (1.86)
oap(q,w) = %f;%ﬂ + ;ll; /_ Ooo dt(¥|[ja(q, 0), jo(—q, )] T)e™™". (1.87)

Examples in classical physics: diffusion constant is related to autocorrelation of velo-

cities {v;}.
D= /0°° dt < v(0)v(t) > . (1.88)

Therefore one can calculate any linear response property by running MD and calcu-
lating correlation functions, which amounts to averaging over trajectories of dynamics

variables.

"Just like Green’s function are not from Hamiltonian itself but from the expectation value of 1)
on many-body ground state wavefunction determined by Hamiltonian.
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1.3.2 Implementation

The advances in implementing the molecular dynamics allows the simulation to reach
a million atoms. The new capacity makes simulations on nanotechnology and large
biological (proteins, viruses) systems possible.

The most computation costly terms is evaluating Coulomb energy summation. It
scaled as N2. Recently advances in implementation has made Coulomb sum a N

process.

Ewald

The slow decaying of [1/R;;]" requires very large cut offs, making direct summation
slow to converge. The local R description hit the local details but misses the long
wave-length phenomenon. On the other hand, Fourier G-space representation hits the
long wave phenomenon, but misses the short wave phenomenon by the finite cut off
G- As a way to calculate the Coulomb interaction in lattice, Ewald [21] in 1921
found a way to combine the R-space for the local and G-space for the long wave. He
- separated the sum into two parts, one of which converged rapidly in real space, and

the other converged rapidly in reciprocal space (Fourier transforms).

Z%:_ZQ@J (717 ”>+ Z%ﬁ” [1—erfc( )] (1.89)

i,5,L RUL z gL UL i,4,L

The first term converged very fast in real space, the second term converged very slowly

in real space. However Fourier transforming the second term leads to

Ek=f;;z e 2h2/4{zczz@acos[h (R, - R;) } VO

which can converge fast using appropriate 7.

Extending the idea to quantum mechanics calculations leads to the dual-space

technology, GDS/DFT. [15]
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CMM

Cell multipole method (CMM) employs the idea of multipole expansion to calculate
the Coulomb energy of a large cluster of charge. The field which an atom experiences,
V(R;), can be divided into two parts, contribution from nearby atoms and the con-
tributions from the distant atoms. For Vi, (R;) we don’t need to evaluate in terms
of the individual atoms. We can group them together and count their contribution by

their multipole expansion. The atoms further away can be grouped into larger groups.

V(Ri) = Vier(Ri) + Vaear(Ri) (1.91)
Vnear(Ri) = Z QJR;JI (192)
jynear
Vier(Ri) = Y VE™*(R; — Ry). (1.93)
A, far

This algorithm scale as N compared with the (1/2)N? scaling of the exact method.
On starburst dendrimers (f-alanine) it is 2377 faster than the exact method. One
can increase the accuracy of CMM by including more atoms into the near field and
including higher multipoles in the far field expansion. Typically including multipoles
up to quadrupole (CMM/2) leads to rms force errors of 0.4 to 0.2 (kcal/mol)/A [22]

The extension of this idea to PBC leads to reduced cell multipole method, or
RCMM. The computation cost for Ewald scales as

T = Crea R ;N + Creciph? ;N? (1.94)

cut

where N is the number of atoms in the unit cell, R.,: and k., are cutoffs for the sums
in real and reciprocal spaces, and Creq and Cyc;p are constants. [23] For large systems,
e.g., million atoms per unit cell, this is not practica. RCMMM, the crystal version

of CMM, cuts the cost to scale N.
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In molecular dynamics simulation of ¥ BayCuzO7 systems(Chapter 7), we will use
the Ewald method.

There are also major advances in solving Newton equations. In studying large
systems like macro-molecules, there are very fast mode and very slow mode. Averaging
out the fast mode when studying the slow mode, or freezing the slow mode when
studying the fast mode lead to the NEIMO dynamics. 8 Since we won’t be using it

in this thesis we will just give the reference. [24]

1.4 Linking QM with MD-Force Field

All MD requires the potential energy surface (PES) as input, with it MD outputs
structure properties related to ions (crystal structures, heat of formation, melting tem-
perature, defect energetic, surface reconstructions, phonon dispersion curves, elastic
constant, bulk and share modulus; phonon density of state, and phonon contribution
of specific heat, thermal-conductivity, thermal expansions, etc.).

Since PESs differ greatly from system to system, having many scales of roughness
and many local minima, it is very difficult to come up with a universal functional that
applies to all the properties of all the systems.

For bindings mainly due to the electrostatic forces, there are successful force field®
for pure ionic crystals, e.g., NaCl. For bindings due to covalent bond there are valence
force field for the pure covalent crystals, e.g., diamond, Cgy. For other materials the
force field could be complicated. In general we need to find the balance between two
extremes, accurate but specific targeting, and general but approximate.

The FF is normally modeled by some functional of atomic position and by fitting
the corresponding parameters to the experimental data or ab initio calculations.

Smart choice of the functional form of the FF, which may not be unique, is crucial
to its accuracy and transferability, and thus the predictive power. Physically the ques-

tion is “to what type of approximate solution of the electronic Schrodinger equation

8Classical analogous of Born-Oppenheimer approximation.
“Here we use force field, potential energy surface, interatomic potential, interchangeably
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does the energy functional correspond?” [26] Often, the empirical fitting schemes tend
to reproduce well the properties they fit with and do poorly for other properties. For
instance, FFs fitted to Hessians would not give accurate prediction of the thermal-
conductivity, since the latter is due to anharmonicity, a realm beyond the harmonic
approximation. Another example is the defect energetics, where a drastic change in
local electron density makes the FF around the defect quite distinctive from the bulk
ones. So in doing MD simulations one needs to constantly be aware of the power and

limitation of the force field one uses. We will give detailed examples in Chapter 7.

1.4.1 Covalent and Ionic FF

The binding between atoms can be categorized into reducing kinetic energy and redu-
cing the electrostatic energy(including exchange). The former makes covalent bond,
which is directional, short ranged, and has a fixed number of coordination, while the
later makes ionic bond, which is pure attraction, is long ranged, isotropic, no satura-
tion. Correspondingly one can divide force field terms into bonding and nonbonding

terms.

Eff = Eyu+ En (195)
Eval = Ebond + Eangle + Etorsz'on + Einv (196)
Eny = Euaw + Eq (1.97)

Nonbonding Force Field

Potential Derived Charges and Charge Equilibrium [25]
Using point charge to represent electron cloud is only well defined for the far field.
Far field criterion gives the definition of the potential derived charge(PDC).
For large systems, calculating PDC at each geometries is too expensive and does
not serve the purpose for cases like calculating polarizations and running dynamics.
Charge equilibrium method(QEq) is an efficient, physics based method. The central

idea is to treat charge as a gas that flows between spherical atoms of radius {Ra}
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until the chemical potentials are equal(like the grand canonical ensemble). The charge

free energy Eg is

Eq=7) FEa(Qa)+ > QaQpJap(Rap) (1.98)
A ASB
where
0 1 o 2
E4(Qa) = Eo + x2Qa + §JAAQAa (1.99)

with x® = (IP4+EA,)/2 and and JS, = (IP4— EA,) determined by the atomic ion-
ization potential(IP) and electron affinity(EA). The function J45(R4pg) is the shielded

Coulomb interaction between the two atoms.

0Fq _

50 =" (1.100)

leads to a set of linear equation for the unique equilibrium charges {Q4} at a given
geometry. QEq is successful in organics systems and semiconductor systems. But for
ceramics like Y BayCu3O7 system we found that Qeq gives charges too small(about

half for Y and Ba).

Bonding Terms

Functional form

Bond stretch,
1 2
Estretch = §kr(R - RO) (1101)
Bond angle,
1 2
Eangle = Ekg (cos(8) — cos(6y)) (1.102)

Torsion, Inversion, etc, are also standard and available in POLYGRAF manual.
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Force field parameters
The parameters, e.g., k., kg, Ro, 0o, etc., are tuned against either ab initio Hessians
or experimental vibration frequencies. Once determined they are used for predicting

new properties.

1.4.2 Metallic Force Field

The delocalized electrons in metals make them quite different from either ionic or
covalent bonded crystals. Upon bonding, the change of electron densities are centered
on the interstitial regions, [31] rather than on atoms as in ionic crystals or at the bond
mid point as in covalent bonded crystals.

Based on this picture Li and WAG proposed interstitial electron model (IEM). [30]
In IEM electrons are represented by classical particles. Pair wise potential between
these interstices and ions are constructed. The parameters in the potentials are fitted
to experiments. Explicit inclusion of the valence electrons in the interstitial region
achieves the anisotropic description without using angular force.

Another force field commonly used for metal are based on the tight binding theory
of electrons. For example, the following form is used with success in studying the

transition metals Zr(zirconium) [29]

E.=A ) exp [—p (%:— )} —\\)\2 > exp [—2(] (ﬁ— )] (1.103)

T35 <Tec rij <Tec To

The first term is the Born-Mayer type repulsion term. The second term is the second-
moment approximation of the tight-binding band energy.

Other forms of force field include embedded-atom-method 19, etc.

E=3F (Z fj(ﬁj)) + % > ¢ij(rij). (1.104)

i J#i

The first terms takes up the change in kinetic energy which is determined by the elec-

10Effective medium theory, embedded atom method, pari-functional methods all refer to similar
method.
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tron density. The function f(R) is the electron density at a site due to the neighboring
atom. F is the energy associated with placing an atom in that electron environment.
The second term takes up the potential energy. {¢;;} represent the Coulomb or van
der Waals interaction.

We see the force field varies greatly from system to system. This is the case
because of the phenomenological nature of the force field. One need first to identify
the system and then choose the force field accordingly. Deriving an accurate FF is very
important, for it underlies the atomistic simulations. As a tool it allows us to study
large systems efficiently. This tool is getting sharper and sharper. We will illustrate

the functionality of force field in the Part IT of this thesis.

Semi-empirical Theories

Yet another class of approaches in trading accuracy for speed are the semi-empirical
(SE) methods. The semi-empirical methods use the first principle functional and
make universal approximations. By neglecting some integrals(INDO,MNDO), setting
up some cutoffs, reinterpreting certain terms, of the Ab initio method etc., the SE
method can save cost substantially. Examples are Harris functional, [27] tight-binding
total energy calculation, [28] etc. But the justification for the SE methods lies a postar:
on their performance, and they can’t be tailored individually, the predictive power of
SE methods, thus, is limited. On the other hand, one can envision a hierarchy of
SE methods to bridge the Ab initio and MD method, to manage the different level of
accuracy of an PES efficiently.

1.5 Summary

There has long been the dream that theory(quantum mechanics, molecular dynamics
and statistical mechanics) properly incorporated into computer software could be used
to design new drugs, new chemicals, and new materials. The advances outlined in
this chapter foretell the enormous potential opportunities for applications to problems

previously unattainable. With the advances in each level of the hierarchy models, the
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range of each grain increases, and the linking between them becomes more accurate
and more efficient. We have reason to hope that, with the advances in hardware

technologies, the long held dream will be realized.
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Chapter 2 Generalized Gradient
Approximation of DFT

2.1 Introduction

2.1.1 Overview of DFT

Thomas and Fermi [1] independently proposed a density theory in 1927 to treat the
the many-electron systems. Thomas-Fermi(TF) theory picturizes the many-electron
system as being made up of many regions of locally homogeneous electrons gas. The
total energy, ETF, is the integral of the local energy densities ¢(r). TF theory used
the uniform electron gas expression for this e(r). Then variational principle is used
to find the ground-state density py. After Hartree-Fock equation is proposed (Hartree
in 1928 and Fock in 1930 [2]) the orbitals have become the dominant description
of the many-electron systems. Because of the nonlocal nature of exchange operator,
HF equation is a differential-integral equation. Slater(1951) [3] proposed replacing
the exchange operator by a local one. He modeled the exchange potential after the
homogeneous electron gas and introduced an adjustable parameter «, giving the name
X, method. The local potential leads to a differential equation. In 1965 Hohenberg,
Kohn and Sham developed the density functional theory(DFT) that not only put
Slater’s method on a formal basis but also allows one to incorporate the correlation
energy term F,[p]. Kohn-Sham scheme is very successful and has been very popular
in solid-state physics.

With the advances in computational methods, [15] the non-locality of exchange-
energy matrix is no longer the most important issue. On the other hand, the de-
velopments of gradient corrected methods [5] elevate the accuracy of DFT to that of

MP2 [1]. Now DFT is used mainly as an efficient method to incorporate correlation.
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For crystal calculations DFT is the only cost-effective choice. For molecules calcu-
lation, the HF based Ab initio method with the incorporation of correlations are in
many places replaced by DFT, due to the laters economic way of incorporating the
correlations.
DFT is now a practical tool to study both the structure of matter and electronic

structure, both in crystal and in molecules.

2.1.2 Hohenberg-Kohn-Sham Theory

Before going into the details of the standard Kohn-Sham DFT theory and the sub-
sequent gradient corrected form we would like to point out some subtle flaws of its
formulation. Our new understandings lead us to the new functionals which for the
first time restored the Koopman’s theorem in DFT. This constitutes the major step
toward improving the accuracy of DFT in predicting such properties like band gap
and other excitation spectrum.

Hoherberg and Kohn showed that at the ground state there is a unique density pg
and that ground state energy Ej is a unique functional of this py. [7] They “proved”

it by comparing such ground state energy E, with that due to a different external

!
ext*

potential v They had assumed that, except for some pathological distributions,
all the distribution p(r) can be realized by some external potential v, (r). Levy [8]
pointed out this is not true and the condition under which this holds constitutes the
subject of N — representability. [1]

We will show that what HK have proved is something trivial, just by definition it
has to hold. While what they used implicitly is not proved. For an N-electron system,
Vegt defines the system. Obviously, given a v, there is only one p(r) at ground state,
since ¥y determines py. And, being an observable, py has to be unique. ! Therefore

at the ground state the mapping Fy[po] from the density distribution py(r) to a real

number Fy has to be one-to-one.

!since there is no unitary transformations to play around, as in the case of orbitals.
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A Lesson From Equilibrium Thermodynamics

In thermodynamical equilibrium, (u,T,P) determines the state of a system. At equi-
librium, the variation w.r.t. N leads to another thermodynamical equilibrium quant-
ity chemical potential p: 0G/ON = u(N,T,P). On the other hand the search for
the equilibrium, G = 0, requires variation w.r.t. the finer grained variable which
has meaning away from equilibrium state, i.e. the probability distribution of mi-
croscopic quantities, p(H({q,p})). Thus G = 0, while assumed conceptually in
thermodynamics, has to be carried out with a finer grained theory, in which the
thermal equilibrium “states” is just one kind of averaging for the microscopic states.
In the fine grained theory one can assign the probability distribution to each fine
grained states, and from which construct the entropy, s = —kp Y_; pilnp;. Find the
probability distribution that maximize the entropy and identify this probability with
thermodynamical equilibrium “states”. This way one can get the equilibrium probab-
ility distribution, po({q;, pi}) = e"(FUaPH=1N)/ksT and the equilibrium free-energy
G, N,T) = —kpTIn( g pi} e~ (F{aipi)-uN)/ksT) e noticed that for the equilib-
rium states only energy E({q;,p;}) — uN and the density of states matter, detailed
microscopic description {q;, p;} doesn’t.

In steady state one can extend the thermodynamical equilibrium to have spatial de-
pendent u(r), where r is a macroscopic position vector representing a microscopically
large block of space.

In deriving Hartree-Fock equation(see Chapter 1) the variation is w.r.t. {¢;}. In
DF'T, on the other hand, the variation is w.r.t. p, which is a massive coarse graining

of the orbitals, p = 3, |#:|?.

A Lesson from Variational Calculus

Near the ground state, one can expand the unknown energy functional E[p] around

the ground state density py.

Bylp] = ES{po] + [ ‘;—f oodr+ [ [ ;Sp(%(—)- o 09(x)3p(x')drdr’ + O((3p)°)
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(2.1)

Note that the mapping from the ground state electron density py to ground state
energy Ej could be totally different from the assumed mapping between the variable

p and energy functional E. Clearly, using

6 Eo[po] -

dpo(r) ’ 22)

to find py is not legal. So unlike the Lagrangian or Hamiltonian, which is used to
derive the ground state, the ground state energy functional Eq[po] should not be used
for deriving the Euler-Lagrangian type of dynamical equations.

Hohenberg and Kohn [7] assumed implicitly that E[p] and Ey[po] are of the same
functional, at least near py. In their argument they are assumed that all density distri-
butions can be realized by an external potential ve,;, a property called v-representable.
Levy provided a more rigorous arguments, [8] enlarging the domain of the possible p(r)
from v-representable to N-representable®. Here we shall illustrate that py as constants
of density-space should be incorporated in E[p] as parameters, i.e. E[p; po].

For instance, in homogeneous electron systems, po = N/V, with particle number
N and volume V being the global constraints. Then the exchange-energy functional
should be E.[p; N,V] = E,[p, po]. Thus for different V's there are a bundle of E,[p]s.
The ground state value E[po; N, V] for each V fall onto a curve. It is this curve that
LDA has assumed to be E,[p], see Figure 2.1.

In this chapter, we will first follow Kohn-Sham scheme and show how it works for
various systems. Then we shall introduce a new functional, based on our new under-
standing of the DFT. We shall show how the new functional improves the calculations

of the eigenvalues(orbital energies), a problem that has muffled the power of DFT for

2As discussed in the appendix, the word functional, variation, and the square bracket [p], are
nothing but the extension of many-component function F(¢;, @2, ¢3, ....) to the continuum. (A mani-
fold) This continuity allows one to define derivatives of any order, thus enlarge the space from {#(r)}
to {4(r), Vo(r), V2¢(r), ...}.

3p(r)s that correspond to all possible many-particle wavefunction Us.
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Figure 2.1: The bundle of E,[p]s corresponding to different Vs of a box of homogeneous

electron gas. Imagine V' being the third dimension perpendicular to the paper. The
ground state density po = N/V is just a combination of constraints N and V.
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30 years.

Kohn-Sham Equation

From the energy functional E[p] we get an Euler-Lagrangian equation for ground-
state density po by dE[p]/d0p = 0. Introducing orbitals ¢;(x) that satisfies p(r) =
237° |¢s(r)[?, we can do variations with respect to ¢;(r): [10]

gf E‘;]) =0 (2.3)
which leads to
(=372 + veas) V() + 0o (1)}64(2) = i) (2.4
where
V2 0eu(x) = ~4mp(x) (2.5
and
velt) = ] (2:6)

The fundamental permutation symmetry of Fermions are best encoded in the formu-
lation in terms of orbitals, though these orbitals are themselves not observables. As
a first approximation, one assumes that E,[p] = —C, [ p*3dr, with C, = s (%)1/3
an expression for the homogeneous electron gas of density p. This is the famous

local-density-approximation (LDA).

2.2 Generalized Gradient Approximation

The LDA neglected the gradient(]Vp|) effect. From the very beginning people have
tried to incorporate the |Vp| effect into the energy functional E.[p]. The direct
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expansion of E,.[p] [7] in terms of |V p|,|V?p|, etc. could lead to divergence. Further
more, as Perdew and Wang pointed out [11], the exchange energy functional E,|p]

have to satisfy certain constraints arising from the exact expression:

Ezc = %//dr1dl‘2p(rl)pzc(r1,r2). (27)

T12

For instance, the hole normalization constraint

/erpm(rl,rg) — 1, (2.8)

and the asymptotic behavior for exchange energy density €, (r):
1
Epe(r — o0) = ) /dr@. (2.9)

One must formulate E,[p] that satisfies those constraints.
The degree of inhomogeneity can be measured by the de Brogie wavelength ),

which is measured by the Fermi wavevector k. Define the reduced density gradient

|Vl

- 2.1
5= g (2.10)

where kp = (372p)!/? is the Fermi wavevector of homogeneous electron gas of density
p- 8 = A/l is a measure of the inhomogeneity, A is the de Brogie wavelength and ! is
the extent of smoothness. Thus the inhomogeneity could either be due to the large A
or due to the small I. At the bond midpoint, |Vp| = 0, s is zero, as expected. But
near the nucleus where the density is high, thus the ) is small, the reduced gradient s
could also be small. Figure 2.2 shows the spatial distribution of the reduced gradient
s from Ar atom. Notice the shell structure reflected in s(r). s becomes very small

each time |V p| becomes zero. Also we learned that the important regions are s < 2.5.
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Figure 2.2: The spatial distribution of reduced gradient calculated for Ar atom. s =
|Vp|/2kpp. T is in unit of A.
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2.2.1 Gradient Corrected E;|p]

A general energy functional of p and |Vp| can be written as

E,lol = [ f(p,5)ar. (2.11)

Expanding the exchange-hole correlation, Perdew [11] proposed the generalized gradi-

ent approximation, GGA, which has the following form:
ESGA[] = —C, / P (s)dr. (2.12)

(Namely, he factorized the f(p, s) in equation 2.11.)

For homogeneous electron s — 0, F'(s) — 1; for electrons in molecules and atoms,
F(s) need to be determined. Here we performed HF calculation on a set of atoms
and molecules. From our calculation we can get the exchange energy density e,(r).
This e,(r) divided by elP4(r) gives the factor F'(s) = F(s(r)) for each case, see
equation 2.12. Figure 2.3 2.4 shows such a F'(s(r)).

We observed that F'(s(r)) fall more or less onto one curve. This allows us to
model the e, by a universal function F¢%4(s). We noticed that F(s) is not single
valued at s = 0. It has two major branches. However, the lower branch arises from
those regions of s which correspond to the high kr at the nucleus. As one can see in
the figure 2.2, this region of s is in the extreme vicinity of nucleus. So this branch
contributes very little to the total energy. We can safely ignore this branch altogether.

We adopted an analytical expression due to Becke [12]

b z?
F(s)=1+ 2.13
) =1 30 15 Gbalne + VIt o) (218)
with
Voo
r= |p4’/’3’ = (487%) 13, (2.14)

po = 0.5p is the density of spin component 0. b=0.0042 a.u. comes from the fitting.
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Figure 2.3: ESG4[p] scale factor F(s) = ef¥(r)/eLPA(r) versus s(r). F(s) of all the
cases fall onto one curve. HF is done with 6-31G* basis set.
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Figure 2.4: ESG4[p] scale factor F(s). A closer look shows that there is a major
branch at the very small s. This region corresponds to the extreme vicinity of nucleus
and has a negligible contribution due to small volume element.
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ELDA EGGA EHF EGGA — BHF (cV))
He -0.86221 -1.023625 -1.026732 0.08
Be -2.317598 -2.670203 -2.682562 0.34
C -4.400052 -5.013522 -95.029892 0.44
0] -7.260082 -8.130775 -8.135856 0.14
Ne -10.998326 -12.131625 -12.126511 -0.14
Ar -27.792172 -30.111732 -30.181348 1.89
H, -0.552381 -0.655275 -0.653440 -0.05
H,0 -8.099892 -8.996603 -8.978400 -0.50
C2Hg -11.139656 -12.481290 -12.523264 1.14

Table 2.1: Exchange energy by GGA compared with LDA (exchange only) and HF.
Energy unit is Hartree.

Becke designed this formula to reproduce the asymptotic behavior(see equation 2.9).

In Figure 2.3 2.4 we compare our fitted F'(s) with that from HF. The overall fit is
excellent. A closer look of F'(s) shows some minor scatterings. How does the quality
of the overall fit translate into the accuracy in reproducing the HF exchange energy?
Table 2.1 listed the ESS4 calculated with equation 2.12 with our fitted F(s). We can

see that GGA with Becke’s formula [12] made significant improvement over LDA.

2.2.2 Gradient Corrected E.[p]

There are two commonly used approximations to E, in DFT calculations. One is from
the Jastrow type of wavefunction [13] due to Colle and Salvetti [14] and its density
formulation(including gradient) by Lee, Yang and Parr [15]. The other is based on the
accurate Monte Carlo calculation on uniform electron gas by Ceperley and Alder [16]
and its Padé analytical fit by Vosko, Wilk and Nusair(VWN), [17] and later by Perdew
and Wang. [18] For calculating the electronic excitation spectrum e;, on the other hand,
GW method based on the Feynman-Dyson perturbation is usually used. [19, 20]

In this work we add the gradient correction to the E,[p] of VWN due to Perdew and
Wang. [18] [5] Our result is shown in Table 2.2. More than 90% of the experimental
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E,. EHF —FE. —E.(Expt.)
(Hartree) (Hartree) (ev) (ev)
He -1.071565 -1.026732 1.2200 1.14
Be -2.768872 -2.682562 2.3486 2.57
C -5.189122 -5.029892 4.3321 4.26
0O -8.406445 -8.135856 7.3632 7.02
Ne -12.526312 -12.126511 10.8792 10.61
Ar -30.907508 -30.181348 19.7600 21.42

Table 2.2: Correlation energy calculated with GGA compared with experiment. 6-
31G* basis set with S=0.

HF LDA GGA expt.

Cy 0.73 6.07 7.01 6.36
CyH, 18.71 27.51 24.71 24.65
C2Hg 24.61 34.48 31.16 31.22

Table 2.3: Atomization energy calculated with GGA compared experiments, together
with HF and LDA. Energy unit is in eV’

correlation energy are recovered in these cases.

