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Abstract

In this work we simulate shock wave focusing and scattering that occurs during shock wave lithotripsy,

a noninvasive medical treatment for kidney stone disease. Shock waves are generated outside the body

of the patient and are focused at the kidney stone with the intention of pulverizing the stone while

it remains inside the patient. The patient can then ostensibly pass the debris naturally. We use a

multidimensional second-order method of the Godunov type with slope limiters and shock capturing

capability to solve the inviscid Euler equations. Because we begin with the fundamental statements of

conservation of mass, momentum, and energy, we simulate all the relevant acoustics occurring during a

typical treatment.

Lithotripters, the machines that generate and focus shock waves, can be classified according to

the mechanism of shock generation. In this work, we simulate three different types of lithotripters:

electrohydraulic, piezoelectric, and electromagnetic. We choose one representative of each lithotripter

type: the Dornier HM3, a research piezoelectric lithotripter array, and the XX-Es, respectively. We

first study a model of the in vitro setting for each lithotripter, where shock waves are generated and

focus in a bath of pure water. Next, we introduce different heterogeneous materials near the focus of

the lithotripter to model the effect of the body of an actual patient, i.e., the in vivo condition. We use

two approaches in this modeling effort. One approach is to use simple geometrical models for the body

cavity and kidney that we created ourselves. The other approach is to import real anatomical data

made available from the VOXEL-MAN Group.

In studying the focal region acoustics, we specifically examine the maximum calculated pressures.

These pressures represent the forces that will ultimately cause the kidney stone to break. We also study

the pulse intensity integral, i.e., the energy density carried by the focusing shock wave. In addition

to these pressures and energy densities, we are interested in investigating how soft tissue in the focal
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region may potentially be damaged by the resulting wavefields. We isolate two mechanisms that are

thought to be important in soft tissue injury: shearing and cavitation. We calculate estimates for the

maximum principal normal and shear strains in the focal region in addition to the corresponding strain

rates and use these as metrics for the potential for damage via shearing. We study the calculated

negative pressure fields in this region as a surrogate for potential damage caused by cavitation.

We find that our simple geometrical anatomical models cause little deviation from the acoustics

observed in a water bath. However, when the real anatomical data of the VOXEL-MAN Group is

used, the fields of the various relevant flow quantities become more highly oscillatory and produce

secondary extrema that could produce damage not predicted from the water bath case. In addition

to the conclusions from our own work, we discuss how our results motivate future studies that will

hopefully help elucidate specific mechanisms by which kidney stones break and soft tissue becomes

damaged.
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Chapter 1

Introduction

1.1 Motivation

Extracorporeal shock wave lithotripsy is a noninvasive treatment modality where shock waves are gen-

erated outside the body and focused at the site of the stone[15, 14]. Shock wave lithotripsy was first

developed and used clinically in the early 1980s. Over the years its use and popularity has increased. A

lithotripter is the machine used to both generate and subsequently focus the shock wave(s). A coupling

agent of some form is used to transfer as much energy to the stone site as possible, and an imaging

mechanism helps locate the stone to improve aiming of the shock waves.

It is well known that highly sought improvements in newer lithotripters have been difficult to

realize[3]. It is, however, not well known exactly why various design changes have not led to the

enhanced efficacies expected with an evolving design process. Our motivation is to improve the un-

derstanding of the acoustics occurring during a typical shock wave lithotripsy treatment. By studying

the spatial distribution and temporal evolution of important flow variables like pressure and energy, we

will explore the acoustic footprint of various lithotripters and help elucidate the important mechanisms

that contribute both to stone comminution and tissue injury.

1.2 Background

Before we provide details of our investigation of shock wave lithotripsy, we will discuss kidney stone

disease and the most often used treatments. We will also describe how shock wave lithotripters work

and discuss modern design changes.
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1.2.1 Kidney Stone Disease

Approximately 12% of men and 5% of women will develop a kidney stone over the course of their

lifetime [20]. It is estimated the cost of urolithiasis in the United States is approximately $2 billion

annually[64]. Unfortunately kidney stone disease is often accompanied with other health issues. For

example, the links between stone disease and coronary heart disease[44] and hypertension[60] have been

studied. Much effort has been undertaken to identify risk factors associated with stone disease in the

hope that more effective preventative measures can subsequently be developed[77, 26].

The specific mechanisms by which kidney stones form are still largely unknown[34]. Approximately

80% of stones are composed of calcium oxalate and calcium phosphate. The remaining stones are made

mostly of struvite or uric acid. Stones less than 5 mm in diameter are likely to pass naturally through the

body. Stones with diameters between 5 and 7 mm have approximately 50% chance to pass, while stones

with diameters larger than 7 mm almost always require treatment[20]. Various treatment modalities

exist for large kidney stones: percutaneous nephrolithotomy, intracorporeal stone fragmentation, and

(extracorporeal) shock wave lithotripsy, among others[34].

In percutaneous nephrolithotomy, a small incision is made in the patient’s back. Via this incision,

a hollow tube is inserted directly into the kidney. Either whole stones are removed by being carried

back out through the inserted tube, or in some cases the stone is first pulverized and the fragments are

subsequently removed. Intracorporeal stone fragmentation involves the in vivo application of energy to

fragment stones, often through endoscopic techniques. Some examples of energy sources are ultrasound

transducers, spark sources, mechanical pulverizers, and lasers. The details of an extracorporeal shock

wave lithotripsy treatment are discussed in the following subsection.

1.2.2 How Shock Wave Lithotripsy Works

Early lithotripters often used an electrohydraulic mechanism to generate shock waves. The lithotripter

consisted of a pair of electrodes submerged in water whose gap was positioned at one focus of an

ellipsoidal bowl. The patient was oriented such that the kidney stone was positioned at the second

focus of the bowl. Current was passed through the electrodes, and the resulting spark across the

electrode gap vaporized the nearby water and created a spherically diverging shock wave. The shock
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wave reflected from the ellipsoidal bowl and focused at the stone[18].

Another class of lithotripters generates shocks via the action of piezoelectric elements. Often the

piezoelectric elements line the surface of a rigid spherical cap[88, 16]. Current is then passed through

the elements, causing their surfaces to displace from their rest positions. This surface motion induces a

nonlinear acoustic pulse in the surrounding fluid that eventually becomes a shock wave before arriving

at the geometrical focus (i.e., the stone site).

A third class of lithotripters use electromagnetic mechanisms to generate shock waves. One approach

is to use a diaphragm attached to a planar coil. When current is passed through the coil, the diaphragm

displaces, generating a planar nonlinear acoustic pulse. An acoustic lens is then used to focus the pulse

at the site of the stone[82]. A second approach is to use a spherically shaped coil to generate a nonlinear

pulse that is self-focusing[32]. In this case, the dynamics are similar to the previously described class

of piezoelectric lithotripters.

When lithotripter technology was first introduced, most lithotripters were submerged in a water bath

where the patient was also placed. The water bath provided the acoustic coupling of the extracorporeally

generated shocks and the kidney stone in the body of the patient. As lithotripsy matured, the dry head

configuration became more popular. In this configuration, the shock wave generation mechanism is

enclosed in a rubber bag which is filled with a waterlike fluid. During treatment the dry head assembly

is positioned against the body of the patient. A coupling gel is used between the dry head and the body

to make the wave path as acoustically homogeneous as possible[68].

1.3 Physics

In this section, we discuss the fundamental physics observed during a typical shock wave lithotripsy

statement. We will first discuss shock focusing in general and how the geometry of a lithotripter varies

from the canonical experimental treatments. We then move on to discuss the proposed mechanisms by

which kidney stones break and soft tissue is damaged.
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1.3.1 Shock Focusing

The focusing of a lithotripter pulse has much in common with the focusing of a planar shock front, as

described in detail by Sturtevant and Kulkarny[75]. The lithotripter shocks are classified as weak. One

metric of the shock strength is

ǫ =
u∗

cs

, (1.1)

where u∗ is the velocity of the fluid processed by the shock and cs is the speed of the shock front.

Conservatively we can take cs to be the small signal sound speed of the medium. Using this metric, for

our simulations, the maximum shock strength for any of the lithotripters is approximately 0.02.

Sturtevant and Kulkarny studied multiple cases of shock focusing, and the lithotripsy case is most

like the case where a weak planar shock is reflected from a concave wall, eventually forming a perfect

focus. The Sturtevant and Kulkarny setup differs from the lithotripsy arrangement in a number of ways,

at least two of which are fundamental. First, Sturtevant and Kulkarny study the case where a planar

shock reflects from a paraboloidal surface, resulting in focusing at a point. In the lithotripsy case,

specifically for the Dornier HM3, a spherical shock reflects from an ellipsoidal surface, also focusing

at a point. For the piezoelectric and electromagnetic lithotripters we study, the motion of a spherical

membrane induces a self-focusing shock front. This difference is shown in figure 1.1. Second, the profile

of the planar shock consists of just a shock front. In the lithotripsy case, the initial shock front is

immediately followed by an expansion. This added feature of the initial waveform leads to differences

in the character of the focused wave. The different profiles are shown in figure 1.2.



5

CBA

Figure 1.1: Planar shock front reflecting from parabaloidal surface (A). Spherically diverging shock

front reflecting from ellipsoidal surface (B). Self-focusing shock front originating from boundary motion

of spherical diaphragm (C).

CBA

Figure 1.2: Initial waveform profile for planar shock as studied by Sturtevant and Kulkarny (A), spheri-

cal shock as studied in this work for the case of the Dornier HM3 (B), and self-focusing shock as studied

in this work for the case of the piezoelectric lithotripter array and XX-Es (C).

1.3.2 Stone Pulverization

The pressure measured at the focus of a lithotripter as a function of time generally shows a nearly

instantaneous pressure increase as a result of the arrival of the shock wave followed by an expansion

region that produces negative pressures. The pressure then reaches equilibrium at atmospheric values.

In most cases the pulse is between 5 and 15 µs in duration. Some lithotripters produce multiple

compression and rarefaction phases in a single pulse. Waveforms with leading negative phases have

also been observed. Figure 1.3 shows a modeled form of the focal pressure waveform measured in an

electrohydraulic lithotripter[17].
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Figure 1.3: Modeled form of the focal pressure waveform measured in an electrohydraulic lithotripter.

Kidney stones are brittle composite materials that are stronger under compression than in tension.

The fundamental description of how shock waves breaks stones involves the nucleation of microcracks

which grow, merge, and under repeated loadings eventually cleave the stone [59]. No consensus yet

exists regarding the details of how exactly the microcracks are nucleated or grow. Several different

mechanisms has been proposed and shown to be important in various circumstances. Generally speak-

ing, stones break either as a direct result of interaction with the shock wave or indirectly via cavitation

activity induced by the shock. In the case of direct interaction, two primary mechanisms have been

acknowledged: spallation and circumferential squeezing.

In the case of spallation, the waveform is transmitted into the stone but upon reflection from the

acoustically soft distal stone surface, the waveform inverts. The inverted compression phase interacts

constructively with the rarefaction phase that has yet to reflect from the surface, producing a maximum

tensile stress. The stone experiences this maximum tensile stress at a distance l = cl∆t/2 from the distal

surface, where cl is the longitudinal wave speed in the stone and ∆t is the temporal duration between

the peak positive and negative pressure amplitudes[69]. Using cl = 3000 m/s and ∆t = 2 µs, reasonable

values for a kidney stone and lithotripter pulse, a maximum tensile stress is expected approximately 3

cm from the distal end of the stone, roughly in agreement with experimental observations.

Circumferential squeezing occurs when the incoming shock wave has a broader spatial extent than

the stone in the direction transverse to its direction of propagation[33]. The portion of the wavefront
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transmitted in the stone races ahead of the portion outside the stone because the longitudinal wave

speed in the stone is greater than the sound speed in the surrounding liquid. The portion of the

wavefront encircling the stone’s surface squeezes the stone quasi-statically.

1.3.3 SWL-induced Tissue Damage

The hope is that wave amplitudes are sufficiently low away from the stone so that soft tissue is not

damaged as a result of SWL treatment. In practice, various degrees of renal trauma are often observed

and long-term complications can potentially result[35]. Hematuria (blood in the urine) is observed in

nearly every patient, which is indicative of urinary tract damage[2]. A nontrivial portion of patients

also suffer from hemorrhage and/or edema[52]. Most damage is seen in the focal region and largely

consists of damaged blood vessels that produce the observed bleeding and blood clots[30, 10].

Like the case for stone comminution, no consensus yet exists regarding exactly how shock waves

damage tissue, though it is generally believed damage occurs as a result of shearing and/or cavitation

dynamics, both being induced by the focusing shock wave[23]. One proposal is that cavitation micro-

jetting attacks the stone surface, and possibly surrounding tissue, much like a solid projectile[25]. It

has been observed that suppressing cavitation does indeed reduce observed tissue damage[36]. When a

pressure release reflector was used with the Dornier HM3 in place of a rigid reflector, cavitation fields

were weakened and less pitting of aluminum foil samples was observed [5]. Cavitation has indeed been

detected both in urine and in renal tissue during a SWL treatment[6] and could explain a nontrivial

portion of the observed stone comminution and tissue injury.

Another proposed mechanism of tissue injury is shearing in the focal region resulting from the

dynamics of the focusing shock wave. Experiments with thin membranes have shown failure in fatigue as

a consequence of shearing[48]. Further experiments with red blood cells in a cavitation-free environment

show cell lysis in varying degrees of shear[58]. A simulation of the renal vasculature has indicated it is

possible shear accumulates with successive shocks and could be responsible for the initiation of tissue

damage in the parenchyma[37]. While these experimental and numerical efforts have demonstrated

the capacity of shock-induced shearing to damage tissue, no conclusive observations have been made

regarding the relative strength of the proposed damage mechanisms or how they may differ in different
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SWL treatments.

1.4 Contributions and Overview

The significant contributions of this thesis are listed below.

• Multi-dimensional simulation of different types of lithotripters using a single numerical framework.

• Introduction of heterogeneous materials, and hence nonuniform acoustic impedances, to study the

resulting shock dynamics without a restriction to in vitro conditions.

• Leveraging the output of the fluid mechanics calculations to make estimates of the soft tissue

damage potential of the focal region acoustics.

• Using the output from the Rayleigh-Plesset equation for single bubble dynamics to model shock

wave generation by the vaporization of water in an electrohydraulic lithotripter.

• Integration of a method to account for ultrasonic absorption by soft tissue into the numerical

framework used to solve the classical inviscid Euler equations.

In chapter 2 we discuss the computational methods we use to simulate the behavior of different

classes of lithotripters (electrohydraulic, piezoelectric, and electromagnetic). In chapter 3 we explore

the case of in vitro SWL. Much of the previous work done in SWL simulation has concentrated on this

case. We discuss the rich wave mechanics occurring in an open water bath along with the case where

a stonelike material is placed in the focal region of each lithotripter. In chapter 4 we move on to the

case where a tissuelike material surrounds the focal region. We explore the acoustical phenomena of

scattering and absorption, because these phenomena occur in the in vivo propagation of shock waves.

In chapter 5, we discuss potential mechanisms of tissue injury. Using our results for the in vitro case,

we make estimates regarding where cavitation damage may be most likely to occur and where the effect

of strain is strongest in our tissuelike materials. Finally, we make concluding remarks in chapter 6.
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Chapter 2

Computational Infrastructure

2.1 Previous Work

Most simulations of shock wave lithotripsy to date have involved simulating the acoustics in an electro-

hydraulic lithotripter like the Dornier HM3. These models have utilized geometrical acoustics[53], the

KZK equation [85, 54], and geometrical shock dynamics[80]. Geometrical acoustics is a linear theory

and operates in the high frequency limit. Waves travel along rays normal to the wavefront. Converging

rays yield infinite amplitudes at ray intersections in this theory, and thus the theory breaks down near

a focus. Hamilton uses this theory to calculate the transient axial solution for a geometry like that of

an electrohydraulic lithotripter [45]. The KZK equation is an augmented form of the Burgers equation

that accounts for weak nonlinearity, diffraction (in the parabolic approximation), and absorption in

directional sound beams. This theory performs better than geometrical acoustics near a focus, however

it is also restricted to high frequencies and assumes quasi-one-dimensional propagation of the sound

beam. Averkiou and Cleveland use this approach to model the pressure field of an electrohydraulic

lithotripter[4]. Geometrical shock dynamics is a nonlinear theory and assumes the shock front propa-

gates through ray tubes. An expression is derived relating the local shock Mach number to the ray tube

area, and the tube area is never allowed to vanish as in geometrical acoustics. As a result, geometrical

shock dynamics avoids the problem of infinite amplitudes. The theory does, however, neglect the inter-

action of the flow behind the shock with the shock itself. Cates and Sturtevant use geometrical shock

dynamics to study shock focusing in geometries similar to that of the Dornier HM3[13].
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2.2 Physical Model

In order to simulate the interesting wave mechanics occurring during a shock wave lithotripsy treatment,

we solve the fully nonlinear Euler equations in an axisymmetric geometry:

∂q

∂t
+

∂f

∂x
+

∂g

∂r
= sg, (2.1)

where t is time, x is the axial coordinate, r is the radial coordinate, q is the state vector of conserved

variables, f and g are the flux vectors in the axial and radial directions, respectively, and sg is the

geometrical source term vector:
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. (2.2)

In this formalism, ρ is the fluid density, u and v are the fluid velocities in the axial and radial directions,

respectively, et is the total specific internal energy, and p is the pressure.

