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Abstract 

 

 

In nature proteins evolve by a combination of point mutagenesis and recombination. This 

process has generated hundreds of fascinating and structurally complex protein folds 

capable of performing a myriad of important and diverse biochemical functions. This has 

inspired protein engineers to mimic natural protein evolution in the library to construct 

synthetic proteins with new or improved properties. Here I show that homologous protein 

recombination can be used in the library to engineer novel enzymes with new catalytic 

activities and altered substrate specificities. I also propose that homologous 

recombination can be used in the laboratory to overcome the challenge of improving the 

native activities of wild-type proteins. In nature recombination may have helped proteins 

escape local maxima of the fitness landscape by introducing many homologous mutations 

to which proteins are highly tolerant. Protein engineers can possibly use it for the same 

purpose. I validate this hypothesis computationally with highly simplified protein models, 

and I attempt an experimental verification of this theory with cellulases.  
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Introduction 

 

 

The most intricate human-designed machines pale in comparison to the complexity and 

stunning functionality of the proteins created by evolution. The bewildering complexity 

of how protein primary sequences encode these remarkable functions, such as catalyzing 

in a few seconds chemical reactions that would otherwise take millions of years, reveals 

the extraordinary capability of natural evolution to seek out protein sequences encoding 

highly functional molecules from an immense sequence space representing mostly 

unfolded and dysfunctional proteins. 

Natural evolution moves about protein sequence space by single mutational steps 

and by long jumps spanning many mutations via homologous or nonhomologous 

recombination. Evidence of the effectiveness of these mutational moves is abundant and 

ubiquitous in nature: hundreds of different protein folds accounting for an innumerable 

number of biochemical functions makes up much of our living world. The trophies of 

natural protein evolution have inspired engineers to borrow nature’s algorithm to create 

new proteins with novel or improved properties. Here, I focus on homologous 

recombination, and I show that it can be exploited in the laboratory to engineer enzymes 

with novel activities and specificities. Also, I propose that the products of homologous 

recombination, chimeras, may be more evolvable than their parents with respect to the 

native activity because their mutational neighborhood has never been searched by 

evolutionary processes. 

Homologous recombination distinguishes itself from other protein engineering 

strategies (such as point mutagenesis) in that it explores distant regions of sequence 

space: proteins that differ in many tens or even hundreds of amino acids from known 

proteins yet still fold and function can be constructed. Drummond et al. [1] compared 

random mutation to recombination, investigating how the probability of retaining fold (or 

parental function) depends on the number of mutations introduced.  Random mutations 

cause a steep, exponential decay in this probability: as is well appreciated by protein 

engineers and protein scientists, most mutations are deleterious. As chimeras migrate 
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from one functional native sequence to the next, however, the likelihood of preserving 

structure or function follows a parabolic curve whose initial slope is much less steep 

(Figure 1). With data from chimeric and randomly-mutated ß-lactamases, Drummond et 

al. showed that recombination is much more conservative than random mutation, leading 

to a folding probability that is many orders of magnitude greater at the highest mutation 

levels. By exploiting the conservative nature of mutations introduced into a structure that 

has already proven to tolerate them, recombination creates chimeric enzymes that are 

distant from one another in sequence with minimal loss in their probability of folding. 

 
Figure 1: Chimeras occupy a functionally enriched ridge in sequence space. Surface 

height represents the probability of retaining fold as a function of random and 

homologous substitutions.  Substituting amino acids that already exist in a homologous 

protein is much more conservative of structure and function than random substitutions. 

Figure reproduced from [1].  

 

In chapter 1 I describe the first attempt to characterize the diversification of 

catalytic function within a library of SCHEMA [2] chimeras. SCHEMA is a structure-

guided recombination algorithm that selects the crossover locations that maximize the 

average sequence diversity in the library while minimizing structural disruptions (please 

refer to SCHEMA Background at the end of this section for a brief overview of how 
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SCHEMA works). Using structure-guided SCHEMA recombination, Otey et al. [3] 

partitioned the heme domains of cytochrome P450BM3 (CYP102A1) and homologs 

sharing 61-64% sequence identity into eight blocks and recombined those to make 

thousands of chimeric P450s. About 47% of the library encodes a properly folded P450, 

and of those more than 75% are functional. Functional chimeras differ from any known 

parent by up to 101 amino acid mutations (out of 466).  

The inspiration to use homologous recombination to discover new physical and 

enzymatic properties comes from the observation that proteins with identical folds can 

diverge greatly not only in sequence, but also in function. The P450 scaffold represents 

an excellent system to begin this characterization because they comprise a large family of 

enzymes known to exhibit great diversity at the sequence and functional level. Thousands 

of P450 sequences exhibiting nearly identical folds and often only 15-20% sequence 

identity have been reported. They are known to accept many structurally diverse 

substrates ranging from flexible linear chain molecules like fatty acids to rigid planar 

molecules like testosterone. P450s are thus naturally malleable to both sequence and 

functional alterations.  

The high sequence diversity among the folded members of the P450 SCHEMA 

library made this an excellent system to begin probing the functional diversity accessible 

by recombination. We measured the ability of the parents and fourteen chimeric P450s to 

hydroxylate a set of eleven substrates, including four human drugs. In chapter 1 I show 

that the best enzyme on each compound was always a chimera, and some chimeras 

accepted substrates not accepted by any of the parents.  P450s play a major role in drug 

metabolism and are known to bind and hydroxylate the majority of the drugs we intake. 

Soluble, bacterial P450 chimeras that can produce drug metabolites may be useful for 

drug metabolic profiling and lead diversification.  

In chapter 2 I present a theory that proposes that chimeras can be expected to be 

more evolvable than their wild-type parents with respect to the native activity. Improving 

the native activity of wild-type enzymes is a difficult problem to tackle by directed 

evolution because the mutational neighborhood of native proteins has already been 

searched by natural evolution. I propose that chimeras have access to a greater number of 

beneficial mutations than their native parents because their mutational neighborhood is 
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unexplored. This argument trivially holds true for chimeras that are less fit than their 

parents but should also hold for chimeras that are as fit as their parents. Since 

homologous recombination can introduce many mutations without disrupting folding and 

function, chimeragenesis may help resolve the problem of improving native activities. 

The underlying assumption of this theory is that the constraints that prevent the 

improvement of native activities are evolutionary rather than biophysical or biochemical 

(i.e., native enzymes are locally rather than globally optimized). The hypothesis is that 

chimeragenesis provides a means of escape from these local optima and gives chimeras 

access to beneficial mutations that are not accessible to their wild-type counterparts. I 

validate this theory in the context of lattice proteins which are highly simplified models 

of a protein consisting of a chain of 20 monomers on a two-dimensional lattice, and I 

discuss the requirements that must be satisfied for these results to hold true in the context 

of real enzymes.  

In chapter 3 I test the theory of chapter 2 on real cellulase chimeras assembled by 

SCHEMA recombination of the catalytic domains of Cel6A from Trichoderma reesei and 

its homologs from Humicola insolens and Chaetomium thermophilum. Cellulases 

represent a good system to begin testing this theory because while it is extremely 

desirable to improve their native cellulolytic activity, to date, no one has reported 

significant enhancements of their specific activity suggesting that the mutational 

neighborhood of these enzymes does not contain beneficial mutations. Furthermore, the 

existence of other glycoside hydrolases performing similar chemistry but exhibiting kcat 

values that are several orders of magnitude greater than those of cellulases suggests that 

these enzymes may be locally rather than globally optimized. The SCHEMA library 

represents a great opportunity to test the theory of chapter 2 because it contains many 

members that are heavily mutated and yet retain wild-type activities.  

The mutational neighborhood of several cellulase chimeras was explored by 

random point mutagenesis to determine whether beneficial mutations not accessible to 

their parents could be found. Unfortunately only weakly beneficial mutations 

representing specific activity improvements comparable to those already reported in the 

literature were found. The lack of beneficial mutations in the mutational neighborhood of 

the selected chimeras my reflect either 1) an unlucky choice of chimeras, 2) a high degree 
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of amino acid conservation in the functionally important regions of the parental enzymes, 

3) a low frequency of beneficial mutations in the entirety of sequence space, and 4) a 

physical limitation to further improvements (i.e., the native enzymes are globally 

optimized). The various scenarios are discussed in more detail in the discussion of 

chapter 3. 

 

SCHEMA Background 

 

Proteins are naturally robust to homologous mutations (Figure 1). Computational 

methods that exploit structural information can be used to further increase the probability 

that homologous mutations are tolerated and thus optimize the design of recombination 

libraries. This is effectively equivalent to raising the ridge connecting the two parents of 

Figure 1. These algorithms generally aim to simultaneously maximize the sequence 

diversity and the structural integrity of chimeric proteins.  

My work is based on chimeras designed using the structure-guided recombination 

algorithm, SCHEMA [2]. SCHEMA is an algorithm that scores chimeras based on the 

assumption that nonnative contacts are, on average, deleterious to structure and function. 

The SCHEMA score, E, is thus equal to the number of nonnative contacts in any given 

chimera. The algorithm uses the high-resolution crystal structure of one parent to identify 

all amino acid pair-wise contacts as defined by a 4.5 Å structural cutoff. For any given 

chimera, the algorithm assumes that its three-dimensional structure will be identical to 

that of the parent and counts the number of non-native contacts. Nonnative contacts can 

only form when the two contacting residues are inherited from different parents and when 

both residues are not perfectly conserved among the parents as shown in Figure 2. An 

optimization algorithm, RASPP, then directs crossovers to locations that minimize the 

average disruption in the library while maintaining high diversity [4]. The crossover 

locations are fixed, such that there exist 38 = 6,561 possible sequences in a design based 

on three parents and seven crossovers. According to this framework, the interfaces 

between the recombination fragments are composed primarily of conserved residues. 

Meyer et al. [5] showed that among chimeras with similar numbers of mutations, those 
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with lower SCHEMA scores are more likely to function validating the physical 

significance of the scoring method. 

 

 
 

Figure 2: Demonstration of how SCHEMA scores chimeras in a hypothetical 12-residue 

peptide. Grey residues are conserved in the parents, blue and red residues represent non-

conserved amino acids in parents 1 and 2 respectively. Contacting residues (based on the 

4.5 Å cutoff of the hypothetical crystal structure of the peptides) are connected by a black 

solid line shown only in parent 1. Crossovers locations are marked by a short black 

segment in the chimeras. The SCHEMA score, E, is equal to the number of nonnative 

contacts in each chimera.
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1 Diversification of Catalytic Function in a Synthetic Family of 

Cytochrome P450s 

 

 

A version of the chapter has been published in [6] 

1.1 Abstract 

We report initial characterization of a synthetic family of more than 3,000 cytochrome 

P450s made by SCHEMA recombination of three bacterial CYP102s. Sixteen heme 

domains and their holoenzyme fusions with each of the three parental reductase domains 

were tested for activity on eleven different substrates. The results show that the chimeric 

enzymes have acquired significant functional diversity, including the ability to accept 

substrates not accepted by the parent enzymes. K-means clustering analysis of the 

activity data allowed the enzymes to be classified into five distinct groups based on 

substrate specificity. The substrates can also be grouped, such that one can be a 

‘surrogate’ for others in the group. Fusion of a functional chimeric heme domain with a 

parental reductase domain always reconstituted a functional holoenzyme, indicating that 

key interdomain interactions are conserved upon reductase swapping.  

 

1.2 Introduction 

Enzymes with altered activities and specificities can be generated in the laboratory by 

processes that mimic mechanisms of natural evolution. Directed evolution combining 

recombination and random point mutation (e.g. DNA shuffling) is effective in generating 

both genotypic and phenotypic novelty [7-13]. Although recombination can make many 

mutations with relatively little structural disruption [14], we do not know the degree of 

functional diversity that is accessible to a process that only explores combinations of 

mutations already accepted during natural evolution. 

We recently reported construction of a synthetic family of more than 3,000 

properly folded cytochrome P450 heme domains [15]. Assembled by structure-guided 
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recombination of the heme domains of CYP102A1 from Bacillus megaterium (A1) and 

its homologs CYP102A2 (A2) and CYP102A3 (A3) that exhibit ~65% amino acid 

identity, the chimeric proteins differ from the parent sequences by 72 out of 463–466 

amino acids on average. Our current goal is to understand how this sequence 

diversification relates to diversification of function. Initial studies [15,16] demonstrated 

that recombination, in the absence of point mutations, can generate functional features 

outside the range exhibited by the parental P450s. For example, a chimeric heme domain 

significantly more thermostable than any of the parents was identified (T50 = 62°C versus 

55°C for the most stable parent) [15]; subsequent analysis of more than 200 chimeric 

heme domains identified many thermostable proteins [17]. Our previous study of selected 

chimeras of the A1 and A2 heme domains showed that chimeragenesis could also 

generate activities not exhibited by the parents [16], as has also been reported for 

recombination of mammalian P450s [18,19].  

The biological functions of cytochrome P450s include key roles in drug 

metabolism, breakdown of xenobiotics, and steroid and secondary metabolite 

biosynthesis [20]; members of the P450 superfamily catalyze hydroxylation and 

demethylation reactions on a vast array of substrates [21]. Enzymes from the synthetic 

P450 family could be useful catalysts for synthesis of biologically-active compounds if 

they have acquired the ability to accept substrates not accepted by the parent enzymes 

(which are all fatty acid hydroxylases). Identifying particular desired products, however, 

usually requires protein purification and HPLC and/or MS analysis, methods that are 

cumbersome when testing hundreds of biocatalysts. Thus, in addition to exploring the 

range of catalytic activities in the chimeric P450 family, a second goal of the current 

study is to determine to what extent ‘surrogate’ substrates can be used to identify likely 

catalyst candidates for a particular reaction in a high-throughput screening mode. Can 

substrates be grouped in such a way that activity towards one member of a group can be 

used to predict activity towards another? 

Enzymes of the CYP102 family are comprised of a reductase domain and a heme 

domain connected by a flexible linker [22,23]. With a single amino acid substitution 

(F87A in A1 and F88A in A2 and A3), the heme domains can function alone as 

peroxygenases, catalyzing oxygen insertion in the presence of hydrogen peroxide [24]. 
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The synthetic CYP102A family was constructed from parental sequences containing this 

mutation; all of the chimeric proteins can therefore potentially function as peroxygenases. 

We are also interested in their ability to be reconstituted into functional monooxygenases, 

utilizing NADPH and molecular oxygen for catalysis, by fusion to a reductase domain. 

The reductase domain of CYP102A1 (R1) spans ~585 amino acids and encodes a ~20 

amino acid linker and the binding domains for the FMN, FAD and NADPH cofactors 

[23]. The reductases from CYP102A2 and CYP102A3 (R2 and R3) share 52-55% 

sequence identity with R1 and are comparable in size, the only notable difference being a 

linker region that is extended in R2 by seven amino acids [25]. Because the chimeric 

heme domains comprise sequences from three different parents, it is not obvious that 

fusion to wildtype reductase will generate a catalytically active holoenzyme, nor is it 

clear which reductase, R1, R2 or R3, should be used. For this initial characterization we 

therefore selected a set of 14 chimeric heme domains, reconstituted them with all three 

parental reductase domains, and determined peroxygenase and monooxygenase activities 

on eleven substrates. These activities have been analyzed to 1) assess the functional 

diversity of the chimeric enzymes, 2) determine whether substrates fall into groups for 

the purposes of predicting activities, and 3) compare the activities and specificities of the 

chimeric peroxygenases with those of their reconstituted monooxygenases. 

 

1.3 Results  

1.3.1 Cloning and Expression of P450 Heme Domains and Holoenzymes 

Seventeen heme domains, including the three parent heme domains, were chosen for 

holoenzyme construction by fusion to a wild-type CYP102A reductase domain. For each 

heme domain, four proteins were examined—the heme domain and its fusion to each of 

the three reductase domains—for a total of 68 constructs. Heme domains contain the first 

463 amino acids for A1 and the first 466 amino acids for A2 and A3. The reductase 

domains start at amino acid E464 for R1, K467 for R2 and D467 for R3 and encode the 

linker region of the corresponding reductase. A3 and its fusions with R1 and R2 
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expressed very poorly, yielding only a very small amount of protein after purification, 

and were therefore not analyzed further. 

The chimeric sequences are reported in terms of the parent from which each of the 

eight sequence blocks is inherited (Supplemental Table 1.S1). Twelve of the fourteen 

chimeras were selected because they displayed relatively high activities on substrates in 

preliminary studies (data not shown). Chimera 23132233 was chosen because it displayed 

low peroxygenase activity, while 22312333 was selected because it is more thermostable 

than any of the parents (T50 = 62°C) [15]. For the constructs studied here, the reductase 

identity is indicated as the ninth sequence element, with R0 referring to no reductase (i.e., 

heme domain peroxygenase). 

 

1.3.2 Activity Assays 

To assess the functional diversity of the chimeric P450s, we measured their activities on 

the eleven substrates shown in Figure 1.1. Propranolol (PR), tolbutamide (TB) and 

chlorzoxazone (CH) are drugs that are metabolized by human P450s [9,26,27]. 12-p-

nitrophenoxycarboxylic acid (PN) is a long-chain fatty acid surrogate; parent A1-R1 

holoenzyme and the A1 heme domain (with the F87A mutation) both show high activity 

on this substrate. Previous work showed that A1 has weak peroxygenase activity on some 

of the aromatic substrates [16]. Aromatic hydroxylation products of all substrates can be 

detected quantitatively using the 4-amino antipyrine assay [28]. PN hydroxylation can be 

monitored spectrophometrically [29]. 
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Figure 1.1: Chemical structures and abbreviations. Substrates are grouped according to 

the pair-wise correlations (see text for details). Members of a group are highly correlated; 

intergroup correlations are low. 

 

Peroxygenase activities of the 16 heme domains (all except A3) were determined 

by assaying for product formation after a fixed reaction time in 96-well plates (see 

Experimental). Similar assays were used to determine monooxygenase activities for each 

of the fusion proteins. Final enzyme concentrations were fixed to 1 µM in order to reduce 

large errors associated with low expression and to allow us to compare chimera activities 
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using absorbance values directly. Protein concentrations were reassayed in 96-well 

format and determined to be 0.88 µM +/- 13% (SD/average). All samples were prepared 

and analyzed in triplicate, and outlier data points were eliminated. Supplemental Tables 

1.S2 and 1.S3 report the averages and standard deviations for each of the assays. More 

than 85% of the data for each substrate was retained, and more than 95% was retained for 

6 of the 11 substrates (Supplemental Table 1.S4).  

