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Abstract

Let X be a non-empty abstract set and >8 be a commutative
semi-group of operators defined on X into itself. )3 is called a
contractive semi-group on X if there exists a metric P on X such
that for each T€) , T# I, P(Ix,Ty) { A(T) Plx,y) forallx, y
€X, where 0¢€ A(T)< 1. We find sufficient conditions on )(%
in order that )8 be contractive on X. In the case when ;?) is ge-

nerated by a finite number of mutually commuting mappings T,, T

1’ =2
A Tn, possessing a common unique fixed point in X, these con-
ditions are automatically satisfied. The resulting statement is the

following generalization of the converse of contraction mapping

principle: Theorem C. Let X be an abstract set with n mutually

commuting mappings T1 , T2 PR Tn defined on X into itself such
k k .

that each iteration T.%....... T ™( where k. , k,,..., k_ are non-
1 n 1 2 n

negative integers not all equal to zero) possesses a unique fixed

point which is common to every choice of kl .k kn. Then

gre
for each ) € (0,1), there exists a complete metric P on X such
that f(Tix,Tiy) < APx,y) for 1< i{n, and for all x,y ¢ X. This
result reduces to that of C. Bessaga by taking n=1. ( Rf: C. Bessa-

ga, Colloquim Mathematicum VII (1959), 41-43.)



0. INTRODUCTION

We are here concerned with the classical fixed point theorem
of Banach, commonly known as the contraction mapping principle,

which states:

Theorem A. (8. Banach[l] ) Let T be a mapping of a complete
melric space X inle ilsell. If for every pair ol elements x, yeX and

some fixed A, 0€ <1,

Then T has a unique fixed point, and the sequen itera

for each x ¢ X converge in metric to this unique fixed point.

We call the mapping T satisfying (1) a contraction on X. Theorem A
has been used extensively in proving the existence and uniqueness of
solutions to various functional equations, particularly integral and
differential equations ( Xolmogorov and Fomin [2] ). It has been app-
lied to prove the convergence of successive approximations of solu-
tions to ordinary differential equations ( Luxemburg [3] ) and integral
equations in Lp—spaces ( Willett [4] ) . to prove the Frobenius-Perron
theorem on positive matrices ( Samuelson [5] ), and to develop many
otherwise difficult existence and uniqueness theorems in various
function spaces ( Thampson [6] ). The contraction mapping principle
has also been widely used by numerical analysts in the study of con-
vergence and error estimates in well-known function spaces ( Schr¥der

[7] )- . Various generalizations and localizations of Theorem A are



| given which in one way or other relax the restrictions on the mapping

T or the underlying complete metric space X ( Edelstein [8] . Rakotch
[9] , Kammerer and Kasriel [:1@ ). These generalizations also find
interesting applications in the study of functional equations ( Edwards
[-11] ). Moreover, the concept of contractions has been made mean-

ingful in spaces more general than metric spaces, and the correspond-

ing fixed point theorem is proved { Davis [1 2] ).

This thesis is an outgrowth of studies related to the converse of
Theorem A. The natu;al converse statement is the following: " Let X
be a complete metric space, and T be a mapping of X into itself such
that for each x € X, the sequence of iterates {Tnx} converges to a
unique fixed point w € X. Then there exists a complete metric on X in
which T is a contraction. " This is in fact true, even in a stronger

sense. The following converse of Theorem A was due to C. Bessaga.

Theorem B. ( C. Bessaga [13:] ) Let X be an abstract set and
T be a mapping of X into itself such that for each positive integer k>0,
the equation Tkx = x holds for some x X implies x = , the unique fix
ed point of T. Then for each A, 0 ¢ A< 1, there exists a complete me-

tric on X such that P (Tx, Ty) ¢ xy(x, y) forall x, v e X.