The total specific energy et has the following definition:

ρet = ρe +
1

2
ρ
(

u2 + v2
)

, (2.3)

where e is the specific internal energy. We require an equation of state to close the system (2.1), relating

ρe to known quantities in the state vector. In this work, we simulate shock propagation in fluids, e.g.,

water in the in vitro case and a soft tissuelike fluid in the in vivo case. As a result, we choose the

stiffened gas equation of state[46]:

ρe =
p + γps

γ − 1
. (2.4)

For a perfect gas, γ is the ratio of specific heats and ps= 0, meaning a stiffened gas is a perfect gas
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already experiencing a prescribed overpressure. For liquids, as in our case, the γ and ps terms control

the stiffness, and hence the sound speed, of the medium. In this work, for water we use γ = 5.5 and

ps = 4036 atm, yielding a small signal sound speed c0= 1500 m/s when combined with an atmospheric

density of ρ0= 1000 kg/m3. These values are most similar to those chosen by Shyue[72] and close to

those of other researchers[72, 70, 21, 78, 43, 73]. The thermodynamics of the stiffened gas equation of

state have been discussed elsewhere[51].

2.3 Numerical Method

We use a second-order finite volume Godunov method with slope limiters to solve (2.1). Specifically,

we use the freely available AMROC (Adaptive Mesh Refinement in Object-oriented C++) framework

already documented in the literature [28, 29, 27] and used in other studies[62, 56]. AMROC provides

an implementation of the block structured adaptive mesh refinement of Berger and Oliger[7] proposed

by Berger and Collela [8]. Arbitrary geometries are handled by a level set-based ghost fluid method.

We use three grid levels for all of our simulations. The base, or first level, grid is spatially uniform

with a resolution of 0.5 mm. The second level grid is a factor of two finer than the first level grid, and

the third level grid is a factor of sixteen finer than the first level grid. Thus the smallest spatial scale in

our simulations is 31.25 µm. The smallest temporal scale is then 18.75 ns. The grid is refined when the

difference between normalized densities in adjacent cells is greater than a prescribed threshold. Grid

convergence was established by noting minimal changes in the computed results when resolutions were

increased by 50%.

2.4 Dornier HM3

The electrohydraulic lithotripter we model is the Dornier HM3, which is considered the gold standard

of shock wave lithotripters and has been both used and studied extensively since SWL first became

popular[24], [74]. The HM3 consists of a spark gap formed by a pair of electrodes positioned at one

focus (F1) of a truncated ellipsoidal reflector[18]. The kidney stone is positioned at the second focus

(F2) of the reflector. Figure 2.1 shows the computational domain we use in our simulations of the HM3,
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while figure 2.2 shows the relevant geometry.

Reflecting

boundaries
Outflow

boundaries

Axis of symmetry F1F2

Figure 2.1: The computational domain used in this work to simulate the Dornier HM3 electrohydraulic

lithotripter. A level set method was used to construct the reflecting boundaries.

F1F2

228 mm

80 mm

15 mm

Figure 2.2: Geometry of the ellipsoidal reflector used in this work.

A capacitor is used to pass current through the electrodes surrounding F1 such that the water in

the gap is ionized, resulting in the rapid growth of a vapor bubble cluster. The expansion of this vapor

region produces an outgoing wavefront that is approximately spherical. The spherical wavefront reflects

from the surface of the ellipsoid and diffracts past its truncated edge, creating a wavefront that focuses

in the neighborhood of the second focal point of the reflector. We will now describe how we handle this

shock wave generation process numerically.
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2.4.1 Model Bubble at F1

We mimic the vaporization event by first assuming a model vapor bubble rests at F1. This model

bubble is designed to reproduce to an approximate degree the behavior of the physical vaporization

bubble originating in the spark gap. As in the work of Church[17], we use the Gilmore equation of

bubble dynamics to compute the radius R ≡ R(t) and wall velocity Ṙ ≡ Ṙ(t) = dR/dt at time t of the

model bubble as it is impulsively forced,

R

(

1 −
Ṙ

c

)

Ṙ

dt
+

3

2

(

1 −
Ṙ

3c

)

Ṙ2 =

(

1 +
Ṙ

c

)

H +
Ṙ

c

(

1 −
Ṙ

c

)

R
dH

dR
, (2.5)

where H , the enthalpy of the liquid, is given as

H ≡ H(t) =

∫ p(R(t))

p∞(t)

dp

ρ
. (2.6)

Here p∞(t) is the pressure in the liquid at infinity at time t, p(R(t)) is the liquid pressure at the bubble

wall, and p and ρ are the time-varying liquid pressure and density, respectively. The formalism is further

described in Church[17].

Now we need an expression for the pressure in the liquid at the bubble wall[11], p(R(t)):

p(R(t)) = pb(t) +
2S

R(t)
. (2.7)

Here pb(t) is the uniform pressure inside the bubble and S is the surface tension coefficient. The pressure

inside the bubble is then

pb(t) = psv + pg,0R(t)−3γ , (2.8)

where psv is the saturated vapor pressure and pg,0 is the pressure of the gas that comprises the mi-

crobubble at t = 0. This gas pressure is

pg,0 = p∞(0) − psv +
2S

R0
. (2.9)
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The strength of the impulse, p∞(t), is chosen so that the collapse time of the model bubble is in general

agreement with measured values [87], approximately 2.65 ms. We choose an equilibrium bubble radius

R0 = 10µm. We force the growth of this bubble by prescribing a decrease in the pressure in the

surrounding liquid of the form

p∞(t) = patm + p∞ exp

[

−

(

t − t0
b

)2
]

, (2.10)

where p∞ = −4500 atm, t0 = 5µs, and b = 1µs.

2.4.2 Form of Mass and Energy Sources

In the study of linear acoustics, a simple source radiates sound equally in all directions. The excess

pressure resulting from the action of such a source is given as[57],

p − p0 =
q̇m(t − r/c)

4πr
, (2.11)

where p is the observed fluid pressure, p0 and ρ0 are ambient values of fluid pressure and density,

qm(t) = ρ0qv(t) is the rate of mass outflow from the source, qv(t) is the rate of volume outflow from the

source, r is the distance from the source to the point of observation, and c is the small signal speed of

sound in the fluid. In our case, we calculate the mass of fluid the model bubble at F1 displaces,

qm(t) = ρ∞V̇ (t), (2.12)

where V̇ (t) = dV (t)/dt is the rate at which the volume of the bubble is growing, and V (t) = 4/3πR(t)3

is the current volume of the bubble. This rate of mass outflow is used as a mass source in our continuity

equation,

∂ρ

∂t
+ ∇ · (ρ~u) = Sm(~x, t), (2.13)

where
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Sm(~x, t) =
qm(t)

V (t)
= 3ρ∞

Ṙ(t)

R(t)
. (2.14)

This expression holds for values of ~x within the bubble volume. Outside this volume Sm(~x, t) = 0. In

this sense, we have computed the rate of mass outflow from the source, qm(t), and we are distributing

this added mass over a volume equal to that of the model bubble, V (t). The mass being “added” by

the action of the model bubble at F1 carries with it added energy, and as a result we have a source

term in our energy equation,

∂ρet

∂t
+ ∇ · (ρet + p) ~u = Se(~x, t), (2.15)

where again this expression holds for ~x within the bubble volume but vanishes for points outside this

volume. Because we have appealed to linear acoustics in the motivation of the form of our mass source,

we can use the acoustic relation,

e′t =
c2

γ − 1
ρ′, (2.16)

where e′t and ρ′ are small fluctuations in the specific total internal energy and density, respectively, to

determine the form of the energy source,

Se(~x, t) =
c2

γ − 1
Sm(~x, t). (2.17)

Figure 2.3 shows R(t) and Ṙ(t) for a bubble whose equilibrium radius is 10 µm and which was impulsively

forced to yield a 2 ms collapse time. The plots show the dynamics over the first 30 µs of the bubble’s

growth cycle, because this duration is the one in which the spherically outgoing shock wave is generated.
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Figure 2.3: Bubble radius R(t) versus time (left) and bubble wall radial velocity Ṙ(t) versus time (right)

for an impulsively forced 10 µm bubble with a 2 ms collapse time.

2.5 Piezoelectric Lithotripter Array

Chitnis et al. use a 170-element piezoelectric lithotripter array to study various customized acoustic

fields[16]. The elements line the inner surface of a 150 mm radius spherical cap with an aperture

diameter of 154 mm. The firing of each element is independently controlled, and by fixing the relative

timing of the firing of various elements, the resulting acoustic field was customized for various cases.

Figure 2.4 shows the placement of the 170 elements in the spherical cap. Figures 2.5 and 2.6 show the

computational domain we use for this lithotripter and the relevant geometry, respectively.
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Figure 2.4: A diagram of the placement of the 170 elements forming the piezoelectric lithotripter array.

Normal velocity

condition

Reflecting boundary

Outflow

boundaries

Axis of symmetryFocus

Figure 2.5: The computational domain used in this work to simulate the piezoelectric lithotripter array.

A level set method was used to construct the reflecting boundary and the boundary with the normal

velocity condition.
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77 mm
150 mm

focus

Figure 2.6: Geometry of the piezoelectric lithotripter array used in this work.

Parag Chitnis and Robin Cleveland provided us with several sets of experimental measurements for

this lithotripter array. One set is the recorded pressure versus time at the focus for the case where the

center element (element #1) is fired alone. The peak positive and negative pressures in this case are

approximately ±0.2 MPa. We used these measurements to calculate an estimate for the displacement

of the element’s surface as a function of time using the Rayleigh integral[65],

p(~x, t) =
ρ0

2π

∫ ∫

v̇n(xs, ys, t − R/c)

R
dxsdys, (2.18)

where p(~x, t) is the measured pressure at the point with position vector ~x at time t, ρ0 is the ambient

fluid density, v̇n is the normal velocity of the element’s surface, c is the small signal speed of sound,

and R is the distance from the point on the element’s surface (xs, ys) to the point of observation,

R2 = z2 + (x − xs)
2 + (y − ys)

2. (2.19)

In this formalism, the element’s surface resides in the z = 0 plane. With the measured values of p(~x, t),

we can compute values of v̇n(t) and use them as a boundary condition for each ring of elements in

our axisymmetric geometry. Figure 2.7 shows a comparison of the experimental measurements with

our numerical results for the case where the center element is fired alone using v̇n(t) as the boundary

condition.
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Figure 2.7: Pressure versus time for the case where only the center element of the piezoelectric

lithotripter array is fired. Experimental measurements ( ); computational results ( ).

2.6 XX-Es

The XX-Es is an electromagnetic lithotripter comprised of a self-focusing electromagnetic “wide focus”

shock-wave generator designed at the University of Stuttgart[32]. This generator was used in Xixin

lithotripters and tested in China. A spherically shaped solenoid with a 200 mm radius of curvature and

a 120 mm aperture diameter is used to displace a copper diaphragm, generating a self-focusing shock

wave that first travels through a water-filled rubber coupling cushion and then into the body. Figures

2.8 and 2.9 show the computational domain we use to simulate the XX-Es and the relevant geometry,

respectively.
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Normal velocity

condition

Reflecting boundary
Outflow

boundaries

Axis of symmetryFocus

Figure 2.8: The computational domain used in this work to simulate the XX-Es lithotripter. A level

set method was used to construct the reflecting boundary and the boundary with the normal velocity

condition.

60 mm 200 mm

focus

Figure 2.9: Geometry of the XX-Es lithotripter used in this work.

From a computational perspective, the treatment of the copper diaphragm motion is the same as

the surface of the elements in the piezoelectric lithotripter array. We need to find a normal velocity

v̇n(t) for the copper diaphragm that generates the observed focal pressure waveforms. Unfortunately

we could not find measured values of the displacement or velocity of the diaphragm as a function of

time. Granz et al.[42] published displacement versus time curves for three different coil configurations

in a different electromagnetic lithotripter, the LITHOSTAR Modularis by Siemens. This data is shown

in figure 2.10.
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Figure 2.10: Membrane extension versus time for the coil of the LITHOSTAR Modularis electromagnetic

lithotripter by Siemens.

We used this data as motivation to construct an estimate for the displacement versus time curve for

the copper diaphragm in the XX-Es. Inspection of the data in figure 2.10 led us to believe a sigmoid

function could reproduce the important features of the boundary motion. After experimenting with the

hyperbolic tangent and error functions and finding unsatisfactory results, we discovered the Gompertz

function, which has the form,

f(t) = aebect

, (2.20)

where f(t) is the displacement of the diaphragm as a function of time, e is the base of the natural

logarithm, a is the upper asymptote of the displacement curve, c < 0 is the growth rate, and b < 0 is an

arbitrary parameter. Gompertz introduced this model in 1825 in his study of demographics [39]. Laird

used this model to study the dynamics of tumor growth[55], and Zweitering et al. used it to model

bacteria growth[89].

We in fact used a sum of two Gompertz functions as the displacement versus time curve in our

simulations. One motivation for this decision is two displacement events can be seen in figure 2.10,

roughly around 2 and 7 µs. Another motivation is the fact that the temporal pressure waveform at the

focus has two compression and rarefaction events, meaning the diaphragm experienced two instances of



22

rapid movement from its equilibrium position. The specific displacement curve f(t) we used to calculate

our normal velocity boundary condition v(t) = df(t)/dt was

f(t) = a1e
b1ec1(t−t1)

+ a2e
b2ec2(t−t2)

, (2.21)

where a1 = 12.572 µm, a2 = 5.437 µm, b1 = b2 = −1, c1 = c2 = 6 × 105 s−1, t1 = 13.33 µs, and

t2 = 20.50 µs. In chapter 3 we will show the comparison of our simulated focal pressure waveform using

this boundary condition with the measured waveform. Figure 2.11 shows a comparison of the diaphragm

displacement curve for our model (time shifted to the left by 3 µs) with that for the LITHOSTAR

Modularis configuration B, as shown in figure 2.10. It is important to note that we are not attempting

to replicate the displacement curve for the LITHOSTAR Modularis. We used this data to motivate our

attempts to capture the relevant, and unknown to us, dynamics of the XX-Es diaphragm. The purpose

of the comparison is to demonstrate that our estimate for the boundary motion is reasonable given

what is known about another electromagnetic lithotripter, i.e., the LITHOSTAR Modularis.
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Figure 2.11: Diaphragm displacement curve for our model (dashed line) compared with that for the

LITHOSTAR Modularis configuration B (solid line).
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Chapter 3

Simulation of In Vitro Shock Wave

Lithotripsy

3.1 Overview

Most SWL simulation efforts are of in vitro treatments. These treatments often provide the most

reproducible environments in which to isolate and study the various dynamics occurring as a result

of shock wave generation and propagation. The reader should refer to chapter 2 for references on

previous work in SWL simulation. In this work, we simulate the dynamics of three types of lithotripters:

electrohydraulic (Dornier HM3), piezoelectric (piezoelectric lithotripter array), and electromagnetic

(XX-Es). In this chapter, we describe the dynamics of each of these lithotripters in a water bath, a

setting designed to mimic in vitro conditions. In chapters 4 and 5 we discuss the ramifications these

dynamics may have during an in vivo-like treatment.

3.2 Dornier HM3

As explained in chapter 2, current is passed through a pair of electrodes submerged in water and

positioned at the first focal point of a hemiellipsoidal reflector. The water in the electrode gap is

vaporized, creating a spherically diverging shock wave that reflects from the reflector and focuses at the

second geometrical focus.

One of the first observations made about the focusing shock front in the context of the Dornier

HM3 is the nonuniform strength of the focusing shock. Because of spherical spreading, the strength

of the direct wave decays as 1/r as it travels farther from F1. As a result, the portion of the shock
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front traveling along the axis is strongest, because this portion travels the shortest distance from the

generation event at F1 to the reflector surface. Conversely, the portion of the shock front that reflects

from the surface nearest the truncation plane of the reflector is weakest. As the direct wave diffracts

past the truncated edge of the reflector, an edge wave is formed. The genesis of the edge wave is shown

in figure 3.1.