Combining the gradient corrected E.[p] with E.[p], we get a much improved at-
omization energy. Table 2.3 shows our calculation on some systems. The equilibrium
geometries are not very sensitive to whether one uses HF or LDA or GGA. All of the
theories give bond lengths to within 0.024 and bond angles to about 2°. Pople’s group
had documented the performance of a family of density functional methods [1] and
reached the similar conclusion. We conclude that with GGA E, and GGA E, DFT

becomes a practical method of getting the structure and atomization energy (cohesive

energy).

2.3 Band Gap and Optimal v,

Photoemission spectra, electric conductivity, photoconductivity, superconductivity,

and many others are determined by the electronic structures. These properties depend
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sensitively on the detailed shape of one particle potentials. DFT, by providing orbital
energies through eigenvalues of Kohn-Sham equation, is a first principle tool to pre-
dict electronic structures. DFT can give the correct band-structure of a crystal, e(k),
but the band gap E, is always off by a factor of about 2/3. In this section we first
analyze the nature of orbital energy and show the condition for the correct one-particle
potential v, (r), which directly effects {¢;}. Then we propose a new functional whose
v.(r) satisfies these conditions. We will show that our functional leads to the much

improved eigenvalues, {e;}.

2.3.1 Band Gap and (IP-EA)

The electron affinity(EA) is defined by

FEA=E(N+1)—-E(N). (2.15)
The ionization potential(IP) is defined by

IP=E(N)—-E(N -1). (2.16)

The band gap E, is defined by E; — E, the energy difference between the first excited
states and the ground state energy. As a commonly used approximation, in both HF
and DFT, the band gap is calculated as eryao — €goaro. This scheme found its base
on Koopman’s theorem in HF and VonBarth’s derivation for DFT [21]. But, as is well
known, such a scheme in HF gives a band gap almost twice as large as the measured
one, while in DFT gives only about half to 2/3 of the measured one. In crystal,
since adding or removing one electron wouldn’t change the whole band structure,
—egomo = IP and —erypo = EA could be used as the zeroth order approximation

upon which to add perturbation terms. So

Eg = €LUMO — €CHOMO = IP - FA. (2.17)
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6sahni GHF 5esah,ni 6Talman 6HF 66talman
C -0.409 -0.434 -0.025 -0.40 -0.43 -0.03
Ne -0.8565 -0.8505 -0.006 -0.86 -0.80 +0.06

Table 2.4: Highest occupied orbitals calculated within work formalism of Sahni [22]
and calculated with Talman’s scheme. Both are calculated on a radial grid and used
spherical average. Energy unit is in Hartrees.

In atoms, however, the addition or removal of an electron would change the orbital so
much that egoro — €Lumo is not an accurate description of the /P — EA at all. So
we use the equation 2.15 and 2.16 to calculate IP and EA. For molecules, one needs
to find the optimal trade off between the costly but accurate Eo(N) — Eo(N — 1) and

cheap but approximate e;yryo — €gomo-

2.3.2 Eigenvalue Problem

For HF the problems are (i) Neglecting the correlation energy; (ii) the virtual orbitals
are not accurate enough, since all the resources are used to make the optimal set
of occupied orbitals that enter the E;, calculations. For LDA the problems are the

wrong asymptotic behavior and self-interaction (SI).

One-Particle Potentials

Eigenvalues are very sensitive to the one-particle potential. In HF the SCF potential
an electron feels is orbital dependent, or nonlocal potentials. Following Slater’s X,
method of 1951, there are many developments to replace the nonlocal potential with
a local one, most noticeably the LDA potential v, = Cp(r)'/3. In 1976, Talman and
Shadwick [23] devised a method to extract such local potentials. Talman’s scheme
involves minimizing the expectation value of the Hartree-Fock Hamiltonian and leads
to a complex linear integral equation for the local exchange potential. It can reproduce
eigenvalues of HF to within 5%. [23] See table 2.4.

In 1989, Sahni’s group proposed the work formalism. Imagine an electron located
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at the r'. Its Fermi hole charge distribution p,.(r’,r") created an electric field strength

Eq(r') = /pmc(r’,r”)wdr" (2.18)

!
Irl _ rHI

The work done in bringing an electron from infinity to r against this electric field,

Wyelr) = — / " Epe-dl, (2.19)

o0

is the local effective exchange-correlation potential seen by the electrons. This wy.(r)
has to be derived from SCF solution with the orbital representation of the exchange
hole py.(r,r’). The work formalism provided the physically appealing interpretation
of the exchange potential. For most atoms, it leads to eigenvalues and total energies
that are within 10mH of that by HF method. (Table 2.4.) This established that the
nonlocal exchange potential, at least in atoms, can be accurately represented by an
effective local potential. However, the cost of work formalism is larger than that of
HF, since on top of the normal HF SCF, it requires the integration of equation 2.18
and 2.19.

GGA Eigenvalues

Talman [23] showed that the effective local potential v,[p] has to have the asymptotic
behavior [23]

Ve = —1/7. ~ (2.20)

In LDA both e, and v, — e™*" as r — oco. This is because the LDA e, and v, are

expressed in terms of p'/3

which decays exponentially at infinity.

By design, Becke’s analytical fit(equation 2.13) can give the correct asymptotic
behavior for e;, the exchange energy density. But the variational relationship v, =
0E;/dp(r) leads to quite different asymptotic behavior for v,. This is why that
even though EF¢4 gives good total energy it does not improve the eigenvalues, see

Table 2.5. Clearly, we need to improve the GGA exchange functional 2.12.



59

EGGA EXF homo®G4 homo® ¥
He -2.853999 -2.855160 -.539726 -0.9149
Be -14.560105 -14.56676 -.170738 -0.3013
C -37.588045 -37.585673 -.138214 -0.3420
0] -74.672631 -74.656607 -.251667 -0.5758
Ne -128.496452 -128.474402 -.396733 -0.8306
Ar -526.745126 -526.773735 -.330767 -0.5900

Table 2.5: HOMOs calculated with GGA-exchange-only compared with HF. 6-31G*

basis set with S=0. Energy unit is in Hartrees

The New Functional

We propose a new functional that has the correct asymptotic behavior for both the

energy density e(r) and one-particle potential v, (r).

One can assume that the constraint search [8] gives, close to the true ground-state

density po:
Em[p] = —Cw/p4/3F(50)65(P—P0)/p0dr°
Then we have

E4[po] = —Cz/P§/3F($o)drs

and

vo| = —Cupt*F(s0) (% +5) = (g +ﬁ) €z,

PO

where
€x = — mp(1)/3F(30)

and B may have spatial dependence.

(2.21)

(2.22)

(2.23)

(2.24)

Note that equation 2.21 cannot be considered as a known functional since we don’t
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know pg(r) other than that it exists and is unique.
According to their asymptotic behavior (see equation 2.9,2.20) we have v, = 2¢,
at r — 0o. Thus we have § = 2/3 for r — oco. For simplicity, we assume (3 to be a

constant, independent of positions. The proposed exchange energy functional is then
E.lp] = —Cx/p4/3F(so)62(""”°)/3”°dr. (2.25)

Variation on this E;[p] leads to the following relationship:
vz(r) = 2€4(r). (2.26)

The key feature of functional 2.25 is that the gradient term s does not participate in

the variation §E,/dp.

In the case of homogeneous electron gas, F(sy) = 1, ¢, = —C,p*/3.
3 1/3
vy = —2C,p' = —g (—) p3. (2.27)
T

This is exactly the exchange potential of a homogeneous electron gas averaged over

k, the orbital quantum number for the uniform gas.

Proof:

k? 4
Wke = -2—-n—L — 1/Q ; ?nk.*_q’o-. (228)

The sum over q can be performed and gives

k? k% — k2 |k+kp
Wke = :2-;n— - ]CF/27T <2 + kkF In ’k _ kF ) (229)
k‘2
k2
= — — (k). (2.31)

2m
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EGaG4 EAF homoS99A  homoHF
He -2.8491 -2.85516 -0.8897 -0.9149
Be -14.5570 -14.56676 -0.3238 -0.3013
C -37.5594 -37.58567 -0.3589 -0.3420
Ne -128.4406 -128.47440 -0.8221 -0.8306
H,0O -76.011392 -76.04940 -.489160 -0.497470
CyH, -79.194130 -79.20862 -.520626 -0.483115
glysine -282.819449 -282.844442 -.414989 -0.397651

Table 2.6: HOMO calculated by the GGGA method. 6-31G* basis set, S=0. Energy
unit is in Hartrees

Averaging over all occupied states, i.e., the Fermi sphere, leads to

v, = —I;—;F(k/kp“) (2.32)
1/3
e e
where we used
F(k/kF)=Zik3— [ dkr(k/ke) =3, (2.34)
k3 Je<kr

Q.E.D.

Slater put a factor « in front of the above expression for v, and LDA gives a = 2/3.
Our functional shows that a should be 1. We shall refer our new functionals as
the generalized generalized gradient approximation, GGGA. For a nonhomogeneous
electron system, the gradient factor, F'(sq) plays the role of setting the scale. We have
tested our new functional on several atoms and molecules. The results are listed in
table 2.6. Our functional 2.25 reproduces the HF eigenvalue to a good accuracy.

Comparing with Talman and Sahni in Table 2.4, both of them use orbitals and are
very costly, our GGGA gives the same accuracy in eigenvalues at a much less cost.
The new functional is still a density functional. It does not evoke orbitals.

Since our functional requires as constants the ground-state density po, which is
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eLDA (GGA (GGGA cHF ¢GGGA _ HF
C -9.8685 -10.0190 -11.0990 -11.3461 0.247
-0.4298 -0.4415 -0.6969 -0.7099 0.013
-0.1415 -0.1382 -0.3590 -0.3422 0.017
Ne -30.1933 -30.4461 -32.1177 -32.7628 0.645
-1.2105 -1.2319 -1.6708 -1.9120 0.241
-.38266 -0.3891 -0.8221 -0.8306 0.008

Table 2.7: Eigenvalues calculated with the LDA, GGA, GGGA method and HF. Our
calculation is on 6-31G* basis set and uses spherical average. Energy unit is in
Hartrees

unknown, the evaluation of the E,[p] has to be done in an iterative way. (Similar to
the case of natural orbitals, [20] which uses the eigenfunctions of the density-matrix as
the fastest converging basis for Hamiltonian without first knowing the density-matrix.)
Here the bootstrapping process is just the normal SCF procedure. Like in ordinary

calculus, one is always safe in plugging the py after the variational

_ dEz[p]
dp(r)

Uz (1) (2.35)

is done, and since the Kohn-Sham equation itself is solved self-consistently, we can
safely switch the order between finding p in KS equation and setting p equal to py.
After all when we find the SCF p, it is assumed to be our py.

This scheme gives F},; close to the exact one(HF) but leads to slower convergence
than the GGA. Also, we noticed that some of the eigenvalues are larger than HF while
some are smaller. As one can see from Table 2.6, our GGGA improves eigenvalues
{&} from within 50% to within 7% of HF while only worsening the E,, by less than
0.07%. (see Table 2.6)

We also tested a scheme whereby one performs the normal GGA and uses v$¢%4 to
get the eigenvalues after the SCF. Our tests show that such a scheme leads to results
closer to that of normal GGA, i.e. better E,,; but bad ¢;. We found that v¢G4 and
vg9%4 lead to two different densities, which lead to different {¢;} and Ejy.

The EZFC94 are off by about 20mH. Though it is only about 0.07%, it is too large
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for calculating atomization energy. However, in calculating the atomization energy the
important quantity is not the absolute energy but the energy difference. The error in
atomization energy should be much smaller. The tests are underway and results will
be presented later.
The successful improvement of eigenvalues by our GGGA indicates the importance
of having the correct boundary condition (asymptotic behavior) for the eigenvalues

problem.

Self-Interaction

E.ou include self-interaction energy(SI), as is evidenced by hydrogen atom.

Beout = -;—/drldrzl¢0(r1)l2|¢0(r2)|2 (2.36)

T12

E[p] should include the SI to cancel exactly the SI from Coulomb term. This require-
ment, while satisfied by HF, is not met by most DFT functionals. Compare the total
energy expression for HF and DFT:

occ. 1 occ.

BiE =22 a5 3 (0ol o) ~ @l o)), @3

occ.

EDFT =2 Z €& — = / Mdrldrz + Epolp] - / vee(r)p(r)dr.  (2.38)
Take He atom for example where all E,[p] should be self-interaction. We should have,

PP po] — [ drvae(r)plr) = — B[ (2.39)

if we want to have EPFT = EEF we must have:

[ va(@)po(x) = 2EPFT 4] (2.40)
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But for LDA we always have

4
[ s(@)po(x) = SEEPA]p) (2.41)
Thus the requirement is not met. On the other hand, our new functional 2.26 satisfies
this requirement. So at least in this case our new functional is self-interaction free.
Fermi and Amaldi [1] realized this in 1934 and proposed the simple self-interaction-

corrected formula

Eeoulp] = NA_, ! / / P (rlr)lz %2) e iy (2.42)

Perdew and Zunger proposed the self-interaction-correction (SIC) version for a given
approximation of E;. [24]. SIC improves the total energy calculation E;, and the E,,
E. separately; It improves the eigenvalues, giving better band gaps; It also gives the
correct long range behavior of the potential and density. However, SIC posed con-
siderable cost increase. In fact, it requires the potential v, to be orbital dependent,
already deviate from the spirit of an economic density functional, moving toward ab
initio orbital representation. Self-interaction, long range behavior, eigenvalue prob-
lems all seem to be related. Since the complicated SIC usually can give the correct
band gap, and since our new functional can also be self-interaction free, at least for
some cases, we can hope that the new functional 2.21, with more sophisticated choice
of B, e.g., B(po, S0), will give the right energy band gap. For its computation effi-
ciency, this will be the first practical theoretical method for the accurate prediction of
the energy band gaps. Further test need to be done to see whether this is actually the

case.

2.4 Summary

The orbital nature of the QM has deep roots. Using observables alone to represent
QM has a fundamental problem due to Bell’s inequality. However the lure of possible

savings and the appeal of building theories with observables attracted many attempts
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to build density theory. All of such theories involve modeling the various terms of

total energy with that of known systems.

Eiolp] = Tlp] + Veelp] + Eeatlp]
= To[p] + Ecoul[p] + Ez[p] + Ec[p] + Eext[p]' (243)

The last term from electron-ion interaction depends strictly on density only. Thomas-
Fermi theory model all energy terms after a homogeneous electron gas, kinetic en-
ergy as well as potential energy. The kinetic energy functional was too crude and
Fermi-Dirac distribution is hard to implement. Parr and Yang [1] documented sev-
eral attempts to improve the kinetic energy functional using only density and its
gradient. Kohn-Sham’s DFT treats the kinetic energy with orbitals, leaving potential
energy functional to density. With gradient correction such approach enjoys great
success due to the error cancelation and relative insensitiveness of potential energy
to density error. It has been developed into a practical tool of structure calculations.
Further extensions like Hartree-Fock-Kohn-Sham treat the exchange part, the major
non-classical energy term, exactly, leaving only the correlation energy to density rep-
resentation E.[p]. But the improvements are not satisfactory (10% errors in atomic
correlation energy [25]) due to the lack of error cancelations. Becke recently argued

that DF'T needs to have a mixture of exact exchange and density functional exchange,
Eqge = ERFT + ao(EE®eet — EDFT) (2.44)

due to the “adiabatic connection”. [26] Finally in self-interaction-corrected (SIC)
scheme, v,. bears the mark of individual orbitals. [24] The results are better but
the cost also goes up.

Nowadays, gradient corrected DFT, with density representation for potential only,
has become a practical tool. It delivers, on average, an MP2 accuracy for structural
calculation at a significantly smaller cost. Comparing with the local MP2 [?] DFT

requires much smaller memory. However, KS eigenvalues are typically too shallow by
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50%. In this work we provide a direct and an easy way to improve the eigenvalues
within the density approach. Our approach rests on the fundamental assumptions
of DFT and takes advantage of the asymptotic behavior to determine the relevant
parameters. The exchange-only version gives eigenvalues very close to those given
by HF, demonstrating the importance of having the right boundary condition on the
eigenvalues. Further incorporation of correlation energy functionals would leads to
the long sought after improvement for predicting the energy band gap.

Here we can see the interplay between the bottom up(Ab initio) and empirical,
top down (F.) approaches at the level of fundamental tools. Calibrating F'(s) against
HF result, extracting E.[p] from quantum monte carlo, etc. This kind of interplay

between computing and modeling is the optimal approach in material simulation.
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Chapter 3 Separable First Principles
Pseudopotentials For Density Functional

Calculations

Abstract
We describe a general method to generate transferable separable pseudopotentials
(PP/S) for any element of the periodic table. With PP/S, the effort in calculat-
ing the matrix elements for localized basis sets (e.g., Gaussians) or for plane-waves
scales linearly with the total number of basis functions. We illustrate the approach
by extracting separable pseudopotential from the Bachelet-Hamman-Schliiter (BHS)
pseudopotentials for several very different atoms (elements from groups 1, 8, 12, 14,
aﬁd 17). This BHS/S pseudopotential is applied to crystals of diamond, silicon, ger-
manium, and CdTe, with results in excellent agreement with those obtained using the

non-separable potentials.
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3.1 Introduction

The chemistry of molecules and materials can be well understood in terms of valence
electrons (e.g., eight for Fe, four for Si, Ge, and Pb). However, because of the Pauli
principle the quantum mechanical description requires a proper treatment of the core
electrons. Usually the core electrons are treated using doubly-occupied orbitals in
which case the major effect of the Pauli principle is accommodated by requiring the
valence orbitals to be orthogonal to the core orbitals. Such explicit description of the
core orbitals requires very localized orbitals which can dominate the cost of quantum
mechanical calculations for large molecules and solids. Consequently, various ap-
proaches have been developed to replace the core electrons by pseudopotentials (PP)
constructed to accurately represent the effects of the core electrons and the Pauli prin-
ciple in the valence electrons. These methods started with the work of Phillips and
Kleinman. [1] Goddard and coworkers [2, 3, 4, 5] developed approaches to extract first
principles PP [called effective core potentials (ECP)] directly from ab initio calcula-
tions, culminating the work of Hay and Wadt [6] (which included relativistic effects)
who constructed PP for all atoms Na through Bi. These methods for first principles -
PP were extended to density functional theory (DFT) by Hamann, et al, [7] leading
to the BHS [8] PP commonly used in DFT calculations. Such PP’s greatly simplify
calculations; however, these first principles PP involve angular momentum projection
operators (to account for the Pauli principle) that become computationally intensive
for large systems. We present here an approach to modify the first principles PP in
such a way as to eliminate angular momentum projection operators while obtaining
equal quality results.

The organization of the paper is as follows. Section II described the method, PP/S,
and derives working formulas. Section III discusses aspects of accuracy, robustness,
efficiency, generality, and systematic improvement in the PP/S. Results on several
systems, atoms and solids are reported in Section IV. Section V discusses relationships

with the previous approaches.
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3.2 The Separable First Principles PP Method, PP /S

3.2.1 Background

The one-particle equation to be solved in a rigorous all-electron calculation of an atom

has the form
Fo¢; = €i¢i, (3.1)
where ¢; must be orthogonal to the core orbitals

(dile) = 0. (3.2)

The Fock operator, F, is derived from the variational principle and has the form

F =1+ Viue + Voar + Veore- (33)
Here t is the kinetic energy operator,
Z,
V;zuc — _ atom (34)

R

is the nuclear attraction potential, V,; involves the Coulomb, exchange, and correlation
potentials for interactions with other valence electrons, and V,,,. contains all Coulomb,

exchange, and correlation potentials involving the core electrons. In a first principles

PP:

i. the Z.ore core electrons are deleted leaving a total of

Zval = Zatom - Zcore (35)

valence electrons to be calculated (for a neutral atom)

i. the orthogonality condition (Eq. 8.77) is dropped and the wiggly valence
orbital, ¢;, is replaced by a smooth pseudo-orbital, v,
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i4i. the Ve + Veore in (Eq. 3.3) is replaced by

where
Zya
Vnet = - Rl (37)

. the Vp, in (Eq. 3.6) is chosen so that

Fpp¢i = filbz‘ (3'8)
where

Fpp =1+ Vaet + Vip + V. (3.9)

Finding the V},, satisfying (Eq. 3.8) is referred to as inverting the orbital. The V,,
in (Eq. 3.9) depends on the angular momentum, [, of the pseudo-orbital, ;. Thus V,,

can be written as [2]

Vop = _ViPia (3.10)
=0

where V] is a function only of distance from nucleus A and P4 is the projection
operator onto states of angular momentum [ about center A. For a valence orbital
having the same angular momentum as a core orbital (I < lcope), the V; will be very
repulsive in the core region (leading to a smooth orbital that is weakly bound instead
of a strongly bound core-like orbital). However, for a valence orbital having an angular
momentum not corresponding to a core orbital (I > lre), the V; will be very smooth

in the core region, corresponding to a shielded potential. It was found [2] that

Ul ~ WOC Zf [ > lcore (311)
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where

Woc = Ulcore+1~ (312)
Thus using the identity
Woc = Z ‘/locPlA (313)
1=0
we can write (eq. 3.14)
lcore
Vop = Viee + Y UlPa. (3.14)
1=0
where
U=V - ‘/loc (315)

Thus the first principles PP for an atom A becomes [2]- [8] (Eq. 3.14) where Vi, (a

shielded Coulomb potential) is a function only of distance from the nucleus of A, and

Vi = z=(§c:m-e UiPa (3.16)
contains all non-local terms (with integral operators).

Given the smooth pseudo-orbital, v;, the conditions (Eq. 3.8), (Eq. 3.9), and
(Eq. 3.14) define a unique PP. However, one can choose the shape of the smooth
pseudo-orbital 1); using several different criteria. The original ECP of Goddard [2]
was based on a GVB-like wavefunction which included electron correlation in the core
and valence electrons and led to a unique smooth pseudo-orbital. However, Melius
and Goddard [3] showed that simple Hartree-Fock (HF) wavefunctions could be used
(leading to doubly occupied core orbitals) with the pseudo-orbital 1); chosen as a
smooth combination of the valence orbital ¢; and the all-electron core orbitals. Re-

dondo, McGill, and Goddard [4] showed that because of normalization conditions the
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Melius-Goddard formulation leads to a pseudo-orbital that is slightly too small far
from the atom, and they proposed the coreless valence orbital (CVO) approach in
which the pseudo-orbitals is taken as exactly the HF orbitals far from the nucleus and
then smoothed to zero in the core region while retaining normalization (a procedure
now called norm conservation [7]). This CVO PP for Si, Ga, Ge, and As was used
in several applications. [9] Smedly, Rappe, and Goddard [5] (SRG) pointed out that
smoothing the valence orbitals modifies V,,; and suggested optimizing the smoothed
pseudo-orbital to obtain the least change in V,, while retaining norm conservation.
This approach (denoted as SHC for shape and Hamiltonian consistent) was applied
to the second row atoms (Na-Cl). [5] However, SRG showed that even this most op-
timum PP leads to significant errors for first row atoms and recommended that PP
not be used for Li-Ne. Although SHC was applied in several calculations, most ab
initio ECP calculations use the Hayt-Wadt (HW) potentials [6] which are based on
the original Melius-Goddard formulation [3] (without norm conservation). The HW
PP have been successfully used in numerous ab initio calculations.

Hamman and coworkers [7] suggested that first principles PP be derived by impos-
ing norm conservation and directly inverting the radial scalar Dirac equation solved us-
ing the LDA exchange-correlation potentials. Using this approach Bachelet-Hamman-
Schliiter (BHS) developed PP for all atoms H-Pr. This BHS PP reproduces accurately
the relativistic all-electron results on atoms and leads to accurate descriptions (within
LDA) of molecules and solids.

Despite the general success of the first principles PP in >(Eq. 3.14) the presence of
the angular momentum projection operator, P4 (where A is the center of the atom
containing the PP), lead to problems for ab initio calculations using Gaussian basis

functions. This requires evaluating integrals having the form

(xB|UiaPialxc) (3.17)

where A, B, and C may be on three different centers. Assuming that all atoms have

PP, this leads to a computational effort scaling as NM?, where N is the number of
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basis functions (or atoms), and M is the number of basis functions in the neighbor
within the range of Uja.
For the plane-waves methods most common for crystals, (Eq. 3.17) amount to N?

number of integral like
/ (kP Ui (K'r)r2dr Py(cosOp), (3.18)

leading to an N? scaling. For first principles plane-waves calculations, such as Car-
Parrinello,? the PP part becomes the computational bottleneck.

Kleiman and Bylander [11] showed a way to replace the nonlocal part of (Eq. 3.14)
by a form that leads to the factorization when evaluating the matrix element (Eq. 3.17).
Their form reduced the cost to IV for each k-point in the Brillouin zone. But Kleiman
and Bylander form can cause artifacts(so called ghost-states), where the excited or-
bitals fall into the valence levels, for some systems and is not generally valid. In this
section we will develop a general approach for modifying the nonlocal part of the PP,
V2 in (Eq. 3.14), to reduce the computational cost to N(for plane-waves) or M?(for

Gaussian), while avoiding other problems (ghost states).

3.2.2 The Method
Expanding the angular momentum projections operator in (Eq. 3.14) leads to

leore l

V=3 3 Ulr)Yin(6,9) [ d2Yin(8,9) (319)

=0 m=-I

where lcore in (Eq. 3.19) is generally the highest angular momentum contained in the
core. The superscript nl denotes a nonlocal potential since it is an integral operator.
The radial function U is repulsive and short-ranged, decreasing exponentially with

distance. This suggests expanding V% using a basis set of Gaussian functions {x?”}

XP (r,0,0) = N,rhe=rY, (6, 6) (3.20)
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where NN, is a normalization constant, [, is the angular momentum quantum number,
and the Y}, are standard normalized spherical or cubic harmonics.

