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ABSTRACT 

Behavioral responses to wind are thought to play a critical role in controlling the 

dispersal and population genetics of wild Drosophila species, as well as their navigation 

in flight, but their underlying neurobiological basis is unknown.  I show that Drosophila 

melanogaster, like wild-caught Drosophila strains, exhibits robust wind-induced 

suppression of locomotion (WISL), in response to air currents delivered at speeds 

normally encountered in nature.  Furthermore, I identify wind-sensitive neurons in the 

Johnston’s organ (JO), an antennal mechanosensory structure previously implicated in 

near-field sound detection.  Using Gal4 lines targeted to different subsets of JO neurons, 

and a genetically encoded calcium indicator, I show that wind and near-field sound 

(courtship song) activate distinct JO populations, which project to different regions of the 

antennal and mechanosensory motor center (AMMC) in the central brain.  Selective 

genetic ablation of wind-sensitive JO neurons in the antenna abolishes WISL behavior, 

without impairing hearing.  Different neuronal sub-populations within the wind-sensitive 

population, moreover, respond to different directions of arista deflection caused by 

airflow and project to different regions of the AMMC, providing a rudimentary map of 

wind direction in the brain.  Importantly, sound- and wind-sensitive JO neurons exhibit 

different intrinsic response properties: the former are phasically activated by small, 

bidirectional displacements of the aristae, while the latter are tonically activated by 

unidirectional, static deflections of larger magnitude.  These different intrinsic properties 

are well suited to the detection of oscillatory pulses of near-field sound and laminar 

airflow, respectively.  These data identify wind-sensitive neurons in JO, a structure that 
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has been primarily associated with hearing, and reveal how the brain can distinguish 

different types of air particle movements, using a common sensory organ. 
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Introduction 

All animals have evolved to respond rapidly to various sensory stimuli that 

threaten or enhance their survival and reproduction. At any moment in nature, animals 

have to figure out details about various aspects of stimuli surrounding them to make a 

judgment about the current status of the environment, whether the stimuli pose a threat or 

an opportunity to feed or mate.  For example, animals may need to figure out whether the 

predator in the far distance is moving or stationary.  How fast is it moving?  At the same 

time, they might have to figure out from which direction a conspecific calling song is 

coming, and whether it is getting louder or quieter.  They need to be able to detect and 

discriminate biologically relevant stimuli accurately and quickly to maximize their 

survival. So, how did the animal’s nervous system evolve to facilitate rapid and accurate 

sensory information processing?  Are there common strategies used by many sensory 

systems from various organisms for efficient sensory information processing? 

One of the goals in neurobiology is to understand how sensory information is 

processed, from its initial detection in the periphery to the eventual generation of percepts 

that drive behavioral outputs.  There are many types of mechanisms and strategies that 

may be involved in sensory information processing.  Some mechanisms might be specific 

for processing certain types of sensory stimuli, while others might be common to all 

sensory systems, since they are essential for efficient sensory information processing.  

Among all mechanisms and strategies used by various sensory systems, which are the 

critical components for accurate and rapid sensory information processing?  To provide 

insight into these questions, I will discuss first the general mechanisms involved in 

sensory systems, and second the common mechanisms used by various systems to 
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facilitate efficient sensory information processing, by comparing three types of 

mammalian sensory systems.  Finally, I will also compare mammalian and insect sensory 

systems to discuss whether there are common strategies used for efficient and accurate 

sensory information processing by different organisms across phylogeny.  

 

The sensory nervous system 

Our brain receives sensory information about sight, sound, taste, touch, smell, 

temperature, balance, and limb position, among other stimuli from specialized sensory 

organs in the peripheral nervous system.  Each sensory organ contains specialized 

sensory receptor cells whose major function is to transform physical or chemical stimuli 

into a code of neural impulses and transmit these electrical signals to neurons in the 

higher-order processing centers for further computations and transformations (Bloom and 

Lazerson, 1988; Kandel et al., 2000).  In some systems, the receptor cells have the 

afferent fibers projecting to the second-order processing center (i.e., olfaction), while in 

other systems (i.e., hearing and gustation), the receptor cells do not have fibers, but they 

communicate to other fiber-bearing cells that project to the central nervous system 

(Norgren, 1983; Rusznak and Szucs, 2009; Sullivan et al., 1995).  After multiple 

transformations in the higher order processing centers, the brain pieces together all of the 

information it receives from various sensory modalities at any given moment to construct 

a coherent percept of the external world (Bloom and Lazerson, 1988; Kandel et al., 

2000). 

Sensory receptor cells convey four basic types of information about the stimulus: 

modality, time, intensity, and location (Fechner, [1860] 1966).  All four of these 
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elementary attributes of stimuli influence our sensory perception in important ways, and 

how our sensory systems encode these elements impacts their efficiency. We will now 

briefly look at the four basic attributes of stimuli encoded by the sensory receptors.  

 

Encoding modality 

Modality defines the general classes of stimulus that receptors are specialized to 

recognize. For example, vision, audition, olfaction, gustation, and somesthesia (which 

includes tactile, pain, temperature, itch, proprioception, and visceral sense) are the major 

modalities that humans experience.  Each modality is encoded by a specific class of 

receptors, and usually no overlapping usage of receptors is observed between modalities 

(Kandel et al., 2000).  For each modality, there are several constituent qualities or 

submodalities, which are encoded by different receptors.  For example, gustation has five 

constituent qualities: sweet, sour, salty, bitter, and Umami, and are encoded by different 

gustatory receptors (Chandrashekar et al., 2006; Montell, 2009).  Thus, each modality is 

represented by the ensemble of receptors that belong to a specific class. 

 

Encoding stimulus intensity 

Sensory receptors also encode information about the intensity of stimulus. The 

intensity of a stimulus refers to its magnitude or strength, which contributes to the 

salience of the stimulus under certain circumstances.  For example, the louder the sound 

of a predator or the stronger the scent of a predator, the closer the danger is for many 

animals in nature.  Thus, accurate knowledge of the intensity of a stimulus directly relates 

to the survival of animals in nature.   



 5 

The encoding of stimulus intensity is usually achieved by varying the firing 

frequency of the sensory afferent fibers (Adrian and Zotterman, 1926).  When the 

stimulus magnitude increases, the firing frequency of the afferent fibers also increases.  

Moreover, the stronger the stimulus, the greater the number of afferent fibers (and 

receptors) that are activated; thus, intensity of stimulus is coded by the firing frequency 

of an ensemble of afferent fibers (and sensory receptor cells).  

The lowest possible stimulus magnitude that an organism can detect is reflected in 

the activation threshold of the sensory receptors, and is related to the sensitivity of the 

system.  In order to truly increase the sensitivity of the system, the receptors should be 

able to detect both low stimulus intensities and a wide dynamic range of stimulus 

intensities.  Different sensory systems have developed different mechanisms to improve 

sensitivity, as will be discussed later in this chapter. 

 

Encoding stimulus time 

 The duration and temporal properties of a stimulus (i.e., the rate at which the 

stimulus intensity increases or decreases) are encoded by various types of receptors with 

different response properties (i.e., adaptation rate and activation threshold).  In the 

mammalian glabrous skin, there are several types of mechanoreceptor structures, 

including the slowly adapting Merkel discs, rapidly adapting Meissner’s corpuscles and 

Pacinian corpuscles, that encode different temporal aspects of light touch stimulation 

(Johnson, 2001; Johnson and Hsiao, 1992).  For example, when a probe touches the skin 

for several seconds, the initial spike discharge reflects both the total amount of pressure 

applied to the skin and the speed at which the skin is indented.  The acceleration and 
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velocity of skin indentation are encoded by the rapidly adapting Meissner’s corpuscles 

and Pacinian’s corpuscles, which respond only at the beginning and end of the stimulus, 

and are specialized to encode the rate at which stimulus is applied or removed 

(Loewenstein and Mendelson, 1965; Torre et al., 1995).  In contrast, the stimulus 

duration is encoded by the slowly adapting Merkel discs, which are able to respond 

throughout continuous prolonged stimulation (Vallbo and Johansson, 1984).  The 

activation of rapidly adapting receptors at the beginning and end of stimulation provide a 

information about the changing sensory environment while the activation of slowly 

adapting receptors provide a information about the presence of a prolonged stimulus. 

 

Encoding stimulus location 

The location of the stimulus conveys important spatial information about the 

stimulus, such as its size and directionality (Kandel et al., 2000).  For example, animals in 

nature have to figure out the size of an approaching object (i.e., predator), from which 

direction the object is approaching, or from which direction a con-specific calling song is 

coming.  The accurate representation of the location and size of a stimulus is thus 

obviously an important aspect of sensory coding.  For many modalities, such as vision, 

audition, touch, pain, and temperature, the spatial location of a stimulus is represented by 

the spatial arrangement of the ensembles of activated receptors in a sense organ, which is 

called a receptive field (Hubel, 1963; Hubel and Wiesel, 1968; Kandel et al., 2000).  

The size of a receptive field influences how well a sensory system can resolve 

small details of the stimulus.  Denser populations of receptors have smaller receptive 

fields, which allows finer resolution of spatial details of the stimulus (Cleland et al., 
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1979; Vallbo and Johansson, 1978).  The size of receptive fields is not uniform within a 

given sensory organ.  For example, mechanoreceptors are not uniformly distributed 

across our body parts.  Our fingertips contain smaller receptive fields with more densely 

populated receptors, compared to our thoracic region, which allows us to discriminate 

fine details of objects that we touch (Weinstein, 1968).  Similarly, the fovea of the retina 

has a better ability to resolve small details of the visual stimulus compared to the retinal 

periphery, because the fovea contains a denser population of cone photoreceptors with 

smaller receptive fields (Hubel, 1988).  Thus the size of a receptive field is related to the 

acuity of a given sensory system.  

As we have discussed so far, receptors transform physical stimuli into a code of 

neural impulses, which contains basic information about stimulus modality, intensity, 

time, and location. These four elementary attributes of stimuli influence our perception of 

the salience of stimuli and percepts in different ways.  

Accumulating evidence suggests that there are common strategies used by many 

sensory systems to improve their sensitivity, acuity, and speed of information processing.  

For the improvement of sensitivity, most sensory systems seem to modify either the 

structure or circuit organization in the periphery.  For the improvement of acuity (or 

ability to resolve small differences), many sensory systems utilize inhibitory mechanisms 

in both the periphery and higher order processing centers of the brain.  Finally, to 

improve the speed of information processing, many systems modify the circuit 

organization.  To illustrate these points, I will mainly focus on the sensory systems that 

are activated by physical stimuli (pressure, sound waves, and photons), and compare 
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three mammalian sensory systems, which are located in bilaterally symmetrical organs-

the visual, auditory, and tactile systems.  

  

Common mechanisms to improve sensitivity 

The sensitivity of most sensory systems is primarily determined by the property of 

the sensory receptor cells; however, it can be improved by different amplification 

mechanisms. Some sensory systems make use of structure-based amplification, while 

others make use of circuit-based amplification.   

Many nocturnal animals have exquisite nighttime vision due to the tapetum 

lucidum, an extra layer of tissue behind the retina, which contains reflective material such 

as zinc-cysteine and riboflavin (Ollivier et al., 2004).  The tapetum lucidum allows light 

to pass through the photoreceptors twice to increase the sensitivity of the eyes in a dim 

light environment.  Although there are variations among different organisms regarding 

the structure, location, and choice of reflective materials, the tapetum lucidum represents 

a remarkable example of a sensory organ that achieves structure-based amplification as 

an adaptation to a dim light environment.  