Figure 3.1: Flooded schlieren contour plot showing the generation of the edge wave as the direct and

reflected shock fronts pass the truncated edge of the reflector. Axis labels indicate distance from focus

in millimeters.

An additional waveform feature is seen for the lithotripsy pulse that is not observed in the case of

a planar shock reflecting from a concave wall. The added rarefaction in the incident lithotripter pulse,

following the leading shock, produces an additional compressive front after reflection that evolves during

the focusing process, much as the diffraction shock evolves as described by Sturtevant and Kulkarny.

As a result, a fourth front is seen in addition to the expected three shock intersection near the focus.

Flooded schlieren contours showing the various shock fronts in the focal region are shown in figure 3.2.

The bottom contour plot in figure 3.2 shows the hallmark of weak shock focusing, a crossed and folded

wavefront. Sturtevant and Kulkarny also observe this feature in their work and discuss it in detail.
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Figure 3.2: Flooded schlieren contour plots of focusing shock front as it approaches the focus (top) and

as it passes beyond the focus (bottom). Axis labels indicate distance from focus in millimeters.

Figure 3.3 shows our computed pressure versus time for three points: the focus (F2), 5 mm prefocus,

and 5 mm postfocus. Prefocal locations are between the electrode gap (F1) and F2; postfocal locations

are beyond F2 when looking from F1. The data for the nonfocal points have been time shifted such

that the shock fronts arrive concurrently for all three locations.
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Figure 3.3: Pressure versus time waveforms at F2 and at 5 mm pre- and postfocal locations. Focus

( ); 5 mm prefocal ( ); 5 mm postfocal ( ).

The waveform structure varies considerably in the 10 mm axial window surrounding F2. Computed

peak positive pressures increase from 25 to 45 MPa. The shock front is followed by an expansion in

the pre- and postfocal cases whereas at F2 itself a secondary pressure increase follows the arrival of the

shock. The width of the positive pressure region decreases slightly as the wave propagates downstream.

The width of the negative pressure region and the negative pressure amplitudes are essentially uniform

through this segment of the axis.

The appearance of the shock tip at F2 is not expected given available experimental measurements.

A similar effect has been shown, however, in a previous simulation[49]. Figure 3.4 shows a comparison

of the computed results of this study and those of Iloreta et al.[49], where the effect was attributed to

insufficient grid resolution. In our case, we find this secondary pressure increased after the arrival of

the initial shock front to be grid independent beyond a sufficient level of resolution.
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Figure 3.4: Pressure versus time at F2. Computed results of this study ( ) versus those of Iloreta

et al. [49] ( ).

Several facets of the simulation could possibly explain this subsequent pressure increase after the

arrival of the shock in the focal waveform. First, we use an axisymmetric geometry, and as such we

generate shocks that focus in a stronger fashion than those observed in experiments. The ratio of the

strength of the focusing shock front on the axis relative to the strength away from the axis is greater for

our simulations than would be the case in experiments. The portion of the focusing shock front along

the axis then races ahead of the off-axis portion, and the difference in arrival times at F2 is manifested

as the further rise in pressure after the arrival of the shock front. One violation of the assumption of

axisymmetry in experiments is found with the support structure for the electrodes. The spark gap is

typically positioned at F1 obliquely relative to the axis. The cage surrounding the electrode gap disrupts

the initial propagation of the spherically diverging shock, and the resulting diffraction events perturb

the focusing in ways not found in our simulation. Second, we do not model the gas phase present at

F1 after the initial vaporization event. In experiments, the spherically diverging shock reflects from

the reflector, and a portion of the front travels back through the vapor cloud. In our simulation, we

only have a single phase and ignore the mismatch of acoustic impedances around F1. Both of these
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effects perturb the focusing process, particularly near the axis, potentially to a sufficient degree that

experimental measurements would not show the waveform structure we compute at F2.

Even though the appearance of the focal shock tip does not match expectations given observed

pressure measurements, our code does produce sharply focused shocks around 5 mm postfocus and

beyond. This result is consistent with the explanation for the appearance of the focal waveform that

the portion of the shock front traveling along the axis races ahead of the front farther from the axis.

These fronts would then arrive simultaneously slightly beyond the focus, where even though the shock

along the axis is traveling slightly faster it must also travel farther to reach postfocal locations as a

result of the ellipsoidal geometry of the reflector. Figure 3.5 shows computed pressure waveforms at 5,

15, and 25 mm postfocus.

Time (µs)

P
re

ss
u
re

(M
P
a
)

190 192 194 196 198 200
-10

0

10

20

30

40

50

60

70

Figure 3.5: Pressure versus time at various postfocal locations. 5 mm postfocus (red); 15 mm postfocus

(green); 25 mm postfocus (blue).

Peak positive pressures around 65 MPa occur approximately 15 mm postfocally. Negative pressure

amplitudes decrease slowly as the pulse propagates beyond the focus. The width of the positive pressure

region increases as the edge wave has now inverted, i.e., is a compression, and races ahead of the rest

of the pulse, as has been predicted in the linear theory[45] and observed experimentally[24]. This effect
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is clearly seen in the 25 mm postfocal waveform shown in figure 3.5.

3.3 Piezoelectric Lithotripter Array

As discussed in chapter 2, we use the measured pressures generated from the actuation of a single

piezoelectric element to compute an estimate for the displacement profile of that element. We then

use this estimated profile for all the elements in our simulation. Because of our use of axisymmetric

geometries, the only single element we model is the one whose center lies on the axis of the lithotripter,

i.e., the element numbered 1 in figure 2.4. We then model seven additional rings of elements without

accounting for the interelement spacing within each ring. We do, however, correctly account for the

spacing between the rings of elements.

Figure 3.6 shows flooded schlieren contours of the piezoelectric lithotripter array approximately 20

µs after all the elements are fired. Several important features of the behavior of the individual elements

can be seen. Three primary fronts are seen for each ring of elements that has been fired. These

multiple fronts are the result of the ringing of the elements, i.e., when current is discharged through

the elements, the initial motion is away from the bowl, but then the elements retreat toward their

equilibrium position, overshoot this position, and again move away from the bowl. This oscillatory

behavior produces multiple fronts that each focus and are clearly seen in the focal waveforms. Like

the case for the Dornier HM3, diffraction waves are formed as the fronts diffract into quiescent fluid.

For the Dornier HM3, this effect was observed when the direct and reflected fronts diffracted past the

truncated edge of the reflector. For the piezoelectric lithotripter array, the same effect happens when

the fronts diffract past the edges of the individual elements. In fact, our simulation produces fewer

diffraction waves than would be observed experimentally, because the axisymmetric geometry prevents

us from capturing the diffraction events that would take place between the various elements in a single

ring.
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Figure 3.6: Flooded schlieren contours for piezoelectric lithotripter array approximately 20 µs after

firing. Axis labels show distance from the focus in millimeters.

Figure 3.7 shows a comparison of the computed focal pressure waveform versus experimental mea-

surements. The peak positive and negative pressure amplitudes and the pulse widths for the compres-

sions and rarefactions agree well with the measured values. The second shock front arrives approximately

one-tenth of a microsecond sooner in our case than seen in the measured data. We compute the third

compression event to occur about half a microsecond ahead of where it is seen experimentally. As in

the case of the XX-Es lithotripter, these small discrepancies will not effect the observations we make

about the focal region dynamics. We believe these small discrepancies between the computed results

and the experimental measurements to largely be the result of our inability to reproduce the temporal

jitter in interelement firings found in experiments.
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Figure 3.7: Pressure versus time at the focus for the piezoelectric lithotripter array. Experimental

measurements ( ); computed results ( ).

We generated the displacement profile for the piezoelectric elements by using the measured values

for the firing of a single element and computing the surface velocities using the Rayleigh integral, as was

discussed in chapter 2. In that case, we did not have to consider interelement delays. For the computed

waveform shown in figure 3.7, we had to introduce delays between the firing of different rings of elements

to better match the measured data. Figure 3.8 shows a comparison of our computed waveforms when

we fire the rings synchronously versus when we introduce a delay to account for the temporal jitter in

the firing of different elements. Table 3.1 shows the relative delay in firing of each ring of elements,

where the firing of the third ring (ring 3) occurs first and is thus taken as having zero delay. The rings

of elements are identified in figure 2.4. Ring 3 consists of elements 8 through 19.
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Figure 3.8: Computed pressure versus time at the focus for the piezoelectric lithotripter array. All

elements fired synchronously ( ); elements fired with delays of hundreds of nanoseconds ( ).

Table 3.1: Temporal delay in firing of each ring of elements for the piezoelectric lithotripter array

relative to the firing of the third ring of elements (ring 3), ring 1 is the center element.

Ring number Firing delay (ns)

1 424.6

2 125.4

3 0.0

4 204.6

5 495.0

6 19.8

7 217.8

8 422.4

The waveforms in figure 3.8 were time shifted to align the first shock fronts. Because the delay

case has smaller amplitudes, the fronts travel slower and arrive at the focus later than the fronts in
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the synchronous case. In the experimental arrangement, the maximum interelement temporal jitter

was measured to be less than 50 ns. In our case, we had to introduce delays in the relative firing of

different rings as large as 500 ns. The primary reason such large delays were required was the fact

that we must simulate the firing of all elements in a given ring at exactly the same time due to the

axisymmetric geometry. The outermost ring consists of 42 elements, nearly one fourth of the elements in

the piezoelectric lithotripter array. We need delays in the relative firing of different rings larger than 50

ns to account for the fact that we must fire such a large portion of the elements in a truly synchronous

fashion. As shown in figure 3.8, the delays required to match the measured data suppress the peak

positive pressures at the focus by over 20 MPa and consequently have a nontrivial effect on the various

flow quantities in the focal region.
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Figure 3.9: Computed pressure versus time at the focus and locations 5 mm pre- and postfocus for the

piezoelectric lithotripter array: focus ( ), 5 mm prefocus ( ), 5 mm postfocus ( ).

3.4 XX-Es

As explained in chapter 2, electrical current is discharged through a coil, which causes an attached trun-

cated spherical diaphragm to displace from its rest position and create a self-focusing nonlinear pulse.
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The pulse front forms a shock on its way to the focus. Using the previously described approximation for

the diaphragm motion, we simulate this waveform creation event, and figure 3.10 shows a comparison

of our computed focal waveform and the measured waveform published in the work of Eisenmenger et

al.[32].

Time (µs)

P
re

ss
u
re

(M
P
a
)

2 4 6 8 12
-10

0

0

10

10

20

30

Figure 3.10: Pressure versus time at the focus for the XX-Es. Experimental measurements ( );

computed results ( ).

The disagreements between the computed and focal waveforms are a result of our incomplete knowl-

edge of the details of the diaphragm motion. We used the LITHOSTAR Modualris displacement data

as motivation for our estimates for the XX-Es. We then adjusted the free parameters in the Gompertz

model equations until our computed results agreed with the experimental measurements to a satisfac-

tory degree. The peak positive amplitudes of the compression waves, observed at approximately 0 and

8 µs in figure 3.10, are in good agreement. The positive pressure pulse widths for both compressions

are slightly narrower than the measured values, by a few tenths of a microsecond. The calculated peak

negative pressure amplitude for the first rarefaction is slightly weaker than the measured value, while

for the second rarefaction the computed values are stronger.

The Gompertz functions we use as model equations for the displacement profile of the spherically
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shaped diaphragm clearly do not produce ideal agreement between the computed and measured data.

However, for the purposes of our study, the agreement is sufficient to investigate the dynamics of

interest. The observations we make are insensitive to the small discrepancies between the computed

and measured waveforms. Using measurements of the diaphragm motion as source conditions in these

calculations would remove most of the observed discrepancies. Given the data to which we have access

at this time, we are satisfied with the results of our simulation given the physics in which we have an

interest.

The waveforms measured at the focus and at 5 mm pre- and postfocal locations appear nearly

identical as a result of the wide focus of the lithotripter. Figure 3.11 shows waveforms measured at the

focus and at 25 mm pre- and postfocal locations. The waveform at 25 mm prefocus has not yet formed

a shock front. Additionally, the diffraction waves following the lead compression have not yet caught

up with the front, and as a result the negative pressures are lower in the prefocal region than at the

focus itself. This phenomenon was also seen with the HM3 and has been studied experimentally[74].

The inverted edge wave is beginning to move ahead of the shock front in the postfocal waveform, which

in part accounts for the reduced peak positive pressure compared with the focal waveform. The peak

negative pressures become less negative as the wave propagates downstream.
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Figure 3.11: Pressure versus time waveforms at F2 and at 25 mm pre- and postfocal locations. Focus

(red); 25 mm prefocal (green); 25 mm postfocal (blue).

3.5 Summary

In this chapter, we discussed the fundamental characteristics of shock generation, propagation, and

focusing in a pure water bath, a model for the in vitro environment in which most lithotripsy experiments

are performed. The details of the shock generation mechanism for each lithotripter were provided. We

showed the ability of our numerical method to capture the sharp shock fronts expected at the focus

of a shock wave lithotripter. Finally, we presented a comparison with experimental data for each

lithotripter and explained why differences are seen between this data and our computed results. With

this foundation established, we are now ready to discuss the various effects observed as a result of the

introduction of heterogeneous materials into the focal region of each lithotripter.
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Chapter 4

Simulation of In Vivo Shock Wave

Lithotripsy

4.1 Overview

In chapter 3 we discussed the water bath wave propagation characteristics of three classes of shock

wave lithotripters: electrohydraulic (Dornier HM3), piezoelectric (piezoelectric lithotripter array), and

electromagnetic (XX-Es). In this chapter, we will investigate the change in the dynamics resulting

from the presence of materials with densities and/or sound speeds differing from those of the waterlike

medium in which the shock waves are generated. The motivation for introducing new materials to our

domain is to mimic the effect of soft tissue on the wave propagation during an in vivo treatment.

The effects of high intensity sound on tissue have been studied at least as far back as 1927[83].

Researchers then sought a more complete understanding of the acoustic properties of tissue, and in

1950, the specific gravity and sound speed of living human tissue were measured as 1.06 and 1540 m/s,

respectively[61]. In the context of shock wave lithotripsy, the presence of soft tissue in the shock path

has been shown to have a nonnegligible effect on focal pressure waveforms. In vivo measurements in pigs

have shown waveforms of similar appearance to the in vitro case but with suppressed amplitudes[19].

In vitro experiments have shown that when layers of soft tissue, nominally the same thickness as seen

by a shock wave traveling through the body, are placed upstream of the focus, the waveform amplitudes

are attenuated and additional peaks are introduced[48]. In this chapter, we will study the changes in

focal region dynamics that occur as a result of the introduction of tissuelike materials that mimic in

isolation the body cavity and the kidney itself, and finally the effect of the two together.
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As we discussed in chapter 2, one of the conservation equations we integrate is for the total energy

per unit volume,

ρet = ρe +
1

2
ρ
(

u2 + v2
)

, (4.1)

where ρe is the internal energy per unit volume. Taking advantage of the stiffened gas equation of state,

we have

ρe =
p + γp∞

γ − 1
. (4.2)

The terms γ and p∞ are set for each material in our simulation. For water, we use γ = 5.5 and

p∞ = 4036 atm. We are free to choose different values to model the properties of soft tissue. The

infinitesimal sound speed of the medium, c, is given by

c2 = γ
p0 + p∞

ρ0
, (4.3)

where p0 and ρ0 are the atmospheric pressure and density, respectively. The results of our simulation

are sensitive to the sound speed of the medium, but in general are largely insensitive to the specific

choice of γ and p∞. In addition to changing one or both of these parameters, we can also change the

atmospheric density of a material. In this sense, we can introduce contrasts in acoustic impedance by

changing the sound speed and/or the atmospheric density, and introducing these contrasts will allow us

to investigate how the focal region acoustics will change with the presence of soft tissuelike materials.

4.2 Scattering and Absorption

Scattering and absorption are the dominant processes by which propagation through soft tissue changes

wave amplitudes and waveform geometries[63]. Scattering, in whose definition we also include effects

like internal reflection, occurs at interfaces of mismatching acoustic impedances, which requires a hetero-

geneous medium. Absorption is the conversion of acoustic energy into thermal energy and is observed

in both homogeneous and heterogeneous materials. We model the scattering effect by changing the
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density and sound speed of the tissue, as described in the previous section. In our numerical framework

as currently described, however, we have no capacity to model thermoviscous absorption, or indeed ab-

sorption of any variety. Measurements show, though, a frequency-dependent absorption of ultrasound

in various soft tissues. Carstensen et al. published frequency-dependent absorption data for blood in

1953[12]. In 1956, Goldman and Heuter published a collection of human tissue absorption values from

various researchers, and these values were mostly found in the range of 0.5 to 2 dB/cm/MHz[38]. Dunn

et al. published a muscle absorption of 0.13 dB/cm and a fat absorption of 0.05 dB/cm, both at 1

MHz[31]. They also noted that these absorption values were proportional to frequency. Goss et al.

twice published compilations of the available experimental data measuring absorption in various soft

tissues[40, 41]. We would like to find a way to model the effect of absorption.

