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Abstract

I merge the standard Principal Agent model with a CAPM-type financial market, to study the

interactions of contracts and financial markets. I prove existence of equilibrium in two models, a

more general economy allowing for hidden type and action under generic mean variance preferences

and a hidden action economy with Markowitz mean-variance preferences. I study economies for

which markets have an insurance effect on compensation contracts. I show sufficient conditions for

lower variance to obtain in large economies, even with asymmetric information. In this context I

show the effect of markets’ size on efficiency. I also study moral hazard economies, for which I prove

existence of a unique pure strategy equilibrium, and I show that financial markets negatively affect

the equilibrium returns of firms. In the final chapter I study the efficiency of securities issued under

symmetric information. I find that small markets and low correlation of firms’ returns generate

inefficiency. I also show that the assumption of symmetry or independence is crucial to obtaining

the insurance results in the previous Chapters.
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Chapter 1

Contracts and Aftermarkets -
Hidden Type

1.1 Introduction

Labor compensation is arguably the most relevant expense for a corporation. In the US, for example,

more than 60% of the payment to factors group in the 2008 GDP was in fact to labor. Since the stock

of a company is a claim to its profits, the firm’s decisions on workers’ compensation affect the returns

of its stock. In the aggreagate this affects financial markets. By the same token, diversification

opportunities offered by markets should influence the design of compensation packages. In view

of this consideration it is rather surprising that the economic and financial literature has devoted

relatively little attention to these interactions.

Here I address two questions:

• How does the existence of asset markets affect the design of compensation packages?

• How does asymmetric information inside firms affect aggregate risk?

The answer to the former question depends on preferences of individuals and on the distribution

of returns of companies. The market provides provides insurance and diversification opportunties to

risk averse principals, allowing them to reach a higher utility and eventually changing equilibrium

compensation. I show that in large markets with symmetric information and independent returns,

the compensation packages offered are always less risky. A weaker version of this result applies

to the asymmetric information case. The answer to the latter question is that, under the same
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assumptions as above, the constraints created by asymmetric information will induce securities

that are at least as risky as those issued under complete information. Since this will turn out to be

the case for every firm in the economy, it will be the case that this type of asymmetric information

implies excessive risk also at the aggregate level. I reach these conclusions constructing a model of

firms in financial markets. Each firm is formed by an owner and a worker. The skill of workers are

initially unobservable. This is the only source of information asymmetry in the model. I address the

effect of contracting inside firms on financial markets, and the effect of markets on firms’ efficiency.

I do not study the effects of asymmetric information in markets, but rather the effects of

asymmetric information inside firms on markets. This marks the first difference from the Gen-

eral Equilibrium works on insurance markets, starting from the seminal paper of Rothschild and

Stiglitz . Another important difference is that, in those papers, the fact that some individuals are

risk neutral and act as firms is usually an assumption with the notable exception of Dubey and

Geneakoplos, where individuals endogenously form pools to share risk. In this work there are many

risk averse investors, who access financial markets to trade away part of the risk they are exposed

to. Traditionally, the assumption of risk neutrality of a principal is motivated by the existence of

diversification opportunities. The present work also enquires when the usual motivation, the oppor-

tunity to trade risks on a financial market, actually provides a justification for the risk neutrality

assumption and its implications.

A strand of the finance literature looks at asset pricing in the presence of delegated portfolio

management (for a survey, see Stracca, 2003). An example of the approach typical in these papers

can be seen in Ou Yang’s paper. These studies look at the effects on prices and returns of the classical

informational asymmetries phenomena. Moral hazard and adverse selection are largely studied in

a CAPM or APT setting, in which a representative principal delegates his investing decisions to

an agent. In this literature inefficiencies take the form of deviations from the non-delegated case

equilibrium. These deviations can take the form of changes in asset prices and optimal portfolio

composition. Besides the different object of interest, the perspective in these works is in a sense

opposite of the one taken here. There we have informed parties trading, whereas in the present

work it is the uninformed parties accessing markets.

A branch of the general equilibrium literature focuses on the organization of firms and the

employment choices of infividuals. Rahman (2005a, 2005b), Ellickson, Grodahl, Scotchmer and

Zame (1999, 2001, 2005) and Zame (2008) separately study economies where agents form team or
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clubs, which can have different functions such as production or consumption. While none of these

models includes financial markets, some of them allow for asymmetric information. Their approach

is very general, firms and contracts are both endogenously determined. However, this generality

makes it hard to derive any predictions on the shape of contracts.

Finally, the works technically closest to mine are those by Magill and Quinzii (2005) and Par-

lour and Walden (2009) who use models which bear some similarities to this one. As in the present

chapter, they take firm formation as an exogenous process, abstracting from labor market consid-

erations, and they allow for contracts inside firms and financial markets across firms. However they

use their model to study economies with hidden action. I address the problem of moral hazard in

a separate chapter.

The paper is constructed as follows. In Section 2 I introduce the problem and an example. In

Section 3 I present the model. In Section 4 I define the notion of equilibrium. In Section 5 I prove

existence of equilibrium. In Section 6 I provide sufficient conditions for compensation to be closer

to a wage when principals access markets.

1.2 A Simple Example

In this example, I show how markets can affect contracts in a very simple setting. Markets provide

diversification for principals. This diversification opportunity makes Principals insure agents more

than in a standard P-A model.

There are four individuals, with identical preferences over random variables, U(X)F
(
µX , σ

2
X

)
=

µX − b
2

(
µ2
X + σ2

X

)
with b = 1

4 . Two of them, the Principals, own an identical technology. Two of

them, the Agents, have the skills to operate the technology. Their skills are private information at

the contracting stage. Both agents have the same reservation utility of ū = 1.

The skills of agents are identified as average returns. The performance of one agent is stochas-

tically independent from the performance of the other. The mean returns for an agent is given by

µl = 2, µh = 3 and the variance is σ2
l = σ2

h = 1.

Each principal designs a menu of two linear contracts to offer to the agent he is going to be

randomly matched with. A linear contract is a function of the form y = α+βx, and is characterized

by a pair (α, β) Principals will receive yp = −α+ (1− β)x, the agent will receive ya = α+ βx.
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1.2.1 Standard Principal-Agent Model: No Market

The problem of principals is going to be:

max
αH ,βH ,αL,βL

1

2
F
(
αH + βHµH , β

2
Hσ

2
H

)
+

1

2
F
(
αL + βLµL, β

2
Lσ

2
L

)
subject to IRH , ICH , IRL, ICL

The solution to a standard P-A model with linear contracts is to offer a menu of these two

contracts:

yL = 1.17

yH = −.65 + (.64)x

1.2.2 Principal-Agent with Financial Markets

Now suppose that the Principals can trade their claims on the asset market. The objective function

of principals is now different, because it includes the outcome of markets. With mean-variance

preferences the asset market equilibrium is determined by a few simple equations, which can be

substituted in the objective function.

The outcome of the CAPM market:

• The market portfolio will be characterized by mean and variance

- µMKT (αH , βH , αL, βL) = αL + αH + βLtL + βHtH

- σ2
MKT (αH , βH , αL, βL) = β2

HtH(1− tH) + β2
LtL(1− tL)

• Equilibrium shares will be

- Market Portfolio:

θH = θL = 1
2

- Riskless asset:

θPi = (−αi + (1− βi)ti − a
2 (1− βH)2σ2

H−
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−αH+(1−βH)tH− a
2 (1−βH)2σ2

H−αL+(1−βL)tL− a
2 (1−βL)2σ2

L

2

The Principals’ problem when Markets are available will be:

max
αH ,βH ,αL,βL

1

2
F

[(
qH −

qH + qL
2

)
+

1

2
µMKT

(
αH , βH , αL, βL

)
,

1

4
σ2
MKT

(
αH , βH , αL, βL

)]
1

2
F

[(
qL −

qH + qL
2

)
+

1

2
µMKT

(
αL, βL, αH , βH

)
,

1

4
σ2
MKT

(
αL, βL, αH , βH

)]
subject to

IRH , ICH , IRL, ICL

The optimal contracts in this setting will be

yMKT
L = 1.17

yMKT
H = −.43 + (.54)x

1.2.3 Insurance Effect

An important feature exhibited by this example is that optimal contracts are different when asset

markets are present: they are more similar to wages. In this example the returns are independent,

so that the market offers diversification opportunitie. In this case these are sufficient for principals

to offer safer contracts to agents and achieve a higher expected utility.

However, this is not always going to be the case. Consider an economy identical to the above,

but in which agents reservation utility is equal do 1
2 . These are the resulting contracts.

• The equilibrium contracts without markets:

yh = −1.42 + (.7x)

yl = .53
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• The equilibrium contracts with markets:

yh = −1.4 + (.65)x

yl = .42 + (.06)x

In this case type L gets a riskier contract when markets are present. Why is this the case? In

the rest of the paper I will give sufficient conditions for the insurance effect to obtain.

1.3 The Model

1.3.1 Primitives

There are 2N individuals. All individuals have identical preferences. They all have quadratic utility

on outcomes, in the form u (x) = x − b
2x

2. Hence their preferences over random variables can be

represented by the function

U (X) = E [u (X)]

E (X)− b

2
E
(
X2
)

E (X)− b

2
E (X)

2 − b

2
V ar (X)

N individuals are Principals, and N are Agents . There are N firms. Firm n is formed by

Principal Pn and Agent An. Principal n owns a productive technology Xn, Agent n is a skilled

worker, whose skill tn is drawn from from a distribution F with finite support {1, ..., T}.

The profits of firm n are described by a random variable Xn,t . In other words profits depend

on technology and skill.

1.3.2 Timeline

Initially firms are identical in terms of internal organization. The Principal owns the firm. Her

technology and the Agent’s work are necessary for creating profits. Their position differs because
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while the technology is public, the Agent’s skill is his private information.

1. Each principal n will design a mechanism Mn = (An, Cn), in which the agent can chooose

an action an out of set An . Depending on the agent’s actions in the mechanism, he will be

compensated with a contract C ∈ Cn. A contract comprises of shares of the company (1− βn)

and a transfer −αn . A contract Cn is hence represented by a pair (αn, βn) ∈ R × [0, 1] and

it will be a function of the action taken by the agent Cn (an). If he does not work he will

get a reservation utility of u ≥ 0 and there will be no profits. From now on, I will slightly

abuse notation and indentify an agent’s choice of action in a mechanism, with the resulting

contract.

2. Once the shares/wage decisions have been taken, production starts, and agents’ skills will

become public.

3. Finally principals can trade their claims to profits αn + βnXn,tn on a market, in which a

riskless asset L is also available in zero net supply.

4. After trading takes place, all uncertainty is realized. Compensation and securities pay off.

When Who What Knowing What

0 Pn Mn CMN

1 An Cn ∈ An CMN, t (n) ,Mn

2 Pn θn CMN, t

Table 1.1: Timing

1.3.3 Strategies and Payoffs

Let T be the set of possible realizations of workers’ skill values and let t = (t1, ...tN ) be its generic

element, distributed according to F = (F1, ..., FN )

Let C be the vector of contracts across the economy.

C = {Cn}Nn=1 = {αn, βn}Nn=1
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Let θ = (θR|θL) be the portfolio held by an agent. θR is a N -dimensional vector of positive

holdings of the N risky assets, whereas θL is the position an investor holds in the riskless asset.

The ex-ante utility from a portfolio θ fixing the matching t and the contracts CN , is given by

U3
pn (θ,C, t) = U

(
θ · (~µ (t,C) |1) , θRΩ (t,C) θR

)
Demand θ will depend on available assets (and hence con contracts C and their prices q (but

prices are also a function of contracts).

Agents payoffs depend on the action chosen and on the technology of their principal and on

their type t:

U2
An

= U (Cn, tn)

A Principal’s expected utility when mechanisms are M, the resulting contracts are C (M) and

he holds portfolio θ is

U1
Pn

(M,C (·) , θ) =

∫
T
U3
Pn

(θ,C (M) , t) F (t)

1.4 Equilibrium

1.4.1 Description

Because individuals take their decisions at each stage looking at the final payoffs, Equilibrium is

more easily described starting from the final stage of the game.

Asset Market At this stage the realized skills are observed. There is no asymmetric infor-

mation. Principals hold one unit of a security equal to their share of returns in their firm, and

a riskless asset is available in net zero supply. The solution concept used here is that of Arrow-

Debreu Equilibrium. Since securities payoffs are determined by contracts C and by agents’ skills t,

the equilibrium portfolios and prices will be function (θ, q) (C, t),

Contracting, Agents’ turn Each agent An observes the mechanism he is offered, Mn, and he

knows his own type and the technology of the principal. This is all the payoff relevant information,

so every agent is facing a choice between lotteries, and he is not interacting with any other individual,
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except of course Pn. They pick an action maximizing U2
An

(·). Their strategies will be functions

an (Mn, tn).

Contracting, Principals’ turn Each principal offers designs a mechanism, without knowing

the skills of any agent. However they correctly forecast the strategies of each agent, and the outcome

of asset markets, for any possible mechanism. In other words, they can forecast the equilibrium

path for all profiles of mechanisms M and types t . Principals at this stage play a game against

each other. A mixed strategy for Pn is a lottery on possible mechanisms, M̃n ∈ ∆ (Mn).