( A weaker form of Theorem B, in case X is a compact metrizable space,
was also given by Janos [1 4:] ).
We are interested here in further generalizations of Theorem B. Speci-

fically, we ask whether there exists a metric on X in which mutually



‘ commuting mappings Tl’ TZ’ ey Tn with common unique fixed point
are simultaneously coniractions . Note that if ‘I‘1 p TZ’ cees Tn are
conftractions, then every element of the commutative semigroup )g
generated by T1 ‘ TZ’ ceoy Tn is again a contraction. Hence we ex-
tend the concept of a contraction to the concept of a contractive semi-
group. We obtain necessary and sufficient conditions for/g to be
contractive in terms of the existence of certain level function on X,
Sufficient conditions on )8 are also given for )8 to be contractive.
In case )8 is generated by a finite number of mutually commuting
mappings with common unique fixed point, these conditions are auto-
matically satisfied. The resulting statement is the following genera-

lization of Theorem B.

Theorem C. ( [1 5] ) Let X be an abstract set with n mutually

commuting mappings T;, T,,...., T defined on X into itself such that
K
each iteration Tll ...... Tnn( where k1 p k2’ e kn are non-negative

integers not all equal to zero ) possesses a unique fixed point which

is common to every choice of k., k

1’ 720 -
(0,1), there exists a complete metric f on X such that § (Tix,Tiy)

., kn. Then for each X ¢

\<}\53(x,y) for 1<¢i¢n, and for all x,y € X.

In section 1, we introduce basic notations and lerminologies
whic are necessary for all later discussions. Section 2 introduces the
concept of a contractive semi-group ,8 , and presents a necessary
and sufficient condition for )8 to be contractive. The main theorem

is proved in section 3 where sufficient conditions are imposed on



)8 to insure that it be contractive. This result is then applied in sec-
tion 4 to prove Theorem C, Finally, we make several remarks which

lead to questions for further research.

References throughout this thesis are given by a number in brac-
kets indicating a particular article or book in question. A complete
list of references arranged in the order of appearance is given at the

end of this thesis. We indicate the end of a proof by the abbreviated

notation D
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1. DEFINITIONA AND NOTATIONS

Let X be a non-empty abstract set and 5 be a commutative
semi-group of operators on X into itself, containing the identity I.

)8 is said to be contractive (completely contractive) semi-group on

X if there exists a metric (complete metric) f on X such that for each

S ¢ )8 , §(8x%,8y) € )(S)f(x,y) for all x,y € X where 0 € A(S)< 1 for

S#Tand N(I) =1. We say that >8 is a uniformly contractive (

uniformly completely contractive) semi-group on X if there exists a

real number X\ such that A(S) { a1 forall S ¢ )8 , S#I, Inall
later discussions we say )8 contractive, completely contractive, or
respectively uniformly contractive for short. In order to aviod dealing
with the trivial contractive semi-group ,5 = { I } , We assume thatjg

contains at least one other element T, T # 1.

X1 < X is called an 7)8 -invariant set if }8 X1 < Xl . vaious—
ly X and the empty set @ are )8 -invariant sets. Consider the set
[a] = )8 {a} ={x : x=Ta for some T E;g } Clearly )8 [a] C [a} .
and hence [a:] is an )8 -invariant set. It is the smallest /8 -inva-
riant set containing a. Note that arbitrary unions and intersections pre-
serve the )8 -invariance. Similarly, /8 1 - )3 is called an_invariant
set if /2) }81 c /?)1 . An invariant set may be considered as an /,8 -

invaraint set in )8 . Hence remarks on )5 -invariant sets hold simi-

larly for invariant sets,



A function X\ is called contractive on )8 if 0 € A(S)<1 forall

S e)g, S#1I, and A(I) =1. The function A is called uniformly contrac-

tive on ,8 , if there exists a Asuch that A(S) < XN < 1 forall Se¢ )3 ,

S#1I. A function p is called a level function with respect to > if :

(i) its domain of definition Y, is an )3 - invariant set;
(i) 04 p(x)< o0 forallx € Y;

(iii) P (Tx) ¢ X (T) _f’(x) for all x €Y, where X\ is contractive

on)g;