We consider the eigenfunctions {6;} of V™ in this basis,

cor
o
such that

<01 Ivnl

cor

10;) = Xibij. (3.22)

Here the columns of n are the eigenfunctions and )\; the eigenvalues. The 6; have the

form

0; = Onim = Rnl(r)nm(o’ ¢) (3'23)

A. The Direct Separable PP, V4"
Using (Eq. 3.21) we define the direct separable pseudopotential as

N
Ve = Y 162 A:(64] (3.24)
1=1

lcore

l Nla
= Z Z Z Ianlm>/\nl<9nlm|7 (325)
=1 m=-Iln=1

where N, is the number of functions with angular momentum ! on center a, and
(Eq. 3.25) emphasizes the angular momentum dependence in (Eq. 3.24).
Using (Eq. ?7) the general three center integral (Eq. 3.17) becomes

leore l Nig

(xBIVa alxe) = (xalVE xe) = Y. 30 > (x8/0nima) A Bnimalxc).  (3.26)

=0 m=-In=1
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Thus it is only necessary to calculate the two-center overlaps

{OnitmalXB) (3.27)

in order to obtain the general three-center integrals. Thus we refer to (Eq. 3.25) as a
separable PP. In the limit that the basis sets { R4} are complete, the right-hand side
of (Eq. 3.26) approaches the left-hand side.

B. The Potential Weighted Separable PP, V"%

The optimal radial functions {R,;} for (Eq. 3.25) are dictated by the specific
form of U; and this may differ dramatically from atom to atom. In order to avoid
reoptimizing the PP basis set for every atom, we propose an alternative approach in

which |V

worXP) is used as the basis set for describing the potential. This potential

weighted (VW) separable pseudopotential leads to the following form:

Ng
Vo = Z | Vi bi ) OV (3.28)
core +l Nla
=0 m=-In=1

Using (Eq. 3.29) the general three-center integral (Eq. 3.17) becomes

leor Nia 1
(x5|Ver,alxc) = (x8lVemralxe) = 3 Z > {(xslV. orA|9nzm,A>—/\l (Onim, a4l Veor, 41xcA3.30)
=0 m=-Iln=1 m

As with (Eq. 3.26), (Eq. 3.30) requires calculation only of two-center functions

<9nlm,A|VcTolf~,A|XB> (3.31)

in order to obtain the three-center integrals.

H dir YW
C. Comparison of V&7 and V2

The difference between V2% and V& ar
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i. V2 requires calculation of two-center overlaps

<9nlm,A|XB> (332)

whereas V7 requires calculation of two-center PP integrals

(Onim, AV alXB)- (3.33)

Since programs have already been written for doing the latter,'!13 this
difference is mainly one of computational cost. And since the two-center
integrals are a small part of the cost and scale linearly with size, this is

not an issue.

#i. The expansion function {R,; 4} required for the right-side of (Eq. 3.29)
to converge to the left-side depend mainly on the spatial extent of the core
electrons on atoms A rather than on the detailed functional form of the
potentials {U;}. Consequently the criteria for choosing the basis functions
are similar to those used for expanding the wavefunction rather than for

expanding the potential. This has two advantages:
a. the standard approach of choosing basis sets can be used for {Ry; 4},

b. since the sizes of the core electrons of all atoms of the periodic table
differ only by about a factor of 2, one can imagine finding a universal set

of basis functions {R**} to be used for all atoms.

For the reason given in (47), we focus in this paper on the use of V- The
procedures outlined above can be used for any first principles PP and we
will denote the resulting separable potential as PP/S. Thus starting with
the BHS PP, [8] the separable version is denoted as BHS/S; starting HW

PP® leads to HW/S. In this chapter we will focus on BHS/PP.
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3.2.3 Tests of the BHS/S

To be useful the separable pseudopotential VZ#5/S must reproduce the electronic prop-
erties obtained by the non-separable pseudopotential VE#S. Namely, PP/S should de-
scribe the effect of the PP on the energies and wavefunctions for molecules and solids.
On the other hand, since the PP is an intrinsic property of the element, characterizing
the core of that element, we should be able to define a testing procedure that involves
only the atomic calculation, such that once passed the PP/S should be valid for other
environments, molecules as well as solids.

In the following, we will test the separable potentials BHS/S by solving for the
wavefunctions of atoms. compare the results with those obtained via BHS. We will
examine the full spectrum of calculations and pseudo-orbitals.

With a pseudopotential V,,, the Kohn-Sham equations for obtaining the optimum
self-consistent orbitals, (Eq. 3.8) and (Eq. 3.9), become

FES4; = e (3.34)
where
FXS =t 4+ Vi + Ve + Ve (3.35)

This can be solved using a Gaussian basis set {x,},

wi = Z CuiXua (336)
u

where the basis funtions are the standard basis functions for describing the valence
orbitals.

The Gaussian basis set {x,} used in (Eq. 3.36) to describe the pseudo-orbitals {1;}
need not be related to the Gaussian basis set {x?}, used in (Eq. 3.21) for describing
the potential V™

cor®

This is demonstrated in Figure 3.1, where for Fe atom we plot

Us(r) (the radial part of the s-component of V) and 1)4(r) (the 4s pseudo-orbital)
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(both are on logarithmic scale). Here we see that Us(r) is concentrated within 2 ag
of the nucleus while 14, (r) extends well beyond 9 ag. Therefore different basis sets
{x#} and {x,} are needed to cover the respective regions of the real space.

We will be particularly concerned about the descriptions of core-like states with the
PP/S. In an all-electron calculation, the orthogonality condition (Eq. 8.77), essentially
removes all core orbital from the Hilbert sub-space of valence electrons. However,
(Eq. 3.8) no longer has any orthogonality conditions so that the Hilbert spaces are not
reduced. This means that somewhere in the spectra of states for (Eq. 3.8), there may
occur core-like states that are artifacts of the procedure. These extra states are called
ghost states and they should remain extremely high in energy so that they cannot
play a role in any physical phenomenon. Hence it should be useful to test for the
possibility of ghost states contamination of the results.

The basis sets {x,} in (Eq. 3.36) for describing the eignenfunctions of (Eq. 3.34)
will be the primitive basis functions optimized for the MS4 all-electron basis, [9] which
have been found to be accurate for all-electron calculations. (Table 1 lists the MS4
basis for Fe atom which contains 10 s-type, 8 p-type, and 4 d-type Gaussian functions.)
This contains basis functions for describing the lé, 2s, 2p, 3s, and 3p core orbitals of
Fe.

For the basis {Xx#”} used to expand the PP of (Eq. 3.21), we will use even tempered
Gaussian basis sets with V; basis functions and two parameters. Thus for N; = 2p+1,

we choose the exponents in (Eq. 3.20) as
{on} = B7P..., 007", g, 2B, ... 0 37 (3.37)
while for N; = 2p we choose them as
{an} = 0B D .. 0p B2, 0p B2, .0 B~ 7). (3.38)

For simplicity we use the same exponents {a,} for all angular momenta [. For the even

tempered Gaussian basis, the whole basis set is characterized by two adjustable para-
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meters: ag which specifies the mean size of the functions, and 3 which specified the
spacing of the functions. Given (a, (), {an} can be written in terms of the powers in
(Eq. 3.38) as {n}=(...,—3,-2,-1,0,1,2,3,...,) or (...—2.5, -1.5, -0.5,0.5, 1.5, 2.5, ..).
The resolution of this n-grid can be modified by inserting sub-divisions, either ho-
mogeneously, like (..., —2,—-1.5,—1,-0.5,0,0.5,1,1.5,2,...), or inhomogeneously like
(...,—2,—15,-1,-0.5,0,1,2,3,...), etc.

I. Fe Atom

The ground state of Fe atoms has the valence electron configuration (3d)®(4s)?
with 1s, 2s, 3s, 2p, and 3p core electrons. Low lying excited states of Fe have valence
configuration of (3d)"(4s)}, (3d)%, (3d)®(4s)(4p), etc. We first examine the ground state
configuration, i.e. (3d)%(4s)2. Since in this case the MS4 basis contains ten s functions,
eight p functions, and six d functions (after decontracting to get the primitives), we
will obtain 10 orbitals of the type (3d)%(4s)!(ns)!, 8 of the type (3d)®(4s)!(np)!, and
6 of the type (3d)®(4s)'(nd)*. For simplicity we denote the orbitals of (3d)%(4s)!(ns)*
as n = 4,5, ..13. Because the basis set was optimized for valence states 4s, 4p and 3d,
the calculated unoccupied orbitals (virtual orbitals) will not describe the true single-
particle excited state (which has continious spectrum). But our purpose is to obtain a
sensitive measure of where the PP /S deviates from PP in the the description of core-
like virtual orbitals. Comparing the virtual, as well as occupied orbitals, between PP
and PP/S, we gain insights of the nature of ghost states.

In Figure 3.2 we show the full spectrum of orbital energies with various choices
of {n}. Here 3, 4, and 5 denote {n} = (-1,0,1),(-1,0,1,2), and (-1,0,1,2,3). 3
denotes {n} = (—3,—2,—1). We observed that for 5, the states are accurate up to 9s
at ~ 60 h; for 4 they are accurate up to 7s at 7h, for 3 they are accurate up to 6s at 2h.
The deviations at those high unoccupied states can be viewed as incipient ghost states.
For 3' the accuracy collapsed and we have 5s falling below the occupied 4s state, a
ghost state appears! In this case the eigenvalues are calculated from diagonalization
without doing self-consistency, using the exact electron density. The eigenvectors are
assigned to the corresponding exact ones by their overlaps.

In Figure 3.3 we show the errors as a function of N. §E;,; is the total energy of the
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(3d)®(4s)? ground state. deyp is the the largest absolute error in orbital eigenvalues
below 1 Hartree (i.e.ess and e€s54), and deyp, is similar ones below 2h (i.e. €g5). For
N =5 the error [0E;,; = 0.002mh = 0.000054 eV and dey, = 0.09mh = 0.0024 eV]
are quite acceptable. Even for N = 3 the error of 0 E;,; = 0.09mh = 0.024 eV and
derp, = 0.7mh = 0.015eV are well within the cases due to using PP in the first place.

Given N = 5 we show in Figure 3.4a the effect of optimizing oy with a fixed
B = 3.0. Here we see that 0 E};,; approaches a minimum at ag ~ 0.75. dep, decrease as
oy decrease until oy ~ 0.25 when it shoots up due to the occurrence of ghost-states.
Since at ag ~ 0.75 Jeyy, is still around 0.06mH (=0.002eV=0.04Kcal/mol), we choose
ag = 0.75 to be our optimum «p. Note that the unit in Figure 3.4 is in mH (= 0.027
eV = 0.627 kcal/mol). This indicates that the error is not very sensitive to the choice
of oy given a sufficiently large N,(e.g.,N =5).

In Figure 3.4b we show the effect of optimizing 3, fixing N = 5 and o = 0.75.
Again, the criterion for E;,; would be slightly different from that for €;,. However,
for the accuracy requirement of most calculation they can be taken as the same. This
leads to the optimum £ of 3, for the given N and «y.

Figure 3.4a and Figure 3.4b demonstrate the sensitivity of the choice of oy and
to the accuracy of PP/S. They are not sensitive for most purposes.

So far we have been focusing on ground state configuration (3d)®(4s)2. For other

configurations, BHS/S also reproduces BHS results, as demonstrated in table 1.5.

II. F and Cs atom

Now we consider the largest core atom Cs and the smallest core atom F. Since the
Cs core is large, we would need more diffused Gaussians to represent its PP/S. The
scale 3 in even tempered Gaussian series should decreases correspondingly. Using
N =7 and 8 = /3 (instead of 3 = 3) leads to the results in Figure 3.5. It shows that
ap = 0.15 is best. This leads to {a,} = 0.029, 0.050, 0.087, 0.15, 0.26, 0.45, 0.78

For F Atom, one of the smallest core in the periodic table, we would need sharper
Gaussians. Using N = 5 and § = 3 leads to the results in Figure 3.6a, indicating that
ap = 3.0 is optimum, leading to {a,} = 0.33,1.0,3.0,9.0, and 27.0. Fixing oq at 3.0,
Figure 3.6b shows that the optimum S for F is 8 = 3.0
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One can use the above procedure to setup a table of (ag, (3)s, optimized for each
element within the even tempered sets. Or, taking the advantage of the insensitivity
of the PP/S to the choice of (ag, 3)s, one can try to find a general set of (ap, 3) that
works for all the elements without losing much accuracy. In this paper we prefer the

simplicity to the accuracy,

II1. The Universal Set
Based on the above results we find the following {x??} give the best overall accur-

acy: {an} = o™, with ag = 0.75, § = 3.0, and
{n} =(-3,-5/2,-2,-3/2,-1,-1/2,0,1,2,3). (3.39)

There are 10 exponents all together. Figure 3.7 shows the s-type radial eigenfunction,
T Rns(r), of V™ for F, Fe and Cs atoms. As one can see, the eigenfunctions on this
basis (Eq. 3.39) cover the space rather completely for cores ranging from F to Cs.
Using the universal basis (Eq. 3.39) for {x?7}, Table 2 lists the total energy from
both V7 and VY. With the VW method the accuracy is uniformly better than
0.1mH(~ 0.003eV). In comparison, using the direct method, we have a general
accuracy of around 3mH (~ 0.1eV') (with exception for Os, where the near degeneracy
of 6s and 5d cause big error for the direct method). This shows (a)that our universal

basis (Eq. 3.39) is rather complete for describing the V% of all the elements; (b)VW

cor

method is computationally more efficient. In the following we will always refer to the
VW method when using VBHS/S,

Given an element we can use a subset of 3, 4, 5,.... elements of (Eq. 3.39) to
reduce the computational cost. Different {n} cover different range of the real-space.
For a particular element, the subset should be centered at ny and include only integers
(except for ng = —2) at first. If not accurate enough, add in half integers. Examination

of the VBHS of all the elements leads to the following rules for selecting nq:
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Element (ng)

Li(-1), Be-N(0), O-Ne(1)
Na(-1), Mg-Cl(-1,0),Ar(0)
K-Cr(-1), Fe-Cu(0),Zn(1)
Ga-Se(-1),Br-Kr(0)
Rb-Ru(-1), Ag—Cd(0)
In-Xe(-1)
Cs(-2),Ba-Hg(0)
T1-Rn(-1)

The result of using a subset of (Eq. 3.39) according to the above table is listed in
table 3. It shows that for most elements 3 primitive Gaussians (/V; = 3) is sufficient
to achieve an accuracy of 3mH (0.1 eV) for the total energy and the orbital energy
(for states under 1 Hartree =27.22 eV). Some elements, like Zn, Hg, F and Ba, etc.

need 4 or 5. Larger IV, would always yield better accuracy.

IV. Procedure For Constructing PP /S

In summary, the general procedure for constructing an accurate PP/S is as follows:

1. Choose suitable {x¥P}. Namely, choose the values of &g and 3 from the
above table. The size N; depends on the accuracy desired but should be
larger than 3.

2. Solve (Egq. 3.21) for the {6;}. That is, we diagonalize V2. on {xi%},

using VBHS,
3. Construct the PP/S using (Eq. 3.25) or (Eq. 3.29) for VBHS/S,

4. Test PP/S for the atomic states. Using a basis set {x,} that allows
a good description of the core orbitals, solve (Eq. 3.34) with VBHS/S and
compare the result with that of VBHS, If the excited states calculated
account to € ~ 4h = 108 eV there should be no concern about ghost

states.
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3.2.4 Transferability

The real test for transferability of pseudopotentials (PP or PP/S) is an extensive test
on a wide range of molecules and solids. A simpler one is to check the condition
that the scattering properties of the pseudopotential and full potential(all-electron)
have the same energy variation to first order. [8] This condition involves matching the
orbitals of the PP with that of the all-electron case. Here we first demonstrate that
BHS/S satisfies such conditions to the same accuracy as BHS PP. Then we test the
PP/S on several solids.

Figure 3.8 compares the orbitals of Fe calculated with BHS/S with the ones from
BHS, using 6 functions in {x£?}. The orbitals are virtually indistinguishable up to
150 eV.

3.3 Applications

Now that we have tested PP/S for each element we can apply them to the general en-
vironments. For calculations on crystals we use the Gaussian dual-space (GDS/DFT)
approach [15] and use the decontracted valence atomic basis {x,} of Hay-Wadt. [6]
The Ceperley-Alder exchange-correlation scheme [14] used in BHS construction [8] is
used throughout.

In Table 5 we compare the crystal properties and band structures of diamond,
silicon, and germanium calculated by using BHS/S with those by using BHS. The
results agree very well. Therefore the transferability of VE¥5/S should be as good as
VBHS

For the cases hitherto unsuccessful, [8] we calculated the crystal structure and the
band structure for CdTe. Again BHS/S works successfully. The result is reported in
Figure 77, and structural parameters in Table 6.

Using the BHS/S, Chen et al. [15, 16, 17] carried out extensive calculations on
the electronic state of II-VI and III-V and IV-IV semiconductors. They calculated

the bulk properties, surface reconstructions and interface electronic properties (e.g.,
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heterojunction band offsets). The results show that the BHS/S is accurate in all the
cases tested. Therefore we believe that the PP/S approach proposed in this paper is

transferable.

3.4 Discussion

Since the VP is short ranged, decaying exponentially away from the nucleus, it is
particularly simple to design a Gaussian basis set to form a series of wave packets
for its proper representation. We demonstrate that with just three Gaussians one
can achieve an accuracy better than 0.1eV for the orbital energy and total energy for
most elements. Basis set optimized for each individual element could give even higher
accuracy. This makes quite practical calculations on atoms, molecules, and solids.
Improper sampling of the real space in 3.21 could cause the “ghost-state” [12, 13,
14, 21, 22] of higher energy falling into or below the reference valence states. Figure 3.1
shows that the space adequate for representing the V25 is quite different from the
space adequate for representing the orbitals ¢;(r). VBH5 is large in the core region
while the orbitals ¢;(r) are large in the valence region, generally outside the core

region. To represent V% one needs tight Gaussian functions (e.g., ag ~ 0.75 for Fe)

cor
for the wave packets to cover the core region.
Previous workers employed pseudo-orbitals to represent V.. For example in

Kleinman and Bylander’s form [11] the PP/S is written as,

an — |an¢val><¢valvnl|
KB <¢val |an l¢val>

(3.40)

One can view it as using one very diffuse wave packet |¢,u) to represent the core

potential V.

o, albeit in a potential weighted way. Other workers have proposed using

more terms [12, 13, 14, 21, 22] in addition to |¢ye). Our analysis indicates that one
should choose the Gaussian basis such that the wave packets they form have the same

resolution and cover range as required by the core potential V.. Thus we believe

cor’

that it is the poor sampling of the real space that caused the ill-representation of the
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an

cor)

Incidentally, as shown in Figure 3.9 , VBHY/S|¢,) = VBHS|¢,), a condition built into

leading to the ghost-states. This is demonstrated by the 3' case in Figure 3.2a.

Kleiman-Bylander scheme, is satisfied to good accuracy in our construction. The
VBHS/S was constructed on the basis with {n}=(-2, -1, 0, 1, 2).

In the above tests we employed the MS4 basis set [9] to solve the atomic KS
equation (Eq. 3.34). To estimate the error introduced by using this finite Gaussian
basis set, we also performed PP-BHS calculations on a numerical grid. For Fe we
found that the error in eigenvalues due to the finite basis set are less than 6 mH =
0.18 eV as shown in Table 6.

The accuracy of the PP-BHS in reproducing the relativistic all electron calculation
is around 0.1eV. See table 6 for calculation on Fe atom.

Therefore our compact basis {x”} for BHS/S should be sufficient for most pur-
pose. When higher accuracy is needed, one can always refine the {n}-grid and increase
N, to any desired level.

The use of Gaussian functions to represent PP/S is very efficient. It provides a
systematic and efficient way of describing molecules and solids with results as close
to those of non-separable PP as desired but with better scaling (linear instead of
quadratic) with the size of the basis set. It also facilitates the tabulation of the
pseudopotential and applications to complex systems. For programs using plane-
waves to calculate total energy, one can use recursion relations to build efficiently
the Fourier transforms of Gaussian functions. [15] For programs using Gaussian basis

sets, the standard two-center integrals can be used. [15]

3.5 Conclusion

We conclude that general transferable pseudopotentials for all the atoms of periodic
table can be constructed in a separable form that makes the computational cost linear
in size of the basis set. We achieve that by using a series of wave packets formed

from a Gaussian basis set to represent the non-local part of the pseudopotential. We
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have demonstrated here some successful applications to the BHS pseudopotential. [8]
However, the construction of equation (Eq. 3.29) is general and can be applied to any

ab initio pseudopotential. [29]
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Table 3.1: The basis set for Fe (MS4 decontracted) using standard normalized Gaus-
sians, equation (Eq. 3.20). The exponents « are listed below.

S D d
8612.00 374.500 18.5300
1299.00 87.2800 4.7960
293.000 26.6700 1.3460
79.7500 8.96500 0.3061

18.3400  2.69100  (0.0696)2
7.08400  0.82530  (0.0158)@
2.07200  0.12790

0.74570  0.03221

0.096711

0.035601

?Added to describe the 4d orbitals.

Table 3.2: The excited configuration total energies and orbital energies. The number
in parenthesis are from separable potential BHS/S, using {n}=(-2,-1,0,1,2).

Occupation Eio {e}

(3d)5(45)? -20.866037 (-20.866045 )  -.273556 ( -.273535) (d)
-.202323 ( -.202321) (s)

(3d)7(4s)! -20.867995 (-20.868008 ) -.151986 ( -.151994) (s)
-.089994 ( -.090003) (d)

(3d)°(4s)'(4p)!  -20.712608 (-20.712606 )  -.336168 ( -.336168) (d)
-.242227 ( -.242227) (s)
-.084465 ( -.084465) (p)

(3d)%(4s)'(5s)  -20.601885 (-20.601925)  -.401898 ( -.401999) (
-.290452 ( -.290513) (s)
-.122675 ( -.122718) (p)
-.009380 ( -.009448) (s)

d)

(3d)°(45)%(55)'  -20.536170 (-20.536209 )  -.551689 ( -.551548) (d)
-.284714 ( -.284691) (s)
-.105729 ( -.105708) (p)




Table 3.3: Comparison of the results of using V% and V** (in brackets) for the
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generic basis set (Eq. 3.39). Errors are in mH(1mH=0.027¢V).

