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Abstract

Solids undergo phase transformations where the crystal structure changes with temperature, chem-

ical potential, stress, applied electric fields, or other external parameters. These occur by either

long-range diffusion of atoms (diffusional phase transformation) or by some form of cooperative, ho-

mogeneous movement of many atoms that results in changes in crystal structure (displacive phase

transformation). In the latter case, these movements are usually less than the interatomic dis-

tances, and the atoms maintain their coordination. The most common example of displacive phase

transformations is martensitic transformation. The martensitic transformation in steel is econom-

ically very important and can result in very different behavior in the product. Other examples of

martensitic transformations are shape memory alloys which are lightweight, solid-state alternatives

to conventional actuators such as hydraulic, pneumatic, and motor-based systems.

The martensitic transformation usually only depends on temperature and stress and, in contrast

to diffusion-based transformations, is not time dependent. In shape memory alloys the transforma-

tion is reversible. On the other hand in steel, the martensite formation from austenite by rapidly

cooling carbon-steel is not reversible; so steel does not have shape memory properties.

In Chapters 2 and 3, we study the interesting yet very complicated behavior of martensitic

transformation interactions with plastic deformations. A good example here is steel, which has

been known for thousands of years but still is believed to be a very complicated material. Steel
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can show different behavior depending on its complex microstructure. Thus understanding the

formation mechanisms is crucial for the interpretation and optimization of its properties. As an

example, low alloyed steels with transformation induced plasticity (TRIP), metastable austenite

steels, are known for strong hardening and excellent elongation and strength. It is suggested that

the strain-induced transformation of small amounts of untransformed (retained) austenite into

martensite during plastic deformation is a key to this excellent behavior.

In Chapters 4 and 5, we study the interactions of solid-solid phase transformations with electro-

chemical processes. It is suggested that electronic and ionic structures depends on lattice parame-

ters, thus it is expected that structural transformations can lead to dramatic changes in material

properties. These transformations can also change the energy barrier and hysteresis. It is known

that compatible interfaces can reduce elastic energy and hysteresis, thus may extend the life of the

system. Solid-solid transformations change the crystalline structure. These geometry changes can

have long range effects and cause stresses in the whole material. The generated stress field itself

changes the total free energy, due to the change in elastic energy, and thus, the electrochemical

potential and processes are affected. An example is olivine phosphates which are candidates for

cathode material in Li-ion batteries. These materials undergo an orthorhombic to orthorhombic

phase transition. Experiments in the literature have suggested that elastic compatibility can af-

fect rates of charge/discharge in the battery. Our theory provides some insight into this observation.
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Chapter 1

Introduction

Solids undergo phase transformations where the crystal structure changes with temperature, chem-

ical potential, stress, applied electric fields, or other external parameters. These occur by either

long-range diffusion of atoms (diffusional phase transformation) or by some form of cooperative, ho-

mogeneous movement of many atoms that results in changes in crystal structure (displacive phase

transformation). In the latter case, these movements are usually less than the interatomic dis-

tances, and the atoms maintain their coordination. The most common example of displacive phase

transformations is martensitic transformation. The martensitic transformation in steel is econom-

ically very important and can result in very different behavior in the product. Other examples of

martensitic transformations are shape memory alloys which are lightweight, solid-state alternatives

to conventional actuators such as hydraulic, pneumatic, and motor-based systems.

The martensitic transformation usually only depends on temperature and stress and, in contrast

to diffusion-based transformations, is not time dependent. In shape memory alloys the transforma-

tion is reversible. On the other hand in steel, the martensite formation from austenite by rapidly

cooling carbon-steel is not reversible; so steel does not have shape memory properties.

In Chapters 2 and 3, we study the interesting yet very complicated behavior of martensitic
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transformation interactions with plastic deformations. A good example here is steel, which has

been known for thousands of years but still is believed to be a very complicated material. Steel can

show different behavior depending on its complex microstructure. Thus understanding the forma-

tion mechanisms is crucial for the interpretation and optimization of its properties. As an example,

low alloyed steels with transformation induced plasticity (TRIP), metastable austenite steels, are

known for strong hardening and excellent elongation and strength. It is suggested that the strain-

induced transformation of small amounts of untransformed (retained) austenite into martensite

during plastic deformation is a key to this excellent behavior.

In the second chapter, we investigate the morphology of martensitic phase transformation in the

presence of plasticity. Using a phase field model, we introduce the total energy of the system as a

function of an order parameter which is correlated with the transformation strain, and address the

effect of elasticity, volume change, nucleation barrier, and plastic deformations on the morphology

of the transformation.

Our numerical simulations suggest that the volume change of the transformation is responsi-

ble for the observed fine microstructure of martensite which has been observed in lath steel. It

also suggests that the interactions between plasticity and phase transformation result in pinning

of the martensitic transformation and presence of untransformed regions of retained austenite. As

a conclusion, in agreement with experimental observations in steel, our simulations suggest that

the interactions between plasticity and the volume change are responsible for the observed fine

martensite microstructure with retained austenite known as lath microstructure.

In the third chapter, we study the yielding and overall plastic behavior of orthotropic polycrys-



3

talline metals. There is always a tradeoff between hardness and toughness in materials. Here we

show that small fractions of soft yet tough layers between hard but brittle layers can result in a

hard and tough overall behavior even in the polycrystal. One example is layers of austenite between

martensite layers in lath microstructure which is observed in steel. Based on Hill’s anisotropic plas-

ticity model, we use a rate-independent, strain hardening orthotropic, associate plasticity model

for each single crystal and estimate the overall plastic behavior of a polycrystal. As the conclusion

to the first part of this work, we identify the low-yield strength austenite and high volume changes

of transformation as the underlying microstructure resulting in the hard and tough behavior of the

polycrystalline observed in experiments.

In the last two chapters, we study the interactions of solid-solid phase transformations with

electrochemical processes. It is suggested that electronic and ionic structures depends on lattice

parameters, thus it is expected that structural transformations can lead to dramatic changes in

material properties. These transformations can also change the energy barrier and hysteresis. It

is known that compatible interfaces can reduce elastic energy and hysteresis, and thus may extend

the life of the system. Solid-solid transformations change the crystalline structure. These geome-

try changes can have long range effects and cause stresses in the whole material. The generated

stress field itself changes the total free energy, due to the change in elastic energy, and thus, the

electrochemical potential and processes are affected. An example is olivine phosphates which are

candidates for cathode material in Li-ion batteries. These materials undergo an orthorhombic to

orthorhombic phase transition. Recent experiments in the literature have suggested that elastic

compatibility can affect rates of charge/discharge in the battery. Our theory provides some insight

into this observation.
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In the fourth chapter, using asymptotic limit analysis, we study the effects of geometry and

size of electrodes on elastic energy and concentration profile. We consider the state of lowest free

energy of the system; although in practice, due to kinetics, defects, etc., the material may be at

a metastable state of energy and may not reach its lowest free energy. Here, we use a phase-field

model to estimate the behavior of the elasto-electro-chemical system. The surface energy is modeled

as a function of the space gradients of the li-ion concentration, which plays an important rule in

describing the concentration profile for different sizes and geometries. The electrochemical energy

is modeled as a double-well function with minima near fully lithiated and delithiated states. The

elastic energy, assuming coherent interfaces, is a function of the phase transformation between lithi-

ated and delithiated phases, e.g., orthorhombic to orthorhombic phase transformation in LiFePO4.

It can also be a function of the applied displacement and traction boundary conditions from the

charge collector and electrolyte. It is expected that the elastic energy can play an important role

by making the transformation barrier higher and thus limiting the rate. It can also be a major

player in the life cycle of the system. This means that one should make the crystallographic changes

in electrodes as compatible as possible in order to have higher rates and more cycles. One other

import issue is that, when the gradient energy term is large compared to the electrochemical en-

ergy, the system does not obey Fick’s law. This could occur, for example, across an interface in

inhomogeneous systems in which the concentration profile is characterized by a strongly varying

curvature. In this case, one has to do a more general study to understand the system and predict

its behavior.

We consider three cases:
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a) Small body limit: in this limit, we prove that in very small particle limit the concentration

profile should be of a single domain in each particle. This results in the elimination of the elastic

energy for very small particles. The reduced energy barrier suggests higher rates as suggested by

recent experiments and also possibly longer life of the battery. Our results show that for very small

particles we should have only either fully lithiated or fully delithiated particles, as reported by

experiments of Delmas and some other groups, thus the overall behavior of the concentration, as

an averaging scheme, can show reduced miscibility gap.

b) Large body limit: in this limit we prove that we should see multiple layers of lithiated and

delithiated phases adjacent to each other in a preferred direction in order to minimize the elastic

energy. This is again in accordance with several experiments on large domains.

c) Thin film limit: In this limit we show that the concentration profile should be uniform in the

thickness, though depending on the other dimensions of the film it can show periodic layers of lithi-

ated and delithiated phases with a preferred normal direction. This is also consisted with recent

experiments of thin films of LiFePO4.

In the fifth chapter we derive a general continuum model of elasto-electro-chemistry systems.

Using a continuum mechanical approach, assuming near equilibrium conditions, we consider first-

order solid-solid phase transformations in addition to ionic bulk diffusions and surface reactions

in elasto-electro-chemical systems. Here, effects of heat and temperature changes are skipped for

simplicity. Starting from second law of thermodynamics, we use conservation of mass and Maxwell’s

equations and introduce space charges and ion densities as field (state) variables in addition to

deformation. We derive the general continuum mechanics equations of mass transfer in the bulk

and on the surface. We show that in the special cases one can simplify our equations to those
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empirical ones, such as Fick’s and Butler-Volmer equations. The formulation is general and allows

for modeling the whole system with fixed and moving boundaries. We also derive the force acting

on the phase boundary, generalized Eshelby-momentum tensor, which determines the speed of the

transformation and can be a rate limiting effect in electrochemical systems.



7

Chapter 2

Martensitic Phase Transformation
in the Presence of Plasticity

2.1 Introduction

Martensitic phase transformation is a diffusionless, solid-to-solid, structural phase transformation

from a high-temperature phase, austenite, to a low-temperature phase, martensite. The resultant

martensite structure shows itself as multiple symmetry-related variants of martensite which are

oriented differently with respect to the austenite lattice but have identical crystal structure. This is

because the high-temperature austenite phase often has greater symmetry than the low-temperature

martensite phase (Bhattacharya 2003).

When martensite transformation occurs in a material that also undergoes plasticity, the dis-

locations that are responsible for the plasticity in the austenite structure can be inherited by the

martensite. This causes an interaction between the phase transformation and plasticity. A well-

known material which shows both plasticity and phase transformation is steel. Here, the transfor-

mation converts a face-centered cubic, f.c.c., austenite lattice to a body-centered tetragonal, b.c.t.,

martensite lattice. The product lattice is not unique and has many variants, each with a distinct
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orientation due to fewer crystallographic symmetries after transformation. This transformation,

initiated by sudden cooling (quenching), results in enormous shear strains and the product usually

avoid these intolerable strains by either slipping (plastic deformation) or twinning. The combina-

tion of transformation and plasticity leads to complex microstructures. Specifically, it has been

proposed that plastic accommodation causes the technologically important plate-lath morpholog-

ical transition in steels (Olson and Cohen 1986). This transformation plays a critical role in the

resulting hardness of steel. This is the motivation for our model.

The competition of plasticity and the phase transformation results in different types of marten-

site in steel. Austenite yield strength is about 2–3 times less than martensite. If plasticity can

happen before the phase transformation, then we see lath martensite, which is the combination of

plastic strains and transformation strains. If the yield strength of martensite is so high that plas-

ticity doesn’t happen, we see plate martensite. Yield strength depends on the carbon content, the

higher the carbon content, the higher the yield strength, and so we expect to see plate martensite

with very sharp and straight interface, as elasticity is scale-less; however, when there is plastic-

ity involved, we see a very complicated interface (surprisingly enough in this case the higher the

carbon the more complicated the boundary) which may be due to another mechanism of carbon

atom movements. Adding more carbon not only gives more resistance to yielding, but by also

strengthening austenite, it makes the transformation harder, and so we need more energy in this

case, resulting in lower Ms. This might be due to the fact that more carbon results in bigger c/a,

where (a, a, c) are the dimensions of the martensite unit cell, c > a, noting that carbon offset in

the b.c.t. is the cause of lengthening in one direction. It seems that growth of martensite embryos

happens first by elongation until stopped by an obstacle, and then by thickening of martensite.

H.K.D.H. Bhadeshia (1979) studied the retained austenite trapped between laths/platelets
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martensites in steels. That group found that twin-related martensite variants do not favor the

retention of austenite. They observed that inter-martensite austenite films were most likely seen

when the adjacent martensite variants were in the same crystallographic orientation. They also

suggested there would be less retained austenite between twin related variants of martensite. In

Fe − 4Ni − 0.4C, the observed retained austenite films were about 1% and rather discontinuous.

In Fe− 3.9Mo− 0.18C inter-martensite retained austenite films were very fine, but their quantity

was considerable. In Fe − 0.08C − 1.1Mn − 0.2Si − 5.5Ni − 14.5Cr − 2.1Mo − 0.7Nb − 1.9Cu,

they observed large quantities of heavily faulted austenite. In Fe − 0.31C − 2.0Si the alternate

martensite laths were twin related, and they didn’t find any retained austenite.

Wayman and co-workers (1976, 1992) studied the crystallography and morphology of ferrous

martensite. For plate substructure, they observed that the parallel sided plates are characterized by

an internal structure consisting of a single set of twins that sometimes extends completely across the

plate to the interfaces. Stronger austenite results in finer martensite twins. For Fe−Ni alloys, they

reported segmented and irregular plates, a central region of twins, and arrays of skew dislocations

in the peripheral regions (for example in Fe− 29Ni they reported no twins, however they saw fully

twined Fe− 34Ni alloys). Constancy of the shape change across the plate width implies that the

lattice invariant strain is constant and changes from slip to twinning. They suggested the change

to be due to a local temperature rise at the interface during growth.

They observed dislocations, resulting from accommodation strains, in the untwined regions of

the plates which were confined to the interface. Lack of constancy was observed in the substructure,

not only in different alloys but from plate to plate. Defects may be inherited from stacking faults in

the austenite. Transition from twinning to slip occurred during growth. The dislocations generating

the complementary strain remain in the interface and accommodate the matching of the lattices.
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Growth of individual sub-plates and macroscopic plates is accompanied by intense accommodation

slip in the austenite on the particular (111)F plane that is nearly parallel to the habit plane.

The experimental observations suggest that at first the inclusion grows longitudinally, and then

after reaching the borders of the austenite grain or any other constraint, say the borders of other

inclusions, it thickens.

Maki and co-workers (2005) studied Fe − Ni alloys and concluded that martensite inherits

plasticity from austenite. They also observed that there is no plasticity in the mid-rib, twined

plate, but the area around the lath is highly plastic, and suggested that plasticity begins after the

formation of the mid-rib. They (2006) also studied Fe − Ni − Co alloys and observed that for

smaller volume changes, there is less dislocation density, and the M/A interface is smoother. They

observed that in non-ferrous alloys, if volume change is about zero, we only have plate martensite;

but in ferrous alloys, we might see lenticular too. They suggested that smaller volume change and

lower Ms result in more lenticular, while more volume change and more Ms gives more lath. They

measured the dislocation density in the order of 1015m−2 for lath martensite.

In 1985 Grujicic et al. discussed the mobility of martensitic interfaces in thermoelastic shape

memory alloys by considering the effect of point defects on the dislocations in the interface. Gru-

jicic, et al. (1985, 1992) evaluated activation energies at various temperatures for the mobility of

martensitic interfaces in thermoelastic Cu − Al − Ni alloys and compared their results with esti-

mations from empirical formulations. Ghosh and Olson (1994) applied the same procedure in an

analysis of activation energy values evaluated from the rate of formation of isothermal martensite

in ferrous alloys. They obtained an analytical expression for the representation of the behavior of

ferrous alloys to predict the behavior of alloys with different compositions. However all of these

methods were based on empirical rules. Cahn (1961, 1962, 1968, 1969) was the first who applied
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the phase field method to coherent transformations in solids by considering transformation-induced

coherency strain. Wang and Khachaturyan (2006) extended the early phase field model of Cahn to

arbitrary microstructures with arbitrary transformation strains using the microelasticity theory of

Khachaturyan and Shatalov (1967, 1969, 1983).

When the conditions for thermo-elastic growth are not met, plastic accommodation of the trans-

formation shape strain may be substantial. In this case the interaction between a growing martensite

plate and its plastic zone becomes important, determining the growth path of a martensite inclusion.

Despite of the approximate treatment of the stress-strain fields, the first model of martensitic plate

growth in the plastic regime (Olson and Cohen 1985, Haezebrouck 1987) studied the longitudinal

growth arrest due to plastic accommodation. Marketz and Fischer (1994) did a finite-element sim-

ulation of nucleation and growth of a martensitic plate. Wen et al. (1999) obtained a finite-element

solution for modeling the growth by discrete martensitic layers. They modeled the transformation

in each layer by homogeneous growth of the transformation strain from zero to its final value,

and proposed a PT criterion and an extremum principle to choose the next transforming layer.

However, kinetic equations were not implemented in these works. Levitas and co-workers (1999,

2002) developed a mesoscopic continuum thermo-mechanical theory of martensitic phase transi-

tion in inelastic materials and studied the problem of the appearance of a martensitic plate in an

elastoplastic austenitic matrix at finite strains. However they were restricted to fixed aspect ratios

and neglected the inter-inclusion interactions. As many other works, they have used some empirical

relations based on best fit with a reference experiment, and therefore their works are only applicable

to some specific material-environment conditions.

The stored energy of ferrous martensite depends on the morphology and microstructure. The

adiabatic heating and driving force at Ms for lath martensite is very small compared to that of the
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plate martensite. When lath martensite is formed in Fe− 29wt%Ni at 266−−133K, the evolved

heat corresponds to an enthalpy of transformation ∼ 1600 J/mole independent of transformation

temperature and volume fraction (Tamura and Wayman 1992). This is similar to enthalpy change

for Fe−30.3wt%Ni transformed at 243−−198K. But at lower temperatures where plate martensite

is formed, it is more than 2600 J/mole. Noting that the stored energy due to the dislocations is

very low, Christian (1979) suggested that the difference is due the better elastic accommodation of

the plates. For an Fe−13.7%Ni−0.86%C steel transformed at 297−188K, as the volume fraction

changes from 7 to 59%, the measured enthalpy change at 507K decreases from 4650 to 1600J/mole.