Because extinction coefficients are not known for the reaction products, we do not 

report absolute enzyme activities, nor do we report substrate specificities, which are 

ratios of enzyme activity on one substrate to activity on another. Our data nonetheless 

allow us to compare the chimeras with respect to their activities on a given substrate and 

also to compare their activity profiles and therefore their specificities. Chimeras having a 

similar profile form the same relative amounts of products from all substrates and are 

therefore likely to have similar specificities. To better visualize differences among 

chimeras, the highest average absorbance value for a given substrate was set to 100%, 

and all other absorbances for the same substrate, but different chimeras, were normalized 

to this. Figure 1.2 is a heat plot of the complete data set of normalized absorbances, while 

Supplemental Figure 1.S2 shows the substrate-activity profiles in the form of bar plots. 
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Figure 1.2: Summary of normalized activities for all 56 enzymes acting on 11 substrates. 

Activities are shown using a color scale (white indicating highest and black lowest 

activity), with columns representing substrates and rows representing proteins. Not-

analyzed A3, A3-R1 and A3-R2 proteins are shown in grey. Protein rows are ordered by 

their chimeric sequence first, and then by heme domain (R0) and R1-, R2- and R3-

fusions. 

 

1.3.3 Activities of Parent Enzymes 

Figure 1.3A shows the normalized substrate-activity profiles of the A1 and A2 

peroxygenases. Both have relatively low or no activity on any of the substrates except 

PN, where A1 makes about an order of magnitude more product than does A2. Profiles 

for the reconstituted parent holoenzymes are shown in Figure 1.3B. Fusion of A1 and R1 

generated an enzyme with profile peaks on ethyl 4-phenylbutyrate (PB) and PN. A1 is in 

fact the second-best-performing enzyme on PB. The A1 peroxygenase activity on this 

substrate, however, is among the worst, showing that peroxygenase specificity does not 

necessarily predict that of the monooxygenase. Fusion of A2 to R2 slightly increased 
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activity relative to A2, but did not alter the profile. The A3-R3 holoenzyme exhibits some 

activity on the drug-like substrates (PR, TB, CH) as well as PN and PB.  

Fusion of the A1 and A2 heme domains to other reductase domains yields 

holoenzymes that are active on some substrates (Figures 1.3C and 1.3D). The A2 fusions 

have relatively low activities. A1 fusions with R1 and R2, on the other hand, created 

highly active enzymes with different specificities: the A1-R1 profile has peaks on PN and 

PB, while that of A1-R2 has peaks on PB, phenoxyethanol (PE) and zoxazolamine (ZX). 

The A1-R3 fusion is less active on nearly all substrates.  

 

 
Figure 1.3: Substrate-activity profiles for parent heme domain mono- and peroxygenases.  

Panel A shows parent peroxygenases, panel B parent holoenzyme monooxygenases 

profiles, panel C the A1 protein set and panel D the A2 protein set. In A and B the color 

indicates the origin of the heme domain (Green = A1; Red = A2; Blue = A3). The protein 

set in panel C includes the heme domain A1 (blue) or its R1- (purple), R2- (yellow) or 

R3-fusion (turquoise) protein. Panel D depicts the A2 protein set. 

 

1.3.4 Activities of Chimeras and Identification of Chimera Clusters 

The fourteen chimeric heme domains generated 56 chimeric peroxygenases and 

monooxygenases. Nearly all the chimera fusions outperformed even the best parent 
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holoenzyme, and chimeric peroxygenases consistently outperformed the parent 

peroxygenases (Figure 1.2 and Supplemental Figure 1.S2). The best enzyme for each 

substrate is listed in Supplemental Table 1.S5. All the best enzymes are chimeras. Most 

of the best enzymes are also holoenzymes—only PE has a peroxygenase as the best 

catalyst. 

We now show that there exists a discrete set of characteristic substrate-activity 

profiles to which each chimera can be uniquely assigned. A k-means clustering analysis 

was applied to the normalized absorbance data to better understand the functional 

diversity. K-means clustering, a statistical algorithm that partitions data into clusters 

based on data similarity [30], has been used by Mannervik and co-workers to identify 

groups of mutants exhibiting similar substrate specificities [31] and by others to identify 

protein fragments (4-7 residues) of similar structure [32] and interacting nucleotide pairs 

with similar three dimensional structures [33]. For our analysis, the normalized data were 

used to ensure that each of the 11 dimensions is given equal weight by the clustering 

algorithm. The clustering was performed over values of k (number of clusters) ranging 

from k = 2 to k = 8. The highest silhouette value (see Experimental) was observed at k = 

5. 

The cluster composition for k=5 is depicted in Figure 1.4. Cluster 1, consisting of 

chimeras 32312333-R1/R2 and 32313233-R1/R2 (Figure 1.4B), is characterized by low 

relative activities on CH, TB, PR and PN and high relative activities on all other 

substrates. In fact, two of these chimeras are the best enzymes on all the remaining 

substrates except PB and PE. 

Cluster 2 is made up of 22213132-R2, 21313111-R3, 21313311-R3, which are the 

most active enzymes on TB, CH, and PR (Figure 1.4C). Cluster 2 enzymes are entirely 

inactive on PN and show low activity on most of the substrates that cluster 1 enzymes 

accept (PE, DP, PA, and EB). Relative activities on the remaining substrates (i.e., PB, 

ZX, and PT) are moderate (although lower than cluster 1 chimeras). An exception is 

21313111-R3, which is the best enzyme for PB and also fairly good on PE and DP.  

Cluster 3 contains chimeras A1-R1/R2, 12112333-R1/R2, 11113311-R1/R2, and 

22213132-R1 (Figure 1.4D). The A1-like sequences are characterized by high relative 
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activity on PN (on which 11113311-R1/R2 and A1-R1 are the three top-ranking 

enzymes), and moderate to high relative activity on PB and moderate activity on PE.  

Cluster 4 contains 21313111-R1/R2, 22313233-R2, 22312333-R2, 32312231-R2, 

32312333-R0, 32312333-R3, 32313233-R0, and 32313233-R3 (Figure 1.4E). This 

cluster is characterized by having the highest relative activity on PE, in addition to 

moderate activities on PT, DP and ZX. The remaining chimeras appear in a fifth cluster 

with relatively low activity on everything except PN and PE (Figure 1.4F). This cluster 

contains parental sequences A1-R0, A1-R3, A2-R0, A2-R1/R2/R3 and A3-R3. Native 

sequences are thus only found in two of the clusters. The remaining clusters (1, 2 and 4) 

are made up of highly active chimeras that have acquired novel profiles. 

The partition created by the clustering algorithm shows that the presence and 

identity of the reductase can alter the activity profile and thus the specificity of a heme 

domain sequence. For example, the R1 and R2 fusions of 32312333 and 32313233 

appear in cluster 1, whereas their R0 and R3 counterparts are in cluster 4. Sequences 

22213132 and 21313111 also behave differently when fused to different reductases. 

22213132-R2, for example, displays pronounced peaks on substrates TB, CH and PR that 

are not present in the corresponding peroxygenase and R1/R3 profiles (Supplemental 

Figure 1.2E) and is thus the only member with this heme domain sequence appearing in 

cluster 2. 21313111-R3 and 21313111-R2/R1 have nearly opposite profiles 

(Supplemental Figure 1.S2J) and consequently appear in different clusters. Thus the best 

choice of reductase depends on both the substrate and the chimera sequence. 
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Figure 1.4: K-means clustering analysis separates chimeras into five clusters. All 

protein-activity profiles are depicted in A, where the color identifies the cluster. Panels B 

through F show profiles for sequences within each cluster. Panel B depicts 32312333-

R1/R2, 32313233-R1/R2. Panel C depicts 22213132-R2, 21313111-R3, 21313311-R3. 

Panel D depicts A1-R1/R2, 12112333-R1/R2, 11113311-R1/R2 and 22213132-R1. Panel 

E depicts 21313111-R1/R2, 22313233-R2, 22312333-R2, 32312231-R2, 32312333-R0, 

32312333-R3, 32313233-R0, and 32313233-R3. Panel F depicts the remaining 

sequences. 
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1.3.5 Peroxygenase Versus Monooxygenase Activities 

As shown in Figure 1.2, each of the 14 chimeric heme domains can be fused to a parental 

reductase to generate a functional monooxygenase. The resulting monooxygenases are 

generally more active under these conditions than the corresponding peroxygenases (see 

Supplemental Figure 1.S2). The R1 and R2 fusions tend to outperform R3 fusions. While 

altering reductase identity never completely deactivates the protein, it does affect 

specificity in some cases. To quantify the differences between the profiles of the four 

different enzymes that can be made from a given chimera, the pair-wise linear 

coefficients (R2) of the R0/R1, R0/R2, R0/R3, R1/R2, R1/R3 and R2/R3 profiles were 

determined for each heme domain sequence (with the exception of A3). The results are 

shown in Supplemental Table 1.S1. High correlations represent enzyme pairs with similar 

specificities. The results show that peroxygenase and monooxygenase specificities are 

usually different, R1/R2 fusions of a chimera are often very similar (five pairs have R2 

values above 0.9), and the R1 and R2 fusions are less similar to the R3 enzymes.  

 

1.3.6 Identification of Substrate Groups 

To understand whether a chimera’s activity on one substrate predicts activity on another, 

the pair-wise correlations of the absorbances of all the possible substrate pairs were 

determined (Supplemental Table 1.S5). Mannervik and co-workers used correlations 

between activities on substrate pairs to identify enzyme variants with novel substrate 

specificities [13]. Here we use these correlations instead to identify substrates having 

similar chimera profiles. This analysis led to the identification of three substrate clusters 

characterized by high values of the correlation coefficients. Members of different clusters 

are poorly correlated. DP, PT, PA and EB all exhibit high correlations with each other 

(R2 = 0.71-0.92, see Supplemental Figure 1.S1A for an example) and were grouped into 

the core of substrate group A. Group B consists of CH, TB and PR. The categorization of 

this group is clearly defined: its members show high correlations with each other (R2 

above 0.9, see Supplemental Figure 1.S1B for an example), but correlate very poorly 

with the other substrates (R2 = 0.01-0.37). PN does not correlate significantly with any of 

the other substrates tested (R2 = 0.00-0.08) and is its own substrate group C. 
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ZX, PB and PE show moderate correlation to members of the group A core (R2 = 

0.56-0.66, 0.39-0.56 and 0.35-0.61, respectively). These substrates are considered loosely 

associated with group A since they do not belong to any other group due to poor 

correlation with each other and the remaining substrates. 

There exists a correspondence between the chimera clusters and the substrate 

groups. Group A core substrates have cluster 1 chimeras as their top-performing 

enzymes, whereas substrates of group B have cluster 2 chimeras as their top-performing 

enzymes. The top catalysts for group C are three of the cluster 3 chimeras. Members of a 

substrate group thus share the same best-performing enzymes. 

 

1.4 Discussion 

1.4.1 SCHEMA Recombination Creates a Family of Functionally Diverse 

Enzymes 

We have begun to characterize the functional diversity in a synthetic P450 family created 

by structured-guided recombination of bacterial fatty acid hydroxylases. The folded 

P450s, which make up almost 50% of the 6,561 sequences in the SCHEMA library, 

contain an average of 72 mutations from their closest parent. A large fraction of the 

folded P450s were shown to be catalytically active [15], but they had been systematically 

studied on only a single substrate (PN). We therefore selected 11 substrates for this initial 

characterization of 14 of the active chimeric heme domains and their fusions with each of 

the three parental reductase domains. Although most of the parental enzyme constructs 

are poorly active on the selected substrates, many of the chimeras are significantly more 

active. In fact, for every single substrate, including one widely used to assay CYP102A1 

(PN), the top-performing enzyme is a chimera. Recombining mutations already accepted 

in natural homologs thus leads to a family of highly active enzymes that accept a broader 

range of substrates.  
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1.4.2 Chimeras Can be Clustered by Substrate Specificity 

We further showed that the chimeric enzymes exhibit distinct specificities and that they 

can be partitioned into clusters based on their specificity. One cluster contains parent A1-

R1 and all chimeras with A1-like profiles. Another cluster contains low activity chimeras 

and includes all remaining parental sequences. The remaining clusters represent highly 

active chimeras that have acquired new specificities. Members of a cluster are likely to 

exhibit common structural, physical or chemical features that account for their similar 

catalytic properties. If the library is large enough, statistical techniques can be used to 

determine how sequence elements relate to the observed profiles. In particular, if there 

are sufficient numbers of chimeras in each cluster, then powerful tools such as logistic 

regression or machine learning can be used to predict which cluster an untested sequence 

belongs to [15]. This type of analysis would enable the prediction of substrate profiles of 

untested chimeras based on sequence information alone. The functionally diverse 

enzymes generated by SCHEMA-guided recombination can therefore be used to probe 

the sequence and structural basis of enzyme specificity. We recently observed the success 

of such an approach in predicting the thermostabilities of untested chimeras [Yougen Li, 

et al. unpublished data]. Although the current data set does not contain enough sequences 

for a comprehensive analysis of sequence-function relationships, anecdotal observations 

can be used to generate hypotheses for further testing. For example, the chimeras in the 

library with parent A1 in blocks 1, 3 and 4 are all among the best enzymes for PN. These 

same enzymes display low relative activity on all the remaining substrates except for PB. 

This suggests that having parent A1 sequence at one or more of these blocks improves 

PN activity and specificity. 

 

1.4.3 Substrates Fall into Groups that Correlate with Chimera Clusters 

We were also able to partition the substrates into groups based on the linear correlations 

of substrate pairs. An enzyme active on one member of a substrate group is therefore 

likely to be active on another member of the same group. One group consists of the drug-

like substrates TB, PR and CH (Figure 1.1). Another consists of PT, PA, EB and DP. If 

these correlations hold for the larger library of chimeric enzymes, we should be able to 
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predict with reasonable accuracy the relative activities of a chimera on all the substrates 

in a group by testing activity on only one. This type of analysis can be expanded to a 

larger collection of substrates to identify additional groups or additional members of an 

existing group.  

The observed correspondence between the three substrate groups and chimera 

clusters 1, 2 and 3 illustrates that each group can be associated with a cluster made up of 

or containing the top-performing enzymes for the substrates in that group. Some degree 

of correspondence can be expected, given how the partitions were constructed. However, 

because intra-group correlations are not one and inter-group correlations are not zero, the 

correspondence is not perfect. For this reason there exist chimeras whose profiles exhibit 

peaks on only certain members of a group (cluster 4) and others that exhibit peaks on 

members of different groups (cluster 2 and 3 chimeras). Cluster 4 chimeras have peaks on 

only certain members of group A and are thus responsible for the lower correlations 

among group A substrates. Some cluster 2 and cluster 3 chimeras exhibit peaks on PB (on 

the edge of group A) as well as group B and C, respectively. In fact although PB 

correlates mostly with group A core substrates it shares its top-performing enzymes with 

groups B and C and thus displays a hybrid behavior. This is why PB correlates less with 

group A than core substrates do and why it has higher correlations with group B and C 

members than any other substrate not belonging to these groups.  

Because chimeras displaying high relative activity have more weight in 

determining the correlation coefficients, the top enzymes for one member of a substrate 

group will usually be among the top ones for all members of that group. The clearer the 

definition of the substrate groups, the more likely this is to hold. Given the many 

important applications of P450s in medicine and biocatalysis, and the lack of high-

throughput screens for many compounds of interest, an approach to screening that is 

based on carefully chosen ‘surrogate’ substrates could significantly enhance our ability to 

identify useful catalysts. Clearly, any member of a well-defined substrate group can be a 

surrogate for other members of that group. Further analysis may also help to identify the 

critical physical, structural or chemical properties of substrates belonging to a known 

group. This will make it possible to predict which chimeras will be most active on a new 

untested substrate. 
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1.4.4 Swapping Reductase Domains Consistently Yields Active 

Monooxygenases and Conserves Key P450-Reductase FMN Domain 
Interactions 

The literature reports multiple cases in which functional P450s have been reconstituted 

with new reductase domains. In several studies, swapping reductases improved 

mammalian P450 activity [34-36]. A self-sufficient chimeric mammalian P450 2E1 

enzyme was constructed by fusing the 2E1 heme domain to the CYP102A1 reductase 

[37]. Functional chimeras of CYP102A1 and the flavocytochrome nitric oxide synthase 

(nNOS) have been generated [38]. Another study reported the functional expression of 

CYP153A genes by incorporating them into a framework consisting of the N- and C- 

termini of homolog CYP153A13a and fusion to the reductase domain of CYP116B2 [39].  

Reconstitution of the chimeric CYP102A heme domains with the three parental 

reductases generated functional monooxygenases in all cases. Although their specificities 

were often different (particularly when fused to R3), fusion to a reductase was never 

detrimental to activity, and swapping the reductase never completely inactivated the 

enzyme (Supplemental Figure 1.S2). Subtle changes in the structure and coupling 

behavior that affect total product formation may account for specificity differences. The 

fact that the parental reductase domains are accepted without loss of function, however, 

suggests that key domain-domain interactions are conserved upon reductase swapping.  

Although a complete crystal structure of a CYP102A holoenzyme is not available, 

a partial CYP102A1 structure (1BVY) includes the interface between the heme and the 

reductase FMN domains. Only a few direct contacts, including one hydrogen bond, one 

salt bridge and several water-mediated contacts, make up this A1-R1 interface [40]. We 

aligned the parental sequences using ClustalW [41] and found that the interactions 

depicted in the 1BVY crystal structure involve amino acids that are mostly conserved in 

the parent proteins. Figure 1.5 displays the interface between the heme and reductase 

domains of CYP102A1 and highlights the amino acids involved in key interactions. The 

salt bridge is formed between reductase residue E494 and heme domain residue H100, 

both of which are conserved in all three parents. Thus this key interaction would be 

retained upon reductase swapping that conserves the orientation of the two domains. 
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The direct hydrogen bond occurs between the reductase backbone carbonyl of 

N573 and the side-chain hydroxyl group of heme domain residue S383. N573 is only 

conserved in R1 and R2, but because the interaction involves the backbone oxygen, the 

reductase side of the interface is not affected by changes in the side-chain identity. S383 

is only conserved in parents A1 and A3. However, the corresponding residue in A2, 

D385, may also be capable of forming the hydrogen bond. This interaction may therefore 

be present in all the chimeras.  

There are two water-mediated hydrogen bonds between the hydrogen of the 

indole nitrogen of reductase residue W574 and the backbone carbonyl of S383 and I385. 

W574 was earlier shown to be crucial for electron transfer from the FMN to the heme 

[42] and is conserved in R1, R2 and R3. S383 and I385 are conserved in A1 and A3 but 

not A2, where the corresponding residues are D385 and V387. Because the hydrogen 

bonds involve the backbone oxygens of these residues, these interactions may be retained 

upon domain substitution. Also, all possible pair-wise interactions that can be formed at 

these positions by domain swapping already exist in at least one of the parental sequences 

and are thus likely not to be destabilizing. Finally, the substitutions that do occur are 

conservative, replacing a hydrophilic residue with another hydrophilic residue and a 

hydrophobic residue with another hydrophobic residue. The third water-mediated 

hydrogen bond between the side chains of reductase residue R498 and heme domain 

residue E244 (block 5) is conserved in A1-R1, A2-R2 but not A3-R3, where the 

corresponding residues are G501 and V246. A3-R3 thus cannot form this interaction nor 

can any chimera that inherits A3 sequence at block 5 and/or is fused to R3. 