Our hearing organs also utilize a structure-based amplification mechanism.  Most 

mammalian cochlea contain two types of hair cells, inner and outer hair cells (Moller, 

2003).  The inner hair cell is the auditory receptor, which transforms acoustic energy into 

electrical signals, while outer hair cells are involved in gain control.  The outer hair cells, 

together with the stapedius muscle in the middle ear that controls how hard the stapes hits 

the oval window, are capable of both amplifying faint sound to increase our hearing 

range and reducing the energy of loud sound to protect our ears from damage (Moller, 



 9 

2003).  This gain control by the outer hair cells is due to the motion of the outer hair cell 

body in response to changes in the cell membrane potential, called electromotility 

(Holley and Ashmore, 1988; Liberman et al., 2002). When an isolated outer hair cell is 

depolarized, its cell body shortens. Conversely, when an isolated outer hair cell is 

hyperpolarized, its cell body elongates (Holley and Ashmore, 1988).  At low sound 

intensities, the outer hair cells improve the mechanical performance of the cochlea by 

increasing the magnitude of electromotility, which in turn, amplifies the basilar 

membrane motion to increase hearing sensitivity (Ashmore, 2008; Dallos, 2008).   

In contrast to nocturnal animals, diurnal animals do not have a tapetum lucidum, 

thus their nighttime vision is nowhere near as sensitive as that of nocturnal animals. 

Nevertheless, they also utilize sensitivity amplification mechanisms to improve their 

nighttime vision.  However, in this case the mechanism is circuit-based rather than 

structure-based.  The retina of diurnal mammals, including humans, contains two major 

types of photoreceptors, rods and cones.  Rods contain more photosensitive visual 

pigments than cones, thus, rods function well in nighttime vision, while cones function 

better in high illumination conditions (Kandel et al., 2000; Moller, 2003).  Thus 

sensitivity is an issue for rods rather than cones.  While rods are sensitive enough to 

respond to a single photon of light (Baylor et al., 1979; Baylor et al., 1984), their signals 

are further amplified by converging axons of multiple rods onto a single target bipolar 

cell.  However, improved sensitivity with high convergence of rods onto a single 

ganglion cell comes at a cost of visual acuity, since a high convergence of rods increases 

the size of the ganglion cell receptive fields, which causes reduced acuity (Kandel et al., 

2000).  This is why it is difficult to resolve small differences in dim light conditions.  The 
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circuit-based amplification using a high convergence of receptors onto the target neuron 

is also observed in the olfactory system (Masse et al., 2009; Mori et al., 1999; Sullivan et 

al., 1995).  Multiple olfactory receptor neurons expressing the same odorant receptor 

converge on the same glomerulus in the olfactory bulb.  

Cones, in contrast, require more acuity than sensitivity, since they function in 

high illumination conditions.  Cones, especially in the fovea, do not show high 

convergence onto a single bipolar cell; rather, they synapse on multiple bipolar cells, and 

achieve high acuity by increasing the receptor density in the fovea, where receptive fields 

are very small.  Similar to the cones of the eyes, the tactile system requires more acuity 

than sensitivity.  The high acuity is achieved by increasing the receptor density in certain 

areas of the body surface (i.e., fingertips and tongue) and by making the receptive fields 

smaller to increase their acuity (Johansson and Vallbo, 1983).  

Thus, most sensory systems seem to have a mechanism to improve sensitivity (or 

acuity), however, the mechanisms used are different depending on the system.  

 

Lateral inhibition is a general mechanism to improve acuity  

The interaction between the excitation and inhibition is the basis for many kinds 

of computational processes that occur in the nervous system (Kandel et al., 2000; von 

Bekesy, 1967b).  Lateral inhibition is an inhibitory mechanism that arises from the 

activities of local inhibitory interneurons to modulate the activities of the neighboring 

excitatory neurons. The Nobel Prize–winning work by Haldan Keffer Hartline 

demonstrated that lateral inhibition (in the retina) is a neural mechanism that most 

animals, including humans, use to better discriminate borders by increasing the contrast 
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(Hartline et al., 1956; Ratliff et al., 1959).  The effect of lateral inhibition in the retina can 

be best illustrated by the phenomenon called “Mach band,” which was discovered by 

Ernst Mach (Ratliff, 1965). Figure 1 shows seven gray rectangular bands next to each 

other. Each of the seven bands is a fixed shade of gray but the area around the left edge 

appears lighter than the center area, and the area around the right edge appears darker 

than the center. The Mach band illusion is caused by lateral inhibition of the 

photoreceptor cells by the horizontal (inhibitory) cells in the retina (Fig. 1a–b).  Lateral 

inhibition in the retina is an example of how sensory information processing begins in the 

periphery. In addition, the Mach band effect demonstrates that what we see is not exactly 

“what is out there.”  It is an excellent illustration of how the brain is organized to 

“actively” construct our perception rather than to reproduce a faithful replication of the 

physical world in order to facilitate our sensory interpretation.  

 The use of inhibitory mechanisms to improve acuity is a general phenomenon that 

applies to other sensory systems (von Bekesy, 1967a).  For example, lateral inhibition is 

particularly important for fine tactile discrimination involved in Braille reading (DiCarlo 

and Johnson, 2002; DiCarlo et al., 1998; von Bekesy, 1960).  When two Braille dots 

strike our fingertip, two populations of Merkel cells are activated. When two dots are far 

apart, two non-overlapping Merkel cell populations are activated on the skin.  In contrast, 

when two dots are closer together, two overlapping populations are activated.  If there is 

no lateral inhibition between the two overlapping populations, we will not be able to 

discriminate the two closely positioned dots.  Lateral inhibition enhances the separation 

of the two active populations, which allows us to discriminate two closely positioned dots 

in space. 
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 Lateral inhibition is also used to enhance pitch discrimination in mammalian 

auditory systems (Ma and Suga, 2004; Paolini et al., 2005; Paolini et al., 1998; Suga, 

1995).  The transformation of acoustic energy into electrical impulses involves the 

displacement of the basilar membrane, which causes the inner hair cells to bend against 

the tectorial membrane. The mechanical bending of the hair cells thus allows us to hear 

sound, and our ability to hear different sound frequencies depends on the location of the 

basilar membrane displacement, since the basilar membrane of the cochlea is organized 

into a tonotopic map: Higher frequency sound causes maximum displacement of the 

basilar membrane closer to its base near the stapes, while lower frequency sound 

produces maximum displacement of the basilar membrane closer to its apex near the 

helicotrema (Kandel et al., 2000; Moller, 2003). Our ability to discriminate similar 

frequencies is due to the lateral inhibition that occurs in the medulla.  Each inner hair cell 

is innervated by multiples of spiral ganglion cells that project to the cochlear nuclei of the 

medulla. In the rat cochlear nuclei, there are three interconnected sub-nuclei that receive 

tonotopically organized inputs from the cochlea. Paolini et al. (1998) showed that lateral 

inhibition between these sub-nuclei sharpens the frequency discrimination.  

 

Strategies for fast information processing 

 The visual environment consists of enormous amounts of information, which is 

extracted by our visual system.  Color, depth, shape, orientation direction, and motion are 

just a few of the many features through which we interpret our visual environment.  To 

achieve efficient processing for large amounts of information, the visual system utilizes a 

combination of parallel and hierarchical processing, which is also facilitated by the 
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layered structural organization of the cortex (Kandel et al., 2000; Nassi and Callaway, 

2009).  Distinct features, such as color, depth, shape, and motion, are processed in 

parallel channels, and within each channel, hierarchical processing takes place in such a 

manner that simpler properties emerge first in the periphery, and more sophisticated 

properties emerge later at higher processing centers in the cortex.  At each information 

relay along the hierarchical processing centers, selective filtering of visual information 

occurs via complex interactions between inhibitory and excitatory neurons (e.g. lateral 

inhibition) to extract specific properties.  Interestingly, the parallel processing of distinct 

features starts as early as the first synapse of the retina, because ganglion cells in the 

retina exhibit feature selectivity (Masland, 2001; Nassi and Callaway, 2009; Wassle, 

2004).  For example, there are object motion-selective ganglion cells called Brisk 

transient-Y cells (Olveczky et al., 2003), direction-selective ganglion cells (Barlow and 

Hill, 1963; Barlow and Levick, 1965; Fried et al., 2002), and color-selective ganglion 

cells called Midget (Diller et al., 2004; Wassle, 2004).  The feature selective ganglion 

cells project to specific layers of the lateral geniculate nucleus.  Color-selective ganglion 

cells project to layers 3–6 via the parvocellular pathway, while the direction-selective and 

object motion-sensitive ganglion cells project to layers 1–2 via the magnocellular 

pathway (Merigan and Maunsell, 1993).  The information for color vision and motion 

detection is further processed by different layers of the primary visual cortex (Fitzpatrick 

et al., 1985; Hawken et al., 1988; Livingstone and Hubel, 1984; Ts'o and Gilbert, 1988).  

Thus, the visual system speeds up the information processing time by processing 

different features of visual information in the separate channels simultaneously. It is 

important to note that information from the parallel pathways is eventually unified to 
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generate a coherent visual image.  

Parallel processing is not a unique property of the visual system; it is also found 

in most sensory modalities in the mammalian brain. The somatosensory system of 

rodents also utilizes parallel processing.  In rats and other rodents, whiskers are highly 

sensitive and specialized sensory organs that allow the animals to navigate and recognize 

objects; thus whiskers convey both tactile and spatial information.  Three parallel 

pathways from the periphery to the thalamus exist for processing object identity, object 

location, and the temporal information of whisking for motor control (Yu et al., 2006). 

The information regarding object identity is conveyed by the lemniscal pathway, while 

the spatial information regarding the location of an object is conveyed by the 

extralemniscal pathway (Pierret et al., 2000; Yu et al., 2006).  Finally, the temporal 

information regarding the motor control of whisking is conveyed by the paralemniscal 

pathway.  Thus, the whisking system in rats also utilizes layered structures to facilitate 

parallel processing of different features of whisking information.  

In the auditory system, similar parallel pathways for sound localization and 

temporal pattern discrimination have been identified in the auditory cortex of humans 

(Courtney et al., 1996; Ungerleider and Haxby, 1994), monkeys (Romanski et al., 1999; 

Tian et al., 2001), and cats (Lomber and Malhotra, 2008).  Therefore, parallel processing 

of different features within a modality seems to be a general principle used by most 

sensory systems for speedy information processing.   

It is noteworthy that in most sensory systems, there are topographic 

representations of sensory maps associated with information processing centers in the 

periphery, cortex, and intervening relay nuclei.  For example, in the visual and 
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somatosensory systems, the topographic arrangement of receptors in the periphery is 

maintained in the cortex, as retinotopic and somatopic maps.  Some maps are simple and 

well organized, such as the tonotopic map in the basilar membrane and auditory cortex 

(Merzenich and Brugge, 1973) and somatotopic maps in the somatosensory cortex 

(Penfield and Rasmussen, 1950), while other maps, such as orientation columns and 

ocular dominance columns in the primary visual cortex, are organized into a complex 

pattern (Blasdel and Salama, 1986; Hubel et al., 1978).  The fact that orderly maps of the 

periphery are maintained throughout the chain of hierarchical nuclei up to the primary 

cortex makes us wonder what functional advantage, if any, such sensory maps might 

serve?  It is plausible that sensory maps facilitate circuit operation, such as lateral 

inhibition, which benefits from topographic organization of functionally related areas 

(Kaas, 1997).  It is also plausible that the sensory map in the cortex is required for the 

process of piecing together information from the parallel pathways to generate a coherent 

percept.  Whatever the reasons, the presence of sensory maps seems to indicate a 

presence of some forms of information processing in the pathway. 

Based on the mammalian visual, tactile, and auditory systems, there are emerging 

common mechanisms and circuit organization that are required to build an efficient 

sensory system.  First, most systems seem to have mechanisms to improve sensitivity 

using either structure-based or circuit-based amplification.  Second, most sensory systems 

seem to use some inhibitory mechanisms (i.e., lateral inhibition) to improve their ability 

to discriminate small differences.  Third, most systems use a combination of parallel and 

hierarchical processing to speed up the information processing time.  Fourth, the cortex 

of many sensory systems is layered to facilitate parallel information processing.  Finally, 
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many sensory systems seem to have sensory maps at the cortex and relay nuclei, which 

seem to provide some functional advantages.  These strategies seem reasonable, but are 

they conserved across evolution?  Are these strategies the only way to build an efficient 

sensory system?  To provide insights into the potential evolutionary conservation of 

mechanisms for efficient sensory information processing, I will now discuss examples of 

invertebrate sensory systems. 