Christian suggested that the increase in the stored energy is due to high work-hardening and high

dislocation densities in the regions of deformed austenite which have subsequently to be transformed

to martensite.

Despite the detailed experimental observations, idealized theoretical models, and empirical rules

in the literature, there is a lack of a complete microstructure study. There are discrepancies with

different models, and the role of plasticity is not understood throughly. We seek to develop a model

that describes microstructure development during quenching and to determine the criteria for the

resulted microstructure change from plate to lath with retained austenite. We then study the effect

of loading on the quenched system to understand the mechanism of concurrent toughening and

hardening observed in some materials, such as steel. We limit ourselves to two-dimension, small

strains, 2 variants of martensite.

2.2 Model

We characterize the microstructure by an order parameter, which distinguishes austenite and

martensite phases by assigning different values to each of them. We introduce transformation
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strains and plastic strains. We assume that there are three major contributions to the free energy.

The first is the interfacial energy on interfaces separating different phases. Second is the chemical

energy which prefers the martensite state to the austenite state at the temperature of interest.

Finally, the third is the elastic energy. Plastic strain is governed by a Mises yield criteria and

Ramberg-Osgood isotropic hardening.

2.2.1 Phase-field parameter (order parameter)

We study the austenite-martensite phase transition in the presence of plasticity by introducing a

phase field model. A key model in the phase field model of our problem is to formulate the total

free energy of the system as a function of the order parameter, φ, such that φ = ±φ0 stands for

different martensite variants (twins), and φ = 0 stands for austenite.

2.2.1.1 Chemical energy

G(φ), the chemical free energy of a homogeneous system is usually approximated by a Landau

polynomial expansion with respect to the order parameter. We model it by a three-well function

with minima at austenite, and 2 martensite variants. In our model austenite is assumed to be less

stable than martensite due to undercooling caused by quenching.

G(φ) = G(0)

(
3α2 − β2 − 2φ2

) (
β2 − φ2

)2
3α2β4 − β6

, (2.1)

differentiating with respect to the order parameter gives

∂G(φ)

∂φ
= G(0)

−12φ(φ2 − α2)(φ2 − β2)

β4(3α2 − β2)
, (2.2)
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Figure 2.1: Chemical energy as a function of the order parameter. φ = 0 means untransformed
austenite, φ = ±φ0 indicates the two variants of the transformed martensite.

α and β are the local maximizer and minimizer of G(φ). G(φ = 0) is the undercooling, chemical

driving force. The activation energy (barrier energy), A, is then

A = G(0)

(
(α2 − β2)3

b4(3α2 − β2)
− 1

)
. (2.3)

As we have assumed the wells to be at φ = 0,±φ0, and austenite to be less stable than martensite,

we have β = φ0 and 0 < ã = a/φ0 < 0.577 and

A = G(0)

(
(ã2 − 1)3

3ã2 − 1
− 1

)
. (2.4)

Once we know the activation energy, and the undercooling for a specific composition and temper-

ature, we can calculate ã.
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2.2.1.2 Interfacial energy

The gradient term, λ
2

2 |∇φ|
2 accounts for rapid changes of φ or the interface between different phases.

Its role is to suppress any oscillation that would occur when solving for the other two terms and thus

may be regarded as interface energy. This interfacial energy penalizes abrupt changes in the system

by making a transition zone, however this transition zone may not be significant in reality, and we

may see a sharp interface between austenite and martensite states, as in plate martensite. In this

case, the introduced interfacial energy is a mathematical term to correctly connect the energies in

micro scale to thecontinuum scale, while it does not change the overall pattern or affect the overall

behavior if the computational domain is large enough. Here, the parameter λ2 describes the length

scale of the numerical simulations and is usually determined by either fitting of interfacial energies

to experimental results or by using first principles.

2.2.2 Austenite-martensite phase transformation

Like all displacive transformations in steels, the growth of martensite is associated with a shape

deformation which is characterized as an invariant-plane strain. The invariant plane is the habit

plane of the martensite. For martensitic phase transformation in ferrous alloys, the deformation is

a combination of a large shear (s ≈ 0.26) parallel to the invariant-plane and a dilatation (d ≈ 0.03)

normal to the plane.
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2.2.2.1 Transformation strain

We assume the transformation strain, a function of order parameter φ, as:

εT =

 γφ2 ηφ

ηφ γφ2

. (2.5)

Typical values for transformation strain of steel, are 0.02−−0.05 volumetric transformation strain

and 0.20 transformation shear. Assuming the order parameter φ = ±0.2 for martensite variants,

we have γ and η of order o(1).

2.2.2.2 Kinematics compatibility: prediction of A-M and M-M boundaries

Continuity of the displacement at the boundary of two different phases requires the difference in

their derivatives to be of rank one. Mathematically it means that if F and G are the deformation

gradients in two adjacent regions, there should exist vectors a and n̂ such that (Bhattacharya 2003),

Fij −Gij = 2ainj . (2.6)

This requires the difference in the symmetric part of the derivatives, strain tensors, to satisfy the

following equation:

∆εij = ainj + ajni. (2.7)
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In the case of infinitesimal strains, defining λi, and ei as the eigenvalues and eigenvectors of ∆ε,

the interface will be possible if λ1 > λ2 = 0 > λ3. In this case we can find the vector n̂ from

n̂ = ±
√
λ1e1 +

√
λ2e2. (2.8)

Consider the two dimension case of our problem. We only consider the transformation strain, as it

is the major component of the strain, compared to elastic strains. For the boundary between two

adjacent martensite regions we have

εtr1 =

 φ2 ηφ

ηφ φ2

 (2.9)

and

εtr2 =

 φ2 −ηφ

−ηφ φ2

 (2.10)

so we will get

∆ε =

 0 2ηφ

2ηφ 0

. (2.11)

The eigenvalues and eigenvectors of this matrix are λ = 2φ,−2φ and e = (1/
√

(2),±1/
√

(2)), so we

will have n = ±(1/
√

(2),−1/
√

(2))+(1/
√

(2), 1/
√

(2)) so n = (0, 1) or (1, 0). So in 2D, martensite

variants form right angles with each other.

Now consider the two dimension austenite/martensite interface; as austenite is strain free, we
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will have

∆ε =

 φ2 ηφ

ηφ φ2

 (2.12)

which has λ = φ2 ± φ, and e = (1,±1). If we substitute φ = .2, the the austenite/martensite

interface will be about ±6 or 84◦. We saw that in two dimensions A/M interface is possible.

However making an austenite/martensite interface is not possible in a three dimension case. This

is the reason for laboratory-observed microstructure in steels. In this case the interface will be

between austenite and twinned martensite.

2.2.3 Plasticity

It is believed that plasticity plays an important role in the irreversibility of the phase transformation

and also the observed hard and tough behavior of some steels. Here, we define a rate-independent

isotropic hardening J2 plasticity model.

2.2.3.1 Plastic strain

Our main assumption is that martensite is much harder than austenite, so we assume linear elastic

behavior for martensite variants, and strain hardening, J2 plasticity model for austenite. We further

note that plasticity, εp, is transferred from austenite to martensite, so the total inelastic strain at

each point is εtr + εp, as shown in Figure 2.2.

2.2.3.2 Hardening

The stored cold work energy, W p(εnl, q), is the non-elastic part of the free energy which depends

on irreversible plasticity strains. q is an internal variable indicating the state of work hardening.
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Figure 2.2: Phase transformation of a plastic region. Left shows the untransformed austenite.
Right shows the transformed martensite. It is shown that plastic deformation is inherited from the
old phase on left by the new phase on right.

Here we assume q = εpM is the Mises strain. We assume a power-law form for the stored mechanical

energy as follows, assuming only isotropic hardening

W p
(
εpij , ε

p
M

)
=

nεp0
n+ 1

σ0

(
1 +

εpM
εp0

)n+1
n

(2.13)

from which the yield stress is

σy =
∂W p (εp, εpM )

∂εpM
= σ0

(
1 +

εpM
εp0

) 1
n

(2.14)

the back stress of kinematic hardening vanishes:

σ∗ =
∂W p (εp, εpM )

∂εp
= 0. (2.15)
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In the limit when n −→∞, we have perfect elastic-plastic behavior

σy −→ σ0

(
1 +

εpM
εp0

)0

= σ0. (2.16)

2.2.3.3 Yield criteria

The Mises yield criterion suggests that the yielding of materials begins when the second deviatoric

stress invariant J2 reaches a critical value. This implies that the yield condition is independent of

hydrostatic stresses.

f(J2) =
√
J2 − k = 0, (2.17)

where k is the yield stress of the material in pure shear.

Applying a uniaxial stress, it is seen that, at the onset of yielding, the magnitude of the shear

yield stress in pure shear, k, is
√

3 times lower than the tensile yield stress in the case of uniaxial

tension, σy. Thus, we have

k =
σy√

3
. (2.18)

The Mises yield criterion can be expressed as:

f(J2) =
√

3J2 − σy = 0. (2.19)

Substituting J2 as a function of the stress tensor components

(σ11 − σ22)2 + (σ22 − σ33)2 + (σ33 − σ11)2 + 6(σ2
23 + σ2

31 + σ2
12) = 6k2 = 2σ2

y, (2.20)
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which defines the yield surface as a circular cylinder whose intersection with the deviatoric plane,

is a circle with radius
√

2k, or
√

2/3σy.

We assume plane stress in our model so we have σ33 = σ31 = σ32 = 0.

2.2.4 Elastic energy

We assume infinitesimal elastic deformations and identical isotropic behavior by all phases; so we

can write the elastic energy density as

W 1
(
ε, εpl, εpt(φ)

)
=

1

2

(
ε− εpt − εpl

)
: C :

(
ε− εpt − εpl

)
. (2.21)

2.2.5 Total potential energy

Putting the aforementioned energy terms together, we postulate the energy functional density as

the sum of the four terms in the following form:

U =
λ2

2
| ∇φ |2 +G(φ) +

1

2

(
ε− εpt − εpl

)
: C :

(
ε− εpt − εpl

)
+W p(εpl, εplM ), (2.22)

from which the total energy of the system is

E =

∫
Ω

UdΩ. (2.23)
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2.2.6 Driving forces, equilibrium, and evolution

Here we assume that the material is always at the state of stress equilibrium, so minimizing the

Lagrangian of the total free energy with respect to the strains gives

∇.
(
C : (ε− εpt − εpl)

)
= 0. (2.24)

The driving force for the phase transformation, order parameter, is assumed to be the change of

the total free energy with respect to the order parameter

dφ = −∂E
∂φ

. (2.25)

The spatial evolution of φ, which completely defines the microstructural evolution during phase

transformation is obtained by assuming a linear dependence of the rate of deformation on the

driving force

φ̇ = −∂E
∂φ

. (2.26)

Equations in this format are widely used to study various problems of microstructure evolution.

We get the following evolution equation:

φ̇ = λ2∆φ−G′(φ) +
(
ε− εpt − εpl

)
: C :

∂εpt

∂φ
− ∂W p

∂φ
. (2.27)
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Similarly we have

dεpl = − ∂E
∂εpl

, (2.28)

so we have

dεplij
= C :

(
ε− εpt − εpl

)
ij
− ∂W p

∂εpij
= σdevij − σ∗ij , (2.29)

where in the second equation, we have made the assumption of no volume change due to plasticity

in metals, and defined the deviatoric part of the stress tensor as σdevij . σ∗ is the back stress. Here

for simplicity we neglect kinematic hardening, so σ∗ = 0.

2.2.7 Time-discrete model

To study the above model numerically, we introduce a time discretization and seek an implicit

formulation, (Stainier and Ortiz 1999). To this end, we introduce the incremental work function to

be:

Fn

(
εn+1, ε

pl
n+1, φn+1

)
=

∫
Ω

fndΩ, (2.30)

where

fn = Un+1

(
εn+1, ε

pl
n+1, φn+1

)
− Un

(
εn, ε

pl
n , φn

)
+ ∆t ψ∗

(
εpln+1 − εpln

∆t
,
φn+1 − φn

∆t

)
, (2.31)

where ψ∗ is the dual kinetic potential.

We assume that the dual kinetic potential has an additive form, and can be separated into
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plastic and internal variable dissipation:

ψ∗

(
εpln+1 − εpln

∆t
,
φn+1 − φn

∆t

)
= ψ∗p

(
εpln+1 − εpln

∆t

)
+ ψ∗φ

(
φn+1 − φn

∆t

)
. (2.32)

Given εn, ε
pl
n , φn, we minimize Fn with respect to εn+1, ε

pl
n+1, φn+1. Minimization with respect to

εn+1 gives the mentioned equilibrium equation (2.24).

Minimization of Fn with respect to the plastic strain at each state gives:

δεpln+1
Fn = 0. (2.33)

This can be written as

∂Un+1

∂εpln+1

+ ∆t
∂ψ∗

∂εpln+1

= − (Yp)n+1 +
∂ψ∗p

∂ε̇pln+1

(
εpln+1 − (εpln

∆t

)
= 0. (2.34)

In the above formula, the driving force with respect to the plastic strain is defined as:

Yp = − ∂U

∂εpl
= C

(
ε− εpt(φ)− εpl

)
− ∂W p

∂εpl
= σ − σ∗, (2.35)

and

∂ψ∗

∂ε̇
= σ − σ∗, (2.36)

where

σ∗ =
∂W p

(
ε, εpl

)
∂εpl

. (2.37)
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Finally, minimization with respect to the order parameter φ gives:

δφn+1
Fn = 0, (2.38)

or equivalently

∂Un+1

∂φn+1
+ ∆t

∂ψ∗

∂φn+1
= −

(
yφ
)
n+1

+
∂ψ∗φ

∂φ̇n+1

(
φn+1 − φn

∆t

)
= 0, (2.39)

where driving force for the order parameter φ is defined by:

yφ = −∂U
∂φ

= −
∂W 1

(
ε, εpl, φ

)
∂φn+1

+4φn+1 −
∂Gc(φn+1)

∂φn+1
. (2.40)

This can be further simplified as

yφ = −
∂W 1

(
ε, εpl, εpt(φ)

)
∂εpt(φ)n+1

∂εpt(φn+1)

∂φn+1
+4φn+1 −

∂G(φn+1)

∂φn+1
(2.41)

= σn+1
∂εpt(φn+1)

∂φn+1
+4φn+1 −

∂G(φn+1)

∂φn+1
.

Now, assume there exists a kinetic potential ψφ, such that we can write its dual potential as:

ψ∗φ
(
φ̇
)

=
1

2
φ̇2. (2.42)

Differentiating with respect to the rate of change of the order parameter gives

∂ψ∗φ

∂φ̇n+1

(
φn+1 − φn

∆t

)
=
φn+1 − φn

∆t
, (2.43)
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which shows that the suggested dual potential satisfies the assumed material kinetics rule

φn+1 − φn
δt

= σ
∂ (εtr (φ))n+1

∂φn+1
+4φ− ∂Gc (φn+1)

∂φn+1
(2.44)

which is the implicit form.

Note that the dual potentials are derived from applying the backward-Euler algorithm to the

following kinetic relations:

εpn+1 − εpn
∆t

=
∂ψp

∂Yp

(
(Yp)n+1

)
(2.45)

and

φn+1 − φn
∆t

=
∂ψφ

∂yφ

((
yφ
)
n+1

)
. (2.46)

Now, considering the dual kinetic potential of the plastic dissipation, we have

σ − σ∗ =
∂ψ∗p

(
ε̇pl
)

∂ε̇pl
. (2.47)

Define an effective (Mises) plastic strain as

εpM =

√
2

3
εpijε

p
ij 3− dimension, εpM =

√
εpijε

p
ij 2− dimension. (2.48)
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It can be shown that a rate dependent plastic dual potential can be written as

ψ∗p
(
ε̇pl
)

=


∞, ε̇pM < 0

g∗
(
ε̇pl
)
, ε̇pM ≥ 0

, (2.49)

where g∗ is a function of the plasticity invariants (J1

(
ε̇pl
)
, J2

(
ε̇pl
)
, J3

(
ε̇pl
)
). Now, if we assume

that we are interested in J2 plasticity this simplifies as

g∗
(
ε̇pl
)

= g∗
(
J2

(
ε̇pl
))
. (2.50)

Let’s assume a power-law rate dependent plasticity model

g∗
(
ε̇pl
)

=
kmε̇p0
m+ 1

σy

(
ε̇pM
ε̇p0

)m+1
m

. (2.51)

Then, for ε̇pM > 0 we will get

σ − σ∗ =
∂g∗p (ε̇p)

∂ε̇p
= kσy

(
ε̇pM
ε̇p0

) 1
m

(2.52)

which is equivalent to

ε̇pM = ε̇pl0

(
σ − σ∗

kσy

)m
. (2.53)

Finally we assume the stored energy of the cold work

W p = W p(εplij , q) (2.54)
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where the dependence of W p on εplij gives the kinematic hardening, and its dependence on q gives

the isotropic hardening behavior in which q is an internal variable. A suitable choice for q can be

q =

∫
ε̇pMdt or q = εpM . (2.55)

So, we have shown that the proposed variational form satisfies all kinetics rules. In the numerical

experiment section we use the incremental formulation described here with the energies and plas-

ticity models described earlier. We further use a rate-independent plastic dissipation model. We

use the values defined in the following section.

2.3 Parameters

2.3.1 Nucleation barrier

To understand the effect of nucleation barrier and deciding on the range of it in our model (Figures

2.3 and 2.5) , we do a simple one-dimension model, and then extend the results to two dimensions.