 In summary, it appears that the direct hydrogen bond, two of the three water-

mediated hydrogen bonds and the salt bridge are all conserved in the chimera-reductase 

fusions. The third water-mediated hydrogen bond is conserved only in R1/R2 fusions that 

do not have parent A3 in block 5 (8 out of 17 sequences). Thus the activities of the 

reconstituted monooxygenases are consistent with their sequences, the domain-domain 

interactions identified in the 1BVY structure and the assumption that the overall 

structures and orientations are conserved upon reductase swapping. These results 

demonstrate the highly conservative nature of mutation by recombination of protein 
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domains: as long as key interactions are retained, the remaining sequences can vary 

extensively. 

 
Figure 1.5: Interface between the FMN (blue backbone) and heme domain (brown 

backbone) based on the 1BVY structure redrawn according to Sevrioukova et al. [40]. 

Residue colors indicate the degree of conservation: red (three parents), turquoise (two 

parents) and green (not conserved). Hydrogen bonds are shown as dashed lines. The 

amino acids  correspond to CYP102A1 numbering. PyMOL was used to create this figure 

[43]. 

 

1.5 Conclusions 

The evolvable cytochrome P450 scaffold has diversified over millions of years of 

mutation and natural selection to exhibit the myriad activities of the natural enzyme 

family, of which more than 4,500 sequences are known [44]. We constructed a large 

synthetic P450 family by recombining sequence elements from three bacterial P450s 

[15]. We have now shown that members of this synthetic family exhibit diverse activities 

and specificities, including activities towards substrates that are not accepted by the 

parent P450s and drug-like compounds that are substrates of human P450s. Thus 
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enzymes in this family have acquired the ability to mimic important reactions in human 

drug metabolism. The grouping of substrates according to likelihood that a given chimera 

will accept them, as has been demonstrated here, will aid in the identification of useful 

catalysts from this synthetic family by high-throughput screening of substrate 

‘surrogates’. We anticipate that these enzymes will be useful for synthesis of drug 

metabolites [26], as needed for toxicity testing and drug discovery.  

 

1.6 Experimental Methods 

1.6.1 Nomenclature and Construction of Holoenzymes from Chimeric Heme 

Domains 

Details of chimera construction have been reported previously [15]. Sequences are given 

an eight-digit number, where each digit indicates the parent from which each of the eight 

blocks was inherited. The identity of the reductase is indicated by R0 (for no reductase) 

or R1, R2 or R3 for the CYP102A1, A2, or A3 reductases, respectively. 

To construct the holoenzymes, the chimeric heme domains were fused to each of 

the three wild-type reductase domains after amino acid residue 463 when the last block 

originates from CYP102A1 and 466 for CYP102A2 and CYP102A3. The holoenzymes 

were constructed by overlap extension PCR [45] and/or ligation and cloned into the 

pCWori expression vector [46]. All constructs were confirmed by sequencing.  

 

1.6.2 Protein Expression and Purification 

Proteins were expressed in E. coli as described previously and purified by anion 

exchange on Toyopearl SuperQ-650M from Tosoh [47]. After binding of the proteins, the 

matrix was washed with a 30 mM NaCl buffer, and proteins were eluted with 150 mM 

NaCl (all buffers used for purification contained 25 mM phosphate buffer pH 8.0). 

Proteins were rebuffered into 100 mM phosphate buffer and concentrated using 30,000 

MWCO Amicon Ultra centrifugal filter devices (Millipore). Proteins were stored at          

-20°C in 50% glycerol. 
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Protein concentration was measured by CO absorption at 450 nm as described 

[48]. A protein concentration of 1 µM was chosen for the activity assays. Protein 

concentrations were reassayed in 96-well format and determined to be 0.88 µM +/- 13% 

(SD/average).  

 

1.6.3 Functional Assays 

Proteins were assayed for mono- or peroxygenase activities in 96-well plates as described 

[15,49]. Heme domains were assayed for peroxygenase activity using hydrogen peroxide 

as the oxygen and electron source. Reductase domain fusion proteins were assayed for 

monooxygenase activity, using molecular oxygen and NADPH. Reactions were carried 

out in 100 mM EPPS buffer pH 8, 1% acetone, 1% DMSO, 1 µM protein in 120 µl 

volumes. Substrate concentrations depended on their solubility under the assay 

conditions. Final concentrations were: 2-phenoxyethanol (PE), 100 mM; ethoxybenzene 

(EB), 50 mM; ethyl phenoxyacetate (PA), 10 mM; 3-phenoxytoluene (PT), 10 mM; ethyl 

4-phenylbutyrate (PB), 5 mM; diphenyl ether (DP), 10 mM; zoxazolamine (ZX), 5 mM; 

propranolol (PR), 4 mM; chlorzoxazone (CH), 5 mM; tolbutamide (TB), 10 mM; 12-p-

nitrophenoxycarboxylic acid (PN), 0.25 mM. The reaction was initiated by the addition 

of NADPH or hydrogen peroxide stock solution (final concentration of 500 µM NADPH 

or 2 mM hydrogen peroxide) and mixed briefly. After two hours at room temperature, 

reactions with substrates 1-10 were quenched with 120 µl of 0.1 M NaOH and 4 M urea. 

Thirty-six µl of 0.6% (w/v) 4-aminoantipyrine (4-AAP) was then added. The 96-well 

plate reader was zeroed at 500 nm and 36 µl of 0.6% (w/v) potassium persulfate was 

added. After 20 min, the absorbance at 500 nm was read [28]. Reactions on PN were 

monitored directly at 410 nm by the absorption of accumulated 4-nitrophenol. All 

experiments were performed in triplicate, and the absorption data were averaged.  

 

1.6.4 Data Analysis 

The background absorbance (BG) was subtracted from the raw data. BG reactions 

contained buffer, cofactor and substrate in the absence of protein sample and were done 
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in triplicates. All absorbance measurements were done once on three separate samples 

(triplicate sampling). Data points with a SD/average ! 20% that did not lie within the 

average ± 1.1*SD were eliminated. 1.1*SD was chosen so that for each substrate at least 

85% of the points were retained. This never resulted in the elimination of more than one 

point from each triplicate set of measurements. All points with an average absorbance     

< BG were set to zero, because they are assumed to belong to inactive proteins. The 

absorbance matrix thus obtained for all 68 proteins on all 11 substrates is displayed in 

Supplemental Table 1.S2. The SD/average matrix is displayed in Supplemental Table 

1.S3. SD/average was calculated ignoring values for inactive enzymes.  

 

1.6.5 Cluster Analysis 

K-means clustering is a partitioning method that divides a set of observations into k 

mutually exclusive clusters. K-means treats each data point as an object having a location 

in m-dimensional space (m=11 in this analysis) [30]. It then finds a partition such that 

members of the same cluster are as close as possible to each other and as far as possible 

to members of other clusters. For this reason, a measure of the meaningfulness of a 

partition is given by the silhouette value ( ) ( )
( ) ( )[ ]!

!
"

#
$$
%

& '
=

ibia
iaibavgs
,max

, where a(i) is the 

average distance of point i to all other points in its cluster and b (i) is the average distance 

of point i to all points in the closest cluster. It is evident that 

 

"1# s #1 and the quality of 

the clustering increases as s -> 1 [50]. Distances are measured by the square of the 

Euclidean distance. 
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1.8 Supplementary Material 

Table 1.S1: Pair-wise correlations of normalized activities for monooxygenases (R1, R2, 

R3) and peroxygenases (R0) of fourteen chimeras and the A1 and A2 parents. R2 values 

are reported. Bold and underlined=0.7-1.0; Underlined=0.4-0.7; Regular=0.0-0.4. 

 
Heme sequence R0/R1 R0/R2 R0/R3 R1/R2 R1/R3 R2/R3 

11111111 0.49 0.00 0.53 0.21 0.66 0.11 
22222222 0.70 0.53 0.49 0.75 0.83 0.66 
11113311 0.61 0.65 0.49 0.90 0.59 0.78 
12112333 0.11 0.04 0.00 0.91 0.11 0.10 
21113312 0.14 0.01 0.00 0.73 0.76 0.77 
21313111 0.24 0.19 0.05 0.84 0.15 0.39 
21313311 0.25 0.28 0.00 0.41 0.01 0.34 
21333233 0.90 0.64 0.87 0.72 0.95 0.66 
22132231 0.80 0.85 0.56 0.98 0.64 0.60 
22213132 0.46 0.08 0.37 0.11 0.01 0.54 
22312333 0.01 0.02 0.00 0.69 0.69 0.25 
22313233 0.17 0.01 0.08 0.02 0.85 0.07 
23132233 0.96 0.89 0.97 0.90 0.99 0.90 
32312231 0.14 0.06 0.02 0.07 0.04 0.21 
32312333 0.33 0.41 0.02 0.97 0.40 0.33 
32313233 0.15 0.44 0.09 0.74 0.60 0.38 
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Table 1.S2: Average activity in absorbance units for each substrate-construct pair 

(maximal value for each substrate in bold/italic). 
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11111111-R0 0.105 0.000 0.000 0.000 0.013 0.027 0.000 0.011 0.013 0.011 0.178
11111111-R1 0.152 0.115 0.136 0.053 0.202 0.177 0.055 0.037 0.032 0.033 0.302
11111111-R2 0.484 0.179 0.157 0.118 0.200 0.114 0.146 0.029 0.026 0.029 0.114
11111111-R3 0.048 0.000 0.038 0.000 0.059 0.030 0.054 0.023 0.019 0.022 0.132
22222222-R0 0.054 0.000 0.000 0.000 0.013 0.009 0.000 0.010 0.014 0.011 0.026
22222222-R1 0.042 0.000 0.038 0.000 0.027 0.031 0.020 0.021 0.016 0.020 0.064
22222222-R2 0.039 0.000 0.045 0.000 0.027 0.083 0.022 0.020 0.016 0.018 0.037
22222222-R3 0.065 0.000 0.040 0.000 0.048 0.031 0.055 0.028 0.024 0.024 0.079
33333333-R3 0.049 0.000 0.033 0.000 0.046 0.026 0.056 0.030 0.022 0.024 0.063
11113311-R0 0.463 0.000 0.046 0.000 0.011 0.031 0.000 0.013 0.012 0.009 0.190
11113311-R1 0.448 0.238 0.160 0.072 0.135 0.225 0.061 0.029 0.028 0.027 0.364
11113311-R2 0.329 0.145 0.087 0.000 0.091 0.159 0.051 0.030 0.024 0.024 0.277
11113311-R3 0.118 0.000 0.033 0.000 0.032 0.028 0.047 0.022 0.017 0.019 0.155
12112333-R0 0.544 0.053 0.048 0.000 0.013 0.038 0.000 0.012 0.014 0.013 0.056
12112333-R1 0.513 0.282 0.163 0.091 0.124 0.414 0.038 0.020 0.017 0.019 0.170
12112333-R2 0.511 0.334 0.163 0.116 0.135 0.462 0.063 0.025 0.024 0.025 0.143
12112333-R3 0.129 0.044 0.039 0.000 0.043 0.058 0.080 0.025 0.019 0.022 0.053
21113312-R0 0.522 0.135 0.078 0.000 0.017 0.034 0.000 0.017 0.017 0.013 0.069
21113312-R1 0.269 0.107 0.084 0.000 0.063 0.056 0.046 0.038 0.045 0.034 0.065
21113312-R2 0.213 0.085 0.073 0.046 0.066 0.047 0.055 0.033 0.038 0.031 0.050
21113312-R3 0.179 0.063 0.058 0.000 0.049 0.034 0.075 0.034 0.037 0.033 0.031
21313111-R0 0.731 0.105 0.073 0.000 0.016 0.058 0.000 0.018 0.012 0.013 0.000
21313111-R1 0.617 0.313 0.173 0.167 0.089 0.370 0.044 0.024 0.024 0.024 0.033
21313111-R2 0.560 0.282 0.139 0.152 0.102 0.332 0.079 0.029 0.027 0.028 0.000
21313111-R3 0.767 0.256 0.258 0.207 0.260 0.518 0.137 0.102 0.089 0.076 0.000
21313311-R0 0.365 0.000 0.046 0.000 0.009 0.038 0.000 0.012 0.011 0.012 0.000
21313311-R1 0.343 0.082 0.109 0.061 0.089 0.202 0.017 0.019 0.015 0.019 0.000
21313311-R2 0.306 0.074 0.092 0.000 0.086 0.149 0.050 0.030 0.029 0.029 0.000
21313311-R3 0.190 0.109 0.098 0.097 0.115 0.150 0.136 0.072 0.071 0.060 0.000
21333233-R0 0.113 0.000 0.036 0.000 0.020 0.016 0.023 0.025 0.020 0.020 0.000
21333233-R1 0.046 0.000 0.035 0.000 0.029 0.026 0.022 0.024 0.019 0.022 0.000
21333233-R2 0.180 0.104 0.119 0.000 0.070 0.090 0.039 0.036 0.034 0.031 0.062
21333233-R3 0.057 0.000 0.035 0.000 0.036 0.028 0.040 0.026 0.025 0.024 0.000
22132231-R0 0.034 0.000 0.000 0.000 0.009 0.006 0.000 0.005 0.008 0.007 0.000
22132231-R1 0.025 0.000 0.024 0.000 0.023 0.018 0.000 0.018 0.014 0.018 0.000
22132231-R2 0.045 0.000 0.035 0.000 0.026 0.033 0.000 0.018 0.016 0.020 0.000
22132231-R3 0.022 0.000 0.000 0.000 0.016 0.015 0.025 0.014 0.012 0.015 0.000
22213132-R0 0.269 0.051 0.061 0.000 0.010 0.017 0.020 0.010 0.019 0.013 0.000
22213132-R1 0.584 0.217 0.238 0.076 0.081 0.172 0.068 0.031 0.040 0.030 0.133
22213132-R2 0.377 0.289 0.253 0.169 0.153 0.206 0.152 0.122 0.130 0.126 0.000
22213132-R3 0.172 0.070 0.077 0.000 0.038 0.043 0.051 0.026 0.025 0.024 0.015
22312333-R0 0.103 0.000 0.024 0.000 0.008 0.017 0.000 0.009 0.006 0.009 0.000
22312333-R1 0.080 0.000 0.044 0.000 0.058 0.132 0.082 0.015 0.015 0.018 0.000
22312333-R2 0.172 0.067 0.084 0.049 0.121 0.356 0.117 0.019 0.012 0.017 0.000
22312333-R3 0.034 0.000 0.000 0.000 0.022 0.019 0.093 0.012 0.011 0.015 0.000
22313233-R0 0.185 0.000 0.050 0.000 0.011 0.029 0.000 0.008 0.009 0.010 0.000
22313233-R1 0.064 0.000 0.036 0.000 0.033 0.044 0.023 0.021 0.018 0.021 0.000
22313233-R2 0.260 0.204 0.150 0.137 0.089 0.415 0.049 0.022 0.016 0.019 0.000
22313233-R3 0.077 0.000 0.041 0.000 0.034 0.031 0.053 0.026 0.020 0.023 0.000
23132233-R0 0.024 0.000 0.000 0.000 0.019 0.019 0.022 0.025 0.021 0.021 0.000
23132233-R1 0.044 0.000 0.043 0.000 0.051 0.037 0.035 0.042 0.039 0.036 0.000
23132233-R2 0.049 0.000 0.055 0.046 0.054 0.044 0.043 0.043 0.041 0.038 0.000
23132233-R3 0.030 0.000 0.031 0.000 0.034 0.024 0.025 0.031 0.026 0.028 0.000
32312231-R0 0.354 0.065 0.085 0.000 0.016 0.067 0.000 0.015 0.013 0.018 0.000
32312231-R1 0.067 0.053 0.055 0.000 0.051 0.156 0.063 0.021 0.016 0.021 0.139
32312231-R2 0.204 0.245 0.277 0.154 0.090 0.448 0.063 0.019 0.016 0.020 0.048
32312231-R3 0.064 0.000 0.035 0.000 0.025 0.024 0.044 0.018 0.015 0.018 0.000
32312333-R0 1.101 0.338 0.236 0.076 0.025 0.297 0.067 0.019 0.019 0.019 0.000
32312333-R1 1.030 0.860 0.803 0.320 0.167 0.664 0.233 0.022 0.048 0.023 0.034
32312333-R2 0.907 0.712 0.653 0.246 0.133 0.538 0.174 0.018 0.023 0.022 0.044
32312333-R3 0.212 0.189 0.264 0.178 0.066 0.561 0.145 0.023 0.023 0.023 0.000
32313233-R0 0.796 0.383 0.276 0.095 0.036 0.389 0.121 0.009 0.023 0.023 0.000
32313233-R1 0.249 0.471 0.476 0.280 0.163 0.742 0.261 0.044 0.048 0.039 0.018
32313233-R2 0.535 0.566 0.454 0.197 0.153 0.485 0.229 0.029 0.037 0.029 0.017
32313233-R3 0.147 0.123 0.125 0.081 0.056 0.304 0.153 0.034 0.032 0.031 0.000
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Table 1.S3: Standard deviations/ average of absorbance for each substrate-construct pair. 