 

 

 

Insect visual systems 

 Bees navigate the natural world much as we do, and they must also similarly cope 

with all the challenges of processing visual cues in order to respond to biologically 

relevant stimuli.  Although bees have smaller brains, with a smaller number of neurons, 

compared to mammals, they still have to perform visual information processing.  Thus, 

their visual system must be more efficient in order to cope with the challenges imposed 

by small brains.  What mechanisms and structural organizational features allow small 

insect brains to perform efficient visual information processing?  Do insects with small 

brains also use similar mechanisms and circuit organizations as mammals with large 

brains?  Or do they use different strategies to compensate for their small nervous system? 

The flow of visual information in the bee’s visual system begins from the retina to 

the lamina, and to the medulla, and then to the lobula, which has a similar functional role 

as the primary visual cortex (Paulk et al., 2008).  Neurons in the lobula exhibit a variety 

of functional properties similar to those observed in the mammalian visual system, such 
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as orientation selectivity, direction specific and non-direction-specific motion sensitivity, 

color opponency, and spatially antagonistic receptive fields (DeVoe et al., 1982; Hertel, 

1980; Maddess and Yang, 1997; Menzel, 1973; Yang et al., 2004).  Interestingly, the 

lobula also has six layers, much like the primary visual cortex of mammals, and these six 

layers are engaged in parallel processing of different features of visual stimuli (Paulk et 

al., 2009; Paulk et al., 2008).  Layers 1–4 show achromatic motion sensitivity, while 

layers 5–6 show color sensitivity.  Furthermore, color and motion-selective information is 

further processed in parallel channels by the anterior portion of the lateral protocerebrum 

for colors, and the posterior portion of lateral protocerebrum for motion (Paulk et al., 

2009). Thus, the visual system of bumblebees also possesses parallel visual pathways that 

are comparable to the magnocellular (for motion) and parvocellular (for color) 

subsystems of primates.  

Interestingly, evidence suggests that this parallel segregation of pathways for 

color and visual-motion processing begins at the level of specialized receptors with 

distinct response properties in the retina.  Paulk et al. (2008) showed that there are four 

major types of receptors in the bumblebee’s retina.  The first group shows tonic 

responses, the second group shows phasic responses only at the onset of the stimulus 

(referred as “phasic”), the third group shows phasic responses at both onset and offset of 

the stimulus (referred as “ON-OFF”), and the fourth group shows tonic responses with 

phasic bursting at the onset of stimulus (referred as “phasic-tonic”).  They found that the 

majority of the “phasic” receptors exhibit habituation for repeated stimuli and are 

involved in encoding color sensitivity, while the majority of the “ON-OFF” receptors 

exhibit a high accuracy of spike timing and are involved in achromatic motion sensitivity. 
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Thus, receptors with specific response properties seem to be involved in specific feature 

processing in bees.  

Similar to the mammalian visual systems, bees also utilize a layered structure to 

facilitate parallel processing for different features of visual stimuli. These mechanisms 

seem to be a general rule that also applies to other insect species, such as the blowfly 

Phaenicia sericata (Okamura and Strausfeld, 2007), Mantis shrimp (Cronin and 

Marshall, 2001), and Drosophila (Borst, 2009; Douglass and Strausfeld, 1996).  Thus, 

these similarities between the mammalian and various insects’ visual systems suggest 

that these mechanisms are evolutionarily conserved, and seem to follow general rules for 

achieving rapid information processing, at least in the visual system.  

 

Insect auditory systems 

 The hearing organs of insects have evolved many times independently, under 

different environmental and evolutionary contexts (Yack, 2004).  Consequently, there are 

many variations among different insect species as to where the hearing organ is located, 

what type of hearing organ they have (i.e., tympanal membrane, Johnston’s organ, 

subgenual organ), and the mechanisms and neural circuitry underlying auditory 

information processing (Yager, 1999).  The obvious difference between mammalian ears 

and the ears of insect species is reflected in the type of auditory receptors they have.  The 

mammalian auditory receptor, the inner hair cell, in itself does not have a specific 

frequency tuning; instead the location of the basilar membrane displacement determines 

the frequency tuning of the inner hair cells (Moller, 2003).  In contrast, the auditory 

receptors of most insect species with tympanal membranes (except moths) have intrinsic, 
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specific frequency tuning properties.  They normally have two or more types of receptors 

with slightly different frequency tuning curves to cover the entire range of audible 

frequencies.  The discrimination of frequencies requires the comparisons of relative 

levels of excitation across a group of receptors with different preferred frequency tuning 

(Esch et al., 1980; Hutchings and Lewis, 1981; Michelsen, 1966; Michelsen, 1968; 

Oldfeld, 1982).   

 What is common between mammalian and insect auditory systems is the presence 

of tonotopic representations (Kaas, 1997).  In many insects, such as bushcrickets and 

grasshoppers, the central projections of the sensory receptor neurons are organized into a 

tonopotic map (Hennig et al., 2004; Imaizumi and Pollack, 2005; Mason and Faure, 

2004; Stolting and Stumpner, 1998).  In bushcrickets, for example, receptor cells that are 

tuned to lower frequencies project towards the anterior portion of the prothoracic 

ganglion, while receptor cells that are tuned to higher frequencies project towards the 

posterior portion of the prothoracic ganglion.  Interestingly, the receptor cells that are 

tuned to sound frequencies of the conspecific calling song have a larger representation in 

the tonotopic map compared to the frequencies outside of the conspecific calling song 

(Oldfeld, 1983; Romer, 1983).  This is reminiscent of the homunculus, in which more 

sensitive body surfaces, such as the fingertips and lips, are represented in a much larger 

areas of the cortex compared to less sensitive body surface areas, such as the trunk 

(Penfield and Rasmussen, 1950).  Interestingly, the sharpening of frequency tuning takes 

place at the prothoracic ganglion, where a tonotopic map exists (Atkins et al., 1989; 

Boyan, 1981; Romer, 1987).  In addition, crickets and grasshoppers also utilize inhibitory 

mechanisms to sharpen the frequency tuning.  It was shown that when such inhibition is 
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eliminated by the application of picrotoxin, the frequency tuning broadens (Romer and 

Seikowski, 1985; Stumpner, 1998; Stumpner, 2002).  

 The segregation into separate parallel channels dedicated to processing directional 

and temporal patterns of sound stimuli is well documented in the vertebrate auditory 

systems (Covey and Casseday, 1991; Oertel, 1999; Takahashi et al., 1984; Viete et al., 

1997).  Interestingly, grasshoppers also process directional and temporal patterns of 

sound stimuli in parallel pathways, in much the same way as vertebrates.  Grasshoppers 

determine the direction of sound sources using the interaural intensity differences 

between the right and left tympanal ears on their first abdominal segments (Hennig et al., 

2004; Mason and Faure, 2004).  It is important to note that vertebrates with large heads 

use both interaural intensity and interaural time differences for sound localization; 

However, insects with a small body sizes mainly rely on interaural intensity differences, 

since it is difficult to resolve small differences in the arrival time of a sound stimulus 

between the right and left ears of a small body.  

 Crickets, in contrast, process the direction and temporal patterns of sound stimuli 

in a serial order instead of processing in parallel pathways (Schul, 1998; Stabel et al., 

1989; von Helversen and von Helversen, 1995).  In bushcrickets, information regarding 

both directional and temporal patterns of the sound stimuli converges on a pair of 

interneurons called ascending interneuron-1 and -2 (AN1 and AN2) (Schildberger and 

Horner, 1988), while in grasshoppers, the ascending interneurons are functionally 

separated in two parallel pathways to process directional and temporal information (Franz 

and Ronacher, 2002; Schildberger and Horner, 1988).  
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So what are the costs and benefits of parallel vs. serial processing of directional 

and temporal patterns of sound stimuli in grasshoppers and crickets, respectively?  In 

both grasshoppers and crickets, information regarding the frequency, direction, and 

temporal pattern is used for positive phonotaxis behavior in such a way that they orient 

towards louder and more attractive patterns of sound stimuli (Stabel et al., 1989; von 

Helversen and von Helversen, 1997).  Interestingly, crickets, with serial processing, 

exhibit positive phonotaxis with better angular resolution than grasshoppers, with parallel 

processing (Hennig et al., 2004).  Grasshoppers tend to either over- or under estimate the 

angles of sound sources; however, under complex circumstances in which the direction 

and temporal patterns of two competing sound stimuli are ambiguous, crickets (with 

serial processing) fail to exhibit a positive phonotaxis behavior (Stabel et al., 1989).  

Thus, it seems that crickets (with serial processing) have an advantage in angular 

resolution, but this gain is opposed by a loss in fidelity for pattern processing under 

complex circumstances.  Although more detailed analyses with various organisms are 

required for informative generalization, there seems to exist a trade-off between the serial 

and parallel processing strategies, and this might explain why higher-order organisms 

with larger brains use the combination of serial and parallel processing for efficiency and 

accuracy of sensory information processing. 

So, what is the best strategy to build the most efficient and accurate sensory 

system?  We do not have a clear answer but there are general trends.  Based on the 

comparisons between different sensory systems in mammals and other organisms across 

phylogeny, there are several strategies and mechanisms that are commonly used for 

efficient information processing.  First, most sensory systems use amplification 
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mechanisms to improve sensitivity of the system, whether structure-based or circuit-

based.  Second, most sensory systems use inhibitory mechanisms, such as lateral 

inhibition, to improve the ability to discriminate small differences.  Third, most sensory 

systems preserve topographic representations of peripheral sensory information at the 

multiple levels of information processing centers, which seems to argue that topographic 

representation of sensory stimuli is beneficial for sensory information processing.  

Fourth, the example of insect auditory systems suggests that both serial and parallel 

processing have a cost and benefit. This might be the reason why many sensory systems, 

especially in higher organisms, use a combination of parallel and serial processing for 

speed and accuracy, and these separate channels are later combined in the association 

areas of the brain to generate a coherent percept.  Finally, the use of layered structures, 

such as the cortex, seems extremely efficient for parallel processing.  Layered structures 

are utilized by many sensory systems in many organisms, from insects to humans.  

What is most striking of all is that the brain acquires and processes information 

using separate channels first.  This is evident from the fact that sensory information from 

different modalities is acquired and processed via different sensory systems.  

Furthermore, different features of stimuli (or submodalities) are also processed in 

separate parallel channels.  It is only at the later stages of information processing that all 

information from different modalities (and submodalities) is pieced together to generate a 

coherent percept.  Is this a general theme used by the brain?  Are all modalities acquired 

and processed by the separate sensory organs with distinct classes of sensory receptors?  

When I started my project, I was investigating the neural circuitry underlying 

wind detection in Drosophila with a simple curiosity to identify the mechanisms and 
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neural circuits involved in wind detection.  However, in the course of my study, I found 

that Drosophila detect wind using a mechanosensory organ called Johnston’s organ, 

which is known to be implicated in sound detection (Bennet-Clark, 1971; Boekhoff-Falk, 

2005; Eberl, 1999; Tauber and Eberl, 2003).  This dual role in sound and wind detection 

seems contrary to the central concept that different modalities are processed by distinct 

pathways via distinct sensory organs each equipped with specialized set of receptors.  Is 

Drosophila an unusual case in which both wind and sound are processed using a common 

sensory organ?  Do other insects have separate sensory organs to process wind and 

sound?  Most insect species including cockroaches and crickets, wind and sound 

information are processed via separate sensory organs.  For example, the cockroach 

detects wind using the filiform sensilla of the cercal system, located at the posterior end 

of the abdomen, while sound is detected by the subgenual organ, which is located on its 

proximal tibia (Keegan and Comer, 1993; Kondoh et al., 1993; Moran and Rowley, 1975; 

Rinberg and Davidowitz, 2003; Shaw, 1994).  Crickets also detect wind using the cercal 

system located at the posterior end of their abdomen, while they use a tympanal 

membrane on their forelegs to detect sound (Hedwig, 2006; Kanou et al., 2006; Mason 

and Faure, 2004).  Thus, Drosophila might be considered unusual in using a single 

sensory organ to detect both wind and sound.  The question is how.  The fact that the 

receptor subtypes and neural circuits implicated in sound or wind pathways in Drosophila 

were unknown, and the unique arrangement of the wind/sound detector in the common 

sensory organ, antennae, therefore raises several interesting questions: How do flies 

distinguish wind from sound using a common sensory organ?  Do the same population of 

receptors encode wind and sound?  How are wind and sound pathways organized in the 
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Johnston’s organ and in the brain?  Are wind and sound processed by separate pathways 

or by the same pathway?   