2.3.1.1 One- dimension two-well model

We seek to understand the interfacial energy and interfacial width. For simplicity assume we work

in one- dimension and neglect elastic energy comparing to the other terms. We idealize and assume

to have

G(ϕ) =
κ

4

(
ϕ2 − ϕ2

0

)2
=
κ

4
ϕ4

0

(
ϕ̃2 − 1

)2
(2.56)
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where ϕ̃ = ϕ/ϕ0. Adding the gradient term,

f =
λ2

2
ϕ2
,x +G(ϕ) =

λ2

2
ϕ2
,x +

κ

4

(
ϕ2 − ϕ2

0

)2
= ϕ2

0

λ2

2
ϕ̃2
,x +

κ

4
ϕ4

0

(
ϕ̃2 − 1

)2
(2.57)

we get

ϕ̇ = λ2ϕ,xx − κϕ
(
φ2 − ϕ2

0

)
or ϕ0

˙̃ϕ = ϕ2
0λ

2ϕ̃,xx − ϕ3
0κϕ̃

(
ϕ̃2 − 1

)
. (2.58)

The stationary solution of this ODE is obtained by setting ϕ̇ = 0. Assume the solution to be of the

form

ϕ = a tanh(
x

x0
). (2.59)

So

ϕ,xx = −2a
sinh( xx0

)

x2
0cosh

3( xx0
)
, (2.60)

or

− 2aλ2
sinh( xx0

)

x2
0cosh

3( xx0
)
− ka

sinh( xx0
)

cosh( xx0
)
(a2

sinh2( xx0
)

cosh2( xx0
)
− ϕ2

0) = 0, (2.61)

and

−2λ2

x2
0

− k
(
a2 sinh2(

x

x0
)− ϕ2

0 cosh
2(
x

x0
)

)
= 0. (2.62)
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Using cosh2x− sinh2x = 1 we get

a = ϕ0 and
2λ2

x2
0

= kϕ2
0 → x0 =

1

ϕ0

√
2α2

k
, (2.63)

and

ϕ = ϕ0 tanh

 ϕ0x√
2λ2

κ

. (2.64)

The energy is

E0 =

∫ ∞
∞

f (ϕ(x)) dx = ϕ2
0

2

3

√
2λ2

κϕ0

(
2λ2 + κϕ2

0

)
. (2.65)

This energy is associated with an interface of the approximate width of

L ' 4ϕ0

√
2λ2

κ
. (2.66)

2.3.1.2 Two-dimension axi-symmetric three-well model

The required energy for the growth of a nuclei of radius r is the surface energy minus the change

in the chemical potential:

E = 2πrγ − πr2G(0) (2.67)
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Figure 2.3: Simple two-well model. Normalized energy as a function of the normalized order
parameter

Figure 2.4: Transition zone is defined as the width of the region between φ = 0 and φ = ±φ0.
Transition length depends on the coefficient of the interfacial energy and defined the physical length
scale of the problem.
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where γ is the surface energy. To find the critical value of r

dE

dr
= γ − r∗G(0) = 0 =⇒ r∗ =

γ

G(0)
. (2.68)

Approximating with the aid of the simple 1−D problem, if the radius is large enough compared to

the transition zone in the 1−D two-well calculation, r >> L, we can assume γ ∼ E0 as calculated

previously, (1−D two-well model) such that

r∗ =
E0

G(0)
. (2.69)

We may also assume that going from the less stable well to one of the more stable ones in the

three-well model can be approximated by the same behavior as going from one well to the other

one in the two-well model:

κ

4
ϕ4

0 = G∗ −G(0) = Ea (2.70)

where G∗ is the local maximum of G(ϕ), and Ea is the energy barrier (activation energy).

Comparing the two-well and the three-well model we see that the adjacent wells are separated

by 2ϕ0 in two-well model, and by β in three-well model, so we have β = 2ϕ0, so

κ =
22Ea
ϕ4

0

=
26Ea
β4

(2.71)

which results in

E0 =
1

12

√
λ2β

Ea
β3

(
λ2 +

23

β2
Ea

)
. (2.72)
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Figure 2.5: A three-well model. Left: Normalized energy as a function of the normalized order
parameter for different values of α = 0.55, 0.45, 0.35. Right: A closer look at the chemical energy
function for α = 0.35
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The thickness of the transition zone would be

L = 2β

√
2λ2β4

26Ea
=
β3

4

√
2λ2

Ea
. (2.73)

Now, let us insert a length scale in the model, assume that h is the grid distance in our model and

we want the transition zone to be n grids, L = nh, in our model we get

nh =
β3

4

√
2λ2

Ea
→ 2λ2

Ea
=

(
4nh

β3

)2

. (2.74)

Now assume G(0) = θEa, then

λ2β2

h2G(0)
=

23

θ

(
n

β2

)2

. (2.75)

From equation (2.72),

r∗ =
E0

G(0)
=

1

12θ

√
λ2β

Ea
β3

(
λ2

Ea
+

23

β2

)
. (2.76)

From equation (2.74),

r∗ =
23

3θ

nh√
2β3

(
n2h2

β4
+ 1

)
. (2.77)

For typical values of β ∼ 0.2, we have

r ∼ 60n h

θ
. (2.78)
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For a transition zone of L = nh = 1− 10 nm, we have

r ∼ 50− 500

θ
. (2.79)

In our simulations, we choose r = D/100 where D is the domain size. For a domain of few hundreds

by few hundreds grids, r is only a few grids long, so we need θ ∼ 20, which corresponds to α = 0.35

in the chemical energy formulation.

2.3.2 Physical range of parameters and scaling

Recall our incremental work function,

fn =
λ2

2
| ∇φn+1 |2 +G(φn+1) (2.80)

+
1

2

(
εn+1 − εptn+1 − ε

pl
n+1

)
: C :

(
εn+1 − εptn+1 − ε

pl
n+1

)
+σy(

εpln+1 − εpln
∆t

)∆t+
k

2
(
φn+1 − φn

∆t
)2∆t

where we assume an isotropic power law hardening for plasticity. Normalizing with respect to the

chemical energy, we get

f0f̃n =
λ2

x2
0

φ2
0

1

2
| ∇x̃φ̃n+1 |2 +f0G̃(φ̃n+1) (2.81)

+
1

2
φ2

0µ0

(
ε̃n+1 − ε̃ptn+1 − ε̃

pl
n+1

)
: C̃ :

(
ε̃n+1 − ε̃ptn+1 − ε̃

pl
n+1

)
+φ2

0µ0σ̃y(
ε̃pln+1 − ε̃pln

∆t̃
)∆t̃+

φ2
0k

t0

1

2
(
φ̃n+1 − φ̃n

∆t̃
)2∆t̃
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which can be written as

f̃n = A1
1

2
| ∇x̃φ̃n+1 |2 +G̃(φ̃n+1) (2.82)

+A2
1

2

(
ε̃n+1 − ε̃ptn+1 − ε̃

pl
n+1

)
: C̃ :

(
ε̃n+1 − ε̃ptn+1 − ε̃

pl
n+1

)
+A2σ̃y(

ε̃pln+1 − ε̃pln
∆t̃

)∆t̃+A3
1

2
(
φ̃n+1 − φ̃n

∆t̃
)2∆t̃

where

A1 =
λ2φ2

0

x2
0f0

(2.83)

A2 =
φ2

0µ0

f0
(2.84)

A3 =
φ2

0k

t0f0
. (2.85)

We choose t0 such that A3 = 1. For martensitic transformation in steel we choose φ0 = εptshear = 0.2.

Using µ0 ∼ 100 GPa, f0 ∼ 1000 cal/mole ∼ 0.5 GPa, σy ∼ 200 − −500MPa, we get A2 ∼ 10

and σ̃y ∼ 0.010 − 0.025. Finally the surface energy is about 0.01 − 0.1 J/m2. Using a Cahn-

Hilliard model, Olson and Cohen (1982) suggested that λ2 ∼ 10−11−−10−12 J/m which results in

A1 ∼ 10−18/x2
0, so if we take A1 ∼ [0.01−−1] we would have x0 ∼ [1−−10]nm, which means that

our calculation periodic cell is on the order of 1 µm2.

2.4 Numerical Exploration

We discretize space using finite difference and explore the evolution in two dimensions. We assume

temperature does not change during the process, and consider periodic boundary conditions to

study the effects of volume change, and plastic deformations on the morphology of a single crystal.
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A typical result is shown in Figure 2.6. The color bar shows the order parameter. We observe that

the stress field due to the neighboring nuclei plays a key role on how a nucleus grows into a plate

of a specific thickness dictated by minimizing the sum of the elastic energy and surface energy.

2.4.1 Effect of material parameters on the morphology during the quench-

ing process

2.4.1.1 Role of transformation barrier

We define the transformation barrier as the maximum height in the chemical energy curve between

austenite and martensite wells. We have verified that transformation barrier has a major role in

allowing the transformation, but beyond that it doesn’t change the morphology once the transfor-

mation has occurred. Figure 2.7 shows that when the transformation barrier is too high (right

figure) the elastic energy barrier can get too high and the material would prefer to stay at the

metastable austenite phase although it has higher chemical energy.

2.4.1.2 Role of surface energy

We find that very high surface energies can stop the transformation, but surface energy doesn’t

play any major role in the morphology. Furthermore, increasing surface energy makes nucleation

harder, but the phase growth faster once we are past the nucleation. Figure 2.7 shows that when

the surface energy coefficient is very high (right figure) the elastic energy barrier can get too high

and the material would prefer to stay at the metastable austenite phase although it has higher

chemical energy.
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Figure 2.6: Martensitic transformation upon quenching. Volume change=0, average strain=0. Here
we show some middle time steps, t = 0, 16, 20, 30 and not the final morphology. The color bar shows
the order parameter. We observe that the stress field due to the neighboring nuclei plays a key role
on how a nucleus grows into a plate of a specific thickness dictated by minimizing the sum of the
elastic energy and surface energy.
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Figure 2.7: Martensitic transformation upon quenching. Volume change=0.08, average strain=0.
When the transformation barrier or the coefficients of surface energy or elastic energy are very
high (right figure) the energy barrier can get too high and the material would prefer to stay at the
metastable austenite phase (green) instead of the twined martensite structure (red and blue).

2.4.1.3 Role of elastic moduli

Elastic energy plays a very crucial role in the transformation, however as the minimum elastic energy

attains by long stripes, we won’t see a morphology change due to the elastic energy variation once

martensite is formed. Higher elastic modulus makes nucleation harder, but the phase growth faster,

once we are past the nucleation. However its variation has small effect on changing morphology. If

there are two adjacent embryos of different types, we will see that they first grow along the length,

and then thicken, but we won’t see any retained austenite between them, as their stress fields lessen

each other. Figure 2.7 shows that when the elastic energy coefficient is very high (right figure)

the elastic energy barrier can get too high and the material would prefer to stay at the metastable

austenite phase although it has higher chemical energy.
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2.4.1.4 Role of volume change

We observe that volume change makes finer microstructure path (compare Figures 2.6 and 2.8),

but has little effect on the final morphology in the elastic case. In short, volume change is identified

as the cause of the autocatalytic nucleation as observed in Figure 2.8. This is due to the higher

volumetric stress caused by the diagonal term in the transformation tensor. When the phase

transformation can be stopped, say by plasticity, the resultant morphology gets finer with the

increase of the volume change. We will later show that the volume change plays an important role

in the morphology of the lath martensite.

2.4.1.5 Role of plastic deformation

We observed that plasticity can change the morphology of the microstructure only if there is also

volume change involved. This is in agreement with experimental observations in steels, in what is

called as lath martensite (Figure 2.9).

2.4.1.6 Role of under-cooling

We observe that for large values of ∆G corresponding to higher values of T −Ms, the material can

overcome the elastic energy barrier and transforms as a plate microstructure. However for lower

values of under-cooling, the combined effect of volume change and plasticity make the volumetric

stress high enough to stop the phase growths which results in the formation of lath martensite

and untransformed regions of austenite. This is in agreement with result from experiments (see

Umemoto (1983) for example).
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Figure 2.8: Martensitic transformation upon quenching. Volume change=0.08, average strain=0.
Here we show some middle time steps, t = 0, 16, 20, 30 and not the final morphology. The color
bar shows the order parameter. Here we observe that the stress field due to one nucleus results in
the nucleation of the other variant. We further observe the twined plates which grow together and
nucleate more plates.
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Figure 2.9: Effect of plasticity: Observed twinning and retained austenite in the final morphology,
a simple cartoon

2.4.2 Lath microstructure and retained austenite: combined role of vol-

ume change and plasticity

To better understand the complicated effect of volume change and plasticity, we tried some different

numerical experiments. Figure 2.10 shows the morphology when there is no plasticity and no volume

change. Figure 2.11 shows the morphology when there is no volume change but there is plasticity.

Figure 2.12 shows the morphology when there is no plasticity but there is a volume change; here

we observe that where increasing the stress field, volume change can reduce the driving force and

even stop the growth of the martensite. Finally, Figure 2.13 shows the morphology when there is

volume change and plasticity. Here we observe that plasticity, by reducing the deviatoric stresses,

can lower the energy barrier, and thus help the phase transformation which leads to the observation

of the retained austenite in a complicated lath microstructure. All of these were done by applying

average strain = 0 and for a domain size 200 × 200. Next we tried the last two simulations for
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average stress = 0 boundary condition. As the stresses are lower in this case, volume change could

not stop the phase transformation and we only observed the plate microstructure regardless of the

plasticity situation. In order to understand the effect of surface energy in this case, we tried the

plastic experiments with a larger domain size, 400 × 400, so we could reduce the surface energy

coefficients without numerical problems. Here we observed that for small enough surface energy

density, we can observe a fine lath microstructure with retained austenite regardless of the boundary

conditions. So we identify the combined effect of plasticity and volume change as the key to the

experimentally observed lath microstructure with the retained austenite. Thus the amount of the

retained austenite is a function of the volume change and yield stress for a given undercooling,

which is in agreement with experiments (see for example Maki et. al. (2005, 2006)).

2.4.3 Effect of loading on the morphology of the quenched microstruc-

ture

Here, we study the effect of external displacement loading on the final morphology from the quench-

ing. We observe that upon applying far-field strain, the material tries to accommodate it by in-

creasing the volume fraction of the preferred martensite variant at the expense of reduction of the

other variant. We also see that some of the retained austenite transforms to the preferred marten-

site variant (Figure 2.18). This is clearly in agreement with the experimental observations in the

literature.

2.5 Discussions and experimental verifications

We observe that:

1— At first a circular nucleus deforms to a thin long plate with some characteristic width, then
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Figure 2.10: Martensitic transformation with no volume change, average strain=0, no plasticity,
average surface energy. In the absence of volume change and plasticity, the material makes long
twined plates of martensite to minimize the total elastic energy. The surface energy forces the
morphology to be a coarse one.
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Figure 2.11: Martensitic transformation with no volume change, average strain=0, σy= 200 MPa,
average surface energy. In the absence of volume change, the plasticity reduces the deviatoric and
total stresses and thus reduces the elastic energy barrier to transformation, and thus makes the
transformation easier. The material still makes long twined plates of martensite to minimize the
total elastic energy. The surface energy forces the morphology to be a coarse one.
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Figure 2.12: Martensitic transformation with volume change=0.08, average strain=0, no plasticity,
average surface energy. Volume change causes higher stresses and thus higher elastic energy barrier
in the material, and thus makes the phase transformation slower. The boundary conditions, average
strain=0, results in higher stresses in general, and thus the phase transformation stops as the driving
force from the chemical energy difference between the austenite and martensite is not enough to
overcome the elastic energy barrier.
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Figure 2.13: Martensitic transformation with volume change=0.08, average strain=0, σy= 200
MPa, average surface energy. Volume change causes higher stresses and thus higher elastic energy
barrier in the material, and thus makes the phase transformation slower. On the other hand plastic
deformation reduces the deviatoric stresses and thus makes the transformation easier. The boundary
conditions, average strain=0, results in higher stresses in general. In this case the competition
between lower deviatoric stress due to plastic deformation and higher volumetric stresses due to
volume change results in a complex morphology with regions of retained austenite.
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Figure 2.14: Martensitic transformation with volume change=0.08, average stress=0, no plasticity,
average surface energy. Volume change causes higher stresses and thus higher elastic energy barrier
in the material, and thus makes the phase transformation slower.
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Figure 2.15: Martensitic transformation with volume change=0.08, average stress=0, σy= 200 MPa,
average surface energy. Volume change causes higher stresses and thus higher elastic energy bar-
rier in the material, and thus makes the phase transformation slower. On the other hand plastic
deformation reduces the deviatoric stresses and thus makes the transformation easier. The bound-
ary conditions, average stress=0, results in lower stresses in general. The phase transformation
completes.
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Figure 2.16: Martensitic transformation with volume change=0.08, average strain=0, σy= 200
MPa, average surface energy. It is observed that the combination of the volume change at plastic
deformation results in a complex morphology including regions of twining and retained austenite).
Due to plastic deformation the preferred angle between austenite and martensite differs from that
of the no plastic case ∼ 6◦.
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Figure 2.17: Martensitic transformation with volume change=0.08, average stress=0, σy= 200 MPa,
low surface energy. It is observed that the combination of the volume change at plastic deformation
results in the presence of some untransformed regions of austenite (retained austenite). Due to
plastic deformation the preferred angle between austenite and martensite, ∼ 15◦ here, differs from
that of the no plastic case ∼ 6◦.
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Figure 2.18: Martensitic transformation with volume change=0.08, average strain=0, σy= 200
MPa, low surface energy. With applied ε012 = 0.1. It’s observed that upon applying far-field strain,
the material tries to accommodate it by increasing the volume fraction of the preferred martensite
variant at the expense of reduction of the other variant. We also see that some of the retained
austenite transforms to the preferred martensite variant.
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it make twins on its sides, then it grows faster. When there is no room no grow in length it widens.

After all the austenite is gone, it fixes to the correct angle which is 6 degrees for 0.04 and 0.2

diagonal and off diagonal elements of transformation strain matrix.

2— Volume change is identified as the cause of the autocatalytic nucleation.

3— After we add plasticity to the model we observe pinning of the phase transformation and

thus lath martensite instead of plate martensite.

4— Based on our simulations we observed that the rate of plastic deformation is higher at the

beginning of the transformation and decreases as transformation progresses.

5— When there is no volume change the stresses are much lower than the cases with high volume

changes. The resultant stress field thus can make more nucleation and may be a reason to explain

the finer microstructure seen in the case of large volume changes.

6— Plasticity reduces the deviatoric stress, σdev and thus makes the phase transformation

easier. This is why for a small driving force we observe more transformation when the yield stress

is lower. On the other hand the combination of volume change, ∆V in steel, and plasticity results

in a geometry different from that of a minimum elastic energy, long plate; thus the volumetric

stress, σvol, increases. This increase of the volumetric stress adds to the resisting force of the

transformation,
∫

Ω
σvol∆V dΩ, and thus can stop the phase transformation and results in retained

austenite.

In conclusion, as has been observed by experiments by Wayman, Olson, Maki, Bhadeshia, and

many others, volume change and plasticity interactions with the phase transformation play a key role

in dictating the complicated lath martensite with the retained austenite over the plate martensite.