Element 6Etot 5€occ. 561}[

K 0.004(0.000)  0.095(0.001)  2.423(0.211)
Rb 0.006(0.000)  0.062(0.000)  2.881(0.046)
Cs 0.790(0.000)  0.805(0.001)  3.287(0.078)
Fe 0.131(0.002)  0.069(0.000)  0.069(0.001)
Ru 0.049(0.001)  0.119(0.001)  0.057(0.004)
Os (0.100) (0.014) (0.023)
Zn 1.083(0.005) 0.286(0.001) 0.286(0.012)
cd 0.171(0.265)  0.265(0.104)  0.303(0.104)
Hg 46.991(1.111)  3.122(0.028)  0.473(0.028)
C 5.839(0.042)  0.415(0.011)  2.920(0.057)
Si 3.742(0.006)  1.222(0.002)  2.831(0.008)
Ge 2.318(0.012)  0.820(0.004)  0.829(0.014)
Pb 0.841(0.029)  0.224(0.016)  1.479(0.023)
F 0.115(0.046)  0.956(0.032)  0.990(0.032)
Cl 1.985(0.006)  0.839(0.002)  1.426(0.013)
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Table 3.4: Atomic total energy calculated with PP/S (VW method) using the compact
basis {X!?} according to the recipes. ap = 0.75, 8 = 3.0, ng and N, are listed after

the element name as (ng, N;). All are in Hartrees (1H=27.2eV).

l Ew(BHS)  Ew(BHS/S) S E oy

Na(-1,3)  -.183575 -.183654 .000079
K(-1,5) -.155129 -.155143 .000014
Rb(-1,4)  -.149431 -.149431 .000000
Fe(0,3)  -20.866037 -20.866897 .000860
Ru(0,3 -15.914191 -15.917038 002847
0s(0,3)  -14.901081 -14.898283 -.002798
Zn(1,4)  -62.588388 -62.589035 000647
Cd(0,3)  -46.117026 -46.118228 .001202
Hg(0,5)  -41.234831 -41.233215 001616
C(0,3) -5.331368 -5.329319 -.002049
5i(0,3) -3.746177 -3.746037 -.000140
Ge(-1,3)  -3.800031 -3.800140 1000109
Pb(-1,4)  -3.466488 -3.467582 .001094
F(1,4) -23.991309 -23.988570 .002739
C1(0,3) -14.906916 -14.908189 001273
Br(0,3)  -13.391763 -13.391174 -.000589
1(-1,3) -11.462261 -11.463525 001264
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Table 3.5: Atomic eigenvalues of the atoms by PP/S

Na(-1,3)
0 -.102961 -.103020 .000059
1 -.031007 -.030997 -.000010
0 .037950 .037809 .000141
1 135563 135876 -.000313
1 1.551917 1.561645 -.009728
0 1.596508 1.581855 .014653

K(-1,5)
0 -.089291 -.089303 .000012
1 -.035366 -.035363 -.000003
0 .016788 .016788 .000000
2 .019179 .019184 -.000005
1 .064186 .064186 .000000
2 167678 167695 -.000017
0 .820342 .818101 .002241
1 .844938 .843148 .001790
2 1.079678 1.079663 .000015

Rb(-1,4)
0 -.086760 -.086758 -.000002
1 -.033788 -.033778 -.000010
2 .007506 .007508 -.000002
0 .016151 .016165 -.000014
1 .031062 .031067 -.000005
2 .053668 .053671 -.000003
1 467364 467196 .000168
0 512990 .512461 .000529
0 1.970645 1.967893 .002752
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l €(BHS) ei(BHS/S) de;
Fe(0,3)
2 -.273556 -.274005 .000449
0 -.202323 -.202805 .000482
1 -.052558 -.052233 -.000325
0 .054683 .054708 -.000025
1 113168 113330 -.000162
2 718075 717866 .000209
1 1.913817 1.791430 122387
0 1.996359 1.881123 115236
Ru(0,3)
2 -.251496 -.251416 -.000080
0 -.192792 -.193912 .001120
1 -.050677 -.050745 .000068
0 .060487 .060427 .000060
1 158657 157971 .000686
2 1.041678 1.041805 -.000127
0 1.413619 1.361864 051755
1 1.533122 1.490619 .042503
0s(0,3)
2 -.233658 -.232049 -.001609
0 -.232744 -.231654 -.001090
1 -.052464 -.050610 -.001854
1 .095980 .096560 -.000580
0 183877 .183760 .000117
2 339741 342667 -.002926
3 478074 479035 -.000961
1 1.304068 1.288540 .015528
0 1.540151 1.499417 .040734
3 1.548299 1.549509 -.001210




92

! e;i(BHS) ei(BHS/S) Je;
Zn(1,4)
2 -.379287 -.379294 .000007
0 -.232140 -.232337 .000197
1 -.043564 -.043069 -.000495
0 .084192 .084045 .000147
1 .264897 .264887 .000010
2 332551 .332692 -.000141
Cd(0,3)
2 -.443909 -.443394 -.000515
0 -.210222 -.210418 .000196
1 -.057348 -.056953 -.000395
0 .083138 .082515 .000623
1 152332 152515 -.000183
2 328091 328434 -.000343
Hg(0,5)
2 -.368390 -.368257 -.000133
0 -.258235 -.258195 -.000040
1 -.043494 -.043410 -.000084
1 .166959 .167007 -.000048
0 .209947 .208641 .001306
2 447199 447318 -.000119
1 1.695909 1.694259 .001650
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l ei(BHS) e;(BHS/S) Je;
C(0,3)
0 -.492305 -.493139 .000834
1 -.187658 -.187230 -.000428
1 406738 .408004 -.001266
0 494531 493434 .001097
Si(0,3)
0 -.392984 -.393006 .000022
1 -.146700 -.146790 .000090
0 .201698 201153 .000545
1 .322046 .321488 .000558
Ge(-1,3)
0 -.431131 -.431186 .000055
1 -.143287 -.143270 -.000017
2 .094402 .094437 -.000035
0 168538 .168368 .000170
3 .214043 .214068 -.000025
1 .295014 .295020 -.000006
2 491271 491282 -.000011
3 .809618 .809654 -.000036
Pb(-1,4)

0 -.439623 -.440162 .000539
1 -.133975 -.133987 .000012
1 169952 .169985 -.000033
0 .240345 .240369 -.000024
2 318891 318753 .000138
3 451783 451742 .000041
3 1.288811 1.288767 .000044
2 1.827080 1.824356 .002724
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! ei(BHS) e(BHS/S) Je;
F(1,4)
0 -1.063674 -1.064174 .000500
1 -.383775 -.383716 -.000059
1 972455 972812 -.000357
0 1.410764 1.410274 .000490
C1(0,3)
0 -.752061 -.752467 .000406
1 -.307799 -.307598 -.000201
0 .537648 .534915 .002733
1 .672068 672105 -.000037
Br(0,3)
0 -. 737849 -.737796 -.000053
1 -.286862 -.287051 .000189
0 .322350 .325912 -.003562
1 .514578 514971 -.000393
1(-1,3)
0 -.641746 -.642510 .000764
1 -.262270 -.262178 -.000092
0 242973 .242119 .000854
1 .344502 .344693 -.000191
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Table 3.6: Lattice parameters (a), bulk modulus (B), and band gap? (Eg) for diamond,
silicon, and germanium.

Exper. BHS/S Non-Sep

Diamond a(A) 3.567 3.573 3.53¢
B(GPa) 443 465 4739
Eg(eV)¢ 5.5 4.06 4.05%

Silicon a(A) 5.430 5.420 5.45°
B(GPa) 101.2 97.3 98°
Eg(eV)? 1.13 0.52 0.52°

Germanium a(A) 5.658 5.659 5.56¢
B(GPa) 77.2 66.9 76°
Eg(eV)? 0.76 0.28 0.32¢

¢ Reference [23].
®Reference [2].
¢ Reference [25].

9Band gap calculated at the experimental lattice constants.

Us(r)

Figure 3.1: The radial part of VE#S U,(r), and the radial part of 4s pseudo-orbitals
¢45(r) for Fe atom.
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Table 3.7: CdTe structure and band parameters. Band structure calculations used the
calculated lattice constants.

LAPW® Present Exper.

a(A) 6.47 6.478 6.480°
Eg(eV) 0.47 0.58 1.59¢

LAPW® Present All-electron?

T ~11.30 “11.21 -10.32
T15a -8.43 -8.20 -8.24
T1od -8.17 -7.87 -7.66
Tis0 -0.00 -0.00 -0.00
T 0.47 0.58 1.72
T1se 4.48 4.53 4.82
T154 -8.43 -8.20 -8.24
X1v -10.79 -10.67 -9.84
X3v -4.44 4.42 411
Xsv -1.92 -1.91 -1.93
X1c 2.45 2.44 2.68
X3 2.54 2.67 3.41
Liy -10.91 -10.80 -9.92
L, _4.54 -4.55 -4.37
Ls, -0.80 -0.79 -0.79
L 1.60 1.66 2.54

“Reference [26].
’Reference [27].
“Reference [28].
dReference [15)].

Table 3.8: Comparison of eigenvalues for Fe atom from solving the non-relativistic
KS equation. Listed are result from numerical grid all electron calculation, from MS4
Gaussian basis for all electron calculation and that of PP-BHS (nonseparable form)
on MS4 basis.

! AE(grid)  AE(MS4)  BHS(MS4)
4s  -0.201822 ~199072 ~202323
3 -0.279096 -.293823 -.273556
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Figure 3.2: The s-eigenvalues of atom Fe KS pseudoorbitals from PP/S represen-
ted on various basis. 3’ is from PP/S represented on the basis having exponents
(0.0278/0.083/0.25); 3 is from (0.25/0.75/2.25); 4 is from (0.25/0.75/2.25/6.75); 5
is from (0.25/0.75/2.25/6.75/20.25); Ezact is from the non-separable PP-BHS. We
used logarithmic scale for eigenvalues above 10 Hartree.
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Figure 3.3: Systematic improvement of the accuracy with the increase of the basis set
size on Fe atom. Plotted are the error vs. N;, keeping ap = 0.75 and 8 = 3.0.
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Figure 3.7: (a)F Atom rR,,(r), the s-type radial eigenfunctions of VBHS on the
universal Gaussian basis set (Eq. 3.39), i.e. with exponents {ay,} = {a8"}. Here
ap = 0.75,8 = 3.0 and n=(-3, -5/2, -2, -3/2, -1, -1/2, 0, 1, 2, 3). (b)same as (a) for
Fe atom. (c)same as (a) for Cs atom.
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cupied 4s and 3d orbitals; eigenvalues esp(€pms) = —0.2023(—0.2023) for
4s and —0.2735(—0.2735) for 3d. (b) s-type of virtual orbitals; eigenvalues
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7s orbital €;., = 6.9260, the separable and BHS nonseparable potentials are indistin-

guishable.
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Chapter 4 Separable Ab Initio Effective

Core Potentials

4.1 Introduction

Last chapter we dealt with pseudopotentials for the density functional theory cal-
culations. As we pointed out that the separable technique can be applied to other
potentials. In this chapter we develop the Ab initio version. Hartree-Fock and DFT
are the two main family of first principle method. (see chapter 1) Hartree-Fock based
method, GVB, MP2, MP4, MCSCF, CI, etc., start from HFSCF wavefunction and
then take up the residue interaction with Shrédinger-Reighley perturbation theory.
While DFT map the many-electron problem into an single-particle theory and im-
prove upon such mapping scheme. The issues in effective core in the two family are
the same, sort of orthogonal to the exchange and correlation scheme of the many-
electron systems. So the concept of separable potential should be implemented in a
similar fashion. We will use the effective core potential for the ab initio context and
pseudopotential for the DFT context. The abbreviation of the respective separable
potentials are ECP/S and PP/S.

Hay and Wadt have implemented Goddard’s idea of Ab initio ECP. Their
implementation differ slightly from BHS’s implementation of DFT PP. The central
difference involves the matrix-element of (x.5|V¥|xvc). The coding in ECP/S is
a bit more complicated than PP/S. We derived ECP/S based on Melius [6] and
implemented it in the PS-GVB program. The detailed derivation is listed in Appendix
Ay

Ab initio method can give a progressively more and more accurate result with
higher and higher level of incorporation of electron correlations. Can the accuracy of

our fast ECP/S live up to the standard of these high accuracy calculations? To test
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that we carried out GVB calculation on some very sensitive systems where HF fails
to give the right structure.
In section 4.2 we outline the method and give a brief account for the matrix
element evaluation. Then in section 4.3.2 we test our ECP/S for various “tough”
cases with HF and GVB calculations. Finally in section 4.4 we benchmark the timing

for the major component of first-principle calculations.

4.2 Methodology

4.2.1 Ab Initio Effective Core Potentials

The Hartree-Fock equations for an atom have the form
(8 4+ Vi + Vetrt + Vi) 87 = T of" (41)

where the Fock operator has the terms

1
t=—-c-V? 4.2
v (4.2
(the kinetic energy operator),
VA
Vawe = —— (4.3)
T
(the nuclear attraction),
H’F NCOTE
chore = Z (2‘].7 - K]) (44)
i=1

which describes the field due to the core electrons (e.g. 1s, 2s, 2p, 3s, 3p for Fe), and

val
Voar = Y (a;J; + bi; K;) (4.5)

j=1
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describes the various coulomb and exchange interactions among the valence electrons
(e.g. the 3d and 4s orbitals for Fe). The various eigenstates of (1a) are orthogonal so
that the valence orbitals will have one radial nodal plane for each shell of core orbitals
who have the same angular momentum (for Fe this leads to three radial nodal planes
for 4s, two for 4p, one for 4d, and zero for 4f). For describing most properties of
molecules and solids, the core orbitals can be considered as fixed. Thus in describing
the chemistry of molecules or solids containing C, Si, Ge, Sn, or Pb, we consider that
only the four valence electrons are significant. However, because of the core electrons
quantum mechanical calculations of Pb are very considerably more difficult than for
C.

For this reason many approaches have been developed to carry out quantum
mechanical calculations in which the core electrons are replaced by effective core po-

tentials, or ECP for short. This leads to atomic HF equations of the form
(t+ Veop + Voar) 677 = €74 (4.6)

where the valence pseudo-orbitals, ¢; no longer need be orthogonal to the core orbit-
als. One approach (denoted as effective core potentials, ECP) developed by Goddard
and coworkers [2] - [7] starts with the ab initio valence orbitals from (1a), makes them

smooth in the core region to obtain ¢F°F, and defines the V,,, as

‘/ecp = ﬁ [(t + V;)al - ef{F) ¢§cp] ) (47)

a process referred to as inverting the orbital. Various flavors of this method have
included electron correlation effects in the core orbitals, [2, 3] accounted for changes
between V.7 and VEF, [6] and ensured that the smoothing of the core region retains
conservation of the norm. [5] Equation 4.7 is solved either numerically or by expanding
in terms of various functions.

This approach leads to a general ECP of the form

V;ch = Woc + an (48)
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lCOT&

Vo =Y IP)UI(r)(P, (4.9)
1=0

where (P)| is an angular momentum projector operator, and Uj(r) is a radial function.
Here I o is generally the maximum angular momentum of the shells in the core. For
angular momenta [ > [.,.¢, the potential due to the core electrons becomes V,., which
far from the atom has the form —Z,,; /7 (where Z,, is the number of valence electrons)
and close to the nucleus has the form —Z/r (where Z is the total charge). On the
other hand, for [ < ... the ECP becomes

‘/lac + Ul. (410)

ecp
i

Here Uj is very repulsive in the core region in order that the valence-like orbital ¢
go smoothly to zero while retaining the valence character.
Using equations ( 4.8) and ( 4.9) the Hartree-Fock equation for the valence

orbitals become
(t + Veep + Viat) 657 = ;P i ¥ (4.11)

where ¢;% ~ ¢F' outside the core and €;” ~ IF. The solutions of equation 4.11 are
not required to be orthogonal to the core orbitals; hence, the spectrum of equation 4.11
must include resonances (ghost states) involving significant core character. In order
to avoid artifacts in treating molecules and solids, it is essential that such core-like
ghost states have energies far above the energies relevant for any physical excitation.
It was found [3, 4] that requiring the ¢°® to go smoothly to zero at the nucleus leads
to U, sufficiently repulsive in the core region that the ghost states were not a problem.

If relativistic effects are included [8, 6] in the ab initio HF equation, then
the ecp obtained by inverting the orbital, equation 4.7, will also include relativistic
effects. This is particularly important for the heavier atoms (particularly, beyond Lu)
where differential shielding effects dramatically affect the shape of the valence orbitals

(making s more stable and d less stable).
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Based on such procedures a full set of ECP have been developed by Hay and
Wadt [8] (for H through Bi) and by Christrensen et al. [10] (from Li through Rn (7))
and used for ab initio calculations for many molecules.

For molecules and solids the nuclear attraction terms in the all electric-Hamiltonian

Z
Vnuc = Z —RA. (412)
A Al

is replaced by

nuc Z‘/ecp,A - ZWOCA + Z Z |Pl UlA( )<131A| (413)

The presence of angular momentum projection operators in (6) leads to three-center

integrals,

(xB|Veep,alxC), (4.14)

where xp and x¢ are (Gaussian) functions centered on atoms B and C. For large

systems this leads to costs that scale as,

1
§NecpN%F° (415)

where the number of centers with ecp.
In this paper we propose an approach for modifying 4.13 so as to evaluate

three-center integrals while avoiding problems due to ghost states.

4.2.2 Separable Effective Core Potentials (ECP/S)

In order to reduce the costs of calculating matrix elements for 4.13, various workers [11,

12, 13, 14] have explored the use of separated potentials

V;Zi; Z IHAm )\Amn<0An| (416)

Amyn
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including several functions 64, on each atom A.

This was first used for ab initio calculations by Huzinaga. Equation 4.16
considerably simplifies the calculations for larger systems; however, it can lead to
artifacts. With projection operators, the standard method [8] automatically leads
to extremely high energies for core-like states so that the eigenfunctions properly
describe valence states. However with a separated potential, it is possible to obtain
ghost states. These are the core-like states with energies comparable to the valence
states. Various authors attempted to generate the separable potential, but all have
limited successes. [11, 12, 13, 14].

In this section we provide a general procedure for constructing the separable
potentials. We analyze the situation where ghost-states can occur and provide pre-
scription to avoid such pathologies.

We consider a set of Cartesian Gaussian functions {x,} suitable for describing

the pseudo-orbital valence states of an atom,

ecp Z C/,n Xus

/_l,_

where ¢;? is the eigenfunction of 4.11, the basis functions have the form,
X (7,0, 8) = Cug™y" 27" Vi (6, 6) (4.17)

where C, is a normalization constant, m +n + p = [, and N, is the number of basis

functions on atoms A.

A. The Direct Method (Var

sep

The most direct approach to defining a separable pseudopotential is to represent V™

on the N-dimensional Hilbert space spanned by the atomic basis,

Vel = Z X VI (X0 . | (4.18)

piv=1
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This can be simplified by solving for the eigenstates of V.., using this basis

nl onl nlnl
Vecp0 = \"0; (4.19)
gl = Z RuiXy (4.20)
which leads to

A
Veerss! = Z |67 A0 (4.21)

=1
VAT = Vi + S [0 A0 4.22
sep,A — lOC+ZlI>z<i|' ( )

i=1

The problem with 4.22 is that the potentials U; are very short range (the size of
the core) whereas the pseudo-orbitals are smooth and do not require a good description
of the core-orbitals. As a result the direct approach requires many additional core-like

basis functions.

B. The Potential Weighted Method (VYW

sep

An alternative is to write

Ny 1
VI = 31 Vel o (423
=1 ]
lcore NA!
> U6 ) HZille (4.24)
=0 i=1

where 4.24 emphasizes the angular momentum dependence of 4.23 and Ny, is the

number of sets of basis functions on A with angular momentum [. Because of the
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repulsive nature of Uj, we expect A™ > 0. This leads to

VI = Vioea + ;;;;";W. (4.25)

The advantage of this potential weighted approach is that the basis set need only be
adequate for describing the pseudo-orbital. In the VW approach the U; are expanded

in an analytic form which involves only tight core-like functions.

: dir VW
C. Comparison of V' and Vi

Vi, is uniformly more accurate than V&, both in terms of

Our testing shows that
eigenvalues and total energies. In Figure 3 we consider the effect of operating on the
two valence basis functions with the non-local potential V¢®x,, the direct separated

potential Vsdeifxu, and the potential weighted potential ViepXu- In each case

Veep X = VX (4.26)

whereas Vi, deviates substantially in the core region.

‘f‘/VV

sep 18 uniformly more accurate than V% Our conclusion is that V.YV is the

sep sep

better approach and we will use this approach for the balance of this paper. We will
denote VYV as ECP/S.

sep

4.3 Results

4.3.1 Atomic Eigenvalues and Orbitals

4.3.2 Molecules

To further test of the reliability of V,{}", we calculated the structures of several mo-

lecules.
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ECP ECP/S
S=1 Epomr -227.971154 -227.971106
R1 1.8294 1.8204
R2 1.8294 1.8294
S=0 Epp -227.974353 -227.974304
R1 1.8555 1.8555
R2 1.8555 1.8555
S=0 Egvp -227.096554 -227.996554
R1 1.8479 1.8479
R2 1.8316 1.8316

Table 4.1: Comparison of ECP and ECP/S result on F-Pb-F molecule. ECP/S uses
generic ten function to represent VECP.

F—-Pb-F

F — Pb— F is linear and has two inequivalent bond. The GVB one ¢ pair leads to a
bond difference of 0.01633A. HF gives identical bond lengths. In both HF and GVB
calculations, ECP/S and ECP give identical results. In Table 4.1 we list the E;,; and
geometries of F' — Pb — F calculated using VFF/S and using VECF potentials lead

to excellent agreement.

Cd—-Te

The ground state of CdTe is 3II, a triplet. It has a shallow bound state of about
0.087eV = 2kcal/mol The bond stretch mode of the Cd-Te molecule near the equi-
librium is plotted in Figure 7?7, where we calculated the energy using both ECP and
ECP/S. The ECP/S is on the generic basis with six functions for s and p, ten func-
tions for d-component. We can see that the ECP/S gives almost the same mode as

the ECP. Even at the extremely close distance R=1.604, the ECP/S leads to a very
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Figure 4.1: Comparing the bond stretching mode of CdTe, calculated with ECP/S
and ECP respectively. ECP/S is on the generic-10 basis. The symbols are from ECP
calculation and the line is from ECP/S.
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close result as ECP. See below.

R(A) ECP ECP/S1® ECP/S2® ECP/S-genericl0
2.78  -54.431215 -54.431215 -54.431266
1.60  -53.547084 -53.548001 -53.547929 -53.547139

¢: ECP/S1 has as its basis representation of V™ the following basis functions:
{cdte-val, +s(2.1)for Te; +s(4.5/1.5)+p(2.4) for Cd}.

5. ECP/S2 has as its basis representation of V™ the following basis functions:
{cdte-val, +s(2.1)+p(3.6)+d(15.)for Te; +s(15.0/4.5/1.5)+p(7.5/2.4)+d(15) for Cd}.

We noticed that

ECP/S-generic10 has the general accuracy of better than 0.1mH. It is
not tailored for any particular cases. ECP/S1 is tailor made. It is more
accurate near equilibrium.(Give identical result as ECP. But its accuracy
drops at a larger range to 1mH. Nevertheless, ECP/S1 is more economic

in CPU time due to the smaller basis set.

So again we face the choice of algorithmic simplicity versus run-time efficiency.
Conceptually, a single basis set, the ECP/S-generic10, good for all the elements in the
periodic table is very simple. But it needs ten functions for each angular momentum.
On the other hand, tailor made basis for each element is more sophisticated. But,
once we build a more compact basis set for each element in the periodic table, it can
be used as data base to save time. Then it’s the trade off between memory(for loading
basis) and speed. For a modern computer, the memory should be sufficient enough

to load the basis for all the elements in the periodic table.

C d4Te4

The equilibrium structure of CdyTes is show in figure 4.2. Four Cd atoms form a
tetrahedral which serve as bases on which to build four tetrahedrals with the four Te

atoms at each summit. Again, using the generic-10 basis for ECP/S leads to 0.1mH
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Figure 4.2: The equilibrium structure of CdsTes calculated with either ECP or
ECP/S.
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SZn No.of Basis TECP TECP/S Tglcp TglCP/S
8 72 3.540 2.560 2.370 1.390
16 144 30.720 13.030 21.660 3.970
32 288 311.020 83.320 244.680 16.980
64 976 2779.670 822.010 2062.640  104.980

128 1152 17175.949  6712.220 11310.949 847.220

Table 4.2: CPU second for calculating the ECP matrix element, (¢;|Vgcp|¢;) for
silicon cluster Si,. The calculation is done on the 735 series HP workstations.
difference from the original ECP. ECP leads to -217.9467372 hartrees, while ECP/S
leads to -217.9468706 hartree.

4.4 Benchmarking

How does the new method ECP/S fare timewise? We timed the CPU time on a HP 735
series Workstation.(120MHz clock rate and 500M memory) The numbers are listed in
Table 4.2.

In Figure 4.3 We plot the nonlocal part of the matrix element cost, the most
time-consuming part of ECP matrix element, in CPU second against the number of
basis functions. The basis for separable ECP is four for each angular momentum. We
see a saving of 13 — 16 times.

As the first principle algorithms perform better and better in scaling, it can
take the advantage of the hardware progress. First principle algorithm consists of

several blocks in implementations. (see section 1.2.4.)

e Initial guess

e Fock matrix evaluation

T[]

® Eion—ete[p]
® Ecoutoms[p)]
o Eyc[p)
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Figure 4.3: CPU second for calculating the ECP matrix element, (¢;|Vgcp|¢;) for
silicon cluster S7,,. The calculation is done on the 735 series HP workstations.
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e Diagonalization
e Wavefunction update

e Forces on nucleus

When the most time consuming block, the bottleneck, is significantly reduced the
second one stick out as the bottleneck. In Figure 4.4 we compare the cpu time of the
whole Fock matrix calculated with the state-of-the-art DFT program (GDS/DFT) [15]
on a HP workstation with our ECP matrix time cost. We can see that, in the old
method of calculating ECP matrix, the non-local part alone has exceeded the total
Fock matrix calculation of the new method. Obviously the advances in Coulomb term
evaluation has made ECP a bottleneck. Our new ECP/S has successfully broken this
bottleneck by reducing the nonlocal part, the most time consuming part of ECP, to
1/13 of its previous cost.

Acknowledgments We would like to thank Dr. Jean-Marc Langlois for assistant in

porting the code to PS-GVB program.
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Figure 4.4: CPU second for calculating the ECP matrix element, (9i|VEcp|@p;) for
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Chapter 5 Thermodynamics of Carbon

Clusters

5.1 Introduction

Why Cg, fullerenes are so stable? How such highly symmetric molecules are formed?
These two questions are the most interesting questions in fundamental fullerene re-
search. This chapter studies the first question. Next chapter addresses the second
one.

We use here the density functional theory (DFT), as the best compromise
between accuracy and speed for studying these systems. We use the Becke gradient
corrected exchange and the gradient corrected correlation functional of Lee, Yang, and
Parr. [1] The calculations were carried out using the software package PS-GVB with
the 6-31G* basis set [15].

Carbon clusters fall into three categories. One is sp* bonded carbon rings, one
is sp? bonded carbon surfaces and the third is sp® bonded carbon which exists mostly
only in extended bulk, i.e., diamond. sp? bonded carbons form a two-dimensional
surface, which could have a topology of a flat plane, curled up tube, or polyhed-
ral/spherical. Several layers of such 2-D surface constitute graphite, multilayered
concentric tube, multilayered concentric buckyonions. sp! bonded carbons form car-
bon chains or carbon rings. For clusters smaller than 30 carbons, the ring is the most

stable structure. The interests in studying carbon rings revived due to the recent

Dangling bond Strain Energy
1-D Linear Ring
2-D Graphitic sheet Fullerene
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results from ion chromatography experiments, which indicate the existence of large

monocyclic carbon rings all the way to Cso. [4]

5.2 Carbon Rings

Because the carbon rings play a central role, we studied how the structures and en-
ergetics of such rings changed with size and extracted a force field (denoted as the
MSX FF) that would reproduce the energetics and structures from DFT. This MSX
FF would be used later in conjunction with the DF'T calculations on various multiring
systems to estimate the energetics of the full 60 atom systems without the necessity

of DFT on the complete system.