The flow of decisions is described schematically below, and the information available at each

stage is summarized by the argument of the strategies.

M̃

t

→ C̃(M, t))→
C

t

→ [(θ, q)] (C, t)

Based on this timeline we can write the utility in the first stage in this form:

Vn

(
M̃n|M̃n

)
= EM̃n

[
U1
Pn

(
M̃n|M̃−n,C

(
M̃n|M̃−n, t̃

)
, θ
(
C
(
M̃n|M̃−n, t̃

)))]
Note that t̃ is a random vector and U1

Pn
defined above includes an expectation with respect to

its distribution F .

1.4.2 Definition

An Equilibrium consists of

• A trading strategy θ∗n for each Principal n and prices q∗ ∈ RN+1 such that [θ∗, q∗] (C, t) is

an Arrow-Debreu Equilibrium for the symmetric information asset market taking place after

contracting. Each principal is endowed with one unit of one asset so that the endowment of

principal n is wn = [0, 0, ..., 1, ..., 0, 0] with 1 being in the nth position.
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θ∗n (C∗, t) ∈ arg max
θ∈RN+1

+

U3
Pn

(θ,C∗, t)

s.t.

q∗ (C∗, t) · θ (C∗, t) ≤ q∗n (C∗, t)∑
n∈N

θ∗n = [1N |0]

• For each agent An a strategy C∗n (M∗n, t (n)) such that

C∗n (M∗n, t (n)) ∈ arg max
C∈Cn

U2
An

(C, tn)

• For each principal Pn,a lottery M̃∗n of deterministic mechanisms such that

supp
[
M̃∗n

]
⊆ arg max

Mn∈M
V ∗n (Mn|M∗

−n)

1.4.3 Result

To prove existence of equilibrium I need the following result, the mechanism design classic, “cus-

tomized” for this setting in which principals compete with each other..

Let an instance of the previously described economy be G, and the set of its equilibria E(G).

Consider now an economy GTwhich is identical in all respects, but where principals are restricted

to offer to agents menus of contracts of size |T |, instead of designing general game forms. I am

going to show that E (G) = E
(
GT
)
. In this way the strategy space of the Principals at the first

stage will be finite dimensional.1 The space of Pn’s strategies is going to be M|T |n .

Proposition 1. The unrestricted menus economy G and the restricted menu economy GT , have

the same equilibria: E (G) = E
(
GT
)

Proof. E(G) ⊆ E(GT ) Consider an equilibrium ε =
(
M̃,C, θ, q

)
now construct a strategy profile εT

and show it is an equilibrium for GT : Let a menu MT
n of |T | contracts offered in ε

(
GT
)

be made

1In this model, T is finite.
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of contracts {(yn)}t∈T :

y (t) = Cn (Mn, t)

For agents, it is an optimal action to choose the contract y (t). Suppose not. Than it would be

the case that for some t′

U (y (t′) , t) > U (y (t) , t) = U (Cn (Mn, t) , t)

By construction Cn (Mn, t
′)
′

played in Mp yields the same payoff as y (t′), which contradicts Cn

being an equilibrium strategy.

The above described menus are optimal for every principal. Suppose not, then for some principal

p there is a |T | sized menu M̃ ′ such that

Vn

(
M ′|M̃T

−n

)
> Vn

(
M̃T

)
= V ∗n

(
M̃
)

The equality follows by construction, and since n could have offered M̃ ′ in the unrestricted economy,

this would contradict ε being an equilibrium.

E(GT ) ⊆ E(G)

Consider an equilibrium eT : the agents equilibrium strategies CT are simply the equilibrium

strategies of the real economy, restricted to the domain of |T | sized menus. Moreover, M̃T , are

equilibrium strategies also in the unrestricted game. Suppose it was not the case, then for some n

there is an unrestricted mechanisms lottery M̃ such that

V ∗n (M̃ |M̃T
−n) > V ∗n (M̃T )

Note that Vn(M̃ |M̃T
−n) can be attained by n by offering a lotteries of restricted menus M̃

′T

made of the following contracts y′:

y′n(t) = Cn (Mn, t)

This implies

V ∗n (M̃ ′|M̃T
−n) > V ∗n (M̃T )

which contradicts M̃T being an equilibrium for GT
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The utility function of a Principal is continuous in the contracts chosen by each type of Agent

so it is continuous in CT . To make it continuous in the contracts offered by Principals’ it has to

be that these contracts form Incentive Compatible menus. In other words, menus must come from

as subset of CT such that C1 is always chosen by agent 1, C2 is always chosen by agent 2, and so

on. To achieve this the menu in a contracts must satisfy incentive compatibility constraints.

We can be sure that we can restrict attention to these menus because all and only the equilibria

of the original unrestricted game are obtained in a game where Principals are allowed to offer only

an incentive compatible menu of T contracts. I will call this economy, GIC .

Corollary 2. The restricted menus economy G and the IC economy GT , have the same equilibria

E(GT ) = E(GIC)

Proof. E(GT ) ⊆ E(GIC) The contracts in the direct revelation menus in the proof of Theorem 1

are Incentive Compatible by construction.

E(GIC) ⊆ E(GT ) This part of the proof goes as the second part of the proof in Theorem 1: any

outcome that a principal can achieve by menus of size T can be achieved by incentive compatibles

menu of size T .

1.5 Existence of Equilibrium

1.5.1 Assumptions

1.5.1.1 Monotonic Preferences

It is well known that Mean-Variance Preferences are not monotonic. This of course can cause prob-

lems for the existence of an equilibrium. In a standard CAPM setting, monotonicity of preferences

is solved by imposing a bound on the variance aversion of every individual. I will require agents to

not be satiated if they owned every return in the economy, regardless of state. I will then show that

this implies they will not be satiated in the asset market of the later stage. It is possible to show

that if preferences are monotonic for given returns (µ,Ω), they will be monotonic for the returns

induced by any contracts in that economy, (α+ βµ, βΩβ′).

Definition 1. Let X be a generic Random Variable on the state space S = (s1, ..., sS) taking values

(x1, ..., xS). We say that U(X) is monotonic if ∂U
∂xi

> 0,∀i.
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Lemma 3. Consider the preferences induced by the utility function

U(X) = E(X)− b

2

(
E (X)

2
+ V ar (X)

)
They are monotonic on a set of variables X defined on a finite state space S, if

b < min
X,s

1

X(s)

Proof. The proof amounts to checking (by differentiating) under which conditions on a the utility

function is increasing.

Definition 2. Preferences are monotonic for the entire economy if b < 1∑
n maxsXn(s)

This definition amounts to stating that if an agent owned the entire returns available to the

economy, he would still not be satiated. 2

Lemma 4. If preferences are monotonic for the entire economy with assets characterized by returns

(µ,Ω), then they will be monotonic on all feasible portfolios for any contracts (αn, βn)n∈N .

Proof. For preferences to be monotonic for all feasible portfolios it has to be that

b < min
θn,Xn,s

1∑
n∈N θnXn (s)

Where the min is taken across portfolios θ such that θn ∈ (0, 1) and outcomes Xn(s).

So that the lemma can be restated as

max
s

∑
n∈N

θn (αn + βnXn(s)) <
∑
n∈N

θn max
s
Xn(s)

Note that the solution to the maximization on both sides is going to be reached at the aggregate

market portfolio ( θn = 1 for all n) so that the previous is equivalent to

Claim 1

max
s

∑
n∈N

(αn + βnXn(s)) <
∑
n∈N

max
s
Xn(s)

2The definition is equivalent to the less stringent b < 1
maxs

∑
n Xn(s)

as long as no firms are perfectly correlated

|ρmn| 6= 1, ∀m,n
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To prove this, note first how

Claim 2

max
s
αn + βnXn(s) < max

s
Xn(s),∀n, αn, βn

Suppose by means of contradiction

∃n, αn, βn s.t. max
s
−αn + (1− βn)Xn (s) < 0

Which in turn implies

0 > −αn + (1− βn)E (Xn) = E (−αn + (1− βn)Xn) > EU (−αn + (1− βn)Xn)

However EU (−αn + (1− βn)) has to be greater than zero in equilibrium, so that

0 > EU (−αn + (1− βn)Xn) > 0

which is impossible. This proves Claim 2

It follows from Claim 2 that

∑
n

αn + βn max
s
Xn (s) <

∑
n

max
s
Xn (s)

Finally

∑
n∈N

max
s
Xn (s) >

∑
n∈N

(
αn + βn max

s
Xn (s)

)
> max

s

∑
n∈N

(αn + βnXn (s))
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1.5.2 The existence result

Theorem 5. If preferences are monotonic for the entire economy then there exists an equilibrium

in the CAPM contracting economy.

Proof. I am going to use a well known fixed point result by Glicksberg (1952) to show that there is

an equilibrium in the first stage of the game, given that the asset market develops as predicted by

the CAPM model.

I need to show that

1. The strategy space ∆(MMV ) is a convex, compact subset of a locally convex Hausdorff space.

2. The best response correspondence of all principals is upper hemi-continuous, convex valued,

and nonempty.

For the first part note that the space of Incentive Compatible menus MMV is a subset of a

Euclidean space. It is closed because it is defined by a finite number of weak inequalities, and it is

bounded because the larger set of feasible contracts are bounded. Hence it is compact.

The space of lotteries (identified with Borel probability measures) over these Menus is of course

convex. It is also compact with respect to the weak* topology. This space of probabilities is a

subset of the space of continuous functions C(MMV ), which is locally convex (and Hausdorff) with

respect to the weak* topology.3

For the second part, convexity of the best response correspondence follows from preferences on

random variables being represented by expected utility. I will use Berge’s Maximum theorem to

show that it is non empty, compact-valued and upper hemi-continous.

To apply the maximum theorem to individuals’ best response, it has to be that constraints vary

continuously with other principals’ strategies, and that the payoff function is continuous in one’s

own actions.

First note how the constraints correspondence is constant with respect to other principals strate-

gies, and is therefore continuous. Also note how the constraints correspondence maps to the space

of Borel probability measures on menus, which is a Hausdorff space as noted above.

We also need to make sure that the payoff function of a principal is continuous in menus. To

do this we need to show that
3For a treatment of these and other results on weak topologies, and also to see the theorems of Berge and

Glicksberg, see Aliprantis, Border (2005)
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1. Payoffs at the market stage are a continuous function of the contracts chosen by agents.

2. The contracts chosen by agents are a continuous function of the menus offered.

Claim 1 By Lemma 4, if the preferences are monotonic for (µ,Ω), they are going to be monotonic

for the asset markets resulting from all possible contracts C. Under the present assumptions a

CAPM equilibrium exists once contracts are chosen.4 Because in such equilibrium the price of

a security can be expressed as qn = αn + βnµn − b
N

(
β2
nσ

2
n + Σm6=nρmnβmβnσmσn

)
The indirect

utility from a contract profile in the CAPM function is continuous in contracts.

Claim 2 Recall that we can restrict attention to Incentive Compatible menus. If a principal

makes a small change to the menu he offers while remaining in this set, every type of agent t ,

will still find it optimal to pick the contract intended for him, Ct. Hence any small change, will

correspond to a small change in the contract picked by each type of agent.

We can conclude that the indirect utility for a principal facing type t is a continuous function

of the menus offered.

Taking expectation with respect to F over these indirect utilities yields a continuous functional

on the domain of lotteries on IC menus.

By the maximum theorem the best response correspondence of each player is now UHC and

compact valued, which implies that the game best response is as well.

By Glicksberg’s theorem there is a fix point, which is an equilibrium by construction.

1.6 The Insurance Effect of Markets

Throughout this section I will consider the case of firms whose returns are independent.

1.6.1 Utility from Markets

The point of this section is incorporating the outcome of markets in the principals’ utility functions.