One difficulty with absorption is an absorption law is usually provided in the frequency domain, i.e.,

α = α(f), where α(f) is the absorption in the material for a signal of frequency f . We integrate the

conservation laws in our code, however, in the time domain. Yang and Cleveland overcame this problem

by using a modified form of the KZK equation to simulate the propagation of nonlinear acoustic beams

through a tissuelike material[84]. The frequency-dependent absorption was approximated via the use

of two relaxation processes. Details can be found in the cited reference. The density and sound speed

of their tissuelike material were ρ = 1050 kg/m3 and c0 = 1540 m/s, respectively, and the power law

used to model the absorption in tissue was

α(f) = α0

(

f

f0

)η

, (4.4)

where α0 = 3.4538 Np/m, η = 1.1, and f0 = 1 MHz. The absorption is then 0.3 dB/cm at 1 MHz for

this case. Following the lead of Yang and Cleveland, we modified our own code to include the same

relaxation processes. The details of the various necessary numerical manipulations can be found in

Appendix A.

Figure 4.1 shows calculated pressure versus time for a simulation where we specify a higher density

and sound speed in a circular region around the focus to mimic the presence of the body cavity of a

patient. This model is described more thoroughly in the following section. Figure 4.1 shows results

from simulations with and without the use of absorption. We chose the simple body cavity model for
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this purpose because the effect of absorption is isolated, i.e., scattering plays a negligible role since

only one acoustic impedance interface with a very simple geometry exists. These results show that

absorption alone leads to a decrease in focal wave amplitudes of less than 10%, and the only dispersive

effect is to increase the rise time of the focal shock. We will see later that the effects of scattering

from multiple acoustic impedance interfaces are much stronger than this effect of absorption. While the

effect of absorption is nontrivial, we disabled this feature for the simulations whose results we discuss

for the remainder of this document for purposes of improving computational efficiency. The effect of

absorption on all of our results is simply to diminish amplitudes by 5% to 10% without any appreciable

change in the waveform geometries.
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Figure 4.1: Pressure versus time for the Dornier HM3 simulation using a simple model of a body cavity,

without absorption ( ) and with absorption ( ).
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4.3 Heterogeneous Materials

Figure 4.2: Color image of a sample slide from the Visible Human Project made available by the

VOXEL-MAN Group[1]. The arrow points in the direction of an approximate blast path for treatment

of the left kidney (on the right side of the image; in this orientation the patient is facing the bottom of

the page).

We have constructed three different computational domains to study shock scattering from material

interfaces in shock wave lithotripsy. In the first case, we use a circular region to model the cross section

of the human body. We arbitrarily chose a radius of 15 cm for this region, and the center of the model

body cavity was positioned such that the shock must travel through 6 cm of tissue along the axis before

reaching the focus, which matches values used by other researchers[22, 4]. The initial density of the

body cavity was chosen to be 1025 kg/m3 and a value of γ = 6.06 was used to give a small signal sound

speed of 1555 m/s. These values are reasonable given the available experimental data on the acoustic

properties of various soft tissues. Our purpose here is to study the dominant effects material interfaces

have on shock propagation. We are most interested in how material interfaces perturb the acoustic

relative to the water bath environment. We leave for future work the study of how these results further

change as a function of changing values of density and sound speed along the various interfaces.

In the second domain, we again use the previously described body cavity model, but now we add

an arbitrarily created model of the kidney. Our motivation for creating this model was to mimic large

scale anatomical features of the kidney. We are limited by a number of factors in this regard, with
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the most significant limitation being the axisymmetric geometry. As a result of this restriction, we will

necessarily be unable to model the kidney in an anatomically accurate fashion. However, we should be

able to study some first order effects produced by the existence of a material interface of roughly the

same size and shape as seen in the human body. For the model kidney, we chose an initial density of

1050 kg/m3 and γ = 6.37, which produces a small signal sound speed of 1575 m/s.

In the third domain, we use digitized data from the Visible Human Project to establish initial

conditions. The VOXEL-MAN Group at the University Medical Center Hamburg-Eppendorf has made

sample data available, and one sample image is of the human midsection[1]. Using this segmented

data, we were able to assign values of density and sound speed to different classes of soft tissue. To

match our arbitrarily constructed models, the density of all tissue except kidney and fat was set to

1025 kg/m3. The kidney tissue was given a density of 1050 kg/m3, while fat was prescribed a density

of 900 kg/m3. The values for γ for the different tissue were allowed to change, to achieve particular

sound speeds. All soft tissue was assumed a priori to have a sound speed of 1555 m/s. We then used

the tissue classifications provided in the VOXEL-MAN Group data to make adjustments. Some tissue

was specifically marked as unclassified, and we decreased the sound speed in this region to fall between

general soft tissue and fat. The tissue classified as general is mostly muscle. The values used for the

various tissue types are given in Table 4.1.

Table 4.1: Sound speeds assigned to different tissue types.

Tissue type density (kg/m3) sound speed (m/s) γ

water 1000 1500 5.5

unclassified 1025 1535 5.904

general 1025 1555 6.058

fat 900 1465 4.722

kidney 1050 1575 6.367

We do not make the claim that the values chosen are to be preferred over other reasonable values.

The particular values we have selected are in general agreement with what is seen in the literature,

and more importantly, because we are studying the first-order effects introduced by changes in acoustic
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impedance, the specific values of density and sound speed should not affect the general observations

we will make. We leave to future work an investigation of these effects in three dimensions and a more

thorough study of the particular choices for acoustic properties.

Figures 4.3 and 4.4 show contour plots of the initial values for nondimensional density and γ,

respectively, for the piezoelectric lithotripter array simulation. The density is nondimensionalized by

the ambient density for water (1000 kg/m3). As a result, the nondimensional density ρ̂ for water

is 1. The contour maps for the other lithotripter simulations look identical to those shown for the

piezoelectric case.
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Figure 4.3: Flooded contours of nondimensional density at t = 0 for the piezoelectric lithotripter array

simulation. Quantity plotted is ρ̂ − 1, where ρ̂ = 1 for water.
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Figure 4.4: Flooded contours of γ at t = 0 for the piezoelectric lithotripter array simulation. For water,

γ = 5.5.
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For the Dornier HM3, the portion of the wavefront that first passes an acoustic impedance interface

is the portion generated at the truncated edge of the reflector. Similarly, for the piezoelectric and

electromagnetic lithotripters, the portion of the wavefront farthest from the axis first sees a change in

acoustic impedance. The reason is the geometry of the domain. In the case of our arbitrarily constructed

body cavity model, the body cavity has a circular cross section of 15 cm radius centered at a point on

the axis 9 cm postfocus. Thus the portion of the wave traveling along the axis must traverse 6 cm of

tissue before reaching the focus, which is roughly in agreement with what is observed in practice. If

the body cavity was centered at the focus, all parts of the focusing wavefront would impinge on the

interface simultaneously. However, because the curvature of the body cavity model is different than

the curvature of the focusing wavefront, the portion of the wavefront farthest from the axis first sees a

change in acoustic impedance.

4.4 Focal Region Waveforms

All waveforms have been time-shifted so the first focusing shock front is aligned in all cases. Arrival

times are different in the different cases because of differences in the sound speed profiles encountered

by the focusing wavefront on its approach to and through the focal region.

4.4.1 Dornier HM3

Because our body cavity model has a higher sound speed than the surrounding water, the far off-axis

portion of the wavefront travels more quickly to the focus than it does in the water bath case. In Section

3.2, we discussed the appearance of the shock tip at the focus for the Dornier HM3 lithotripter. The

initial shock wave was followed by a secondary, continuous pressure increase that was then followed

by the expected expansion. We posited that the reason we observe this secondary pressure increase

numerically is because the portion of the focusing wavefront along the axis arrives at the focus before the

portion farther off-axis, as a result of nonlinear effects. Now that the path to the focus for the off-axis

portion of the wavefront takes it through more soft tissue than the near-axis portion, the wavefronts

arrive at the focus with a smaller relative delay. Figure 4.5 shows pressure versus time calculated at

the focus for four cases: the water bath, with the model body cavity, with the model body cavity and
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kidney, and with the VOXEL-MAN Group data.
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Figure 4.5: Pressure versus time at the focus for the Dornier HM3: water bath ( ), body cavity

( ), body cavity and kidney ( ), VOXEL-MAN Group data ( ).

The peak focal pressures increase for the cases with the model body cavity and kidney relative to

the water bath case. This effect is expected as the off-axis portion of the focusing wavefront now more

closely follows the arrival of the near-axis portion. In the linear case, the entire focusing wavefront

would arrive simultaneously, and the focus would produce the largest pressures observed in the domain

(indeed they would be singular). With nonlinear and diffraction effects, the focus does not produce the

largest observed pressures. As the delay in arrival between the off-axis and near-axis portions of the

wavefront decreases, peak focal pressures rise, and the actual focal waveform geometry better agrees

with expectations.

Figures 4.6 and 4.7 show pressure versus time at two different points along the axis, 5 mm prefocus

and 5 mm postfocus, respectively. These two waveforms show the same trends as the focal waveform.

Peak positive pressures increase, positive pulse widths decrease, and peak negative pressures remain

largely unchanged. All of these effects can be explained by the decrease in delay of the arrival of the

various portions of the focusing shockfront. Figure 4.8 shows pressure versus time in the focal plane at
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a point 5 mm off-axis. This plot shows the same effects are observed in a neighborhood surrounding

the focus, both on- and off-axis.

Time (µs)

P
re

ss
u
re

(M
P
a
)

184 186 188 190 192 194
-10

0

10

20

30

Figure 4.6: Pressure versus time at a point on the axis 5 mm prefocus for the Dornier HM3: water bath

( ), with body cavity ( ), with body cavity and kidney ( ), VOXEL-MAN Group data

( ).
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Figure 4.7: Pressure versus time at a point on the axis 5 mm postfocus for the Dornier HM3: water

bath ( ), with body cavity ( ), with body cavity and kidney ( ), VOXEL-MAN Group

data ( ).
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Figure 4.8: Pressure versus time in the focal plane 5 mm off-axis for the Dornier HM3: water bath

( ), with body cavity ( ), with body cavity and kidney ( ), VOXEL-MAN Group data

( ).

4.4.2 Piezoelectric Lithotripter Array

Figure 4.9 shows the calculated pressure versus time for the piezoelectric lithotripter array for four

cases: with the water bath, with the model body cavity alone, with the model body cavity and kidney

together, and with the VOXEL-MAN Group data. Amplitudes increase when our simple anatomical

models increase for the same reason as for the Dornier HM3: the weaker, off-axis portion of the focusing

front moves more quickly than the stronger, near-axis portion, and counterintuitively focusing occurs

more coherently in this case. This effect is much weaker for the piezoelectric lithotripter array than for

the HM3, because at its inception, the focusing wavefront is of uniform strength. However, the diffractive

wavefield behind the focusing front weakens the off-axis portion of the front more considerably than

the near-axis front. Also, waveform healing causes adjustments to the focusing front near the axis

that do not occur as strongly farther away from the axis. Also as we saw with the Dornier HM3, the

leading compressive phase of the focal region waveform becomes double peaked with the use of the more

complex geometries of the VOXEL-MAN Group data.
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Figure 4.9: Pressure versus time at the focus for piezoelectric lithotripter array: water bath ( ),

body cavity ( ), body cavity and kidney ( ), VOXEL-MAN Group data ( ).

Figures 4.10 and 4.11 show the calculated pressure versus time at points 5 mm prefocus and postfo-

cus, respectively. Results from the same four cases are shown: the water bath, the model body cavity

alone, the model body cavity and kidney together, and the VOXEL-MAN Group data. Figure 4.10

shows how complex the wave structure is upstream of the focus. Even the results for the water bath case

show a multiple peaked structure that vanishes at the focus. The VOXEL-MAN Group case produces

waveforms with smaller amplitudes but larger temporal pulse widths. Figure 4.11 shows how much the

character of these focal region waveforms change for the piezoelectric lithotripter array, the lithotripter

with the smallest focal zone and largest focal region gradients of those we study. The multiple peaked

structures have vanished for all cases, and amplitudes here are nearly three times as large as they are 5

mm prefocus, a spatial separation of only 1 cm. Finally, figure 4.12 shows the results from these same

simulations 5 mm off-axis. Amplitudes are an order of magnitude smaller than those at the focus. The

waveforms again exhibit multiple peaked structures here, consistent with the knowledge that the focal

region has a 1 to 2 mm radius.
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Figure 4.10: Pressure versus time at a point on the axis 5 mm prefocus for the piezoelectric lithotripter

array: water bath ( ), body cavity ( ), body cavity and kidney ( ), VOXEL-MAN Group

data ( ).
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Figure 4.11: Pressure versus time at a point on the axis 5 mm postfocus for the piezoelectric lithotripter

array: water bath ( ), body cavity ( ), body cavity and kidney ( ), VOXEL-MAN Group

data ( ).



54

 102

Time (µs)

P
re

ss
u
re

(M
P
a
)

-4

-2

0

2

4

6

100 104 106 108

Figure 4.12: Pressure versus time at a point on the axis 5 mm off-axis for the piezoelectric lithotripter

array: water bath ( ), body cavity ( ), body cavity and kidney ( ), VOXEL-MAN Group

data ( ).

4.4.3 XX-Es

Figure 4.13 shows the calculated pressure versus time at the focus for the XX-Es lithotripter. This wave-

form shows a trend that is evident for the other focal region waveforms for this particular lithotripter:

very little difference is found between the waveforms computed using different heterogeneous materials

in the focal region. As a result, we only show the waveforms at the focus, because the plots showing

the waveforms 5 mm from the focus (prefocus, postfocus, and off-axis) would only differ trivially from

the waveforms shown in figure 4.13.
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Figure 4.13: Pressure versus time at the focus for the XX-Es: water bath ( ), body cavity ( ),

body cavity and kidney ( ), VOXEL-MAN Group data ( ).

4.5 Maximum Pressures

If we plotted the pressures 25 mm postfocus and beyond, the water bath case would show higher pressure

amplitudes than the model body cavity and kidney cases. The presence of the model anatomy basically

shifts the higher pressures observed postfocally in the water bath case toward the focus, though the

highest pressures are still observed postfocally. Figure 4.14 shows flooded contours of maximum pressure

for the water bath case and the case where the VOXEL-MAN Group data is used. A global maximum

pressure is found 35 mm postfocus. The 20 MPa contour is drawn on top of the flooded contours.

We see that the radial extent of the region enclosed by the 20 MPa does not change appreciably when

acoustic impedance interfaces are added to the focal region.
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Figure 4.14: Flooded contour plots of maximum pressures for the Dornier HM3: water bath (top) and

VOXEL-MAN Group (bottom) cases. Axis labels are distance from focus in millimeters. The 20 MPa

contour line is drawn.

Figure 4.15 shows the maximum recorded pressure along the axis as a function of distance from

the focus for the piezoelectric lithotripter array. The peak positive pressure within 20 mm of the

focus falls between 60 and 80 MPa for all four cases. The pressure in this region decreases slightly,

by approximately 5 MPa when the VOXEL-MAN Group data is used. The most significant difference

between all the cases is the large jump in pressures 30 to 40 mm postfocus for the VOXEL-MAN Group

case. The other cases produce pressures between 20 and 30 MPa in this region. The VOXEL-MAN

Group case produces a peak positive pressure over 90 MPa in this region. This effect was also shown in

the flooded contour data in figure 4.14. Tissue in this region, which at 3 to 4 cm downstream is outside

the scope of the kidney, will feel a much stronger insult than would have been predicted using the water

bath data alone.
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Figure 4.15: Peak positive pressure recorded along the axis as a function of distance from the focus

for the Dornier HM3: water bath ( ), body cavity ( ), body cavity and kidney ( ),

VOXEL-MAN Group data ( ).

Figure 4.16 shows the maximum recorded pressure along the axis as a function of distance from the

focus for the piezoelectric lithotripter array. The peak positive pressure for all cases falls between 70

and 80 MPa. For the water bath case, a peak positive pressure of 72 MPa is found 5 mm postfocus.

The body cavity model alone and the body cavity and kidney models together produce peak positive

pressures of 73 and 76 MPa, respectively, which are found 3 mm postfocus. Use of the VOXEL-MAN

Group data produces the highest peak pressure of 79 MPa, which is found 5 mm postfocus.