Blanks indicate where the average absorbance equals zero. 
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11111111-R0 0.091 0.233 0.735 0.162 0.148 0.098 0.052
11111111-R1 0.093 0.183 0.058 0.128 0.033 0.118 0.364 0.054 0.128 0.106 0.076
11111111-R2 0.039 0.020 0.118 0.135 0.041 0.030 0.112 0.113 0.120 0.067 0.159
11111111-R3 0.054 0.031 0.029 0.066 0.189 0.092 0.082 0.118 0.083
22222222-R0 0.089 0.156 0.264 0.261 0.005 0.159 0.125
22222222-R1 0.128 0.074 0.077 0.119 0.255 0.076 0.144 0.144 0.040
22222222-R2 0.071 0.054 0.113 0.081 0.251 0.085 0.108 0.099 0.011
22222222-R3 0.053 0.111 0.084 0.070 0.058 0.155 0.123 0.086 0.096
33333333-R3 0.134 0.126 0.017 0.094 0.082 0.110 0.155 0.088 0.068
11113311-R0 0.092 0.097 0.086 0.370 0.117 0.083 0.000 0.058
11113311-R1 0.045 0.158 0.124 0.092 0.159 0.032 0.622 0.084 0.127 0.079 0.007
11113311-R2 0.046 0.018 0.113 0.035 0.079 0.177 0.130 0.102 0.038 0.012
11113311-R3 0.103 0.093 0.033 0.065 0.110 0.110 0.176 0.022 0.102
12112333-R0 0.012 0.046 0.045 0.159 0.034 0.193 0.114 0.067 0.073
12112333-R1 0.092 0.014 0.114 0.107 0.029 0.104 0.065 0.177 0.137 0.069 0.075
12112333-R2 0.054 0.118 0.094 0.021 0.024 0.081 0.115 0.160 0.019 0.073 0.129
12112333-R3 0.039 0.016 0.057 0.020 0.035 0.064 0.082 0.066 0.115 0.133
21113312-R0 0.129 0.076 0.126 0.074 0.176 0.156 0.053 0.156 0.118
21113312-R1 0.065 0.049 0.060 0.045 0.046 0.075 0.156 0.051 0.058 0.250
21113312-R2 0.024 0.190 0.114 0.150 0.064 0.182 0.183 0.182 0.088 0.051 0.379
21113312-R3 0.094 0.147 0.087 0.051 0.044 0.005 0.350 0.121 0.110 0.080
21313111-R0 0.078 0.177 0.142 0.038 0.092 0.138 0.167 0.107
21313111-R1 0.116 0.046 0.019 0.088 0.055 0.032 0.239 0.135 0.107 0.083 0.095
21313111-R2 0.012 0.084 0.076 0.039 0.037 0.069 0.424 0.083 0.106 0.088
21313111-R3 0.038 0.200 0.092 0.034 0.034 0.107 0.195 0.035 0.145 0.127
21313311-R0 0.065 0.143 0.162 0.078 0.041 0.168 0.105
21313311-R1 0.026 0.051 0.166 0.178 0.086 0.024 0.448 0.029 0.097 0.072
21313311-R2 0.137 0.141 0.169 0.018 0.049 0.020 0.183 0.084 0.049
21313311-R3 0.012 0.053 0.038 0.075 0.010 0.111 0.131 0.148 0.091 0.040
21333233-R0 0.062 0.242 0.110 0.188 0.377 0.159 0.133 0.128
21333233-R1 0.095 0.049 0.038 0.192 0.189 0.085 0.074 0.120
21333233-R2 0.036 0.183 0.135 0.016 0.044 0.026 0.119 0.117 0.062 0.105
21333233-R3 0.043 0.044 0.044 0.182 0.067 0.043 0.082 0.041
22132231-R0 0.002 0.180 0.398 0.677 0.060 0.189
22132231-R1 0.052 0.041 0.051 0.077 0.183 0.166 0.110
22132231-R2 0.063 0.067 0.019 0.092 0.063 0.148 0.073
22132231-R3 0.080 0.061 0.014 0.137 0.142 0.160 0.044
22213132-R0 0.153 0.128 0.058 0.081 0.147 0.156 0.166 0.073 0.137
22213132-R1 0.077 0.118 0.104 0.053 0.066 0.058 0.339 0.098 0.147 0.030 0.048
22213132-R2 0.065 0.091 0.059 0.075 0.050 0.039 0.070 0.124 0.120 0.005
22213132-R3 0.097 0.061 0.116 0.061 0.052 0.119 0.144 0.111 0.114 0.000
22312333-R0 0.023 0.173 0.181 0.387 0.151 0.132 0.170
22312333-R1 0.103 0.110 0.046 0.068 0.266 0.098 0.085 0.076
22312333-R2 0.060 0.191 0.108 0.050 0.047 0.059 0.042 0.160 0.091 0.016
22312333-R3 0.101 0.077 0.127 0.153 0.121 0.264 0.038
22313233-R0 0.100 0.158 0.080 0.134 0.334 0.246 0.127
22313233-R1 0.055 0.023 0.158 0.034 0.154 0.101 0.079 0.104
22313233-R2 0.076 0.245 0.144 0.062 0.079 0.019 0.118 0.006 0.134 0.106
22313233-R3 0.028 0.005 0.036 0.141 0.155 0.040 0.081 0.104
23132233-R0 0.056 0.013 0.095 0.058 0.092 0.182 0.086
23132233-R1 0.050 0.109 0.045 0.050 0.060 0.012 0.116 0.078
23132233-R2 0.042 0.009 0.178 0.076 0.067 0.078 0.122 0.091 0.118
23132233-R3 0.061 0.052 0.028 0.047 0.146 0.053 0.089 0.098
32312231-R0 0.119 0.119 0.019 0.085 0.034 0.167 0.105 0.177
32312231-R1 0.114 0.046 0.133 0.108 0.074 0.531 0.050 0.102 0.064 0.190
32312231-R2 0.088 0.061 0.062 0.146 0.107 0.058 0.174 0.096 0.191 0.088 0.085
32312231-R3 0.036 0.014 0.031 0.118 0.054 0.055 0.117 0.051
32312333-R0 0.081 0.074 0.089 0.034 0.071 0.015 0.056 0.137 0.077 0.125
32312333-R1 0.068 0.111 0.045 0.020 0.056 0.113 0.014 0.052 0.102 0.042 0.457
32312333-R2 0.051 0.107 0.035 0.019 0.049 0.097 0.150 0.173 0.023 0.068 0.139
32312333-R3 0.107 0.070 0.079 0.133 0.030 0.075 0.095 0.050 0.078 0.069
32313233-R0 0.090 0.149 0.049 0.120 0.031 0.140 0.050 1.863 0.074 0.067
32313233-R1 0.143 0.105 0.036 0.011 0.063 0.089 0.184 0.147 0.078 0.044 0.062
32313233-R2 0.064 0.053 0.033 0.020 0.083 0.113 0.102 0.122 0.072 0.035 0.346
32313233-R3 0.064 0.093 0.073 0.034 0.013 0.034 0.005 0.132 0.133 0.039
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Table 1.S4: Summary of error statistics for collected absorbance data sorted by 

substrates. The percentage of the standard deviation divided by the average value and the 

percentage of data points retained for the analysis are measures of data quality. For each 

substrate, 65 data points were collected. The Triplicates/Duplicates column indicates how 

many of those data points were used for the analysis performed here. 

 
Substrate 

 
% SD/avg 

(mean) 
% points 
retained 

Triplicates/ 
Duplicates 

2-phenoxyethanol (PE) 7.1 99 63/2 
ethoxybenzene (EB) 10.2 87 39/26 

ethyl phenoxyacetate (PA) 8.5 95 56/9 
3-phenoxytoluene (PT) 8.0 94 53/12 

ethyl 4-phenylbutyrate (PB) 6.7 100 65/0 
diphenyl ether (DP) 10.9 95 56/9 
zoxazolamine (ZX) 16.0 87 40/25 
propranolol (PR) 15.6 90 45/20 

chlorzoxazone (CH) 11.2 99 63/2 
tolbutamide (TB) 8.5 99 63/2 

12-p-nitrophenoxycarboxylic acid (PN) 11.8 87 40/25 
 
 
 
Table 1.S5: Summary of most active chimeric proteins for each substrate. Pair-wise 

correlation matrix of the activities on all substrates. ). R2 values are reported. Bold and 

underlined=0.7-1.0; Underlined=0.4-0.7; Regular=0.0-0.4 

 
Protein  PE EB PA PT PB DP ZX PR CH TB PN 

32312231-R0 PE N.A. 0.61 0.48 0.37 0.18 0.35 0.15 0.01 0.05 0.02 0.01 

32312231-R1 EB  N.A. 0.92 0.80 0.41 0.73 0.56 0.04 0.13 0.06 0.00 

32312231-R1 PA   N.A. 0.81 0.39 0.71 0.62 0.04 0.14 0.06 0.00 

32312231-R1 PT    N.A. 0.56 0.85 0.66 0.14 0.24 0.16 0.00 

21313111-R3 PB     N.A. 0.49 0.49 0.36 0.37 0.33 0.08 

32313233-R1 DP      N.A. 0.58 0.05 0.10 0.06 0.00 

32313233-R1 ZX       N.A. 0.18 0.29 0.21 0.00 

22213132-R2 PR        N.A. 0.91 0.95 0.00 

22213132-R2 CH          N.A. 0.94 0.00 

22213132-R2 TB          N.A. 0.00 

11113311-R1 PN           N.A. 
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Figure 1.S1: Examples of the correlation of absorbances values measured within 

substrate Group A and Group B. Panel A shows the correlation between diphenyl ether 

(DP) and ethyl phenoxyacetate (PA) with a R2=0.71. Panel B shows the correlation 

between tolbutamide (TB) activity and chlorzoxazone (CH) activity with R2=0.94.
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Figure 1.S2: Substrate-activity profiles of all chimeras. The columns are color coded as 

follows: heme domain (R0, blue), R1- (purple), R2- (yellow), R3-fusion (turquoise) 

protein. 
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2 Evolvability of Evolutionarily Young Enzymes   

 
 

2.1 Abstract 

Native enzymes have been highly optimized by natural evolution to perform their 

biological function. For this reason, improving the native activities of wild-type enzymes 

is challenging and often unsuccessful. Yet there are scientific and industrial applications 

that would benefit from an understanding of how to do this. Here, I propose that proteins 

with mutational neighborhoods that have never been searched by evolutionary processes 

are more evolvable than native proteins of equal fitness. I propose that homologous 

recombination can be used to design proteins with unexplored mutational neighborhoods 

because it affords the simultaneous incorporation of numerous neutral mutations. I 

validate this hypothesis in the context of lattice proteins, which are highly simplified 

models of a protein on a two-dimensional lattice. The underlying assumption of my 

hypothesis is that the constraints that prevent improving the activities of native enzymes 

are evolutionary rather than biochemical or biophysical (i.e., native enzymes are locally 

rather than globally optimized).  

 

2.2 Introduction 

Native enzymes are the products of millions of years of evolution. Evolutionary pressure 

fine-tuned their amino acid sequence to optimize biological function. This may translate 

to maximizing catalytic activity, resistance to high temperatures or extremely acidic 

environments, regioselectivity, stereospecificity, and more. As a consequence, 

experimental efforts to further improve phenotypic properties that underwent selection 

during natural evolution, such as the thermostability of an enzyme from a thermophilic 

organism or the catalytic activity of an enzyme on its native substrate, are often very 

laborious and yield small improvements. Yet, overcoming these difficulties could 

potentially have a tremendous impact on certain scientific applications. As an example, 

cellulases, a class of enzymes the catalyze the hydrolysis of cellulose to sugar, could play 
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a significant role in the development of an environmentally friendly alternative to 

gasoline and the attenuation of the energy crisis, but their specific activity is too low 

[51,52]. Protein engineers have devoted much effort to improving the activities of these 

enzymes without significant success.  

In general we do not know whether the constraints that prevent improving the 

native activities of wild-type enzymes are physical or evolutionary. In some cases natural 

evolution has driven native enzymes to be so efficient that they are binding substrate and 

releasing product as fast as diffusion allows. These enzymes are globally optimized and 

cannot be engineered to perform better. In most cases, however, there is no evidence of 

physical limitations constraining the activities of native enzymes. In fact it is not unlikely 

that many natural enzymes are only locally optimized (i.e., none of the possible single 

mutational steps lead to an increase in fitness despite the existence of better enzymes) and 

need many amino acid substitutions to escape the local optima.  

In nature recombination may have aided proteins escape local maxima of the 

fitness landscape (fitness as a function of sequence) by introducing many homologous 

mutations to which proteins are highly tolerant. With data from chimeric and randomly 

mutated ß-lactamases, Drummond et al. [1] showed that recombination is much more 

conservative than random mutation, leading to a probability of folding and retaining 

function that is many orders of magnitude greater at the highest mutation levels. In fact, 

Heinzelman et al. recently designed a chimeric library of cellulases containing members 

with wild-type levels of cellulolytic activity and over 50 mutations relative to their 

closest parent [53]. Before them, others were able to achieve similar results with ß-

lactamases and P450s [3,5]. The dozens of neutral mutations afforded by recombination 

may allow protein engineers to bypass the local maxima of native enzymes. 

I propose that chimeras, on average, are more evolvable than their parents because 

evolutionary processes have not searched their mutational neighborhood. This argument 

trivially holds true for chimeras that are less fit than their parents, but also applies to 

chimeras that are as fit as their parents. Here, an enzyme is evolvable in the sense that 

beneficial mutations can be found in its mutational neighborhood. The basic intuition is 

that the probability of finding beneficial mutations is higher in regions of sequence space 

that have not already been searched by evolution than in regions that have. Note that this 
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argument does not require that native enzymes be strictly locally maximized. Rather, it 

only requires that their mutational neighborhood be explored by evolution. The 

underlying assumption of this argument is that native enzymes are not globally 

optimized.  

Since the building blocks of chimeras are derived from native enzymes, it is 

unclear whether their mutational neighborhood is effectively unexplored. A mutation is 

effectively unexplored when the contribution to fitness that it makes in a chimeric 

background is different from the contribution it makes in a parental background. This 

occurs when the contribution depends on the amino acid identities of other residues. If it 

depends on one other residue, the pair forms a second order interaction. If it depends on 

two other residues the triplet forms a third order interaction and so on. As suggested by 

Figure 2.1A, mutations must be recruited into locally non-native environments to make 

different contributions to fitness in a chimera versus a parent, unless they interact with 

distal residues.  

The crossovers of recombination can disrupt native interactions and form new 

non-native interactions. When a residue interacts with a single other residue, the 

formation of a new interaction does not grant access to effectively unexplored mutations. 

This is because all pair-wise combinations of amino acids that are accessible to the 

chimera are also accessible to one of their parents (Figure 2.1B). However, when a 

mutation occurs in a network of three or more interacting residues then, provided the 

network was disrupted by the crossovers of recombination, chimeras can gain access to 

combinations of amino acids that are not accessible to their parents (Figure 2.1B). In 

order for chimeras to be more evolvable than their native parents, there must exist 

mutations that are beneficial in the background of the former but not in that of the latter. 

This can occur only when a mutation is recruited into a network of three or more 

interacting residues that was disrupted by the crossovers of recombination. Thus, the 

neighborhood of chimeric enzymes includes effectively unexplored mutations when 1) 

third and higher order interactions contribute to fitness, and 2) the crossovers of 

recombination disrupt the interactions.  
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Figure 2.1: A. Effect of mutations in different chimeric lattice protein backgrounds. The 

red and blue segments represent fragments derived from different native proteins and the 

magenta circle represents a point mutation. When mutations are recruited into locally 

native environments (left) they interact with the same residues and make the same 

contributions to fitness as they would in a parental background unless they also interact 

with distal residues. Instead, when they are recruited into less native environments (right) 

they are less likely to make the same contribution to fitness in native and chimeric 

backgrounds. B. Chimeras can access combinations of residues not accessible to their 

parents only when third or higher order interactions are disrupted by crossovers. Red and 

blue circles represent residues from different parents and dotted lines represent 

interactions. Magenta circles represent point mutations. When a mutation occurs in the 

context of a pair-wise interaction that was disrupted by a crossover, it leads to a 

combination of amino acids that was accessible by a single mutation in the native 

background. Instead, when three or more residues are interacting, mutations lead to 

combinations of amino acids that are not attainable by single mutational steps in the 

native background. 
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Here, I use the lattice protein framework to investigate the relationship between the 

order of the interactions contributing to fitness and the evolvability of chimeric lattice 

proteins relative to native ones. Lattice proteins are highly simplified models of a protein 

consisting of a chain of 20 monomers on a two-dimensional lattice. Lattice proteins have 

been widely used to address questions of general principle related to protein folding, 

structure, and evolution. For example, lattice proteins have been used to propose 

statistical explanations to the marginal stability of real proteins [54] and the apparent 

anti-correlation between stability and activity [55]. In some cases, the results from lattice 

protein simulations have been validated by observations made on real proteins and by 

direct experimentation. For example, lattice protein simulations predict that sequences 

enriched in consensus amino acids are highly stable and robust to mutations [56,57]. 

Consensus mutations have been widely used to stabilize proteins [58-61] and Bloom and 

co-workers showed that stable enzymes are more robust to mutations [62]. A 

comprehensive review on lattice proteins can be found in [63]. 

I show that lattice proteins whose mutational neighborhoods have not been 

searched by evolutionary processes are more evolvable than native lattice proteins having 

equal fitness. I show that the mutational neighborhood of chimeric lattice proteins is 

effectively unexplored only when high order interactions contribute to fitness and are 

broken by the crossovers of recombination. Here, the evolvability of a lattice protein is 

evaluated according to three measures: 1) the number of improved single-mutant 

neighbors, 2) the greatest improvement in fitness among the improved neighbors, and 3) 

the fitness attained after a steepest ascent walk. A steepest ascent walk is one in which 

after each step the fitnesses of all the single-mutant neighbors are enumerated and the 

walk moves to the sequence bearing the greatest improvement in fitness until a local 

maximum is reached. To a first approximation, directed evolution is a steepest ascent 

walk.  

Proteins with unexplored mutational neighborhoods can be expected to have a 

greater number of improved single-mutant neighbors because the probability that a 

mutation is beneficial given that it has never been tested by evolution (as is the case for 

mutations occurring in enzymes with unexplored mutational neighborhood) is higher than 

the probability that a mutation is beneficial given that it has been tested but not selected 
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by evolution (as is the case for mutations occurring in native proteins). Therefore, on 

average, I expect proteins with unexplored mutational neighborhoods to have access to a 

greater number of beneficial mutations than native proteins having equal fitness (first 

measure of evolvability). Likewise, strongly beneficial mutations are unlikely to be found 

in the neighborhood of native enzymes because if they existed evolution would have 

selected them. Thus, I expect proteins with unexplored mutational neighborhoods to have 

access to more strongly beneficial mutations than native proteins having equal fitness 

(second measure of evolvability). Finally, after each step of a steepest ascent walk, I 

expect chimeras to continue encountering more and better beneficial mutations than 

native proteins (for the same reasons supporting the first two measures of evolvability) 

and thus attain a higher fitness at the end of the walk (third measure of evolvability). This 

requires that the mutational neighborhood of native enzymes be searched beyond the one-

mutant neighbors. 

 

2.3 Methods 

2.3.1 Lattice Proteins 

The lattice proteins [55,62-66] used in the simulations are highly simplified models of a 

protein consisting of a chain of 20 monomers on a two-dimensional lattice that can 

occupy any one of 41,889,578 possible compact or non-compact conformations. The 

monomers can be of 20 types corresponding to the 20 amino acids. Each monomer on the 

lattice has four nearest-neighbor sites, of which as many as two can be occupied by 

nonbonded neighboring residues (three in the case of terminal residues). The energy of a 

target conformation

 

CT is given by, 

 

E CT( ) = Cij CT( )
j= i

20

"
i=1

20

" #$ Pi,Pj( ) ,  

where 

 

Cij CT( )  is one if residues i and j are nonbonded nearest neighbors in conformation 

 

C  and zero otherwise, and 

 

" Pi,Pj( )  is the interaction energy between amino acid 

 

Pi and 

 

Pj  based on a widely used statistical analysis of real proteins by Miyazawa and Jernigan 

[67]. The free energy of folding of a lattice protein is related to the difference between 
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the free energy of the target conformation and the free energy of the ensemble of all other 

conformations,  

 

 

"Gf CT( ) = E CT( ) + T ln Q T( ) # exp
#E CT( )
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where 

 

CT  is the target conformation and 

 

Q T( ) is the partition function: 

 

Q T( ) = exp
"E Ci( )
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All simulations were performed at a reduced temperature of 

 

T =1.0. Proteins are 

defined to be folded if their free energy of folding is less than or equal to zero.  