To gain insight into these issues, I investigated the following questions using a 

combination of behavioral and electrophysiological analyses, and in-vivo calcium 

response imaging: 1) Which receptor neurons are implicated in sound and wind 

detection? Do the receptor neurons implicated in sound and wind detection belong to the 

same or to different populations? 2) If distinct populations of receptor neurons are 

implicated in sound vs. wind detection, then do they differ in their intrinsic response 

properties? 3) Are wind and sound processed in separate or the same pathways, and 4) Is 

there a sensory map of wind or sound?   

In this project, I will focus on the mechanisms and information processing in the 

periphery.  The understanding of the peripheral organization of a sensory system is an 

essential first step, and also provides insights into how these circuits are organized in the 

brain.  A comprehensive circuit analysis beyond the primary sensory neurons is however, 

beyond the scope of this project.  I will lay out the peripheral organization of these 

pathways for the future comprehensive analysis of the circuits involved in wind and 

sound information processing in Drosophila.  
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Figure 1: The Mach band effect can be explained by lateral inhibition. 

(a) The Mach band illusion: Seven rectangular bands are placed next to each other.  

Each band is a fixed shade of gray but the area around the left edge appears lighter than 

the area around the right edge. (b) The Mach band illusion is caused by lateral inhibition 

in the retina. The bipolar cell that is post-synaptic to the receptor-C, receiving high 

intensity light, transmits stronger intensity compared to other bipolar cells receiving high 

intensity light. In contrast, the bipolar cell that is post-synaptic to the receptor-D, 

receiving low intensity light, transmits lower intensity compared to other bipolar cells 

receiving low intensity light.  
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ABSTRACT 

Behavioral responses to wind are thought to play a critical role in controlling the 

dispersal and population genetics of wild Drosophila species (Johnston and Heed, 1976; 

Johnston and Templeton, 1982), as well as their navigation in flight (Budick et al., 2007), 

but their underlying neurobiological basis is unknown.  I show that Drosophila 

melanogaster, like wild-caught Drosophila strains (Richardson and Johnston, 1975), 

exhibits robust wind-induced suppression of locomotion (WISL), in response to air 

currents delivered at speeds normally encountered in nature (Johnston and Heed, 1976; 

Johnston and Templeton, 1982).  Furthermore, I identify wind-sensitive neurons in the 

Johnston’s organ (JO), an antennal mechanosensory structure previously implicated in 

near-field sound detection (Caldwell and Eberl, 2002; Kernan, 2007).  Using Gal4 lines 

targeted to different subsets of JO neurons (Kamikouchi et al., 2006), and a genetically 

encoded calcium indicator, I show that wind and near-field sound (courtship song) 

activate distinct JO populations, which project to different regions of the antennal and 

mechanosensory motor center (AMMC) in the central brain.  Selective genetic ablation of 

wind-sensitive JO neurons in the antenna abolishes WISL behavior, without impairing 

hearing.  Different neuronal subsets within the wind-sensitive population, moreover, 

respond to different directions of arista deflection caused by airflow and project to 

different regions of the AMMC, providing a rudimentary map of wind direction in the 

brain.  Importantly, sound- and wind-sensitive JO neurons exhibit different intrinsic 

response properties: the former are phasically activated by small, bidirectional, 

displacements of the aristae, while the latter are tonically activated by unidirectional, 

static deflections of larger magnitude.  These different intrinsic properties are well suited 
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to the detection of oscillatory pulses of near-field sound and laminar airflow, 

respectively.  These data identify wind-sensitive neurons in the JO, a structure that has 

been primarily associated with hearing, and reveal how the brain can distinguish different 

types of air particle movements, using a common sensory organ. 
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Introduction 

Gene flow is a fundamental determinant of genetic diversification in sexual 

organisms.  Levels of gene flow between populations influence the degree to which 

closely related interbreeding organisms will either share a common evolutionary 

trajectory, or will diverge over time through genetic drift and natural selection (Slatkin, 

1985; Slatkin, 1987; Wright, 1943).  There are a number of factors that affect the rate of 

gene flow between populations.  Evolutional biologists argue that dispersal ability is a 

highly significant predictor of gene flow and play an important role in speciation (Smith 

and Farrell, 2006).  

Johnston and his colleagues have studied wind-induced behavioral responses of 

various wild Hawaiian Drosophila species and show that many Drosophila species 

exhibit suppression of locomotor activities at high-speed wind within their natural habitat 

(Johnston and Heed, 1976; Johnston and Templeton, 1982).  For example, D. 

mercatorum, D. hydei, and D. minica inhabit environments where trade winds blow in the 

range of 5–25 km/hr (1.4–6.9 m/s).   Wild-caught D. mercatorum and D. hydei exhibit 

locomotor arrest at wind speeds of >10 km/hr (2.8 m/s), while wild-caught D. minica 

exhibited locomotor arrest at air speeds between 6 and 7 km/hr (1.67–1.94 m/s).  

Johnston and colleagues therefore, argue that wind induced suppression of locomotion 

may be the dominant environmental influence affecting dispersal of wild Drosophila 

populations and thereby an important determinant of their “genoclines,” geographic 

gradients in gene frequencies.  
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While many Drosophila species exhibit wind-induced suppression of locomotion 

during high-speed wind, they also exhibit anemotaxis, orientation towards or away from 

the wind source, during low-speed wind.  It is believed that the anemotaxis behavior is 

important for many insect species to locate and identify a wide variety of resources 

important for survival, such as food, potential mates, and predators (Willis and Avondet, 

2005; Willis et al., 2008).  Successful resource localization requires their ability to detect 

odor and direction of wind bearing that odor.  They use the wind direction as the primary 

directional cue that enables them to steer their movements toward or away from the odor 

source (Willis and Avondet, 2005; Willis et al., 2008).   

Therefore, the ability to detect wind and wind-induced behavior, such as 

anemotaxis and wind-induced suppression of locomotion, have important consequences 

for flies’ survival and implication in shaping their population genetics; however, the 

underlying neurobiological bases of wind detection in Drosophila is unknown. In this 

project, I investigated which sensory organ is implicated in wind detection, and how wind 

information is represented in the brain. 

 

RESULTS 

Drosophila exhibit wind-induced suppression of locomotion 

 When Drosophila is exposed to a constant flow of gentle air current (0.7–1.6 

m/s), it exhibits a rapid and reversible suppression of walking activity (Fig. 1a–b; 

Supplementary Movie 1). We call this behavior wind-induced suppression of locomotion 

(WISL). The WISL behavior is also exhibited by wild-caught Hawaiian Drosophila 

species, at wind speeds (1.7 m/s–2.8 m/s) within the range measured in their natural 
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habitats (Johnston and Heed, 1976; Johnston and Templeton, 1982; Richardson and 

Johnston, 1975) (J. S. Johnston, personal communication; Supplementary Footnote S1).  

To test whether the WISL is a stable and repeatable general phenotype, we tested WISL 

in various conditions including different times of day, genders, lighting, and arousal 

level.  To test the effect of arousal level, we introduced mechanical startle prior to the 

introduction of airflow (Fig. 1b–d).  None of these variables affected the WISL behavior, 

suggesting that WISL is a stable and repeatable general phenotype.  

 

Drosophila detect wind using the Johnston’s organ 

Recent antennal-gluing experiments have implicated the antennae, and by 

extension the JO, in wind-sensation in Drosophila (Bennet-Clark, 1971; Budick et al., 

2007).  Surgical removal of the third antennal segment (a3), or gluing of a3 to the second 

antennal segment (a2) causes a functional impairment of the JO (Manning, 1967), since 

both a2 and a3 segments (including the aristae) form a functional unit of the JO.  

Interestingly, both of these surgical manipulations eliminated WISL (Fig. 1c–d).  

Furthermore, genetic ablation of JO neurons using nanchung-Gal4 (Kim et al., 2003) and 

UAS-hid, a Drosophila pro-apoptotic gene (Wang et al., 1999), also eliminated WISL 

(Fig. 2a–c). A similar result was also obtained from a “deaf” mutant called nanchung. 

The nanchung mutant has a loss-of-mutation in the nanchung gene encoding the TRPV 

channel normally expressed in JO neurons. The nanchung mutants show no 

electrophysiological responses to courtship song (Kim et al., 2003), thus they are defined 

as deaf, and they also fail to exhibit WISL (data not shown).  Therefore, these results 

seem to suggest that the JO is implicated in both sound and wind detection.   
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This result is rather surprising in the sense that a single sensory organ is 

implicated in the detection of both sound and wind, because sensory information from 

different modalities is normally processed by distinct sensory organs in most animals. 

This potentially unique arrangement of Drosophila sound/wind detector in the JO begs 

the question, How do flies distinguish wind from sound using a common sensory organ? 

An equally important question is how these neural circuits underlying wind and sound 

pathways are arranged in the brain.  It is important to note that flies are capable of 

distinguishing wind from sound, since these stimuli elicit distinct behavioral outputs. For 

example, the presentation of wind elicits WISL but wind does not induce courtship 

behavior (Fig 1, Supplementary Movie 1). Conversely, the presentation of courtship song 

elicits courtship behavior but it does not elicit suppression of locomotion (Fig. 2d).    

In order to give insight into wind and sound information processing and their 

underlying neural circuits in the brain, we first need to determine whether JO neurons are 

generalist or specialist. If JO neurons are specialist, there must be distinct populations of 

sound- and wind-sensitive JO neurons, and it also suggests that wind and sound could be 

processed separately by distinct neural circuits. On the other hand, if JO neurons are 

generalist, they are versatile neurons that respond to both wind and sound, which 

suggests that the processing of wind and sound information involves population coding.   

 

Distinct populations of wind- and sound-sensitive neurons in the Johnston’s organ 

 To investigate the tuning properties of JO neurons for wind and sound stimulus, 

we next performed extracellular recordings from the antennal nerve (Eberl et al., 2000).  

Consistent with previous data, we observed robust JO neurons responses to courtship 
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song (pulse song, 75 dB) (Fig. 3a, 3c).   We also observed robust wind-induced responses 

(Fig 3b, 3d), and noticed that the amplitude of wind-induced responses are much larger 

(0.45 mV) than that of sound-induced responses (0.1 mV), suggesting that wind- and 

sound-sensitive neurons might belong to two different populations.  It is important to note 

that the short duration of the wind-evoked action potentials (<1 msec) is consistent with 

neuronal, rather than muscle, action potentials (Tanouye and Wyman, 1980).  

Interestingly, when we recorded from a slightly different location that is a few microns 

away from the original recording site, we observed robust sound-induced responses, but 

no wind-induced responses were observed, except at the onset and offset of the wind 

stimulus (Fig 3e–f).  We also noticed that the amplitude of these transient responses at the 

onset and offset of the wind stimulus were very similar to that of sound-induced 

responses.  In other recording sites, we observed the reverse situation where there were 

robust wind-induced responses but no sound-induced responses (Fig 3g–h).  Taken 

together, these results suggested that: 1) JO neurons are responsive to both wind and 

sound, and 2) there are distinct populations of sound- and wind-sensitive JO neurons.  