Between 15 and 30 mm postfocus, the VOXEL-MAN Group data case produces peak positive

pressures that are 5 to 10 MPa smaller than the pressures computed for the other cases. A secondary,

local maximum in peak positive pressure is found for this case between 30 and 35 mm postfocus, where

peak positive pressures are between 20 and 25 MPa, compared with peak positive pressures between 10

and 15 MPa found for the other cases.
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Figure 4.16: Peak positive pressure recorded along the axis as a function of distance from the focus for

the piezoelectric lithotripter array: water bath ( ), body cavity ( ), body cavity and kidney

( ), VOXEL-MAN Group data ( ).

Figure 4.17 shows the maximum recorded pressure along the axis as a function of distance from the

focus for the XX-Es. The water bath case and the case where we use the body cavity alone produce

almost identical results. In these cases, a peak positive pressure of 27 MPa is found very near the focus.

When the body cavity and kidney models are used together, a peak positive pressure around 29 MPa

is found 12 mm postfocus. Use of the VOXEL-MAN Group data produces a much more oscillatory

structure than the other cases. Here a peak positive pressure of 29 MPa is found 15 mm prefocus.

Beginning from this axial location, peak positive pressures for this last case are consistently below

those for the other cases, by as much as 10 MPa.
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Figure 4.17: Peak positive pressure recorded along the axis as a function of distance from the focus for

the XX-Es: water bath ( ), body cavity ( ), body cavity and kidney ( ), VOXEL-MAN

Group data ( ).

4.6 Pulse Intensity Integral

The pulse intensity integral (PII) measures the amount of acoustic energy per unit area being carried

by a propagating wave. We can define the PII by

PII(~x, t) =

∫

p(~x, t)u(~x, t)dt, (4.5)

where p(~x, t) and u(~x, t) are the pressure and velocity magnitude, respectively, at the point with position

vector ~x at time t. The units for PII are reported as J/m2. In our simulations, we recorded the maximum

PII at each spatial location over the duration of the simulation and then selected the largest such value

in the computational domain as the reported peak PII. If we assume the temporal pulse length is tp,

we can estimate the acoustic intensity I(~x, t), which has units of W/cm2, as
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I(~x, t) =
PII(~x, t)

tp
. (4.6)

Figure 4.18 shows the PII as a function of distance from the focus along the axis for the Dornier

HM3. The water bath case and the body cavity model alone produce peak PII values near 645 J/m2

from 7 to 10 mm postfocus. The body cavity and kidney models together yield a nearly 15% increase

in PII to 735 J/m2 8 mm postfocus. The VOXEL-MAN Group data produces a peak PII value of

580 J/m2 around 10 mm postfocus and a secondary maximum of 510 J/m2 around 35 mm postfocus,

whereas the other cases produce PIIs around 200 J/m2 here. Hence all the peak PII values, regardless

of the material structure in the focal region, are found around 1 cm postfocus.
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Figure 4.18: Pulse intensity integral (J/m2) calculated along the axis as a function of distance from the

focus for the Dornier HM3: water bath ( ), body cavity ( ), body cavity and kidney ( ),

VOXEL-MAN Group data ( ).
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Figure 4.19: Flooded contour plot of pulse intensity integral (J/m2) in the neighborhood of the focus

for the Dornier HM3. The units of distance on the abscissa and ordinate are in mm. The focus is at

(0,0). Results for the water bath case (top) and using VOXEL-MAN Group data (bottom).

Figure 4.20 shows the PII as a function of distance from the focus along the axis for the piezoelectric

lithotripter array. The water bath case produces peak PII values of 685 J/m2 3 mm postfocus. When the

body cavity model alone and body cavity and kidney models together are used, peak PII values of 660

and 690 J/m2, respectively, are found 1 mm postfocus. Use of the VOXEL-MAN Group data produces

the largest PII value near 710 J/m2, which is seen 3 mm postfocus. The piezoelectric lithotripter

consistently produces peak values for all the relevant flow variables within 5 mm of the focus, as

compared with the other two lithotripters where maximum values can be found centimeters from the

focus. The VOXEL-MAN Group data produces a second local maximum of 180 J/m2 30 mm postfocus,

almost a factor of four smaller than the peak value found near the focus for this case.
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Figure 4.20: Pulse intensity integral (J/m2) calculated along the axis as a function of distance from

the focus for the piezoelectric lithotripter array: water bath ( ), body cavity ( ), body cavity

and kidney ( ), VOXEL-MAN Group data ( ).

Figure 4.21: Flooded contour plot of pulse intensity integral (J/m2) in the neighborhood of the focus for

the piezoelectric lithotripter array. The units of distance on the abscissa and ordinate are in mm. The

focus is at (0,0). Results for the water bath case (top) and using VOXEL-MAN Group data (bottom).

Figure 4.22 shows the PII as a function of distance from the focus along the axis for the XX-Es.

The water bath case, and the cases where the body cavity model is used alone and the body cavity
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and kidney models are used together generate maximum PII values of 330 J/m2 approximately 35 mm

prefocus. Use of the VOXEL-MAN Group data produces a maximum PII near 370 J/m2 found 25 mm

prefocus. In addition to this global maximum on the axis, a secondary maximum PII of 280 J/m2 is

found 60 mm postfocus.

Distance from the focus (mm)

P
u
ls

e
in

te
n
si

ty
in

te
g
ra

l
(J

/
m

2
)

0
100

200

300

400

-70 -35 35 70 105 140

Figure 4.22: Pulse intensity integral (J/m2) calculated along the axis as a function of distance from

the focus for the XX-Es: water bath ( ), body cavity ( ), body cavity and kidney ( ),

VOXEL-MAN Group data ( ).

4.7 Summary

In this chapter, we discussed our strategy for introducing materials into the domain that vary in density

and sound speed from their surroundings. We prescribed nonuniform densities directly, and to achieve

sound speed contrasts we altered the distribution of parameters of the equation of state. We then

discussed the expected changes when introducing models for the scattering and absorption that would

be found in an in vivo environment. We described different models we use, both simple geometrical

models we devised ourselves and real anatomical data used directly as inputs. We then studied the

changes seen in focal region waveforms, maximum pressure distributions, and pulse intensity integral
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distributions.
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Chapter 5

Soft Tissue Injury Mechanisms

5.1 Overview

The debate is still open regarding how exactly soft tissue is injured during a typical shock wave

lithotripsy treatment. Two often discussed mechanisms are the growth and collapse of bubbles, of-

ten within the vasculature in the focal region, and direct tearing as a result of the passage of the shock

wave. These mechanisms were discussed in Section 1.3.3. We use surrogates for the damage resulting

from each of these mechanisms. In the case of cavitation damage, we will examine the peak negative

pressures computed in each lithotripter type. Specifically, for each point in the domain, we record the

strongest negative pressure experienced over the course of the entire simulations. These pressure maps

will give us insight regarding where the areas of most intense cavitation are likely to be found. For

direct shock damage, we will use the maximum principal and shear strains as the surrogate for damage

since it is the pulling and tearing of tissue that is likely to cause damage via this mechanism. Studying

how these quantities vary across the different lithotripters and through different anatomical models, we

will discuss the potential for soft tissue damage in each case.

5.2 Strain Metrics

Ionescu et al. studied failure in soft tissues composed of a matrix supported by fiber bundles[50]. In

their work, strain criteria were used to identify failure of each component. Maximum shear and tensile

strain thresholds were used to determine failure of the matrix and fibers, respectively. In our case,

because we are modeling the various anatomical structures homogeneously, we will adopt the shear
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strain metric as a surrogate for potential tissue damage. We will have a brief change of notation in

our discussion of strain metrics. Up to this point, we have used u(~x, t) and v(~x, t) to represent the

axial and radial velocities, respectively, at point ~x and time t. In this section, we use vz(~x, t) and

vr(~x, t) to represent the axial and radial velocities. Now we will use uz(~x, t) and ur(~x, t) to represent

the displacement computed at point ~x from time zero up to time t. These displacements are given as

uz(~x, t) =

∫ t

0

vz(~x, τ)dτ, ur(~x, t) =

∫ t

0

vr(~x, τ)dτ. (5.1)

We should mention that these calculated displacements are not actually the displacement of any

single particle in our computational domain. These calculations are Eulerian, and because they are

made at a fixed point in space, they will not represent the motion of the particle that originates at

point ~x. We use these computed displacements as estimates for the actual displacement of the particle

that began the simulation at point ~x. We feel this approximation is appropriate for at least two reasons.

First, the maximum particle drift over the course of the simulation is less than 100 µm, which is between

3 and 4 cell widths on the finest mesh. Focal pressure waveforms for all the lithotripters show trivial

changes within 250 µm of the focus itself. This region is where velocity gradients should be greatest.

Conditions experienced by a given particle thus will change very little over a drift of 100 µm. Second, we

assume tissue would deform exactly as the fluids we use in our simulation. We neglect the mechanical

properties of the tissue that would cause its displacement to deviate from that which we calculate.

Tens or hundreds of microns of difference between the actual motion and our calculated estimates seem

reasonable.

Now that we have access to displacements at each cell in our domain, we can compute estimates for

the infinitesimal strain tensor at each cell. In an axisymmetric geometry, the infinitesimal strain tensor

ǫ is given as

ǫ =
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The three eigenvalues ǫ
(i)
p of the infinitesimal strain tensor are the three principal strains for the

given infinitesimal tissue element. We choose the maximum of these principal strains at each point over

the course of the simulation as one surrogate for the damage potential of the passing shock wave. The

maximum shear strain ǫs at each point over the course of the domain is also used as a surrogate for

damage potential and is given as

ǫs =
1

2

[

ǫ(1)p − ǫ(3)p

]

, (5.3)

where ǫ(1) and ǫ(3) are the maximum and minimum principal strains, respectively.

Estimates for the strain induced by the passage of a single shock wave through tissue are less than

2%[37]. Freund et al. noted these values are much less than the 10% threshold that is seemingly

required to initiate damage in kidney parenchyma and proposed a cumulative shear hypothesis. Rather

than the shear induced by a single shock, it could be the cumulative effect of many (hundreds, possibly

thousands of) shock waves that initiate damage in SWL. While it is beyond the scope of this work to

simulate the firing of hundreds of shocks that would occur in a SWL treatment, we can identify areas

where our shear strain estimates are highest and thus are most likely to be sites of damage via the

cumulative shear hypothesis.

5.3 Maximum Strain

We will now examine the distribution of maximum principal normal and shear strains for the Dornier

HM3, the piezoelectric lithotripter array, and the XX-Es. The strain data for the in vitro case will be

compared with the case where we use the body cavity model alone, the body cavity and kidney models

together, and the VOXEL-MAN Group data.

5.3.1 Principal Normal Strain

The in vitro case shows a maximum principal normal strain of 0.25% 10 mm prefocus, as shown in

figure 5.1. The use of the body cavity model alone and the body cavity and kidney models together

actually decrease the maximum principal normal strain. In these two cases, strains between 0.23% and
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0.24% are observed 8 to 12 mm prefocus. One reason these anatomical models reduce strain relative to

the in vitro case is related to the reason we see a deformed shock tip in the calculated focal pressure

profile in vitro. When no anatomical models are used, the portion of the shock front along the axis is

stronger than the off-axis portion and thus travels at a faster speed. The near-axis portion of the front

then arrives at the focus before the off-axis portion, and the delayed arrival of this latter portion of the

front creates a secondary, smooth increase in pressure at the focus after arrival of the incident focused

shock front.

When using the body cavity and kidney models, the off-axis portion of the focusing front encounters

the higher speed materials before the near-axis portion, and the delay in arrival times of the different

portions of the front is decreased. As a result, the shock tip begins to recover its expected form, as

shown in figure 4.5. Likewise, strains are actually decreased as a result of the use of these models,

because the pressure gradients near the focus become weaker as the different waveform components

focus more coherently. This result does not match the expectation for focusing in an actual in vivo

environment and occurs only because the axisymmetry of our simulation counter-intuitively disrupts

the focusing of the in vitro case slightly. If we could capture the small perturbations in the azimuthal

direction that almost certainly occur experimentally, the in vitro strains would likely be lower than we

calculate, and the use of the anatomical models would produce the expected result of an increase in

focal region strains.

Use of the VOXEL-MAN Group data creates a divergence from the trends of the other cases.

The peak principal normal strain shows multiple local maxima along the axis. A strain of 0.27% is

observed 27 mm prefocus, while strains between 0.2% and 0.36% are found between 20 and 40 mm

postfocus. Maximum normal strains 50% larger than observed at the focus are thus found several

centimeters beyond the focus in this case, outside of the kidney and possibly affecting other organs,

e.g., the pancreas, where damage has been observed as a result of extracorporeal shock wave lithotripsy

treatment for kidney stones[47].
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Figure 5.1: Maximum principal normal strain (%) recorded along the axis as a function of distance

from the focus for the Dornier HM3: water bath ( ), body cavity ( ), body cavity and kidney

( ), VOXEL-MAN Group data ( ).

Figure 5.2 shows the maximum principal normal strain, as a percentage, as a function of distance

from the focus along the axis for the piezoelectric lithotripter array. Peak strains between 0.5% and

0.6% are observed for all cases within 3 mm of the focus. These strains are approximately twice as large

as the normal strains observed near the focus for the Dornier HM3. Another trend for the piezoelectric

lithotripter array is that the body cavity model alone and the body cavity and kidney models together

produce results very similar to the in vitro case. We see this trend here for normal strain data, and

we will see it for peak shear strains and negative pressures as well. As with the Dornier HM3, use of

the VOXEL-MAN Group data produces a secondary local maximum in normal strain data. Strains of

around 0.45% are found 25 to 35 mm postfocus.
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Figure 5.2: Maximum principal normal strain (%) recorded along the axis as a function of distance

from the focus for the piezoelectric lithotripter array: water bath ( ), body cavity ( ), body

cavity and kidney ( ), VOXEL-MAN Group data ( ).

Figure 5.3 shows the maximum principal normal strain, as a percentage, as a function of distance

from the focus along the axis for the XX-Es. This lithotripter again shows different trends than the

other two lithotripters we simulate. Here peak strains of 0.4% are found 110 to 140 mm prefocus,

outside the body cavity in a vast majority of treatments. Within the body cavity, nominally beginning

at 60 mm prefocus, strains between 0.15% and 0.3% are found nearly uniformly along the axis. The

behavior is oscillatory, as expected, but the variations in normal strain along the axis are weaker for

the XX-Es than for the other lithotripters.
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Figure 5.3: Maximum principal normal strain (%) recorded along the axis as a function of distance from

the focus for the XX-Es: water bath ( ), body cavity ( ), body cavity and kidney ( ),

VOXEL-MAN Group data ( ).

5.3.2 Shear Strain

We will now study the maximum shear strains calculated to occur in each of the three lithotripters

when the various heterogeneous materials are used. Figure 5.4 shows these values along the axis for

the Dornier HM3 lithotripter. The in vitro case shows a peak strain of 1.25% about 12 mm postfocus.

Two differences are already seen between the shear strain and normal strain data for the HM3: the

shear strain values are larger, almost by an order of magnitude, and the peak values near the focus are

found postfocally, rather than prefocally for the normal strains. Most observed damage occurs at the

focal site or postfocally, an observation with which our calculations are in agreement. The body cavity

model alone and the body cavity and kidney models together produce shear strains of 1.2% and 1.3%,

respectively, which are found 10 mm postfocus.

Use of the VOXEL-MAN Group data produces smaller shear strains than the other cases in the 20

mm region immediately postfocus. As with the normal strains, though, this case produces a second

shear strain maximum of 1.6% approximately 35 mm postfocus, a strain that is larger than those found
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with 20 mm of the focus. We again find a situation where peak strains are found sufficiently far from

the focus as to impact other anatomical structures from the kidney entirely.
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Figure 5.4: Maximum principal shear strain (%) recorded along the axis as a function of distance from

the focus for the Dornier HM3: water bath ( ), body cavity ( ), body cavity and kidney

( ), VOXEL-MAN Group data ( ).

Figure 5.5: Flooded contour plot of maximum shear strain (%) in the neighborhood of the focus for

the Dornier HM3. The units of distance on the abscissa and ordinate are in mm. The focus is at (0,0).

Results for the water bath case (top) and using VOXEL-MAN Group data (bottom).
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Figure 5.6 shows the maximum principal shear strain, as a percentage, as a function of distance from

the focus along the axis for the piezoelectric lithotripter array. The in vitro case produces a peak strain

of 1.32% found 4 mm postfocus. The body cavity model alone and body cavity and kidney models

together produce peak strains of 1.22% and 1.24%, respectively, 2 mm postfocus. The VOXEL-MAN

Group data shows a peak strain close to 1.35% about 5 mm postfocus.