First consider again what the final holdings are in equilibrium. Every individual will hold the same

risky portfolio, an equal fraction 1
N of the aggregate endowment, and will spend the rest on the

4In the literature briefly reviewed by Nielsen (1990), one can find many sufficient conditions for the existence of
CAPM equilibrium, most of them deal with the possibility of satiation of preferences. Things are particularly simple
when returns are bounded (which includes this model): monotonicity and local non satiation are guaranteed by a
low enough risk aversion
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riskless asset (or short it if their remaining endowment is negative). With this in mind the mean

and variance of the portfolio held by the agent is readily computed as a function of contracts. For

a general principal i we have that

• The holding of riskless asset is qi − 1
N

∑
j∈P qj

• The mean of the risky portfolio is 1
N

∑
j∈N (αj + βjµj)

• The variance of the risky portfolio is 1
N2

∑
j∈N β

2
jσ

2
j

Since qi = αi + βiµi − b
N β

2
i σ

2
i , we have that the mean of the portfolio simplifies to

αi + βiµi −
b

N
β2
i σ

2
i +

b

N2

∑
j∈N

β2
jσ

2
j

and the variance is of course the variance of the risky part 1
N2

∑
j∈N β

2
jσ

2
j

So that if U (αi, βi) = F
(
αi + βiµi, β

2
i σ

2
i

)
is the utility a principal obtains from contract α, β

when no markets are available, markets will change this into

UM (αi, βi) =

FM
(
αi + βiµi, β

2
i σ

2
i

)
=

F

αi + βiµi −
b

N
β2
i σ

2
i +

b

N2

∑
j∈N

β2
jσ

2
j ,

1

N2

∑
j∈N

β2
jσ

2
j


Lemma 6. If the principals are allowed to trade their claims, they will act as if their utility functions

were

EtU
M (αi, βi) =

EtF
M
(
αi + βiµi,ti , β

2
i σ

2
i,ti

)
=

EtF

αi + βiµi,ti −
b

N
β2
i σ

2
i,ti +

b

N2

∑
j∈N

β2
jσ

2
j,tj ,

1

N2

∑
j∈N

β2
jσ

2
j,tj


The partial derivatives of these functions are given by
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∂FM

∂µi

(
µi, σ

2
i

)
=
∂F

∂µ

µi − b

N
σ2
i +

b

N2

∑
j∈N

σ2
j ,

∑
j∈N σ

2
j

N2


∂FM

∂σ2
i

(
µi, σ

2
i

)
=
∂F

∂µ

µi − b

N
σ2
i +

b

N2

∑
j∈N

σ2
j ,

∑
j∈N σ

2
j

N2

( b

N2
− b

N

)
+

∂F

∂σ2

µi − b

N
σ2
i +

b

N2

∑
j∈N

σ2
j ,

∑
j∈N σ

2
j

N2

 1

N2

and so that

UMαi
(αi, βi) = Fµ

µi − b

N
σ2
i +

b

N2

∑
j∈N

σ2
j ,

∑
j∈N σ

2
j

N2


UMβi

(αi, βi) = µiFµ

µi − b

N
σ2
i +

b

N2

∑
j∈N

σ2
j ,

∑
j∈N σ

2
j

N2

+

2βiσ
2
i

µiFµ
µi − b

N
σ2
i +

b

N2

∑
j∈N

σ2
j ,

∑
j∈N σ

2
j

N2

( b

N2
− b

N

)
+

Fσ2

µi − b

N
σ2
i +

b

N2

∑
j∈N

σ2
j ,

∑
j∈N σ

2
j

N2

 1

N2


whereas the partial derivatives without markets are

Uαi (αi, βi) =Fµ
(
αi + βiµi, β

2
i σ

2
i

)
Uβi

(αi, βi) =µiFµ
(
αi + βiµi, β

2
i σ

2
i

)
+ 2βiσ

2
i Fσ2

(
αi + βiµi, β

2
i σ

2
i

)
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1.6.2 First Best

Theorem 7. When information is complete and symmetric, the variance of optimal contracts is

smaller in a large market than without markets. There is a number of principals N such that

β∗t < β∗t (N) , ∀N ≥ N

Proof. Consider the problem of a principal.

max
(αt,βt)

T
t=1

T∑
t=1

U (αt, βt|t)

s.t. U (−αt, 1− βt|t) ≥ u, ∀t = 1, ...T

Which can be broken into T separate problems

max
(αt,βt)

U (αt, βt|t)

s.t. U (−αt, 1− βt|t) ≥ u

Note that

U (αt, βt|t) = F
(
αt + βtµt, β

2
t σ

2
t

)
U (−αt, 1− βt|t) = F

(
−αt + (1− βt)µt, (1− βt)2 σ2

t

)
Dropping the type subscripts for convenience, we can proceed to solve an individual problem

max
(α,β)

F
(
α+ βµ, β2σ2

)
s.t. F

(
−α+ (1− β)µ, (1− β)

2
σ2
)
≥ u
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The first order conditions for this problem amount to

∂L

∂α
= Fµ

(
α+ βµ, β2σ2

)
− λFµ

(
−α+ (1− β)µ, (1− β)

2
σ2
)

= 0

∂L

∂β
= µFµ

(
α+ βµ, β2σ2

)
+ 2βσ2Fσ2

(
α+ βµ, β2σ2

)
+

−λ
[
µFµ

(
−α+ (1− β)µ, (1− β)

2
σ2
)

+ 2 (1− β)σ2Fσ2

(
−α+ (1− β)µ, (1− β)

2
σ2
)]

= 0

Solving for the optimal contract we have that

βM∗ =
NUM

DEN

where

NUM = Fσ2

(
−α+ (1− β)µ, (1− β)

2
σ2
)
Fµ
(
α+ βµ, β2σ2

)
DEN = Fσ2

(
−α+ (1− β)µ, (1− β)

2
σ2
)
Fµ
(
α+ βµ, β2σ2

)
+

Fσ2

(
α+ βµ, β2σ2

)
Fµ

(
−α+ (1− β)µ, (1− β)

2
σ2
)

Similarly we can “break” the problem with markets in smaller optimizations like the following.

max
(α,β)

FM
(
α+ βµ, β2σ2

)
s.t. F

(
−α+ (1− β)µ, (1− β)

2
σ2
)
≥ u

The first order conditions for this problem amount to

∂LM

∂α
= FMµ

(
α+ βµ, β2σ2

)
− λFMµ

(
−α+ (1− β)µ, (1− β)

2
σ2
)

= 0

∂LM

∂β
µFMµ

(
α+ βµ, β2σ2

)
+ 2βσ2FMσ2

(
α+ βµ, β2σ2

)
+

−λ
[
µFMµ

(
−α+ (1− β)µ, (1− β)

2
σ2
)

+ 2 (1− β)σ2FMσ2

(
−α+ (1− β)µ, (1− β)

2
σ2
)]

= 0

Solving for the optimal contract we have that

β∗ =
NUMM

DENM
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where

NUMM = Fσ2

(
−α+ (1− β)µ, (1− β)

2
σ2
)
FMµ

(
α+ βµ, β2σ2

)
DENM = Fσ2

(
−α+ (1− β)µ, (1− β)

2
σ2
)
FMµ

(
α+ βµ, β2σ2

)
+

FMσ2

(
α+ βµ, β2σ2

)
Fµ

(
−α+ (1− β)µ, (1− β)

2
σ2
)

By the considerations from Section 1.6.1, we note that, since FMσ2 gets arbitrarily small as N

gets large ( bN −
b
N2 and 1

N2 are arbitrarily small for large enough N , so is FMσ2 ) . β∗ is arbitrarily

close to 1 in a large economy. Which concludes the proof.

1.6.3 Ordering Types

To solve a risk sharing principal agent problem with multiple types and asymmetric information, I

will need to adapt methods use in the contract theory literature.5 I will require that, for any firm,

the type space is ’ordered’ in the sense of Single Crossing Property (ie: any two indifference curves

from any two types will cross only once). The following cumbersome notation means exactly this.

Given a firm, agents can be ranked (by the slopes of their indifference curves). The ranking need

not be the same in every firm.

Let SCP (n) = (1(n), 2(n), ..., T (n)) be a function fromN to TN such that i (n) 6= j (n) ,∀i (n) , j (n) ∈

1, ...T,∀n .

Definition 3. An economy satisfies Single Crossing Property if and only if there is a function SCP,

as defined above such that types
((
µ1(n)), σ1(n)

)
, ...,

(
µT (n), σT (n)

))
satisfy Single Crossing Property

for all n . That is, if

U2 (−α, 1− β|t(n))

U1 (−α, 1− β|t(n))
>
U2 (−α, 1− β|t(n) + 1)

U1 (−α, 1− β|t(n) + 1)

∀t, p, α, β

In the case of quadratic utility, SCP amounts to

5Similar techniques are used in the literature on second order price discrimination. See for example Maskin and
Riley, 1984 and Stiglitz, 1980
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µt −
btσ

2
t (1− β)

1− bt (−α)− btµt (1− β)
> µt+1 −

bt+1σ
2
t+1 (1− β)

1− bt+1 (−α)− bt+1µt+1 (1− β)

Proposition 8. The following cases6 imply SCP :

• Agents have the same mean and different variance

• Agents have different mean and the same variance

• Agents generate the same outcomes, but the probabilities of success are different.

The proof amounts to the algebra necessary to verify the definition.

The following two facts will come handy for the proving Theorem 11

Fact 9. ∀t, (α, β) , U (−α, 1− β|t) > U (−α, 1− β|t+ 1)

Fact 10. ∀t < s, ∀ (α, β) , (α′, β′) : β ≤ β′

U (−α, (1− β)| t)− U (−α′, (1− β′)| t) > U (−α, (1− β)| s)− U (−α′, (1− β′)| s)

1.6.4 Second Best

Theorem 11. If types satisfy Single Crossing Property and markets are large enough, the variance

of the average contract is smaller when markets are present.

Proof. The strategy of the proof is to show that -at an optimum- all types shares’ ( (1− β) ) are

bounded by the share of the “best” type, t = 1. And that the share of this type become small for

large enough market.

A generic principal’s problem is given by

max
(αt,βt)

T
t=1

T∑
t=1

U (αt, βt|t) f (t)

s.t. U (−αt, 1− βt|t) ≥ u, ∀t ∈ {1, ...T} (IR)

U (−αt, 1− βt|t) ≥ U (−αt′ , 1− βt′ |t) , ∀t, t′ ∈ {1, ..., T} (IC t t’)

6It is to be noted that, although it is not formalized in the general model, SCP holds also if agents are distinguished
by their risk aversion, and the following results would still apply
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SCP and IC constraints imply by usual arguments that yield that β∗ (s) ≥ β∗ (t) ,∀s < t ∈

{1, ...T}. This imply that β1 ≤ βt,∀t

Now we have to solve for the contract of type 1. To do this I show that the IC12 constraint will

always be binding, and that this is enough to attain the result.

The first thing to do is to reduce the set of relevant constraints.

Fact 9 implies that

U (−αt, 1− βt|t) ≥ U (−αt, 1− βt|T )

This together with IR holding for type T and IC holding for type t with respect to the contracts

of type T, implies that IR holds for type t.

In other words, if

U (−αT , 1− βT |T ) ≥ u

U (−αt, 1− βt|t) ≥ U (−αT , 1− βT |t)

we will also have that

U (−αt, 1− βt|t) ≥ u

We can hence solve the problem without worrying about any of the IR constraints except that

of type T .

We can also infer that ICt−1,t will be binding at an optimum for any t. Suppose that it were

not binding,

U (−αt−1, 1− βt−1|t− 1) > U (−αt, 1− βt|t− 1)

Since we are at an optimum it has to be that the IC constraints are satisfied
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U (−αt, 1− βt|t) ≥ U (−αk, 1− βk|t) ,∀k

By Fact 10 it has to be that

U (−αt, 1− βt|s) > U (−αk, 1− βk|s) ,∀k ≥ t,∀s < t

Consider an alternative incentive scheme, which gives less transfer −αs to all types s lower t.

Because their IC constraints for contracts Ck, with k > t ( ICs,k ) are not binding, we are increasing

the maximand while remaining in the admissible set of contracts, which contradicts the original

scheme being an optimum.

This and SCP imply that constraints ICt,t−1 will not be binding.

It also implies that no other IC constraint will bind at the optimum. Fact 9, ICt−1,t, and ICt,t+1

imply that ICt−1,t+1 is satisfied with a strict inequality.

This means that the only relevant constraints for determining the optimal β1 are in the form

U (−α1, 1− β1|1) = U (−α2, 1− β2|1)

I now have to solve a much simpler problem

max
(αt,βt)

T
t=1

T∑
t=1

U (αt, βt|t) f (t)

s.t. U (−αT , 1− βT |t) = u (IR)

U (−αt, 1− βt|t) = U (−αt+1, 1− βt+1|t) , ∀t ∈ {1, ..., T − 1} (IC t t +1)

The only first order conditions involving α1 and β1 are given by



25

q1Fµ
(
α+ βµ, β2σ2

)
− λFµ

(
−α+ (1− β)µ, (1− β)

2
σ2
)

= 0

q1
(
µFµ

(
α+ βµ, β2σ2

)
+ 2βσ2Fσ2

(
α+ βµ, β2σ2

))
+

−λ
[
µFµ

(
−α+ (1− β)µ, (1− β)

2
σ2
)

+ 2 (1− β)σ2Fσ2

(
−α+ (1− β)µ, (1− β)

2
σ2
)]

= 0

Which yield an expression for 1 identical to the first best case.

β∗1 =
NUMM

DENM

NUMM = Fσ2

(
−α+ (1− β)µ, (1− β)

2
σ2
)
FMµ

(
α+ βµ, β2σ2

)
DENM = Fσ2

(
−α+ (1− β)µ, (1− β)

2
σ2
)
FMµ

(
α+ βµ, β2σ2

)
+

FMσ2

(
α+ βµ, β2σ2

)
Fµ

(
−α+ (1− β)µ, (1− β)

2
σ2
)

Solving for β1 we obtain a formula similar to the first best case. Just as in the first best case

we can observe that β∗ is arbitrarily close to 1 in a large economy, since FMσ2 can again be made

arbitrarily small by choosing an appropriately large N .