For those proteins that stably fold activity is modeled as the binding energy (BE) 

of a small rigid peptide ligand to the active site of a folded lattice protein. The basic idea 

is that if a protein folds with at least the minimal required stability, then evolution selects 

for a protein’s function and is indifferent to the actual stability. This model of lattice 

protein folding and function has been used by others to investigate the evolvability of 

new functions in stable proteins [62] and to investigate the correlation between activity 

and stability [55]. The models of ligand binding in the present study are different from 

those reported previously because they include high order contributions (up to fifth 

order).  

In the simplest model, the BE (BE and activity are used interchangeably; fitness 

refers to the BE and/or the 

 

"Gf ) is the summation of adjacent protein-ligand residue 

interactions as shown by the red dotted lines in Figure 2.2 (model 1). In this model, 

protein residues make independent contributions to the BE (first order), and higher order 

contributions to fitness are introduced solely by the requirement that 

 

"Gf # 0  in order for 

the lattice protein to bind the ligand. In the remaining models, the BE is the summation of 

first order protein-ligand interactions and second (model 2), third (model 3), or fifth 

(model 5) order intra-protein interactions.  

In real proteins, residues have been observed to make both first and high order 

contributions to the activity of enzymes. In homologous enzymes, for example, residues 

that are directly involved in a specific function are often conserved despite the great 
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sequence diversity that can be observed in their vicinity. Their contributions are thus 

largely independent of sequence and largely first order. The conserved cysteine that is 

responsible for the proper positioning of the heme in the P450 family represents a good 

example of this. At the same time, high order contributions to fitness have frequently 

been reported, in particular when catalytic activity is being studied rather than stability 

[68-71]. Thus, my models include both first and high order contributions to the BE. The 

BE function of models 2, 3, and 5 is composed of a first order term and a high order term. 

Since each first order protein-ligand interaction is, on average, equal in magnitude to 

each high order interaction (see below), the relative number of first and high order 

interactions indicates the relative contribution that each of these terms makes to the BE. 

Thus, the contributions to the BE from high order interactions are 33%, 33%, and 50% in 

models 2, 3, and 5 respectively. Model 5 is composed of six first order interactions and 

six fifth order interactions involving most of the 20 residues of the lattice protein. The 

frequency of high order interactions in this model is very high and not intended to depict 

realistic models of ligand binding. Instead, this model was included to elucidate a 

qualitative trend. 

In the second order model, interactions were assigned manually, and protein-

protein interactions involve only active site residues. In the third order model, all adjacent 

protein-ligand residues are interacting, and third order interactions involve one active site 

residue and two residues randomly chosen in silico with a probability inversely 

proportional to their distance from the active site residue. Likewise, in the fifth order 

model, all adjacent protein-ligand residues are interacting and the fifth order interactions 

involve one active site residue and four residues randomly chosen in silico with a 

probability inversely proportional to their distance from the active site residue. There are 

numerous reports of non-active site mutations that alter catalytic activity in real enzymes 

[72-75] and for this reason I included long-range interactions in some of my models. 

All binary interactions (protein-ligand and protein-protein) are those proposed by 

Miyazawa and Jernigan [67] (Table 5). Since Miyazawa and Jernigan limited their 

analysis to pair-wise interaction energies, the third and fifth order interactions were 

selected randomly from the same distribution [67] (Table 5). This was done to ensure 

that, on average, the contribution of each third and fifth order interaction was equal in 
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magnitude to the contribution of a single pair-wise interaction between the lattice-protein 

and the ligand. This is important to ensure that the high order contributions do not 

overwhelm the first order protein-ligand contributions and viceversa. Besides the relative 

magnitudes of the first and high order interaction energies, I do not expect the exact 

nature of their distributions to affect the qualitative features of my results.  

Unlike the pair-wise interactions, the third and fifth order interactions are position 

dependent (i.e., the interaction Met-Arg-Tyr is different from Arg-Met-Tyr). The 

Miyazawa and Jernigan potentials reflect the average energetic contributions that 

contacting amino acid pairs make to real protein stability and they inherently do not 

depend on position. However, since the third and fifth order interactions involve distal 

residues in the lattice protein, position-dependant energies are more appropriate and more 

realistic. 
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      model 1   model 2      model 3 

 
model 5 

 
Figure 2.2: Lattice protein models. Black solid line: lattice protein; blue solid line: 

ligand; red dotted lines: first order protein-ligand interactions; and green dotted lines: 

second, third or fifth order intra-protein interactions. Note that in model 1 the BE is a 

purely additive function and the ruggedness of the fitness landscape arises from the 

folding constraint. The BE of models 2, 3, and 5, instead, has second, third, and fifth 

order contributions. Model 5 is composed of six first order and six fifth order 

interactions. Each fifth order interaction is shown separately so they can be visualized 

more clearly. In every model, the BE energy is equal to the summation of all first and 

high order interactions. 
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2.3.2 Evolutionary Simulations 

A random search was performed to identify a set of 1,143 sequences, 

 

Sran , that stably fold 

into the native structure shown in Figure 2.2. To create a set of “native” sequences, 

 

Snat , 

each of these 1,143 random sequences was evolved seven independent times for 1,000 

generations for improved BE with the ligands shown in Figure 2.2 (FGLLGD for model 

1, AMHYRTFGLLGDTE for model 2, and LGNVAELLK for model 3 and 5) (a total of 

1,143

 

"  7 = 8,001 evolutionary runs for each model). The qualitative features of my 

results were not found to depend on the sequence of ligands (data not shown). For each 

evolutionary run, the starting population is composed of ten identical lattice protein 

sequences equal to one of the random sequences. At each generation ten offspring are 

produced.  These offspring are identical copies of existing members of the population, 

with the probability of a copy being from a member of the population being proportional 

to the quantity, 

 

e"BE , associated with that member of the population.  These new 

sequences then replace the existing sequences in the population (note that the population 

size is kept constant).  All members of the population are then mutated with a per site 

mutation rate of 0.005. The final BE is that of the most abundant lattice protein sequence 

in the population after 1,000 generations. Native real enzymes are probably not strictly 

locally maximized. Rather they may have access to a few mildly beneficial mutations. 

Like wise, in the present work, native lattice proteins are not constrained to local 

maxima. This is achieved by carrying out evolutionary simulations for a fixed number of 

generations. As a result, some lattice proteins will be strictly locally maximized and 

many will not. 

2.3.3 Creation of Chimeric Lattice Proteins 

The sets of native sequences were used to create hundreds of chimeric families for each 

of the four models. One hundred families containing 50 unique chimeras were made for 

model 1, 283 families containing 50 unique chimeras were made for model 2, and 313 

families containing 25 unique chimeras were made for model 3 and 5. Each chimeric 

family consists of a collection of unique chimeras derived from the same three parents. 

The parents of each family are selected randomly from the seven possible native 

sequences that evolved from the same random sequence. This was done because 
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homologous enzymes in nature share a common ancestor. In fact, the average difference 

in sequence between parents of the same family is lower than what one would expect if 

the two sequences were drawn at random. Chimeras were accepted into their family 

provided they differed by at least 

 

nmin  residues from their closest parent. Each chimera 

was constructed by randomly selecting the positions and the number of crossovers 

(between 1 and 

 

cmax ) and then randomly selecting the parents that went into the segments 

defined by the crossovers. The parameters used to create chimeras for model 1, 2, 3, and 

5, respectively, are: 

 

nmin =10  and 

 

cmax = 7 , 

 

nmin =11 and 

 

cmax = 7 , 

 

nmin = 2  and 

 

cmax =1, 

and 

 

nmin = 5  and 

 

cmax =1. Higher values of 

 

nmin  and 

 

cmax  were used in the lower order 

models to increase the probability that crossovers diversify the residues contributing to 

the BE. This is because in model 1 only four residues contribute to the BE and in model 2 

all the intra-protein pair-wise interactions are adjacent in sequence (and thus less likely to 

be separated by crossovers than interactions that are not adjacent in sequence). 

2.4 Results 

2.4.1 Proof of Principle: Lattice Proteins with Unexplored Mutational 

Neighborhoods are more Evolvable than their Native Counterparts 

To obtain a proof of principle that lattice proteins whose mutational neighborhood has 

not been searched by evolutionary processes can be more evolvable than native lattice 

proteins of equal fitness, the evolvabilities of the random proteins in 

 

Sran  were compared 

to those of the native proteins in 

 

Snat  having equal fitness. The native proteins are the 

products of 1,000 generations of evolution. Their mutational neighborhood has thus been 

searched by evolutionary processes. On the other hand, the random sequences were 

generated randomly and their mutational neighborhood is entirely unexplored. Two sets, 

 

sran  and 

 

snat , were extracted from 

 

Sran  and 

 

Snat , respectively, such that 

 

sran  and 

 

snat  have 

indistinguishable distributions of free energies and BEs (please refer to the next section 

for the details on how this is done). It is important to control for the free energy of 

folding because sequences having greater stability can tolerate a greater number of 

destabilizing mutations and are thus more evolvable [62]. It was not possible to generate 

 

sran  and 

 

snat  for models 3 and 5 because the random sequences had considerably worse 
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BEs than the native ones.  This is to be expected for more complex fitness functions 

because it becomes less likely to randomly generate highly fit sequences. In the next 

section, models 3 and 5 will be used to generate chimeric lattice sequences, which, unlike 

random sequences will exhibit BEs comparable to their native parents. The cumulative 

distribution functions (CDF) of the free energies and BEs of 

 

sran  and 

 

snat  are shown to be 

statistically indistinguishable in Supplementary Figure 2.S1 and their average values are 

summarized in Supplementary Table 2.S1. 

 Here, the evolvability of a lattice protein is evaluated according to three measures: 

1) the number of improved single-mutant neighbors, 2) the greatest improvement in BE 

among the improved neighbors, and 3) the BE attained after a steepest ascent walk. A 

steepest ascent walk is one in which after each step the fitness values of the 

 

19 " 20 = 380  

single-mutant neighbors are enumerated and the walk moves to the sequence bearing the 

greatest improvement in BE until a local maximum is reached. The stabilities and BEs of 

all the single-mutant neighbors of the members of 

 

sran  and 

 

snat  (consisting of 380 mutants 

for each sequence) were characterized. The number of neighbors that stably fold and 

exhibit an improvement with respect to the BE was determined for each sequence in 

 

sran  

and 

 

snat  to compare their evolvabilities according to the first measure of evolvability. 

Following this calculation, the greatest increment in BE among the neighbors exhibiting 

improvement was determined for each sequence in 

 

sran  and 

 

snat  to compare their 

evolvabilities according to the second measure of evolvability. Finally, each sequence in 

 

sran  and 

 

snat  was subjected to a steepest ascent walk to compare their evolvabilities 

according to the last measure of evolvability. The CDFs of the number of improved 

neighbors, the greatest improvement in BE among the improved neighbors, and the BEs 

attained after a steepest ascent walk of the sequences in 

 

sran  and 

 

snat  are shown for each 

model in Figure 2.3. Their average values are summarized in Supplementary Table 2.S1. 
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Figure 2.3: CDF of the number of improved neighbors (top), the greatest BE 

improvement among the improved neighbors (center), and the BE attained after a steepest 

ascent walk (bottom) (the black (

 

snat ) and grey (

 

sran ) lines represent the starting BEs 

before the steepest ascent walk and are the same distributions shown in the right panels of 

Supplementary Figure 2.S1). Left panels: model 1 (p = 10-8; p = 10-4; p = 0.03), and right 

panels: model 2 (p = 10-4; p = 0.02, p = 0.03). The p-values here and elsewhere in this 

chapter are based on the two-sample Kolmogorov-Smirnov test [76] and represent the 

probabilities that the CDFs associated with

 

sran  and 

 

snat  would look the way they do if 

they were drawn from identical distributions. Thus, p-values that are close to zero 

indicate that the distributions are statistically different.  
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Figure 2.3 shows that in both models random lattice proteins are more evolvable 

than native ones of equal fitness according to all three measures of evolvability. Random 

lattice proteins have access to more and better beneficial mutations and can attain lower 

BEs after a steepest ascent walk than native lattice proteins of equal fitness. For each 

steepest ascent walk, the number of improved neighbors after each step of the walk and 

the total number of steps taken were recorded. As anticipated, after each step of the walk 

random proteins continue to encounter a greater number of improved neighbors than 

native proteins and can thus take a greater number of steps before reaching a local 

maximum (data not shown). Presumably, this is because evolution searched the 

mutational neighborhood of the native proteins beyond the one one-mutant neighbors. 

This allows them to walk, on average, to lower BEs than native lattice proteins.  

The results obtained in this section serve as a proof of principle that sequences 

with unexplored mutational neighborhoods can be more evolvable than native sequences 

of equal fitness.  

 

2.4.2 Chimeric Lattice Proteins are more Evolvable than their Native Lattice 

Proteins when their Mutational Neighborhood is Effectively 
Unexplored 

The building blocks of chimeric lattice proteins are derived from native lattice proteins. 

Thus, unlike the random lattice proteins, it is unclear whether their mutational 

neighborhood is effectively unexplored by evolutionary processes. As described in the 

introduction, mutations occurring in chimeric backgrounds are effectively unexplored 

when they occur in a network of three or more interacting residues that are disrupted by 

the crossovers of recombination. To characterize the dependence of the evolvabilities of 

chimeric lattice proteins (relative to those of native lattice proteins) on the order of the 

interactions contributing to the BE, BE models composed of interactions ranging from 

first to fifth order were studied and compared. 

The free energies of folding and the BEs of the chimeric lattice proteins were 

calculated and are shown in Figure 2.4 for the chimeras that fold with 

 

"Gf # 0 . Figure 

2.4 shows that, as the order of the interactions in the four different models increases, the 
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average BE of the chimeras relative to that of their parents worsens. This is consistent 

with experimental observations made on real chimeras that show that, on average, newly 

formed interactions are deleterious to function [77]. Therefore, chimeras will suffer a 

greater loss in fitness when the opportunity to form new interactions is higher.  

 
Figure 2.4: BEs and free energies of folding of the chimeras and native lattice proteins. 

Each blue dot represents a chimera and each red dot represents a native protein. 

 

The chimeras of model 2, 3, and 5 are trivially more evolvable than their parents 

because, on average, they have lower BEs. In order to compare the evolvabilities of 

parental and chimeric lattice proteins having equal fitness, two subsets, 

 

schi  and 

 

snat , were 

extracted from the full set of chimeric and native lattice proteins, 

 

Schi  and

 

Snat , 
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respectively, such that 

 

schi  and 

 

snat  have indistinguishable distributions of free energies of 

folding and BEs. This was done in the following way. For each point representing a 

chimera in Figure 2.4, a single point representing a parent from the set of points lying 

within a cutoff radius of that chimera was randomly chosen and added to 

 

snat . The chosen 

parent was then removed from 

 

Snat  to ensure that it would not be selected again for a 

different chimera. This guarantees that 

 

schi  and 

 

snat  have the same size and contain only 

unique sequences. The resulting parents and chimeras in 

 

schi  and 

 

snat  are shown in 

Supplementary Figure 2.S2. The length of the cutoff radius was chosen in such a way that 

the distributions of BEs and free energies of folding associated with 

 

schi  and 

 

snat  were 

statistically indistinguishable according to the two-sample Kolmogorov-Smirnov test 

[76]. The sizes of

 

schi  and 

 

snat  were 144, 473, 223, and 75 for models 1, 2, 3, and 5 

respectively. As long as the distributions of binding and free energies remain 

indistinguishable, the qualitative nature of my results is not affected by variations of the 

cutoff radius. The CDFs of the BEs and free energies of folding associated with 

 

schi  and 

 

snat  are shown to be statistically indistinguishable in Supplementary Figure 2.S3.  

The evolvabilites of the lattice proteins in 

 

schi  and 

 

snat  were determined in the 

same way described in the previous section. The CDFs of the number of improved 

neighbors and the CDFs of the greatest improvement in BE among the improved 

neighbors are shown for each model in Figure 2.5. Their average values are summarized 

in Supplementary Table 2.S2.  
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Figure 2.5: CDF of the number of improved neighbors (left) and the greatest BE 

improvement (right) among the improved neighbors of sequences in 

 

schi  and 

 

snat . First 

row: model 1 (p = 0.7; p = 0.7); second row: model 2 (p = 0.006; p = 0.006); third row: 

model 3 (p = 10-18; p = 10-26); last row: model 5 (p = 10-23; p = 10-18). 
 

It is immediately apparent from Figure 2.5 that the differences between the 

evolvabilities of chimeric and native lattice proteins increase as the order of the 



 

 

54 

interactions that contribute to the BE increases. In the case of model 1, chimeric and 

native lattice proteins exhibit indistinguishable evolvabilities. This is not surprising 

because residues make independent contributions to the BE. Any mutations that are 

beneficial in the context of a chimera are also beneficial in the context of a native parent. 

Thus, evolution has effectively searched their mutational neighborhood and they cannot 

be more evolvable than native proteins. In contrast, in models 3 and 5, the chimeras are 

significantly more evolvable than native proteins. When a mutation occurs in a network 

of three or more interacting residues then, provided the network is disrupted by the 

crossovers of recombination, chimeras can gain access to combinations of amino acids 

that are not accessible to their parents (Figure 2.1B). Thus, mutations occurring at these 

sites are effectively unexplored by evolution and chimeras can exhibit greater 

evolvability than their native counterparts. In model 2 chimeras are more evolvable than 

the native proteins but the differences are substantially less pronounced. Mutations 

occurring in networks of only two interacting residues lead to combinations of amino 

acids that are already accessible to the parents (Figure 2.1B). Therefore, in order for them 

to make beneficial contributions in the chimeric but not the parental backgrounds, they 

must occur in the context of a non-native interaction (formed by recombination) that is 

deleterious with respect to the native interaction. However, when too many deleterious 

interactions are formed by recombination the chimera will suffer a significant loss in BE. 

Since this study is only concerned with the evolvabilities of chimeras having comparable 

fitnesses as their native counterparts, such a chimera would not be included in 

 

schi . 

Therefore, as verified by the results, chimeras from model 2 are not expected to be 

significantly more evolvable than native proteins. 