Although extracellular recordings allowed us to identify the presence of separate 

populations of wind- and sound-sensitive JO neurons, extracellular recordings lack 

spatial resolution, thus they are not useful for characterizing the spatial distribution of 

these sub-populations. Therefore, we decided to carry out calcium response imaging to 

identify the spatial distribution of these sub-populations. 
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The axons of the Johnston’s organ neurons project to the AMMC of the central 

brain  

According to Kamikouchi et al (2006), axons of the JO neurons project to the 

central brain region called AMMC, which is located ventro-laterally to the antennal 

lobes, the olfactory glomeruli (Fig. 4a).  Within the AMMC, there are five distinct axon 

termination zones called zones A, B, C, D, and E (Fig. 4a, inset), and mosaic analysis has 

revealed that individual JO neurons innervate only one of the five zones (Kamikouchi et 

al., 2006), which suggests that there are potentially five distinct populations of JO 

neurons.  Since it is difficult to distinguish the cell bodies of these five groups of neurons 

in the JO itself, we decided to image the calcium responses in JO axon terminals in the 

AMMC, where the five zones are easily discriminated.  In addition, imaging the activity 

in JO axon terminals in the AMMC would allow us to visualize the spatial distributions 

of wind- and sound-sensitive JO neurons in the brain. 

 

Distinct populations of sound- and wind-sensitive Johnston’s organ neurons  

To determine the spatial distribution of wind- and sound-sensitive JO neurons in 

the brain, we performed functional calcium response imaging experiments, using a 

genetically encoded calcium sensor (GCaMP-1.3 (Nakai et al., 2001), controlled by 

different Gal4 enhancer trap lines, which are expressed in specific sub-populations of JO 

neurons (Kamikouchi et al., 2006). To do this, we mounted a live Drosophila in an 

inverted orientation under a two-photon microscope, while airflow and/or near-field 

sound were delivered from a tubing and a speaker, respectively (Fig. 4b). 
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First, we examined the activity of A and B neurons using an enhancer trap line 

(JO-AB-GAL4) that selectively labels neurons in zones A and B by the presentation of 

courtship song (pulse song; 400 Hz, 90 dB SPL (Bennet-Clark, 1971), but not by the 

presentation of wind (0.9 m/s) (Fig.4 c–g).  We next evaluated the activity of C and E 

neurons using a different enhancer trap line (JO-CE-GAL4) that selectively labels 

neurons in zones C and E (Kamikouchi et al., 2006). We observed robust responses to 

wind in zone E, but not to courtship song (Fig. 4h–l).  Therefore, these results suggest 

that neurons in zones A and B are sound-sensitive, while neurons in the zone E are wind-

sensitive.  

To directly compare the activity of wind- and sound-sensitive zones in the same 

preparation, we employed a third enhancer trap line (JO-ACE-GAL4), which labels 

neurons in zones A, C, and E (Kamikouchi et al., 2006) (Fig. 5a).  These experiments 

confirmed that zone A was activated by sound but not by wind, while zone E was 

activated by wind but not by sound (Fig. 5b–g, and Supplementary Movie 2a, b).  The 

same selective responses were observed when the two stimuli were presented 

sequentially or simultaneously (Fig. 5h–m, and Supplementary Movie 2c, d).  Together, 

these data indicated that the JO contains distinct populations of sound- and wind-

responsive neurons that project to different regions of the AMMC (Kamikouchi et al., 

2006) (Supplementary Footnote S2).  

 

The tuning specificity of sound-sensitive neurons 

 Calcium response imaging data suggested that both A and B JO neurons respond 

to sound (courtship song), however it is not clear whether there is tuning specificity 
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between these neurons.  To test if there are differences in frequency sensitivity between 

A and B JO neurons, we compared their response sensitivity to different frequencies of 

sound stimuli.  We used frequency-modified courtship song as our sound stimuli in this 

experiment. The central frequency of original courtship song (pulse song) is around 280 

Hz. We used Fourier transformation to modify the central frequency of courtship song to 

create various frequencies of sound stimuli between 100 Hz and 2,000 Hz (see method 

for more details).   

Calcium response imaging was used to test the frequency sensitivity of A and B 

neurons.  The zone A JO neurons were sensitive to frequency range between 100–1,800 

Hz (Fig. 6a). The maximal responses of JO-A neurons were observed at 400 Hz, which 

matches the resonance frequency of aristae at 400 Hz (Gopfert and Robert, 2002).  The 

zone B neurons were sensitive to narrower range of frequencies compared to that of zone 

A neurons, and they responded best between 100–400 Hz (Fig 6a).  Thus these results 

suggest that A and B neurons have frequency tuning specificity.  

 

Wind-sensitive neurons respond to wide range of wind speed 

To give insight into the tuning specificity of wind-sensitive neurons, we first 

evaluated the range of wind speed that E neurons can respond to.  The E neurons 

responded to a wide range of wind speed between 0.005–15 m/s (Fig. 6b).  The maximal 

responses were observed at the wind speed between 0.5 and 1 m/s, which is the wind 

speed that flies normally encounter during their flight (personal communication with 

Michael Dickenson).  Thus these experiments suggest that wind-sensitive neurons can 

respond to wind speed varying over at least five orders of magnitude.   
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Sensory map of wind direction in the Drosophila brain  

We reasoned that wind-sensitive sensory neurons have to encode at least three 

aspects of wind qualities including speed, acceleration, and direction in order to 

accurately represent the wind stimulus in the brain.  Here we evaluated if and how wind-

sensitive neurons encode directionality of wind stimulus.  To test the sensitivity of wind-

sensitive neurons to different wind directions, we presented wind from four different 

directions, 0
o
 (from the front), 45

o
, 90

o
, and 180

o
 (from the rear) (Fig. 7a–c).  

When airflow was applied from the front of the head (0
o
), or at 45

o
, there was 

strong activation in zone E, and little or no activation in zone C (Fig. 7d–f, and 

Supplementary Movie 3a–b).  Conversely, airflow applied from the rear (180
o
) activated 

zone C, and slightly inhibited zone E (Fig. 7d–f, and Supplementary Movie 3c).  

Interestingly, airflow applied to the side of the head (90
o
) activated zone C ipsilaterally, 

and zone E contralaterally (Fig. 7d–f, 90
o
; Supplementary Movie 3d).  Therefore, these 

experiments suggest that both C and E neurons are sensitive to wind and they are 

differentially sensitive to wind directionality. In addition, there is a rudimentary map of 

wind directions within the AMMC. However, the underlying logic for this map of wind 

directions is not evident from these experiments.   

 

Directions of atistae displacement explains the sensory map of wind direction 

To give insight into the underlying logic of the map of wind directions, we 

decided to examine the direction of aristae displacement during wind stimulation from 

different directions using high magnification video analyses.   
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We observed from the calcium response imaging that wind from either 0
o
 or 45

o
 

causes bilateral activation of zone E neurons in the brain, and was correlated with 

posterial aristae displacement in both antennae (Fig. 7d–f, 8a, Supplementary Movie 4b–

c). Conversely, wind from the rear (180
o
) causes bilateral activation of zone C neurons in 

the brain, and was correlated with anterial aristae displacement in both antennae (Fig. 7d–

f, 8a, Supplementary Movie 4a).  For wind 90
o
, which activated zone C neurons in the 

ipsilateral hemisphere and zone E neurons in the contralateral hemisphere, elicited 

anterial and posterial aristae displacements in the ipsilateral and contralateral antennae 

respectively (Fig, 7d–f, 8a, Supplementary Movie 4d).  

A combination of calcium response imaging and high magnification video 

analyses (Supplementary Movie 4a–c) suggested a simple hypothesis to account for the 

underlying logic for the map of wind directions: Airflow from either 0
o
 or 45

o
 causes 

posterial arista deflection and activates zone E neurons, while airflow from the 180
o
 

causes anterial arista deflection and activates zone C neurons.  It is important to note that 

arista ablation experiments indicated that the activation of wind-sensitive JO neurons, 

like that of sound-sensitive JO neurons (Ewing, 1978; Manning, 1967), is dependent 

upon this structure (Fig. 8).   

To test the hypothesis directly, we moved the aristae in either anterior or posterior 

directions using a probe controlled by a DC motor (Fig. 9b).  As hypothesized, displacing 

the arista posteriorly with a probe activated the zone E neurons almost as strongly as 

wind delivered from the front, and weakly inhibited the zone C neurons (Fig. 9c–d, “Push 

back”), while displacing it anteriorly activated the zone C neurons and inhibited the zone 

E neurons (Fig. 9c–d, “Push forward”).   
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These data demonstrate a direct causal link between the direction of aristae 

deflection and the activation of C vs. E neurons: C neurons are activated by anterial 

deflection of aristae, while E neurons are activated by posterial deflection of aristae.  

Thus, this model can explain the asymmetric activation of zones C and E neruons in ipsi 

and contrallateral hemi-brains during wind stimulation from 90
o
 (Fig. 7f, 90

o
), because 

this stimulus produces opposite deflection of the aristae on the ipsi- and contra-lateral 

sides of the antennae (Fig. 9a, 90
o
, Supplementary Movie 4d).  We hypothesize that an 

internal comparison of activity between zones C and E neurons, both within and between 

each hemi-brain, could provide a basis for computing wind direction (Budick et al., 2007) 

in Drosophila brain.   

 

Wind-sensitive C and E neurons are required for WISL behavior but not for 

courtship behavior 

To determine whether the wind-sensitive C and E neurons are also required for 

WISL behavior, we genetically ablated these neurons using a toxin, ricin A chain (Moffat 

et al., 1992).  When ricin A chain is expressed in a cell, it blocks protein synthesis and 

these cells die consequently.  Because the JO-CE-Gal4 driver is expressed not only in JO 

neurons but also in the central brain (Fig. 10a), we employed an intersectional strategy to 

restrict ablation to the antenna using an eyeless-FLP recombinase.  The specificity of this 

manipulation was confirmed using a FLP-dependent mCD8GFP reporter (Wong et al., 

2002) (Fig. 10b). 

In this experiment, we hypothesized that if the wind-sensitive neurons (C and E) 

are ablated, while the sound-sensitive neurons (A and B) are kept intact, we should 
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expect to see a loss of WISL behavior but intact sound-induced behavior (courtship 

behavior).  To test the sound-induced behavior, we measured the time it takes for a 

female (without JO-C and -E neurons) to copulate with a wild-type male who can sing a 

wild-type courtship song. The latency to copulation is a good measure of hearing ability 

because the time it takes for a female to copulate is greatly influenced by her ability to 

hear the courtship song. 

Following ablation of C and E neurons, WISL behavior was eliminated (Fig. 

10g), while basal locomotor activity (prior to wind exposure) and phototaxis behavior 

were unaffected (Fig. 10g,10i, and 11a).  This result supports the calcium imaging data 

showing that JO neurons in zones C and E are necessary for wind detection.  Importantly, 

female flies lacking JO-C and -E neurons had normal hearing, as evidenced by their 

unperturbed receptivity to courtship by wild-type males, a behavior that depends on the 

females’ ability to hear male courtship song.  In contrast, females lacking nanchung, a 

gene required for hearing
 
(Kim et al., 2003) or whose aristae were glued to the head to 

block the firing of JO neurons (Manning, 1967), exhibited a greatly increased latency to 

copulation (Fig. 10h, Nan/Nan; Bi-Gl).    

These data indicate that JO-CE neurons are necessary for WISL behavior, but 

dispensable for a hearing-dependent behavior.  Thus, clearly supports the calcium 

response imaging data showing that JO-C and -E neurons (but not JO-A and -B neurons) 

are implicated in wind detection. 
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Distinct intrinsic response properties for wind- and sound-sensitive neurons  

So far, we demonstrated that A and B neurons are sensitive to sound, while C and 

E neurons are sensitive to wind based on calcium response imaging and behavioral 

analyses.  However, it is not clear what stimulus features are responsible for the selective 

activation of sound- vs. wind-sensitive neurons in the JO.  We first asked whether these 

two classes of mechanoreceptors are sensitive to different stimulus amplitudes, i.e., air 

particle velocities (vair).  A pressure gradient microphone positioned at the antenna 

(Göpfert and Robert, 2002) yielded a vair = 0.011 m/s for the 400 Hz sound stimulus 

played at 90 dB, which maximally activated JO-AB neurons (Fig. 6a).  Yet this sound 

stimulus did not activate zone E neurons (Fig. 4g), even though these neurons are 

activated by airflow at a vair as low as 0.005 m/s (Fig. 6b).  Thus, the selectivity of JO-CE 

and -AB neurons for wind vs. sound is not simply due to differences in stimulus 

magnitude.   