5.2.1 DFT Calculation

We will discuss our DFT results on geometry and electronic structures. The former

is from total energy calculation and latter from eigenvalues.

Geometry

The equilibrium geometries are shown in Figure 5.1 and Figure 5.2, with numbers
listed in Table 5.1.
Cohesive Energy

The calculated total energies on ring systems up to Cgy are shown in Figure 5.3.
The energies quoted here are cohesive energy par carbon atom. In calculating these
energies we used as our reference the triplet C' atom, calculated by LSDA.

We did detailed DFT calculations on various carbon rings. Figure 5.4, shows
the dimerization energies for Csg, Ca4, C32, Ceo, and Cy,. Here the energy reference
is that of the non-dimerized geometry. (For Cypn,o this reference state is the ground
state geometry, while for Cyy, it is NOT ground state geometry.)

We found that

(i) For n = 4m, the minimum energy structure is a polyacetylene structure
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Figure 5.1: Geometries of carbon rings, Cy, Cg and C
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Figure 5.2: Geometries of Carbon Rings, Cs and Cig
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Cy

012

Cie

Ce
Cho

Cua

R12 = R34 = 1.260
R23 == R41 = 1340

R12 = R56 =1.275
R23 = R67 = 1390
Ry = Ry = 1.277
R45 = Rg]_ = 1393

Rip = Ryy = ... = 1.377
Ros = Rys = ... = 1.246
Ry = Ray = ... = 1.355
Ro3 = Rys = ... = 1.250
Ry = R3y = .... = 1.343
Ros = Ry5 = .... = 1.254
Ry = Ry3 = .... = 1.323
Rip = Ryg = ... = 1.302
Rip = Rys = ... = 1.297

6 = 90.00
6, = 90.00
6, = 163.17
6, = 107.68
05 = 163.17
0, = 105.98
6, = 150.00
6, = 149.97
6, = 157.56
0, = 157.45
6, = 162.5
0, = 161.5
6, = 120.00
6, = 144.00
0, = 154.28

Table 5.1: Geometry parameter for C,, rings
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of alternating single and triple bonds. The bond length difference is from
0.064 to 0.08 4. Note that inclusion of correlation reduced the dimerization
amplitude, similar to the case in polyacetylene [4]. Comparing to DFT
geometry, Hartree-Fock (HF)gives too large of a bond alternation, along
with too large of angle alternations. Our HF calculation gives a bond
difference of 0.164, in agreement with that of Feyereisen et al. [5] As
for angle alternation, for Cy, HF gives 160° — 164° [6] while DFT gives
161.5° — 162.5°

(ii) For n=4m+2, the minimum energy structure is a polyene structure of
equal bond length. This is due to the resonance between the two structures,
involving the w-bond perpendicular to the plane and m-bond parallel to the

plane.

(iii) Cypnae is more stable than Cy,. As n — oo, the energy differences
between these two families decrease. However as shown by Figure 5.5
the geometry of the two series do not converge. This implies that for
a very large monocyclic ring there could be spontaneous transition from

polyacetyline structure to polyallene structure.

Both the polyacetylene and polyallene structures involve o-bonds that are sp

hybrids, and hence they prefer linear geometries. Thus we expect a strain energy that

is proportional to

(60)2 = (1 — 0)? = (27 /n)?.

Indeed Figure 5.6 shows that the calculated cohesive energy versus 1/n? leads to an
excellent straight line for n > 6. The slope gives per carbon E*"%" = 63.3eV/n? for

n=4m and E*"%" = 40.1eV/n? for n=4m+2. The extrapolated cohesive energy for

n — 00 is Fy, = 6.56eV

In Figure 5.7 we listed the strain energy in eV for various ring sizes.
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Electronic Structures

The electronic structure for Csy monocyclic ring is shown in Figure 5.8, where we
plotted all the Kohn-Sham eigenvalues.

The band gap from Kohn-Sham HOMO-LUMO difference is about 0.71eV Our
approach did not use the assumption of translational symmetry, it is first principle in
its true sense. From it we can see the emergence of the quantum number k, as the

symmetry indices change from 27m/n of C,, symmetry to k of space group symmetry.

5.2.2 The sp' Force Field

The harmonic force field for our system is:

N/2 0q 1 N1
E = EO + Z |:‘2’k1CIr1 (l)2 + 'Q‘kQQﬁ(l)? + krr"]rl (Z)Qﬁ(l) + krr’er(l + 1)%‘2 (l)] + Z 5]@(]@([)2,
=1 1=1

where ¢.1(1) = Ry(l) — Ryo(l) is the bond stretching term, go(1) = 0(I) — 6p(l) is the
" bond bending term. Using PBC, N/2 + 1 = 1, where N is the total number of atoms
in the system and N/2 is the number of unit cells. Ey gives the energy when there’s
no strain, i.e., when bond length and bond angle are all at their equilibrium values.

At I' point, i.e., when ¢(l) = ¢(l + 7) for an arbitrary ¢, we have,

Estrain 1 9 1 0
W = §k1q1 + 51‘6292 + 2k1201G2. (5.3)
Thus one can use
A?[ES/(N/2
= PSR -
8*[E®/(N/2)
ko = ——(%3—] o (5.5)
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C’20 C'22

Bond Stretch R[4 1.34 1.30
k1[Kcal /mol | A?] 14240  902.0

RY[A] 1.26 1.30

ky[K cal /mol | A?] 2096.0 902.0

k12| K cal /mol | A?] 348.0 316.0
Angle bend 6o 180.0

180.0
ke[ K cal /mol /rad?] 73.9 46.8
Table 5.2: Force Field parameter of sp!' carbons
10°[E°/(N/2)]
= — 5.6
272 09102 (5.6)

to derive force-field parameter k£ from DFT calculation of E* for several ¢ values

for the I'-point mode. As an example, we plot in Figure 5.9 the energies along the

asymmetric stretching mode calculated with DFT.

The angle bending term k4 can be determined directly from Figure 5.6 via,

PE) _ o
= = 5a(eV/rad?) (5.7)
where
_d(E°/n)
o= D) (5.8)

is the slope of Figure 5.6

The resulting force field parameters is listed in Table 5.2.

To check the accuracy of our sp! force field, we compare the DFT results with
FF results in Figure 5.9.
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5.3 Cage Structures

The optimum structure for bulk carbon is graphite in which each carbon is bonded to
three others (sp? bonding) to form hexagonal sheets. These sheets are then stacked up
on top of each other to form the layered structure. The fullerenes structures can be
considered as finite two dimensional analogue of a single sheet, in which each carbon

is distorted (strained) from its preferred planar configuration.

5.3.1 Topology of Fullerene

Identification and categorization of all fullerene polyhedra with a given vertex count
v = n is a mathematical problem. From Euler’s theorem, the number of vertex v,

faces f and edge f satisfy the following relationship:
v+ f=e+2. (5.9)
Fullerenes are trivalent vertices and each edge has two vertices. So,
e =3n/2. (5.10)
Consequently,
f=n/2+2. (5.11)

Let p be the number of pentagons and A be the number of hexagons. For polyhedrons

containing only pentagons and hexagons, since each vertex share 3 face, we have
(5p+6h)/3 =n. (5.12)
Knowing

p+h=f=n/2+2 (5.13)
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we get p = 12 and h = n/2 — 10. Therefore

All fullerenes contain 12 five-membered rings and n/2 — 10 siz-membered

Tings.

Polyhedra can be flattened onto a plane while preserving the topology. This
isomorphic transformation from 3-D to 2-D representation is one-to-many, it allows
us to represent each 3-D polyhedra in a graph, like a Schlegel diagram. We build all
our fullerenes according to the Schlegel diagrams of C,, fullerenes. For illustrations
see figure 5.11.

The number of isomers of C,, fullerene can be estimated with the spiral con-

Juncture due to P. W. Fowler and D. E. Manolopoulos. [7]

The surface of a fullerene polyhegron may be unwound in a continuous
spiral strip of edge-sharing pentagons and hexagons such that each new
face (after the second) in the spiral shares an edge with both (a) its imme-
diate predecessor in the spiral and (b) the first face in the preceding spiral

that still has an open edge.

5.3.2 DFT Calculation

We have performed the DFT calculations on several C,, fullerenes, with n = 20, 32
and 60.
Cao
Coqo has a I, symmetry.(see figure 5.10) It has 12 pentagon faces and 30 edges.

The irreducible representation of I, is

I'(In) = Ag(1) + T1y(3) + Tog(3) + Gy(4) + Hy(5) + T1u(3) + Tou(3) + G (4) + Hy(5)
(5.14)

The number in the brackets indicate the dimensionality.
All 20 bonds are equivalent, thus by constraining the equal bond length there

is only one variable R. However, the 120 electron will fill the orbitals which are
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1s 2s

1 -11.674896 A, 21 -1.736381 A,

2 -11.674375  Ty/Ei. 22 -1.627243  Ti./Ei,
3 -11.674375 Ti/A 23 -1.627243 Ty, /Eq,
4 -11.674375  Tuw/Ein. 24 -1.627243 Ti/A

5 -11.673630 H,/A 25  -1.448889  H,/Ey,

6 -11.673630  H,/E, 26 -1.448889  H,/Ey,

7 -11.673630  H,/E,, 27 -1.448880  H,/Ey

8 -11.673630  H,/Ea, 28 -1.4488890  H,/E,,

9 -11.673630  H,/E;, 29 -1.448889 H,/A

10 -11.673116  G,/Ey, 30 -1.204340 Tou/E2q
11 -11.673116  G,/Ey, 31 -1.204340 Tou/Egq
12 -11.673116  G,/Ey, 32 -1.204340 Tou/A
13 -11.673116  G,/Es, 33 -1.251001  G,/Ei
14 -11.672394  G,/E;, 34  -1.251001  G,/Ei
15 -11.672394  G,/Es, 35  -1.251001  G,/Es
16 -11.672394  G,/Ei, 36  -1.251001  G,/Es
17 -11.672394  Gg/Es, 37  -1.043429  G,/Eg,
18 -11.672317 Ty /Es, 38  -1.043429  G,/Ei,
19 -11.672317  Teu/Ess 39 -1.043429  G,/E,,
20  -11.672317 Tau/A 40  -1.043429  G,/Ei,

grouped according to the irreducible representation of I symmetry. As shown in
Table 5.3 of the orbital energies of the I, CZf ion, the last two electrons of the
neutral Cyy will occupy a four-fold degenerate G, orbital. As a result the system
will undergo a Jahn-Teller distortion, which would lower the total energy E,,. For
a Jahn-Teller distorted structure, the last two orbitals (number 60 and 61) are still
degenerate. Thus the last two electrons would each occupy one of the two, leading to
the S = 1 state. In our Hartree-Fock calculations of Cy fullerene, the neutral S = 0
structure gives Ej,; = —756.511163 Hartree while the neutral S = 1 structure gives
Eiot = —756.529333 Hartree, all done at non-distorted HF minimum R with 6-31G**
basis set. The triplet is lower by ~ 0.5¢V. The Jahn-Teller distortion energy is about
~ 1.32eV, calculated from the difference betvyeen the constrained minimization w.r.t
R and the relaxed minimization.

Cs
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occupied unoccupied
41 -1.016589 A, 60 -.362728 Gu/E1a
61 -.362728 Gu/E1a
42 -.978571 H,/E1, 62 -.362728 Gu/Esa
43 -.978571 H,/Ea, 63 -.362728 Gu/Eoq
44 -.978571 H,/E2,
45 -.978571 Hy/Ei, 64 -.243398 Tau/A
46 -.978571 Hy/A 65 -.243398 Tou/E2a
66 -.243398 Tou/E2a
47 -.890786 H,/Esq
48 -.890786 H,/A 67 -.185903 Gy/E1a
49 -.890786 H,/Eo, 68 -.185903 G,/Eaq
50 -.890786 H,/E1, 69 -.185903 G,/Eaa
51 -.890786 H,/E1q 70 -.185903 Gy/E1a
52 -.896691 T1u/E1a 71 -.095946 Tiu/E1a
53 -.896691 Tiu/E1a 72 -.095946 Tiu/E1a
54 -.896691 T /A 73 -.095946 Tiu/A
74 .059055 Tig/A
55 -.678189 H,/Ez, 75 .059055 T1y/Ela
56 -.678189 H,/E1, 76 .059055 T14/E1a
57 -.678189 H,/A 77 046224 H,/A
58 -.678189 H,/Ei, 78 046224 H,/Ea,
59 -.678189 H,/Ea, 79 046224 H,/Eq,
80 046224 H,/E1.

Table 5.3: C,? Hartree-Fock orbital energies in Hartrees. Geometry fixed at I,
Basis set is 6-31G** (300 total basis), net molecular charge is 42, spin multiplicity is
1(S = 0). EEF(C3?)=-755.93993 Hartree.
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Symbols  Symmetry Estrain(Kcal /mol)

C32-6 Ds 665.1977
C32-5 Dy, 717.2072
C32-4 Cy 676.0504
C32-3 Ds, 691.2343
C32-2 D, 691.2343
C32-1 Cy 682.9857

Table 5.4: Strain energy for the Cjy fullerene isomers in Kcal/mol, calculated with
the force field of Table 5.5.

(39 fullerenes have 12 pentagons, six hexagons, and a total of n/2 + 2 = 18
faces. According to the spiral conjuncture (section 5.3.1), there are six different Cs,
fullerenes. Their structure differ by the sequence of the pentagons positions and they
have different three dimensional structures. Figure 5.11 shows the Schlegel graph of
the six Cj39 fullerenes.

The bonding energy are almost the same since they all have 32 sp? bonded
carbons. The corresponding strain energies from FF are listed in Table 5.4.

The energy differences are between 0.48¢V and 2.3eV. Putting pentagons
adjacent to each other raises the strain energy and placing them apart lowers the
strain energy. Dj structure has the pentagons separated as far as possible. We see
from our FF calculations that indeed D3 structure has the lowest energy.

Ceo

Ceo has a I symmetry. It has 32 faces(12 pentagon faces and 20 hexagon
faces). It has 90 edges(60 long and 30 short). See Figure 5.13 for the energies of
various bond stretches. We found that the equilibrium bond length for Cgy fullerene
are R; = 1.414 and R, = 1.46A. Experimental measured values are RVMR = 1.40A
and RYMRE = 1.45A. [16]

For a summary of the energetics of carbon clusters, see figure 5.3 where the
cohesive energies per carbon atom are shown. Since the strain should be proportional
to the square of the planar distortion angle, dv, we expect that the strain energy

should scale as 1/n
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C'oo C'60

VDW (LJ12-6) R,(A) 3.8050  3.8050
D, (kcal /mol) 0.0692  0.0692

Bond Stretch® Ry [A] 1.411 1.414
1.455
k, [Kcal/mol/A?| 720.0 823.75
711.77

Dy [Kcal/mol] 133.0

Angle bend 6o (deg) 120.0 120.0
k¢[Kcal/mol/rad?] 196.13 196.13

k.o[Kcal/mol/radA]  62.71 62.71

k.[Kcal/mol/A?] 68.00 43.94

Torsion(1 fold) Vi(kcal/mol) 21.28 21.28

>The bond stretches are Morse for graphite and harmonic for Cgg.

Table 5.5: Graphite Force Field

5.3.3 The sp? Force Field

Starting from graphite FF, Y. Guo [16] has derived an accurate FF from fitting the
vibration data. The FF has been applied to various crystal made up with Cgq fullerenes
and the results are excellent. [16] Here we use Guo’s FF for the sp? carbons. We
reproduced the GraFF of Y. Guo in Table 5.5

We extrapolate the cohesive energy ' to n — oo to get bonding energy per
carbon for sp? carbon, Ejf,’; = 7.71eV. It can be compared to the cohesive energy of
a single graphitic sheet, E, = 7.74eV. The latter is derived from the experimental
cohesive energy [9] of graphite of E9%hite — 7.8¢V, and Van der Waals attraction of
EVPW = (.056eV between sheets calculated from MSX force field [16].

5.4 Thermal Stabilities

The absolute cohesive energies for single ring, double ring, and bucky ball structures

are compared in Figure 5.3. Here we see that single rings are stable for n < 26,

'E(1/n) = A(1/n)? + B(1/n)+ C, by plugging in E(Cy), E(Cs3) and E(Cso), we find A, B and
C.En—-o0)=C
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buckyballs are stable for n > 26.

These estimates are for the minimum energy structure at zero temperature,
without counting the zero point energy. For finite temperature, we must correct these
results for entropy and for temperature differences in the enthalpy. To do this we used
the MSX FF to calculate the vibration frequencies, which were then used to estimate
the free energies(assuming harmonic vibration modes). These results are tabulated
in Table 5.6-5.8 and plotted in Figure 5.14. Figure 5.14 shows the free energy versus
temperature for monocyclic rings, bycyclic rings and fullerenes of several sizes n.
For Cy the monocyclic ring structure has the lowest free-energy. From Figure 5.3
we see that fullerene has slightly lower energy than the bycyclic ring. But the zero
point motion has made the bycyclic ring a winner over fullerene. For Cjss, at zero
temperature the stability order is ball, monocyclic ring and bycyclic ring. At around
800K the monocyclic ring becomes more stable than the fullerene due to the entropic
effect. At around 1200K the bycyclic ring also become more stable than fullerene. For
Ceo, the fullerene has such a low energy compared to others that it is the minimum

free;energy structure in the whole temperature range between 0K and 2500K.
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T(K) Mono-ring Bycyclic-ring Fullerene
0.0 -6.2539375 -6.1646258 -6.1086969
100.0 -6.2683859 -6.1783714 -6.1209549
200.0 -6.2888352 -6.1977244 -6.1357029
300.0 -6.3138593 -6.2216472 -6.1519978
400.0 -6.3429928 -6.2497927 -6.1702125
500.0 -6.3758066 -6.2818159 -6.1906676
600.0 -6.4119261 -6.3173736 -6.2135095
700.0 -6.4510382 -6.3561442 -6.2387511
800.0 -6.4928786 -6.3978363 -6.2663287
900.0 -6.5372220 -6.4421945 -6.2961412
1000.0 -6.5838740 -6.4889950 -6.3280722
1100.0 -6.6326637 -6.5380438 -6.3620037
1200.0 -6.6834419 -6.5891722 -6.3978211
1300.0 -6.7360772 -6.6422329 -6.4354167
1400.0 -6.7904523 -6.6970952 -6.4746915
1500.0 -6.8464629 -6.7536464 -6.5155531
1600.0 -6.9040163 -6.8117836 -6.5579180
1700.0 -6.9630280 -6.8714165 -6.6017090
1800.0 -7.0234226 -6.9324642 -6.6468563
1900.0 -7.0851308 -6.9948532 -6.6932958
2000.0 -7.1480909 -7.0585182 -6.7409671
2100.0 -7.2122455 -7.1233979 -6.7898179
2200.0 -7.2775417 -7.1894374 -6.8397962
2300.0 -7.3439322 -7.2565870 -6.8908567
2400.0 -7.4113723 -7.3248014 -6.9429564
2500.0 -7.4798205 -7.3940354 -6.9960555

Table 5.6: Free energy G(T) for Cy isomers
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T(K) Mono-ring Bycyclic-ring Fullerene
0.0 -6.3535560 -6.3052448 -6.4554574
100.0 -6.3649048 -6.3158383 -6.4637079
200.0 -6.3824485 -6.3323535 -6.4737218
300.0 -6.4047864 -6.3537684 -6.4853715
400.0 -6.4313860 -6.3796164 -6.4991639
500.0 -6.4617748 -6.4094501 -6.5154011
600.0 -6.4955522 -6.4428609 -6.5341854
700.0 -6.5323874 -6.4794876 -6.5554934
800.0 -6.5720051 -6.5190185 -6.5792344
900.0 -6.6141716 -6.5611846 -6.6052875
1000.0 -6.6586860 -6.6057559 -6.6335231
1100.0 -6.7053733 -6.6525359 -6.6638123
1200.0 -6.7540806 -6.7013544 -6.6960333
1300.0 -6.8046733 -6.7520627 -6.7300722
1400.0 -6.8570323 -6.8045332 -6.7658250
1500.0 -6.9110504 -6.8586512 -6.8031970
1600.0 -6.9666331 -6.9143168 -6.8420999
1700.0 -7.0236956 -6.9714414 -6.8824559
1800.0 -7.0821600 -7.0299424 -6.9241909
1900.0 -7.1419571 -7.0897516 -6.9672406
2000.0 -7.2030231 -7.1508011 -7.0115416
2100.0 -7.2653000 -7.2130337 -7.0570426
2200.0 -7.3287336 -7.2763937 -7.1036891
2300.0 -7.3932775 -7.3408331 -7.1514340
2400.0 -7.4588854 -7.4063075 -7.2002345
2500.0 -7.5255150 -7.4727747 -7.2500498

Table 5.7: Free energy G(T) for Cs, isomers
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T(K) Mono-ring Bycyclic-ring Fullerene
0.0 -6.3949740 -6.4003124 -6.8779842
100.0 -6.4041065 -6.4089095 -6.8828164
200.0 -6.4197344 -6.4240679 -6.8890703
300.0 -6.4403377 -6.4445657 -6.8973241
400.0 -6.4653127 -6.4698070 -6.9080843
500.0 -6.4941544 -6.4992626 -6.9215498
600.0 -6.5264436 -6.5324707 -6.9377411
700.0 -6.5618378 -6.5690343 -6.9565811
800.0 -6.6000543 -6.6086162 -6.9779449
900.0 -6.6408532 -6.6509296 -7.0016908
1000.0 -6.6840294 -6.6957310 -7.0276734
1100.0 -6.7294049 -6.7428136 -7.0557553
1200.0 -6.7768244 -6.7919986 -7.0858067
1300.0 -6.8261508 -6.8431320 -7.1177082
1400.0 -6.8772624 -6.8960802 -7.1513522
1500.0 -6.9300531 -6.9507239 -7.1866400
1600.0 -6.9844256 -7.0069600 -7.2234827
1700.0 -7.0402924 -7.0646954 -7.2617974
1800.0 -7.0975771 -7.1238490 -7.3015119
1900.0 -7.1562083 -7.1843433 -7.3425559
2000.0 -7.2161216 -7.2461141 -7.3848709
2000.0 -7.2161216 -7.2461141 -7.3848709
2100.0 -7.2772587 -7.3090990 -7.4283964
2200.0 -7.3395657 -7.3732434 -7.4730835
2300.0 -7.4029918 -7.4384959 -7.5188839
2400.0 -7.4674949 -7.5048105 -7.5657506
2500.0 -7.5330286 -7.5721430 -7.6136433

Table 5.8: Free energy G(T) for Cyo isomers
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Figure 5.4: The total energy as function of bond alternations for carbon rings. All

cases take the equal bond length geometry as the energy referenced point. Cy,, di-
merize, while Cy,, 1o don’t
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Figure 5.6: Cohesive energy of carbon rings C,, plotted against the 1/n?, which is
proportional to the bending angle squared 62. Cly,4o rings, which have equal bond
lengths, are more stable than the nearby Cjy,, rings which have alternate bond lengths.
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Figure 5.9: Cy ring energy as a function of bond length difference. The average bond
length is 1.30A. Solid line is from DFT and dash line from FF calculations.

Figure 5.10: The structure of Cyy with I;, symmetry
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Figure 5.12: The structure of C3; with D3 symmetry
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Chapter 6 Formation Mechanism of

fullerenes

6.1 Introduction

One of the most puzzling aspects of fullerenes (Cgo,C70, etc.) is how such complicated
symmetric molecules are formed from a gas of atomic carbons [1], namely, the atom-
istic or chemical mechanism. Are the atoms added one by one or as molecules (C2,
C3)? Is there a critical nucleus beyond which formation proceeds at gas kinetic rates?
What determines the balance between forming buckyballs, buckytubes, graphite, and
soot? The answer to these questions is helpful in manipulating the systems to achieve
particular products.

A difficulty in current experiments [3, 2, 4] is that the products can only be
detected on times scales of us, long after many of the important formation steps have
been completed. Consequently, it is necessary to use computer simulation, quantum
mechanics and molecular dynamics, to determine these initial states. The experiments
serve to provide boundary conditions that severely limit the possibilities, making the
use of first principles theory practical.

In the original laser evaporation experiment of Kroto and Smalley, [5] in the
electric arc experiment of Kratchmer and Huffman, [6] and in the geological fullerene
found in the Precambrian Russian rock, [7] which might have resulted from lightening,
there is a common condition: pressure and temperature gradient. Thus, in fullerenes
formation the intricate balance between space and time played an important role.
Space, in terms of pressure determines the density of carbon atoms, thus the availab-
ility of the source for growth. While ¢ime, in terms of temperature, determines how
long a metastable state would last in existence. Howard [8] produced fullerenes from

benzene flame. The crucial difference here is the existence of H atoms. Because the H
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atoms are agents to terminate the dangling bonds, the energetics in the flame set-up
is quite different. The fact that Howard’s method produced lower yield than the arc
method indicates that the existence of the dangling bonds is actually helpful in the
process of finding the fullerene minimum.