Each of the sequences in 

 

schi  and 

 

snat  from models 2, 3, and 5 was subjected to a 

steepest ascent walk to compare their evolvabilities according to the last measure of 

evolvability. This analysis was not carried out on the sequences of model 1 because the 

evolvabilities of the chimeric and native lattice proteins were already shown to be 

indistinguishable based on the first two measures. The CDFs of the BEs attained after the 

steepest ascent walk and the number of steps taken before reaching a local maximum are 

shown in Figure 2.6. Their average values are summarized in Supplementary Table 2.S2. 
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Figure 2.6: CDF of the BE attained after a steepest ascent walk by the sequences in 

 

schi  

and 

 

snat  (left panels) (the color scheme is the same as that in Figure 2.3), and CDF of the 

number of steps taken before reaching a local maximum (right panels). Top: model 2 (p = 

0.34; p = 0.44); middle: model 3 (p = 10-12; p = 0.003); bottom: model 5 (p = 10-16; p =  

10-5).  

 

The left panels of Figure 2.6 show that when chimeras and native proteins having 

equal starting BEs and free energies of folding are subjected to a steepest ascent walk, the 

chimeras attain substantially lower BEs than native lattice proteins provided the BE 

model includes high order contributions. Likewise, chimeras, on average, take a greater 

number of steps before attaining a local optimum (right panels) and encounter a greater 
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number of improved neighbors after each step of the walk than native lattice proteins 

(data not shown). Presumably, this is because evolution has searched the mutational 

neighborhood of native enzymes beyond the one-mutant neighbors. Thus, provided the 

model of BE is composed of high order terms, just like random lattice proteins, chimeric 

lattice proteins are more evolvable than their native counterparts according to all three 

measures of evolvability. This is consistent with the hypothesis that chimeras are more 

evolvable than native enzymes because their mutational neighborhood is unexplored by 

evolutionary processes, but that their mutational neighborhood is only effectively 

unexplored when high order interactions contribute to fitness. Since random sequences 

are not composed of native residues, their mutational neighborhood is effectively 

unexplored independently of the order of the interactions contributing to their fitness.  
I have shown that chimeras are more evolvable than their parents when third or 

higher order interactions contribute to the BE. However, as suggested by Figure 2.1B, 

mutations can lead to novel combinations of amino acids only when they occur in a 

network of three or more interacting residues that was disrupted by recombination. 

Crossovers do not necessarily cut though interacting residues. For this reason, the 

chimeras in 

 

schi  of models 3 and 5 that do not have any non-native interactions should not 

exhibit greater evolvability than their native counterparts. To illustrate this, the number of 

non-native interactions was determined for each chimera in 

 

schi . Forty-one out of the 223 

sequences in 

 

schi  of model 3 do not have any non-native third order interactions. The 

evolvabilities of these 41 sequences were compared to those of the native sequences 

according to the usual three measures of evolvabilty. The same comparison was made 

between sequences in 

 

schi  having a single non-native interaction and the native 

sequences. The results are shown in Figure 2.7. As anticipated, the evolvabilities of 

chimeras in model 3 that do not have non-native interactions are indistinguishable from 

those of the native proteins. Instead, chimeras having a single non-native interaction are 

significantly more evolvable than native parents according to all three measures of 

evolvability. This analysis was not possible in the case of model 5 because all the 

chimeras in 

 

schi  have at least one non-native interaction. These results show that the 

crossovers of recombination must break existing high order interactions in order for 
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chimeras to gain access to beneficial mutations that are not beneficial in the context of 

native enzymes.  

In summary, chimeric lattice proteins can be more evolvable than native lattice 

proteins provided, 1) third or higher order interactions contribute to fitness, and 2) the 

crossovers of recombination disrupt the native interactions and form new, non-native 

ones. 
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Figure 2.7: Comparison of the evolvabilities of the native sequences in 

 

sevo and the 

chimeric ones in 

 

schi  having either zero (left) or one (right) non-native third order 

interaction(s) (this analysis is based on model 3). As usual the sets 

 

schi  and 

 

sevo have 

indistinguishable distributions of free energies and BEs (data not shown). Despite the 

large differences in evolvabilities among the complete sets of sequences in 

 

schi  and 

 

sevo of 

model 3 (p = 10-18, p = 10-26, p = 10-12), the evolvabilities become indistinguishable (p = 

0.38, p = 0.38, p = 0.90) when only chimeric sequences with no broken interactions are 

allowed in 

 

schi . A single non-native interaction is sufficient to grant chimeras greater 

evolvabilities with respect to their parents (p = 10-16; p = 10-22; 10-12).  
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2.5 Discussion 

The present work proposes that chimeric proteins with unexplored mutational 

neighborhoods are more evolvable then native ones of equal fitness and validates this 

hypothesis in the context of four different lattice protein fitness landscapes. Here, the 

evolvability of a lattice protein is evaluated according to three measures: 1) the number of 

improved single-mutant neighbors, 2) the greatest improvement in BE among the 

improved neighbors, and 3) the BE attained after a steepest ascent walk. I show that 

chimeric lattice proteins are more evolvable than native lattice proteins when 

contributions to the BE include third or higher order terms and the crossovers of 

recombination disrupt existing native interactions and replace them with new, non-native 

ones. When the contributions to the BE energy include only first or second order terms 

the evolvabilities of the chimeras are indistinguishable from those of the native proteins. 

However, unlike chimeric lattice proteins, random lattice proteins do exhibit significantly 

greater evolvabilities relative to native ones with these low order models. These results 

support the argument that non-native sequences must have an effectively unexplored 

mutational neighborhood to be more evolvable than native ones. Since random sequences 

are not composed of native residues, their mutational neighborhood is effectively 

unexplored independently of the order of the interactions contributing to their fitness.  
 These results have practical relevance when it is desirable to improve the native 

activities of real enzymes and there is evidence that there exist no beneficial mutations in 

their near neighborhood. Enzymes with cellulolytic activity represent a relevant example.  

Efforts to improve their catalytic efficiency on cellulose by directed evolution have not 

lead to significant success. Recently, Heinzelman et al. [53] constructed a chimeric 

library of celluases using structure-guided recombination. Several members of this library 

have over 50 mutations relative to their closest parent and have been shown to exhibit 

wild-type levels of specific activity on cellulose. Provided the parent cellulases are not 

globally optimized, my results suggest that the chimeras may represent a better starting 

point for directed evolution experiments.  

 The purpose of this study was to elucidate a qualitative trend rather than to build 

realistic protein BE models. For this reason, it is important to understand the differences 

between the models of BE used in this work and the functions relating sequence to 
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activity in real proteins. In real proteins, on average, only 5-15% of residues are directly 

involved in binding substrates. In the lattice protein models, 20%, 40%, 60%, and 85% of 

residues make direct contributions to the BE in models 1, 2, 3, and 5, respectively. The 

greater the number of residues directly involved in function, the greater the likelihood 

that crossovers break functionally important interactions. Another difference between my 

models and real proteins is the frequency, spatial distribution, and orders of the 

interactions that contribute to the BE. The existence of high order interactions affecting 

catalytic activity in real proteins has been verified experimentally [68-70]. High order 

interactions are particularly common in functionally important regions of proteins 

[68,71]. In some of my models, however, high order interactions are frequent relative to 

the size of the lattice protein and are distributed throughout its structure. Therefore, the 

most relevant way to interpret the lattice protein models in this study is to view them as 

models of the functionally important regions of larger proteins. This does not imply that 

they should be viewed specifically as active site models. Rather, they are models of the 

collection of residues that contribute to function.  

Future studies could possibly use larger lattice proteins to determine whether the 

nature of my results changes when at most 20-30% of the residues contribute to the BE 

and third order interactions are localized to the active site. Recall, however, that a single 

newly formed third order interaction is sufficient to grant chimeras greater evolvability 

than native lattice proteins (Figure 2.7). Thus, provided interacting residues are 

sufficiently spaced apart in sequence so that crossovers are likely to separate them, I do 

not expect the qualitative nature of my results to change significantly with larger lattice 

proteins and/or less interactions (provided they are at least third order).  

The major limitation of this work is that the native lattice proteins used in this 

study exhibit much greater diversity at their functional residues than is normally observed 

in the active sites of real homologous enzymes. The average sequence identity at the 

residues that directly contribute to the BE between the parents of a chimeric family 

ranges from 12-30% for the different lattice protein models. Instead, real homologous 

enzymes that perform the same catalytic chemistry and have similar substrate 

specificities often have nearly perfectly conserved active sites and most of their amino 

acid differences are found on their surfaces. Therefore, the resulting chimeras also have 
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conserved active sites [3,5,53]. Instead, the average sequence identity at the functional 

sites between chimeric lattice proteins retaining native levels of BE and their closest 

parent ranges from 60-85%. This suggests that the regions of real homologous enzymes 

that are directly involved in function are less tolerant to change than those of the lattice 

proteins of the present study. Thus, recombination of real enzymes cannot create non-

native interactions in the active sites. Instead, it relies on the existence of functionally 

significant long-range interactions between the surface and active site residues to form 

new interactions. Such long-range interactions have been observed in real proteins [72-

75] but their frequency and relative contribution to activity are likely to be less significant 

than functional interactions occurring within the active site. 

There are two factors that can contribute to the discrepancy between the diversity 

that is tolerated at the functional residues of lattice versus real proteins. The first is 

related to an inherent property of the BE models used in this study that may allow 

multiple sequences to be compatible with a high level of activity. More significantly, 

however, the discrepancy may indicate that the native lattice proteins of this study are 

less optimized relative to their fitness landscape than real native proteins are relative to 

theirs. A protein that is highly optimized relative to its fitness landscape is one that is 

almost globally optimized (i.e., better enzymes are extremely rare). I expect that 

diversifying the functional residues of such a protein without losing activity is extremely 

hard. Thus, a very reasonable explanation for the discrepancy between the sequence 

entropy tolerated at the functional residues of real versus native lattice proteins is that real 

proteins are more optimized than the native lattice proteins of the present study.  

To address this issue, future work should investigate how the number of 

generations used in the evolutionary simulations affects the nature of my results. 

Increasing the number of generations will produce native lattice proteins that are more 

optimized relative to their fitness landscape than the ones in the present study. In this 

scenario, I expect the diversity of native lattice proteins to decrease relative to the 

diversity observed in the present study. This will lead to a decrease in the number of non-

native interactions that can be formed using chimeragenesis and will reduce the 

likelihood that chimeric lattice proteins exhibit greater evolvability than their native 

counterparts. Alternatively, if the diversity of lattice proteins does not decrease 
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considerably, recombining highly diverse and highly optimized lattice proteins will lead 

to a great loss in BE, and it will not be possible to generate chimeric lattice proteins that 

have the same fitness as their parents like it was in this study. These arguments 

emphasize that, ultimately, it is the degree of optimization of native enzymes relative to 

their fitness landscape that determines whether chimeras can be more evolvable than their 

native parents. If they are highly optimized relative to their fitness landscape, then either 

1) their functional residues will be conserved and it will not be possible to recombine 

them and generate non-native functionally relevant interactions, or 2) their functional 

residues will not be conserved but it will be impossible to generate non-native 

interactions without suffering a big loss in fitness.  

These limitations are related to the underlying assumption of my hypothesis which 

is that native proteins are not globally optimized and that better proteins are frequent 

enough to be found using recombination and mutagenesis. This assumption is clearly 

satisfied in the present work. In general, however, we do no know whether it holds in real 

enzymes and only experiments can shed further light on this issue.   
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2.7 Supplementary Material 

 
Table 2.S1: Summary of the average value of the free energy of folding, 

 

"Gf , binding 

energy, 

 

BE , number of improved neighbors, 

 

nimp , greatest BE increments among 

improved neighbors 

 

"BEmax , BE after a steepest ascent walk, 

 

BESA , and number of 

steps taken to the nearest local maximum 

 

nsteps  for the sets 

 

sran  and 

 

snat . 

 

 

"Gf  

 

BE  

 

nimp  

 

"BEmax  

 

BESA  

 

nsteps   

 

sran  

 

snat  

 

sran  

 

snat  

 

sran  

 

snat  

 

sran  

 

snat  

 

sran  

 

snat  

 

sran  

 

snat  

Model 1 -0.26 -0.25 -20.8 -20.8 10.3 3.3 -0.95 -0.70 -22.3 -21.6 2.3 1.4 

Model 2 -0.28 -0.28 -16.5 -16.6 24.3 13.5 -0.91 -0.75 -18.2 -17.8 3.5 4.2 

 
 
 
Table 2.S2: Summary of the average value of the free energy of folding, 

 

"Gf , binding 

energy, 

 

BE , number of improved neighbors, 

 

nimp , greatest BE increments among 

improved neighbors 

 

"BEmax , BE after a steepest ascent walk, 

 

BESA , and number of 

steps taken to the nearest local maximum 

 

nsteps  for the sets 

 

schi  and 

 

snat . 

 

 

"Gf  

 

BE  

 

nimp  

 

"BEmax  

 

BESA  

 

nsteps   

 

schi  

 

snat  

 

schi  

 

snat  

 

schi  

 

snat  

 

schi  

 

snat  

 

schi  

 

snat  

 

schi  

 

snat  

Model 1 -0.28 -0.30 -23.1 -23.1 3.0 2.8 -0.65 -0.59 -- -- -- -- 

Model 2 -0.20 -0.21 -18.8 -18.8 10.5 8.2 -0.57 -0.49 -19.8 -19.6 2.9 2.5 

Model 3 -0.39 -0.40 -44.9 -44.9 9.0 4.1 -2.3 -0.90 -48.7 -46.8 3.2 2.7 

Model 5 -0.64 -0.66 -56.1 -56.2 17.4 2.6 -3.70 -1.0 -63.0 -59.1 3.9 2.8 
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Figure 2.S1: CDF of the free energy of folding and binding energy of sequences in 

 

sran  

and 

 

snat . The distributions are statistically indistinguishable. Top: model 1 (p = 1.0; p = 

1.0); bottom: model 2 (p = 1.0; p = 0.9). 
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Figure 2.S2: Chimeric lattice proteins (blue dots) and native lattice proteins (red dots) in 

 

schi  and 

 

snat . 
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Figure 2. S3: CDF of the free energy of folding of sequences in 

 

schi  and 

 

snat . The 

distributions are statistically indistinguishable. Top row: model 1 (p = 0.5; p = 1.0); 

second row: model 2 (p = 1.0; p = 1.0); third row: model 3 (p = 0.7; p = 1.0); last row: 

model 5 (p = 1.0; p = 0.9).  
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3 Evolvability of an Evolutionarily Young Chimeric 

Cellobiohydrolase II Derived from Trichoderma reesei, 

Humicola insolens, and Chaetomium thermophilum 

 
 

3.1 Abstract 

Cellulases are an important class of enzymes that catalyze the hydrolysis of cellulose to 

sugar. Unfortunately, they have specific activities on cellulose that are too low for the 

development of economically viable processes that convert biomass to sugar. Despite 

many efforts to further improve the specific activities of these enzymes, only minimal 

improvements in activity have been achieved. The present work proposes that highly 

mutated chimeric cellulases, assembled using homologous recombination, are more likely 

to have access to beneficial mutations than native ones of comparable activity because 

evolution has not searched their mutational neighborhood as it has in the case of native 

cellulases. The underlying assumption is that wild-type cellulases are locally optimized 

and that the constraints that hinder further improvement of their activities are 

evolutionary rather than physical. To test this hypothesis the mutational neighborhood of 

chimeric cellobiohydrolases II generated using SCHEMA structure-guided recombination 

was searched for beneficial mutations. Unfortunately, no mutants exhibiting a significant 

improvement in specific activity were found. The failure to identify improved mutants in 

the neighborhood of the chimeric cellulases can be attributed to 1) an unlucky choice of 

chimeras, 2) an assay poorly suited to identifying increments in specific activity, 3) a 

high degree of conservation in the functionally important regions of the cellulases in the 

SCHEMA library, or 4) a physical or chemical limitation to further improvements (i.e., 

native cellulases are globally optimized).  

 

3.2 Introduction 

Incentives to ameliorate the performance of natural cellulases are not lacking. Over 250 

million motor vehicles populate the United States accounting for 28% of our energy use 
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and 34% of our carbon dioxide emissions [78,79]. Petroleum, derived from depleting 

fossil fuels, powers most of those vehicles [79], and a significant portion of that 

petroleum is imported from countries that have unstable political and economic ties with 

the United States. Producing “clean” energy domestically from renewable resources is 

thus critical for both securing our supply and salvaging our environment. Cellulose is the 

most abundant renewable resource, and a study from the Department of Energy and the 

Department of Agriculture estimates that the United States can produce enough biomass 

to supply over 30% of our current oil demand without a dramatic negative impact on food 

supply [78].  

Cellulose degradation, however, is not easy. Cellulose is a linear condensation 

polymer consisting of D-anhydroglucopyranose joined together by ß-1,4-glycosidic 

bonds. Adjacent chains and sheets of cellulose are held together by hydrogen bonds and 

van der Waal’s forces resulting in a stable crystalline structure of great tensile strength 

and low accessibility [52]. The crystalline nature of cellulose makes it difficult to break 

down and requires the concerted attack of a team of enzymes acting synergistically and 

collectively referred to as cellulases. Endoglucanases hydrolyze accessible ß-1,4-

glycosidic bonds in amorphous regions of the polymer, disrupting its crystalline structure 

and exposing individual chain ends. Two different cellobiohydrolases-- one type working 

processively from the reducing end and the other from the non-reducing end of cellulose-

- then attack these individual chains and break them down to cellobiose. Finally, the 

cellobiose units are broken down to glucose by the actions of ß-glucosidases. Celluase 

systems come in two flavors: complexed and non-complexed. In non-complexed systems 

each of these enzymes is secreted individually from the cells. In complexed systems, 

(typical of anaerobic microorganisms), the enzymes are grouped into a complex known 

as the cellulosome that remains attached to the exterior cell wall. The present work is 

based on non-complexed cellulases.  

Grinding and pretreating naturally occurring cellulose with acids to disrupt its 

crystalline nature relieves some of the burden on cellulases, but introduces additional 

costs and waste treatment concerns. Furthermore, too much acid can damage the sugars 

[78]. Therefore, it is desirable to break down cellulose using more biology and less 

chemistry [78]. Currently, however, the bioconversion of natural cellulose to sugars by 
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organisms that secrete cellulases is too costly to be implemented for the large-scale 

production of biofuels. Strategies that will make this technology more economical 

include increasing the stability of cellulases at elevated temperatures and specific pH 

regimes and increasing their specific activity [52].  