Here for the first time, by studying the microstructure, we described the mechanism which is a

combination role of both plasticity and volumetric stress increase due to volume change. This is a
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point that was missed in previous works and can answer the discrepancies founf by previous models

on the effect of plastic deformation on phase transformation.

For the future work we suggest 3−D modeling (which will have difficulties with A/M boundaries

in 3−D as mentioned earlier) and also studying the effect of composition on the studied parameters,

and from there, on the morphology.
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Chapter 3

Yielding and Overall Plastic
Behavior of Orthotropic
Polycrystalline Metals

3.1 Introduction

Metal industry is very dependent on developing materials which can answer the ever increasing

needs for mixed superior behavior. It is seen that some types of steel, e.g., TRIP steel, can show

hard yet tough behavior.

Specifically, TRIP steels show high-strength and also exhibit better ductility at a given strength

level. The enhanced formability is due to the transformation of retained austenite (ductile, high

temperature phase of iron) to martensite (tough, non-equilibrium phase) during plastic deformation.

The microscopy of these metals shows lath martensite with plates of austenite between them. As

the result of the increased formability, TRIP steels are very appealing to the automotive industry

and are used to produce more complicated parts than other high-strength steels while optimizing

weight and structural performance.

In this chapter, we seek to study whether lath microstructure can lead to enhanced ductility.
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Steel grade YS(MPa) UTS(MPa) Tot. EL(%)
Mild 140/270 140 270 42-48
TRIP 350/600 350 600 24-30
TRIP 450/800 450 800 26-32
MS 950/1200 950 1200 5-7
MS 1250/1520 1250 1520 3-6

Table 3.1: Yield strength, ultimate strength and total elongation of mild steel, TRIP steels, and
martensite, WorldAutoSteel.

Parallel plate of hard and soft material lead to highly anisotropic yield behavior. So we describe

the behavior of a single crystal using anisotropic plasticity.

Hill (1947, 1948, 2000), introduced a general anisotropic plasticity. Lubliner (1975, 1990) studied

a non-smooth dissipation function and derived the plastic behavior based on thermodynamics of

plasticity. Ortiz and Stainier (1999) introduced a general variational formulation for the plastic

behavior of a single crystal. We follow them to postulate a single crystal plastic law. We then use

this to study the effective behavior of a polycrystal. To study the polycrystal behavior, we treat the

plastic strain in each grain as an eigenstrain (Mura 1982) and estimate the overall elastic behavior

with the similar concepts used by Shodja and Roumi (2005, 2006) and Roumi and Shodja (2007)

for the overall elastic behavior of composites.

3.2 Anisotropic plastic behavior of a single crystal

We find a general formulation for orthotropic plasticity, and implicitly, as implicit models are

unconditionally stable, implement the model as a part of our effective behavior model to find

overall elastoplastic behavior of a two-phase material.
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Figure 3.1: Stress-strain curve for different steels compared to aluminum according to United States
Steel Corporation
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Figure 3.2: Stress-strain curve for martensite, TRIP steel, and austenite

3.2.1 Yield criteria

The von Mises yield criterion is one of the simplest and most widely used yield criteria for metals. It

suggests that the yielding of materials begins when the second deviatoric stress invariant J2 reaches

a critical value. This implies that the yield condition is independent of hydrostatic stresses:

f(J2) =
√
J2 − k = 0, (3.1)

where k is the yield stress of the material in pure shear. In analogy with the Mises criteria, Hill

(1948) suggested an associated flow rule for anisotropic metals. He considered both volumetric and

deviatoric stress and introduced a general yield criterion as

2f = F (σyy − σzz)2 +G(σzz − σxx)2 +H(σxx − σyy)2 + 2Lσ2
yz + 2Mσ2

zx + 2Nσ2
xy = 1, (3.2)
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for suitable values of coefficients F, ..., N . Postulating on general grounds similar in form to the

Mises criterion, he claimed that

dεij =
∂f

∂σij
dλ, (3.3)

where dλ is a positive scalar factor of proportionality. For plane strain the yield condition simplifies

as

2f = (
FG+GH +HF

F +G
)(σxx − σyy)2 + 2Nσ2

xy = 1. (3.4)

For orthotropic material, due to the rotational symmetry of the anisotropy in an element about z

axis, there is a relation between the coefficients:

F = G, N = G+ 2H. (3.5)

In a 2−D case, one can define the stress tensor with the following vectors

x =
σ11 − σ22√

2
, y =

σ11 + σ22√
2

, z =
√

2σ12. (3.6)

From here the yield surface can be expressed as Φ(x, y, z) = 1; for a twice differentiable and convex

function. The assumption of orthotropic behavior makes a constraint that Φ(x2, y2, z2) = 1, Hill

(2000).

Based on Hill’s work, for the specific case of 2−D orthotropic metal, (volume-preserving), we
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consider a yield criteria as

2f = H
′
(σxx − σyy)2 + 2N

′
σ2
xy = 1, (3.7)

or equivalently

(
Sx − Sy

2τ1
)2 +

S2
xy

τ2
2

= 1. (3.8)

We emphasize the main purpose of this work is to understand the qualitative behavior of a metal

with easy and hard directions, so we stick with a simple model.

3.2.2 Flow rule

In analogy with Mises plasticity, Lubliner (1975) suggested a general anisotropic model of rate-

independent plasticity based on a non-smooth dissipation function

ψ∗ = q̇α
√
Mαβ q̇β ≥ 0, (3.9)

where M is a positive definite, symmetric tensor, and q is some internal variable. Assuming plastic

incompressibility condition puts a constraint on the

Ciβ q̇β = 0 i = 0, · · · , k. (3.10)
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Using the thermodynamic foundation described earlier, he showed that the yield criterion can be

written as

YαM
−1
αβ Yβ = 1, (3.11)

where

Yα =
1

ψ∗
Mαβ q̇β (3.12)

is the driving force for plasticity.

Now we need to find the tensor M for our 2−D orthotropic model. We showed that the yield

surface is defined by

(
Sx − Sy

2τ1
)2 +

S2
xy

τ2
2

= 1. (3.13)

Notice that in 2−D:

(Sx + Sy)2 = 0 (3.14)

S2
x + S2

y = −2SxSy (3.15)

(Sx − Sy)2 = S2
x + S2

y + S2
x + S2

y = 2(S2
x + S2

y), (3.16)
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so we have

S2
x + S2

y

2τ2
1

+
S2
xy

τ2
2

= 1 (3.17)

S2
x + S2

y

2
+
τ2
1

τ2
2

S2
xy = τ2

1 (3.18)

S2
x + S2

y + 2κ2S2
xy = 2κ2τ2

2 , (3.19)

where κ = τ1
τ2

is assumed to be constant and doesn’t change with the loading or hardening.

The yield criterion can be written as

(
Sx Sy Sxy Syx

)


1 0 0 0

0 1 0 0

0 0 κ2 0

0 0 0 κ2





Sx

Sy

Sxy

Syx


= 2κ2τ2

2 , (3.20)

which results in

M = 2κ2τ2
2



1 0 0 0

0 1 0 0

0 0 1
κ2 0

0 0 0 1
κ2


. (3.21)

3.2.3 Hardening

The stored cold work energy, W p(εp, q) is the non-elastic part of the free energy which depends on

irreversible plasticity strains. q is an internal variable indicating the state of work hardening. Here

we assume q = εpeff =

√
(εp11)2 + (εp22)2 + 2(

εp12
κ )2 the effective strain. We assume a power-law form
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for the stored mechanical energy as follows, assuming only isotropic hardening

W p
(
εpij , ε

p
eff

)
=

nεp0
n+ 1

σ0

(
1 +

εpeff
εp0

)n+1
n

, (3.22)

where σ0 is the yield stress. The yield stress is

σy =
∂W p

(
εp, εpeff

)
∂εpeff

= σ0

(
1 +

εpeff
εp0

) 1
n

. (3.23)

We assume no kinetic hardening, so the back stress of kinematic hardening vanishes:

σ∗ =
∂W p

(
εp, εpeff

)
∂εp

= 0. (3.24)

For our 2−D orthotropic model we have

κτ2 = κτ0
2

1 +

√
(εp11)2 + (εp22)2 + 2(

εp12
κ )2

εp0


1
n

. (3.25)

Note that when only shear σ12 is applied for a single crystal we have:

σy = κτ2

(
1 +

√
2(εp12)2

κεp0

) 1
n

6= τ2

(
1 +

√
2(εp12)2

εp0

) 1
n

. (3.26)

3.2.4 Orthotropic behavior: Two slip systems

In this section we try to give physical meaning to the yield values, τ1, τ2, described earlier. For an

orthotropic 2−D composite material the behavior is estimated by the relation between the average

stress and strain for each specific loading. As an example for the linear behavior, assuming that
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direction the normal between the two layers is along the ′2′ axis, one finds that

σ11 = fMσ
M
11 + fAσ

A
11 ; ε11 = εM11 = εA11, (3.27)

σ22 = σM22 = σA22 ; ε22 = fM ε
M
22 + fAε

A
22, (3.28)

σ12 = σM12 = σA12 ; ε12 = fM ε
M
12 + fAε

A
12, (3.29)

and from there the Secant moduli are

E∗1 = fAE
A
1 + fME

M
1 , (3.30)

1

E∗2
=

fA
EA2

+
fM
EM2

, (3.31)

1

G∗12

=
fA
GA12

+
fM
GM12

. (3.32)

As we are considering dilute volume fractions, fA ∼ 1−−5%, of the weak material, austenite, we

will have

σ11 ∼ σM11 , (3.33)

σ22 = σA22, (3.34)

σ12 = σA12. (3.35)

And so we can estimate the yield stress for the hard, and easy directions, respectively, as

τ1 ∼ τM1 , for
ε011 − ε022

2
loading; (3.36)

τ2 = τA2 , for ε012 loading, (3.37)
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Figure 3.3: A schematic figure showing lath microstructure: martensitic layers (blue), with retained
austenite (white) between them

where the yield surface is defined by

(
S11 − S22

2τ2
1

)2 +
S2

12

τ2
2

= 1. (3.38)

3.2.5 Incremental work function

In general to find the elastoplastic behavior of a system, given the previous state of the system and

the applied loading, one can introduce an incremental work function as (Ortiz and co-workers 1999,

2010)

Fn
(
εn+1, ε

p
n+1

)
=

∫
Ω0

fn(εn+1, ε
p
n+1)dΩ, (3.39)
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where

fn(εn+1, ε
p
n+1) = An+1(εn+1, ε

p
n+1)−An(εn, ε

p
n) + ∆tψ∗n+1. (3.40)

A is the stored energy in the material as stated earlier, and q is the hardening parameter. The

plasticity driving force is then obtained by minimizing f with respect to εpn+1:

Y = −∂An+1

∂εpn+1

= σn+1 − σcn+1 =
∂∆tψ∗n+1

∂εpn+1

, (3.41)

where σ = ∂W e

∂εe is the equilibrium stress, and σc = ∂Wp

∂εp is the back stress. For infinitesimal

deformation we have linear elasticity

An+1 = (εn+1 − εpn+1) : C : (εn+1 − εpn+1) +W p(εpn+1, qn+1). (3.42)

Assuming only isotropic strain hardening, the incremental work function can be written as

min
εpn+1

fn(εn+1, ε
p
n+1) =⇒ min

εpn+1

{κ
2

(θn+1)2 + µ|en+1 − εpn+1|2 + ∆t
∂tψ∗n+1

∂εpn+1

}. (3.43)

Further assuming volume preserving plasticity, the driving force for plasticity is

Y = − ∂Fn
∂εpn+1

= σdev and Y =
∂ψ∗

∂ε̇pn+1

. (3.44)

From here we have

σPren+1 − 2µ∆εp = σcn+1 +
∂tψ∗n+1

∂εpn+1

(3.45)
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where

σPren+1 = C : (εn+1 − εpn). (3.46)

For the special case of rate-independent plasticity

ψ∗ = σy ε̇
p
eff (3.47)

Y =
∂ψ∗

∂ε̇pn+1

= σyM
ε̇p

ε̇peff
. (3.48)

From here we have the flow rule as

ε̇pij = Mijklε̇
p
eff

σdevkl

σy
(3.49)

where M = 3/2I for 3−D and M = I for 2−D for Mises plasticity, and I is the unit tensor. For

our orthotropic model, the plastic dissipation is

ψ∗ =
√

2κτ2∆(εpeff )2 (3.50)

where

∆εpeff =

√
(∆εp11)2 + (∆εp22)2 + (

∆εp12

κ
)2 + (

ε̇p21

κ
)2 (3.51)

so the driving force for the plastic strain is

Y11 =
√

2κτ2
∆εp11

∆εpeff
, Y22 =

√
2κτ2

∆εp22

∆εpeff
, Y12 =

√
2κτ2

∆εp12

κ2∆εpeff
(3.52)
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which also satisfies the yield condition as expected:

Y 2
11 + Y 2

22 + 2κ2Y 2
12 = 2κτ2

(∆εp11)2 + (∆εp22)2 + 2(∆εp12)2 κ2

κ4

(∆εpeff )2
= 2κτ2. (3.53)

From equation (3.52)

Y11 −
√

2κτ2
∆εp11

∆εpeff
= 0, Y22 −

√
2κτ2

∆εp22

∆εpeff
= 0, Y12 −

√
2κτ2

∆εp12

κ2∆εpeff
= 0 (3.54)

defining

Spreij = Yij + 2µ∆εp
ij

(3.55)

we can write

SPre11 − 2µ∆εp11 −
√

2κτ2
∆εp11

∆εpeff
= 0, (3.56)

SPre22 − 2µ∆εp11 −
√

2κτ2
∆εp22

∆εpeff
= 0, (3.57)

SPre12 − 2µ∆εp11 −
√

2κτ2
∆εp12

κ2∆εpeff
= 0. (3.58)

By solving this equations, say by Newton-Raphson method, we can have the incremental plastic

stress for a given loading, ε0,SPre.

3.3 Overall plastic behavior of a polycrystal

In this section we analyze a polycrystalline metal by modeling the random grain structure and

calculation of strain/stress field. Overall properties of the polycrystalline metals depend on the
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Figure 3.4: Optical micrographs of lath martensite in (a) Fe-0.0026C, (b) Fe-0.18C, (c) Fe-0.38C
and (d) Fe-0.61C alloys. Etching solution: 3% nital. Morito et al. (2005)

properties of randomly shaped and oriented grains and are defined by the properties of, and inter-

action between, the crystal grains. Here, using Voronoi tessellation we assign random polycrystalline

structure (random orientation of crystal lattice) to each of the grains. We assume that each grain is

a monocrystal with anisotropic plastic behavior. Our plasticity model assumes that plastic defor-

mation is caused by crystalline slip on either of the two predefined slip directions of crystal lattice.

Slip direction is defined by orientation of crystal lattice, which differs from grain to grain (random

orientation). Crystal plasticity assumes that plastic deformation is a result of crystalline slip only

and therefore strongly depends on orientation of crystal lattice. Rate-independent plasticity with

isotropic hardening law, as described in the previous section, is used in our model. Periodic finite

difference method is used to obtain numerical solutions of strain and stress fields.
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Following Mura, we treat plastic strains as eigenstrains and solve for the overall mechanical

behavior (see Shodja and Roumi (2005, 2006) and Roumi and Shodja (2007). The stress at any

point of any of the grains is defined as

σ = C : (ε− εp) (3.59)

equilibrium requires that

∇ (C : (ε− εp)) = 0 =⇒ ∇ (C : ε) = ∇ (C : εp) . (3.60)

We decompose the stress and strain fields into two parts: one due to the applied loading at the

boundary and the other due to the anisotropy made by the rotations of the grains with respect to

each other.

ε(x) = ε0 + ε̃(x) (3.61)

∇ (C : ε̃) = ∇ (C : εp) (3.62)

from the plasticity model we will have

εp = εp(ε) = εp(ε0 + ε̃(x)) (3.63)

from which we can estimate the strain at each point of any grain due to the anisotropy made by

the rotations of the grains with respect to each other as

ε̃(x) = ε̃(ε0,x). (3.64)
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After finding the strain/stress field for each of the grains, the constitutive equations can be written

as

σ̄ =< σ >= f(< ε >) = f(ε0) (3.65)

which is based on the following lemmas:

a) Average stress theorem, Nemat-Nasser and Hori (1993) states that: ”When a body is subjected

to traction boundary condition with σ0 a constant stress tensor, the stress averaged over the entire

body is the same as σ0 regardless of the complexity of the stress field within the domain.”

b)Hill’s lemma (1963, 1993): Consider an RVE (statistically homogeneous) with volume V and

surface S. Assume equilibrium condition is satisfied (no body forces exist). Then for linear dis-

placement or uniform traction boundary conditions we have the following lemma:

”For any stress and strain fields σ, ε at a given point in the RVE under prescribed boundary traction

or boundary displacement condition:

σijεij − σ̄ij ε̄ij =
1

|Ω|

∫
S

(ui − xjεij)(σiknk − σiknk)dS, (3.66)

where the overline stands for volume average. It says, for statically admissible stress field or

kinematically admissible displacement field the average of the product σε = σ̄ε̄.”

3.3.1 Voronoi tessellation

Voronoi tessellation is a kind of decomposition of a metric space determined by distances to a

specified discrete set of objects in the space, e.g., by a discrete set of points. In the simplest case,

we are given a set of points S in the plane, which are the Voronoi sites. Each sites has a Voronoi
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Figure 3.5: Voronoi tessellation

cell, also called a Dirichlet cell, V (s) consisting of all points closer to s than to any other site. The

segments of the Voronoi diagram are all the points in the plane that are equidistant to the two

nearest sites. The Voronoi nodes are the points equidistant to three (or more) sites.

3.3.2 Algorithm to estimate overall plastic behavior of a polycrystal

For each loading ε0 follow this algorithm:

0— Knowing the previous state of the material εpn, for a given applied uniform displacement loading

at the boundary, ε0n+1, assume that δep0(x) = εpn+1(x)− εpn(x) = 0.

1— i = i+ 1, then δepi (x) = δepi−1(x).

2— Calculate ε̃n+1(x) from the equilibrium equation as stated earlier.

3— Calculate global stress field σn+1(x) = C : (ε0n+1 + ε̃n+1(x)− εpn+1(x)).

4— Calculate local stress field Σn+1(X) = RT (θ)σn+1(x)R(θ) for each grain.
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5— Calculate the local plastic strain field Ep
i+1(X) from Σn+1(X) for each grain based on our single

crystal anisotropic model.