To understand the selective nature of these wind- and sound-responsive JO 

neurons, we investigated the intrinsic response properties of these distinct classes of 

neurons.  To this end, we compared the threshold and response characteristics of sound- 

and wind-sensitive JO neurons in response to various magnitudes and patterns of aristae 

displacement controlled by a probe connected to a DC motor (Fig 12a–b).  Sound-

sensitive neurons in zone A (Fig. 12c, red traces), were activated by displacements as 

small as 0.01 mm (Fig. 12c, red hatched bars), while wind-sensitive neurons in zone E 

(Fig. 12e, green traces) were only weakly activated at displacements below 0.04 mm 

(Fig. 12c, green bars).  Thus, zone A neurons have a lower activation threshold than zone 

E neurons (see also Fig. 12g, 12j).   
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Strikingly, we observed that zone E neurons remained active for as long as the 

aristae were displaced, while zone A neurons were only transiently activated at the onset 

and offset of the probe displacement (Fig. 12h, k).  This suggested that zone E neurons 

might adapt slowly, and therefore respond tonically, while zone A neurons might adapt 

rapidly, and therefore respond phasically.  To confirm this, we moved the aristae in three 

successive steps of 0.033 mm each (total displacement of 0.099 mm; Fig. 12i).  Zone A 

neurons exhibited transient (phasic) responses after each displacement (Fig. 12l, red 

traces), while zone E neurons were tonically activated for the entire duration of three-step 

displacements, and were maximally activated after the second step (Fig. 12l, green 

traces).   

These data indicate that sound-sensitive (A) and wind-sensitive (E) neurons 

respond phasically and tonically to arista displacement, with low vs. high activation 

thresholds, respectively (see Supplementary Footnote S3).  Furthermore, zone A neurons 

were activated by bidirectional arista displacement, while zone E neurons were activated 

by only unidirectional arista diaplacement (Fig. 12h, k).  It is important to note that the 

reason why wind-sensitive neurons respond only unidirectional arista deflection is 

because these C and E neurons are direction sensitive (as discussed above).   

These different intrinsic response properties are well matched to the oscillatory 

arista movements caused by pulses of near-field sound vs. unidirectional arista 

deflections caused by wind. The fly’s ability to discriminate wind vs. sound using a 

common sensory organ is thus explained by different populations of JO neurons with 

different intrinsic response properties, which project to distinct area of the AMMC in the 

brain. 
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Tonic vs. phasic response properties are conserved properties of mechanoreceptors 

The identification of different sub-populations of JO neurons with tonic vs. phasic 

response properties illustrates a general and conserved feature of mechanosensation 

across evolution. In the superficial layer of mammalian skin, there are two types of 

mechanoreceptors that are used to encode for different aspects of light touch sensations.  

Slowly adapting, tonically activated Merkel cells are used to encode for the shape of an 

object causing the skin indentation, while rapidly adapting, phasically activated 

Meissner’s corpuscles are used to encode for the movement of an object causing the skin 

indentation (Johnson and Hsiao, 1992). In the Drosophila, these two properties have been 

adapted to detect different types of bulk air particle movements by different subsets of JO 

neurons.  In addition, Dickinson and Palka (1987) have also reported that Drosophila has 

slowly and rapidly adapting campaniform sensillae on their wings.  It is hypothesized that 

the rapidly adapting campaniform sensillae are involved in the sensory feedback during 

flight while the slowly adapting campaniform sensillae are involved in the glooming 

behavior.   Interestingly, slowly adapting Merkel cells have a higher activation threshold 

compared to rapidly adapting Meissner’s corpuscles (Csillag, 2005; Muniak et al., 2007), 

which also resembles the slowly adapting, wind-sensitive JO neurons with a higher 

activation threshold compared to rapidly adapting sound-sensitive JO neurons.  Since 

sensory information from different modalities is normally processed by separate sensory 

organs in most animals, it seems unusual for Drosophila to use a single sensory organ to 

mediate both wind and sound detection. It is possible that since sound frequency of 

Drosophila courtship song, the only known sound stimulus for Drosophila, is very low 
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(~280 Hz), it is not surprising that Drosophila’s JO has evolved to respond to both wind 

and low-frequency sound stimuli.  

 

Conclusions 

The data presented here indicate that the JO is not simply a hearing organ 

(Kernan, 2007), but also mediates wind detection.  A combination of electrophysiological 

recordings, calcium response imaging, and behavioral analyses of JO neurons reveal that 

there are distinct populations of sound- and wind-sensitive JO neurons.  The stimulus 

selectivity of these distinct classes of JO neurons is due to different intrinsic response 

properties (i.e. activation threshold, adaptation rate, and the ability to respond to 

unidirectional vs. bidirectional aristae displacements), which serves as the bases for flies’ 

ability to discriminate between wind and sound stimuli.   

We have also identified the sensory map of wind direction within the AMMC of 

the brain.  The underlying logic for the map of wind direction can be explained by the 

ability of C and E JO neurons to respond to arista displacements in a direction-sensitive 

manner.  We hypothesize that this map of wind direction probably involves an internal 

comparison of activity patterns between zones C and E, both within and between each 

hemi-brain, which potentially provides a basis for computing wind direction in the 

Drosophila brain.  It is also possible that a fly brain might use the activation timing 

differences between the right and left hemi-brains to compute the subtle variation of wind 

directions. For example, both 0
o
 and 45

o
 wind activate zone E JO neurons in both hemi-

brains. However, flies could potentially use the interaural timing differences between the 

right and left hemi-brains to determine the differences between 0
o
 and 30

o
 wind 
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directions.  This type of sensory map that involves the comparison of activity between the 

hemi-brains has been well characterized for the map of sound localization involving 

interaural time differences and interaural intensity differences described in the owl brain 

(Carr and Konishi, 1988; Knudsen and Konishi, 1978; Takahashi, 1989).  Sensory maps 

are very old in evolutionary history as they are ubiquitous in many organisms in most 

sensory systems, because they seem to serve some functional advantages for neural 

computations.  The functional significance of the map of wind directions in Drosophila 

remains to be investigated. 

In the accompanying paper, Kamikouchi et al. (2009) show that zone C and E 

neurons are required for the behavioral response to gravity (negative geotaxis), a force 

that could also produce static deflection of arista, albeit of a smaller magnitude than those 

produced by wind (Supplementary Footnote S4).  Based on our data, the wind-sensitive 

(C and E) neurons have a high activation threshold (compared to that of sound-sensitive 

JO neurons) and thus they do not seem to be involved in processing small arista 

deflection induced by gravity; however, this discrepancy can be explained: 1) if there are 

sub-populations of C and E neurons that are sensitive to wind vs. gravity, or/and 2) there 

is a gain control mechanism that can amplify the minute arista deflection caused by 

gravitational force.  Whether there are distinct sub-populations of C and E neurons for 

wind vs. gravity detections and if there is a gain control mechanisms that can amplify the 

minute gravitational forces acting on aristae remain unknown. 

Wind-activated neurons in the JO are, moreover, required for an innate behavioral 

response to wind.  The function of WISL in nature is not clear.  Field studies have 

suggested that wind is a major environmental factor affecting the dispersal of wild 
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Drosophila populations (Johnston and Heed, 1976; Johnston and Templeton, 1982; 

Richardson and Johnston, 1975).  WISL may have evolved to control population 

dispersal, and thereby maintain genetic homogeneity (Johnston and Heed, 1976; Johnston 

and Templeton, 1982). Alternatively, WISL may represent a defense mechanism that 

serves to protect individual flies from injury, or to prevent dispersal from food resources.  

Identification of the sensory neurons that mediate WISL opens the way to a systematic 

analysis of the genes and neural circuitry that underlie this robust, innate behavioral 

response to wind. 

 

MATERIALS AND METHODS 

Fly stocks 

Flies carrying JO4-GAL4 (also called JO-ACE), JO31-GAL4 (also called JO-CE), JO15-

GAL4 (also called JO-AB) were described in (Kamikouchi et al., 2006). UAS-GCaMP 

(Wang et al., 2003) and UAS-mCD8-GFP flies were obtained from Y. Wang (Wang et 

al., 2004) and R. Axel, UAS-FRT-STOP-FRT-Ricin flies were obtained from D. Berdnik 

(Berdnik et al., 2006), JO-CE-GAL4;eyFLP flies were obtained from H. Inagaki, Canton-

S flies from J. Dubnau, and UAS-hid flies from B. Hay.  Flies were maintained on corn 

meal-molasses food at 25°C on a (12/12) light-dark cycle. 

 

WISL behavioral apparatus 

The WISL assay was performed in a 6 x 6 x 1.5 cm transparent acrylic plastic box (WISL 

chamber), which has airflow inputs and outputs (1 cm diameter) on two of the four 

vertical sides of the box. The input tubing carries airflow from a tank containing 
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breathable air, connected to a flow regulator. The output tubing allows the airflow to 

escape from the box, and is connected to a flow meter that measures the speed of the 

airflow. The WISL chamber was mounted on a transparent plastic table and was trans-

illuminated with a fluorescent light from underneath.  A video camera (Sony, DCR-HC40 

NTSC) was set up above the WISL chamber to record the flies’ locomotor activity.  

 

WISL assay protocol 

20 flies per trial were sorted 36–48 hours prior to testing, using nitrogen gas or cold 

anesthesia. On the testing day, 20 flies were aspirated into the WISL chamber and 

allowed to acclimate for 7–8 min just before initiating the trial. A standard WISL trial 

lasts for 270 seconds. During the first 55 seconds of the trial period, the flies’ baseline 

locomotor activity was recorded. At 55 seconds, a brief mechanical stimulation (5 manual 

strikes on the table that the WISL chamber was mounted on) was given to increase the 

flies’ locomotor activity. The airflow exposure was initiated at 80 seconds and terminated 

at 200 seconds, for a total of 120 seconds (2 minutes) of exposure.  Locomotor activity 

was recorded at 10 frames per second and average velocity was computed using custom 

software written in Matlab (MathWorks Inc.) (Lebestky et al., 2009).   

 

Courtship (female receptivity) assay  

Naive Canton-S males and virgin females of the genotype of interest were collected 

immediately after eclosion, using nitrogen or CO2 gas anesthesia. Naive males were 

individually housed while virgin females were group housed for 6 days until the test day. 

Single naive Canton-S male and a single virgin female of the genotype of interest were 
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placed in a mating chamber (1 x 1 x 0.4 cm square chamber), and the time at which a 

successful copulation occurred was recorded for each mating pair.  Successful copulation 

typically lasts 15–25 minutes.  

 

Phototaxis assay 

40 flies per trial were sorted 48 hours prior to testing, using nitrogen or CO2 gas 

anesthesia. On the test day, 40 flies were tapped into the elevator of a T-maze and 

allowed to rest for 1 minute in a dark. Then, the elevator was lowered to the choice point 

where flies were given 1 minute to make a choice between a dark tube, or a tube 

illuminated with a 40 W fluorescent light, positioned approximately 20 cm away.  The 

phototaxis response was analyzed by calculating the PI using the following formula: PI = 

[(2* COR) – 1] *100. COR = (number of flies that chose the illuminated tube/total 

number of flies). PI = 0 indicates an equal distribution of flies between the dark and 

illuminated tubes. PI = 100% indicates that all flies chose the illuminated tube.  