Efforts to improve these enzymes are not lacking either: scientists and engineers 

have been working on the cellulase system of Trichoderma reesei (T. reesei) for over 50 

years. Since then, besides the wealth of literature describing the characterization of 

various natural cellulase systems, many groups have reported novel cellulases with 

altered pH profiles [53,80-83] or improved thermal tolerance [53,80,84-92]. For example 

Heinzelman et al. [53,90] recently created about 15 highly diversified chimeric 

cellobiohydrolases with thermostabilities higher than their most stable parent (which 

came from a thermophilic organism). A fairly accurate linear regression model predicts 

that hundreds of the designed (but uncharacterized) chimeras are thermostabilized with 

respect to the most stable parent.  

Despite the strong incentives and the many years of research on cellulases, efforts 

to improve the specific activities of cellulases have probably been the least successful. 

Using DNA shuffling Kim et al. [93] found a Bacillus subtilis endoglucanase mutant 

containing seven mutations with a five fold increase in specific activity on carboxymethyl 

cellulose (CMC) relative to the wild-type. While this may appear as a significant 

improvement, it has been shown that cellulase activities on soluble derivatives of 

cellulose such as CMC are poorly correlated with the activities on the naturally occurring 

insoluble cellulose [52]. McCarthy et al. [94] reported a modest improvement of 31% in 

the hydrolysis rate of a Thermotoga neapolitana ß-glucosidase single mutant on 

cellobiose found using random mutagenesis. Voutilainen et al. [85] recently reported the 

rational design of a cellobiohydrolase double mutant from the thermophilic fungus 

Talaromyces emersonii with an 80% improvement in the kcat/KM with respect to the 

soluble cellulase substrate, 4-methylumbelliferyl-ß-D-lactoside (mulAC). However, 

nearly all of the 80% improvement in kcat/KM can be attributed to a decrease in KM which 

translates to an increase in affinity for the non-natural substrate mulAC. In fact when they 

tested this mutant on microcrystalline cellulose (known commercially as Avicel) which is 

insoluble and has a significantly higher resemblance to naturally occurring cellulose than 
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mulAC, they found that the rates of hydrolysis of the mutant and the wild-type were the 

same. Escovar-Kousen et al. [95] reported the rational design of a single mutant of the 

cellulase Cel9A from Thermobifida fusca (T. fusca) with a 40% activity improvement on 

CMC and swollen cellulose (insoluble amourphous cellulose obtained using acid 

treatment). This, however, translated to no improvement on the more crystalline 

substrates, filter paper and bacterial microcrystalline cellulose (BMCC). Zhang et al. [96] 

studied the effects of 14 mutations in Cel6A from T. fusca involving six non-catalytic 

active site residues on a series of cellulolytic substrates varying in polymer length, 

crystallinity, solubility and charge. They only observed improvements on CMC. Zhang et 

al. [97] performed similar work on Cel6B from T. fusca and found a double mutant 

exhibiting two and three fold improvement on filter paper and swollen cellulose, 

respectively. They also found four mutants exhibiting up to a four-fold improvement on 

CMC. 

The achievements on the specific activities of cellulases on insoluble cellulose 

substrates are very modest. The challenge is at least in part a reflection of the fact that 

native cellulases have already been highly optimized by natural evolution to break down 

cellulose. While the stability and the pH profiles of an enzyme are not necessarily 

selected traits-- an enzyme need only be stable enough to function at the biologically 

relevant temperature and pH-- the high caloric value and the natural abundance of 

cellulose apply a significant selective pressure on microbes for its utilization. An 

organism that is well adapted to cellulose utilization will thrive in any habitat [98]. In fact 

cellulose hydrolysis limits the rate of microbial cellulose utilization as was inferred from 

the observation that microbial growth rates are several fold higher on soluble sugars than 

on crystalline cellulose [98]. Hence, evolution may have driven native cellulases to local 

maxima in their fitness landscape such that their mutational neighborhood does not 

contain any beneficial mutations, making directed evolution or any low-mutagenesis 

engineering approach (such as the rational design of a few active site residues) unlikely to 

succeed at improving the catalytic properties of these enzymes.  

The present work uses the cellulase platform and takes advantage of the existing 

library of highly diversified chimeric cellobiohydrolases II (Cel6A) constructed by 

Heinzelman et al. [53], to test the theory presented in chapter 2 that proposes that highly 
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mutated, non-native, chimeras are more evolvable than their native counterparts. The 

intuition is that non-native enzymes whose mutational neighborhood has not been 

searched by evolutionary processes are more likely to have access to beneficial 

mutations. However, whether this holds true for chimeric non-native enzymes whose 

building blocks are derived from native enzymes is not clear and is the subject of this 

study. The underlying assumption is that cellulases are not globally optimized.  

Random mutagenesis was used to generate mutants from chimeric and parental 

Cel6As. The number of improved mutants and their increment in specific activity are 

used as measures of evolvability. The former measure has been previously used by others 

[62] to quantify evolvability. The chimeric library of Heinzelman et al. [53] consists of 

three fungal Cel6As from Humicola insolens (H. insolens), T. reesei, and Chaetomium 

thermophilum (C. thermophilum) denoted as P1, P2, and P3, respectively, and the 

possible 6,558 chimeras that can be constructed from the seven crossovers designed by 

the structure-guided recombination algorithms SCHEMA and RASPP [2,4]. The Cel6As 

consist of a catalytic domain (CD) and a cellulose binding module (CBM) joined by a 

flexible linker. The crossovers occur in the CD, while the linker region and the CBM are 

the same in each member of the library and derived from the Cel6A of T. reesei. The 

CBM, CD and linker region contain a total of about 450 amino acids. Chimeric and 

native Cel6As were expressed in Saccharomyces cerevisiae (S. cerevisiae).  

SCHEMA and RASPP are structured-guided recombination algorithms that select 

the crossover locations that minimize structural disruption while maintaining a high level 

of sequence diversity. SCHEMA scores chimeras according to the number of non-native 

amino acids contacts formed upon recombination. Contacts are defined by a 4.5 Å 

structural cutoff. RASPP then directs crossovers to locations that minimize the average 

number of non-native contacts while maintaining a high average mutation rate in the 

chimeric library (please refer to the last section of the introduction to this thesis for more 

details on how SCHEMA and RASPP work). Members of the cellulase SCHEMA library 

have on average 50 mutations from their closest parent and 15 non-native contacts. 

Several highly mutated members of this library were shown to have the same level of 

specific activity on Avicel as their parent enzymes making this an excellent system to 

begin testing the theory of chapter 2 on real proteins. 
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In order for chimeric Cel6As to have access to more and better beneficial 

mutations than their wild-type counterparts, there must exist mutations that are beneficial 

in the context of the former but not the latter. This can occur only if mutations make non-

additive contributions to catalytic activity which means that the effect of a mutation 

depends on the presence or absence of other amino acids in the protein. When mutations 

make additive contributions to fitness, their effect is the same in any background and 

chimeras cannot gain access to beneficial mutations that are not beneficial in the context 

of a parental enzyme (denoted hereafter as new beneficial mutations). In order for 

chimeras to gain access to new beneficial mutations the effect of mutations must depend 

on at least two other residues (third order contributions to fitness) and the network of 

three or more interacting residues must be broken by the crossovers of recombination as 

illustrated in Figure 2.1.  

The existence of high order interactions affecting catalytic activity in real proteins 

has been verified experimentally [68-70]. Nevertheless, it has been argued that mutations 

exhibit mostly additive effects in proteins and that high order contributions to fitness are 

rare [64,71]. These studies are often based on double mutant cycle analyses, in which two 

mutations are found to be independent of one another (and thus to exhibit additivity) 

when the contribution to fitness of the double mutant is equal to the sum of the 

contributions of the single mutants [71]. When this condition is not met the effect of one 

mutation depends on the presence of the other, and the two residues form a pair-wise 

interaction. Mutations are likely to exhibit non-additive effects when they are in direct 

contact in the protein structure [71,99,100]. Since most proteins are large, two randomly 

chosen amino acids are unlikely to be in contact and thus to exhibit non-additivity 

[64,101]. Thus if one were to perform double mutant cycle analyses [102] on all possible 

amino acid pairs in a protein, the outcome would be that most pairs exhibit additivity. 

Chimeras, however, already contain many mutations relative to their parents. Any 

further mutations that are introduced into their structure are likely to occur in the 

proximity of other mutations and thus to exhibit non-additive effects (i.e., to make 

different contributions to fitness in chimeric versus native backgrounds). This, however, 

does not hold true for all heavily mutated chimeras. Consider a chimera with a single 

crossover that inherits its N-terminal half from one parent and its C-terminal half from 



 

 

73 

another parent. Such a chimera is heavily mutated (the number of mutations relative to its 

closest parent is high) but, because it is composed of two large native segments, any 

mutation will likely occur in a native, non-mutated local environment and exhibit 

additivity unless it occurs at the interface of the segments. This reasoning reemphasizes 

the importance of creating non-native interactions to gain access to new beneficial 

mutations and benefit from non-additivity. Creating too many non-native interactions, 

however, will compromise the activity of the chimera. Whether chimeras are sufficiently 

diversified to gain access to new beneficial mutations without significantly disrupting the 

function of the enzyme is not clear. Finally it is important to keep in mind that SCHEMA 

[2] is based on the principle of conserving native interactions to preserve structural 

integrity. This further reduces the probability that the library crossovers create new 

interactions. 

According to the high-resolution crystal structure [103] of the CD of the H. 

insolens parent, the active site is highly conserved among the three parent cellulases. Of 

the 39 amino acids that are within 4.5 Å of the substrate, only one is not conserved 

among the three parents. Active site mutations are thus likely to make the same 

contributions to activity in chimeric and parental backgrounds. Therefore long-range 

interactions with the active must exist in order for chimeras to gain access to new 

beneficial mutations with respect to catalytic activity. There are numerous reports in the 

literature of non active site mutations that can affect catalytic activity via long-range 

interactions with the active site [72-75], but whether they exist in the Cel6A scaffold is 

not clear.  

To determine whether SCHEMA chimeras can exhibit greater evolvability than 

their parents despite these limitations, the activities on cellulose of point mutants within 

the mutational neighborhood of native and chimeric Cel6As were determined and 

compared. The number of clones exhibiting improved specific activity on Avicel and the 

magnitude of the activity increment was used as the sole measure of evolvability. 

Random mutagenesis of two native Cel6As and four chimeric Cel6As was used to 

explore their mutational neighborhood. The genes of these enzymes were amplified and 

mutated by error-prone PCR. The plasmids bearing the mutated genes were then 

transformed into S. cerevisiae and their whole cell activities on Avicel were determined 
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using a high-throughput screen recently developed in our lab. A whole cell activity screen 

is one in which a fixed amount of the cell culture supernatant is used in the screen and 

thus does not account for differences in protein expression. For this reason, further 

characterizations must be performed on the best mutants to verifiy improvements in 

specific activity (activity per unit mass of enzyme). No clones exhibiting improved whole 

cell activities were found in the native libraries, whereas several were found in the 

chimeric libraries. The best clones from one of the chimeric libraries were recombined 

and the top hits from the recombination library were purified and their specific activities 

on Avicel measured. Specific activity assays are performed with a fixed amount of 

protein so that differences in protein expression are accounted for. Unfortunately, the 

improvements in specific activity were very modest, and most of the increase in whole 

cell activity could be attributed to an increase in expression level.  

 

3.3 Results 

3.3.1 Selection of Chimeras 

In order to compare the evolvabilities of chimeric and native Cel6As of equal fitness, it 

was necessary to first identify a set of chimeras that have thermostabilities and activities 

comparable to their parent enzymes. It is important to control for thermostability because 

stable enzymes can tolerate destabilizing mutations that are not accessible to less stable 

enzymes but may be beneficial with respect to catalytic activity [62]. To this end 38 

previously characterized chimeras [53] with stabilities comparable to those of their 

parents were selected and assayed on Avicel along with P1 and P3 using the whole cell 

high-throughput Avicel assay described in the experimental methods (EM). Avicel is 

considered by many researchers to be a good substrate for exoglucanase activity because 

it is highly crystalline and it has a high fraction of free reducing ends relative to the 

fraction of accessible ß-glucosidic bonds [52,104].   

Table 3.S1 in the supplementary material (SM) lists the sequences and stabilities 

of the 38 chimeras and two parents used in this initial characterization. The chimeric 

sequences are reported in terms of the parent from which each of the eight sequence 
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fragments is inherited. For example chimera 31111112 inherits its N-and C-terminal 

fragments from P3 and P2, respectively, and all its internal fragments from P1. Stability 

is reported in terms of T50, the temperature at which an enzyme loses 50% of its activity 

after a 10 minute incubation [90]. P2 was omitted from this initial characterization 

because its extremely low level of expression in S. cerevisiae would not allow its activity 

to be detected by this assay. The cells bearing the P3 gene did not grow for the initial 

characterization. P3 was thus tested in second assay. The assay was performed at five 

different temperatures: 45, 50, 55, 60, and 65°C. Each enzyme was assayed twice on two 

different assay plates.  

Six chimeras were found to have whole cell activities comparable to P1 over the 

entire range of temperatures. These results are shown in Figure 3.1. The selected 

chimeras, P1, and P3 were then reassayed at 50°C and the results are shown in Figure 

3.2. This was done by plating a 10 µl aliquot of the remaining supernatant from the 

culture onto a fresh SD-URA plate. Colonies were allowed to grow for 72 hours at 30°C 

and then sixteen individual colonies were used to inoculate sixteen wells of two 96-deep 

well plates containing 50 µl of SD-URA. Growth, expression, and assaying from this 

point on are described in the EM. The low temperature of 50°C was chosen as the 

temperature for all subsequent activity tests to 1) reduce the likelihood of selecting 

stabilizing mutations over activity enhancing mutations and to 2) reduce the bias in 

evolvability arising from native and parental enzymes having different thermostabilities. 

A lower temperature would not have produced enough signal in the Avicel assay.  
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Figure 3.1: Relative amount of cellobiose formed by the six chimeras having the same 

whole-cell activity as P1. P2 was omitted from this initial characterization because its 

extremely low level of expression in S. cerevisiae would not allow its activity to be 

detected by this assay. The cells bearing the P3 gene did not grow and this enzyme was 

tested in a subsequent assay (Figure 3.2). The error bars represent the difference between 

the two measurements made in different assay plates. 
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Figure 3.2: Cellobiose formed relative to P1 at 50°C. The yellow bars represent the data 

from Figure 3.1. The purple and blue bars represent the data from the second assay of 

plates 1 and 2, respectively. The error bars of the purple and blue bars represent the 

standard deviations across the 8 measurements of the plate. The discrepancy in HJ+ 

activity is related to using the HIS6-tagged version of this chimera in the second assay. 

 

Another important criterion to consider when selecting the chimeras is the degree 

to which they differ from their parents. As stated in the introduction and emphasized in 

chapter 2, chimeras gain access to new beneficial mutations when non-native interactions 

are formed. For each of the chimeras of Figures 3.1 and 3.2 the number of mutations 

from their closest parent, m, the number of non-native pair-wise interactions, E, and the 

number of non-native third order interactions, E3, were calculated and shown in Table 

3.1. Interactions are defined by a 4.5 Å structural cutoff. In a third order interaction each 

residue is within 4.5 Å of the other two residues. A mutation that occurs in a non-native 

network of three or more interacting residues can potentially exhibit non-additive effects 

because it leads to a combination of amino acids that are not accessible to parental 
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Cel6As (Figure 2.1). The T50s and the relative whole cell activities on Avicel are also 

shown.  

 

Table 3.1: Summary of the m, E, E3, T50 and the whole cell activity on Avicel relative to 

P1, RAP1, for the chimeras of Figures 3.1 and 3.2. The values of the relative whole cell 

activities correspond to the average across the first and second assay. The value presented 

for HJ+ corresponds to the value obtained from the first assay since the HIS6-tagged 

version was accidentally used in the second assay. The values for all the other cellulases 

are also based on the non-tagged enzymes. 

enzyme m E E3 RAP1 T50 

12-22232132 48 18 16 0.95±0.11 68.0 

18-13231111 27 4 2 0.79±0.09 63.3 

41-12133333 35 13 12 0.67±0.09 64.0 

89-11113332 41 5 1 0.63±0.14 70.0 

90-12113132 48 15 10 0.63±0.14 70.5 

HJ+-12222332 47 14 11 1.15±0.06 71.0 

P1-11111111 0 0 0 1 64.8 

P2-22222222 0 0 0 -- 59.0 

P3-33333333 0 0 0 0.47±0.00 64.0 

  

Chimeras HJ+ and 12 were chosen because their whole cell activity levels are 

comparable to P1 and they have the highest values of m, E, and E3. Chimera 90 was 

chosen because it has the next highest values of m, E, and E3. Chimera 89 was not 

intended to be included but a labeling error caused its inclusion. 

3.3.2 Characterization of the mutational neighborhood of the selected 

chimeras using random mutagenesis. 

The genes of P1, P3, and chimeras 12, 89, 90, and HJ+ were amplified using error-prone 

PCR. The frequency of mutations can be controlled by varying the concentration of 

MnCl2. For each enzyme, error-prone PCR was performed using concentrations of MnCl2 

of 150, 200, 250, and 300 µM as described in the experimental methods (EM). The 
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collection of mutants obtained for each enzyme and concentration of MnCl2 are referred 

to as a library.  

In order to determine the library with an appropriate mutation rate, 88 mutants 

from each of the libraries containing 150, 200, and 250 µM MnCl2 were screened in 96-

well plates using the high-throughput whole cell Avicel screen as described in the EM (a 

total of 6x3 = 18 plates). The library with [MnCl2] = 300 µM was omitted from this initial 

characterization because it was assumed that this high concentration was unlikely to yield 

a sufficient fraction of functional clones. Clones were defined to be functional if their 

absorbance reading at 520 nm was 0.05 AU above the blank wells. This value 

corresponds to the minimum increase in absorbance relative to that of the blank required 

for this difference to be visible to the eye. For comparison this corresponds to about 15% 

of the whole cell activity of P1. The fraction of functional clones in the libraries with 

concentrations of MnCl2 of 150, 200, and 250 µM was found to be 36 ± 3%, 29 ± 5%, 

and 15 ± 3%, respectively. Thus the library with [MnCl2] = 150 µM was chosen for 

further characterization. A total of 600 clones were screened from each of the six libraries 

and clones exhibiting an increase of 20% or greater relative to their parents were chosen 

for a re-screen. A total of 0, 3, 9, 3, 12, and 7 clones were chosen from the P1, P3, 12, 89, 

90, and HJ+ libraries to be re-screened. Clones exhibiting an average of 20% or better 

improvement in the re-screen are summarized in Table 3.2.  
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Table 3.2: Summary of the m, E, E3, T50 , the whole cell activity on Avicel relative to P1 

( RAP1) of the chimeras used to generate the random mutagenesis libraries, the number of 

improved mutants found in each library, and the improvement of each mutant relative to 

the enzyme it was derived from.  