6— Calculate the global plastic strain field εp(x) = R(θ)EpRt(θ).

7— Continue 1− 4 until norm(epi+1(x)− epi (x)) < error.

8— Calculate the average stress in the polycrystal.

9— Go back to 0, and increase the load.

3.3.3 Numerical results and discussion

To estimate the overall behavior of the material, we apply boundary conditions as linear displace-

ment loadings. Here we examine two different loadings:

a) ε011 = −ε220 = ε0; ε012 = 0.

b) ε011 = −ε220 = 0; ε012 = ε0.

Figure 3.6 shows our results. The domain size is a periodic cell as shown in Figure 3.5. As can

be seen, the anisotropy reduces once we increase our domain size, and we see that the polycrystal

tends so show an isotropic hard and tough behavior. This is in agreement with the experiments on

TRIP steels as shown in Figure 3.2, and thus our formulation describes this interesting behavior

of TRIP steels.

To conclude, we see that very small amount of weak layers between the layers of a hard material,

can significantly change the plastic behavior of the metal by reducing the hardness and increasing

the toughness. In conclusion, using a simple plasticity model to study the qualitative behavior of

2−D orthotropic polycrystals, we showed that retained austenite is crucial for the ductility of the

polycrystalline metal.
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Figure 3.6: Estimated mechanical behavior of the polycrystal for different values of domain sizes,
n× n, and number of grains nG. n = 200 for series A and B, n = 400 for series C and D. nG = 1
for series A, nG = 10 for series B and C. nG = 20 for series D. Series A shows the orthotropic
behavior of a single grain.



78

3.4 References

1. R. Hill , ”A theory of the yielding and plastic flow of anisotropic materials”, (3rd edn. ed.),

Proc. R. Soc. A193 (1947).

2. R. Hill, ”A theory of the yielding and plastic flow of anisotropic metals”, Proc. Royal Soc.

London, Series A, Math. Physical sciences, Vol 193, No. 1033. 1948, 281-297

3. R. Hill, 1963. Elastic properties of reinforced solids: some theoretical principles. J. Mech.

Phys. Solids 11, 357-372.

4. J. Lubliner, Acta Mech. 22, (1975), 289-293.

5. T. Mura, 1982. Micromechanics of Defects in Solids, first ed. Martinus Nijhoff Publishers,

The Hague-Boston.

6. M. Zyckowski, T. Kurtyka, Acata Mech. 52, (1384), 1-13.

7. J. Lubliner, 1990, Plasticity Theory, Macmillan Publishing Company.

8. G. A. Maugin, 1992, The Thermodynamics of Plasticity and Fracture, Cambridge university

Press.

9. S. Nemat-Nasser, M. Hori, 1993. Micromechanics: Overall Properties of Heterogeneous Ma-

terials. Elsevier, North-Holland, Amsterdam.

10. R.V. Kohn ,and T.D. Little, 59, no. 1, (1998), SIAM Journal on Applied Mathematics.

11. M.V. Nebozhyn, P. Castaneda, 1999, IUTAM Symposium on Micro- and Macrostructural

Aspects of Thermoplasticity, Kluwer Academic Publishers.



79

12. M. Ortiz, L. Stainier, The variational formulation of viscoplastic constitutive updates, COM-

PUT METHOD APPL M 171 (3-4): 419-444 APR 9 1999.

13. R. Hill, ”Plastic anisotropy and the geometry of yield surfaces in stress space”, JMPS, Vol 48

(2000) 1093-1106.

14. G.H. Goldsztein, vol 457, no. 2015, (2001), Proc. R. Soc. Lond. A.

15. S. Morito, H. Tanaka H. R. Konishi, T. Furuhara, T. Maki, Acta Materialia, Volume 51,

Number 6, 2 April 2003, 1789-1799(11).

16. Kachanov, 2004, Fundamentals of the theory of Plasticity, Dover Publications.

17. K. Bhattacharya, P. M. Suquet, Proc. Royal Society London A, 461:2797-2816, 2005.

18. H.M. Shodja, F. Roumi, Overal behavior of composites with periodic multi-inhomogeneities.

Mech. Mater. 37, 343-353 (2005).

19. Q. Yang, L. Stainier, M. Ortiz, JMPS, 54, (2006), 401-424.

20. H. M. Shodja, F. Roumi, Effective moduli of coated particulate composites with BCC struc-

ture at high concentration. ASCE August, 882-888 (2006).

21. F. Roumi, H.M. Shodja, Elastic solids with high concentration of arbitrarily oriented multi-

phase particles. Acta Mech. 189, 125-139 (2007).

22. L. Stainier, M. Ortiz, Study and validation of a variational theory of thermo-mechanical

coupling in finite visco-plasticity, INT J SOLIDS STRUCT 47: 705-715, 2010.



80

Chapter 4

The Role of Size, Geometry, and
Mechanical Compatibility in
Diffusive Phase Transformations

4.1 Introduction

A common feature of electrochemical systems is a significant voltage hysteresis between the charge

and discharge curve. The existence of the hysteresis even in very small current regimes suggests that

there may be some mechanical energy barriers. Batteries are among the widely used electrochemical

systems. In classical batteries, the electrodes operate by ion insertion/de-insertion processes, which

in addition to chemical reactions in the electrodes can apply deformations and forces on the electrode

materials that the change the performance. Lithium-ion rechargeable batteries are extensively used

in our everyday life. In a typical Li-ion battery, the anode can be made of carbon, and the electrolyte

can be an organic lithium salt. Different materials have been proposed as the cathode. It has

been suggested that cathodes made of FePO4 (triphylite) promise safe, inexpensive, high-power

rechargeable batteries.

When used as a cathode in rechargeable batteries triphylite undergoes a solid-to-solid phase
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transformation involving a change of crystal structure. Although the equilibrium structure of

FePO4 is rodolicoite, lithium can be electrochemically removed from FePO4 without changing

the orthorhombic olivine structure of LiFePo4. Despite no change in the orthorhombic structure,

the crystalline dimensions change, which causes a misfit strain between the two phases. This

transformation can limit the rate at which the battery can charge/discharge.

Nano-sized Li1−xFePO4 and Li1−xMnPO4 have shown different electrochemical, solid solution

behavior compared to coarser-grained LiFePO4, which exhibits a conventional two-phase reaction.

Chiang and co-workers (2008) found that when cathode particles are of very small size, the batteries

charge faster. They claimed that this improvement in the performance is due to the faster first-order

phase transformation between LiFePO4 and FePO4 due to changes in surface area and stress field.

They observed that when lattice misfits are smaller they see more strain compared to the case with

more misfit, and they concluded that this should be due to the formation of coherent interface in

the small misfit case, compared to the incoherent interface in the larger misfit case. Experiments

by Yet-Ming Chiang and co-workers suggested that nanoscale (< 50 nm) Li1−xFePO4 has a size-

dependent, reduced miscibility gap compared to coarser-grained materials. It has also seen that the

discharge capacity reduces more for large particles than for nanoparticles.

Chen and Richardson (2006), studied the mechanism of LiFePO4 transformation into FePO4.

They concluded that the movement of lithium ions in the highly anisotropic LiFePO4 and FePO4

is confined to channels along the [010]-axis. In addition, there is a layered character to the FePO4

host parallel to the (100) plane. The observation of the highly restricted Li motion within the

bulk solids, with no assistance toward homogeneity, suggests that Li is extracted/inserted only at

the phase boundary, with Li ions moving parallel to the boundary instead of diffusing through the

crystal. This mechanism has been confirmed for the case of LiMnPO4 as well. They observed
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ordered domains of FePO4 spaced between the parent LiFePO4 domains, a morphology induced

by the stress fields due to the lattice parameter mismatch. The transformation proceeded in the

direction of the [100]-axis at dislocation lines running parallel to the [001]-axis. Chen and Richardson

conclude that: ”The ideal particle shape is small thin plates of LiFePO4, as thin as possible, to

minimize the distance of Li movement.” They observed domains separated by a boundary zone

form within the crystal.

We study the interactions of solid-solid phase transformations with electrochemical processes.

It is suggested that electronic and ionic structures depend on lattice parameters, thus it is expected

that structural transformations can lead to dramatic changes in material properties. These trans-

formations can also change the energy barrier and hysteresis. It is known that compatible interfaces

can reduce elastic energy and hysteresis (Kohn 1991, Bhattacharya 2003, James 2009) and thus may

extend the system’s life. Solid-solid transformations change the crystalline structure. These geom-

etry changes can have long-range effects and cause stresses in the whole material. The generated

stress field itself changes the total free energy, due to the change in elastic energy, and thus, the

electrochemical potential and processes are affected. An example is olivine phosphates which are

candidates for cathode material in Li-ion batteries. These materials undergo an orthorhombic-to-

orthorhombic phase transition. Experiments by Yet-Ming Chiang and co-workers suggested that

elastic compatibility can affect rates of charge/discharge in the battery.

Using asymptotic limit analysis, we study the effects of geometry and size of electrodes on elastic

energy and concentration profile. We consider the state of lowest free energy of the system; although

in practice due to kinetics, defects, etc., the material may be at a metastable state of energy and

may not reach its lowest free energy. Here, we use a phase-field model to estimate the behavior of the
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elasto-electro-chemical system. The surface energy is modeled as a function of the space gradients

of the li-ion concentration, which plays an important rule in describing the concentration profile

for different sizes and geometries. The electrochemical energy is modeled as a double-well function

with minima near fully lithiated and delithiated states. The elastic energy, assuming coherent in-

terfaces, is a function of the phase transformation between lithiated and delithiated phases, e.g.,

orthorhombic-to-orthorhombic phase transformation in LiFePO4. It can also be a function of the

applied displacement and traction boundary conditions from the charge collector and electrolyte.

It is expected that the elastic energy can play an important role by making the transformation

barrier higher and thus limit the rate. It can also be a major player in the life cycle of the sys-

tem. This means that one should make the crystallographic changes in electrodes as compatible as

possible in order to have higher rates and more cycles. One other import issue is that, when the

gradient energy term is large compared to the electrochemical energy, the system does not obey

Fick’s law. This could occur, for example, across an interface in inhomogeneous systems in which

the concentration profile is characterized by a strongly varying curvature. In this case, one has do

a more general study to understand the system and predict its behavior. We consider three cases:

a) Small body limit: in this limit, we prove that in very small particle limit the concentration profile

should be of a single domain in each particle. This results in the elimination of the elastic energy for

very small particles. The reduced energy barrier suggests higher rates as suggested by experiments

of Yet-Ming Chiang and coworkers and also possibly longer life of the battery. Our results show

that for very small particles we should have only either fully lithiated or fully delithiated particles,

as reported by experiments of Delmas et al. (2008), thus the overall behavior of the concentration,

as an averaging scheme, can show reduced miscibility gap.

b) Large body limit: in this limit we prove that we should see multiple layers of lithiated and
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delithiated phases adjacent to each other in a preferred direction in order to minimize the elastic

energy. This is again in accordance with several experiments on large domains.

c) Thin film limit: in this limit we show that the concentration profile should be uniform in thick-

ness. Though depending on the other dimensions of the film it can show periodic layers of lithiated

and delithiated phases with a preferred normal direction. This is also verified experimentally for

thin films of LiFePO4 by Chen and Richardson (2006) and also another group.

In the following work, for simplicity, we neglect anisotropy in elastic constants of the two phases.

We also assume that the two materials have the same elastic constants. However, we do not neglect

the anisotropic nature of diffusion and surface reactions.

4.2 Model

Consider a bounded Lipschitz domain Ω ⊂ R3 occupied by a body in the reference configuration. Let

0 ≤ c(x) ≤ 1 denote the normalized chemical concentration and u(x) the mechanical displacement

at a point x ∈ Ω. The infinitesimal strain is ε = 1
2 (∇u +∇uT ). The stress-free state can change

with concentration. Therefore, we introduce a transformation strain,

εt(c) = cη, η ∈M3×3
sym (4.1)

that depends linearly with concentration.

We postulate that the Gibbs free energy of the system is the following functional of the concen-
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tration c and the displacement u:

E[c, u] =

∫
Ω

{f(c) +
1

2
(∇c ·K∇c) +

1

2
(ε(u)− εt) · C(ε(u)− εt)}dx (4.2)

where f is the chemical free energy density, K is a positive-definite matrix representing interfacial

energy, and C is the elastic modulus. The first term about represents the chemical free energy.

Thus, f is convex in miscible systems and non-convex in immiscible systems. We shall mostly

consider the case where f is non-convex with two wells. We assume without loss of generality psi

is non-negative. The second term penalizes gradients of composition, and thus the phase boundary

in immiscible systems. The final term is the elastic energy of the system.

We are interested in finding the ground-state of the system for a given average concentration

c0. Therefore, we minimize the energy above over c and u subject to the constraint

∫
Ω

(c− c0) dΩ = 0. (4.3)

Assuming that the chemical energy density f has a quadratic growth1, we introduce the following

admissible class of functions

A := {{c,u} : c ∈ H1(Ω,R),u ∈ H1(Ω,R3), 〈c〉 = c0, 〈u〉 = 0, 〈∇u−∇uT 〉 = 0} (4.4)

where 〈·〉 denotes the volume average. Thus, the problem we study is:

(P) Given c0, minimize E[c,u] on A.

1We ignore for now the constraint that 0 ≤ c ≤ 1 for mathematical convenience.
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We note in passing that we can also study the problem of the body immersed in a bath with

fixed electro-chemical potential by replacing f with f − µextc in the functional and dropping the

constraint 〈c〉 = c0 from the admissible class of functions.

The following theorem assures us of the existence of minimizers of (P).

Theorem 4.2.1 (Existence of minimizers) Given any c0, there is a minimizer {c,u} of E in

A.

Proof. The proof follows standard techniques of the direct method of the calculus of variations (see

for example, Dacarogna). We note that the functional E is bounded uniformly from below, and is

finite for each element in A. Thus, we may choose a minimizing sequence {ck,uk}.

Now observe that for each c, E[c, ·] is convex and minuE[c,u] has an unique solution uc such

that

∇.C(ε(uc)− εt) = 0 in Ω, C(ε(uc)− εt)n̂ = 0 on ∂Ω, (4.5)∫
Ω

1

2
(ε(uc)− εt(c)).C(ε(uc)− εt(c)) dx ≤

1

2

∫
Ω

εt(c).Cεt(c)dx. (4.6)

The last inequality follows by taking u = 0 as the test function.

Now returning to our minimizing sequence,

E(ck,uck) ≤ E(ck,uk) ≤ C (4.7)

so that

∫
1

2
∇ck.K∇ckdx ≤ C ′. (4.8)
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It follows that there exists a subsequence (relabeled)

∇ck ⇀ ∇c in W 1,2. (4.9)

Similarly,

∫
Ω

f(ck)dx ≤ C ′ (4.10)

so that there exists a subsequence (relabeled)

ck ⇀ c in L2. (4.11)

Together, we conclude that

ck → c in Lr, 1 ≤ r < 6. (4.12)

Recall that εt = ηc, and so trivially εt(ck) → εt(c) in L2. Therefore, we can recall the equilibrium

condition (4.5) and invoke Hill’s lemma or the div-curl lemma of Tartar to conclude that

∫
(ε(uck)− εt(ck)).C(ε(uck)− εt(ck))dx→

∫
(ε(uc)− εt(c)).C(ε(uc)− εt(c))dx. (4.13)

We combine this with the convexity of the interfacial energy and the growth condition on f to

conclude that

E[c,uc] ≤ limE[ck,uck ] ≤ limE[ck,uk]. (4.14)
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We conclude that {c,uc} is a minimizer of E in A.

4.3 Small and large body limit

Consider a sequence of bodies Ω = λΩ0 for λ ∈ (0,∞),Vol. Ω0 = 1 and define

Eλ[c,u] =
1

λ3
E[c,u] =

1

λ3

∫
λΩ0

{α
2

2
|∇c|2 + f(c) +

1

2
(ε− εt).C(ε− εt)}dx (4.15)

where we have assumed that K = α2I is isotropic. We define x0, C,U through the following scaling

relations

x = λx0, C(x0) = c(x) = c(λx0), U(x0) =
1

λ
u(λx0). (4.16)

Thus,

Eλ =

∫
Ω0

{ α
2

2λ2
|∇x0C|2 + f(C) +

1

2
(ε− εt).C(ε− εt)}dx0. (4.17)

From now we drop the subscript 0 and use x instead of x0.

It follows from the existence theorem above that for each λ we have a minimizer Cλ, Uλ of Eλ.

We seek to understand how these minimizers behave in the limits λ→ 0 (small body) and λ→∞

(large body). Since Uλ = UCλ , we occasionally abuse notation to describe Cλ to be the minimizer

of Eλ.
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4.3.1 Small particle limit

We show that in the limit of small particles, minEλ → f(c0). Roughly, the interfacial energy

dominates and thus we have uniform composition, and this has to be equal to the imposed average.

Further, since the composition is uniform, the elastic energy is zero.

We have the following theorem. The ideas and the statement are similar to those of DeSimone.

Theorem 4.3.1 For Eλ defined in (4.17),

lim
λ→0

min
A

Eλ = f(c0) (4.18)

Further, for any sequence Cλ of minimizers of Eλ, there exists a subsequence that converges in H1

to c0.

Proof. For any λ, we have

Eλ[Cλ, UCλ ] ≤ Eλ[c0, Uc0 ] (4.19)

for a minimizer Cλ. Since each term in the energy is non-negative, it follows that

∫
Ω0

|∇Cλ|2dx ≤ 2λ2

α2

∫
Ω0

f(c0)dx = λ2D (4.20)

for constant D independent of λ. Clearly

∇Cλ → 0 in L2. (4.21)
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Similarly,

∫
Ω0

f(Cλ)dx ≤ D′ (4.22)

which implies that for a subsequence,

Cλ ⇀ c0 in L2. (4.23)

Together, they imply that,

Cλ → c0 in H1. (4.24)

This proves one of the statements of the theorem.

We now revisit (4.19) in light of the convergence above. We can use the dominated convergence

theorem to conclude that

lim
λ→0

∫
Ω

{ α
2

2λ2
|∇Cλ|2 +

1

2
(εU

Cλ
− εt(Cλ)).C(εU

Cλ
− εt(Cλ))}dx ≤ 0. (4.25)

Since the terms on the left are non-negative, the rest of the theorem follows.