The discovery of buckytube [9], [10] suggests that cylinders might be compet-
itive in energy. But both experiment and HF calculations [11] pointed out otherwise.
Upon annealing, the buckytubes curl into quasi-spherical particles composed of con-
centric graphitic shells, suggesting that these “Buckyonions” are more stable than
other forms of carbon, including graphite, for systems of finites size. This is the ex-
perimental evidence that the tubes are metastable states. Yet they exist and are stable
products.

All the above demonstrate that kinetics pathways, the temporal sequence for
the formation of carbon clusters, more than the energy of the equilibrium states , need
to be carefully examined to elucidate the mechanisms by which buckyball, buckytube
or graphite form. In this chapter, we investigate the kinetic processes of fullerene

formation.

6.1.1 Generalized Phase Diagram

The rate of a complicated reaction depends on how far the product and reactant are
separated in phase space and how fast each individual step got accomplished. Again,
when talking about kinetics we need to specify a coarse level in our description. Only
so can the distance in phase space be meaningfully defined. At the finest grain, the
reaction coordinates are bond angles, distances between atoms, the impact parameter,
etc.. The output of the theory is the collision cross-sections. This is useful to study
the very first moment, when C; and Cs are formed. At the coarsest level, the reac-
tion coordinate could be whatever order parameter ¢(¢) there happen to emerge, for
example the percentage of sp? bonded carbons p,.

If we use a to denote the quantity measuring the distance in phase space, then



161

the macroscopic yield

Aa Aa
By Teot [ dT (61
Using R(7) = da/dr leads to
Aa
= _ 6.2
Rif Tda/ R (6.2)

Since transition states take up only a negligible fraction of time, it is very natural that
integration along 7 be divided into segments A, B, C, D, ...., etc., where A, B, C, etc.,
are distinguished molecular species. This division into reaction steps is the subject
of the reaction mechanism. For a proposed reaction mechanism, the above equation,

eq. ( 6.2), becomes summation over reactions:

(6.3)

The PES landscape also reflect the hierarchy structure. As illustrated in Fig-
ure 6.1. €, is the energy difference between reactant A and product B, but on a coarser
grain it is approximately the kinetic barrier between A and C. Because on the larger
scale, B is a transition state species.

For the significant minima in PES we define a point (IV, ps), where N is the
number of carbon atoms in the clusters and ps is the percentage of sp? bonded carbons.
Thus we can lay down the cluster species on a two-dimensional diagram, which we
call generalized phase diagram. Figure 6.2 illustrates such a diagram. Line segments
along constant N represent unimolecular reactions. Whereas paths cross constant N
lines represent fusing, growth, fragmentation reactions. In the unimolecular reaction
sp' bonded carbons are converted into sp? bonded ones, a process we call stitch-
up. This happens continuously.! Another way to represent the formation process is

through evolution tree. See Figure 6.3. This tree is analogous to that in biology. A

!Because it is very hard to imagine that the ring would wind themselves onto the surface of a cage
first without having adjacent carbons stitching up.
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Figure 6.1: The thermodynamics energy difference on one scale, e.g., €, could be the
kinetic energy barrier of a coarser scale.
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single line constitutes one species existing in time. When two individual in a branch
combine, they form a different species and thus branch out to become a new species.
When two individuals belonging to two species combine they become a third species.
The evolution of fullerene from atomic species has an arrow in time. Formation and

fragmentation apparently follow different paths.

Cluster Size

05 |—

1

Percentage
of sp2 Carbons

Figure 6.2: The generalized phase-diagram N — p for carbon cluster, where N is the
cluster size and p is the percentage of sp? bonded carbons.

(1)C12 monocyclic ring; (2)Cqp monocyclic ring; (3)Ca bowl; (4)Cy fullerene; (5)Coy
monocyclic ring; (6)C3p monocyclic ring; (7)Cso bowl; (8)Csq fullerene; (9)Cyo mono-
cyclic ring; (10)Cyo bycyclic ring; (11)Cyo fullerene; (12)Cys bycyclic ring; (13)Céo
monocyclic ring; (14)Ceo bycyclic ring; (15)Cqo fullerene; (16)Cry monocyclic ring;
(17)Cro fullerene, etc..
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Figure 6.3: The evolution picture of carbon clusters. Massive simplification is for
illustration only. Many, many more process are possible.
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6.1.2 Experimental Observations
Synthesis Conditions

Cgo fullerene yields depend only slightly on the buffer gas pressure between 1 x 10*
and 5 x 10* Pa (100-400 Torr), but decrease rapidly at lower or higher buffer gas

pressures.

Isotopic Scramble Experiment

Ebbesen et al. [1] used 3C and 2C respectively for the two graphite gods in the
arc experiment. The products showed the mixing ratio of a complete scramble. No
magic numbers, no two peaks at the respective locations for Cgy and C7g, but only
one single peak with the Poisson distribution. So the carbon clusters must be formed
from atomic mixing. Namely, graphite has been broken down to atoms and clusters

are assembled from atomic carbons.

Ion Distribution

The éarliest work on carbon cluster that show the hint of Cgy might be the ion abund-
ance distribution of Exxon group in 1984. [12] We noticed that there is a gap between
026 to 036-

Ion Chromatography Experiment

Bowers and Jarrold [13] have developed the ion chromatography technique to differ-
entiate the structure of isomers. The method measures the mobility of ions as they
drift across a chamber filled with buffer gas. Since the mobility is related to the
cross-section, one can measure the cross-section of carbon cluster with this method.
The ion chromatography can determine the cross-section to such an accuracy that
one can identify whether the ion is monocyclic ring or bycyclic ring or fullerene. Ion
chromatography thus serves as a tool to distinguish isomers of various compactness.

See Figure 6.5
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Figure 6.4: The measured carbon cluster distribution by laser vaporization of a solid
graphite rod within the throat of a high pressure pulsed nozzle. The experiment
showed two regions, odd number small clusters and even number large clusters, with
a gap in between around n = 30
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Figure 6.5: Bowers analysis of the isomer populations from ion drifting experiment for
cations. We can see that below n=30, the carbon clusters are ring-like, above n=30,
they prefer fullerene structures
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Both Bowers group and Jarrold’s group demonstrated that isomerization reac-
tion can convert Cgy bycyclic ring into Cgy fullerene. Also, the observed behavior of

Ch, Ck, etc., are very much like Cg, see Figure 6.6 and Figure 6.7.

Monocyclic
ring

100 eV
e i

| el
o | B

325 eV

Relatlve abundance

b\ 1
(o] 500 1000 1500 2000 2500
Time (1)

Figure 6.6: Conversion of Cgy bycyclic rings to Cgy monocyclic rings and fullerenes
when heated.

Thus it is hard to imagine that the Cgq fullerenes would follow a completely
different pathway as that of Cyg fullerenes. So the distinguished abundance of Cgy is
not due to the kinetic pathways, but due to the stability of the molecule itself, which
in turn is determined by OF:(N)/ON, a structural property. Thus the formation
mechanism has a reduced task of explaining the pathway or pathways to reach that

thermodynamically very favorable state.

6.2 Methodology

Synthesis of fullerenes involves high temperature and high pressures. In forming Cs

fullerenes, huge energy is released. Indeed, as we showed in the figure 5.3, the iso-
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Figure 6.7: Conversion of Cy bycyclic rings to Cy monocyclic rings and fullerenes
when heated.
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merization from bycyclic rings to fullerenes releases 30eV of energy, not to mention
the total atomization energy of 423eV" from the very beginning. To handle this large
energy scale, we used two levels of modeling. For instance, in studying the isomeriza-
tion reactions from bycyclic rings to fullerenes, we will use a fine grained one for the

crucial initial steps, and a coarse grained one for the subsequent stitching up steps.

6.2.1 Fine Grain

Ab initio calculation will give the accurate energies. However, for a molecule of 60
atoms, complete ab initio calculation with correlation included is still too expensive,
except for some very symmetric configurations. Notice that the ab initio scheme is not
needed in all the calculations. Contineous deformations could be accurately evaluated
relative to a reference point using MD with a well calibrated force field. Hence we
have devised a combined DFT and MD method that direct the ab initio power to
where they are really needed, e.g., where bonds are formed or broken. Take as an
example the fusing of two C3y monocyclic rings into a Cey bycyclic ring. The energies
were computed with the combined DFT and MD as follows, see Figure 6.8 for an

illustration.

(1) The reaction from two Cyo ring (I) to Cs bycyclic ring molecules (II) is
achieved via an intermediate III. For each of I, IT and III, the system is
divided into two parts, part A, which involves bond change, and part B,

which involves just continium deformation.
(2) The energy of I is calculated with DFT, see Figure 5.3.

(3) The energy difference between I and III can be calculated by MSX FF,

since it’s just strain energies.

(4) (a) For energy difference between III and II we do it by part. For part
A we do DFT calculations on the reaction from two CsH, molecules sep-
arated afar to the 4-member ring molecule Cj;H,. (b) For part B we

calculate the corresponding change in going from III to II using MSX FF.
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Figure 6.8: We break down the calculations into two parts. One part can be calculated

accurately by molecular dynamics with MSX force field, the other part is small and
can be calculated accurately DFT
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Then we combine A and B to get the energy difference between III and
IT.

(5) Thus the energy of Cgy bycyclic ring (II) can be calculated by II-ITI-I.

Once one configuration is accurately calculated, it can be used as a reference
point for other configurations which are slightly different in bonding. This way, we
can devise a contiguous path connecting two structures, each point on this path differs
only slightly in bonding from the structure ahead of it. Thus the part that needs ab
initio treatment is local and small. A cluster model will be sufficient for it. This
scheme substantially cuts the computation cost. One criterion of accuracy of this
approach is to check the path independence. The error accumulated in summing up
all the differences along the path should be small.

All the DFT calculation is done with the BLYP functional [14] on a 6-31G*
basis set using PS-GVB program. [15]

6.2.2 Coarse Grain

The Extended MSX FF for the general sp* and sp* Carbon Clusters
The isomerization from Cgy monocyclic rings to fullerenes releases 30eV” of en-
ergy. To handle reactions on this energy scale we shall use a model, whose parameters
are calculated with DFT. The key components are the additive energy terms for the

dangling bond and the energy cost for bending a triple bond to form a 1,2-benzene.

Our FF are defined as follows:

Etot(n2) = Ebond + Eradical + Estrain = ’I’L2(61 - 62) + dlnR + d2na7r + EStr (n2) (64)

We have chosen E; = 60¢; as zero point. Here, ny is the number of sp? bonded
carbons, nz(€; — €;) gives the energy gained by converting sp! bonded carbon into sp?
bonded carbon, with €; = —6.56eV and e; = —7.71eV. d; is the energy of a radical
relative to the bonded state, ng number of of such radicals (dangling bond); ds is the

energy of an atom participating bended planer 7-bond relative to the c—bonded state
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Figure 6.9: The balance between three major forces: o-bonding, strain energies and
dangling bonds

and n,, is the number of such atoms. We used the Benson-like scheme to evaluate d;
and dy, [16] and found d; = 2.32¢V and d; = 1.64eV. The ng and n,, as a function of
ny depends on the growth sequence, see Table 6.2 for an example. E*(ns) is the strain

energy evaluated at the FF minimum energy structure of a given bonding scheme.

6.3 Energetics for Initial Growth

The physics under carbon clustering is three type of forces,

e kill the dangling bonds.
® minimize strain enerqgy.

e converte m—bond to o—bond.

For example, carbon dimer Cs is of course linear having two dangling bonds. Linear Cs
has two dangling bonds. Triangle C;3 has no dangling bonds but huge strains. Linear
Cy has two dangling bonds. Rectangular has no dangling bonds but huge strains. So
the formation of clusters is characterized by the relative importance of these three

driving forces, see figure 6.9.
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As shown in this figure, there are several interconversions among chains, rings

and fullerenes.

(1) Branching off leads to one extra dangling bond d;, the gain in getting one

more o-bond €; — € is not enough to offset it.

(2) Bending to form a ring, on the other hand, would lead to large strain en-
ergy EStr%" But the larger the ring, the smaller the strain energy. So
this linear growth mode continues until the strain energy balance out the
dangling bond 2d;. Then the closed rings become the thermodynamic-
ally most stable species. The prevalence of ring structures are results of
thermodynamics. The pathways by which these rings are formed are the
subject of detailed kinetics. See our discussion on Ciy ring formation in

last section.

(3) The energy balance between the dangling bonds and o-bonding, €, — €5, is

reached at cluster size ng, which can be estimated as follows:

T[R(n)?A(e; — €,) — 2mR(n.) BA
> —Ejna (ne) (6.5)
where, A is the area density of carbon atoms in a graphitic sheet. B
is linear density of carbon atoms in the peripheral of the sheet. R(n)
is related to the sheet size simply by n = wR2A. From section 6.2.2
A =232V, e — € =7.71 —6.56 = 1.15eV. We get ng ~ 26. Therefore

all the way to Cbyg, it is energetically unfavorable to have graphitic sheet.

(4) Both monocyclic ring and fullerenes have zero number of dangling bonds.
They interconvert because of the balance between strain energy and o-
bonds. For a given cluster size, monocyclic rings would have smaller strain
energy, for they are more extended. But fullerenes enjoy more o-bond,
each gaining €, — €;. From Figure 5.3 we see that the two forces balanced

out at n = 26.
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(5) Any closed fullerenes has 12 pentagons. (See section 5.3.1) The strain
these pentagons incur is constant and decreases on the per carbon basis.
So no matter how large a single graphitic sheet gets, the dangling bonds at
its boundaries always lost it to the closed fullerene. However, large single
graphitic sheet can curl up and form tube whose strain approaches zero
at very large size rather than a constant. In reality, the bonding among
sheets along the direction perpendicular to the sheet will become import-
ant. Consequently, for very large clusters, the multilayered structure is

most favorable.

(6) We didn’t mention the conversion between linear chain and the fullerenes.
They are far separated in configuration space and thus don’t have direct

conversion.

6.4 The Energetics for Isomerizations

Ion chromatography experiments implied the way CZf is formed. Theoretical ana-
lysis of the last section also shows that the history of Cgy must be that of growth and
isomerization. First, grow in forms of extended rings and followed by isomerization
into compact fullerenes. This also fits the angular momentum picture. In this section
we focus on the energetics of the isomerization process. In particular, how a bycyc-
lic ring, which is the most popular isomer from a growth history, isomerizes into a

fullerene. We shall use the methodology described in section 6.2.

6.4.1 Reactive Part of the Molecules

We performed the DFT calculations on the model clusters representative of the reactive

part of C,, clusters.

(A) C¢Hy + CeHy, — C1oH,

The intermediate geometries are shown in Figures 6.14 through Figures 6.10
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Front

Figure 6.10: The geometry of the intermediates for Cs Hy+CgHy — C12Hy. Constraint
Ros at 3.00A, starting with ~ 75°.
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Figure 6.11:° The geometry of the intermediates for Cg Hy+CgHy — C1oHy. Constraint
Ro3 at 2.50A, starting with ~ 90°.
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Figure 6.12: The geometry of the intermediates for Cs Hy+CgHy — C1oH,. Constraint
Ry3 at 2.35A and start with 20° twisting angle.
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Figure 6.13:° The geometry of the intermediates for Cs Ho+CgHy — C1H,. Constraint
Ra3 at 2.00A and start with 20° twisting angle.
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Figure 6.14: The geometry of the intermediates for Cs¢Hy+CgHy — C19H,y. Constraint
R23 at 1.70A.
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Figure 6.15: The energy contour for C¢Ho+CsHy; — Ci1oHy. The x-axis is Re3 and
y-axis is the dihedral angle ¢.

The energies are shown in Figure 6.16. We found that the barrier in going from
two separate CgH> chains to C12Hy is 19.6 K cal/mol and the reaction is exothermic by
3Kcal/mol. Figure 6.15 gives the contour plot in terms of two reaction coordinates
(Ra3, ®). Ros is the distance between atom 2 on one chain and atom 3 on the other.
¢ is the twisting angle between the two CgH, planes. We noticed that the transition
state geometry has ¢ = 45°. The final state has planer geometry.

(B) Bergman Cyclization

The Bergman cyclization [17] is made easier by bending the carbons ahead of the
cyclization. Here we examine two configurations. One without bending, one with
bending. See figure 6.17. We see that prebending lowered the energy difference from

1.9eV to 0.5eV, making the cyclization much easier to occur.

(C) Opening the Four-membered Ring

The four-membered ring in Cj3H, has large strain energy. By breaking one o-bond
between atom 1 and 2, (see Figure 6.18) and forming two 7 bonds, thus opening the

four-membered ring, one gets the vase-shaped molecule (referred to as Cio-vase) and
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Figure 6.16: The reaction path for C¢ Hy+CsHy — C12H,. Note that there is an energy
barrier of 0.85ev. This is used for evaluating the energy of fusing two monocyclic rings

H

\ .
QH 4 H A\ H
H \\ H

H

H

Figure 6.17: The pre-bending of the carbon chain facilitates the Bergman cyclization.
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Figure 6.18: It is very easy to cleave the o bond between atom 1 and atom 2 and form
two m bonds between 1 and 5, and 2 and 6

releases the strain. This isomerization is downhill by ~ 1eV.

(D) Forming the Second Ring

Figure 6.19 shows the process of forming the second six-membered ring. This process

is uphill by about 1.2eV'.

6.4.2 Annealing the Polycyclic Rings

After getting the energetic for the reactive part of the C, isomers, we add in the
chain part calculated with MD to get the total energy of the whole molecules, using
the reference point and path integration method prescribed in Section 6.2. Since the
central part of molecules, the part that participate bond changes, are the same for all
the Cp(n =34, 40,..., 60) in the conversion reaction from bycyclic ring to monocyclic
rings, their energetics are readily calculated.

One C1¢ monocyclic ring and one Cyg monocyclic ring collide into a C34 bycyclic

ring, which subsequently isomerized into a C34 monocyclic ring. We use

016 + Clg — CﬁR — C:%R
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Figure 6.19: One arm swings around and attaches one of the triple bonds, forming the
second ring, a six-membered ring. The process is uphill by ~ 1.2V

to denote the sequence.

Similarly, we have the isomerization reaction for Cyy and Cgo:

Cao + Cy — CHE — CME

C3o + C30 = CEF — CHE

Their energetics are compared in Figure 6.20

From Figure 6.20 we can see that there are two types of bycyclic rings, one
is with a four-membered ring and the other is with an eight-membered ring. The 8-
member-ring isomers are formed after a Bergman cyclization from the four-membered
ring, which leads to the diradical 7. 7 relaxed into 8. The four-member bycyclic rings
4 have their kinetic origins from colliding two monocyclic rings 0. Upon annealing
they are converted into monocyclic ring 6. This is exactly what the Jarrold group
found in their ion chromatography experiment. [3, 2] See Figure 6.21 for their relative
abundance analysis for annealing carbon clusters with size n =34, 40.

Energetics of several reaction products in the initial steps of forming sp? net-

work are list in Table 6.1
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Figure 6.20: The energetics of isomerization reactions that convert bycyclic ring to
monocyclic rings for several clusters C, with, n=30, 40, 60. Their reference points
have been set to 30e;, 40¢; and 60e;, respectively, with €; being the atomization energy
of an infinite carbon chain. The energy is in unit of eV
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Figure 6.21: The relative abundance of the isomers and fragments as a function of
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one is for C5; and the lower one for CJ.
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Cluster Name E,, [Ei — Ei-1]lpath

0 2.674 0

1 3.25 0.576

2 1.717 -1.533

3 2.171 0.454

4 1.717 -0.454

) 2.72 1.003

6 1.055  (from 5) -1.665
7 2.325 (from 4) 0.608
8 1.086 -1.239

10 2.16 (from 7) -0.165
12 -0.01 -2.17

13 3.07 (from 10) 0.91
14 2.95 -0.12

Table 6.1: The energetics of the initial steps in Cgg isomerization. The reference energy
Ey is —60€;. AE; is calculated within each path. The unit is in eV.
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6.5 Kinetics for Fullerene Formations

We discuss the reaction kinetics in two parts. Section 6.5.1 and 6.5.2 study the se-
quence of reaction steps without a measure of time.? While Section 6.5.3 studies the
reaction rates, which uses a measure of time. It relates the reaction rates to laboratory

time scales.

6.5.1 Clustering Kinetics

At the beginning atomic carbons combine themselves to form dimers and trimer, Cs,
Cs. These would then collide into linear chains for cluster size n < 10. Beyond
n > 10 the carbon chains collide into some intermediates which subsequently relax
into monocyclic rings. This is because thermodynamically monocyclic rings is the
most stable species at that size range, as demonstrated by both the experiment [4]
and theory. [18] As shown previously, the lowest energy state for carbon clusters of less
than ten is linear chain. For C, of n > 10 the lowest energy states are monocyclic rings.
How are these monocyclic rings formed? Are they formed by fusing smaller chains,
e.g., in the middle, and then going through isomerization, or are they formed by closing
the two ends of a long chain? Because the chain already has too high an energy in
having two radicals at the ends, it is very unfavorable to bend it, adding strain energy.
Also, the event of two ends coming to within bonding range is rare. So it is clear that
small rings are formed by fusing two chains in the middle. Take C}2 monocyclic ring
for example. Center of mass consideration tells us that colliding two equal masses
results in the maximum energy transfer of kinetic energy into internal energy. The
most efficient channel would be colliding two Cg chain in the middle to form an four-
membered ring intermediate. Then via Bergman cyclization the two ends would close
successively, forming a pinched monocyclic ring, which would subsequently relax. See
Figure 6.22.

Both experiments (Figure 6.5) and theory (Figure 5.3) indicate that at around

n > 30 the ring structures give way to fullerene structures. This is because replacing

2A space of discrete points without metric!
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Figure 6.22: The process by which a Cj; monocyclic ring is formed. Colliding two
Cs chains in the middle to form a four-membered ring, which serves as a seed for
Bergman cyclization to close the arms on the two sides.
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more m-bond by o-bond can now over compensate for the strain of folding the 2-D net
as the latter decreases. One process of Cgp formation, as suggested by Jarrolds exper-
iments, [4, 2] is to combine two Cs rings to form a Cgp fullerene. This is an important
channel, as is supported by other experimental and computation observations, most
noticeably, the cluster distributions of Rohlfing [12] and McElvany’s laser desorp-
tion experiment. [19] In Rohlfing’s cluster size distribution experiment(figure 6.4) we
noticed that C3g are very reactive toward making higher clusters. McElvany’s exper-
iments provided the direct evidence that following the laser desorption of C3¢(CO);y,

a monocyclic Cs ring coalesces with a C3 ion to form a fullerene ion Cg;.

6.5.2 Isomerization Kinetics — The Spiral Growth Model
The Sequence of Isomerization Reactions

We have calculated the energetics of the spiral growth model for the isomerization
from a bycyclic ring to a fullerene proposed by Jarrold’s group [2] In this section
we shall describe the sequence and the energetics. As a mnemonic for referring to
the various structures, we will simply denote the ring sizes of a structure. Thus the
simple Ceo ring is denoted as {60}, while the double ring system, 4, is {30 + 4 + 30}.
This notation does not uniquely describe a structure, but it is for the species we will
consider. We will take the reference energy to be E, = 60¢;, where ¢; = —6.56eV .
(1)4={30+4+30} — 7={30+4+6+30}. This is a Bergman diyne cyclization which
forms a 6-membered 1,4 benzene-like ring from two triple bonds. This leads to two
isolated radical sites (sp?-like orbitals in the plane, that cannot form a bond), and we
find that this increases the energy by about 0.6eV .

(i1)7={30+4 + 6 + 30} — 8={30 + 8 + 30}. This process kills two dangling bonds
by breaking one ¢ bond and forming two 7 bonds. This process is downhill by about
1.2eV.

(iii)8={30 4+ 8 + 30} — 10={30 + 8 + 6 + 22}. This involves breaking an in-plane
7 bond and forming a o bond. In the process there is bending of one triple bond to

from a 1,2-benzene-like ring which includes a new radical site. This process is uphill
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Figure 6.23: The initial steps in Jarrold model. The solid lines are real calculations
while the dashed lines are from estimates.
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) nRr Nor na nr Nor
10 2 4 40 8 0
12 2 4 42 8 0
14 2 4 44 8 0
17 3 4 45 7 0
20 4 4 46 6 0
22 4 4 48 6 0
24 4 4 a0 6 0
26 4 4 52 6 0
28 6 2 o4 6 0
30 6 2 95 ) 0
32 6 2 96 4 0
34 8 0 o7 3 0
36 8 0 58 2 0
38 8 0 99 1 0

Table 6.2: The number of dangling bonds for various isomers in the growth sequence.

by 1.1eV.

(iv)10={30+8+6+22} — 13={6+6+55}. This involves twisting open the original
4-membered ring. Then it is followed by relaxing the 50 carbon chain to reduce the
strain energy. This {6 + 6 + 55} contains two dangling bonds. This process is uphill
by about 0.9eV. See Figure 6.23 for the energetics of these initial steps.

(v)Spiral growth around the 13={6 + 6 + 55}. As a first step 13={6 + 6 + 55} —
14={6 + 6 + 5 + 53}. This uses one of the sp® orbitals of the 1,2-benzene-like ring
to attack a triple bond of the carbon chain and form a new 5-membered ring. This
process is downhill by 0.13eV.