This bound allows us to reach the result

Claim:
∑
t,n f (t)βtn ≥

∑
t,n f (t)βtn(1)

Let t be the bijection satisfying SCP for all matches.

The claim is equivalent to

∑
n

∑
t

f (t)βtn ≥
∑
n

β1(n)
n (n)

Note that

∀n, t, ∃N s.t. β1(n)
n (N) ,∀N ≥ N
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and naturally

∀n, ∃N s.t. β1(n)
n (N) ,∀N ≥ N,∀tn

This implies

β1(n)
n >

∑
t

f (tn)βtn,∀N ≥ N

and

∑
n

β1(n)
n >

∑
n

∑
t

f (t)βtn,∀N ≥ N

which concludes the proof.

1.6.5 Effects on Welfare and on Asset Markets

As it is usually the case, asymmetric information entails a loss of efficiency.

Corollary 12. Under the assumptions of Theorem 11, the equilibrium is inefficient compared to

the complete information case.

Proof. It follows from the fact that IRT and ICT−1,T are both binding that at least the contract

of type T is Pareto dominated by the complete information solution of Theorem 7.

Let ∆t (N) = βt∗ (N) − βt1 (N), where βt1 (N) is the first best solution. I will use this as a

measure of inefficiency.

Corollary 13. For any principal-agent pair, there is a number N , such that any market with

N ≥ N traders induces more efficient contracts, ∆t (N) < ∆t (1)
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Proof. The proof again leverages on the fact that both first and second best contracts are arbitrarily

close to 1 for a large enough markets. The claim is trivially satisfied for β1∗ (N) (the second best

solution, with markets), since it is a Pareto Efficient Contract by construction. For βt∗ (N) , t > 1

consider ∆t (N) = βt∗ (N) − βt1 (N), where βt1 (N) is the first best solution with markets. Since

βt∗ (N) and βt1 (N) both go to one as N gets large, there must be a N such that ∆t (N) < ∆t (1)

for all N > N .

1.7 Conclusion

This chapter integrates a model of principal-agent interaction with asset markets. Principals and

Agents are randomly matched. Each pair produces random returns, whose distribution is known

only to the agent at the contracting stage. Every Principal offers a menu of contracts to the Agent

he is matched with, and the Agents make their pick. What marks the difference from the standard

contracting model is that Principals have access to an asset market on which they trade their shares

of returns.

I present a general framework and define a notion of equilibrium. I prove a revelation principle

result, to simplify the study of firms’ structure and prove existence of equilibrium. Under standard

assumptions of contract theory, I study the interactions of financial markets on contracts. The

existence of markets, induces less risky compensation for agents. In a large market diversification

opportunities multiply, and contracts become less and less risky.

Contracting inside firms induces inefficient aggregate risk in an economy, however the size of

this inefficiency is reduced by a large enough market. As noted this is a limiting result and it leaves

the open question of the behavior in small markets.

Two extensions of this model seem particularly interesting. The first one is studying the effect

of correlation of firms returns (systemic risk) on the screening problem and the loss of welfare. The

second one is studying the effect of financial markets on the labour market, in particular on the

matching of workers’ with firms.
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Chapter 2

Contracts and Aftermarkets -
Hidden Action

2.1 Introduction

It is well known that financial markets can favor the efficient allocation of resources to production

and the sharing of risk. Less is known about their effects on incentives, for those who have limited

access to markets. In this chapter I propose a stylized model of firms and financial markets, to

capture these effects. The concern here is how different access to markets can affect the incentives

to production.

This chapter relates to two branches of economic theory. The literature on Walrasian economies

in presence of Moral Hazard issues, and the literature on endogenous securities. I will discuss the

fit of my work in these literatures, but first I am going to relate my work to two recent papers,

which are particularly relevant to the discussion.

Parlour and Walden (2008) construct a model based on CAPM where workers are also the

dispersed owners of the firms in the economy. Their assumptions and their main object of interest

are opposite of mine. By assuming workers are the only traders, and cleverly constructing a simple

shock that cannot be traded away on markets, they mostly analyze the effects of moral hazard on

financial markets. I am on the other hand more interested in the effect of financial markets on

contracts. For this reason I cannot take firms as abstract risk neutral principals at the contracting

stage. In fact Risk Neutrality corresponds only to a special case (firms with independent returns).

Magill and Quinzii (2005) ask a different although related question. What set of securities is
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needed, for risk sharing and incentives to coexist? They study several cases, distinguished by the

amount of information available for contracting, and for each case characterize the set of securities

which allow (constrained) efficiency. In this chapter securities are determined in equilibrium, but

they are chosen out of a very simple set. In the future it would be worth describing the endogenous

choice of complex securities, to study the efficiency of financial engineering, in terms of incentives

and risk sharing, but this is out of the scope of this chapter.

There is by now a vast literature on moral hazard in general equilibrium settings. Helpman and

Laffont (1975) and Prescott and Townsend (1984) are among the first to tackle the topic. Their

works are concerned with efficiency in exchange and production economies, in which individuals

can exert a costly, unobservable payoff relevant action. These papers are the first in a long, but

not large, series of works, which extend the study of efficiency to more general economies. My

work is different in that I include financial markets, and I trade off some generality for more precise

comparative statics results.

A strand of the asset pricing literature looks at asset pricing in the presence of delegated portfolio

management (for a survey, see Stracca, 2003). An example of the approach typical in these papers

can be seen in Ou Yang’s paper. These studies look at the effects on prices and returns of the classical

informational asymmetries phenomena. Moral hazard and adverse selection are largely studied in

a CAPM or APT setting, in which a representative principal delegates his investing decisions to

an agent. In this literature inefficiencies take the form of deviations from the non-delegated case

equilibrium. These deviations can take the form of changes in asset prices and optimal portfolio

composition. Besides the different object of interest, the perspective in these works is in a sense

opposite of the one taken here. There we have informed parties trading, whereas in the present

work it is the uninformed parties accessing markets.

In Section 2 I present the model. In Section 3 I define the notion of equilibrium. In section

4 I show existence and uniqueness. In section 5 I analyze the effect of markets on production.

Section 6 concludes. The appendix discusses issues concerning Markowitz preferences, when used

in a dynamic contest.
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2.2 The Model

This stylized model is meant to capture certain features of interactions within firms and across firms

in financial markets. It is helpful to introduce first the model of a single firm, and then proceed to

define how they interact.

2.2.1 Primitives

A generic firm i is constituted by a principal-agent pair pi, ai. Each of these firms i generates

random returns. All individuals have identical Mean Variance Preferences over random variables

in the familiar form 1

U (X) = µ (X)− b

2
σ2 (X)

Agents have a reservation utility, u. Agents choose a costly action (which can be interpreted as

the effort put into production) ei from the interval E = [e, e]. The cost of effort is a continuous,

strictly increasing real valued function c (e).

The returns of a firm X̃i (ei) depend stochastically on the effort level of the agent employed.

Because of the assumptions on preferences, I can restrict my attention to the mean and the variance

of the firm’s returns, and express them as a function of effort levels.

µi (ei)

σ2 (ei)

A contract Ci is a contingent agreement on how to split returns between the Principal and the

Agent forming firm i. I impose the restriction that these sharing rules be affine. If X is the random

variable describing the profits of the firm, an admissible rule describing the principal’s and agent’s

1Note that all the analysis in this paper would apply to the CARA/normal framework, except that conditions for
existence would be less demanding.
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share must be of the form:

Xai = −α+ (1− β)X

Xpi = α+ βX

with α ∈ R and β ∈ [0, 1].

A contract Ci amounts to a pair αi, βi. In a binary setting this imposes the restriction that

both shares be increasing in firm’s returns.

Now consider that there are N firms. Let e = [ei (Ci)]1≤i≤N be the vector of efforts, and

C = [Ci]1≤i≤N be the vector of contracts in each firm .

The joint distribution of the vector of firms’ profits X (e) = [Xi (ei)]1≤i≤N firms’ profits will be

uniquely determined by the effort levels across firms.

µ (e) =


µ1 (e1)

...

µN (eN )


Ωjk (e) = ρjk (ej , ek)σj (ej)σk (ek)

I will denote this vector and matrix as µ (e) and Ω (e).

Principals will have access to a financial market where they can trade their claims to profits and

a riskless asset available in zero net supply.

The risky assets available can be described by a random vector, Xp (e, C) = [Xpi (ei, Ci)]1≤i≤N =

[αi + βXi (ei)]1≤i≤N

Because of our assumption on preferences, from now on I will simply identify the principals’

shares with the vector of means µ (C, e) = α+βµ (e) and the variance-covariance matrix Ω (C, e) =

β′Ω (e)β .

2.2.2 Timeline

I will consider here the case of “hidden action”. In other words, the two parties cannot write

contracts on the actual effort level. The conditions for existence trivially imply the conditions for



32

existence when effort is observable.

CMN will denote the primitives of the game that are common knowledge at every stage, which

are:

• The vector of means and the variance-covariance matrix of payoffs as a function of effort levels

µ (·)

Ω (··)

• The preferences of individuals (the variance aversion parameter b).

• The reservation utility of agents u.

The economy reaches its equilibrium in 3 stages.

1. Each Principal pi designs a contract Ci = (αi, βi). Ci is the set of all possible contracts for

firm i. At this stage every principal knows CMN.

The profile of offered contracts is C = {C1, ..., CN} ∈ C = ΠN
i=1Ci

2. Each agent ai chooses his effort level, based on the contract Ci.

A strategy of an agent in firm i is a function of contracts mapping to possible effort levels.

ei : Ci → E

ei : Ci 7→ ei (Ci)

The strategy profile of all agents can be written as a vector of functions e = [ei (Ci)]1≤i≤N of

contracts offered.

3. Before uncertainty is realized, principals trade their claims to returns on an asset market,

where a riskless asset L is available in zero supply. At this stage principals can observe all

contracts and make conjectures on the level of effort and hence the distribution of returns of

all firms. Every principal j will form some beliefs γji on the effort level ei . γji (ei|Ci) is the
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cumulative distribution function induced by the beliefs on firm i under contract Ci . Principal

j holds θij shares of firm i and the price of the stock of firm i is qi

This table summarizes the choices each individual faces at a given time, and the information

available to them.

When Who What Knowing What

0 pi Ci CMN

1 ai ei CMN, Ci

2 pi θi CMN, C

Table 2.1: Timing

2.2.3 Payoffs

Let θ be the portfolio held by an agent. Let θ = (θR|θL) Where θR is an N -dimensional vector of

positive holdings of the N risky assets, whereas θL is the position an investor holds in the riskless

asset.

The ex-ante utility from a portfolio θ fixing the contracts C and effort choices e, is given by

θ · (µ (C, e) |1)− b

2
θ′RΩ (C, e) θR

However principals don’t observe the efforts e so they evaluate utility of portfolios based on

contracts C and the beliefs they induce γ (·|C)

Upi (C, θ, γ) =

θ ·
∫
E

µ (C, e|1) dγ (e|C)− b

2

∫
E

(
θ′RΩ (C, e) θR +

(
µ (C, e)−

∫
E

µ (C, e)

)2
)
dγ (e|C)

Note how the squared term is always positive. This will pose a problem, but in equilibrium

beliefs will be degenerate and the term will be equal to zero.
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Demand θ will depend on available assets and their prices (but prices are also a function of

contracts).

Agents payoffs depend on the effort chosen and the contract in place.

Uai (Ci, ei) = µi (Ci, ei)−
b

2
σ2
i (Ci, ei)− c (ei)

2.3 Equilibrium

2.3.1 Description

Because individuals take their decisions at each stage looking at the final payoffs, Equilibrium is

more easily described starting from the final stage of the game.

Asset Market Principals hold one unit of a security equal to their share of returns in their

firm, and they all have the same information. Because all individuals have the same beliefs the

solution concept used here is that of Arrow-Debreu Equilibrium. The equilibrium portfolios and

prices will be based on expected payoffs induced by C. They will be a function (θ, q) (C, γ (e|C)).

Contracting, the Agents’ turn Each agent ai observes the contract he is offered, Ci, and he

knows his own type and the technology of the principal. This is all the payoff relevant information,

so every agent is facing a choice between lotteries, and he is not playing against other players. They

simply choose an effort level maximizing Uai (·). As noted their strategies will be functions ei (Ci).

Contracting, the Principals’ turn Each principal designs a contract. They correctly conjec-

ture the action of each agent, and the outcome of asset markets, given contracts. They can forecast

the equilibrium path for all possible strategy profiles. Hence, this stage can be seen as a game

principals play against each other. I will focus on equilibria in pure strategy equilibria (and show

their existence).

The flow of decisions is described schematically below, and the information available at each

stage is summarized by the argument of the strategies.