These shear strains are comparable to those produced by the Dornier HM3. In this case, use of the

VOXEL-MAN Group data produces a secondary shear strain maximum of 0.45% between 32 and 35

mm postfocus. A secondary shear strain peak was seen with the Dornier HM3 as well, but in that case

the shear strain several centimeters beyond the focus was larger than the focal shear strains. For the

piezoelectric lithotripter array, the focal region strains are a factor of three larger than the secondary

strain maximum. Using this metric alone, we would expect strain damage to primarily be found near

the focus for this lithotripter, while for the Dornier HM3, two sites of nominally equally high strain are

found, one at the focus and one 3 to 4 cm postfocus.
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Figure 5.6: Maximum principal shear strain (%) recorded along the axis as a function of distance from

the focus for the piezoelectric lithotripter array: water bath ( ), body cavity ( ), body cavity

and kidney ( ), VOXEL-MAN Group data ( ).
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Figure 5.7: Flooded contour plot of maximum shear strain (%) in the neighborhood of the focus for

the piezoelectric lithotripter array . The units of distance on the abscissa and ordinate are in mm. The

focus is at (0,0). Results for the water bath case (top) and using VOXEL-MAN Group data (bottom).

Figure 5.8 shows the maximum principal shear strain, as a percentage, as a function of distance from

the focus along the axis for the XX-Es. The shear strain trends for this lithotripter are considerably

different from the normal strain trends. The in vitro case produces the largest shear strains seen in

any of our XX-Es simulations, with a strain of 0.57% being found within 2 mm of the focus. The body

cavity model produces a maximum shear strain of 0.52% also found within 2 mm of the focus. When

the body cavity and kidney models are both used, peak strains near 0.55% are seen 12 mm postfocus.

The VOXEL-MAN Group data produces strain amplitudes that oscillate along the axis. The largest

strain of 0.52% found 15 mm prefocus.



75

14010570350-35-70
0.1

0.2

0.3

0.4

0.5

0.6

M
a
x
im

u
m

p
ri

n
ci

p
a
l
sh

ea
r

st
ra

in
(%

)

Distance from the focus (mm)

Figure 5.8: Maximum principal shear strain (%) recorded along the axis as a function of distance from

the focus for the XX-Es: water bath ( ), body cavity ( ), body cavity and kidney ( ),

VOXEL-MAN Group data ( ).

5.4 Strain Rate

Howard and Sturtevant studied the effect of focusing shock wave on thin membranes of tissuelike

materials[48]. They show that small-scale heterogeneities in tissue will cause the strength of the focusing

shock wave to vary more strongly on these small scales, and the resulting strains will be larger than

those strains found in the absence of the heterogeneities. In this sense, the tissue contributes to its

own damage. The authors also discuss the significance of strain rate. For high strain rates, the failure

stress and the number of cycles to failure increase. The tissue becomes more resistant to failure at

high strain rates. Conversely, decreased strain rates are more likely to be damaging. If small-scale

heterogeneities can cause both the shock strength to vary on these small scales and can decrease the

strain rates resulting from the action of the shock on the tissue, damage is more likely to occur as a

result of shearing from the shock itself.

We calculated the strain rate for each lithotripter in each of the domains previously discussed: in
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vitro, with the body cavity model alone, with the body cavity and kidney models together, and with the

VOXEL-MAN Group data. We want to study how the strain changes across the different lithotripter,

but even more importantly relative to this particular proposed failure mechanism, we would like to

study how the strain rate is affected by the presence of the different heterogeneous materials in our

simulations. We do not model heterogeneities on the scale of 10 to 100 µm like Howard and Sturtevant,

and as a result we expect the effect on strain rate to be smaller than predicted in their work. However,

we would like to learn how strong, if any, the effect of the heterogeneous materials on strain rate is for

our simulations.

Figure 5.9 shows the maximum strain rate as a function of distance from the focus along the axis

for the Dornier HM3. The in vitro case shows a maximum strain rate of 4.7×105 s−1 approximately 13

mm postfocus. The body cavity model alone and the body cavity and kidney models together produce

maximum strain rates of 5.4 × 105 s−1 and 4.8 × 105 s−1, respectively, both found 11 mm postfocus.

The VOXEL-MAN Group data case does indeed reduce the peak strain rate found within 20 mm of

the focus to 4.1 × 105 s−1, which is found between 12 and 14 mm postfocus. As with the other flow

variables, a more oscillatory behavior for the strain rate is observed in this case. A secondary maximum

of 6 × 105 s−1 is found 36 mm postfocus.
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Figure 5.9: Maximum strain rate (105 Hz) recorded along the axis as a function of distance from the

focus for the Dornier HM3: water bath ( ), body cavity ( ), body cavity and kidney ( ),

VOXEL-MAN Group data ( ).

Figure 5.10: Flooded contour plot of maximum strain rate (105 s−1) in the neighborhood of the focus

for the Dornier HM3. The units of distance on the abscissa and ordinate are in mm. The focus is at

(0,0). Results for the water bath case (top) and using VOXEL-MAN Group data (bottom).

Figure 5.11 shows a combined plot where both the maximum shear strain (%) and maximum strain

rate (105 s−1) are shown as a function of distance from the focus for the Dornier HM3 simulation where
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the VOXEL-MAN Group data is used. The shear strain data uses the values shown on the left ordinate;

the strain rate data corresponds to the right ordinate. One area of interest in the strain field is where

strains are highest, but strain rates are lowest. Howard and Sturtevant explain why this region would

be of interest[48]: high strains are necessary to damage tissue, but the tissue is less likely to fail at

high strain rates. As a result, regions of high strain and lower strain rate would produce conditions

most likely to damage tissue. Figure 5.11 shows one such area between 28 and 30 mm postfocus. The

strain here is 0.6%, and the strain rate is approximately 1 × 105 s−1. Even though the strain here is

about 2.5 times smaller than the peak strain in this region, the strain rate is a factor of 5 below its

maximum value. It is possible the tissue is most susceptible to the dynamic shear failure mechanism at

this location.
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Figure 5.11: Maximum shear strain ( , left ordinate) and maximum strain rate ( , right

ordinate) recorded along the axis as a function of distance from the focus for the Dornier HM3 using

the VOXEL-MAN Group data.

Figure 5.12 shows the maximum strain rate as a function of distance from the focus along the axis

for the piezoelectric lithotripter array. All cases produce peak strain rates found between 2 and 5 mm

postfocus. The in vitro case shows a maximum strain rate of 5.7× 105 s−1. This rate decreases by less
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than 5% for the body cavity model alone and the body cavity and kidney models together. For the case

where the VOXEL-MAN Group data is used, the peak strain rate increases by 10% compared with the

in vitro case. In the region from 20 to 50 mm postfocus, the strain rate for the VOXEL-MAN Group

data case is consistently less than for the other cases, with the exception of 31 to 36 mm postfocus,

where a secondary, local maximum is found.
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Figure 5.12: Maximum strain rate (105 Hz) recorded along the axis as a function of distance from the

focus for the piezoelectric lithotripter array: water bath ( ), body cavity ( ), body cavity

and kidney ( ), VOXEL-MAN Group data ( ).
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Figure 5.13: Flooded contour plot of maximum strain rate (105 s−1) in the neighborhood of the focus

for the piezoelectric lithotripter array. The units of distance on the abscissa and ordinate are in mm.

The focus is at (0,0). Results for water bath case (top) and using VOXEL-MAN Group data (bottom).

Figure 5.14 shows a combined plot where both the maximum shear strain (%) and maximum strain

rate (105 s−1) are shown as a function of distance from the focus for the piezoelectric lithotripter array

simulation where the VOXEL-MAN Group data is used. The shear strain data uses the values shown on

the left ordinate; the strain rate data corresponds to the right ordinate. Peak values for both quantities

are found approximately 5 mm postfocus. In the region between 20 and 30 mm postfocus, strains

between 0.3% and 0.4% are found along with strain rates between 4 × 104 and 6 × 104 s−1. Strains

have thus fallen by a factor of 4 from their peak value near the focus, while strain rates have decreased

by a factor of 10. This combination of relatively higher strains with relatively lower strain rates could

indicate a region more susceptible to failure by a dynamic shear mechanism.
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Figure 5.14: Maximum shear strain ( , left ordinate) and maximum strain rate ( , right

ordinate) recorded along the axis as a function of distance from the focus for the piezoelectric lithotripter

array using the VOXEL-MAN Group data.

Figure 5.15 shows the maximum strain rate as a function of distance from the focus along the axis

for the piezoelectric lithotripter array. The VOXEL-MAN Group cases produces strain rates that are

up to 20% lower than the other cases from 10 mm prefocus to 30 mm postfocus. The global maximum

strain rate on the axis is found approximately 40 mm postfocus and is over 50% larger than the local

maximum found within 20 mm of the focus. Strain rates for the XX-Es are a factor of three smaller than

the other lithotripters, which is an effect that potentially promotes damage via the dynamic fatigue

mechanism and counters the protective effect of the lower strain estimates for this lithotripter.
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Figure 5.15: Maximum strain rate (105 Hz) recorded along the axis as a function of distance from

the focus for XX-Es: water bath ( ), body cavity ( ), body cavity and kidney ( ),

VOXEL-MAN Group data ( ).

Figure 5.16 shows a combined plot where both the maximum shear strain (%) and maximum strain

rate (105 s−1) are shown as a function of distance from the focus for the XX-Es simulation where the

VOXEL-MAN Group data is used. The shear strain data uses the values shown on the left ordinate;

the strain rate data corresponds to the right ordinate. Regions of high strains and low strain rates

are the most likely to cause damage via dynamic fatigue. In this sense, the regions from 20 to 60 mm

prefocus and from 20 to 30 mm postfocus produce strains within 50% of the global maximum and strain

rates 60% to 90% below the peak value. This lithotripter was designed with the primary motivation

of concentrating energy at the stone site while minimizing adverse effects in surrounding tissue. It is

likely from an empirical perspective that the strains in this lithotripter are sufficiently low that the

calculated changes in strain rate with the introduction of heterogeneous materials would not change

damage predictions from the water bath case to the VOXEL-MAN Group case.
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Figure 5.16: Maximum shear strain ( , left ordinate) and maximum strain rate ( , right

ordinate) recorded along the axis as a function of distance from the focus for the XX-Es using the

VOXEL-MAN Group data.

5.5 Negative Pressure

The negative pressure contours are possibly the most robust flow feature relative to changes in the

materials found in the focal region. Figure 5.17 shows the peak negative pressure in MPa as a function

of distance from the focus along the axis. Use of the body cavity model alone and the body cavity and

kidney models together produces little change from the in vitro case, where peak negative pressures

around -7 MPa are found 10 mm prefocus, which is in agreement with experimental measurements[74].

The VOXEL-MAN Group data again produces a much more oscillatory structure for the negative

pressures, as it does for all the flow quantities. Of greatest interest is the region 25 to 40 mm postfocus,

where peak negative pressures up to -16 MPa are observed.
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Figure 5.17: Peak negative pressure recorded along the axis as a function of distance from the focus

for the Dornier HM3: water bath ( ), body cavity ( ), body cavity and kidney ( ),

VOXEL-MAN Group data ( ).

The largest peak negative pressures for any of the lithotripters are found in the piezoelectric

lithotripter array. Figure 5.18 shows these peak negative pressures in MPa as a function of distance

from the focus along the axis. In this case, pressures around -16 MPa are found within 3 mm of the

focus. The body cavity and kidney models produce negative pressure contours that are very similar

to the in vitro case. Again the VOXEL-MAN Group data produce the largest disparity. A secondary

maximum in negative pressures of -12 MPa is observed 30 to 40 mm postfocus.
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Figure 5.18: Peak negative pressure recorded along the axis as a function of distance from the focus for

the piezoelectric lithotripter array: water bath ( ), body cavity ( ), body cavity and kidney

( ), VOXEL-MAN Group data ( ).

Figure 5.19 shows the peak negative pressure as a function of distance from the focus along the

axis for the XX-Es lithotripter. This lithotripter shows a unique trend in negative pressure where the

largest amplitudes of -7 MPa are observed around 70 mm prefocus, outside the body entirely for most

patients, assuming a 6 cm penetration depth from skin to focus[19]. Peak negative pressures decline

nearly linearly from 70 mm prefocus to values around -3 MPa 70 mm postfocus. Our simple anatomical

models produce similar results to the water bath case, while use of the VOXEL-MAN Group data

produces more oscillatory results, as expected. With this data, peak negative pressures at the focus are

the same as the other cases, while a local minimum near -7 MPa is found 60 mm postfocus.

These negative pressure amplitudes are slightly smaller near the focus than for the Dornier HM3

and are smaller by a factor of three compared with the piezoelectric lithotripter array. One significant

deviation from the negative pressures observed in the Dornier HM3 is the secondary minimum in

negative pressures for the XX-Es shows amplitudes within 2 MPa of those observed at the focus. For

the Dornier HM3, the secondary peak showed amplitudes over twice as large as those seen at the focus.
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Given the broad focal zone design of the XX-Es, weaker focal region gradients in the various flow

quantities are expected.
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Figure 5.19: Peak negative pressure recorded along the axis as a function of distance from the focus for

the XX-Es: water bath ( ), body cavity ( ), body cavity and kidney ( ), VOXEL-MAN

Group data ( ).

5.6 Summary

In this chapter, we discussed our approach to making estimates regarding the damage potential of the

different lithotripters. We integrated the calculated velocities from our code to estimate the displace-

ment of each fluid element, and gradients of these displacements produce strains. We rotated to the

principal coordinate direction to compute the maximum principle normal strain and maximum shear

strain. In addition to the strains, we took gradients of the fluid velocities to compute an estimate for

the observed strain rate. Both strain and strain rate are important in making estimates about tissue

failure via the dynamic fatigue mechanism. We studied the distribution of negative pressure and used

this quantity as a surrogate for the potential for damage via cavitation.
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Chapter 6

Conclusions

We simulated shock generation, propagation, and focusing resulting from the action of three different

types of lithotripters: electrohydraulic, piezoelectric, and electromagnetic. In addition to studying wave

propagation characteristics in a pure water bath for each lithotripter, we introduced heterogeneous

materials in the neighborhood of the focus to investigate how the material interfaces in an in vivo

environment would affect shock focusing.

Our conclusions are divided into two parts: observations made about (1) focal region acoustics and

(2) tissue injury. We study the focal region acoustics to learn how the fundamental fluid mechanical

phenomena change from one lithotripter to the next and under different configurations of materials in

the focal region. We make statements about the potential for tissue injury in order to steer future inves-

tigations into techniques useful for protecting the health of the patient while still vigorously attacking

kidney stones. We compute strains and strain rates and use these quantities along with peak negative

pressures as surrogates for the most widely discussed mechanisms of tissue injury: shear and cavitation.

6.1 Utilization and Development of Simulation Technology

For our simulations, we used a multidimensional second-order method of the Godunov type with slope

limiters and shock capturing capability to solve the inviscid Euler equations. We utilized and further

developed, in the case of modeling molecular absorption, the AMROC numerical infrastructure to study

shock wave lithotripsy in a novel fashion. Some of our contributions involving the technology of shock

wave lithotripsy simulation are listed below.

• We used the level set capability built into the AMROC numerical infrastructure to replicate the
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complex geometry of the different lithotripters. The Dornier HM3 has an ellipsoidal reflector that

focuses a diverging spherical shock wave at the location of the kidney stone. The piezoelectric

lithotripter array and the XX-Es both have spherical actuation surfaces that create a self-focusing

shock wave. A signed distance function was prescribed for each case and used in conjunction

with the Ghost Fluid Method to capture the geometry of these surfaces playing prominent roles

in shock wave generation and/or focusing.

• We modeled boundary motion and calibrated with experimental data to accurately capture shock

wave generation in the piezoelectric lithotripter array and the XX-Es. For the piezoelectric

lithotripter array, we used a linear argument, i.e., the Rayleigh integral, to calculate the boundary

motion from the experimental pressure measurements for the case where the center element alone

is fired. For the XX-Es, we leveraged known displacement profiles for another electromagnetic

lithotripter to estimate the boundary motion via the Gompertz function. Adjustment of the free

parameters and comparison with the measured focal pressure profile eventually led us to a choice

of parameters that produced a satisfactory simulation of the acoustics for this lithotripter.