(vi) Continue the spiral growth to form Cgg fullerene. The energies of this process is
calculated with the extended MSX FF (see section 6.2.2). The sequence of stitching up
with the corresponding dangling bond counts are shown in Table 6.2. In Figure 6.24 we
show the energy changes as the Cg intermediates grow into the closed fullerene cage.
The energy are monotonically downhill. The overall gain of energy from 13={6+6 +
55} to Cgp is about 30eV. No barriers are expected to impede these steps. Figure 6.25

illustrates some of the intermediates between 14 and the fullerene.
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Figure 6.24: The energetics of stitching up, the spiral growth, calculated from the
extended MSX force field (coarse grained field field).
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We show in Figure 6.24 the various contribution to the total energy. We can see
that the driving force for the growth is the gain in forming sp? o bond. The opposing
forces are the energy increase caused by the radicals created along the way and the

increasing strain energies.

Annealing Into Position

Naturally, one may wonder how the carbons in the ring know their pentagon-hexagon
sequence. Namely, when should they decide its time to form a pentagon, not a
hexagon? The rule is: making pentagons but avoiding adjacent pentagons. Build-
ing pentagons are the shortest way of converting sp' carbons to sp? carbons. So
pentagon formations are attempted most frequently. On the other hand pentagon
incurs more strain energy than hexagons, two adjacent pentagons are energetically
too unfavorable. In any case the sequence above is meant for the idealized case. In
reality, the growth is a statistical event and the sequences need not be unique. The
energy released upon stitching up heats up the molecule. Through mechanisms like
Stone-Wales transformation, [20] or sp® intermediates [21] rearrangement, the mo-
lecules will anneal themselves into various isomer structures, with isolated pentagon
structure being the lowest energy (strain effect). Figure 6.26 illustrates Stone-Wales

transformation to move around pentagons in two-dimensional net.

6.5.3 Time Scale of Reactions and the Rates

The energetics of reaction intermediates along the fullerene formation pathways dis-
cussed so far is only one factor in determining the yield, the other factor is the energy
barrier along the way and the distance in configuration space. The barrier determines
the probability of getting over to the product for a given reactant energy. While the
detailed separation in configuration space determines the attempting rate in a chem-
ical reaction. Both the attempting frequencies and energy barrier contribute to the
reaction rate of a chemical reaction. For a complicated reaction like Cgo fullerene

formation, the rate is determined by the time scale of many reaction steps along the
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Figure 6.25: Some intermediates from the species 13={6+6+55} having 10 sp? bonded
carbons to the Cg fullerene.
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Figure 6.26: The Stone-Wales transformation by which two carbon atoms move their
positions and lead to the change in bonding, resulting in the switched position for the
pentagons.

reaction pathway, especially the slowest step. At each step one needs to consider both
the barrier height and the attempting frequencies. In this section, we give, for the
first, estimation of the time scales of the various fundamental reactions in the fullerene

formation.

A. Theories

For simple A + B — C type of reaction, there has been various theories regarding
how to calculate the reaction rate.
Transition State Theory

Transition State Theory(TST) assumes,

(1) There is an equilibrium between reactant and transition state; and
(2)all systems at the transition state go into the product without coming

back, and they linger at the transition state for h/kgT amount of time.

(Classical physics has continuous phase-space volume dpdq. It needs the introduction
of h for counting the state. At temperature T', each degree of freedom has an energy

kgT/2. So the average time the system spends in that state is h/kpT.)



195

TST is an equilibrium theory, neglecting all the dynamical feature of a reaction.
Kramers’ Brownian Motions

Kramers [22] in 1940 derived from Focker-Planck type of equation the two
limiting cases of Brownian motion of a particle under an external field, the high
viscous limit and the low viscous limit. The behavior of a Brownian particle in external
field were used to model chemical reactions. In 1983, Carmeli and Nitzan extended
the model to all viscosities, bridging the two limits of Kramers. [23] Kramers’ model
improves over the transition state theory in incorporating the curvature of the potential
energy surface, and thus is a dynamical theory. However, it’s too simplistic for our
complicated reactions, which involve many degrees of freedom.
NTV Molecular Dynamics

To tackle the complicated reaction like winding spiral chains into fullerenes,
we used the full molecular dynamics at finite temperature 7. Our MSX force field
generates the PES along which systems evolve in real time. Running NTV MD over
a period of 2ns, we can determine all the configurations that occurs within two nano-
seconds. Also we can determine what must be absent in that time scale. For our 1
femtosecond time step, 2ns consists of 2,000,000 steps. Counting the frequencies of a

configuration gives accurate measure of attempting frequency.

B. How Does the Spiral Arm Stitch-up

What is the time scale for the spiral chain to stick to the nucleation center? We did
a MD simulation using our MSX force field. At T=3000K, the six-membered ring
comes to within 34 closure in every 3ps, while the five-membered ring 0.5ps. So the
attacking frequency is about 0.3 x 10'?/s and 2 x 10'?/s, for forming a six-membered
ring and a five-membered ring, respectively, see figure 6.27. So the spiral growth is

fairly rapid.

C. The Rate of the Isomerization Reactions

To get the rate for the whole isomerization reaction, we need to to know the rate of

each isomerization steps, see eq. 6.2. If R(7) for each reaction are approximately the
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Figure 6.27: The distance between reacting carbons, reactions that lead to five-
member ring or six-member ring, at T=3000K for Cg when there are 40 sp? bonded
carbons. The symbol cross is for forming a six-membered ring and diamond is for
forming a five-membered ring.
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same, then we can use a one-dimensional diffusion model to calculated how long it
takes to drift from a(sp?) = 12 to a = 60. This will give us the rate of the overall

isomerization reaction.

6.6 Comparison with other models and hints for ex-

periments

6.6.1 Comparison with Other Models

For making fullerenes from atomic carbons, there could only be three major roads: the
one-dimensional road proceeds by colliding rings; the two-dimensional road proceeds
by growing graphitic sheets and the three-dimensional road proceeds by growing small

fullerenes.

A. The Pentagon Road

Smalley in 1992 proposed a mechanism which he called the Pentagon road. [24]

When the carbon cluster size passes about 30 atoms, graphitic sheets begin
to form. As smaller species are ingested by the graphitic sheet, it attempts
to follow the low energy path minimizing the number of dangling bonds by
including pentagonal at convenient places among the hexagonal ones. The
incorporation of pentagons allows the sheet to minimize energy by curling

up, reducing the number of dangling bonds. [25]

It is designed to account for the high yield of Cgy fullerene synthesis. The explanation
is actually only one possibility and it contradicts the small yield of C7g. The most
serious trouble of this model, though, is its obvious contradiction with ion chromato-
graphy experiments which showed unambiguously that there are no graphitic sheet as
intermediates. Though one can argue that it’s the flux rather the concentration that
is important for clusters serving as intermediates, the argument is a week defensive

one.
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B. The Fullerene Road

Heath in 1991 proposed the Fullerene road: [26]

Graphitic sheets growing from small carbon radicals do not stay open.
They close to form fullerenes as soon as possible (possibly starting with
Css). These small fullerenes then grow by addition of small clusters, e.g.
Cy, until Cgy is reached. The addition of small clusters to the fullerene
cage proceeds in a manner which removes adjacent pentagons. The Cgg

atom cluster size is rarely skipped over.

It assumes the coexistence of cage and small C,,, like Co and Cj3, etc. McElvany et
al. [19] have shown that following laser desorption of C3¢(C'O)19, @ monocyclic C3g ring
coalesces with a C3f ion to form a fullerene ion Cg without any evidence for growth
by C, addition. More serious trouble is its difficulty in explaining the readiness of
producing endohedral metallofullerene molecules. For if the fullerenes are closed at
C32 and grow from there, they cannot allow the metal atom to enter the cage without

huge energy.

C: The Ring Road

The ring road, suggested by Jarrold, [2] is consistent with all the observations.
Isomerization make the cluster most compact, effectively cuts down the collision

frequency, thus reduces the chance for further growth. This accounts for why under

the condition of high yield of Cg, there aren’t many fullerenes much larger than Cg

and C7y. At temperature T the collision frequency is

1 16k5T\ ?

where S is the area of the cluster. [27] So the collision frequency is reduced by the
factor of Scage/Sring. For Cg it’s (38/222) ~ 0.17. Endohedral metallofullerenes can
be produced rather readily, since most of the time the clusters are baskets ready to

scoop any nearby metal ions or atoms.
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The ring road is so far the only theory that agree with the experimental ob-
servations in synthetic conditions, cluster size distributions, ion chromatography, no
overshooting, endohedral metallofullerenes, etc.

By assuming the existence of the intermediate like Csy fullerene or Cso graph-
itic sheet, both the fullerene and pentagon road fatally missed the history of carbon
clustering process of the fullerene synthesis. Namely, birth in atomic carbon, and
evolve under huge density and temperature gradient. In terms of the underlying phys-
ical forces, the pentagon road missed the dangling bond history, while fullerene road
missed the fact of high strain, as well as the dangling bond history. Both of them
have a hard time explaining the overwhelming yield of Cgy over others. The ring
road is consistent with both the dangling bond and strain energy considerations. It
incorporates the gain in the c—bonding gradually, following the history of the growth
path. Ring road is the only theory to date that is consistent with all the experimental

observations.

6.6.2 Hints for Experiments

Based on our analysis, we arrived at the following suggestions for synthesizing fullerenes.

(1) Avoid too large a density/pressure, either by too high a laser intensity
or by too large a buffer gas pressure. Because then the drop in the collision
frequency upon isomerization into cage structure won’t have dominate ef-
fect in stopping the further growth into giant fullerenes and nonfullerenes,

which are not stable.

The crucial step is to initiate the conversion from sp! carbons into sp? carbons.
The collision of two monocyclic rings initiates the first four sp? carbons. The Bergmen
cyclization is an important mechanism for the subsequent conversions. Warner et
al. have demonstrated that in 1,2-bis(diphenyl phosphinoethynyl)benzene systems,
adding PtCl; or PdCl, can accelerate the Bergman cyclization by a factor of > 30,000
while adding HgCl, can inhibit it. [28] We could envision PtCl, or PdCl, as molecular

pliers in assisting the closure of the six-carbon rings. So our second suggestion is
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(2) Incorporate PtCly or PdCly in the arc environment, maybe by soaking

the graphite rod with them, to accelerate the fullerene formation.

6.7 Discussions and Summary

Neutral Atom Versus Ions

Experiments can explore only the charged particles. Positive ion and negative ion have
different behaviors. Diederich’s group have shown that the population distribution
arising from the coalescence of cycle-carbons are different for positive and negative
ions. [19] “Previous experience [29] indicates that the cluster distributions seen with
residual cations is more similar to that of the neutrals than is the residual anion
distribution. Thus, using cations seems more appropriate to a discussion of the neutral
distribution.” [25] Our computer simulations can explore the neutral species, as well as
ions. Most of the cluster ions are open-shell system. The quantum chemistry methods
for the open shell system are readily available. Their computation cost is, on average,
always higher than that of closed shell. We leave the investigations of the ions similar

to the neutral clusters to future work.

Kinetics versus Thermodynamics

The distinction between the kinetics and thermodynamics quantities is dependent
upon the level of description of the system. Using the hierarchy models, we arrived at
energetics of a complete pathway from two C3y monocyclic ring to Cgg fullerene. Why
Ceo 1s so stable and how Cgq fullerenes are formed are two problems distinguished from
but related to each other. Together they explain the existence of Cgy fullerenes. We
concluded that the formation of fullerenes in the expansion of the super-heated carbon
vapors is an evolutionary process. History is as important as the thermodynamics of
the species. We have provided the energetics of the species at various era of this
evolution. Kinetics determines, in a statistical way, the source availability, the time

each metastable species last in existence, while thermodynamics determines which
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metastable species would survive and make it to the soot.

For a complete picture of this evolution process, one needs to have the density,
temperature or pressure profile from the center of the arc to the wall of the vacuum
chamber. This profile pc, (r) relates the microscopic source availability to the macro-
scopic control. This density profile should be derived from a diffusion type of equation
thatttakes into account the possibility of chemical reactions, i.e., change in the particle

numbers.

Methodology

In this study we used a combined the DFT and MD method. We found that this is
the most efficient scheme to tackle the large system problems. As we have shown, fine
grained theories, e.g., ab initio method, are used for getting parameters for the coarse
grained models. As our computation power increases, we can calibrate larger and
larger systems for their more and more detailed behaviors. However, the change of
paradigms, the change of scales, the efficient incorporation of existing knowledge of the
system, should always start from modeling. The combination of modeling with first
principle method will remain the most efficient and intelligent approach for studying
material properties.
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Chapter 7 Molecular Dynamics Simulation

of the Y Bay,CusO7; High-Tc superconductors

7.1 Introduction

High-Tc material are characterized by their complex structures which have delicate
balances between various forces of its constituents. The understanding of the molecu-
lar dynamics properties is desirable for tailoring the materials to improve its mechan-
ical properties and thermal properties. [1] It also sheds light on the superconducting
mechanism, which is crucial for synthesizing materials of higher superconducting trans-
ition temperature. There has been some DFT calculations on YBCO and LaCuO that
employ frozen-phone technique [2] which can give the pretty good vibration at y-point
for systems at the equilibrium. However to study the stability in the whole Brillouin
zone and to study the properties away from equilibrium one needs more expensive
computation. This is currently beyond the reach of DFT level. Due to the complex-
ity of the HTSC system, empirical force field approach as a much more economic
approach is still the choice.

A good force field should be able to model the multi-dimensional potential
energy of atoms (PES) well. But the only way to check the PES for system more
complicated than diatomic molecules is by comparing it to the ab initio PES, which is
not available for large complicated systems like YBCO family. In practice the quality
of a force field is judged by its predictions for a finite set of experiments, and by its
simplicity. Based on physical arguments one employs a functional form and tune the
parameters by matching the results of FF to those from experiment. One can then
use the force field to study situations unaccessible for experiment or to gain insight
about the microscopic mechanism of the crystal structure. This is the approach we

take in the chapter.
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In section 7.2 we derive the force field for YBCO system, we propose the
functional and fit the parameters. In section 7.3 we survey the lattice dynamical
properties governed by this force field. In section 7.4 we run Molecular-Dynamics
simulation to study thermal properties, with some comments on implications about the
structural stability. We focus on Y Bay;C'u3zO; system since it is the best characterized

system among all the high temperature superconductors(HTSC).

7.2 The Force Field

7.2.1 Introduction

In view that Y BasCu3O7 is neither pure ionic nor pure covalent, we proposed an
ionic-covalent force field. Considering the electronegativity [3] we assume bond only
between Cu-O pairs. The ionic part is pair-wise potential which consists of a long-
range Coulomb 1/r term, an instant dipole-dipole terms —(1/7)% and a Pauli term
(1/r)'2. The covalent part consists of a bond stretching term and an angle bending
term which takes up the leading three-body interaction. Our model has the following

functional form:

5= %% 15 D[ (52) - (B2)7] 4 Buma (71)

i<j j i<j

where Q); is charge; D;j, R;j, are van der Waals parameters;
1 2, 1 2
Eyond = 5]99(0039 — cosby)” + §kr(r — 7o) (7.2)

where k,, ry are bond parameters and ky, 6, are angle parameters. Ewald sum is
employed for the non-bonding terms.

The parameter are determined by requiring that the force field reproduce the
observed structure, the structure be stable, and give best fit to the available vibration

frequencies. More specifically we require that

(I) Zero force on every atom in the unit cell. Strictly speaking one should
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fit to the zero-temperature lattice parameter, which can be obtained by
extrapolating the thermal expansion data. [4] However, this would require
later either fitting zero temperature Raman spectra which is not available.
So we fit the room-temperature lattice structure. [5] and allow the force
field parameters to take up some of the thermal energies. namely, entropic

contributions at room temperature.

(IT) Zero stress on the unit cell. Stablization of the twin-free crystal re-
quires that there be no stress on each unit cell. Since we are modeling

perfect crystals we should put this constraint.

(IIT) No negative frequencies in the whole Brillouin zone. Below 700K
we did not see structural instability in Y Bay;Cu3O;. For the temperature
range we are investigating there are no soft modes. Thus we require non-

negative frequencies in the whole BZ.

(IV) Reproduce the experimental Raman frequencies(I" point). The avail-
ability of good quality untwinned single crystal allows the measurement
of the polarized Raman scattering [6], giving us a complete set of Raman

data for fitting the FF parameters. ®

The simulated structure is built on SGI work-station with Molecular Dynamics
package POLYGRAF of MSI. According to their chemical properties in the crystal we
employ four types of O ions, two types of Cu ions, one type of Ba and one type of Y.
See Figure 7.1 for the unit-cell structure. As our initial guess we take the value from
the work of Chaplot. [9] Further adjustments proceed as follows. From Raman mode
involving only Y and Ba we get the charges for Y and Ba, since for such modes the
charge on Y and Ba set the scale of the frequencies. At each Y and Ba charge value,
we adjust other parameters in the force field to maintain the stable structure. The

effective charge on Y and Ba thus determined are 1.56 and 1.45, respectively. The

! The exact procedure would be to calculate the frequency via atomic correlation functions at room
temperature. But this procedure is expensive and may not be accurate enough.
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Charge Q:(e)

Y 1.55600
Ba 1.45100
Cul 1.35200
Cu2 0.83860
01 -1.11800
02 -0.93780
03 -0.93780
04 -1.50000

Table 7.1: Charge parameters for YBa2Cu30O7 The atom labels are in Figure 7.1.

charge on O and Cu are adjusted subsequently to preserve the neutrality. Once the
effective charges are determined, all the other short-ranged terms in Eqgs.( 7.1) and
( 7.2) are further tuned to meet requirements (I), (II), (III) and (IV).

The non-linear fitting of the force field parameters can be cast into a multi-
dimensional optimization problem. Here we use singular-value-decomposition (SVD)method
for the optimization, implemented by Terumasa Yamaguchi. In non-linear fitting, the
dimensionality of the parameters space is more complicated than that of the linear

fitting, where fitting N parameters requires N and only N data points.

7.2.2 Results

Parameters that meet all the above requirement are listed in Table 7.1 - 7.3 .

Two distinguished features we discovered are as follows.

(a)There is a huge bonding term between Cul and chain oxygen O1 along b
axis. Cul-O4 is absent in Y Bay;Cu30g, the insulator cousin of Y BasCu3O7, since
there is no O4 in that system. The ab anisotropy characteristic of Y Ba;Cu3O7 mani-
fested itself clezirly in this extra large Cul-O4 bond. This large bonding of Cul-O4
indicates the tendency for O4 atom to leave the system upon heating which is just
what the phase diagram of Y Ba;Cu3Og., showed. Wille et al. [11] showed that at
high temperature (~ 1600K) the stable phase is tetragonal(P4mm), see also the work
of Nozaki. [12]
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VDW Parameter Roij(cm)  Dgij(kcal/mol)

03-03 2.88626 0.09774
02 - 02 2.69486 0.09278
04 - 04 3.55326 0.09997
01-01 3.17630 0.09678
Cul - Cul 2.42398 0.10884
Cu2 - Cu2 2.47550 0.10631
Y-Y 3.80504 0.09879
Ba - Ba 4.04807 0.09849
02 - 03 3.50751 0.10520
04 - 03 3.57322 0.10080
04 - 02 3.64945 0.09684
01-03 3.20242 0.09867
01-02 2.98598 0.10360
01-04 3.70546 0.10637
Cul - O3 2.95250 0.09830
Cul - 02 2.67473 0.10042
Cul - 04 2.33823 0.10530
Cul - 01 2.56456 0.10363
Cu2 - O3 2.35880 0.10520
Cu2 - 02 2.30665 0.10160
Cu2 - 04 3.29345 0.10475
Cu2 - O1 3.01087 0.09991
Cu2 - Cul 2.42007 0.09297
Y - 03 3.34383 0.09313
Y - 02 3.44952 0.09535
Y - 04 3.90925 0.10310
Y -01 3.73971 0.09573
Y - Cul 3.10892 0.10004
Y - Cu2 2.97369 0.10172
Ba - 03 2.68787 0.09481
Ba - 02 3.74382 0.09602
Ba - 04 4.00692 0.09856
Ba- 01 3.92018 0.10205
Ba - Cul 3.49319 0.10140
Ba - Cu2 4.41050 0.11323
Ba-Y 3.59763 0.10237

Table 7.2: vdW Force field parameters for YBa2Cu307 The atom labels are in Fig-
ure 7.1.
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Figure 7.1: The unit cell of Y BayCu30O;. Two different types of Cu and four types
of O atoms are used.

Bond Parameter k.[(kcal /mol)/a?] ro(a?)

Cul - O4 190.8385 1.914561
Cul - O1 0.9965 1.945591
Cu2 - 03 50.6204 1.971260
Cu2 - 02 31.1643 2.010588

Angle Parameter ke[(kcal/mol) /rad?]  6y(deg)

Cu2 - 03 - Cu2 0.0894 179.1897
Cu2 - 02 - Cu2 1.1871 152.1073
0O1-Cul - 04 0.0005 90.0000
03 - Cu2-03 0.0218 141.1687
02-Cu2-03 104.4444 69.6829
02-Cu2-02 0.0075 167.6002

Table 7.3: Force field parameters for the bonding terms of YBa2Cu307. The atom
labels are in Figure 7.1.
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Symbol Experimental® The fitted

a 3.820 3.82

3.885 3.885
¢ 11.68 11.68
Y 0.500 0.500
Ba 0.184 0.184
Cuy 0.000 0.000
Cu, 0.355 0.355
01 0.158 0.158
O, 0.378 0.378
Os 0.377 0.377
Oy 0.000 0.000

Table 7.4: Our force field reproduce the lattice constants and fractional coordinates
for atoms in Y Bay,Cu307 unit cell.
¢ Reference [10].

(b)The most important three body term is the bond angle bending in Cu-O
plane, the O3-Cu-O2 angle. This is exactly the internal coordinate that is involved in
the celebrated 335¢cm ™! A;, mode that softens upon superconducting transition. [13, 14]
See the eigen-mode calculation in the following section. This signifies the importance

of the O3-Cu-02 local structure in the superconductor Y Bay,Cu3Oy.

7.3 Lattice Dynamics

Employ standard lattice dynamics we diagonalize the dynamic matrix.

Dap(aler’) = L)) 5 Gaa(OrlLi)es (73)
by solving
Z [Daﬂ ((]IK,K/,) - 5aﬂ(snn'w2(q)]6ﬂ(’£llq) =0 (74)

&'B
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where

, O°E
$ap(0k| LK) = Fua (07) 03 (L) (7.5)

with E from equation ( 7.1) and ( 7.2) and uq = o4 — Too. L is Brava lattice index

and k is atomic index within a unit cell, and «, § denote Cartesian coordination.

7.3.1 Vibration Mode

122/116 157/149 335/335 445/435 501/498

Figure 7.2: Ag Raman modes of Y Bay,Cu30; vibrations. The first one quoted is from
our calculation and the second ones are from experiments. The frequencies are in unit
of em™1.

First we list the vibrations at the long-wavelength limit, I' point, namely, q = O.
The frequencies are shown in Table 7.5. Eigenvectors are shown in Figure 7.2 and
7.3. Table 7.5 are the comparison between our calculation and experimental data of
Y Ba;Cu3Or [6, 7] for two isotopes of oxygen, *0O and 0. [8] Only O vibrations
were used in the fitting. We can see that fitted force field reproduce the Raman

frequencies of '°O isotope very well and the predicted isotopic shifts for 80 agree
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160 Raman freq. Isotope shift

Symmetry Theory Expt.® theory Expt.b
Ay 122 116 0.8

157 149 0.6

335 335 5.7 5.5(0.6)

445 435 0.4 5.5(0.4)

501 498 9.4
By, 70 70 0.0

142 142 2.1

213 210 4.2

403 5.0

952 879 0.4
Bs, 106 83 0.0

172 140 1.2

317 303 4.7

945 9.5

595 526 5.5
Bi,(LO) 114 147 1.8 2.0(0.7)

173 192 0.6 1.6(0.5)

197 0.0

301 5.3

486 4.3

512 4.7

709 5.9
By, (TO) 93 2.2

179 0.0

232 0.0

333 4.8

380 0.0

611 5.4

662 o975 5.6 4.4(0.2)
B3, (TO) 71 1.4

144 2.1

193 0.5

231 4.3

300 4.0

438 5.0

564 5.5

a Reference [6]. b Reference [8].

Table 7.5: Calculated and measured Raman and IR frequencies of Y Bay,CusO;. Also

included are the isotope shifts upon substitution of 160 by 80 . Vibration Frequency

is in em™!.
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well with the measured ones. This indicates that this force field is reasonably good
near the equilibrium. Due to the metallic nature many IR modes in Cu — O plane are
not experimentally observable. Our calculated complete set of IR mode should give
some clue to the in-plane vibration IR-mode, and thus help experimentalists to seek

and assign other modes.

7.3.2 Phonon Spectrum
Coherent Scattering Properties

Next we use this force field to calculate the phonon spectrum for any point in the
Brillouin zone. Results on some of the symmetry directions are shown in Figure 7.4 and
7.5. We compare our calculated phonon spectrum with the measurements of Reichardt,
which is made on twinned single crystals. [15] Along c-axis, where experiments give
unambiguous symmetry assignments, our calculated spectrum agree well with the
measured one. (see Fig. 7.5) For (100) and (010) direction experimental values are
a mixture of the two directions so it is hard to do the comparison. Given that we
see that most measured points fall on the calculated curves. (see Fig. 7.4.) For long
acoustical wave it shouldn’t make any difference whether we are dealing with twinned
or untwinned sample. Our calculated LA mode agree well with the measured one.
One of TA mode agrees well with experiment while the other is a little off. For (110)
direction, the calculated TA mode also agrees well with the measured one. For optical
modes some agree with measured ones, while some are too soft.