(iv) P (xl) = P (xz) = 0 implies X, =Xy i

We call the function ¢ a length function on f) if it satisfies the con-

ditions:
(i) 0£06(8)< 1 forS#ZIand o()=1;
(i) o(ST) ¢ o(S) o (T) ;
(iid) o—(Sl) = o—(SZ) = 0 implies S1 = Sz.
A length function on )8 is certainly contractive on >§S and hence it may

be regarded as level function on )3

We adapt the following terminologies for arbitrary partially
ordered sets. Let P be an arbitrary partially ordered set. Any two ele-
ments x, v € P are called_comparable if either x{y or v<x holds,

otherwise they are called non-comparable . By a_transverse set we

mean a subset of P whose elements are pairwise mutually non-compa-
rable. A subset J of P is called an ideal if x¢P and x 2y for some ye]

implies x€J. An ideal J is called principal if it is of the form { X :



XxeP, x >,y} for some fixed element v € P and it is denoted by vy -
The element y is uniquely determined by | and is called the generator
of the principal ideal J. ( Refer to G. Birkoff [1 6] for other termino-

logies on partially ordered sets not explained here.)



2, CONTRACTIVE SEMI-GROUPS

We first propose to prove a necessary and sufficient condition

fof )g to be contractive.

Theorem 1. If )g igs contractive on X, then there exists a level

function on the full set X.

Prooif. X is certainly an )X—invariant set. Since )8 is contrac-

tiveon X, foreach T € )8, T #1, and for each x € X, we have

f(Tpx,x) £ %(T};?}% for all non negative integers p. For each T & )8,

T#I1, { g’(Tnx,x)} is a Cauchy sequence., Denote the limit of this
sequence by FT(X) . We claim that this limit is independent of T, i.e.
for each pair S, T € ,8, S, T#1, PT(X) = j’s(x) . Note that‘for S, T
#1,
| p(m%,3 - p(8"%,% | ¢ £(8",T"%)
< p"x,87T) + p (8" x, T
¢ A plx, TM) + XNUT) PSPk, x)

< NEeEEEL o rm£8E

Since the right hand side tends to zero as n tends to infinity, this

shows that _P,l.(x) = PS(X) as desired. We may now denote the com-
- . 4 n

mon limit by f(x), i.e. ?(x) = nE)rrgo P (T"x,x) where T € )8, T# 1.

Obviously 0 < SJ(X) < ©0. Furthermore,

P(Tx) = lim P, T ¢ A(T) Um (" 'x,%)



= AT plx) .
Finally, for each pair Xl ; X2 € X, we have:
= (xl,xz) < f(xl,Tnxl) + P(Tnxl,Tnxz) +P(Tnx2,x2)
< f(xl’ Tnxl) + 3AT) (xl,xz) +f(Tnx2,x2)
In particular by choosing T # I, hence 0 { \(T)< 1, and letting n

tends to infinity we obtain that f(xl) = P(xz) = 0 implies %) = Xy D

The existence of a level function on the full set X is not only

necessary, as shown, but also sufficient:

Theorem 2. If there exists a level function on the full set X,

then )8 is contractive.

Proof. Let F (x) be a level function with respect to a certain

Va4
contractive function A . Define a metric f on X by:

~ (x) + P(y) ifx #v;
P(x,y) = 5 ? (2)
0 ifx=y.

Clearly ? is a metric on X, and for each T # I, we have
£(Ix, Ty) € X(T) p(x,v),
since for x # v,
Va4
§ (1%, Ty) € p(Tx) + § (Ty)

¢ AT px) + NT) Ply)
NT) B (x, v),

and for x = vy the above inequality is obvious. U
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The definition of uniforbnly contractive semi-group depends on
the existence of certain uniformly contractive function A . Note that
the definition is actually independent of A\ . Suppose )8 is uniformly
céntracti’ve with'respect to some uniformly contractive function X\.
Then by Theorem 1 there exists a level function}D(x) on X satisfying
P(Tx) £ A f(x) forallxeX, and all T ¢ ,8, T# 1. For any real num-
ber d, 0< & { 00, define j’d (%) = [f(x)]p( . This new function satis-
fies P, (Tx) ¢ >\°L £.(x) and is easily seen to be again a level function.
For any }Aé(O,l) we can choose j’e‘ such that >\d= M. and hence by

Theorem 2, )g is uniformly contractive with respect to )\4

Repeating the arguments in Theorems 1 and 2 with A replacing

A(T) throughout, we obtain:

Theorem 3. )8 is uniformly contractive if and only if there
exists a level function defined on the full set X with respect to a uni-

formly contractive function.