C → e (C)→ θ (C, q (C) , γ (e|C))

The utility in the first stage can be written as:
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Vpi (C) = Upi (C, θ (γ (e|C)) , γ (e|C))

2.3.2 Definition

An Equilibrium consists of

• A trading strategy θ∗i for each Principal pi and prices q∗ ∈ RN such that [θ∗, q∗] (C, γ) is

an Arrow-Debreu Equilibrium for the asset market when contracts are C . Each princi-

pal is endowed with one unit of one asset so that the endowment of principal pi is wi =

[0, 0, ..., 1, ..., 0, 0] with 1 being in the i-th position.

θ∗i (C, γ (e|C)) ∈ arg max
θi∈RN+1

+

Upi (C, θi, γ (e|C))

such that

q∗ (C, γ (e|C)) · θi (C, γ (e|C)) ≤ q∗ (C, γ (e|C)) · wi∑
i∈N

θ∗i = [1N |0]

• Beliefs γ∗ (e|C) such that

supp (γ∗i ) ⊆ argmax
ẽi∈E

Uai (Ci, ẽi)

• For each agent ai a strategy e∗i (Ci) such that

ei (Ci) ∈ argmax
ei∈E

Uai (Ci, ei)

• For each principal pi, a contract C∗i such that

C∗i ∈ arg max
Ci∈Ci

V ∗i
(
Ci, C

∗
−i
)

= Upi
((
Ci, C

∗
−i
)
, γ∗

(
e|Ci, C∗−i

)
, θ∗
((
Ci, C

∗
−i
)
, γ∗

(
e|Ci, C∗−i

)))
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2.4 Existence of Equilibrium

2.4.1 Assumptions

2.4.1.1 Monotonic Preferences

It is well known that Mean-Variance Preferences need not be monotonic. This could pose problems

for the existence of equilibrium. In a standard CAPM setting, monotonicity of preferences is solved

by imposing a bound on the variance aversion of every individual. Because I restrict attention to

linear contracts, it is possible to show that, if preferences are monotonic for given returns, they will

be monotonic for any prevailing contracts.

Definition 4. Let X be a generic Random Variable on the state space S = (s1, ..., sM ) taking values

(x1, ..., xM ). U (X) is monotonic if ∂U
∂xi

> 0,∀i.

Lemma 14. Consider the preferences induced by the utility function

U(X) = E(X)− b

2
V ar(X)

They are monotonic on a set of variables X defined on a finite state space S, if

b < min
X,s

1

|xs − µX |

Proof. The proof amounts to checking (by differentiating) under which conditions on b the utility

function is increasing.

Lemma 15. If preferences are monotonic for all feasible portfolios in an economy with assets char-

acterized by returns (µ,Ω), then they will be monotonic on all feasible portfolios for any contracts

(αi, βi)i∈N .

Proof. For preferences to be monotonic for all feasible portfolios it has to be that

b <
1

|max
∑
i∈N θixi −

∑
i∈N θiµi|

=
1

|max
∑
i∈N θi (xi − µi) |

.
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Where the max is taken across portfolios θ such that θi ∈ (0, 1) and outcomes xi ∈ supp (Xi). Note

that

∑
i∈N

θi [(−αi + (1− βi)]xi − [−αi + (1− βi)µi)]

=
∑
i∈N

θi ((1− βi)xi − (1− βi)µi)

=
∑
i∈N

θi (1− βi) (xi − µi)

I claim that

max |
∑
i∈N

θi (1− βi) (xi − µi) | ≤ max |
∑
i∈N

θi (xi − µi) |

Note that the solution to the maximization on both sides is going to be reached at the aggregate

market portfolio so that the previous is equivalent to

max |
∑
i∈N

(1− βi) (xi − µi) | ≤ max |
∑
i∈N

(xi − µi) |

Since it will also be the case that at the maximum all the xi’s chosen will be greater (or smaller)

than the µi’s so that

max
∑
i∈N

(1− βi) | (xi − µi) | ≤ max
∑
i∈N
| (xi − µi) |

Observing that βi ∈ [0, 1] concludes the proof

Assumption 1. For a given set of assets, for every individual i, their risk tolerance parameter bi

lies on the interval
(
0, b
)
, where b = minX,s

1
|xs−µX |

This ensures that everyone’s preferences will be monotonic.

2.4.1.2 Cost and Productivity of Effort

The purpose of the following assumptions is making sure that the only randomness in the economy

is due to the uncertainty of firms’ returns. Markowitz preferences are dynamically inconsistent and
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introducing further randomizations (such as some individual playing a mixed strategy) is undesirable

in many ways. 2 Moreover, if only one effort choice is optimal for an agent, then principals can

correctly infer the equilibrium effort by observing contracts. To achieve this I need each agent’s

objective function to be concave in effort for any possible contract (α, β).

Assumption 2. 1. The cost function of an agent c(e) is strictly increasing and strictly convex.

∂c

∂e
> 0,

∂2c

∂e2
> 0

2. The effect of effort on the mean distribution of returns is such that utility is strictly increasing

and concave in effort, the effect on the variance is strictly decreasing and convex for all
(
0, b
)

∂µ

∂e
> 0,

∂2µ

∂e2
≤ 0

∂σ2

∂e
< 0,

∂2σ2

∂e2
> 0

3. Moreover, I require the effect of effort on the variance to be bounded relative to the effect on

mean returns.

µe > |σ2
e |

|µee| > |σ2
ee|

Note how the first set of conditions implies that

∂µX(e)

∂e
− b

2

∂σ2
X(e)

∂e
> 0

∂2µX(e)

∂e2
− b

2

∂2σ2
X(e)

∂e2
< 0

Lemma 16. Under Assumptions 1 and 2, the solution to the agent’s problem, e∗ (β) is

• unique

• continuous
2See Appendix
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• decreasing

• concave

Proof. Note how e∗ (α, β) solves

max
e
−α+ (1− β)µ(e)− b

2
(1− β)

2
σ2(e)− c(e)

The First Order Conditions of these problems amount to

(1− β)µe(e)−
b

2
(1− β)

2
σ2
e(e)− ce(e) = 0

Uniqueness. It follows from Assumption 2 that this derivative is a strictly decreasing function on

E = [e, e]. To see this note that by, Assumption 2, concavity is guaranteed for any risk tolerance

parameter in the interval
(
0, b
)

. This implies that the assumptions for derivatives will also be true

for

µe −
b

2
(1− β)σ2

e

for β between 0 and 1. This and the fact that cost is convex imply uniquness of the solution.

Continuity. for β in [0, 1) follows from the implicit function theorem. When β = 1 the optimal

effort is e .

Monotonicity and Concavity. Applying the implicit function theorem to the FOCs we obtain

that

∂e∗

∂β
=

µe − b (1− β)σ2
e

(1− β)µee − b
2 (1− β)

2
σ2
ee − cee

< 0

∂2e∗

∂β2
=

b2

2 (1− β)
2
σ2
eσ

2
ee + µeeµe − b (1− β)σ2

eeµe − bceeσ2
e(

(1− β)µee − b
2 (1− β)

2
σ2
ee − cee

)2 < 0
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Corollary 17. In equilibrium, principals correctly conjecture the equilibrium effort of agents.

γ∗i (ei|Ci) = 1, ei ≥ e∗i (Ci)

= 0, ei < e∗i (Ci)

This follows immediately from the definition of equilibrium and Lemma 16. By doing this, I am

removing one potential layer of randomization. The objective function of a principal at the first

stage will be.

Upi (C, θ, γ∗) = θ · (µ (C, e∗ (C)) |1)− b

2
θ′RΩ (C, e∗ (C)) θR

Lemma 18. The best response of a principal is single valued.

Proof. The proof amounts to showing that every principal is maximizing a strictly concave function

on a convex set. Once the reaction function of the agent in incorporated in his individual rationality

constraint, the resulting set need not be convex. However, by substituting the IR constraint in the

objective function, I define a simple maximization problem on β in [0, 1] . By Assumption 2.3, the

resulting maximand is a strictly concave function.

Let’s start by studying the sign of the second derivative with respect to β of the objective

function of a generic principal i. To make the proof more readable I abuse notation and suppress

all the i subscripts.

2eβ

µe − 2

(
b

N
− b

2N2

)
βσ2

e − 2

(
b

N
− b

N2

)∑
j 6=i

ρijβjσj

σe

+

e2β

βµee − ( b

N
− b

2N2

)
β2σ2

ee −
(
b

N
− b

N2

)∑
j 6=i

ρijβjσj

βσee

+

eββ

βµe − ( b

N
− b

2N2

)
β2σ2

e −
(
b

N
− b

N2

)∑
j 6=i

ρijβjσj

βσe

+

−2

(
b

N
− b

2N2

)
σ2
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If
(∑

j 6=i ρijβjσj

)
is positive, it follows from Assumptions 2 and 1 that the addend on each line

is negative. If the coefficient is negative we can observe that
(
b
N −

b
N2

) (∑
j 6=i ρijβjσj

)
is smaller

than 1, by Assumption 1. This together with Assumption 2.3 implies that all the addends are

negative as desired.

Let’s now study the second derivative of the IR constraint reducing it to

e2β

[
(1− β)µee −

b

2
(1− β)

2
σ2
ee − cee

]
+

eββ

[
(1− β)µe −

b

2
(1− β)

2
σ2
e − ce

]
+

−2eβ
[
µe − b (1− β)σ2

e

]
By Lemma 16

eβ =
µe − b (1− β)σ2

e

(1− β)µee − b
2 (1− β)

2
σ2
ee − cee

Substituting the first term with eβ
[
µe − b (1− β)σ2

e

]

eββ

[
(1− β)µe −

b

2
(1− β)

2
σ2
e − ce

]
+

−eβ
[
µe − b (1− β)σ2

e

]
The last term is problematic because it is positive.

Substituting for α in the objective function, we have V (β) defined on [0, 1] The derivatives of

this function will be given by

∂kV

∂βk
=
∂kU

∂βk
+
∂kIR

∂βk

Adding the last term of ∂2IR
∂β2 to the next to last term of ∂2U

∂β2
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eβ

2

µe − 2

(
b

N
− b

2N2

)
βσ2

e − 2

(
b

N
− b

N2

)∑
j 6=i

ρijβjσj

σe

− [µe − b (1− β)σ2
e

] =

eβ

µe − 4

[(
1

N
− 1

2N2

)
β + (1− β)

]
bσ2
e − 2

(
b

N
− b

N2

)∑
j 6=i

ρijβjσj

σe


The term multiplying eβ needs to be positive. Inspecting the expression, it is clear that the

“worse” possible scenario is when β = 0 and
(∑

j 6=i ρijβjσj

)
takes the lowest possible value (the

largest negative value). As noted above
(
b
N −

b
N2

) (∑
j 6=i ρijβjσj

)
is smaller than 1.

A sufficient condition for this expression to be always positive is

µe + bσ2
e + bσe > 0

But this is implied by Assumption 2.3 . The second derivative of V is hence negative, which

concludes the proof.

2.4.2 Existence

Theorem 19. If the mean-variance preferences are monotonic for an asset market economy char-

acterized by the mean vector µ and variance-covariance matrix Ω then there exists an equilibrium

in the CAPM contracting economy.

Proof. Because the Markowitz preferences are not expected utility -and they also fail to satisfy

the ’betweenness axiom’ (see Dekel, Safra, Segal (1991) -the best response correspondences of

individuals would not be convexified by allowing for lotteries. This makes using the fixed point

theorems by Glicksberg or Kakuthani impossible. I will instead show that the game can be reduced

to a one-shot game in which principals have a continuous best response function function and apply

Brouwer’s fixed point theorem.

Principals’ Turn: Asset Market. Principal utility will be given by the CAPM analytical solution.
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Upi = qi −
∑
i∈N qi

N
+

∑
i∈N µi

N
− b

2

1’Ω1

N2

As noted earlier prices and returns q, µ,Ω are all continuous functions of contracts C and efforts

e .

Agent’s Turn: Effort Choice. By Lemma 16 effort levels e are continuous functions of contracts

C, hence the final utility of a principal can be described as a continuous function of contracts C .

Principals’ Turn: Contract Design. By Lemma 18 the Principals’ problem is equivalent to a

strictly concave optimization so that their best response function is always unique. By the maximum

theorem it is also continuous.

The strategy space C is a rectangle, which is a convex, compact subset of R2N .

This satisfies the hypotheses of Brower fixed point theorem. There exist a fix point C∗ which

determines uniquely equilibrium efforts, beliefs, prices and portfolios. C∗, e∗, γ∗, θ∗, q∗ form an

equilibrium by construction.

2.5 The Insurance Effect of Markets - Moral Hazard

Consider the following special case. Individuals are identical in the sense that they all have

Markowitz type of Mean-Variance preferences, and they all have the same risk tolerance coeffi-

cient. Technologies have different variances (denoted by σ2
i and different correlation coefficients

ρij). The mean returns of firms are determined by the effort of agents ei, specifically µi(ei) = ei.

Cost is quadratic c(ei) = c
2e

2
i

2.5.1 First Best Equilibrium

For the purpose of having a benchmark for optimal risk sharing and optimal effort, let’s have a look

at the first best (observable action) case.