In our model all the ions carry nonzero charges so we expect to see LO-TO
splitting (so-called LST effect) at I point from the force field calculation. Whether or
not one can see LO-TO splitting experimentally is not clear at this point. In order to
see that one needs very accurate coherent inelastic-neutron scattering on untwinned

single-crystals.
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Incoherent Scattering Properties

Using histogram we calculated the one phonon density of state. To compare with
incoherent inelastic neutron measurement on powdered sample we need the eigenvector
weighted phonon density of state. The theoretical neutron scattering intensity is given

by the following formula: [16, 17]

d? k +1 . o
(dw59>incoh B k_(l)n(wZ) ; %e B % IQG(ZIQ’.])I26 (w - w](q)) (76)

where €(i|g, j) is the orthonormal displacement of 7 th atom in mode w(q, j); o; is the
total neutron cross section for i th atom, here we take 3.76, 7.78, 3.42 and 7.76 for
O, Cu, Ba, and Y nuclei respectively from S.F.Mughabghab [18]; m; is the mass of
ith atom; n(w) is the Bose distribution for phonon population. Q = k; — ko ,with
k1 and ky being outgoing and incident neutron momentum respectively. Q is fixed in
constant-QQ mode of measurements. W; is the Debye-Waller factor calculated as the

following:

2 (WJ( ) +
Z%Ie ilg, )| o)

(7.7)

N is the number of unit cells in the sample. Here we take it as the number of points
in Brillouin zone when making our histogram. We take Q as midpoint between G and
Z and T = 300K in n(w). Now our generalized density of states G(w) is defined as

follows:

Gy =y = QWZI (ilg, 5)*0(w — wi(a))- (7.8)

zml

We take 8000 points in BZ. Further addition of points wouldn’t change the feature
of the G(w). We compare our calculated G(w) with that of measured by Renker et
al. [19] See Figure 7.6 We noticed that most peaks and over all trends agree with
the experimental data. Our calculation gives too large a peak at around 670cm

( 83meV) which comes from the chain oxygen(O4) vibrations. This indicates the flaw
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of the part of our force field involving O4. We will discuss this further when we come

to the thermal expansion calculation.

Long Wave Behaviors

Using standard lattice dynamical theory for long wavelength limit we calculated the
elastic constants and bulk modulus. The elastic constants are defined through elastic

energy, see P. Briiesch, Chapter 3. [17]

1
W = § z Z Cagﬁ)ﬁaﬁefy,\ (79)
af YA
where the strain
1//0uq, Oug
€ap = 5(('33;7,% + (E)o) (7.10)

are symmetrized deformation tensor, u are displacement vectors with ujy = 0, and x
are position vector in a continuum medium.

Elastic constants are related to Hessians (atomic force-constants)by

Ca'y,l”\ = éaﬂm\ + é"yﬂ,aA - éva,/\ﬁ (7-11)
~ 1
Capor = =577 2 Bas(Olk)riyTix (7.12)
a k

where ¢,5(0|k) is from Eq.( 7.5). Here we used the short note k = (L, k) to represent
the site of atoms. 7}, are position vector for lattice site &, V, is the volume of the unit
cell, subscript 0 denotes equilibrium value.

Defining notation 11 — 1, 22 — 2, 33 — 3,23 — 4, 31 — 5, 12 — 6. e.g.

(12,32 = Céy, the bulk modulus can be defined as

BM = (Cy; +2C12)/3. (7.13)
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Cii Cs3 Cu Cg Cio Ciz B

Theory 194 131 64 166 141 61 94
Exper® 230 150 50 8 100 100 120

¢ is from Ref. [20]

Table 7.6: Elastic stiffness constants (Gpa) of Y BasCu3zO;. Experiments were on
twinned samples with apparent D4h symmetry. Thus to compare with experiment
we set 011 = (Cu + 022)/2, 044 = (044 + 055)/2, 014 = (Cl3 + 023)/2 B is the bulk
modulus.

The result is listed in Table 7.6. The measurement [15] is made on a twinned sample,
so we compare our (C1; + Ca)/2 and (Cy4 + Css)/2 to their measured C; and Cyy re-
spectively. The agreement is fair except for Cgs. The deviation of Cg might be due to
the fact that sheer component is more sensitive to the defect structure. Experimental
values are measured on samples containing defects while the calculated values are for

perfect crystals. In fact, defects tend to decrease the sheer modulus. The measured

Cee gives smaller value than the calculated one, as one would expect.

7.4 Thermal Expansion

Using our force field we did Parrinello-Rahman-Nosé (PRN) molecular dynamics [4]
to calculate the thermal expansion. Parrinello-Rahman-Nosé dynamics is a constant-
stress constant-temperature molecular dynamics.(NPT ensemble) Let the original

Hamiltonian be H,

Hy =3 _P}/2m; + E({Ri}) (7.14)

1

The PRN Hamiltonian H is
H=Y"P?/2m;V3ss® + E{VIR,}) + p2/2Q + gkTlns + p2/2W + P,V (7.15)

where s are the scale factor for time as required by the constant-temperature ensemble;

V' is the volume variable. ) and W are corresponding mass for the dynamical variable
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s and V. p, and P., are conjugate momentum of s and V/, see Nosé [5] for more
details.

It can be proved, within the ergodic assumption, that the average over the
trajectories generated by the dynamical equations derived from this extended H equals
the statistical NPT ensemble average of the original Hy. [23, 4, 5]

We run the Nosé dynamics using the dynamics code of POLYGRAF of MSI.
We use the periodic boundary condition (PBC) with a supercell of 3 x 3 x 3 unit
cells with 351 atoms moving independently. Cell mass W was chosen to be 0.0625.
At each temperature we give an initial velocity according to the Maxwell distribution
of that temperature and run for 10ps(10000 steps). Repeat for several temperatures
from 10K to 700K. In all our runs the structure are very stable, a nontrivial feat
for simulating excited states of a complex system. For each temperature we average
the lattice constants over these 10000 configurations. We then calculated the volume
expansion, dV/dT, around the room temperature. Our calculated 0.01 143 /K is close
to the experimental value of 0.0144%/K [4].

We also noticed that our force field predicts a decrease of lattice constant b
upon heating, contradictory to the observed results. [4, 24] This implies that the Cu-O
chain prefer bending to stretching and indicates that the (1/7)'2 term we chose for Pauli
repulsion is too stiff, leading to too stiff a tension along Cu-O chain. Considering that
Y BayCuzO; will lose its chain O gradually and undergoes a transition at 500C°(~
800K) this strong tension along Cu-O chain is reasonable.

Conclusion

In summary we have arrived at a force field for Y BasCuzO7 which incorporates
most updated experimental results on this system. The force field reproduce the
observed structure and give stable dynamics at temperature as high as 1000K. It

! and gives the correct

reproduces the observed Raman spectrum to within a few cm™
prediction on the isotope shift of Raman frequencies. The predicted phonon spectrum
in the whole Brillouin zone agree well with the available measurements. It gives good
elastic constants. Unlike harmonic FF, our FF can predicts the thermal expansion

coeflicient very close to the measured one.
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From our force field we gained insight about the crucial energy terms. For
structural stability the Cul-O4 interaction is very important; For superconductivity
the angle term between 02-Cu2-O3 is a key indicator. [14]
Acknowledgment We would like thank Dr. Karasawa for the helps regarding POLY-
GRATF in this work.
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B2g (B3g) (1/cm)

70/70 142/142 213/210 403/ 523/579
(106/83) (171/140)  (317/303) (544/ ) (595/526)

Figure 7.3: Bg Raman modes of Y BayCu30O; vibrations. The first one quoted is from
our calculation and the second ones are from experiments. The frequencies are in unit
of em™1.
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honon energy (meV
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(0g0) (q00)

Figure 7.4: Phonon dispersion relation along (100) and (010) direction. The meas-
ured ones are in dots and are from the twinned single crystals. Lines are from our
calculation.
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0.5 0.4 0.3 0.2 0.1 0 0.10.20.30.40.5

(aqo) (00q)

Figure 7.5: Phonon dispersion relation along (110) and (001) direction. The meas-
ured ones are in dots and are from the twinned single crystals. Lines are from our
calculation.
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0 100 200 300 400 500 600 700 800

frequency(1/cm)

Figure 7.6: Generalized density of state, weighted by the eigenvectors and neutron
scattering cross-section. Dots are from incoherent neutron scattering data on powered
samples and the thin line is from our molecular dynamics calculation.
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dV=0.043+0.011"T

(A73)

V(T)-Vo

(dV/dT)exp=0.014 (an3/K

0 100 200 300 400 500 600 700 800

T(K)

Figure 7.7: Y BayCu30O; thermal expansion in volume. The line is a fit to the calcu-
lated points. Experimental values are quoted for comparison.
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Chapter 8 Appendix

8.1 Second Quantization

In the language of second quantization, omnipotent Hamiltonian is

H = Z fija;;aja + Z Z ijla?;,a;ra,akgralg.

ijo ijkl oo’

HF ground state is

|\IIHF> — Hocc + |0>

no ncr

with

L
+ +
Cry = Z dnu%a-
p=1

(8.2)

(8.3)

Unlike the exact solution of an approximate Hamiltonian, in HF we approximate the

wave function, or reinterpret some of the propagators.

H= Z fij(ahaje — (aifaj0)) + Eo + Hy

ijo

1
_ + +
H = §ZZVz~jkzawak0:akwaza

ijkl oo’

1

> Viju — zlk;)szawa]a-f' Z ikl — 2Wzkj)Piijl

ijklo zykl

(8.5)

(8.6)
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where

Pij = Z(a;aja> (8'7)

g
occ

= 25 d5idn;. (8.8)

If the basis is |r) the above relation is written as

p(r,t') = (YT (r)y(r')) (8.9)

occ

= 23 4a)nl®). (8.10)

This relation holds even in interactive ground state |¥), as can be proved from

Green’s function.
(U|p(r,x")|¥) = LitrG(xt, r't™) (8.11)

tr is trace over the spin indices.

8.2 Calculus of Variations

In analogy to the total differential of a function F(fi, fo,...): dF = ¥;(0F/8f;)df;, in

the continuum limit one gets the functional difference [1]

JF = /5 05 (&)d (8.12)
with
P _ o) (5.13)
f(z) ’

a function of x. Consider the functional [2]

Flp] = /f(w, p: oM, p®, .., p™)dz (8.14)
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where p(™ (z) = d"p(z)/dz™, then

For three-dimensional generalization, one replaces the operator d/dz with V. So for

Flo) = [ £(s,9l)dz, (8.16)
defining v = |Vp| leads to
SF__of g (101
@ o (vavv ) (8.17)

Symmetry argument implies that E, depend only on |Vp.

8.3 Car-Parrinello Ab initio Molecular Dynamics

Solving electronic Kohn-Sham equations under BO approximation imposes N(N-1)/2
constraints between two sets of otherwise independent variables {¢;} and {R} . These
constraints put the system in BO surface. The resulting Lagrangian will then be only

a functional of {R,}, {R,} :
L(R,R,t) = %j %MMRZ - E({R,}) (8.18)
with
(R} = 3 [ dryi @l /2m)Pi(x) + Oln(e), (Ruh {eu ] (819)

where 1); is the eigenvector of Kohn-Sham equation:

5

2m

i(r) = &ti(r). (8.20)
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Now, we loosen up those constraints and make {¢;} and {R,} independent variables.
We will have a finite thickness of BO surface, either by the changes in the occupation
number (the statistical description being the Fermi-Dirac distribution), or by changes
the orbitals themselves, or both. The electronic variables {¢;} will not be constrained
at the Born-Oppenheimer surface but will deviate from it somewhat. We design the
restoring force to be proportional to their deviation from the BO surface. Thus we

have the Car-Parrinello Lagrangian, which is a functional of both ({R,},{R,}) and
({gi}, {o:}).

DR R, {90}, (90} 0) = X g [ el + £ S MuIE + ¥ 3162 — B(0i}, {Ru}Hau)
(8.21)

{¢;} and {R,} are now independent variables. The important fact is that this
U{R,}, {#:}] is the variational functional whose Euler-Lagrange equations give the
equations of motion for {¢;}, as demonstrated by the success of Kohn-Sham scheme.

Since the Lagrangian doesn’t have explicit time dependent it is a constant of
time. The Hamiltonian thus defined is a conserved quantity. In the original Car-
Parrinello version this quantity doesn’t have a physical meaning due to the fictitious
kinetic energy, (1/2) f u|¢|®. It is introduced for purely algorithmic purposes, But
actually, part of the kinetic energy is real. As demonstrated by Blochl and Par-
rinello, [3] there is a portion related to the orbitals moving with the ions, which they
call adiabatic kinetic energy, that does have a physical meaning. They designed a
Parrinello-Rahman type of dynamics [4] where the orbital kinetic energy is main-
tained around this adiabatic kinetic energy via another thermostat, different from the
one for ions. This new design has been shown to be very efficient in enlarging the
time steps of the ab initio MD. Instead of employing thermostat, which is a statistical
way of incorporating our knowledge, can we build a more fundamental dynamics for
the orbitals? Here we propose such a dynamics for the cases involving one degree of
freedom of ion.

If we keep the gradient terms in using Born-Oppenheimer approximation we
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will have(see the Appendix Eq.(0.16)):

h2 occ.

P2
E= £+
20, " 20,

/ dr|V i) + UGR,Y). (8.22)

3

Note that the V, is w.r.t. R,,.

For systems where there is only one ionic degree of freedom, we have:

_ o

Yi 5 RR (8.23)

for R#0 %’%=%

for R=0 q=0. (8.24)
Then the Lagrangian corresponding to Eq.( 8.22) is:

h2 occ.

2M R? Z

L(R,R,t) = [ drlgil? + SME? - U[R; {4:)] (8.25)

where 1); is the solution of Eq.(3.3). Now assuming that we can substitute 1; in

Eq.(3.7) by ¢; and re-interpretation of ({¢;}, {R,}) as independent variables, we will

have:
LR (6, 100 = 5u3 [ dlb + SME - VIR (8] (820

with
= 1\;12%2 (8.27)

having the dimension of [energy]|[time]?. The Euler equation derived from this Lag-
rangian is:
1 ,LLR ;-

.U
§:U'¢i = _% + ;AU(ZSJ + E¢l (828)
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o ,u 3/LR
B304 5D [ dréidi - / dr|gif? (8.29)

where A;; is the Lagrangian multiplier from orthonormalization of orbitals {¢;}. As
we can see, there are coupling terms in Eq.(3.10) between R and ¢; that will serve to
pump the orbital kinetic energy back to ionic systems.

It’ll be interesting to see what dynamics will result from Egs.(3.9) and (3.10),
for example, in diatomic molecules when the electronic states remain in '3 state. One
obvious feature is that this dynamics is reversible. Another way of making a reversible
dynamics is to introduce an additional dynamical variable, serving as a thermostat to
the original system. The dynamics of the whole system, then, is reversible. This is

Blochl and Parrinello approach. If we make the identification:

X, = ln(%) (8.30)
where z, is the dynamic variable of thermostat, and make p a constant, we get the
friction term in equation of motion for the orbitals in the Blochl and Parrinello method.
3, 5]

For general cases of more than one-dimensional, upon assuming that (a)the
change of orbitals due to different R,s are orthogonal and (b)we can applying equipar-

tition principle for the kinetic energy of ions:

1. . 1
-2-M#R§, = 5ksT (8.31)

the orbital kinetic energy is

occ.

bil2. (8.32)

2kT

This is just the one that Blochl and Parrinello used for their adiabatic orbital kinetic

energy.
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8.4 Solving Kohn-Sham Equations for Atoms

Poisson Equation Solver
Using the logarithmic grid,

r=e¢ —4¢ (8.33)

with ¢ being a linear grid and § a tiny offset, and using the variable U(r) = rV (1),

the radial Poisson equation becomes the following,

p1a(r(t))(r + 6)*
r(t) ’

uw(t) —u'(t) =1+ 1)1 +6/r)u=— (8.34)

where the one-dimensional density p14(r) = [ dQ|rRy(r)|?. Using 7-point derivative
for the second derivative leads to a banded matrix. This banded matrix can easily be

solved by calling LINPACK routines.

Roothaan Equation Solver

(0) Get input density, e.g., from grid calculation.

(1) Form the matrix element;

(a)
1d> I(l+1)

(T) = (xul = 372t WlXV)

(b) form the nuclear field: Vj,q(r)
(c) form the Coulomb field: V5 (r)

(d) form the exchange field: V,.(r)
(2) Symmetrize the matrix;

(3) Call LINPACK routines to diagonalize the banded matrix.



(4) Form the density p on x, from Cy,.

(5) Go to (1). SCF loop until converge.
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8.5 Matrix Element Evaluation of Nonlocal ECP

Indexing the Basis

Table 1. Basis for Fock operator.

j(< nsh) 1(j)  Im(j) (< nfb) ; a:® is(j)
1 0 S 1 725000 559968 1
2 0 S 2 111200 137243 2
3 0 S 3 040400 064224 3
4 1 X 4 1.240000  -1.865165 4
Y 5
Z 6
5 1 X 7 134600 116211 7
Y 8
Z 9
6 1 X 10 042200 027263 10
Y 1
7 12

¢ Contraction coefficient without normalization factor included.

is is the starting basis(lm) index for primative Gaussian j.

Table II. All the m components of Im for a contracted Gaussian is called a shell.



234

nl l o Qny n2 n3 n4 nb
1 S 0.7250 -0.206460

2 S 0.1112 0.594623 1 2 1 0

3 S 0.04042 0.530827 2 1 3 0

4 P 1.2400 -0.036435

5 p 0.1346 0.494619 3 2 4 1

6 p 0.04225 0.604568 4 1 6 1

nl: ipri(<nprimx), index of primative Gaussians;
n2: icontr(<nconmx), index of contracted Gaussians;

n3: ncontr(icontr), number of primative Gaussians in the i** contracted

Gaussian;

n4: kstart(icontr)=kstart(icontr-1)-+ncontr(icontr-1), the starting primat-

ive index of the i** contracted Gaussian;

n5: [(kstart(icontr)), angular momentum of the i** contracted Gaussian.

Table III. Upon diagonalization of the Fock matrix, the canonical orbitals are ordered

according to the eigenvalues ¢; (eval(n)).

n 1 2 3 4
eval(n) -.160346 -.058169 076829  .140090

icontr
1 437177 .000000 1.813551  .000000
2 .603094  .000000 -1.765324  .000000
3 .000000  .391922  .000000 -1.292476
4 .000000  .693541  .000000 1.158921
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Direct Method

A. Identities

6n) = D CunlXu) (8.35)

where |¢,) is the orthonormalized eigenvector of an operator O, satisfying (¢,|d,) =

Onn; {IXu)} is basis set with (x,|xv) = Su . Orthonormalization of |¢,) leads to
(Gwldn) = 3 CunGowSur =3 Cr S Cly = Ouim, (8.36)
namely,
cisCc=1. (8.37)
Using (AB)™! = B~'A~1, we have
cct=s"1 (8.38)
In matrix element form, it is

> CunCun =5, (8.39)

n

B. Some Formuli

Equations for eigenfunctions:

Ol¢n) = An|dn) (8.40)

on a finite basis {x,} becomes the Roothaan type of equation (Secular equation for
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non-orthogonal basis)
OC = SC). (8.41)

In calculating the matrix element (x,|O|x,) there are two equivalent ways:

Ol Vo) = 22 Oald) it GIVINSH (G 1) = 2 (xul ) Vay (F'lxw) — (8.42)

iji'j’ il

where
Vi = Z HilV1i)S (8.43)

or

XulVIxw) = (xul ;Anl¢n><¢nIIXu> = iZj(XumDij(ﬂXu) (8.44)

where
Dij =Y MCinCijn (8.45)

and

|n) = Z CinlXi) (8.46)

is the eigenvector of V. Diagonalization before summation cuts the cost by having one

loop instead of two.

VW Method

CALLTDAEXVADS leanlm>A— AU Rulm|xS) (8.47)

Imn
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where
N
Rnl('l‘) = Z Cm'lXé(T)- (8.48)
i=1
Define
N, i
Duji =Y /\—MCnuCnﬂ (8.49)
N M
=33 Dug| S (B IUA KM A im| U xE))] (8.50)
1 i m
N M, .,
= 3" dandignDis | (B 10 xalm)™ A (xtm| U xE)] (8:51)
ij m
where
N 1

To evaluate the angular momentum inner products we first transform the spherical

Gaussians into Cartesian ones, |af), by using

|lm) = Zﬁ: Dogimlaf). (8.53)
Then,
(xZ U [xidm)* = %Daﬁ,lMXszAIXﬂﬂ)A- (8.54)
Now

(X2 1U [xiaB)* (8.55)
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is a two-center integral.

Matrix Elements

Much of our derivation here is based on Melius. [6]
A. Matrix Elements of Local Potentials
Consider three atoms in space, A, B and C. The Gaussian located at center B

would be
Gp(rgTB;...) = NurBirBj...e_aBT%. (8.56)
Suppose the ECP is at A, we want to evaluate the matrix element
(G(rp,rB;--)|ULmax(r4)|Ge(rere,--))- (8.57)

Projecting the B and C onto A

I'B=I‘A—RBA (858)
B, =Ta; — BA, (8.59)
7‘23 = 7‘124 + _B-Z2 - QWT‘A cos 0 41 (8.60)

where 64 is the angle between r4 and Rpy4.

Gaussian at B and at C can be combined into another Gaussian at D

e=oB(r—Ra)? —ac(r—Ro)’ _ p55faf o=an(r-Rp)” (8.61)
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where
and
D= M_ (8.63)
oc + ap
Then (8.57) becomes
A<ULMAX(7'A)|GD(7'Bi7'Bj---7'Ck7'Cl---)> (8.64)
A = eacran. (8.65)

Since Urprax(ra) is spherically symmetric, only that part of Gp which is spherically

symmetric about A will contribute to the integral. Thus, (8.64) can be written as
(Urmax|s)(s|Gp). (8.66)
This is
Var [ rdraUiiax (1) Iooo(ra) (8.67)
where we have used the definition

IDlm(TA) = _/Q Zlm(QA)GD(TBia ch, )dQA (868)

A

Thus, (8.57) becomes as follows,

(GB(TBiTBj-«-)IULMAX(TA)lGC(TCkTCI---))

(8.69)
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= A/oo TidTA\/EULMAX(TA)ND(TA)/Q Zim(Qa)TB,Tc; 620D RPATACS00 4
0 4
(8.70)

where
Np(ry) = e @Praeg=opRba (8.71)
Using Np(ra)Nc(ra) = ANp(ra) leads to

/0 r4drav 47TULMAX(7"A)NB(7”A)NC(7"A)/Q Zim(Qa)rp,r;...e 2P EpaTacosdu gy,
A
(8.72)

Using
e—20pDArscosf, _ Z(m + 1)Ml(2aDmTA)H(COS 0ar) (873)
=0

where M;(z) = i'j,(—iz) is the modified spherical Bessel function of the first-kind,

after some algebraic manipulations, [7] we have

/ﬂ Zim(Qa)TB,7C; .6 2P EPATAC O 4O 4 = /AT (2 4+ 1) > CrriMy(2apRpar 4)
A n,l
(8.74)

where C,,; are constants. We finally have

<GB(7'B,-TB]---~)|ULMAX(7'A)|GC(TC,CTCI---)) (875)

= 47TZ Cnl’ /0 TidT‘AULMAx(TA)NB(T‘A)NC(’)"A)TZM;(QCMDRDATA). (876)

nl’

B. Two-Center Integrals

"The two-center integrals of a nonlocal potential can be converted to and eval-
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uated as matrix-elements of a local potential Vzps4x.

We want to calculate

(GA(TA,-,TA,-,---)IVAIGB(TB“TBJ.,-.-)). (8.77)
with
00 l
vA=>"U(r) 3 |im)(im]. (8.78)
=0 m=—1

Since G4 and V4 are at the same center, only the angular momentum com-
ponents contained in G4 survive.

For s or p, we have:
(Ga(s)|Us|GB(rB;s 785, ), (8.79)

or
(Ga(ra)|Up|GB(rB;, 78, --.))- (8.80)

These are just matrix elements of local potentials, see (8.76). For Cartesian Gaussians,

the d-function have both the s-component and d-component. We have

LMAX-1
<GA(7'A1-7'A]-),ULMAX|GB(7'B”TBja~--)>+<GA(7'A,'TA]-)| Z AU[Il?TL)(lmIGB(T‘Bi,TBj,...
=0
8ij
= (Ga(ra;r4;)|UalGp(rp;,78;, -.)) + \/E—é’l(GA(s)ﬁlAUslGB), (8.81)

both terms are of the type of (8.76).
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[7] For d-function [ = 2,

TATA.
Zim () = =52,
TA

(a) projected on center A:
TE; =Ta; — Ra;;
(b) rotate to the primed coordinate:
r = Ar';
(c) carry out the angular integration:
/ dcos @ doa DﬁzﬁPZ(cos Oar)
TA TA

where 74, /74 is in terms of cos 04/, sin 4/, cos ¢4 and sin ¢4 .