Theorem 4. )8 is completely contractive if and only if )3 is
contractive and there exists an element we¢X such that Sw=w for

someSe)g, S#I.

Proof. Let g be completely contractive. Choose S € ’8, S #1,
There exists by the contraction mapping principle an element w ¢ X,
such that Sw=w, Conversely, assume that }8 is contractive and

that there exists w¢X such that Sw=w for some S € )8, S#I. Con-
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struct a level function § on X as defined in Theorem 1. The value
P(w) of this level function at w must be zero, since ) (8) #1, and
P(w) = p(Sw) ¢ A(S) p(w).

Define a new metric ? onXbe (2). Let {xn} be a Cauchy sequence
in X with respect to this new metric. If ¢ (xn) tends to zero as n
tends to infinity, then the sequence {Xn} has the limit w, since
_g(xn.w) £ P(Xn) + Pw) = j?(xn) . On the other hand if 53(xn) does
not tend to zero then there exists a subsequence {yn} C {Xn} such
that j’ (yn) > S > 0. By assumption there exists a N ) 0 such that
?(yn,ym) ¢ § forn, m»N. This implies Y, =Y, foralln,m 7 N,
and the subseguence {yn} has a limit namely YN As a Cauchy se-

quence, the full sequence has the same limit. D

Theorem 4 shows that completely contractive semi-groups are
essentially contractive semi-groups. For any non-completely con-
tractive semi-group )8 we may always add the point w to X and de-

fine Tw=w forallT ¢ )8 to make it completely contractive.

Theorem 5. If )8 is contractive on X, then there exists a leng-

th function defined on )(% .

_Proof. Define ¢(S) = Sup Sx, S
x#y P(X: )

{ Z(8) 1. 1f8=I, then ¢(S) =1. ForanyS,Tejgand 2 £y, we

If S#1I, then 0<£o(S)

have f(STx, STy) ¢ o (8S) j?(Tx,Ty) for Tx # Ty. But this inequality

obviously holds even if Tx = Ty. Moreover 5> (STx, STy) & o (8) ¢(T)
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f’(x,y) . Hence by dividing through with f(x,y) we easily conclude
5(ST) { o(8) o (T). Finally, assume o'(Sl) = O'(SZ) = 0, then for
all x,y €X, x#v, jD(Slx,Sly) = § (Szx,Szy) = 0. This implies the
existence of wow such that Slx = wl, and Szx = wz for all
x ¢ X. Now for any x € X, we have
P ‘(Slx,Szx) £ ?(Slx,slszx) + P(Slszx,szx)
= plwp @) + Plwy.wy) = 0.

Thus cr(Sl) = c-(SZ) = 0 implies that Sl = Sz. D
We remark the Inleresting lacl that if )g is conlractive (uni-

formly contractive) on X then }3 is also contractive (uniformly con-

tractive) on itself. The converse is obviously not true.
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3. THE MAIN THEOREM

Let X be a non-empty abstract set and /8 be a commutative
semi-group of operators on X inlo itsell, containing the identity I and
at least one other element T, T# I. We ask ourselves the question:
what conditions should )8 satisfy in order that it be contractive or
respectively uniformly contractive on X? Theorem 5 gives some nece-
ssary conditions for any contractive semi-group in terms of a length
function ¢ on )8 .  The following result provides a set of sufficient

conditions on )3 .

Theorem 6. Let X and )8 be given as above. If )8 satisfies
the conditions:
(a) thatforeach T ¢ )g, T#1I, Tx:1 =% and Tx, = %, imply
X]. = X2 ;
(b) that there exists a length function ¢ defined on }8 ;
(c) that for any given invariant set \9 - )8 , there exists a
finite set (B§9 such that for each T € 9, there corresponds a Ue(f_))
satisfying T = US for some S e')g and ¢ (T) = ¢ (U)(S):

then )g is contractive.