4.3.2 Large body limit

In this section we consider the limit of a large body. We make the additional assumption that f is

the minimum of two quadratic wells with equilibrium concentrations c1 and c2,

f(c) =
D

2
min

{
|c− c1|2, |c− c2|2 + f0

}
. (4.26)
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Further we take D = 1 by renormalization.

We have the following theorem.

Theorem 4.3.2 For Eλ defined in (4.17) and for f as in (4.26),

lim
λ→∞

min
A

Eλ = min
c∗1 ,c

∗
2 ,θ

(
θf(c∗1) + (1− θ)f(c∗2) +

1

2
θ(1− θ) H(εt(c∗1)− εt(c∗2))

)
(4.27)

where the minimization is carried out over all variables that satisfy θc∗1 + (1− θ)c∗2 = c0) and where

H(η) = η.Cη −G(η) (4.28)

G(η) = ... . (4.29)

Proof. First we find an upper bound by construction. For any given λ and for any given θ, c∗1, c
∗
2

that satisfy the constraint, we divide Ω into parallel stripes S1, S2, S3, S4 of width λ−1, θλ−1/2, λ−1, (1−

θ)λ−1/2 with normal k and repeated periodically. Note that this is like a laminate of width λ−1/2

and volume fraction θ where the layers are separated by interpolation layers of thickness λ−1. We

construct a test function cλ that takes the value c∗1 and c∗2 in the stripes S2 and S4, respectively,

while interpolating linearly in the stripes S1 and S3. Note that cλ ∈ H1, ∇cλ vanishes on S2 and

S4 and ∇cλ = O(λ) on S1 and S3. We can easily verify that

∫
Ω

α2

2λ2
|∇cλ|2dx = O

(
1

λ2
· λ2 · λ

1/2

λ

)
= O(λ−1/2)→ 0. (4.30)

Similarly,

∫
Ω

f(cλ)dx→ θf(c∗1) + (1− θ)f(c∗2). (4.31)
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Finally, the elastic energy tends to that of a laminate of materials with eigenstrain c∗1η and c∗2η.

The energy of such a laminate is given by Kohn (1991) to be

1

2
θ(1− θ)(c∗1 − c∗2)2h(η,k) (4.32)

where

h(η,k) = η.Cη − g(η,k) (4.33)

g(η,k) = ... . (4.34)

Putting these together, we have shown that

min
A

Eλ ≤ Eλ[cλ, Ucλ ]→ θf(c∗1) + (1− θ)f(c∗2) +
1

2
θ(1− θ)(c∗1 − c∗2)2h(η,k). (4.35)

We obtain the desired upper bound by optimizing over θ, c∗1, c
∗
2, and k.

We now turn to the lower bound. Given the non-negativity of the interfacial energy as well

as the fact that increasing the admissible function makes a lower bound, we see

lim
λ→∞

min
A

Eλ ≥ inf
A′

∫
Ω

{f(C) +
1

2
(ε− εt).C(ε− εt)}dx0 =: L (4.36)

where

A′ := {{c,u} : c ∈ L2(Ω,R),∈ H1(Ω,R3), 〈c〉 = c0, 〈u〉 = 0, 〈∇u−∇uT 〉 = 0}. (4.37)

Since f is the minimum of two quadratic wells, we can follow Kohn and rewrite the right-hand side
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of (4.36) as

L = inf
c,u,χ

∫
0,T

1

2
|c(x)− χ(x)c1 − (1− χ(x))c2|2 +

1

2
(e(u(x))− c(x)η).C(e(u(x))− c(x)η). (4.38)

Taking the Fourier transform of c,u, χ and using Plencherel’s formula, the problem of our interest

may be rewritten as

L = inf
ĉ,û,χ̂

∑
k

1

2
|ĉ(k)− χ̂(k)c1 − (δ(k)− χ̂(k))c2|2

+
1

2
(ik� û(k)− ĉ(k)η).C(ik� û(k)− ĉ(k)η). (4.39)

Minimizing with respect to û(k) for each k 6= 0,

û(k) = iĉ (Ĝ−1, sk) or ûp(k) = iĉ Ĝ−1
pj sjlkl, (4.40)

so

ûp,q(k) = −ĉ Ĝ−1
pj sjlklkq (4.41)

where Ĝpj = Cpmjnkmkn, sjl = −Cjlmnηmn. The case k − 0 is simple. Substituting this back,

L = min
θ

D

2
|c0 − θc1 − (1− θ)c2|2 (4.42)

+ inf
χ̂

∑
k 6=0

inf
ĉ(k)

1

2
|ĉ(k)− χ̂(k)c1 − (δ(k)− χ̂(k))c2|2 +

1

2
ĉ2(ηCη −A(k))
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where θ = χ̂(0) and

A(k) = (sk, Ĝ−1sk) = (k, sĜ−1sk) = sijkjĜ
−1
ip sptkt. (4.43)

We note that A(k) = A( k
|k| ) as all matrix elements of the operator Ĝ−1(k) are proportional to k−2.

Next we minimize with respect to ĉ(k) for each k. To this end, by differentiation,

ĉ(k)− χ̂(k)c1 − (δ(k)− χ̂(k))c2 + ĉ(k)B(k/|k|) = 0 (4.44)

where

B(k/|k|) = ηCη −A(k/|k|). (4.45)

We conclude

ĉ(k) =
χ̂(c1 − c2) + c2δ(k)

1 +B(k/|k|)
(4.46)

and

L = min
θ

1

2
|c0 − θc1 − (1− θ)c2|2 (4.47)

+ inf
χ̂

∑
k

1

2

∣∣∣∣ χ̂(c1 − c2) + c2δ(k)

1 +B(k/|k|)
− χ̂c1 − (δ(k)− χ̂(k))c2

∣∣∣∣2
+

1

2

∣∣∣∣ χ̂(c1 − c2) + c2δ(k)

1 +B(k/|k|)

∣∣∣∣2B(k/|k|)

= min
θ

1

2
|c0 − θc1 − (1− θ)c2|2 (4.48)

+ inf
χ̂

∑
k

1

2
|χ̂(c1 − c2) + c2δ(k)|2 B(k/|k|)

1 +B(k/|k|)
.
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We obtain a lower bound, by optimizing over k:

L ≥ min
θ

1

2
|c0 − θc1 − (1− θ)c2|2 (4.49)

+ min
k6=0

(
B(k/|k|)

1 +B(k/|k|)

)
inf
χ̂

∑
k

1

2
|χ̂(c1 − c2) + c2δ(k)|2.

Now use Plancherel’s formula again. We obtain,

L ≥ 1

2
| c0 − θc1 − (1− θ)c2|2 (4.50)

+ min
k 6=0

(
B(k/|k|)

1 +B(k/|k|)
)
1

2
θ(1− θ)(c1 − c2)2.

We use the identity

|c0 − θc1 − (1− θ)c2|2 = θ(c0 − c1)2 + (1− θ)(c0 − c2)2 − θ(1− θ)(c1 − c2)2, (4.51)

and rewrite the lower bound as

L ≥ min
θ

(
θ

2
(c0 − c1)2 +

1− θ
2

(c0 − c2)2 (4.52)

+
1

2
θ(1− θ)(c1 − c2)2

(
min
k 6=0

(
B(k/|k|)

1 +B(k/|k|)
)− 1

))
.

The result follows by an identity of Kohn.
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4.4 Thin film limit

Consider Ωh := S × (0, h) where h << 1 is a measure of the film thickness, which we assume

constant, and S is a suitable domain in R2 with area A.

E =

∫
Ωh

{α
2

2
|∇c|2 + f(c) +

1

2
(ε− εt).C(ε− εt)}dΩh (4.53)

Let L denote the diameter of the cross section S. We have different length scales as:

1— Intrinsic scales (i.e., depending only on the material): α.

2— Extrinsic scales (i.e., depending only on the sample geometry): h and L.

A rich behavior and pattern formation on intermediate scales is expected due to the multi-scale,

non-convex, and nonlocal nature of the problem.

We can study different regimes:

a) Thin film: h→ 0, α = fixed.

b) Thin but relatively large film: h→ 0, α→ 0.

Here, we only consider the first case. Our goal is to recover a reduced theory which reproduces

the following gross features of experimental observations: (c(x), ε(u(x))) does not depend on the

thickness direction x3, ε(u(x)) has no out-of-plane component, and σ(x) = C(ε−εt)(x) is divergence-

free in the absence of an external field.

We rescale the thin film Ωh into a reference body Ω wherein all characteristic dimensions are of

order 1. Without loss of generality we choose the reference domain to be a cylinder of unit height
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and cross-section S of area A = 1, Ω := S × (0, 1).

X1 = x1, , X2 = x2, X3 =
1

h
x3 (4.54)

C(X) = c(x) (4.55)

∇c(x) = C,α(X)⊗ ep +
1

h
C3 ⊗ e3, α = 1, 2 (4.56)

Energy per unit thickness is

Eh =
E

h
=

1

h

∫
hΩ

{α
2

2
(|∇pC|2 +

1

h2
|C,3|2) + f(C) +W (ε(u), C)}hdΩ (4.57)

Eh =

∫
Ω

{α
2

2
(|∇pC|2 +

1

h2
|C,3|2) + f(C) +W (ε(u), C)}dΩ. (4.58)

Theorem 4.4.1 If ch → c in L2 then W (ch,uch)→W (c,uc).

Proof.

This is proved as part of the existence Theorem 1.1. Here we only specialize it to the thin film

limit. Consider the equilibrium equations:

∇.C(ε− εt) = 0, (4.59)

or equivalently, defining σ(r) = C(ε(r) − εt(r)), r = (x, y, z), in the scaled domain Ω, for every
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[ch, ε(uch)] we have

σhxx,x + σhxy,y +
1

h
σhxz,z = 0 (4.60)

σhyx,x + σhyy,y +
1

h
σhyz,z = 0 (4.61)

σhzx,x + σhzy,y +
1

h
σhzz,z = 0 (4.62)

as h→ 0 this set of equations requires that

σhxz,z → 0 σhyz,z → 0 σhzz,z → 0 (4.63)

1

h
σhxz,z → d1

1

h
σhyz,z → d2

1

h
σhzz,z → d3 (4.64)

where in the case of stress free boundary conditions

σhxz(r)→ 0 σhyz(r)→ 0 σhzz(r)→ 0. (4.65)

So we see that our elastic energy will be of a plane stress form. This will result in:

ch(x)→ c(x) with c,3 = 0 =⇒W (ck,uck)→W2D(c,uc) (4.66)

where

σ2D = C2D
pl stress(ε− εt)2D (4.67)

W2D(c,uc) = (ε(uc)− εt(c))2D
αβσ

2D
αβ α, β ∈ {1, 2}. (4.68)
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For plates which are very large in two directions and very thin in the third direction, a calculation

similar to the one for the 3D case of laminates shows that, g(η) for the isotropic case can be

simplified as

g(η) = (κ− µ)(η1 + η2)2 + 2µ(η2
1 + η2

2); if η1η2 ≤ 0 (4.69)

g(η) =
µ2

κ+ µ
(
κ

µ
|η1 + η2|+ |η1 − η2|)2; otherwise (4.70)

where η1, η2 are the in-plane eigenvalues of η.

Theorem 4.4.2 Let ch,uh be a minimizer of Eh(c,u):

Eh(c,u) =

∫
Ω

{α
2

2
(|∇pc|2 +

1

h2
|c,3|2) + f(c) +W (ε(u), c)}dΩ. (4.71)

Then

lim
h→0

min
A

Eh = min
c,u

∫
Ω

{α
2

2
(|∇pc|2 + f(c) +W2D(c, uc)} (4.72)

where c(x1, x2, x3) = c(x1, x2), i.e., c,3 = 0, and u1(x1, x2, x3) = u1(x1, x2), u2(x1, x2, x3) =

u2(x1, x2), u3(x1, x2, x3) = 0.

Proof.

We first note that for a minimizing sequence

Eh[ch,uh] ≤ C (4.73)
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so that

∫
|∇pch|2 ≤ C,

∫
| 1
h
ch,3|2 ≤ C,

∫
f(ch) ≤ C, (4.74)

so

∇pch ⇀ ∇pc,
1

h
ch,3 ⇀ d, ch ⇀ c in L2. (4.75)

From here we have

ch,3 → c,3 = 0 in L2, ch → c in H1. (4.76)

From the weak convergence of gradients

∇pch = ∇pc+ ahp , ahp ⇀ 0 in L2 (4.77)

1

h
ch,3 = d+ a(3)

p , a(3)
p ⇀ 0 in L2. (4.78)

Next, we want to make these two weak convergences strong. To do this we compare the energy of

E[ch,uh] to E[c,u]. [ We note that if c(x) is not smooth enough we can introduce c̃δ(x) ∈ C∞,

independent of x3, with c̃δ(x)→ c(x) in L2. Then doing the following calculations for an arbitrary

δ and passing δ → 0 at the end we can get the results.]

Using that ch is a minimizing sequence and c,3(x) = 0 =⇒ c,3/h = 0, we have

∫
Ω

{α
2

2
(|∇pch|2 +

1

h2
|ch,3|2) + f(ch) +W (ck,uck)} ≤

∫
Ω

{α
2

2
|∇pc|2 + f(c) +W (c,uc)}. (4.79)



101

First, we note that as ch → c we have
∫
f(ch)→

∫
f(c).

Second, in the proof of existence theorem we showed that for every given ch(x) we can find uh(x)

as a function of ch(x) by minimizing the elastic energy. Now, from the previous theorem, if ch → c

then W (ck,uck)→W2D(c,uc), so we can write

∫
Ω

{α
2

2
(|∇pch|2 +

1

h2
|ch,3|2)} ≤

∫
Ω

{α
2

2
|∇pc|2 +O(h)}, (4.80)

so

∫
Ω

{α
2

2
(|∇pc+ ahp |2 +

1

h2
|ch,3|2)} ≤

∫
Ω

{α
2

2
|∇pc|2 +O(h)}, (4.81)

then

∫
Ω

{(|∇pc|2 + |ahp |2 + 2∇pc ahp +
1

h2
|ch,3|2)} ≤

∫
Ω

{|∇pc|2 +O(h)}. (4.82)

Note that ahp ⇀ 0 in L2, so
∫
∇pc ahp → 0. So we get

∫
Ω

|ahp |2 +
1

h2
|ch,3|2 → 0, (4.83)

that is

∫
Ω

|ahp |2 → 0,

∫
Ω

1

h2
|ch,3|2 → 0, (4.84)
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and

ahp → 0 =⇒ ∇pch → ∇pc in L2 (4.85)

1

h
ch,3 → 0 in L2. (4.86)

From there we can write

Eh → Ethin =

∫
Ω

{α
2

2
(|∇pc|2 + f(c) +W2D(c,uc)}, (4.87)

where c(x) only depends on the plane coordinates, c,3 = 0.

4.4.1 Transition layers in the thin film limit

Upper bound

To construct an upper bound, consider a film Ωh of thickness h and width L, bisected by a transition

layer of width sh. We’re going to study the dependance of sh on h. Let c1, c2 be two concentrations

that minimize the total of electrochemical and elastic energies, that is the large body limit case,

further assume ε1 and ε2 are two 3×3 matrices that minimize the elastic energy density correspond-

ing to the c1, c2, W (G) ≥W (ε1) = W (ε1) = 0 for all G ∈M3×3. Assign ε = ε1 on {x.n < 0} ∩ Ωh

and ε = ε2 on {x.n > sh}∩Ωh. Recall the condition of compatibility for a thin film [Bhattacharya,

James, 1999]

ε2 − ε1 = a⊗ n + b⊗ e3 n.e3 = 0, |n| = 1 (4.88)
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where if a||b then there is a continuous but not-smooth interpolation of the deformation which

makes the elastic energy in the bulk identically zero, by using a suitable choice of b and extending

the deformations into the transition layer up to an inclined plane in the layer. However if a ∦ b

then every interpolation of layer has a positive elastic energy. Here, we make no assumptions on

the compatibility of strains.

A simple interpolation gives

c(x) = λcI + (1− λ)cII (4.89)

and

y(x) = λ(x.n)ε1x + (1− λ(x.n))(ε2x + D) (4.90)

where λ(s) is a smooth transition function,

λ(s) = 1 s ≤ 0 (4.91)

λ(s) = 0 s ≥ sh. (4.92)

Further, for upper bound test function, we assume

|λ
′
| ≤M1/s

h. (4.93)

We have

∇c(x) = λ
′
(cI − cII). (4.94)
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By using the thickness of the interface as predicted earlier, we will have

∫
Ωh

α

2
|∇c(x)|2dx =

α

2
(cI − cII)2

∫
Ωh

|λ
′
|2dx ≤ α

2
(cI − cII)2 M2

1

(sh)2

∫
Ωh

dx = M2αL
h

sh
. (4.95)

The electrochemical energy

∫
Ωh

f(c)dx ≤
∫

Ωh

d1|c(x)|q + d2dx =

∫
Ωh

d1|c(x)|qdx+

∫
Ωh

d2dx

≤ d1c
q
2hs

hL+ d2hs
hL = d3hs

hL (4.96)

where we have assumed c2 > c(x) > c1 without loss of generality.

The elastic energy of the test function

∫
Ωh

Wdx =

∫
Ωh

1

2
(ε(x)− c(x)η).C(ε(x)− c(x)η)dx ≤ 1

2
η.Cη

∫
Ωh

c2(x)dx

≤ c22
2
η.Cη

∫
Ωh

dx =
c22
2
η.Cη hshL. (4.97)

The total energy will be

E ≤M2αL
h

sh
+ d3hs

hL+
c22
2
η.Cη hshL. (4.98)

Now, optimizing the right-hand side with respect to sh, we see that sh is independent of h for

h << 1.

sh =
√
α

√
2M2

2d3 + c22η.Cη
(4.99)
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Substituting for sh, we get the following upper bound on the energy of the transition layer

E ≤ 2hL
√
α
√
M2

√
d3 +

1

2
c22 ηCη. (4.100)

We note that transition layer has energy no less than order h, we do this by finding a lower bound

as follows

E =

∫
Ωh

α

2
|∇c(x)|2 + g(c,uc)dx ≥

∫
Ωh

α

2
|∂c(x)

∂x1
|2 + g(c,uc)dx (4.101)

≥
∫

Ωh

√
α|∂c(x)

∂x1
|
√
g(c,uc)dx = hL

∫
c

√
α
√
g(c,uc) dc, (4.102)

where we have used a2 + b2 ≥ 2ab, and c2 ≥ c(x) ≥ c1 =⇒ ∂c(x)
∂x1

≥ 0.