 

Antenna manipulations 

In order to test the role of the JO in wind detection, a3 segments were surgically removed 

using a pair of forceps 48 hours prior to the WISL testing.  For the antennal gluing 

experiment, a small drop of UV-activated glue was placed at the junction between the a2 

and a3 segments bilaterally, and cured with a UV lamp for 3–5 seconds, 48 hours before 

the testing. For the mechanical probe antennal displacement experiment, a sharpened 

tungsten needle was used to move the aristae in different direction and patterns. The 

probe was mounted on a DC motor/controller (LTA-HS and SMC100CC, Newport), 
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which was controlled by custom Matlab software (MathWorks Inc). To push the aristae 

backward, the probe was positioned anterior to the aristae; conversely, to push the aristae 

forward the probe was positioned posterior to the aristae. In the “push back” (and “push 

forward”) conditions, the aristae were pushed backward (and forward) in a single 

increment of varying distances (either 0.01, 0.02, 0.025, 0.03, 0.04, 0.05, 0.07, 0.09, or 

0.11 mm), held for 8 seconds in the displaced position and then returned to the original 

position. In another experiment, the aristae were pushed backwards in three successive 

steps of 0.033 mm (a total of 0.099 mm), held in place for 2.9 seconds after each 

successive step, and then returned to the original position. In all conditions, the probe and 

aristae movements were verified using a video camera (GE680, Proscillica) that was set 

up underneath the fly preparation mounted on the microscope stage as described above. 

 

Electrophysiology  

Sample preparation and electrophysiological recording from the Johnston’s organ axons 

were performed as described in (Eberl et al., 2000).  Briefly, extracellular recordings 

from the Johnston’s organ axons were recorded at the a1/a2 joint using a tungsten or 

glass electrode (0.5 M ).  All recordings were carried out in a sound-proof chamber.  

Pulse song segments of recorded D. melanogaster courtship song [provided by J. Hall 

(Wheeler et al., 1988) and D. Eberl] were used as the sound stimulus and airflow rate 

between 0.3–0.9 m/second was used as wind stimulus. 

 

Calcium response imaging and sample preparation 

Flies were anesthetized in a plastic vial on ice for 15–20 sec, and were then gently 
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inserted into a hole of a thin plastic rectangular plate.  Small drops of wax (55°C) were 

applied to prevent the fly from moving out from the hole. After the fly was stabilized in 

the plastic hole, the preparation was oriented in an up-side-down position (see Fig. 2b of 

the main text). The proboscis, ventral part of thorax and abdomen, and legs were 

protruding from the upper side of the horizontal plane of the plastic, while the rest of the 

fly head (including the antennae, but excluding the proboscis), thorax, and dorsal part of 

abdomen were protruding from the bottom side of the horizontal plane of the plastic. In a 

saline bath, the proboscis was cut off and the area surrounding the proboscis was 

surgically removed to expose the ventral side of the brain. Fat and air sacs were gently 

removed to have a clear view of the brain. For calcium response imaging, the water 

immersion objective lens (40X, N.A.=0.8, Olympus) was lowered near the exposed brain, 

while the underside of the plastic specimen mount, which contained the intact antennae, 

was kept dry and exposed to wind and sound stimuli.  

 

Sound stimuli used in these experiments were recorded segments (provided by J. Hall and 

D. Eberl) of the pulse song portion of D. melanogaster courtship song, played at 75–100 

dB at the aristae using a loudspeaker (ProMonitor 800 loudspeaker, Definitive 

Technology) and amplifier (P.A. amplifier, Radioshack) and was measured using a digital 

sound meter (DSM-325, Mannix).  We tested the frequency tuning of zones A and B 

using narrowband signals derived from the original pulse-song.  The original pulse-song 

was filtered in order to set the center of the frequency spectrum at a desired frequency 

between 100 and 2000 ± 200 Hz (using the Fourier transformation).  
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Wind stimuli used in imaging experiments were delivered at speeds between 0.005–15  

m/sec. Wind speed was controlled by flow regulator (mass flow meters and controllers—

Smart Trak series 100, Sierra Instrument Inc.) and was measured using an anenometer 

(Testo-435, Testo GmbH & Co.).  VClamp software (Pairie Technology) was used to 

control all aspects of sound and wind stimuli used in the imaging experiments. 

 

All imaging was performed on an Ultima two-photon laser scanning microscope (Prairie 

Technology). Live images were acquired at 6.1 frames per second using an Olympus 40X 

(N.A. = 0.8) water immersion objective at 128 x 128 resolution with an imaging 

wavelength at 925 nm.  GCaMP responses were quantified using custom software written 

in Matlab.  The relative change in fluorescence intensity ( F/F) was computed by first 

calculating the average pixel values in the region of interest during the experimental 

period and applying a three frame moving average smoothing function.  This average 

fluorescence value, Fav, was then converted to F/F using the formula F/F = (Fav –

F0)/F0, where F0 is the baseline fluorescence value, measured as the average of frames 2–

9. Average F/F for specific stimulus period was compared between different JON zones 

to test for statistical significance by ANOVA. 
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Supplementary Footnote S1 

J. S. Johnston and colleagues have measured wind speeds in the habitats of several wild-

caught Drosophila species (Johnston and Heed, 1976; Johnston and Templeton, 1982), 

including both tropical and desert environments.  In Kamuela, Hawaii, for example, D. 

mercatorum and D. hydei inhabit environments where trade winds blow in the range of 

5–25 km/hr (1.4–6.9 m/s), with an average velocity of 15 km/hr (4.17 m/sec); gusts over 

35 km/hr (9.72 m/s) are not uncommon (Johnston and Templeton, 1982).  Wind speeds in 

the range of 0.46–4.64 m/s have been measured in the Arizona desert, the habitat of D. 

nigrospiracula (Johnston and Heed, 1976).  We observed wind-induced suppression of 

walking in D. melanogaster between 0.7–1.6 m/s; these velocities are therefore well 

within the range of wind speeds measured in several Drosophila natural habitats.  Wild-

caught D. mercatorum and D. hydei exhibited locomotor arrest in the laboratory at wind 

speeds of 10 km/hr (2.8 m/sec) and greater (Johnston and Templeton, 1982), while wild-

caught D. mimica, another Hawaiian species, exhibited locomotor arrest at air speeds 

between 6 and 7 km/hr (1.67–1.94 m/s) (Richardson and Johnston, 1975).  Anecdotal 

evidence that wind suppresses Drosophila locomotor activity in the wild derives from the 

observation that during occasional days in Hawaii when the trade winds stop, called 

“Kona” weather (Johnston and Templeton, 1982), Drosophila in flight are abundant, 

while during the trade winds very few Drosophila are observed in flight because most of 

them are immobilized on their Opuntia substrate (J. S. Johnston, personal 

communication).  These data suggest that WISL is a naturally occurring behavior 

exhibited by Drosophila at wind speeds normally encountered in their wild ecological 

habitat.  Johnston and colleagues speculate that this behavior may be the dominant 
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environmental influence (rather than, e.g., temperature and humidity) affecting the 

dispersal of wild Drosophila populations, and thereby an important determinant of their 

“genoclines,” geographic gradients in gene frequencies (Johnston and Templeton, 1982; 

Richardson and Johnston, 1975). 

 

 

Supplementary Footnote S2 

Our detection of distinct sound- and wind-evoked spiking responses in antennal nerve 

electrophysiological recordings (Fig. 3) argues that the differential activation of sound- 

vs. wind-sensitive axons observed by GCaMP imaging is unlikely to be explained by 

local circuit interactions within the AMMC.  Electrophysiological recordings from 

sound-selective locations in the antennal nerve usually revealed one or two spikes at the 

onset and offset of the wind stimulus (Fig. 3e vs. f).  These brief spiking responses 

probably reflect the fact that phasically responsive JO neurons can be transiently 

activated by deflections of the aristae caused by wind. 

 

 

Supplementary Footnote S3 

Our calcium imaging experiments indicate that arista movements triggered by the 

mechanical probe activate both wind- and sound-sensitive neurons (Fig. 12k, l), while the 

natural stimuli (wind and sound) activate these neurons in a mutually exclusive manner 

(Fig. 12d, e).  Wind-sensitive neurons may not be activated by sound stimuli, because the 

magnitude of the antennal displacements produced by courtship song may be too small to 
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evoke a detectable response (see also Supplementary Footnote S4).  This hypothesis is 

supported by the fact that short-distance mechanical displacements of the aristae activate 

sound- but not wind-sensitive neurons (Fig. 12e).  Why, then, are sound-sensitive neurons 

not also activated by wind?  In fact, our electrophysiological data indicate that they are 

activated, albeit very transiently: Brief spiking responses are observed in sound-sensitive 

JO neurons at the onset and offset of the wind stimulus (Fig. 3e, f, blue traces; see 

Supplementary Footnote S2).  These transient spiking epochs are unlikely to produce 

sufficient accumulations of intracellular calcium to yield detectable GCaMP signals 

(Pologruto et al., 2004).  In contrast, the GCaMP signals elicited in sound-sensitive JO 

neurons by controlled mechanical displacements (Fig 12g–l, red lines) may reflect more 

extended spiking responses caused by damped oscillatory vibrations of the probe as it 

pushes against the arista.  Finally, it is possible that wind- and sound-selective neurons 

differ in their sensitivity to the position, velocity, or acceleration of the antenna caused by 

these different stimuli, as shown for limb chordotonal organs in the stick insect (Hofmann 

and Koch, 1985; Hofmann et al., 1985).  The mechanical probe may not faithfully mimic 

these natural stimulus-specific differences in antennal movements. 
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Supplementary Footnote S4 

We did not observe activation of zone C/E JO neurons by antennal deflections below ~30 

m, while Kamikouchi et al. observed activation with deflections as small as 1 m, 

consistent with the estimated deflection caused by the earth’s gravitational field acting on 

the mass of the antenna.  This difference is probably due to differences in the calcium 

imaging methods used in the two studies.  Our approach measures activity in JO neuron 

axon terminals, which most likely reflects influx of extracellular Ca
2+

 due to spike firing.  

In contrast, Kamikouchi et al. measure activity in JO cell bodies, which may reflect both 

Ca
2+

 influx and release from intracellular stores.  In addition, the kinetics of the decay of 

Cam2.1 signal in response to transient Ca
2+

 increases is much slower (~2 s) than that of 

GCaMP (330 ms) (Mank et al., 2006), so that the method employed by Kamikouchi et al. 

integrates small changes in [Ca
2+

]in over a longer period of time. 
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There is a tonotopic representation in the Johnston’s organ 

The basilar membrane of the mammalian cochlea is organized into a tonotopic 

map (Moller, 2003), which functions as an initial stage of spectral analyses even before 

acoustic energy reaches the auditory receptor cells, the inner hair cells.  Thus, the 

tonotopic map in the basilar membrane provides a great functional advantage.  Since 

sensory maps may serve adaptive advantage, and are found in auditory systems of various 

organisms (Mason and Faure, 2004; Stolting and Stumpner, 1998), we wanted to 

investigate if there is a tonotopic map in the Drosophila JO.   

In order to investigate the location of cell bodies for all class of JO neurons (zones 

A, B, C, and E neurons) within the JO, I decided to use the genetically encoded photo-

activatable GFP (PA-GFP) to photo-convert each class of JO neurons by illuminating 

their axon terminal zones in the AMMC.  Illumination with 710 nm light cause photo-

conversion of the PA-GFP to change its emission spectrum and become visible (Datta et 

al., 2008).  The photo-converted GFP will eventually travel down to the cell body from 

the axon terminal zone by diffusion, which allows us to determine the relative location of 

the cell bodies of A, B, C, and E neurons in the JO.   

PA-GFP experiments suggest that JO neurons are organized in a ring of arrays 

from the medial to lateral portion of the antenna in the JO (Fig. 13–h).  The tip of the 

scolopedia is attached to the tip of the a3 segment and cell bodies are located at the outer 

ring of the array.  Cell bodies of zone C neurons were located at the medial end of the 

array, while cell bodies of the zone E neurons were located at the lateral end of the arrays 

(Fig. 13 d–f, 13i).  There was no overlap between the cell bodies of zones C and E 

neurons, since they were located at the opposite end of the array. Cell bodies of the zone 
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A neurons occupy the narrow midpoint area of the array, where axon bundles are exiting 

from the JO towards the brain (Fig. 13a–b).  The cell bodies of zone A neurons never 

overlap with that of zone C or E neurons (Fig. 13–i).  The cell bodies of zone B neurons 

occupy the wider area around the middle portion of the array compared to A neurons, 

thus they overlap with the cell bodies of zones A around the central potion (Fig. 13a, c, i).  