( The conditions (a) and (b) have been proved to be necessary and

are easily seen to be independent of each other.)

Lemma 1. Let X and )ZS be given as in Theorem 6. Suppose

that ?1 . P o are two level functions defined with respect to the same
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contractive function A ahd let X1 . X2 be their respective domains of

definition. If there exist positive constants ¢, ., ¢, such that Cl-P 1(X)

1° 72

< S, Pz{x) for all xeX, N X, , then £, can be extended to X,U X2 .

Proof. Define the function § on XIUXZ by

P (x) = o,
EI Pz(x) ifxeXz, x{Xl.

Conditions (i), (ii) of the definition of a level function are obviously

satisfied. Condition (iii) is also obvious if x«aX1 or TX¢X1 . Suppose
¢
now that x€X2, X¢X1, and TxeXl, then A(T) P (x) = A(T) -c—:-g _Pz(x)
1
c
2 - - -
2 c, PZ(TX) > j)l(Tx) = P (Tx). Finally, to prove that _P(xl) =
P (xz) = 0 implies X| = X,, we need to prove only that Pl (Xl) =

P,plx,) = 0 implies x; = x,. Choose T ¢ )8, T# I, then £,(Tx,)<

MT) P;(x,) =0 and hence Tx; =x;. Similarly Tx, =x,. By

assumption {(a), we conclude X = XZ.D

Lemma 2. Let X and )8 be given as in Theorem 6. Given a€X
then there exists a level function on [_a] with respect to the length

function 0,

Proof. Define for xe [a] ; f(x) = Tir&fx a(T) , where (j,x = {

T: Ta = x} . Since x¢ [a] implies that ax is non-empty we have

0 < P(x) € 00. Next we note that §(Sx) =U25{ o (U)K Téigi{w(s T)
Sx
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{oB)pey o @) =0(8)P(x). Finally, letxe[a], PG =0. Con-
X

sider the invariant set J <= 3 @, and denote by (B,  the finite set
corresponding to QX according to assumption (c). Suppose ax #

@X. then there exists a T ¢ (X, such that T, =U; 8, where U €

@X, Sle }2) and S1 #1I. Since Ul € ®X < SX' there exists TZE ax

such that U, =T S2 where Sze)% . Since cr(SlSz) < o—(Sl) O’(Sz) <

1 2
Of(Sl) <1, so SlS2 #1. Now x= Tla = Ulsla = Tzslsz a= Slszx.
For any Té)g , note that TSlszx = Tx = Slsz(TX) . Hecnce by assump-

tion (@), Tx =x forall T 6223 . The same conclusion can be reached in
the case when ax = Bx Indeed, since O?)X is finite then there
exists a S € C['x such that o (S) =0. Forany Te€ )8, o(ST) L o (S)
o(T) = 0. Thus ST = S. Therefore, x = Sa = STa = Tx. If now 33(x1)
= f(xz) = (0 then Tx, = x, and Tx, = x, forall T 6)8 . In particular

1 1 2 2

by choosing T # I, we conclude from assumption (a) that X, = XZ.D

Proof of Theorem 6. Let X1 be an invariant set in X and 531 be

a level function on X1 defined with respect to the length function ¢ .

Suppose a ¢ X;, we claim that Pl can be extended to X1 U [a] .

1 4

Denote by PZ the level function defined on [a] according to Lemma

2. Consider the set §= {T:T e}, Taex n[a]}. Clearly, §

is an invariant set in )8 . Let (B be the finite set corresponding to

9 according to assumption (¢). In addition let @‘= { U:Uc 63 .
U

Pl(Ua) 740} and 05 = {U: Ue€ (R, Pz(Ua) 740} . Define c, =

Mih fz(Ua) and c, = Max _Pl(Ua). Choose xeXlﬂ[a] and
UeR" Uefl
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consider the sets ax' Sx and ®x as introduced in Lemma 2. We
first note that if (B'= J then for each T € (IX, T=7U S for some U
14 B,we have fl(x) =fl(Ta) =f1(USa) £ o (8) fl(Ua) = 0. Now
fl'(x) = 0 implies that Sx=xforall S ¢ >8, since fl(Sx) £ x(S)f’l(x)
for all S#I. Pick any S # I, we conclude from fz(x) = fZ(Sx) £ 2 (8)
fz(x) that f’z(x) = 0. Hence in this case the inequality ¢, Pl(x)(
C, PZ(X) holds in a trivial way. Similar conclusion holds if '(f)"= D.
] ]