• We appealed to the fundamental physics of bubble dynamics to model the vaporization event,

and hence shock generation, in an electrohydraulic lithotripter. For this purpose, we used the

Rayleigh-Plesset equation governing the dynamics of a single spherical bubble. Using measured

collapse times for the vapor bubble produced by the electrode pair, we were able to calibrate our

bubble model to replicate important features of the vaporization event. The model provided an

estimate of the equivalent mass and energy that would have to be supplied by a source to mimic

the behavior of a vapor bubble at this location. Inclusion of the corresponding source terms in

our model allowed us to accurate model shock generation for this type of lithotripter.

• We introduced interfaces between materials of different acoustic impedances to study the effect

these interfaces have on shock focusing. AMROC utilizes a multicomponent algorithm that al-

lows for the specification of γ and p∞, two parameters appearing in the equation of state, in a

nonuniform fashion. The density can similarly be prescribed nonuniformly such that stable inter-

faces between materials with different acoustic impedances can be formed. These interfaces have
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nontrivial effects on shock propagation and focusing, as discussed in previous chapters and in the

next section.

• We augmented the classical inviscid Euler system to account for the effects of molecular absorption.

The internal energy of a given fluid element was partitioned into a number of degrees of freedom

that immediately attain their equilibrium value and a further number of degrees of freedom

that take finite time to relax to equilibrium values. The classical inviscid Euler system was

then supplemented with a finite number of relaxation equations that govern the rate at which

these latter degrees of freedom relax to equilibrium energies. We state our conclusions regarding

molecular absorption in the next section.

6.2 Focal Region Acoustics

We use the computed pressures and energies to characterize the focal region dynamics for each lithotripter

both in a water bath and in the presence of heterogeneous materials. When taking the water bath re-

sults as a reference, our use of the VOXEL-MAN Group data changed focal region acoustics much

more strongly than our simple models of the body cavity and kidney. Because the real anatomical data

provided by the VOXEL-MAN Group has a larger number of acoustic impedance interfaces than our

simple models, the effects of scattering are more significant and more clearly identified for this case.

As a result, in this section we will compare the water bath results with those using the VOXEL-MAN

Group data, with the understanding that our simple body cavity and kidney models produce much

more subtle effects.

• Our results confirm the observations of previous researchers that the shock dynamics in the focal

region of lithotripters exhibit the signatures of weak shock focusing. Wave fronts beyond the focus

are crossed and folded, and diffraction fields behind the converging shock fronts suppress focal

pressures. The size of the focal region for each lithotripter is a function of the aperture size, the

strength of the converging front, and the nature of the resulting diffractive wavefield behind this

front.

• Scattering from acoustic impedance interfaces affects shock propagation and focusing more than
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absorption. We implemented a model where absorption is assumed to be a power law function of

frequency. Because we have a time domain code, the frequency-dependent absorption was approx-

imated with the use of two relaxation processes. Absorption has two primary effects: attenuation

and dispersion. We found attenuation of focal region waveforms due to absorption was approx-

imately 10% for all lithotripters, and the dispersion due to absorption was negligible. However,

scattering of the waves from acoustic impedance interfaces produced changes in amplitudes of as

much as 25%, and when the VOXEL-MAN Group data is used, multiple peaks are observed in

the focal waveforms.

• The flow fields of the Dornier HM3 show the greatest variability when materials with different

acoustic impedances are added to the computational domain. The output of the piezoelectric

lithotripter array and the XX-Es are more robust to the introduction of new materials. One

primary reason for this difference is the nonuniformity in the strength of the focusing shock in the

Dornier HM3. The near-axis portion of the front is considerably stronger than the farther off-axis

portion, and as a result the near-axis portion contributes more dominantly to the focal region

acoustics. For cases where we use our anatomical models or the VOXEL-MAN Group data, the

largest number of acoustic impedance interface are found along the axis of the lithotripter. For

the other two lithotripters, all parts of the converging shock front contribute roughly equally to

the pressures and energies observed in the focal region, and as a result, disturbing the portion of

the shock front near the axis to a greater degree than the rest of the front is less disruptive to the

focal region acoustics than for the nonuniform focusing front seen in the HM3. We will discuss

the specific differences between these lithotripters later in this section.

• The radial distribution of peak positive pressure changes little when heterogeneous materials are

present. Sapozhnikov et al. performed a series of numerical tests studying various possible failure

mechanisms in artificial cylindrical kidney stones[69]. The dominant failure mechanism in their

study was dynamic squeezing, where shear waves generated at the stone edge are reinforced by

the shock wave traveling in the fluid along the surface of the stone. Lithotripters with higher

pressures away from the axis apply the dynamic squeezing mechanism more effectively. The size

of the focal region, defined as the -6 dB contour relative to the peak pressure at the focus, is
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known for each lithotripter under in vitro conditions. We used the 20 MPa contour to compare

how the peak pressure distribution varies across the different lithotripters when heterogeneous

materials are present in the focal region. While the axial extent of this contour changes from the

water bath simulation to the case with heterogeneous materials, the radial extent is insensitive to

these changes. As a result, we continue to expect the Dornier HM3 and XX-Es, with beam widths

of 5 and 3 mm in radius, respectively, to be more effective at utilizing the dynamic squeezing

mechanism than the piezoelectric lithotripter array, whose beam width is between 1 and 2 mm in

radius.

• The presence of heterogeneous materials increases calculated pressures and energy densities several

centimeters downstream of the focus. For all the lithotripters, pressures and energy densities

within 15 mm of the focus change little in amplitude with the introduction of heterogeneous

materials. In all cases the structure of axial pressures and energy densities becomes more highly

oscillatory, and an additional local maximum is found 30 to 40 mm postfocus. For the Dornier

HM3, this second maximum is a global maximum for pressure, where 90 MPa amplitudes are

30 MPa larger than those found closer to the focus. The energy density 30 to 40 mm postfocus

is within 10% of the peak values found near the focus. For the piezoelectric lithotripter array,

the amplitudes found downstream are weaker compared with focal values. The second maximum

produces pressure amplitudes around 25 MPa, 10 MPa larger than what is found in the water

bath case. Energy densities double from around 80 to 160 J/m2, but these larger energy densities

are still a factor of three smaller than those found near the focus. The XX-Es shows much smaller

variation in pressures and energy densities than the other two lithotripters. Pressure amplitudes

are largely unchanged, and a second, local maximum in energy density is found 50 to 70 mm

postfocus. The energy densities double here relative to the water bath case, but amplitudes

remain below those found near the focus. The higher pressures and energy densities found several

centimeters downstream of the focus when heterogeneous material are used provide the increased

forces and work capacity to damage tissue in this region.
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6.3 Tissue Injury

Two mechanisms of soft tissue injury often discussed in the context of shock wave lithotripsy are tearing

due to gradients in forces applied to the tissue, i.e., shear, and rupture of the vasculature as a result

of the energetic collapse of cavitation bubbles. As a surrogate metric for the potential for tearing, we

study the maximum principal normal and shear strains computed in the focal region. We integrate

the computed velocities to estimate the displacement of each fluid particle. The gradients of these

displacements then provide strain data. Rotating to a principal coordinate system, we can produce

estimated values for the maximum principal normal and shear strains. If two regions of our domain

differ only in the magnitude of their estimated strains, the region with higher strains will identify tissue

more likely to be susceptible to shearing. For cavitation potential, we study the distribution of negative

pressures and how this distribution changes with different configurations of heterogeneous materials in

the neighborhood of the focus. Larger negative pressures are more likely to induce larger bubble growth

and, hence, more energetic bubble collapse. If two regions of our domain differ only in the calculated

negative pressure amplitudes, the region with stronger tensions will identify tissue more likely to be

susceptible to damage via cavitation.

• Our largest strain estimates are an order of magnitude larger than those used by Freund et al[37].

The difference occurs because Freund et al. integrate the velocity fields after the focused shock

completely passes through the domain. In our case, we compute strains at each moment in time

and report the largest values found over the course of the simulation. In this sense, the conclusions

drawn by Freund et al. can be taken as conservative in the context of the strain values we report.

As the shear damage mechanism is further explored, the notions of which strains are most germane

and the means of computing the most accurate estimates for these strains should become more

clear.

• Maximum principal normal strains are less than the corresponding shear strains for all the

lithotripters, with and without the presence of heterogeneous materials in the focal region. For

the Dornier HM3, maximum principal normal strains vary from 0.25% in the water bath simu-

lation to 0.35% when the VOXEL-MAN Group data is used. For the piezoelectric lithotripter
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array, these values 0.6%, and for the XX-Es, within the body cavity of the patient, the maximum

principal normal strain is at most 0.25%. The maximum shear strain amplitudes are a factor of

two to five higher for each lithotripter, with values greater than 1.2% in both the Dornier HM3

and piezoelectric lithotripter array.

• Following the trend of peak pressure and energy density, the presence of heterogeneous materials

produce local shear strain maxima several centimeters downstream of the focus. The peak shear

strain for the Dornier HM3 within 20 mm of the focus in the water bath simulation is 1.25%.

When the VOXEL-MAN Group data is used, a second, global maximum shear strain over 1.6%

is observed 35 mm postfocus. Between 30 and 35 MPa, a second, local maximum shear strain

of 0.45% is seen for the piezoelectric lithotripter array. When the domain contains only pure

water, strains in this region are less than half of this value. The shear strain data for the XX-Es

lithotripter becomes more oscillatory, but the changes in amplitude relative to the water bath

simulation are not as significant as for the other lithotripters. For almost all chosen blast paths,

kidney tissue will extend no more than two centimeters postfocus. These hot spots of estimated

shear strain that are found three to four centimeters downstream of the focus will be in different

tissue: pancreas, fat, muscle, colon, etc. These other tissue types are then potentially threatened

by a treatment ostensibly isolating the kidney, a clearly undesirable side effect.

• When heterogeneous materials are used, both strains and strain rates generally decrease slightly

within two centimeters of the focus. Lower strains are less likely to be damaging, but lower

strain rates promote damage via the dynamic fatigue mechanism[71, 48]. When the VOXEL-

MAN Group data is used, the Dornier HM3 simulation shows strain rates universally below the

in vitro case between the focus and 30 mm postfocus. Around 8 mm postfocus, the strain rate

is approximately half of its value for the same location in the water bath simulation. A local

minimum strain rate is found 30 mm postfocus for this case, though a region of increased strain

rate is found further downstream, corresponding with the increases in pressure, energy density,

and shear strain. When the VOXEL-MAN Group data is used in the piezoelectric lithotripter

array simulation, strain rates decrease relative to the in vitro case from 10% to 50% from 6 mm

prefocus to 2 mm postfocus. A second region of decreased strain rates is observed from 14 to 30
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mm postfocus. For the XX-Es, strain rates are lower than the water bath case between 5 mm

prefocus and 30 mm postfocus. Between 32 and 42 mm postfocus, strain rates increase slightly. A

local minimum strain rate is found 27 mm postfocus. Further investigation is needed to determine

whether the trends of decreasing strain and strain rates near the focus are more or less likely to

damage tissue relative to what is expected given the water bath results.

• Between two and three centimeters downstream, the presence of the heterogeneous materials tends

to increase strains and decrease strain rates, the combination most likely to be damaging via the

dynamic fatigue mechanism. The two strain maxima for each lithotripter, one found within one

centimeter of the focus and the other found two to four centimeters downstream, are accompanied

with higher strain rates. Within 5 mm of the location of the maxima, though, strain rates fall off

much more rapidly than the strain amplitudes. For the Dornier HM3, the strain 30 mm postfocus

is nearly the same as the water bath case, but the strain rate has decreased by almost 50%. The

same trend is found for the piezoelectric lithotripter array 5 mm prefocus.

• The introduction of acoustic impedance interfaces caused peak negative pressures for the Dornier

HM3 to more than double three to four centimeters downstream of the focus. For the water

bath case, peak negative pressures of -7 MPa are found 10 mm prefocus. The VOXEL-MAN

Group data produces similar negative pressures within one centimeter of the focus, but negative

pressures 20 to 40 mm postfocus are considerably higher than for the water bath case. Peak

negative pressures near -16 MPa are found 29 mm postfocus, again well out of the range where

kidney tissue is expected to be found in most cases. Negative pressures are consistently below -10

MPa from 20 to 40 mm postfocus, while for the water bath case, negative pressures are typically

around -4 MPa. The other two lithotripters show the same trend but with much smaller changes

in amplitudes between the two cases. Negative pressures several MPa lower than the water bath

cases would indicate regions that are potentially more susceptible to damage via cavitation.
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6.4 Future Work

While the axisymmetric simulations discussed in this work can help identify areas where pressures,

acoustic energies, and strains are strongest, a three-dimensional simulation with realistic anatomical

models would be tremendously useful to explore variabilities that cannot be captured in the current

simulations. It is likely that the axisymmetric cases we study provide an upper bound on the various

flow quantities observed in the focal region. In the three-dimensional case, disruptions in the focusing

process can occur in the azimuthal direction in addition to the radial effects we study in this work.

Allowing azimuthal perturbations will further degrade the coherence of the focusing process, and a

more complicated flow field with three-dimensional relevance will be found in the focal region.

In addition to lifting the axisymmetric restriction, another modeling improvement will be resolution

of small-scale renal structures, e.g., tubules, veins, capillaries, small arteries, etc., which are the primary

sites of injury[10]. These structures have characteristic dimensions in the range of tens to hundreds of

microns[79]. In the current work, we chose a set of acoustic parameters and assigned these parameters

to the entire kidney. In the future, investigators could further explore damage initiation in soft tissue if

structures on these smaller scales could be sufficiently resolved and their acoustical properties allowed

to vary. The work of Howard and Sturtevant[48] could be used as a motivation to couple the acoustics

on the scale of the lithotripter to the anatomy on the scale of individual tubules and vascular elements.

The expectation is inclusion of these smaller scale heterogeneities would increase computed strains and

decrease corresponding strain rates, exactly the combination that is more likely to cause injury via

shear.

Another important extension of the work in the future will be the inclusion of a cavitation model.

Tanguay[76] devised a scheme where the ensemble averaged two-phase equations of Zhang and Prosperetti[86]

were used to couple the bubble dynamics with the fluid mechanics computed from the integration of

the fully nonlinear inviscid Euler equations. The numerical framework used in this work can be manip-

ulated to include this same cavitation model, and the effect of the resulting bubble dynamics on the

focal region acoustics could be studied in the vicinity of heterogeneous materials.
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Appendix A

Modifying the model to include

relaxation processes

A.1 Augmenting the Euler System

First we will present again the system of conservation laws we integrate to simulate shock propagation

in the various lithotripters, both in homogeneous and heterogeneous environments. Next we will discuss

how we augment the basic system to include two time-domain relaxation processes that are designed

to model the absorption observed in various classes of soft tissue. We will add i equations to our

system, where i is the number of relaxation processes we want to include. We use the approaches

of Whitham[81] and Pierce[66], and these references contain many of the details of the formalism we

describe. We have edited the Riemann solver in our code to properly couple the relaxation equations

with the fully nonlinear Euler system.

A.1.1 Basic System

Our system of equations from Chapter 2, i.e. the fully nonlinear Euler equations, is

∂q

∂t
+

∂f

∂x
+

∂g

∂r
= −

sg

r
, (A.1)

where t is time, x is the axial coordinate, r is the radial coordinate, q is the state vector of conserved

variables, f and g are the flux vectors in the axial and radial directions, respectively, and sg is the

geometrical source term vector:
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. (A.2)

In this formalism, ρ is the fluid density, u and v are the fluid velocities in the axial and radial directions,

respectively, et is the total specific internal energy, and p is the pressure.

The total specific energy et has the following definition:

ρet = ρe +
1

2
ρ
(

u2 + v2
)

, (A.3)

where e is the specific internal energy. We close this system using the stiffened gas equation of state:

ρe =
p + γp∞

γ − 1
, (A.4)

where p∞ and γ are parameters that provide thermodynamic information, e.g. the small signal sound

speed, for the material. In addition to these equations, we also have two advection equations, one each

for the quantities 1/(γ − 1) and γp∞/(γ − 1)[72].

A.1.2 Augmented System

To this point we have used γ, analogous to the ratio of specific heats for a perfect gas, as one of the two

parameters that characterize a material. The other such parameter is p∞. With an appeal to statistical

thermodynamics, we know the ratio of specific heats, γ, can be related to the number of degrees of

freedom of a system, ν,

γ =
ν + 2

ν
, (A.5)

or
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ν =
2

γ − 1
. (A.6)

The primary assumption made in our use of various relaxation processes is that our fluid system has

νe degrees of freedom that relax instantaneously to equilibrium conditions, while νr,i degrees of freedom

take a finite time to relax, characterized by the relaxation time τi. In this case,

ν = νe +
∑

i

νr,i, (A.7)

where again ν is the total number of degrees of freedom of our fluid system and i is the number of

relaxation processes we choose to include in our model.