2.5.1.1 No Markets

A Principal and an Agent agree on an action and a (random) payment.
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max
α,β,e

α+ βe− b

2
β2σ2

such that − α+ (1− β) e− b

2
(1− β)

2
σ2 − c

2
e2 ≥ u (IR)

The optimal solution, action and contract is

e∗ =
1

c

(α∗, β∗) =

(
− b

8
σ2 + u,

1

2

)

Proof. Substitute for α in the objective function to obtain

max
β,e

U(β, e) = (1− β) e− b

2
(1− β)

2
σ2 − c

2
e2i − u+ βe− b

2
β2σ2

which yields the first order conditions

∂U

∂β
= a (1− β)σ2 − aβσ2 = 0

∂U

∂e
= 1− ce = 0

Which give the solution.

2.5.1.2 Financial Markets

Now I consider the case of many firms. To do this I solve the optimization problem of an arbitrary

principal, who has now access to a financial market. The form of the utility function follows from

similar considerations as in the hidden type case seen in Chapter 1..

Lemma 20. Principal i behaves as if his utility function were
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αi + βiei+

+

(
b

2N2
− b

N

)
β2
i σ

2
i+

+

(
b

N2
− b

N

)∑
j 6=i

ρijβiβjσiσj

Proof. Using the CAPM pricing formula, the riskless share of principal from firm i

αi + βiµi −
b

N

β2
i σ

2
i +

∑
l 6=i

ρilβiβlσiσl

+

−
∑
j∈N αj + βjµj

N
+

b

N2

∑
j∈N

β2
jσ

2
j +

∑
k 6=j

ρjkβjβkσjσk


Each principal holds a fraction of the aggregate portfolio, in particular he holds a random

variable from which he gets utility

∑
j∈N αj + βjµj

N
− b

N2

∑
j∈N

β2
jσ

2
j + 2

∑
k 6=j

ρjkβjβkσjσk


Because utility is linear in mean, and the riskless asset has variance zero, adding the two and

simplifying obtains the claim.
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max UMKT
i (αi, βi) =

αi + βiei+

+

(
b

2N2
− b

N

)
β2
i σ

2
i+

+

(
b

N2
− b

N

)∑
j 6=i

ρijβiβjσiσj

s.t. − αi + (1− βi) ei −
b

2
(1− βi)2 σ2 − c

2
e2i ≥ u (IR)

The optimal solution, action and contract is

eMKT
i =

1

c

βMKT
i =

σ2
i −

(
N−1
N2

)∑
j 6=i ρijβjσiσj

σ2
i +

(
2N−1
N2

)
σ2
i

Proof. Substitute for αi in the objective function to obtain

max
βi,ei

UMKT
i (1− βi) ei −

b

2
(1− βi)2 σ2 − c

2
e2i − u+ βiei+

+

(
b

2N2
− b

N

)
β2
i σ

2
i+

+

(
b

N2
− b

N

)∑
j 6=i

ρijβjσiσj

which yields the first order conditions

∂UMKT
i

∂β
= a (1− β)σ2

i −
(

b

N2
− a2

N

)
βiσ

2
i −

(
b

N2
− b

N

)∑
j 6=i

ρijβiβjσj = 0

∂UMKT
i

∂e
= 1− ce = 0

Which give the solution.

The key observation is that the optimal action stays the same, but the first best contract changes.
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As noted in the case of hidden type economies, the effect of markets is that principal acts as if they

were less risk averse. This changes the optimal risk sharing.

To better understand the effects of markets, let’s focus on the special case in which all technolo-

gies are identical and so are their correlation coefficients.

σi = σj = σ, ∀i, j

ρij = ρ, ∀i, j

The symmetric solution in this case is

β =
1− (N−1)2

N2 ρβ

1 + 2N−1
N2

So that in equilibrium

βMKT =
N2

N2 + 2N − 1 + ρ (N2 − 2N + 1)

Note how, unless there is perfect correlation, in equilibrium, a principal always take more risk than

in the no the market case
(
βi = 1

2

)
. In fact the equilibrium contracts will be identical to the no

market case only if technologies are perfectly correlated (ρ = 1) .

∀ρ < 1,

βMKT <
N2

N2 + 2N − 1 +N2 − 2N + 1
=

1

2

2.5.2 Second Best Equilibrium

2.5.2.1 No Markets

Let’s now turn to the more interesting case of unobservable actions. How do markets affect the

equilibrium actions and returns? Here the decisions on risk sharing and effort are interdependent.

Again let’s first look at a firm “in isolation”
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max
α,β,e

α+ βe− b

2
β2σ2

such that − α+ (1− β)e− b

2
(1− β)2σ2 − c

2
e2 ≥ u (IR)

e ∈ argmax
ẽ

−α+ (1− β)ẽ− b

2
(1− β)2σ2 − c

2
ẽ2 (IC)

To simplify the problem let’s start by solving the problem of an agent facing a given contract

(α, β) .

max
ẽ

−α+ (1− β)ẽ− b

2
(1− β)2σ2 − c

2
ẽ2

max
e

−α+ (1− β)e− b

2
(1− β)2σ2 − c

2
e2

Because Individual Rationality can be optimally attained with the transfer α, the optimal action

e can be obtained from the first order condition of the agent problem.

(1− β)− ce = o

Plugging e∗ = 1−β
c back into the Principal’s objective function and the agent’s IR constraint

yields the following problem

max
α,β

α+ β

(
1− β
c

)
− b

2
β2σ2

such that − α+
(1− β)

2

c
− b

2
(1− β)2σ2 − (1− β)

2

2c
≥ u (IR)

The solution to this problem is
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β =
bσ2

2bσ2 + 1
c

e =
bcσ2 + 1

c

2bσ2 + 1

Proof. Again substituting α results in

max
α,β

β

(
1− β
c

)
− b

2
β2σ2 +

(1− β)
2

c
− b

2
(1− β)2σ2 − (1− β)

2

2c
− u

Differentiating with respect to β gives the first order condition

−2bβσ2 + bσ2 − β

c
= 0

The solution follows immediately from this and the fact that e = 1−β
c

Note how β < 1
2 . Risk sharing is distorted to give the proper incentive to the agent. Note that

β > 0, so that e < 1
c . Because there is a trade-off between incentivizing the agent and optimally

sharing risk between two risk averse individuals, the first best cannot be achieved.

I am now going to analyze how markets affect this tradeoff.

2.5.2.2 Financial Markets

Consider the market with many principals from the previous section, except now the action in each

firm is unobservable.
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max UMKT
i (αi, βi) =

αi + βiei+

+

(
b

2N2
− b

N

)
β2
i σ

2
i+

+

(
b

N2
− b

N

)∑
j 6=i

ρijβjσiσj

s.t. − αi + (1− βi) ei −
b

2
(1− βi)2 σ2 − c

2
e2i ≥ u (IR)

ei ∈ argmax
ẽ

−α+ (1− β)ẽ− b

2
+ (1− β)2σ2 − c

2
ẽ2 (IC)

The solution is now

βMKT
i =

b
(
σ2
i −

(
N−1
N2

)∑
j 6=i ρijβjσiσj

)
b
(
σ2
i +

(
2N−1
N2

)
σ2
i

)
+ 1

c

In the symmetric case

βMKT =
bσ2N2

bσ2
(
N2 + 2N − 1 + ρ (N − 1)

2
)

+ N2

c

The solution differs from the first best case because of the N2

c term added to the denominator.

So the equilibrium securities will be less risky than in the first best case. Moreover as observed for

the non market case, the equilibrium effort is lower than at the optimum. Because βMKT is again

increasing in N , the equilibrium effort and hence returns are decreasing N .

In a fully symmetric case this result holds for every firm. This will not be the case if we drop

the assumption of symmetry. However, the result will still hold in the aggregate in an economy

where firms marginal distributions are identical, but not their conditionals. In other words I al-

low for different ρij coefficients in the variance covariance matrix. This means that while every

firm is identical when there are no markets, they are ex-ante different in terms of diversification

opportunities they face (and offer). This can be interpreted as the existence of different “sectors”.
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Proposition 21. Consider an economy with identical marginal distributions characterized by mean

ei, variance σ2, cost of effort c
2e

2. The aggregate output with markets is lower than the aggregate

output without markets.

ΣNi=1e
∗
i ≥ ΣNi=1e

M
i

with the inequality holding strictly unless ρij = 1,∀i, j

Proof. Claim 1.

ΣNi=1e
∗
i ≥ ΣNi=1e

M
i ⇐⇒ ΣNi=1β

∗
i ≤ ΣNi=1β

M
i

To see this note that

ΣNi=1e
∗
i ≥ ΣNi=1e

M
i ⇐⇒

ΣNi=1

(1− β∗i )

c
≥ ΣNi=1

(
1− βMi

)
c

⇐⇒

ΣNi=1 (1− β∗i ) ≥ ΣNi=1

(
1− βMi

)
⇐⇒

ΣNi=1β
∗
i ≤ ΣNi=1β

M
i

After estabilishing the above inequality. Observe that under the assumptions

β∗i =
1

2 + 1
cbσ2

βMi =
1− N−1

N2 Σj 6=iρijβ
M
j

1 + 1
cbσ2 + 2n−1

N2

I need to prove that

ΣNi=1

1

2 + 1
cbσ2

≤ ΣNi=1

1− N−1
N2 Σj 6=iρijβ

M
j

1 + 1
cbσ2 + 2N−1

N2

Claim 2.
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ΣNi=1β
∗
i ≤ ΣNi=1β

M
i ⇐⇒

ΣNi=1β
∗
i ≥ ΣNi=1Σj 6=i

1

N − 1
ρijβ

M
j

Note that the denominator of βMi can be rewritten as 2 + 1
cbσ2 − (N−1)2

N2 . The first inequality

amounts to

N

2 + 1
cbσ2

≤ N

2 + 1
cbσ2 −

(
N−1
N

)2 − N−1
N2 ΣNi=1Σj 6=iρijβ

M
j

2 + 1
cbσ2 −

(
N−1
N

)2 ⇐⇒

N (N − 1)(
2 + 1

cbσ2 −
(
N−1
N

)2) (
2 + 1

cbσ2

) − N−1
N2 ΣNi=1Σj 6=iρijβ

M
j

2 + 1
cbσ2 −

(
N−1
N

)2 ≥ 0 ⇐⇒

Simplifying the last inequality

N (N − 1)−
(

2 +
1

cbσ2

)
ΣNi=1Σj 6=iρijβ

M
j

Claim 2 immediately follows.

To conclude the proof, suppose by means of contradiction that the proposition did not hold, by

Claim 1, ΣNi=1β
∗
i > ΣNi=1β

M
i . By claim 2 this implies that ΣNi=1β

∗
i < ΣNi=1Σj 6=i

1
N−1ρijβ

M
j

Then it should be that

ΣNi=1Σj 6=i
1

N − 1
ρijβ

M
j > ΣNi=1β

M
i

This can be rewritten as

ΣNi=1

(
1− Σj 6=i

1

N − 1
ρij

)
βMi < 0
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which is impossible since ρij < 1,∀i, j

Financial Markets change the terms of risk sharing inside firms. Unlike the first best case, this

has an effect on the equilibrium action, because it is exactly risk providing incentives for the agent

to exert some positive effort. As the relative terms of risk sharing change, we move further away

from the case in which the agent is risk neutral and optimal effort is obtained.

In this case, it seems markets reward firms for variance against returns, but that is not exactly

the case. Markets reward firms for providing opportunities for hedging and diversification in specific

states of the world.

To get a better intuition for this result, suppose there is a state space S = {SUN,RAIN}

Consider a principal owning the an ice cream factory. Her firm returns can take two values,

x + e > x + e respectively, in state SUN and in state RAIN . The security she is selling to

the market will return α+ βx+ βe and α+ βx+ βe. When designing an incentive contract she is

playing with 3 variables α, β, e. When markets are not available, the underlying state representation

does not matter, the solution α∗, β∗, e∗ will be some tradeoff between risk sharing and incentives

(increasing β decreases e and viceversa . However consider now what happens if there is another

firm, whose securities return α′ + β′x+ βe′ when the state is RAIN and α′ + β′x+ βe′ when the

state is SUN . Because both principals are risk averse and there is now more return available in

state RAIN , the owner of the ice cream factory will want to design a security generating more

return in state SUN . Let’s consider what happens to returns in each state when she increases the
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3 components of her contract

∆α

RAIN : ∆α

SUN : ∆α

∆β

RAIN : ∆βx+ ∆βe

SUN : ∆βx+ ∆βe

∆e

RAIN : ∆eβ

SUN : ∆eβ

Note how β is the only component of the contract which has a different effect in different states,

and specifically it provides more exactly where needed: in state SUN . On the other hand, the

agent, who does not access markets, values equally returns in equally likely states (risk aversion

would make returns in RAIN more valuable, if anything). Because markets change the relative

value of returns in difference states for principals, the solution under markets will exhibit different

risk sharing βMKT > β∗ and consequently lower equilibrium effort eMKT < e∗.

Understanding this effect allows one to construct an example in which contracts and firms’

output are affected in the opposite way as described above.