We may now assume that (3 # ® and 63;4 @. It is readily seen from
above that —Pl (x} = 0 if and only if _Pz(x) = 0. So, we may also assu-
me that Pz(x) # 0. Suppose Qx% 63x’ then by repeating the same
argument as in Lemma 2, we conclude Tx = % for all Té)g: in particular
if T #1I, then fz(x) =)°2(TX) £ o (T) fz(x) implies fz(x) = 0. Again,
the desired inequality holds trivially. Suppose now that ﬁx = CBX,
then we may choose T € ﬁx' such that j’z(x) = g(T). Note that

( ol s _
_Pz\x) # 0 implies §£,(Ua) # 0, and from the definition of P, £,@) =1.
For otherwise there exists V # I such that Va = a, and thus Sa = a for

all 86)8 . In particular a =Ta =x € X;, contradicting a € X - Thus,

c, Pl(x) ¢ Pl(USa) £ c, o (S) _Pl(Ua)

f,(Ua)a(s) p,(Ua) & o (8)a(U) P,la) f;(Ua)
{ ¢,all) (@) =c,o(l) = ¢, P,ix).

I/a

Apply Lemma 1 to extend S> p over Xl O [a] .
Let @ be the family of all level functions defined with respect to the

length function o . @ is non-empty for it contains the level function
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“on the empty set @ . Let Xf_be the domain of definition correspond-

ing to fé@ We say Pl £ [ if (1) X?t - X-P.’L' (i1) Pl =P2
on Xj’ Clearly ¢ defines a partial ordering on @ Suppose now
A
that'\lf is a totally ordered subset of @ Define a level tunction ¢
on U X by x) =p (x) if x €X_ for some P€ . Since is
totally ordered this definition of y is unambiguous. jJ is clearly
an upper bound for \P and thus @ satisfies the hypothesis of Zorn's
lemma. Therefore there must exists a maximal element _PMG @ .
We claim that X = XSJ . For otherwise there exists a € X, a ﬁX
M 1\/[
and we may extend -?M to Xf ] [ ] contradicting the maximality

of 5)1\/1 . Knowing the existence of a level function on the full set X,

we conclude by Theorem 2 that >X is contractive.D

We remark that if the length function o on )8 is in addition
uniformly contractive on )8 , then Theorem 6 together with Theorem 3

imply that )8 is uniformly contractive on X.
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4, SEMI-GROUPS GENERATED BY A FINITE NUMBER OF ELEMENTS

Let X be a non-empty abstract set and T TZ' ey Tn be mu-

17
tnally commuting mappings defined on X into itself. Denote by )8 the
commutative semi-group containing the identity which is generated by
T1 . TZ’ ..oy Tn' Obviously, we may resirict ourselves to the case
where all the Ti's are different from the identity. In this case, there
exists a set of necessary and sufficient conditions for /8 to be uni-
formly contractive. In particular, assumptions (a} and (b) of Theorem
6 are both necessary and sufficient. In fact, we can prove that )8

is uniformly contractive under assumption (a) and only part of assump-

tion (b).

Theorem 7. LetX and/8 be given as above. If )3 satisfies
the conditions:

(a) that for each T e}3 , T#I, Txl =X, and sz =X, imply

(b) that for each pair 8, T ¢ )8, ST= Iimplies S=T=1;

then )?) is uniformly contractive.