E ≥
√
αhL

∫
c

√
g(c,uc) dc ≥

√
αhL

∫
c

√
f(c) dc (4.103)

≥
√
αhL

∫
c

√
b1|c|p + b2 dc ≥

√
α
√
b2hL(c2 − c1) (4.104)

That is

E ≥ hL
√
α
√
b2(c2 − c1). (4.105)

4.5 Conclusion

1— Our results show that in the small particle limit the material should be of uniform concen-

tration in the whole particle. This means that nano particles smaller than a critical size should
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show be completely lithiated, Li1−yFePO4, y ∼ 1, or completely delithiated, LixFePO4, x ∼ 0,

and as the elastic energy barrier and interfacial energy barrier are zero, any reaction, including

the unwanted secondary reactions, should happen very fast. Our results are consisted with the

experiments of Delmas (2008). We think the solid solution behavior, as reported by Yet-Ming

Chinag and co-workers and other groups, can be due to the fact that at each stage they are many

particles whit x ∼ 0, y ∼ 1, which results in the overall behavior of any combination of them, and

this explains the confusion of mistaking the behavior with the the false solid solution in any particle.

2— In the large body limit, our study suggests that the material should show laminates of com-

pletely lithiated or delithiated phases, which is observed experimentally, by Chen and Richardson

(2006), and other groups.

3— For thin flat films, the concentration profile in each particle is constant in the thickness,

which is observed experimentally, by Chen and Richardson (2006), and other groups. In this case

the elastic and surface energy barriers are less than the large body limit, however are higher than

that of nano-particles, and show good rate of charge/discharge, as observed experimentally.
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Chapter 5

General Continuum Mechanics of
Elasto-Electro-Chemical Systems
with Moving Boundaries

5.1 Introduction

We model elasto-electro-chemical systems such as conductors, electrodes, and electrolytes near an

equilibrium as non-polarizable semiconductors. Effect of heat and temperature changes are skipped

in this work. Conductors are modeled as an extreme case of semiconductors in which the charges

move extremely fast, such that the charges move so fast to reach the boundaries that no charge

can stay inside the material, and thus the electric field inside the material is zero. This easiness of

charge passage in a conductor is also accountable to explain why no electric field can exist inside a

Faraday’s cage either.

In a metal, there are interactions between the electrons and the lattice vibration. Also there are

collisions between electrons with impurity atoms or with local distortions or defects of the crystal.

Therefore each electron in motion changes its direction of propagation with an average period of 2τ .

Assume an applied electric field while keeping all other state parameters constant. The acceleration
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of each electron due to an applied electric field E is eE/m0. Thus the velocity increment of the

electron during a time period of 2τ is 2τeE/m0, and its time average is τeE/m0. Assuming that

the velocity change before a collision is not maintained after the collision, then the electron current

density due to the electric field is the product of the electric density, ne, and the average velocity

v̄ = τeE/m0,

J = ne2τ/m0E = σE (5.1)

where n is the density of the electrons. σ is called the electric conductivity. It is seen that in a perfect

conductor as the crystal is free of defects and impurities, τ → ∞, so that σ → ∞. The situation

gets complicated when the material is not a perfect conductor or a perfect isolator. It is even

much more complicated when other state parameters, like temperature or chemical concentrations,

change in addition to the electric field.

Introducing space charges and ions density as field (state) variables in addition to deformation,

a continuum theory of elasto-electro-chemical systems is developed. We consider fixed and moving

(first-order phase transformation) boundaries. We assume that no polarization, isothermal condi-

tions, absence of externally applied magnetic field and spontaneous magnetization, or temperature

changes.

5.2 Kinematics

Consider a body in an external electric field, which occupies region Ω ⊂ <3, in the reference

configuration (control volume). Assume that an invertible deformation y : Ω→ <3 brings the body

to the proximity of a conductor Cv ⊂ <3 with fixed potential φ̂ under the action of traction t.
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The deformation gradient is F = ∇xy, and J = detF > 0 almost everywhere in Ω. We further

assume that the conductor Cv is very thin such that it deforms with the body with negligible elastic

energy. Here the dot on a quantity, ξ̇, denotes the material derivative

ξ̇(y(x, t), t) =
dξ

dt
=
∂ξ(y, t)

∂t
+∇yξ(y, t).

dy(x, t)

dt
(5.2)

where d/dt is defined as ∂/∂t|y=x. We call ξ́ = ∂ξ(y, t)/∂t = ∂ξ(y, t)/∂t|y the spatial time derivative

of ξ.

5.3 Deformable solids with mass transport

5.3.1 Conservation of mass

From the Reynolds transport theorem, we get the conservation of mass for an arbitrary volume

control Ω:

d

dt

∫
Ω

Nk0dx =

∫
∂Ω

Nk0(v − vk).mdSx +

∫
R

Rk0dx (5.3)

=

∫
∂Ω

Nk0(v − ṽ).mdSx −
∫
∂Ω

Jk0.mdSx +

∫
R

Rk0dx

where we are working in the reference configuration. Nk0, vk, m are the mass density, velocity field

of species k, and unit outward normal, respectively, and the diffusion flux of species k is defined

by Jk0 = Nk0(vk − ṽ). Rk0 is the rate of generation of material by electrochemical reactions. The

convective velocity, ṽ is defined as

ṽ =

∑
Nk0vk∑
Nk0

. (5.4)
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When there are discontinuities, Γ, we have

d

dt

∫
Ω

Nk0dx =

∫
∂Ω

Nk0v.mdSx −
∫

Ω

∇x.(Nk0ṽ)dx (5.5)

−
∫

Γ

[[Nk0ṽ]].mdSx −
∫

Ω

∇x.Jk0dSx −
∫

Γ

[[Jk0]].mdSx +

∫
Ω

Rk0dx.

We note that

d

dt

∫
Ω

Nk0dx =

∫
Ω

d

dt
Nk0 −

∫
Γ

[[Nk0]]UdSx (5.6)

where U is the speed of discontinuity Γ in the direction of its normal.

In the bulk we will have

dNi0
dt

= −∇x.(Ni0ṽ)−∇x.JNi0 +Ri0 (5.7)

on the discontinuity

− [[Ni0]]U = −[[Ni0ṽ]].m− [[JNi0 ]].m. (5.8)

When there is no net production of mass R0 =
∑
Ri0 = 0, we have

dN0

dt
+∇x.(N0ṽ) = 0 (5.9)

where N0 =
∑
Ni0.

For simplicity we assume that the convective velocity and rate of generation of each species are
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zero, ṽ = 0 and Rk = 0, we will have

Ṅi0 =
dNi0
dt

= −∇x.JNi0 , (5.10)

and

[[Ni0]]U = [[Ji0]].m (5.11)

where u and n are the counterparts of U and m in the current configuration.

5.4 Electrodynamics

5.4.1 Space charge density

At any point in the system in the current configuration, assume Ni to be the density of ions of ith

species (number per unit deformed volume), zi its valency, and e the coulomb charge per electron.

We denote electronic current by q and the ionic conductivity by ziNi, then the total charge density

is

ρ = e
∑

ziNi + q. (5.12)

In the reference configuration, the counterpart of Ni, is defined as Ni0 (number per unit undeformed

volume), then the charge density in the reference configuration is

ρ0 = e
∑

ziNi0 + q0, (5.13)
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where q0 stands for charge carried by electrons. We will assume summation over repeated small

indices, and will not put the
∑

from now on. Similar to what we did for the mass density, we can

do for the electrical charges:

∂ρ

∂t
= −∇y · Jρ (5.14)

and

[[ρ]]u = [[Jρ]].n. (5.15)

In the reference configuration we have

ρ̇0 = −ezi∇xJNi0 + q̇0 = −∇x · Jρ0 (5.16)

and

[[ρ0]]U = [[Jρ0]].m. (5.17)

That is, the total electric charge of an isolated system remains constant regardless of changes within

the system itself. The conservation of charge results in the charge-current continuity equation. More

generally, the net change in charge density Jρ within a volume of integration Ω is equal to the area

integral over the current density Jρ on the surface of the area ∂Ω, which is in turn equal to the net

current I:

− ∂

∂t

∫
Ω

ρ dV =

∫
∂

ΩJρ · n dS = I. (5.18)
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Thus, the conservation of electric charge, as expressed by the continuity equation, gives the result:

I = −dQ
dt

(5.19)

where I is the net outward current through a closed surface and Q is the electric charge contained

within the volume defined by the surface. The charge transferred between time t0 and t is obtained

by integrating both sides:

Q = −
∫ tf

to

I dt. (5.20)

5.4.2 Electric field

The space charges in the body as well as the charges on the surfaces of conductors generate an

electro-magnetic field in all space. In electrolyte solutions, the presence of diffusion causes certain

phenomena which do not occur in solid conductors. At any point in <3 we have

∇y.(ε0∇yφ) = −ρχ (y(Ω, t)) in R3\Cv (5.21)

∇yφ = 0 on Cv (5.22)

subject to

φ = φ̂ on Cv (5.23)
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and

φ→ 0 as | y |→ ∞ (5.24)

where ε0 = 8.854×10−12 C2/Nm2 is the permittivity of the free space, and χ(D) is the characteristic

function of domain D. φ is the flux of the electric field through some surface, not necessarily closed.

In the integral form of Maxwell’s equation, it can be shown that for each ψ ∈ H1(R3), φ ⊂

H1(<3) satisfies the following:

∫
<3

(ε0∇yφ).∇yψdy =

∫
y(Ω)

ρψdy +

∫
∂Cv

σψdSy (5.25)

φ = φ̂ on Cv (5.26)

and from the first and the last equations we have the conservation of charge.

5.4.3 Discontinuities in the electric field

Although φ is continuous in <3, other quantities like ∇yφ can be discontinuous across some in-

terfaces, so we need to discuss the jump conditions in a more general setting. In particular, we

are interested in time-dependent processes that influence the dissipation rate. We note that the

deformation y could depend on time, and we solve Maxwell’s equations at each time to find the

electric potential.

Consider any arbitrary curve ŷ(α) on the interface at time t0 parameterized by α. We have,
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Figure 5.1: A discontinuity separating two regions. Each region can have different elastic or electric
behavior. (Xiao and Bhattacharya, 2008)

from the continuity of φ,

φ−(ŷ(α)) = φ+(ŷ(α)). (5.27)

Differentiating it with respect to α, we have

[[∇yφ]].
∂ŷ

∂α
= 0. (5.28)

Since this holds for any curve on the interface, we obtain continuity of ∇yφ along the tangent, i.e.,

[[∇yφ]].t = 0 ∀ t̂.n̂ = 0. (5.29)



117

So the jump in the electric field can be only in the normal direction to the interface

[[ε0∇yφ]] = −σn̂ (5.30)

The jump condition across any interface, Γ, separating D+ and D− is

[[−ε0∇yφ]].n̂ = σ (5.31)

where σ : Γ → < measurable is the surface charge density on the interface. n̂ is the unit norm of

the interface, pointing to D+ from D−. The free charge on the boundary, QΓ, will be

∫
Γ

σdSy = QΓ. (5.32)

For a fixed boundary, consider a material point x on the interface. From the continuity of electric

potential φ we have

φ− (y(x, t), t) = φ+ (y(x, t), t) (5.33)

by differentiating with respect to time, we have

φ̇− = φ̇+ or φ́− +∇yφ
−.v = φ́+ +∇yφ

+.v (5.34)

where, φ̇ denotes the material time derivative of φ, and φ́ denotes the spatial time derivative of φ.
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Hence,

[[φ́]] = −[[∇yφ]].v (5.35)

where v is the particle velocity of the material point x

v =
∂y(x, t)

∂t
|x. (5.36)

Pulling back the result of the last section, we find

[[ε0φ́0]] = σ(v.n̂). (5.37)

For a moving boundary, consider a material point x on the discontinuity. From the continuity of

electric potential φ we have

φ− (x, t) = φ+ (x, t) . (5.38)

where φ is the same in both reference and current configurations. By differentiating with respect

to time, we have

φ̇− = φ̇+ or φ́− +∇xφ
−.V = φ́+ +∇xφ

+.V (5.39)

Hence,

[[φ́]] = −[[∇xφ]].V (5.40)
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where V is the particle velocity of the material point x, such that U = V.m. From the last section

we find

[[−ε0∇xφ]].m̂ = [[−ε0∇yφ]].n̂ = σ (5.41)

so

[[−ε0∇xφ]].m̂ = σ (5.42)

and from there

[[ε0φ́]] = σ(V.m̂) = Uσ. (5.43)

5.5 Rate of dissipation of the system

The rate of dissipation of the whole system D is defined as the difference between the rate of

external working, F , and the rate of the change of the total energy, dE/dt:

D = F − dE
dt
. (5.44)

The rate of external working F includes the mechanical work done by external forces, the electric

work done by applying an external field, and chemical and electrical (current) energy fluxes into

the system.

The total energy of the system consists of two parts: the energy stored in the material and the
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electrostatic field energy generated by external and internal sources, i.e.,

E =

∫
Ω

W0dx+
1

2

∫
<3

ε0 | ∇yφ |2 dy (5.45)

where W0 is the stored energy per unit reference volume in the material and should satisfy frame

indifference and material symmetry.

We will divide the dissipation as D = D1 + D2, where D1 is the elasto-chemical part of the

dissipation and D2 is the electrical part of it.

5.6 Elasto-chemical dissipation

F1 =

∫
y(∂Ω)

t.vdSy −
∫
∂Ω

µNi0JNi0 .m̂dSx (5.46)

E1 =

∫
Ω

W0dx (5.47)

so we have

D1 =

∫
y(∂Ω)

t.vdSy −
d

dt

∫
Ω

W0dx−
∫
∂Ω

µNi0JNi0 .m̂dSx (5.48)

µNi0 are the chemical potential carried by the flux of the ith ions Ni0, y(∂sΩ) is the part of boundary

in the current configuration on which traction, t, acts. dSy and dSx are the differential area in

the current and reference configuration, respectively, m̂ the normal to surface in the reference
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configuration, and n̂ denotes its counterpart in the current configuration. We will have

D1 =

∫
y(∂Ω)

t.vdSy −
∫

Ω

Ẇ0dx+

∫
Γ

[[W0]]UdΓ−
∫
∂Ω

µNi0JNi0 .m̂dSx (5.49)

using divergence theorem:

D1 =

∫
y(∂Ω)

t.vdSy −
∫

Ω

Ẇ0dx +

∫
Γ

[[W0]]UdΓ (5.50)

−
∫

Ω

∇x.(µNi0JNi0)dSx −
∫

Γ

[[µNi0JNi0 ]].mdSx

from there

D1 =

∫
y(∂Ω)

t.vdSy −
∫

Ω

Ẇ0dx +

∫
Γ

[[W0]]UdΓ (5.51)

−
∫

Ω

µNi0∇x.(JNi0)dSx −
∫

Ω

∇x(µNi0).JNi0dSx −
∫

Γ

[[µNi0JNi0 ]].mdSx.

W0 is the stored energy per unit reference volume in the material, and should satisfy frame indif-

ference and material symmetry.

We make the constitutive assumption that W0 = W0(∇xy, Ni0, q0), with a possible jump at the

phase boundaries, define the deformation gradient, F = ∇y, we have

∫
Ω

Ẇ0(Ni0,∇y)dx =

∫
Ω

∂W0

∂Ni0
Ṅi0dx+

∫
Ω

∂W0

∂q0
q̇0dx+

∫
Ω

∂W0

∂F
∇xvdx. (5.52)

We will use divergence theorem and push forward to simplify the last term. We also note that

∂F

∂t
=

∂

∂t
∇xy(x, t) = ∇x

∂y

∂t
= ∇xv.
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The elasto-chemical part of dissipation is then

D1 =

∫
y(∂Ω)

t.vdSy −
∫

Ω

∂W0

∂Ni0
Ṅi0dx−

∫
Ω

∂W0

∂q0
q̇0dx+

∫
Γ

[[W0]]UdΓ

−
∫
∂y(Ω)

(
1

J

∂W0

∂F
Fn).vdSy +

∫
Γ

[[
∂W0

∂F
]]m. < v > dSx

−
∫

Γ

<
∂W0

∂F
> m.[[F]]mUdSx +

∫
y(Ω)

(
∇y.(

1

J

∂W0

∂F
F)

)
.vdy

−
∫

Ω

µNi0∇.(JNi0)dSx −
∫

Ω

∇(µNi0).JNi0dSx −
∫

Γ

[[µNi0JNi0 ]].mdSx (5.53)

using the conservation of mass, as stated earlier, we have

D1 =

∫
y(∂Ω)

t.vdSy −
∫

Ω

∂W0

∂Ni0
Ṅi0dx−

∫
Ω

∂W0

∂q0
q̇0dx+

∫
Γ

[[W0]]UdΓ

−
∫
∂y(Ω)

(
1

J

∂W0

∂F
Fn).vdSy +

∫
Γ

[[
∂W0

∂F
]]m. < v > dSx

−
∫

Γ

<
∂W0

∂F
> m.[[F]]mUdSx +

∫
y(Ω)

(
∇y.(

1

J

∂W0

∂F
F)

)
.vdy

−
∫

Ω

∇xµNi0 .JNi0dSx +

∫
Ω

µNi0Ṅi0dSx −
∫

Γ

[[µNi0JNi0 ]].mdSx. (5.54)

5.7 Electrical dissipation

We idealize Cv as an interface Sv = y(Sv0) between the vacuum and the material y(Ω) on which

the potential is fixed. The interface where y(Ω) has direct contact with vacuum is denoted by

Sf = ∂y(Ω) \ Sv.

F2 = φ̂
d

dt

∫
y(∂Cv)

σdSy −
∫
∂Ω

µρ0Jρ0 .m̂dSx (5.55)

E2 =
1

2

∫
<3

ε0 | ∇yφ |2 dx (5.56)
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The electrical dissipation is

D2 = φ̂
d

dt

∫
y(∂Cv)

σdSy −
d

dt

1

2

∫
<3

ε0 | ∇yφ |2 dx−
∫
∂Ω

µρ0Jρ0 .m̂dSx. (5.57)

To find the expression for the electric dissipation, we first note that, as the electric energy exists in

all space, the calculation of the change of electro-static field energy needs some manipulation. We

follow a procedure similar to that used by Xiao and Bhattacharya (2008).