Consider an economy with two types of firms (50 of each kind). The low variance firms have

variance .25, the high variance firms have variance 1. They are perfectly positively correlated

ρij = 1,∀i, j. Risk aversion is .2, cost of effort is .5 . The average output without markets is given

by 106
56 . Numerical evaluation yields an average output 2.11 .

In chapter 3 I discuss extensively how this particular distortion of risk sharing can occur even

in a simple first best setting. The key intuition is that the low variance firm has a comparative

advantage in providing returns in the low state, where the other firms are obtaining an even lower

performance.
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2.6 Conclusion

This chapter integrates a model of principal-agent interaction with asset markets. Each pair/firm

produces random returns, whose distribution depends on agents’ efforts. Every Principal offers a

contract to the Agent he is matched with, and the Agents choose their costly action. What marks

the difference from the standard contracting model is that Principals have access to an asset market

on which they trade their shares of returns. This assumption is meant to capture the limited degree

of access to financial markets, available to the average worker, who cannot entirely insure his labor

risk.

I present a unified framework for which I define a notion of equilibrium and prove its existence

and uniqueness. Under standard assumptions of contract theory, I study the interactions of financial

markets on contracts.

On one hand, Moral Hazard inside firms induces suboptimal aggregate risk in an economy.

On the other hand, introducing markets for principals, has ambiguous effects. If the marginal

distributions of returns of firms are identical, markets will induce lower production levels. I construct

an example, where asymmetry of marginal distributions and high degree of correlations induces

riskier compensation packages in certain sectors and a positive effect on aggregate output.

Interesting directions for the future include making welfare comparisons with the case where

workers can (at least partially) access financial markets, and making the decision of entering markets

endogenous in a non trivial way (making access costly).

2.7 Appendix

2.7.1 Preferences

Markowitz preferences cannot be represented by expected utility. That is they cannot be represented

by a linear functional in the space of mixtures. As a result they do not satisfy the independence

axiom or -equivalently, but more significantly in this context- they are not “dynamically consistent”.

Furthermore they pose a threat to equilibrium existence.
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Consider two random variables X1 and X2. We will have that

U(X1) = E(X1)− b

2
V ar(X1)

U(X2) = E(X2)− b

2
V ar(X2)

Now consider a mixture with probability p of X1 and X2. which we will call Y If individuals’

preferences were “linear”, we would have that.

UEU (Y ) = pU(X1) + (1− p)U(X2)

Note that if a “linear” decision maker is indifferent between two random variables, he will also

be indifferent between any mixture of them. Now compare with a Markowitz Individual

U(Y ) > E(Y )− a

2
V ar(Y ) =

pU(X1) + (1− p)U(X2)− a

2

(
pE (X1 − E(Y ))

2
+ (1− p) (X1 − E(Y ))

2
)

He would choose any of the two RV he is indifferent to above any mixture of the two. This

implies that his best response correspondence is not convex in the space of mixtures, unless it is

a singleton, which makes it impossible to use Kakutani’s fixed point Theorem.3 To address this

issue, I make sure that the model of Chapter 2 and 3 admits an equilibrium in pure strategies.

As noted in the literature, it is possible to construct sequences of choices in between which some

uncertainty is resolved, such that the agent makes plans he would not stick to. In this paper, this

would lead to contracts which are not efficient as soon as they are signed even in a first best setting

with symmetric information.

Here is an example of this issue. Consider a standard principal agent problem with two types

of agents. The type of the agent is known as soon as principals and agents are matched

If Mean-Variance Preferences had a linear representation, the principal’s problem would look

like this

3This also implies that these preferences fail to satisfy Between-ness as in Dekel (1986). This renders also other
methods for proving existence ineffective
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max
(α1,β1,α2,β2)

ρ
[
α1 + β1µ1 −

a

2
β2
1σ

2
1

]
+

(1− ρ)
[
α2 + β2µ2 −

a

2
β2
2σ

2
2

]
s.t. IRt : −αt + (1− βt)µt −

a

2
(1− βt)2σ2

t ≥ u

However the actual problem will look different because the variance of a mixture is not the

convex combination of variances:

max
(α1,β1,α2,β2)

ρ
[
α1 + β1µ1 −

a

2

(
β2
1σ

2
1 + (α1 + β1µ1)

2
)]

+

(1− ρ)
[
α2 + β2µ2 −

a

2

(
β2
2σ

2
2 + (α2 + β2µ2)

2
)]

+

a

2
[ρ (α1 + β1µ1) + (1− ρ) (α2 + β2µ2)]

2

s.t. IRt : −αt + (1− βt)µt −
a

2
(1− βt)2σ2

t ≥ u

To see the dynamic inconsistency, let’s turn this into a numeric example.

µ1 = 3,σ2
1 = 1

µ2 = 2,σ2
2 =

1

2

ρ =
1

2

The random portion of optimal contracts in the first case are given by β1 = 1
2 , β2 = 1

2 , which

are exactly the same that the principal would offer to each type if he knew which type is the agent

he was dealing with.

The Markowitz principal’s solution is instead β1 = .467, β2 = .539, to which he would prefer 1
2 ,

1
2

as soon as uncertainty is resolved. Note that this Pareto improving renegotiation is not induced

by voluntary information revelation from the agent, but simply by uncertainty resolving. Similarly,

but more complicated, examples could be constructed for the model in this paper. 4

4To read more on the topic of dynamic non-expected utility preferences, Machina (1989)
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Chapter 3

A Few Observations on Security
Design with Symmetric
Information

3.1 Introduction

In this chapter I study symmetric information economies. I am going to discuss several issues arising

from the different risk sharing possibilities introduced by financial markets. I will study economies

without any informational frictions, in which inefficiencies will arise from strategic behavior.

In Section 3.2 I study the extent to which the results obtained under complete information in

Chapter 1 and 2 can be generalized. It turns out that some of the assumptions made in those

chapters are crucial to obtain an insurance effect. In particular the role of uncorrelated returns and

the symmetry of firms will become clearer.

In Section 3.3 I will analyze the behavior of principals in designing securities, when they do not

act fully competitively. I will study how the number of traders affects efficiency of securities issued.

In Section 3.4 I look at a large market, I consider N identical productive units, but I depart

from the assumptions I made so far, by allowing one firm to be a merger of several productive units.

I will describe the effects of market power on both large and small firms.
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3.2 Markets Make Contracts Riskier

In Chapters 1 and 2 first best risk sharing follows a simple pattern. More diversification oppor-

tunities for principals imply less risky contracts for agents who do not access markets. However I

will show here that need not be the case under more general assumptions. The insurance results of

Chapter 1 were possible because of the independence assumption. In Chapter 2 they were possible

because of the symmetry assumption (every firm had the same mean and the same variance). The

following examples show that enough positive correlation among firms returns, and enough differ-

ence in the variance of returns will induce some firms to pay workers with more risky contracts

than they would without markets. Surprisingly this can be the case even in a large economy.

3.2.1 A Small Market

Consider a model similar to that of Chapter 2. A firm constitutes of a principal and an agent, but

no action is needed for production. Principals will only need to compensate the agent to the point

in which their participation constraint is satisfied. This will be achieved with a contract which

induces optimal risk sharing plus some transfer.

The problem of a Principal who does not have access to markets is given by

max
α,β

α+ βµ− b

2
β2σ2,

such that − α+ (1− β)µ− b

2
(1− β)2σ2 ≥ u. (IR)

The optimal contract will induce symmetric risk sharing in equal parts. The only notable

difference from the First Best section of Chapter 2 is the lack of action e and its cost. This does

not affect the optimal β as the first order conditions are the same as in Chapter 2.

Let us first see what happens in a small market. Consider two firms. Both firms will have mean

returns µ. One firm has variance σ2 and the other has variance σ2, with σ2 > σ2.

Proposition 22. There are values of ρ, σ, σ , with ρ ∈ (0, 1] , σ > σ defining two firms economies

for which the low risk firm offers riskier contracts when markets are introduced.
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Proof. The problem of the Principal in the low risk firm.

max UMKT
(
α, β

)
=α+ βµ− 3

8
bβ2σ2 − 1

4
bρββσσ,

such that − α+
(
1− β

)
µ− b

2

(
1− β

)2
σ22 ≥ u. (IR)

And the problem of the principal in the high risk firm.

max UMKT
(
α, β

)
=α+ βµ− 3

8
bβ

2
σ2 − 1

4
bρββσσ,

such that − α+
(
1− β

)
µ− b

2

(
1− β

)2
σ22 ≥ u. (IR)

From Chapter 2 we can derive the optimal contracts given the other firm contracts.

β =
4σ − ρβσ

7σ
,

β =
4σ − ρβσ

7σ
.

And solve for equilibrium contracts.

β∗ =
28σ − 4ρσ

49σ + ρ2σ
,

β
∗

=
28σ − 4ρσ

49σ + ρ2σ
.

Note how β∗ < 1
2 if σ < 2ρ

7−ρ2σ.

Similarly to Chapter 1 we have a case in which asset markets induce a riskier contract. One

could be tempted to conclude that Markowitz preferences suffer from the same issues as quadratic

expected utility does, as noted in Chapter 1 in markets with a small number of agents. It will turn

out it is not the case, and in fact large markets can actually exacerbate this phenomenon.
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3.2.2 A Large Market

Consider an economy with N firms. All firms have the same mean returns µ. A fraction γ of firms

have variance σ2 and 1− γ have variance σ2, with σ2 > σ2.1 In this simple setup it is easy to relax

one or both the assumptions from the other chapters. ρ controls the degree of correlation across

firms. The difference in the variances controls how similar are the marginal distribution of returns

for each firm.

Proposition 23. There are values of γ, ρ, σ, σ with γ ∈ (0, 1) , ρ ∈ (0, 1] , σ > σ such that in a large

economy low risk firms offer riskier contracts when markets are introduced.

Proof. A generic Principal’s problem

max UMKT
i (αi, βi)

=αi + βiµ

+

(
b

2N2
− b

N

)
β2
i σ

2
i

+

(
b

N2
− b

N

)∑
j 6=i

ρijβiβjσiσj ,

such that − αi + (1− βi)µ−
b

2
(1− βi)2 σ2 ≥ u. (IR)

From which we get the following condition for optimal contracts

βMKT
i =

σ2
i −

(
N−1
N2

)∑
j 6=i ρijβjσiσj

σ2
i +

(
2N−1
N2

)
σ2
i

,∀i.

Looking for a symmetric equilibrium we can write the optimal contracts as functions of other

contracts for both types of firms.

1Of course γ should be rational and γN should be always an integer. This can be easily obtained by defining
an initial economy by two integers g and h with g firms with high variance and h firms with low variance, and
then replicating them. However, in this section I am interested in the behavior of large economies in which the two
approaches yield the same results.
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β =
σ2 − N−1

N2

[
(N − 1) (1− γ) ρβσ2 + (N − 1) γρβσσ

]
σ2 + 2N−1

N2 σ2
,

β =
σ2 − N−1

N2

[
(N − 1) γρβσ2 + (N − 1) (1− γ) ρβσσ

]
σ2 + 2N−1

N2 σ2

I am considering large economies so I will look at the contracts as N →∞, 2

β =
σ − (1− γ) ρβσ − γρβσ

σ
,

β =
σ − γρβσ − (1− γ) ρβσ

σ
.

Solving the system we first obtain contracts for one type as a function of the other type.

β =
σ − γρβσ

σ + (1− γ) ρσ
,

β =
σ − (1− γ) ρβσ

σ + γρσ
.

And finally the equilibrium contracts

β =
σ − γρ (σ − σ)

σ (1 + ρ)
,

β =
σ + (1− γ) ρ (σ − σ)

σ (1 + ρ)
.

We can now observe that

β <
1

2
⇐⇒ σ <

2γρ

2γ + (1− ρ)
σ.

2Because the problem is strictly convex, and the assumptions of the Maximum Theorem are satisfied, best
responses are continuos functions of others strategies and of the asset market equilibrium (which is also a continuous
function of strategies). Hence taking limits on N and then solving for equilibrium corresponds to taking the limit of
the sequence of equilbria.
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Note how this is never satisfied if ρ = 0 and always satisfied when ρ = 1 (since we assumed all

along that σ > σ).

An interesting fact is that in the limit, every worker gets exactly the same compensation package

(ie: the same random variable).

Corollary 24. −α+
(
1− β

)
X = −α+

(
1− β

)
X

Proof.

(
1− β

)
σ =

ρσ + γ (σ − σ)

1 + ρ
=
ρσ + γρ (σ − σ)

1 + ρ
,

(
1− β

)
σ =

ρσ − (1− γ) (σ − σ)

1 + ρ
=
ρσ + γρ (σ − σ)

1 + ρ
.

We can conclude that agents obtain contract with the same standard deviation, and hence variance.

Because agents are pushed to their IR constraint, if contracts have the same variance, they will

also have the same mean. Because we are working with binary random variables it is enough to

show that the compensation packages have the same mean and variance, to show that they are

identical.