Corollary, Let X and )8 be given as in Theorem 7. Suppose
there exisis an element w € X, such that for some S € )8 , S#£I,

Sw=w. Then )g is uniformly completely contractive,

We will prove this result by applying Theorem 5. For the sake

of convenience, we first introduce some useful notations. Let Q de-
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note the set of n-tuples ( kl ,kz, e ,kn) where the ki‘s are non-nega-
tive integers. Define 4(k) = Zi? k, forall k€ Q. Note that 4 (k)
i_s finite for all k € Q. We also define a partial orderingon Q by : p
< qif and only if P; 4 q for all i, and p = g if and only if P, =4,
foralli, 14£i¢ n. Obviously, Q forms a semi-group with respect

k

to vector addition, and the mapping kK — T = T Tnn defines

a homomorphism of Q into )8 .

‘We next prove two algebraic lemmas that are important in the

proof of Theorem 7.

Lemma 3. Every transverse set M E€Q is finite.

Proof. The proof is by induction on the dimension n. The state-
ment obviously is true forn=1. Let M be a transverse set in Q and
let p= (p1 1Poree. ,pn) be a fixed chosen element of M. Note that
M may be written as Ll_zjl Q Mir, where Mir = { g: geM, q; = r}.
Let Q' = {p: p= (p1 Poree ,pn_l)} be the set of all (n-1)-tuples of
non-negative integers endowed with the same partial ordering as that
of Q. Denote by Qir the set { a: qeQ, q = r} . For each i and
each r, the mapping fir(ql' Qg revne 'qn—l) = (ql L PUIIY N 1 AU
.. qn—l) defines an isomorphism with respect to ordering between Q'
and Qir’ Note that Mir = MN Qir which is clearly a transverse

set. Hence its image fi_rl.(Mir) in Q' is again transverse, and by the

induction hypothesis is finite. Since each Mir ig finite, therefore M

is finite. D
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Lemma 4. Let P be an arbitrary partially ordered set which
satisfies the descending chain condition. Then every ideal JC P
may be written as a set union of a family of principle ideals whose

generators form a transverse set,

Proof. For any ideal J € P, we consider the transverse set R
= {x: xe€J, and if ye J and ygxthenx=y} . We claim that
= U {x)» . LetxeJand x¢R. We may pick an element X € J
such that x >x1 . If Xy € R, then x ¢ (xl) . Otherwise we may con-
tinue to pick another element xz ¢ J such that %1 v xz . Let {xi: i=
1,2,3,... } be the set of elements in J constructed inductively as
above. By the descending chain condition, it has a minimal element,

say y. Suppose now z ¢J and z{y. Since y is minimal, we must

have y=2z. HenceyeR, and xely?y . U

We remark that the set R is uniquely determined by J. To see this

we assume that the ideal T may be written as :

I=}g<X>= U {x')

x'€ R'
where R and R' are both transverse in X. Let x€R then there exists a
x'€ R' such that x ¢ {x'>, i.e. x»x'. On the other hand, for x'e€ R}

there exists a x"€ R, such that x'¢{x")>, i.e. x' 2x". Hence we

1 n
.

have x > x' 2x Since %, ®" € R, and R is transverse, thercfore x'

=x ¢ R, Thus RER'. Similarly, we obtain R'C R.

Proof of Theorem 7. Assumption (a}) of Theorem 6 is satisfied by
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hypothesis. For each S 6)8 let K(S) = {p peqQ, ™s=g } Choose

any X €(0,1), and define o(S) —kell?(fs) 909 Glearly 0¢o(8) ¢

k
(1 forall $# I, and o(I) =1. Moreover ¢(ST) keII?EST) >\ % )g

inf inf  A(p+q) _ inf  A(p) inf )'\k?(q) =6(S) o (T) .

peK(S) qeK(T) A " peK(S) A ~ qeK(T) Finally,

to show that ¢(8;) = o (8,) = 0 implies S, = §,, we first note that if

for any S € )8 , K(8) is transverse, then o (S) = Mél(qs) A‘?(k) 50, (
ke

since K(S) is finite by Lemma 3 ). On the other hand, if K(S) is not
transverse, then there exist p,q¢K(S), p>qg. Now Tp_ q(Sx) = Sx
for all x € X, and TP"9 % 1. Again by assumption (a), we have Sx =08
for all x ¢ X. Hence ¢(S) = 0 implies that Sx =Hfor all x € X. Now
suppose cr(Sl) = O’(Sz) = 0, then there exist 81 , 62 such that Slx
= @l and Szx = 92 for all x e X. Since @1 = 818261 = stlel = 92,
SO Sl = SZ'