5.7.1 Rate of change of field energy: step 1

From the integral form of Maxwell’s equation, by setting Ψ = φ, we have

∫
<3

ε0∇yφ.∇yφdy =

∫
y(Ω)

φρ+

∫
Sv

φ̂σdSy (5.58)

therefore

d

dt

∫
<3

ε0 | ∇yφ |2 dy =
d

dt
{
∫
y(Ω)

φρdy}+ φ̂
d

dt

∫
Sv

σdSy =

=

∫
y(Ω)

φ̇ρdy +

∫
y(Ω)

φρ̇dy + φ̂
d

dt

∫
Sv

σdSy −
∫
y(Γ)

[[ρφ]]v.ndSy

=

∫
y(Ω)

(φ́+ v.∇yφ)ρ dy +

∫
Ω

φρ̇0dx+ φ̂
d

dt

∫
Sv

σdSy −
∫

Γ

[[ρ0φ]]UdSx (5.59)

where we have used ρo dx = ρ dy, thus ρo = ρ det(F) in the last equality.
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5.7.2 Rate of change of field energy: step 2

By using the Reynold’s transport theorem,

d

dt
(
1

2

∫
<3

ε0 | ∇yφ |2 dy)

=
ε0
2

∫
y(Ω+)

∂

∂t
| ∇yφ |2 dy +

ε0
2

∫
y(Ω−)

∂

∂t
| ∇yφ |2 dy −

ε0
2

∫
y(Γ)

[[| ∇yφ |2]]vdSy

+
ε0
2

∫
<3\y(Ω)

∂

∂t
| ∇yφ |2 dy −

ε0
2

∫
∂y(Ω)

[[| ∇yφ |2]]v.ndSy

=

∫
<3

ε0∇yφ.∇yφ́dy −
ε0
2

∫
∂y(Ω)

[[| ∇yφ |2]]v.ndSy −
ε0
2

∫
y(Γ)

[[| ∇yφ |2]]v.ndSy. (5.60)

Let S = ∂y(Ω), then to simplify the first term, we multiply φ́ on both sides of the differential form

of the Maxwell’s equation, and integrate over <3 to obtain

∫
y(Ω)

ρφ́dy =

∫
<3

ρφ́dy = −
∫
<3

∇y.(ε0∇yφ)φ́dy. (5.61)

The right side can be split to two parts on which divergence theorem can be applied:

∫
y(Ω)

ρφ́dy =

∫
y(Ω)

∇y.(−ε0∇yφ)φ́dy +

∫
<3\(y(Ω))

∇y.(−ε0∇yφ)φ́

=

∫
y(Ω)

∇yφ́.(ε0∇yφ)dy +

∫
<3\y(Ω)

∇yφ́.(ε0∇yφ)dy

+

∫
S−

φ́(−ε0∇yφ).n̂dSy +

∫
S+

φ́(−ε0∇yφ).(−n̂)dSy

+

∫
y(Γ−)

φ́(−ε0∇yφ).n̂dSy +

∫
y(Γ+)

φ́(−ε0∇yφ).(−n̂)dSy

=

∫
<3

ε0∇yφ́.∇yφdy +

∫
S

[[φ́(ε0∇yφ)]].n̂dSy +

∫
y(Γ)

[[φ́(ε0∇yφ)]].n̂dSy (5.62)



125

where S− , S+ are the inner and outer surfaces of y(Ω), respectively. So we will have

∫
<3

ε0∇yφ.∇yφ́dy =

∫
y(Ω)

φ́ρdy −
∫
S

[[ε0φ́∇yφ]].n̂dSy −
∫
y(Γ)

[[ε0φ́∇yφ]].n̂dSy. (5.63)

From here we will have

d

dt
(
1

2

∫
<3

ε0 | ∇yφ |2 dy) =

∫
y(Ω)

φ́ρdy −
∫
S

[[ε0φ́∇yφ]].n̂dSy −
∫
y(Γ)

[[ε0φ́∇yφ]].ndy(Γ)

− ε0
2

∫
y(Γ)

[[| ∇yφ |2]]v.n̂dSy −
ε0
2

∫
S

[[| ∇yφ |2]]v.n̂dSy. (5.64)

Further we note that

−
∫
S

[[ε0φ́∇yφ]].n̂dSy −
ε0
2

∫
S

[[| ∇yφ |2]]v.n̂dSy

=

∫
S

< φ́ > [[−ε0∇yφ]].n̂dSy +

∫
S

[[φ́]] < −ε0∇yφ > .n̂dSy −
∫
S

ε0(< ∇yφ > .[[∇yφ]])v.n̂dSy

=

∫
S

< φ́ > σdSy −
∫
S

ε0[[φ́]] < ∇yφ > .n̂dSy −
∫
S

ε0(< ∇yφ > .[[∇yφ]])(v.n̂)dSy

=

∫
S

< φ́ > σdSy −
∫
S

ε0

(
[[φ́]] < ∇yφ > .n̂ + [[∇yφ]]v. < ∇yφ > n̂

)
dSy (5.65)
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where we used [[ab]] = [[a]] < b > + < a > [[b]] and the jump condition. This can also be written

as

−
∫
S

[[ε0φ́∇yφ]].n̂dSy −
ε0
2

∫
S

[[| ∇yφ |2]]v.n̂dSy

=

∫
S

< φ́ > σdSy −
∫
S

ε0

(
[[φ́]] + [[∇yφ]]v

)
. < ∇yφ > n̂dSy

=

∫
S

< φ́ > σdSy −
∫
S

ε0[[φ́+∇yφv]]. < ∇yφ > n̂dSy

=

∫
S

< φ́ > σdSy =

∫
S

(φ̇− v. < ∇yφ >)σdSy =

∫
S

φ̇σdSy −
∫
S

v.(∇yφ
− +

1

2
[[∇yφ]])σdSy

=

∫
S

φ̇σdSy −
∫
S

v.∇yφ
−σdSy +

1

2

∫
S

σ2

ε0
(v.n̂)dSy. (5.66)

We introduce the Maxwell’s stress tensor as

TM = ε0E⊗E− ε0
2

E.EI (5.67)

where E = −∇yφ is the electric field. Note that, the discontinuity of E across an interface leads to

the discontinuity of TM .

[[TM n̂]] = ε0[[E⊗E− 1

2
E.EI]] = ε0(< E > [[E.n̂]] + [[E]] < E > .n̂− (< E > .[[E]])n̂)

=< E > σ + [[E]] (ε0 < E > .n̂)− ε0(< E > .[[E]])n̂

= (E− +
[[E]]

2
)σ = (E− +

[[E]]

2
)σ = E−σ +

1

2ε0
(σ)2n̂, (5.68)
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where < Y >= Y++Y−

2 .

We have

−
∫
S

[[ε0φ́∇yφ]].n̂dSy −
ε0
2

∫
S

[[| ∇yφ |2]]v.n̂dSy

=

∫
S

φ̇σdSy +

∫
S

[[TM n̂]].vdSy =

∫
S

[[TM n̂]].vdSy (5.69)

where we used φ̇ = 0 on Sv. Finally we will have

d

dt

(
1

2

∫
<3

ε0|∇yφ|2
)

=

∫
y(Ω)

φ́ρdy +

∫
S

[[TM n̂]].vdSy +

∫
y(Γ)

[[TM n̂]][[F]] u dSy. (5.70)

5.7.3 Rate of change of field energy: step 3

Now subtracting the result from step 2 from that of step 1, we obtain

d

dt

(
1

2

∫
<3

ε0|∇yφ|2
)

=

∫
Ω

φρ̇0dx +

∫
y(Ω)

v.∇yφρdy + φ̂
d

dt

∫
Sv

σdSy −
∫
∂y(Ω)

[[TM n̂]].vdSy

−
∫
y(Γ)

[[TM n̂]][[F]] u dSy +

∫
y(Γ)

[[TM n̂]]n. < v > dSy −
∫

Γ

[[ρ0φ]]UdΓ. (5.71)
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5.8 Rate of dissipation: the final expression

Putting together the elasto-chemical dissipation and electric dissipation, we now have the final

expression for the rate of dissipation of the whole system:

D =

∫
y(∂Ω)

t.vdSy −
∫

Ω

∂W0

∂Ni0
Ṅi0dx−

∫
Ω

∂W0

∂q
q̇dx+

∫
Γ

[[W0]]UdSx

−
∫
∂y(Ω)

(
1

J

∂W0

∂F
Fn).vdSy +

∫
Γ

[[
∂W0

∂F
]]m. < v > dSx

−
∫

Γ

<
∂W0

∂F
> m.[[F]]mUdSx +

∫
y(Ω)

(
∇y.(

1

J

∂W0

∂F
F)

)
.vdy

−
∫

Ω

∇xµNi0 .JNi0dSx +

∫
Ω

µNi0Ṅi0dSx −
∫

Γ

[[µNi0JNi0 ]].mdSx

−
∫

Ω

φρ̇0dx−
∫
y(Ω)

v.∇yφρdy +

∫
y(Γ)

[[TM ]]n. < v > dSy

+

∫
∂y(Ω)

[[TM n̂]].vdSy +

∫
y(Γ)

[[TM n̂]].[[F]]udSy +

∫
Γ

[[ρ0φ]]UdSx

−
∫

Ω

∇xµρ0 .Jρ0dSx +

∫
Ω

µρ0 ρ̇0dSx −
∫

Γ

[[µρ0Jρ0 ]].mdSx (5.72)

or equivalently

D =

−
∫

Ω

∇xµρ0 .Jρ0dSx +

∫
Ω

µρ0 ρ̇0dSx −
∫

Ω

∂W0

∂Ni0
Ṅi0dx

−
∫

Ω

∂W0

∂q
q̇dx−

∫
Ω

∇xµNi0 .JNi0dSx +

∫
Ω

µNi0Ṅi0dSx −
∫

Ω

φρ̇0dx

−
∫
y(Ω)

v.∇yφρdy +

∫
y(Ω)

(
∇y.(

1

J

∂W0

∂F
F)

)
.vdy

+

∫
y(∂Ω)

t.vdSy −
∫
∂y(Ω)

(
1

J

∂W0

∂F
Fn).vdSy +

∫
∂y(Ω)

[[TM n̂]].vdSy

+

∫
y(Γ)

[[TM n̂]][[F]]udSy +

∫
Γ

[[
∂W0

∂F
+ T 0

M ]]m. < v > dSx −
∫

Γ

<
∂W0

∂F
> m.[[F]]mUdSx

+

∫
Γ

[[W0]] U dSx +

∫
Γ

[[ρ0φ]]UdSx −
∫

Γ

[[µρ0Jρ0 ]].mdSx −
∫

Γ

[[µNi0JNi0 ]].mdSx. (5.73)
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We use ndSy = Jm.F−1dSx, and define the pull back of Maxwell’s stress tensor as

JTMF−1 = T0
M or TM =

1

J
T0
MF (5.74)

so we have

D =

−
∫

Ω

∇xµρ0 .Jρ0dSx −
∫

Ω

∇xµNi0 .JNi0dSx

+

∫
Ω

(
µρ0 ρ̇0 −

∂W0

∂Ni0
Ṅi0 −

∂W0

∂q
q̇ + µNi0Ṅi0 − φρ̇0

)
dx

+

∫
y(Ω)

(
∇y.(

1

J

∂W0

∂F
F + TM )

)
.vdy

+

∫
y(∂Ω)

(
t− (

1

J

∂W0

∂F
Fn) + [[TM n̂]]

)
.vdSy

+

∫
Γ

(
([[T0

M ]]− < ∂W0

∂F
>)m.[[F]]m + [[W0]] + [[ρ0φ]]

)
UdSx

+

∫
Γ

[[
∂W0

∂F
+ T0

M ]]m. < v > dSx −
∫

Γ

[[µρ0Jρ0 ]].mdSx −
∫

Γ

[[µNi0JNi0 ]].mdSx (5.75)

where we also used

−ρ∇yφ = −ρφ,i =− ε0φiEj,j = −ε0(φ,ijEj − φ,ijEj + φ,iEj,j)

= −ε0(φ,ijEj + φ,iEj,j + φ,ijφ,j) = ε0(−φ,iEj),j − ε0(
1

2
φ,kφ,kδij),j

= ε0(EiEj −
1

2
| ∇yφ |2 δij),j = ∇y.(ε0E⊗E− ε0

2
E.EI)

= ∇y.TM . (5.76)
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We further note that

[[µρ0Jρ0 ]].m =< µρ0 > [[Jρ0 ]].m + [[µρ0 ]] < Jρ0 > .m (5.77)

[[Jρ0 ]].m = [[ρ0]]U (5.78)

< Jρ0 > .m =< ρ0 > U, (5.79)

so the last two terms in the dissipation can be written as

< µρ0 > [[ρ0]]U + [[µρ0 ]] < Jρ0 > .m+ < µNi0 > [[Ni0]]U + [[µNi0 ]] < JNi0 > .m

= ([[µρ0 ]] < Jρ0 > +[[µNi0 ]] < JNi0 >) .m + (< µρ0 > [[ρ0]]+ < µNi0 > [[Ni0]])U

= ([[µρ0 ]] < ρ0 > +[[µNi0 ]] < Ni0 > + < µρ0 > [[ρ0]]+ < µNi0 > [[Ni0]])U. (5.80)

We further note that ρ = eziNi + q, µρ = {µPNi0 , µq}, so we have

µρ0i ˙ρi0 = µPNi0 eziṄi0 + µq q̇0 (5.81)

∇µρ0i .Jρ0i = ∇µPNi0 .eziJNi0 +∇µqJq0 . (5.82)
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As eziµPNi0 and µNi0 are not independent, we can include one in the other and refer to the total

effect as µ̃Ni0 = eziµPNi0 + µNi0 . The rate of total dissipation is

D =

−
∫

Ω

∇xµq0 .JqdSx −
∫

Ω

∇xµ̃Ni0 .JNi0dSx

+

∫
Ω

(
µq0 q̇0 −

∂W0

∂Ni0
Ṅi0 −

∂W0

∂q0
q̇0 + µ̃Ni0Ṅi0 − φ(eziṄi0 + q̇0)

)
dx

+

∫
y(Ω)

(
∇y.(

1

J

∂W0

∂F
F + TM )

)
.vdy

+

∫
y(∂Ω)

(
t− 1

J

∂W0

∂F
Fn + [[TM n̂]]

)
.vdSy

+

∫
Γ

(
([[T0

M ]]− < ∂W0

∂F
>)m.[[F]]m + [[W0]] + [[ρ0φ]]

)
UdSx

+

∫
Γ

(−[[µq0 ]] < q0 > −[[µ̃Ni0 ]] < Ni0 > − < µq0 > [[q0]]− < µ̃Ni0 > [[Ni0]])UdSx

+

∫
Γ

[[
∂W0

∂F
+ T0

M ]]m. < v > dSx. (5.83)

From the total dissipation inequality we can see that the dissipation of the system has two con-

tributions: dissipation caused by the diffusion of ions and charges, and the contribution from the

deformation of the body.

5.9 Governing equations

According to the second law of thermodynamics specialized to isothermal processes which we are

currently considering, the rate of dissipation D should always be greater or equal to zero. Notice

that in the last expression each term is a product of conjugate pairs: generalized velocity (time rate

of change of some quality or flux of some quantity) multiplied by a generalized force (a quantity

that depends on the state and not the rate of change of the state). Arguing as Coleman and Noll
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(1963) to obtain the governing equations, specifically by considering various processes that have

the same state at some instant of time but different rates and insisting that D ≥ 0 for all these

processes, we conclude that

(∇µq.Jq +∇xµ̃Ni0 .JNi0) ≤ 0 in Ω. (5.84)

We also have

µ̃Ni0 −
∂W0

∂Ni0
− eziφ = 0 in Ω, (5.85)

and also

µq −
∂W0

∂q
− φ = 0 in Ω, (5.86)

and

[[σ + TM ]].n = 0 on ∂Ω. (5.87)

We recall that the Cauchy stress tensor is defined as

σ =
1

J
(
∂W0

∂F
)FT , (5.88)

so

∇y.(σ + TM ) = 0 in y(Ω), (5.89)
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and

σn̂− [[TM n̂]]− tχ(y(∂sΩ)) = 0 on ∂y(Ω). (5.90)

We note that conservation of angular momentum requires the sum σ+TM to be symmetric, however

there is no requirement for either part to be symmetric by itself.

σn̂ + TMn = 0 on y(Γ) (5.91)

We have

µ̃Ni0 =
∂W0

∂Ni0
+ eziφ, (5.92)

µq =
∂W0

∂q
+ φ. (5.93)

We see that the chemical potential of ions consists of two parts: a compositional contribution

∂W0/∂Ni0 which includes chemical and elastic energies, and an electrostatic contribution eziφ.

Note that the effect of stress field is implicit in this part. In this work we assume that ∂W0

∂q = 0, so

µq = φ.

In order to satisfy the inequalities we make further constitutive assumption that (summation

on repeated indices J over all ions, excluding electrons)

JNI0 = −KIJNJ0∇xµNJ0
−KI,q∇xφ, (5.94)
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and

i = Jq = −Kq∇xφ−Kq,J∇xµNJ0
, (5.95)

where the non-negative coefficients K can have very different values for different charged species,

(diffusion of free charges (electrons) is usually much faster than that of the ions. The condition on

KIJ ,KJI is that,

JNi0 .∇xµNi0 ≤ 0 in Ω, (5.96)

which shows that we should have (Onsager’s reciprocal relation)

KIJ = −KJI for any I, J. (5.97)

The same way we should have

KI,q = −Kq,I for any I. (5.98)

In the special case that the species chemical potentials are continuous across the discontinuity curve,

Γ, we have

U = KP [[W − ∂W

∂Ni0
Ni0 −

∂W

∂q
q − (T0

M +
∂W

∂F
)F + ρ0φ]] on Γ (5.99)

for a positive coefficient KP .

So the driving force, or configurational force or the J-integral, for any discontinuity, say a crack
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or a phase boundary in an elasto-electro-chemistry system, including semiconductors is

F = [[W − ∂W

∂Ni0
Ni0 −

∂W

∂q
q − (T0

M +
∂W

∂F
)F + ρ0φ]]. (5.100)

Note that we could consider W0(Ni0,F,E). This would add a term ∂W
∂E Ė to the dissipation.

Dissipation being always non-negative would require ∂W
∂E = 0 which shows that no electric energy

is stored in a neutral material.
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