In this formulation, without any relaxation processes, the stiffened gas equation of state (A.4) would

be written as

ρe =
ν

2
p +

(

1 +
ν

2

)

p∞. (A.8)

Including i relaxation processes, the equation of state becomes

ρe =
νe

2
p +

(

1 +
νe

2

)

p∞ +
∑

i

ρEi, (A.9)

where Ei is the specific energy stored in the νr,i degrees of freedom that relax to equilibrium conditions

in finite time characterized by relaxation time τi. At the equilibrium condition, the equation of state

implies

(ρEi)equil =
νr,i

2
(p + p∞) . (A.10)

Finally, we need a relaxation equation for each relaxation process. This equation takes the form

∂ρEi

∂t
+

∂ρEiu

∂x
+

∂ρEiv

∂y
= −

ρEiv

r
+

1

τi

[νr,i

2
(p + p∞) − ρEi

]

. (A.11)

We can now revisit our original Euler system (A.1) and add a term for the relaxation source terms,
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∂q

∂t
+

∂f

∂x
+

∂g

∂r
= −

sg

r
+ sr. (A.12)

The vectors retain their physical significance but now have i additional elements,
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(A.13)

A.2 Linear Wave Equation for a Relaxing Fluid

We will begin by investigating a fluid in one dimension with a single relaxation process,

∂ρ

∂t
+

∂ρu

∂x
= 0, (A.14)

∂ρu

∂t
+

∂ρu2

∂x
+

∂p

∂x
= 0, (A.15)

∂ρet

∂t
+

∂ρetu

∂x
+

∂pu

∂x
= 0, (A.16)

∂ρE

∂t
+

∂ρEu

∂x
=

1

τ
(ρEequil − ρE) , (A.17)

where all the variables retain their previously stated meanings. The linearized version of these four

equations are
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∂ρ′

∂t
+ ρ0

∂u′

∂x
= 0, (A.18)

ρ0
∂u′

∂t
+

∂p′

∂x
= 0, (A.19)

ρ0
∂e′t
∂t

+ et,0
∂ρ′

∂t
+ ρ0et,0

∂u′

∂x
+ p0

∂u′

∂x
= 0, (A.20)

ρ0
∂E′

∂t
+ E0

∂ρ′

∂t
+ ρ0E0

∂u′

∂x
=

1

τ

[νr

2
(p + p∞) − ρE

]

, (A.21)

where we have substituted ρ = ρ0 + ρ′, u = u′, p = p0 + p′, et = et,0 + e′t, and E = E0 + E′. In this

formalism, the quantities with subscript zero, e.g. ρ0, are ambient values that are spatially uniform

and temporally constant. The primed quantities, e.g. ρ′, are all small disturbances relative to the

ambient state that generally vary in space and time, and we discard terms second order and higher in

the primed quantities. Taking the definition of the total energy per unit volume and using the stiffened

gas equation of state, we can derive the expression relating the small disturbances in the various flow

variables,

ρet = ρe +
1

2
ρu2, (A.22)

ρet =
νe

2
p +

(

1 +
νe

2

)

p∞ + ρE +
1

2
ρu2, (A.23)

ρ0e
′

t + ρ′et,0 =
νe

2
p′ + ρ0E

′ + ρ′E0. (A.24)

Substituting this relation into the linearized energy equation, (A.20), gives us

νe

2

∂p′

∂t
+ ρ0

∂E′

∂t
+ E0

∂ρ′

∂t
+ (ρ0et,0 + p0)

∂u′

∂x
= 0. (A.25)

Using the relaxation equation, (A.21), we now have

νe

2

∂p′

∂t
+

1

τ

[νr

2
(p + p∞) − ρE

]

+ (ρ0et,0 + p0 − ρ0E0)
∂u′

∂x
= 0. (A.26)

Taking the partial derivative of this expression with respect to t, and keeping quantities up to and
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including first order in the small disturbances, yields

νe

2

∂2p′

∂t2
+

1

τ

[

νr

2

∂p′

∂t
− ρ0

∂E′

∂t
− E0

∂ρ′

∂t

]

+ (ρ0et,0 + p0 − ρ0E0)
∂2u′

∂t∂x
= 0. (A.27)

Now we can use the partial derivative with respect to x of the linearized momentum equation, (A.19),

to substitute for ∂2u′/∂t∂x,

νe

2

∂2p′

∂t2
+

1

τ

(

νr

2

∂p′

∂t
− ρ0

∂E′

∂t
− E0

∂ρ′

∂t

)

−

(

ρ0et,0 + p0 − ρ0E0

ρ0

)

∂2p′

∂x2
= 0. (A.28)

We will now rearrange terms to move closer to a recognizable wave equation,

∂2p′

∂t2
−

2

νe

(

ρ0et,0 + p0 − ρ0E0

ρ0

)

∂2p′

∂x2
+

2

τνe

(

νr

2

∂p′

∂t
− ρ0

∂E′

∂t
− E0

∂ρ′

∂t

)

= 0. (A.29)

Using the definition of total energy per unit volume with the stiffened gas equation of state, we can

derive an expression relating the ambient state variables,

ρ0et,0 =
νe

2
p0 +

(

1 +
νe

2

)

p∞ + ρ0E0. (A.30)

Substituting (A.30) into (A.29), we have

∂2p′

∂t2
−

(

1 +
2

νe

)(

p0 + p∞
ρ0

)

∂2p′

∂x2
+

2

τνe

(

νr

2

∂p′

∂t
− ρ0

∂E′

∂t
− E0

∂ρ′

∂t

)

= 0. (A.31)

Using the definition of the frozen sound speed, cf , for a fluid obeying the stiffened gas equation of state,

c2
f =

(

1 +
2

νe

)

p0 + p∞
ρ0

, (A.32)

we get

∂2p′

∂t2
− c2

f

∂2p′

∂x2
+

2

τνe

(

νr

2

∂p′

∂t
− ρ0

∂E′

∂t
− E0

∂ρ′

∂t

)

= 0. (A.33)

Using the version of the linearized energy equation into which the equation of state has been substituted,

(A.25), we can substitute for −ρ0∂E′/∂t− E0∂ρ′/∂t in the previous expression,
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∂2p′

∂t2
− c2

f

∂2p′

∂x2
+

2

τνe

[

νr

2

∂p′

∂t
+

νe

2

∂p′

∂t
+ (ρ0et,0 + p0)

∂u′

∂x

]

= 0. (A.34)

Taking the partial derivative of this expression with respect to t, and again using the partial derivative

with respect to x of the linearized momentum equation, (A.19) to substitute for ∂u′/∂t∂x, we have

∂

∂t

(

∂2p′

∂t2
− c2

f

∂2p′

∂x2

)

+
2

τνe

[

ν

2

∂2p′

∂t2
−

(

ρ0et,0 + p0

ρ0

)

∂p′

∂x2

]

= 0. (A.35)

We can again rearrange terms,

νe

ν
τ

∂

∂t

(

∂2p′

∂t2
− c2

f

∂2p′

∂x2

)

+
∂2p′

∂t2
−

2

ν

(

ρ0et,0 + p0

ρ0

)

∂p′

∂x2
= 0. (A.36)

We will make use of the equation of state for the ambient flow variables here, recognizing

ρ0E0 =
νr

2
(p0 + p∞) , (A.37)

so that we now have

νe

ν
τ

∂

∂t

(

∂2p′

∂t2
− c2

f

∂2p′

∂x2

)

+
∂2p′

∂t2
−

(

1 +
2

ν

)(

p0 + p∞
ρ0

)

∂p′

∂x2
= 0. (A.38)

Given the definition of the equilibrium sound speed for this fluid, c0,

c2
0 =

(

1 +
2

ν

)

p + p∞
ρ0

, (A.39)

we finally have the linearized wave equation for a relaxing fluid,

νe

ν
τ

∂

∂t

(

∂2p′

∂t2
− c2

f

∂2p′

∂x2

)

+
∂2p′

∂t2
− c2

0

∂p′

∂x2
= 0. (A.40)

This wave equation, (A.40), is the same as equation (C-4) in the acoustics book by Blackstock[9], with

the addition of the νe/ν term. We could redefine τ to include this term and have an identical form of

this equation.

With this wave equation, we can follow Blackstock with the derivation of the associated dispersion
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relation[9]. This dispersion relation is, of course, identical the one derived for a relaxing fluid by Pierce

in Section 10-8 of his book [67]. Pierce augments this dispersion relation in Section 11-6 of his book to

account for nonlinear distortion. The ultimate result is the form of the KZK equation used by Yang

and Cleveland[84], whose attenuation model we have used in this work. The details of these derivations

can be found in the cited references.
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Appendix B

Modifying the Riemann Solver to

Include Relaxation Processes

We will use the two dimensional Euler equations as a model system to demonstrate the modifications

to the Riemann solver necessary to account for the effects of a single relaxation process:

∂q

∂t
+

∂f

∂x
+

∂g

∂y
= 0, (B.1)

where f , the flux vector in the x direction, is

f =

































ρu

ρu2 + p

ρuv

(ρet + p)u

ρEu

































. (B.2)

The total energy per unit volume is defined to be

ρet = ρe +
1

2
ρ
(

u2 + v2
)

, (B.3)

where ρe is the internal energy per unit volume. We use the stiffened gas equation of state,

ρe =
νe

2
p +

(

1 +
νe

2

)

ps + ρE. (B.4)

As described previously, νe is the number of degrees of freedom that relax instantaneously to equilibrium
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values. Through an appeal to statistical mechanics, we can relate ν, the total number of degrees of

freedom of our system, to the ratio of specific heats, γ, by

ν

2
=

1

γ − 1
. (B.5)

Some of these degrees of freedom, νe, relax instantaneously to equilibrium values. The remaining degrees

of freedom, νr, take a finite time to relax to equilibrium values,

ν = νe + νr. (B.6)

With the stiffened gas equation of state, the total energy per unit volume is now

ρet =
νe

2
p +

(

1 +
νe

2

)

ps +
1

2
ρ
(

u2 + v2
)

+ ρE. (B.7)

Rearranging to solve for the pressure, p, yields

p =
2

νe

[

ρet −
1

2
ρ
(

u2 + v2
)

− ρE −
(

1 +
νe

2

)

ps

]

, (B.8)

or in terms of conserved variables,

p =
1

q6

(

q4 −
1

2

q2
2 + q2

3

q1
− q5 − q7

)

, (B.9)

where the conservative variable vector of state is given as

q =
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. (B.10)
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The final two variables in the vector q are not actually conserved, which is why q has seven elements

while f only has five. These two additional elements are the advected quantities associated with the

equation of state, the details of which are further described by Shyue[72]. They cannot be represented

via the conservation law. The flux vector in the x direction, f , in conservative variables becomes

f =

































q2

q2
2

q1
+ 1

q6

(

q4 −
1
2

q2
2+q2

3

q1
− q5 − q7

)

q2q3

q1

[

q4 + 1
q6

(

q4 −
1
2

q2
2+q2

3

q1
− q5 − q7

)]

q2

q1

q2q5

q1

































. (B.11)

We now need to compute the elements of the flux Jacobian in the x direction, A = ∂f/∂q,

∂q

∂t
+ A

∂q

∂x
+ B

∂q

∂y
= 0, (B.12)

where B = ∂q/∂y is the flux Jacobian in the y direction.

The last two rows of A are set with the knowledge that q6 and q7 advect with the fluid. Separated into

columns, where Ai is the ith column, the flux Jacobian is

A1 =

















































0

−
q2
2
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1

+ 1
2
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2+q2

3
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1
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3
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1

q2

q1
−
[
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(

q4 −
1
2

q2
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3
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, (B.13)
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A2 =
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We can simplify one of the often repeated expressions by introducing the enthalpy, h:

1
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1
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2

q2
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3
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− q5 − q7

)]

=
1
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2
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2
ρ
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(
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2
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ps
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= et +
p

ρ
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Making the substitution

h =
νe

2
c2
f +

1

2

(

u2 + v2
)

+ E, (B.19)

the eigenvectors of A are
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(B.20)

where the associated eigenvalues are

λ1 = u − cf , λ2 = λ3 = u, λ4 = u + cf , λ5 = λ6 = λ7 = u. (B.21)

For a given Riemann problem, the jump between left and right hand states is given as

∆q = qR − qL =

7
∑

k=1

αkrk, (B.22)

where the solution for the scalar αk, the strength of the kth discontinuity, can be computed using this

relation. The remaining details follow the analysis of Shyue[72].
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Appendix C

Verification of relaxation

implementation

In order to verify our implementation of the relaxation processes, we performed simulations of planar

acoustic wavetrains of different frequencies each traveling a distance of 40 wavelengths. The three

frequencies we chose were 100 kHz, 1 MHz, and 10 MHz. In the work of Yang and Cleveland[84], where

the details of these relaxation processes were developed, an attenuation power law was approximated by

the behavior of two relaxation processes over the frequency band of 100 kHz to 30 MHz. Our frequency

choices thus produce three frequencies of three different orders of magnitude within this range.

In the acoustics book of Blackstock[9], expressions are given for both the phase velocity and atten-

uation in a relaxing fluid. The phase velocity, cph,r, for a monorelaxing fluid, according to equation

C-11b in Blackstock, is

cph,r

c0
=

√

1 + ω2τ2
r (1 + mr)

2

1 + ω2τ2
r (1 + mr)

, (C.1)

where c0 is the small signal sound speed (aka the equilibrium sound speed), ω is the frequency of

the traveling wave, τr is the relaxation time, and mr is the dispersion metric, as per equation C-6 in

Blackstock,

mr ≡
c2
∞,r − c2

0

c2
0

=
c2
∞,r

c2
0

− 1, (C.2)

where c∞,r is the frozen sound speed associated with relaxation process r. The absorption α, as per

equation C-13 in Blackstock, is
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αr =
mr

2c0

ωrω
2

ω2 + ω2
r

, (C.3)

where ωr = 1/τr is the relaxation frequency.

In our case, we have a birelaxing fluid, and we need to use linear combinations of the above expres-

sions to find the attenuation and phase speed. In the case of the phase speed, let us discuss the phase

speed increment c′ph,r = cph,r − c0 (i.e. the difference between the phase speed and the small signal

sound speed),

c′ph,r

c0
=

cph,r − c0

c0
=

√

1 + ω2τ2
r (1 + mr)

2

1 + ω2τ2
r (1 + mr)

− 1, (C.4)

which means the phase speed increment due to each relaxation process is

c′ph,1

c0
=

√

1 + ω2τ2
1 (1 + m1)

2

1 + ω2τ2
1 (1 + m1)

− 1,
c′ph,2

c0
=

√

1 + ω2τ2
2 (1 + m2)

2

1 + ω2τ2
2 (1 + m2)

− 1. (C.5)

The total phase speed for a wave traveling in a fluid characterized by N relaxation processes is then

(where in our case N = 2)

cph = c0 +
N
∑

r=1

c′ph,r = c0 + c′ph,1 + c′ph,2. (C.6)

The total attenuation due to the two relaxation processes is

α =

N
∑

r=1

mr

2c0

ωrω
2

ω2 + ω2
r

=
m1

2c0

ω1ω
2

ω2 + ω2
1

, +
m2

2c0

ω2ω
2

ω2 + ω2
2

. (C.7)

Table C.1 provides the values we use in our code.

Table C.1: Values for the two relaxation processes we use in our simulations, both for verification and

for the results in previous chapters.

relaxation process c∞,r − c0 τr (ns)

1 1.3990× 10−3 671.54

2 1.6597× 10−3 42.453
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We can thus compare our computed results for the attenuation of a traveling sine wavetrain in two

ways. First, we can compare the amplitude of the computed waveform after it has traveled a given

distance with the attenuation we would expect given (C.7). We can also time shift the computed

waveform backward by using (C.4) and determine whether it overlays the initial waveform. In our case,

we have a birelaxing fluid, and as a result, we use linear combinations of the above expressions to find

the expected attenuation and phase velocity. Both of these comparison are shown in the plots in Figure

C.1. The solid line is the initial waveform. The dashed line is the initial waveform after it has been

scaled using (C.7), which provides us with the expected amplitude after the wavetrain has traveled 40

wavelengths. The dotted line is the computed waveform after it has been time shifted backward by

assuming it travels with a constant speed given by (C.4). The amplitudes and temporal signatures agree

nearly perfectly, which gives us confidence we have implemented the relaxation processes correctly in

our code.
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Figure C.1: Pressure (10−3 atm) versus time (µs) for planar sine wavetrain of three different frequencies:

100 kHz (top), 1 MHz (middle), 10 MHz (bottom). Amplitudes of the initial waveform ( ), the

initial waveform scaled using the closed form absorption expression ( ), and the computed waveform

after traveling 40 wavelengths ( ).
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