We next show that assumption (c¢) of Theorem 6 is also satisfied. Let
3 - )8 be an invariant set. Consider the set J ={p: peqQ, Tpe S}
which is clearly an ideal in Q. By Lemma 4, there exists a transverse
set B such that J = pLéjB {pYy. Let 63)= { Tp; for some p€ B } .
Obviously (B cg and (R is finite. For T € S , o{T) = 0, choose
any U e(j?), and observe UT =T and ¢(T) = ¢(T) oc(U). On the other
hand, if o(T # 0, we may pick peK(T) such that ¢(T) = Q(p)

Let re B such that p 3 r. Thus, T ¢ §3. Note that o(T) = ;\P(p) =
>\~§(r)+«§(p-r) » ol{U)&(S), where S = TP T ¢ )8 . We hence conclude

o'(T) = o (U)o(S) since the reverse inequality always holds. Now



22

the set O?) - 9 satisfies the condition required by assumption (c) of
Theorem 6. Apply Theorem 6 and Theorem 3, we conclude that >8 is

uniformly contractive. The corollary follows immediately from Theorem

4.['
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5. REMARKS

We first remark that Theorem 7 cannot be extended to the corres-
ponding case where )8 is generated by a countably infinite number
of mappings. To see this, we consider the following example : Let
x=[0,00) andTx=x+ {,1i=1,2,3,.... Clearly X and the com-
mutative semi-group ,8 generated by all the Ti's satisfy the hvpothe-
sis of Theorem 7. But >8 is not uniformly contractive. Assume the
contrary, then by Theorem 3 there exists a level function f on X such
that P(Tx)¢ » P(x) forallxeXandall Te ,8, T#1, where 0 ¢ X &1,
Since o0 ¢ X, therefore f(x) # 0 forall x€X. For any m we may write
f(sz) = f(Trznmx) (< )\mp(x) . Letting m tend to infinity, we obtain
a desired contradiction. Nevertheless in this case )8 is contractive
on X. Indeed, f(x) = )\X, forany A €(0,1), is a level function on
X. ( Notc that in this case thc contractive function is clearly not uni-

form.)

Let X be a metrilizable space and T be a mapping of X into it-
self such that for each positive integer k, the equation Tkx = x holds
for some x € X implies x = w, the unique fixed point of T. We now
ask ourselves the guestion : does there exist a metric in which T is
a contraction and which at the same time reproduces the original topo-
logy ? The answer is negative even in case X is compact. Suppose
X be any compact metrilizable space, and T be a mapping of X into

itself which possesses a unique inverse. In this case, we claim that
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| there does not exist a metric on X which satisfies the above-mentioned
requirements unless X is only a singleton set. Assume the contrary,
i.e. there exists a metric £ on X such that f(Tx,Ty) ¢ Aplx,y) for
all x,y ¢ X and § induces a topology same as that given on X. Since
X is compact in the original topology, so it also is compact in the me-

tric topology induced by f . Denote by D the diameter of X with res-

Sup
X,yveX

Note that S’(X.V) 4 ),nf(T—nx,T_ny) £ )\nD. Letting n tends to infinity,

pectto £, i.e. D= P(x,y). Choose x,y €X, such thatx # v.

we arrive at the desired contradiction.

As a postscript, we list here several questions for further inves-
tigation.

(i) What is a set of necessary and sufficient conditions for )8
to be contractive ? ( This is not known even in case )g is generated
by a countably infinite number of mappings.)

(ii) Assumptions (a) and (b) of Theorem 6 are shown to be nece-
ssary for )& to be contractive, ---are they also sufficiént ?

(iii) Let X be any compact metrilizable space and T a mapping of
X into itself satisfying the condition imposed in the previous paragraph.
What additional conditions are sufficient to insure the existence of a
metric which will reproduce the original topology and at the same

time make the mapping T a contraction? ( This is not known even in

case x=[0,1] .)
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