B neurons also overlapped with C neurons near the medial end, and E neurons near the 

lateral end (Fig. 13a–f, 13i).   

As discussed in chapter 2, Zone A neurons respond to high frequency sound, 

while zone B neurons respond to low frequency sound (Fig. 6a).  In contrast, zone C and 

E neurons respond to wind (Fig. 7).   If we consider wind as an extremely low frequency 

“auditory” stimulus (~1 Hz), it looks like the JO neurons are organized in a tonopotic 

map: The cell bodies of C and E neurons, which respond to extremely low frequency 

stimulus (wind), are located at the extreme ends of the array, while the cell bodies of B 

neurons, which respond to lower frequency sound occupies the middle portion of the 

array.  Finally, the cell bodies of A neurons, which respond to higher frequency sound, 

occupy the central portion of the array; thus from the direction of the medial to the central 

to the lateral end of the array, cell bodies are organized in the order of: C neurons (wind) 

 B (low frequency)  A (high frequency)  B (low frequency)  E (wind).  It is 

important to note that there are no clear boundaries in this tonotopic map but the area 

occupied by A neurons never overlaps with the area occupied by C and E neurons.  It is 

also interesting to note that cell bodies of A neurons are much larger (~6–7 m, diameter) 

than these of B, C, and E neurons (~3–4 m, diameter) (Fig. 14).  Whether the size of cell 

body relates to any function is not known.  
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As discussed in Chapter 2, wind from the front (0
o
) activated zone E neurons, and 

slightly inhibited C neurons, while wind from the rear (180
o
) activated C neurons and 

inhibited E neurons in the AMMC.  Thus, there are antagonistic activation patterns 

between C and E neurons (Fig. 7).  At first, we thought that there is lateral inhibition 

between C and E neurons, however it is also possible to hypothesize that the structural 

arrangement of C vs. E neurons within the JO (medial vs. lateral end of the JO array) 

might also explain the antagonistic activation patterns between the C and E neurons.  For 

example, when aristae are deflected posteriorly (by 0
o
 wind), the attachment sites of 

scolopedia for E neurons get tensioned, and cause activation of E neurons, while C 

neurons’ scolopedia get relaxed, causing hyperpolalization of the C neurons (Fig. 13j). 

Conversely, when aristae is deflected anteriorly (by 180
o
 wind), the scolopedia for C 

neurons get tensioned, and activate C neurons, while E neurons’ scolopedia get relaxed, 

causing hyperpolarization of E neurons (Fig. 13j).   

The antagonistic activation patterns between C and E neurons are interesting from 

both functional and mechanistic perspectives.  These antagonistic activation patterns 

remind us of lateral inhibition in the antennal lobes of olfactory system, which is known 

to sharpen the odor acuity.  Whether these antagonistic relations between the C and E 

neurons are related to the acuity of the fly’s wind detection system is not known.  Also, 

whether these antagonistic relations are indeed due to their cell bodies’ location within 

the JO or/and lateral inhibition also remains to be determined.   
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Full-length aristae are required for high frequency sound sensitivity 

 The sensitivity of a given sensory system determines the stimulus range and 

stimulus magnitude that an organism can detect.  To increase sensitivity, many sensory 

systems in various organisms have evolved specialized structures that can magnify the 

stimulus range and magnitude.  We reasoned that the arista is a specialized structure to 

amplify the stimulus sensitivity of JO.  Thus, we investigated if the length of aristae 

influences the frequency sensitivity for sound detection using calcium response imaging 

in the zones A and B.   We removed a half tip of arista from one antenna, and the full-

length arista on the other antenna served as a control (Fig. 15a–b).  Shortened arista 

causes loss of sensitivity for high frequency sound (  800 Hz) in zone A, while it has no 

effect for the sensitivity for the low frequency sound (Fig. 15c–d).   The loss of 

sensitivity for high frequency sound is probably due to the change in the resonance 

frequency of an arista that is half the length of the original arista.  It would be interesting 

to test if the length of aristae also affects the sensitivity for low speed wind or possibly 

gravity.   

 

How do flies detect wind and gravity using C and E JO neurons? 

 Kamikouchi et al. (2009) in the accompanying paper showed that zone C and E 

neurons are required for the behavioral responses to gravity, while our study showed that 

C and E neurons respond to wind, based on electrophysiological recording, calcium 

response imaging, and behavioral analyses.  The sensitivity of the JO, thus influences 

whether C and E neurons can respond to both gravity and wind.  
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According to our study, wind-responsive C and E neurons have a higher 

activation threshold (  30 m) compared to that of the sound responsive neurons based 

on the arista pushing experiments (Fig. 12c).  Since arista deflection caused by 

gravitational force is estimated as approximately 1 m (Kamikouchi et al., 2009), it is 

hard to imagine how C and E neurons could respond to a small forces such as gravity, in 

addition to wind stimuli. However, it is possible for C and E neurons to respond to both 

wind and gravity: 1) if the sensitivity of C and E neurons is enhanced by a structure-

based amplification mechanism during signal transduction or by circuit-based gain 

control (i.e. spatial integration that allows the convergence of receptor neurons’ outputs), 

or/and 2) if there are distinct sub-populations of C and E neurons that are wind- vs. 

gravity-sensitive.   

Various amplification mechanisms for sensory systems are described in different 

sensory systems in various organisms.  For example, the mammalian cochlea has outer 

hair cells that function as a structure-based mechanical amplifier to amplify small 

intensity sounds and reduce the sensitivity for very loud sound to protect our ear (Dallos, 

2008; Hudspeth, 2008).  Outer hair cells generate force to augment auditory sensitivity 

and frequency selectivity (Fettiplace and Hackney, 2006; Holley and Ashmore, 1988).  

In the Drosophila JO, it is reported that sound-processing JO neurons have a 

structure-based amplification mechanism that can amplify low intensity sound and reduce 

the sensitivity for high intensity sound (Gopfert et al., 2006; Nadrowski et al., 2008; 

Nadrowski and Gopfert, 2009).  A few genes, including Nanchung and Inactive, which 

encode TRP Vanilloid channels and NompC, which encodes the TRPN1 channel, have 

been implicated in the amplification mechanism in Drosophila (Gopfert et al., 2006).  
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Kamikouchi et al. (2009) have shown that NompC, a gene implicated in sound 

amplification, is not involved in the behavioral response to gravity. Thus, if there are 

amplification mechanisms for C and E neurons, they probably involve different sets of 

genes that contribute to gravity sensitivity.  Whether there are amplification mechanisms 

that allow the same population of C and E neurons to respond to both wind and gravity 

remains unknown.   

An alternative explanation for the involvement of C and E neurons for detection 

of wind and gravity is to have distinct sub-populations of C and E neurons that 

selectively respond to wind vs. gravity.  Since it is technically challenging to evaluate the 

effect of gravity using calcium response imaging or electrophysiological recording, there 

are no data to support the existence of distinct sub-populations within the C and E 

populations at this point.  It would be helpful to have GAL4 lines that are expressed in 

sub-populations of the C and E neurons, or intersectional strategies to manipulate sub-

populations of C and E neurons.   

 

How do flies distinguish wind from the front (0
o
) and 45

o
 angle? 

 As discussed in chapter 2, we identified a sensory map of wind directions (Fig. 7), 

which potentially facilitates the discrimination of different wind directions. We 

hypothesized a model for the discrimination of wind directions involving the comparison 

of activation patterns between the zone C and E neurons within each heni-brains, and 

between the right and left hemi-brains.  However, this model does not completely explain 

how flies can discriminate wind from the front (0
o
) and 45

o
 angle, because they cause the 

same activation patterns in the Drosophila brain (Fig. 7d–f).  However, if we modify this 
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model by including the comparison of activation timing or intensity in the left and right 

hemi-brains, this model can explain how flies could discriminate the wind from the front 

(0
o
) and 45

o
 angle.  For example, if we imagine that wind from the 45

o
 angle would 

activate E neurons in one side of hemi-brain before the other side, there are time 

differences between the activation of E neurons in the right and left hemi-brains. If the 

wind-sensitive JO neurons in the right and left antennae can encode for these time 

differences, this model can still explain the fly’s ability to discriminate 0
o
 vs. 45

o
 wind.   

Alternatively, it is also possible that there are differences in the speed of wind that 

reaches right and left antennae.  The interaural intensity difference might affect the 

numbers of E neurons that are activated by 0
o
 vs. 45

o
 wind in the right and left hemi-

brains.  In this case, if we carry out calcium response imaging and compare the 

differences in the activation intensity in zone E between the right and left hemi-brains, 

we should see stronger increases in the fluorescence in the ipsilateral side compared to 

that of the contralateral side.  Other insects, such as grasshoppers, indeed utilize 

interaural intensity differences between the right and left tympanal membranes to 

determine the location of a sound source (Hennig et al., 2004). 

 

How do flies detect changes in wind direction or changes in speed? 

 In the Drosophila’s natural environment, the speed and direction of wind might 

change haphazardly; thus flies have to be able to detect the changes in speed and wind 

direction in order to navigate properly during flight or to avoid potential life threatening 

conditions.  For example, what if the wind direction shifts from 45
o
 northeast to 45

o
 

northwest?  Either 45
o
 northeast or 45

o
 northwest wind would activate E neurons in both 
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hemi-brains, so how do flies detect this change in the wind direction?  Furthermore, how 

do flies detect sudden changes in wind speed during flight?  Our data suggest that wind 

and sound stimuli are processed by distinct populations of JO neurons, however it is 

possible that sound-sensitive A and B neurons might be able to provide useful 

information about wind.  For example, if the wind is blowing from the front at 0.05 m/s 

and its speed changes suddenly from 0.05 m/s to 1 m/s, the E neurons continue to fire 

regardless of changes in wind speed.  However, the arista might be deflected further 

posteriorly after wind speed increases from 0.05 m/s to 1 m/s.  This condition reminds us 

of the probe experiment where aristae are pushed by a probe in three successive steps 

(Fig. 12i, 12l).  In this experiment arista was deflected further posterially in three 

successive steps, and we observed that E neurons continued to fire (tonic response); in 

contrast A neurons responded at every successive deflection of the arista (phasic 

response).   Thus, it is possible that A/B neurons might encode for changes in wind 

speed.  

 A similar scenario involving a potential role of A/B neurons in the detection of 

changes in wind directions can be hypothesized.  When the wind direction changes 

slightly from 10
o
 to 45

o
, the ipsilateral side (relative to wind stimulus) of arista might 

deflect further posteriorly after the wind direction shifts.  

Since flies exhibit anemotaxis behavior, orientation behavior towards or away 

from wind (Budick et al., 2007), we can use this behavior to test a potential role of A/B 

neurons for detecting a change in wind direction from 10
o
 to 45

o
.  We can compare the 

fly’s anemotaxis behavioral responses in wild-type flies and flies without A/B neurons.  

If flies without A/B neurons fail to show anemotaxis behavior, it suggests that A/B 
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neurons are essential for detecting changes in wind direction. This experiment is quite 

important to determine whether or not wind information processing involves population 

coding by A, B, C, and E neurons or by C and E neurons.  

 

Where are the wind-sensitive second-order neurons? 

 A more comprehensive analysis of wind information processing and its circuit 

organization and the understanding of neural circuits controlling WISL behavior requires 

the identification of second and higher order neurons.  Identifying the second order 

neurons is not only important for revealing the projection patterns of wind pathways, but 

it allows us to investigate how wind direction information is further transformed at the 

higher order neurons.  To this end, we can also use the PA-GFP to identify the second 

order neurons, and possibly higher order neurons.  For example, we can express the 

genetically encoded PA-GFP everywhere except in the primary JO neurons by 

genetically expressing the constructs: elav-GAL4; UAS-PA-GFP; nanchung-TDtomato-

2A-GAL80. Expressing these constructs, we can selectively express the PA-GFP 

everywhere except the JO neurons and we can also express the red channel marker only 

in the JO neurons. Thus, activation of the JO neurons with 710 nm light within the 

AMMC allows us to activate the dendritic area of the second order neurons.  There are so 

many exciting hypotheses that we can test if we can identify the second and higher order 

neurons.  
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