We have seen in Chapter 1 that small markets do not necessarily induce less risky contracts,

what is striking is that this can be the case also for large markets. By setting γ = 1
2 we have

a replica economy of the initial two firms example. We can see that for certain parameters the

contracts in the large economy will be even riskier than in the two firms case.

Proposition 25. ∀ρ > 1,∃σ, σ such that

β (2) > lim
N→∞

β (N) .

Proof. The claim amounts to showing that there are variances such that

28σ − 4ρσ

49σ + ρ2σ
>
σ − 1

2ρ (σ − σ)

σ (1 + ρ)
.
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Some algebra shows that this boils down to

σ <

( 1
2ρ

2 − 4ρ+ 41
2

21 + 1
2ρ

3 + ρ2 − 7
2ρ

)
ρσ.

The fraction on the right side is strictly positive, which allows us to conclude that we can find

parameters satisfying our claim if and only if ρ > 0.

How do markets (small and large) induce principals to behave as if they were more “risk averse”?

A good intuition for this comes from thinking of two perfectly correlated technologies (ρ = 1) with

different variances. In this case we can think of two states of the world L and H, with the returns

of both types of firms being higher in H. The low variance firms have higher returns in L and lower

in H than high variance firms do. Because of this they have an advantage in providing returns

in state L. Markets make sure that this advantage is exploited by giving incentives to these firms

to issue lower variance securities, compared to the share of profits they would keep for themselves

when markets are not present. When correlation is not perfect, this effect still persists but to a

lesser degree.

3.3 Number of Traders and Efficiency

It is a relevant question, which I did not tackle so far, weather the securities issued are efficient in

the case of symmetric information. When Principals design securities their utility functions take

into account the effect they have on the value of other securities, which will ultimately affect their

holding of the riskless asset. I will study this problem within a model of identical firms in which I

will let the number of firms vary.

In the symmetric examples from Chapter 2, all principals are identical ex-ante and after the

contracting stage equilibrium. They end up with identical securities, and hence with 0 holdings of

risky assets. I am going to show that outcome is non efficient.
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max UMKT
i (αi, βi)

= αi + βiµi

+

(
b

2N2
− b

N

)
β2
i σ

2
i

+

(
b

N2
− b

N

)∑
j 6=i

ρijβiβjσiσj

such that − αi + (1− βi)µi −
b

2
(1− βi)2 σ2 ≥ u. (IR)

The optimal contract is

βMKT
i =

σ2
i −

(
N−1
N2

)∑
j 6=i ρijβjσiσj

σ2
i +

(
2N−1
N2

)
σ2
i

.

In the symmetric case σi = σj = σ, ρij = ρ,∀i, j

The first order conditions for a symmetric equilibrium is in this case

β =
1− (N−1)2

N2 ρβ

1 + 2N−1
N2

.

From which the equilibrium contracts

βMKT =
N2

N2 + 2N − 1 + ρ (N2 − 2N + 1)
.

To see this, consider a different game, in which each principal designs a piece of the aggregate

endowment to be equally split, and no riskless asset transfers take place.3

3A straightforward way to generalize this to the asymmetric case, would be to let individuals design securities and
then give them unconditionally the transfers, and the fractions of aggreagte portfolio, they would have had received
had they traded on the market
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max Ui (αi, βi)

1

N

N∑
i=1

(αi + βiµi)−
(

b

2N2

) N∑
i=1

β2
i σ

2
i + 2

∑
j 6=i

ρijβiβjσiσj

 ,

such that − αi + (1− βi)µi −
b

2
(1− βi)2 σ2 ≥ u. (IR)

βE is the solution to this problem.

βEi =
Nσi −

∑
j 6=i ρijβjσj

(N + 1)σi
.

Note how, once we fix other players strategies, we can already observe how the best response

induces riskier share for a principal than in the market case. This is because in the market setting

a principal takes into account the effect of her actions on market prices. She takes the pricing

mechanism as given, but because she can determine the characteristics of her security, she can

influence prices of all securities, and hence other traders’ endowments. Again let’s focus on the

symmetric case, in which case the equilibrium will be

βE =
N

(N + 1) + ρ (N − 1)
.

Lemma 26. The contracts induced by βE give every individual a higher utility than those induced

by βM

Proof. Without loss of generality assume that u = 0

Claim

αE + βEµ−
b

2

N (1− ρ) + ρN2

N2
β2
Eσ

2 ≥

αM + βMµ−
b

2

N (1− ρ) + ρN2

N2
β2
Mσ

2.
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We can substitute the α ’s from the reservation constraints to obtain

(1− βE)µ− b

2
(1− βE)

2
σ2 + βEµ−

b

2

N (1− ρ) + ρN2

N2
β2
Eσ

2 ≥

(1− βM )µ− b

2
(1− βM )

2
σ2 + βMµ−

b

2

N (1− ρ) + ρN2

N2
β2
Mσ

2.

Rearranging and expanding we obtain

− b
2

(
β2
E − 2βE

)
σ2 − b

2

N (1− ρ) + ρN2

N2
βEσ

2 ≥

− b
2

(
β2
M − 2βM

)
σ2 − b

2

N (1− ρ) + ρN2

N2
βMσ

2.

bσ2

[
(βE − βM )− (1− ρ)N + ρN2 +N2

2N2

(
β2
E − β2

M

)]
≥ 0.

We can divide by βE − βM and simplify N in the fraction above to obtain

bσ2

[
1− (1− ρ) + (1 + ρ)N

2N
(βE + βM )

]
≥ 0.

which boils down to

2N − [(1− ρ) + (N + 1 + ρ (N − 1))] (βE + βM ) ≥ 0.

Some tedious algebra shows that (βE + βM ) is equal to

2 (1 + ρ)N2 + 3 (1− ρ)N − (1 + ρ)

((N + 1) + ρ (N − 1)) (N2 + 2N − 1 + ρ (N2 − 2N + 1))
.

So that we have
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bσ2

[
2N − 2 (1 + ρ)N2 + 3 (1− ρ)N − (1 + ρ)

N2 + 2N − 1 + ρ (N2 − 2N + 1)

]
≥ 0.

Multiplying and observing that the denominator is positive, we have left to show that the

following polynomial is positive

2 (1 + ρ)N3 − 6ρN2 − 5 (1− ρ) + (1 + ρ) .

This has to be the case because it is positive for N = 2, and it is an increasing function of N (

its derivative is in fact 6 (1 + ρ)N2 − 12ρN − 5 (1− ρ) ).

Good news come from the fact that limN→∞ βE = limN→∞ βM = 1
1+ρ . As N gets large the

difference between the efficient allocation and the market outcome gets smaller.

Unfortunately, It is also straightforward to see that βE > βM ⇐⇒ ρ < 1,∀N < ∞. This

means that markets do better when we have little use for them, when firms returns are perfectly

correlated.

3.4 Large firms

In this section I study the equilibrium property of economies in which one firm is large relative

to the market. I consider N identical productive units, each with returns characterized by mean

µ, variance σ2, and pairwise correlation coefficient ρ. Consider a large number of firms N . One

principal owns γN productive units, and the remaining (1− γ)N constitute separate firms.4

The first tedious step is to write the quantities relevant for the principal utility functions. Firms

are going to be of two types: one large firm and many small firms, I will look for a symmetric

equilibrium, in which all small firms issue the same contracts/securities. The large firm will issue

a security characterized by α, β and the small firms’ by αi, βi (or αj , βj when I need to distinguish

among them).

The mean and variance of the aggregate endowment

4Again, it would be proper to have K units owned by a firm and the remaining N −K being individual firms.
This however would lead to a more complicated notation whose effects become negligible as N and K get large.
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α+ βµ+ Σαi + βiµi = γN (α+ βµ) + (1− γ)N (αi + βiµ) ,

[β|β] Ω [β|β]
′

= γNβ2σ2 + (1− γ)Nβiσ
2 + 2γ2N2ρβ2σ2 + 2 (1− γ)

2
N2ρβ2

i σ
2 + 2γ (1− γ)N2ρββiσ

2.

The price of the security issued by the large firm is

qγ = γN (α+ βµ)− b

(1− γ)N

[
γNβ2 + 2γ2N2ρβ2 + γ (1− γ)N2ρββi

]
σ2.

The price of a security issued by a small firm i is

qi = αi + βiµi −
b

(1− γ)N

[
β2
i + (1− γ)Nρβ2

i + γNρββi
]
σ2.

Note that the covariance of the productive units within the large firm are counted twice. This

is because they are part of the variance of the security issued, and this is what marks the difference

with the smaller firms. The large firm partially internalizes the effects of contracting inside the

single unit on asset prices.

The average price needed to compute the riskless asset holding is

qγ + Σqi
N

=
1

(1− γ)N
[γN (α+ βµ) + (1− γ)µ]

− 1

(1− γ)
2
N2

[
γ
(
Nβ2 + 2γN2ρβ2 + (1− γ)N2ρββi

)
+ (1− γ)

(
Nβ2

i + (1− γ)N2ρβ2
i + γN2ρββi

)]
.

With this in mind we can construct the utility function of the principal of the large firm and

drop the parts where β does not appear as they are not relevant to the solution.
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Uγ (α, β) = γN (α+ βµ)

−

(
b

(1− γ)N
− b

2 (1− γ)
2
N2

)(
γNβ2 + 2γ2N2ρβ2

)
σ2

−

(
b

(1− γ)N
− b

(1− γ)
2
N2

)(
γ (1− γ)N2ρββi

)
σ2.

For optimization purposes, we can divide this function by γN and use this objective function.

U (α, β) (α+ βµ)

−

(
b

(1− γ)N
− b

2 (1− γ)
2
N2

)(
β2 + 2γNρβ2

)
σ2

−

(
b

(1− γ)N
− b

(1− γ)
2
N2

)
((1− γ)Nρββi)σ

2.

This is the utility function for a principal in a generic small firm i, also trimmed of parts

irrelevant to the optimization problem.

Ui (αi, βi) = αi + βiµ

−

(
b

(1− γ)N
− b

2 (1− γ)
2
N2

)
β2
i σ

2

−

(
b

(1− γ)N
− b

(1− γ)
2
N2

)
(γNρββi + (1− γ)Nρβiβj) .

From the usual procedure of substituting α and αi from the agents’ IR constraints, we obtain

the optimal contracts as a function of others’.

β∗ =
1−

(
1− 1

(1−γ)N

)
ρβi

1 + 2
(

1
(1−γ)N −

1
2(1−γ)2N2

)
(1 + γNρ)

,

β∗i =
N2 − (N − 1) [γNρβ + (1− γ)Nρβi]

N2 + 2N − 1
.
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As N gets large we have

β =
(1− γ) (1− ρβi)

(1− γ) + 2γρ
,

βi =
1− γρβ

1 + (1− γ) ρ
.

Solve for β yields

β∗ =
(1− γρ)

1 + (1− γ) ρ+ γρ2 + 2γ
1−γ ρ

.

We can now draw some conclusion on the contracts.

Proposition 27. The large firms offers riskier contracts than in the symmetric case. Small firms

offer less risky contracts.

β < βsymm < βi.

Proof. We know from Chapter 2 or Section 3.3 that βsymm is equal to 1
1+ρ .

Part 1. β < 1
1+ρ .

We want to show that

(1− γρ)

1 + (1− γ) ρ+ γρ2 + 2γ
1−γ ρ

<
1

1 + ρ
.

expanding this yields 2γ
1−γ > 0, which is true ∀γ ∈ (0, 1).

Part 2. βi >
1

1+ρ .

Since βi = 1−γρβ
1+(1−γ)ρ and β < 1

1+ρ it has to be the case that

βi >
1− γρ

1+ρ

1 + (1− γ) ρ
=

1 + ρ− γρ
(1 + ρ) (1 + (1− γ) ρ)

=
1 + (1− γ) ρ

(1 + ρ) (1 + (1− γ) ρ)
=

1

1 + ρ
.

This concludes the proof.

I conjecture that similarly to the case of a small number of trader- this equilibrium is inefficient
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and Pareto-dominated by an allocation with the securities induced by β = 1
1+ρ and the same

transfers as the riskless asset holdings of this equilibrium.

3.5 Conclusions

In this chapter, I study some implications on the design of securities and contracts.

In Section 1 I look at what seems an“anomaly”. Even when markets are large, diversification

opportunities do not necessarily translate to those who do not access financial markets. In Section

2 I look at inefficiencies induced by a small market on security design. A reassuring feature of this

inefficiency is that its size becomes negligibly small with market size. A less reassuring feature

is that it is larger when more diversification opportunities are available, which is exactly when we

need financial markets. In Section 3 I consider the case of a firm that is large relative to the market,

and the properties of equilibrium securities. I finalize the study of efficiency in this setting.

This chapter tackles important questions on financial markets. More work needs to be done in

terms of generalizing the phenomena exhibited here, to better understand how relevant they are to

the real economy. Another important question, also in light of recent economic event, is weather

firms (or financial institutions) choose an efficient amount of diversification in equilibrium. This

would amount to making the ρi’s coefficients endogenous. This is better suited to a model in which

there is competition on the “agents” side, a direction I intend to pursue.
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