Enzyme T50 RAP1 m/ E/ E3 # improved clones % improvement 

12-22232132 68 1.0 48/18/16 3 21% 

20% 

20% 

89-11113332 71 0.6 41/5/1 2 28% 

22% 

90-12113132 70 0.6 58/15/10 0 -- 

HJ+-12222332 71 1.2 47/14/11 1 24% 

P1-11111111 65 1 0/0/0 0 -- 

P3-33333333 64 0.5 0/0/0 0 -- 

 

The results in Table 3.2 show that all clones exhibiting improvement on Avicel 

are derived from chimeras. These improvements, however, can be attributed to either an 

increase in expression, stability, specific activity, or a combination of these three 

properties and further characterizations are necessary to verify any improvement in 

specific activity.  

Only 600 clones were screened from each of the above libraries because the 

transformation efficiencies were poor. To obtain results of greater statistical significance, 

it was necessary to characterize a larger fraction of the neighborhood of each enzyme. To 

this end a new set of libraries was generated with concentrations of MnCl2 of 50, 100, 

150, 200, 250, 300, and 350 µM. Additionally, a mutated version of P2, P2C311S, was 

included because it was found that the C311S mutation increased expression by nearly 10 

fold (a total of 7x7 = 49 new libraries were created). It was important to include this 

parent because chimeras 12 and HJ+ are more closely related to P2 than they are to P1 

and P3. A fair comparison of the evolvabilities of these two chimeras relative to that of 

the parental enzymes would have to involve P2 or its closely related mutant P2C311S.  
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Instead of screening a large number of clones from all seven libraries, it was 

decided to screen 3,000 clones from the most promising chimeric library, and then 

recombine, purify, and characterize the specific activity of the best hits, proceeding to 

screening other libraries if positive results were found. The library from chimera 12 was 

chosen because 1) its T50 is closer to that of the native enzymes, 2) its specific activity is 

comparable to that of its closest parent, P2C311S (Figure 3.5), 3) it has the highest values 

of m, E, and E3, and 4) it gave rise to the greatest number improved clones in the initial 

characterization of 600 members of its neighborhood. To determine the library with the 

appropriate amount of mutations, a single 96-well plate from each of the seven libraries 

derived from chimera 12 containing different concentrations of MnCl2 was assayed using 

the high-throughput Avicel screen. The fraction of functional clones was 81%, 65%, 

64%, 68%, 37%, 36%, and 8% in the libraries containing 50, 100, 150, 200, 250, 300, 

and 350 µM MnCl2, respectively. Because of the large gap in functional clones between 

the library containing 200 µM MnCl2 (68% functional) and the library containing 250 

µM MnCl2 (37% functional) it was decided to screen 3,000 clones from each. A total of 

20 clones exhibiting an improvement of 20% or better were selected for the re-screen. 

The improvements relative to chimeras 12, P1, P2C311S, and P3 of the top five clones in 

the rescreen are shown in Figure 3.3. Their non-synonymous mutations and relative 

improvement are summarized in Table 3.3. The locations of the mutations are shown in 

Figure 3.4.  
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Figure 3.3: Product formed by the best five mutants found in the libraries derived from 

chimera 12 with [MnCl2] = 200 and 250 µM. The values are based on the re-screen data 

(whole cell activity). Error bars represent the standard deviation across eight independent 

measurements.  

 

Table 3.3: Summary of the mutations in the five clones selected from the re-screen and 

the relative improvement they provide relative to chimera 12, RAC-12, based on the whole 

cell screen on Avicel. Underlined mutations occur in the linker region and mutations in 

bold appear in more than one selected clone. Numbering is based on the 1OCN structure 

[103].  

Clone RAC-12 Mutations 

P103C 22% D282E 

P2E4 23% P283L, S410P 

P8F9 32% N290D, V398A 

P12D12 28% Y93N, N290D, N445Y 

P24H12 25% T73A, V440A 
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Figure 3.4: Locations of the best five mutations from the re-screen. The structure is 

based on the 1OCN structure [103]. The substrate, a cellobio-derived isofagomine 

glycosidase inhibitor, is shown in grey. The portions of the structure shown in red, 

yellow, and blue represent those derived from P1, P2, and P3 respectively. Mutations are 

shown in magenta.  

 

Figure 3.4 shows that most mutations occur on the surface of the enzyme, with the 

exception of mutation V398A that occurs in the active site and is within 5.6 Å of the 

substrate. This residue is conserved in the three parents. This residue is in contact with 

seven other residues, but these are perfectly conserved in the three parents. It is also 

involved in eight third order interactions (three residues that are within 4.5 Å of each 

other) that are also perfectly conserved in the three parents. Thus, the V398A mutation 

occurs in a very native environment and can only make non-additive contributions to 

fitness if it is involved in long-range interactions with mutated residues. The same is true 

for all other mutated residues with the exception of residue D282. Residue D282 is 

involved in a third order interaction with residues Q286 and R345 in the background of 

chimera 12. These residues are QER, DQH, and QEQ in P1, P2, and P3, respectively. 
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The mutation D282E thus leads to a combination of amino acids, EQR, not accessible to 

any of the parental cellulases. However, D282E is a surface mutation and it is only via 

long-range interactions with the active site that this newly formed third order interaction 

can affect catalytic activity. Because the improvements in whole cell activities are not 

very high, the identified mutations were recombined with the purpose of selecting, 

purifying, and determining the specific activities of clones with improved whole cell 

activities of at least 50%.  

3.3.3 Recombination of the mutations in the best five mutants. 

The mutations in Table 3.3 were recombined using overlap extension PCR as described 

in the EM to create all possible 29 = 512 combinations of amino acids. Over 2,000 clones 

were screened (four-fold over sampling) and the 18 clones exhibiting an improvement of 

30% or better were re-screened. The top six clones with relative improvements of 57 

(2C), 59 (3D), 57 (6D), 56 (7D), 54 (7G), and 54% (8E) with respect to the whole cell 

activity of chimera 12 were chosen for further characterization. The mutations found in 

these clones are summarized in Table 3.4.  

 

Table 3.4: Summary of the mutations identified in the six best clones from the 

recombination library. A “*” means that the mutation is present in that clone. 
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2C * * * *  *  *  

3D * * *  *  *   

6D * *  *      

7D * * * * * *  *  

7G * * * * *    * 

8E * * * * *  *   

 

Table 3.4 shows that two of the nine mutations, N290D and D282E, appear in all 

the selected clones. Mutations S410P and T73A occur in five of the six selected clones. 
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The active site mutation V398A appears in four of the six clones. Mutations P283L, 

V440A, and Y93N appear in two of the six clones and mutation N445Y appear in one of 

the six selected clones.  

 To determine the specific activity of the selected clones on Avicel they were 

tagged with six histidines (HIS6) on their C-terminus, purified, and their specific activity 

on Avicel measured as described in the EM. The accuracy of the HIS6 constructs was 

verified by sequencing. The concentrations were determined by measuring the 

absorbance at 280 nm and using the molar extinction coefficient of 92,425 M-1cm-1 [105] 

as described in the EM. The purification profiles, the SDS PAGE gels of the purified 

proteins, and the absorbance readings at 280 nm plotted as a function of volume of 

purified protein are shown in Figures 3.S1-3.S3 in the SM. To determine the errors in the 

measurement of the specific activity related to the process of purification, buffer 

exchange, and determination of concentration, the entire procedure was repeated 

independently twice for clone 6D, chimera 12, and P2C311S. The specific activity was 

measured using 300 nM protein, 50 mg/ml Avicel, and 80 mM NaCl for 2 hours at 50ºC 

as described in the EM. The specific activities of the clones are compared to chimera 12 

and to parent P2C311S (the parent exhibiting greatest homology to chimera 12). The 

results are shown in Figure 3.5.  
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Figure 3.5: Specific activity (mM cellobiose/min/mg protein) of the top five clones from 

the recombination library, the top clone, P8F9, from the random mutagenesis library, 

chimera 12, and parent P2C311S. Two bars are shown for mutant 6D and parent 

P2C311S corresponding to the two independently purified batches. The specific activity 

was measured using 300 nM protein, 50 mg/ml Avicel, and 80 mM NaCl for 2 hours at 

50ºC as described in the EM. The error bars represent the standard deviation across six 

independent measurements.  

 

Figure 3.5 shows that the improvements in specific activity relative to chimera 12 

are very modest and range from 5-10%. The improvements based on the whole cell 

activity assay ranged from 54-59%, suggesting that the bulk of the improvement can be 

attributed to an increase in expression. Figure 3.S1 in the SM shows the purification 

profiles of chimera 12, parent P2C311S, clone 6D, and clone 7D. These proteins were 

grown and purified in parallel under identical conditions so that the relative size of the 

peaks in the purification profile are an indication of their expression. Supplemental 
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Figure 3.S1 suggests that clones 6D and 7D are more highly expressed than their parent, 

chimera 12.  

The improvements in specific activity are rather low but could be reproduced on 

different days and under different assay conditions (data not shown). The independently 

purified batches of mutant 6D show great consistency in specific activity: 2.5 ± 0.1 and 

2.4 ± 0.1 mM/min/mg. The consistency of the two P2C311S batches is not as good, 1.7 ± 

0.1 and 2.0 ± 0.2 mM/min/mg, but still acceptable. To determine whether the increments 

in specific activity could be attributed to an increase in thermal stability the fraction of 

enzyme remaining functional after various incubation times at 50°C was determined as 

described in the EM. Briefly, identical protein samples containing 1.8 µM protein were 

incubated at 50°C for 0, 3, 6, and 9 hours. The samples were then screened on Avicel at 

30°C for 2 hours. The high protein concentration was necessary to obtain a reliable signal 

at the low assay temperature of 30°C. This experiment was performed on chimera 12, 

parent P2C311S, and clone 6D. The results are shown in Figure 3.6.  
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Figure 3.6: Relative Avicel activity remaining at 30°C after different incubations times at 

50°C. Identical protein samples containing 1.8 µM proteins were incubated at 50°C for 0, 

3, 6, and 9 hours and then screened on Avicel for 2 hours at 30°C.  

 

Figure 3.6 shows that after as long as nine hours of incubation at 50°C the 

proteins still retain 100% of their activity. This excludes the possibility that the small 

increments in specific activity are the results of stabilizing mutations. To verify whether 

the increments in specific activity lead to a detectable increase in initial rate of reaction 

the initial rates of reaction on Avicel were determined as described in the EM for chimera 

12, parent P2C311S, and clone 6D. The Park-Johnson assay [106] described in the EM 

was used instead of the Nelson-Somogyi [107,108] method because it is more suited to 

measuring the low concentrations of cellobiose that are reached during the first three 

minutes of the reaction. Each protein was tested twice, using the two independently 

purified batches of chimera 12, parent P2C311S, and clone 6D. The results are shown in 

Figure 3.7. The rate of reaction was measured during the first three minutes after the 
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addition of the protein to a pre-heated Avicel sample. Measurements were taken every  

30 s. Details are described in the EM.  
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Figure 3.7: Initital rates of reactions for chimera 12, parent P2C311S, and clone 6D. The 

profile of clone 6D-2 extends to 180 s because the time point at 60 s was accidentally 

missed. Reactions were carried out using 300 nM protein, 134 Mm NaCl, and 10 mg/ml 

of Avicel at 50°C in 50 mM sodium acetate buffer (pH = 5.0). 

 

Figure 3.7 shows that the small increment in specific activity observed in clone 6D 

cannot be detected in the initial rate of reaction. Although this was not repeated for the 

remaining mutants, their similarity in sequence (Table 3.4) and in specific activity to 

clone 6D strongly suggests that their initial rate of reaction profile will not exhibit 

significant differences to those shown in Figure 3.7.  

 



 

 

90 

3.4 Discussion 

The experiments described in this chapter aimed to generate experimental evidence that 

chimeric enzymes have access to more and better beneficial mutations than their wild-

type counterparts. This hypothesis was tested in the context of a previously characterized 

library of chimeric Cel6As [53]. The chimeras of this library differ, on average, by 50 

amino acids relative to their closest parent. However, whether their mutational 

neighborhood is effectively unexplored by evolutionary processes is unclear because their 

building blocks are derived from native enzymes. To reduce bias arising from differences 

in fitness between the chimeras and their parents, the chimeras used in this study have 

activities on Avicel and stabilities comparable to those of their parents.  

The mutational neighborhood of four chimeric and two native Cel6As was searched 

for mutants with improved whole cell activities on Avicel. All clones exhibiting 

improvements were derived from chimeric parents and none could be found in the 

parental libraries. Following this initial characterization, 6,000 clones in the 

neighborhood of chimera 12 were screened on Avicel. The best five mutants exhibited 

improvements in whole cell activity ranging from 22-32%. Their nine mutations were 

recombined using overlap extension PCR and 2,000 clones from this library (roughly 4-

fold over sampling) were screened on Avicel. The best six clones, exhibiting whole cell 

activity improvements ranging from 54-59%, were purified and their specific activity on 

Avicel characterized. The improvements in specific activity were very modest, ranging 

from 5-10%, implying that the bulk of the ~55% whole cell activity improvement was the 

result of an increase in cellulase expression as also suggested by the purification profiles 

of Supplemental Figure 3.S1. It was verified that these improvements were not the result 

of stabilizing mutations. However, it was not possible to detect a faster rate of initial 

reaction. This was not surprising as increases in specific activity of only 5-10% over the 

course of a two hour reaction are unlikely to be detectable in the first three minutes of 

reaction. Furthermore, the improvements in specific activities may be an artifact arising 

from errors in the measurement of active cellulase concentration. As shown in the SDS 

PAGE gels of the purified proteins, there is an unidentified band at 30 kDa that 

contributes to the measured concentration of the purified cellulases. While this band is 

rather faint, and appears to be relatively uniform across the protein samples, the specific 
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activity improvement is so low that its mere existence is extremely sensitive to 

experimental errors. Finally, supposing that the improvements in specific activity are real, 

they do not represent progress on mutagenesis studies performed on native cellulases 

because increments in specific activity of 5-10% or more have already been reported.  

Provided native enzymes are locally optimized, non-native enzymes will always 

have, on average, access to a greater number of beneficial mutations than native enzymes. 

The expected number of beneficial mutations accessible to locally optimized native 

enzymes is zero. For any non-native enzyme this number is strictly greater than zero, 

independently of fitness. Ultimately, however, to find a single beneficial mutation in the 

neighborhood of a chimera, this number must be greater than or equal to one. Therefore, 

besides an unlucky choice of chimera, the failure to identify sufficiently strong beneficial 

mutations (i.e., > 50% improvement in specific activity) in the neighborhood of chimera 

12 can be attributed to 1) a low frequency of beneficial mutations within the reach of 

chimeras from this library or 2) a low frequency of beneficial mutations in the entirety of 

sequence space. Additionally, the high-throughput Avicel screen may be inadequate for 

selecting mutants with improved specific activity. The first two scenarios and the 

limitations of the Avicel screen are discussed in more detail below.  

 

3.4.1  Beneficial Mutations within the Reach of the Chimeras from the 
SCHEMA Cel6A Library are too Rare to be Found 

In order for chimeric Cel6As to have access to more and better beneficial mutations than 

their wild-type counterparts, there must exist mutations that are beneficial in the context 

of the former but not the latter. The last two chapters have emphasized the necessity to 

create new, non-native functionally important third or higher order interactions in order 

for this to occur. Thus, supposing that sequences encoding Cel6As that have higher 

activity than wild-type Cel6As exist in sequence space and are frequent enough to be 

found, the probability that they can be found using recombination depends on 1) the 

significance and frequency of functionally important high order interactions in the Cel6A 

scaffold, and 2) the likelihood that such interactions are broken by the crossovers of 

recombination to form, new, non-native interactions that make, on average, a neutral 
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contribution to fitness. Neutrality is important because, in general, forming new 

interactions will have a deleterious effect on protein function [77] and, in addition to 

trivializing the hypothesis, it is unlikely that any benefit can be derived from a chimera 

that is more evolvable but significantly less fit than a native enzyme. 

Protein landscapes have often been described as “smooth” or “roughly additive.” 

These conclusions are mostly derived from experimental observations that the 

contribution to fitness of a double mutant is often equal to the sum of the contributions of 

the individual mutations [71]. These results, however, usually break down when 

mutations are adjacent to one another in three dimensional space [71,99]. This reflects the 

fact that, unless long-range interactions are frequent and significant, high order 

contributions to fitness can only be detected when mutations are recruited into a non-

native environment. Therefore, high order interactions could be extremely common and 

yet have gone unnoticed by double mutant cycles analyses in which the effects of just a 

few mutations at a time are evaluated.  

Additivity has also been observed in many directed evolution studies in which 

beneficial mutations were accumulated one at a time and found to be independent of one 

another. However, Weinreich et al. [69], showed that only 18 of the possible 120 paths 

linking two ß-lactamases differing by five mutations and five orders of magnitude in 

antibiotic resistance conferred to bacteria were possible by adaptive evolution. Thus 102 

out of the 120 paths linking the two enzymes and exhibiting non-additivity would never 

be found by a standard directed evolution study. Similar results were observed in [70]. 

Furthermore, additivity has been primarily verified with respect to thermostability 

[101,109].  When contributions to catalytic activity are being considered rather than 

contributions to stability (as is the case in the present study) non-additive effects become 

much more frequent [68-70,99]. Da Silva and co-workers [68], for example, showed that 

non-additivity was common, and often involved third or higher order interactions in a 

functionally important region of an HIV glycoprotein. Therefore, high order interactions 

do exist in sequence space and are possibly more frequent than expected.  

In order for chimeras to have access to new beneficial mutations, the crossovers 

of recombination must break functionally important interactions and replace them with 

new ones that make neutral contributions to fitness. In the chimeras of the SCHEMA 
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Cel6A library, however, the active site is largely conserved making it impossible to break 

functionally important interactions within the active site. Numerous studies have reported 

catalytically important mutations that occur remotely from the active site [72-75]. In one 

study directed evolution was used to change the substrate specificity of aspartate 

aminotransferase. The mutant enzyme had a 106 fold increase in the kcat/KM on the non-

native substrate valine. Only one of the 17 acquired mutations was in contact with the 

substrate. The three dimensional structure of the mutant enzyme bound to a valine analog 

showed that the remote mutations caused structural alterations in the active site and 

surroundings [72]. Thus, despite the conserved active site in the Cel6A library, mutations 

acquired on the surface of the chimeras may cause structural rearrangements that give 

them access to catalytically beneficial mutations that are not accessible to their parents. 

However, since the mutations acquired on the surface of the chimeras are derived from 

homologous enzymes, they may be unlikely to significantly alter their structural features. 

Additionally it is important to keep in mind that while the chimeras in the library are 

heavily mutated, they are only mildly disrupted by design. The SCHEMA algorithm 

minimizes local disruption by selecting crossovers that maximize the conservation of 

amino acids between the interfaces of the recombination fragments to minimize the 

number of non-native contacts formed upon recombination. One consequence of this is 

that the fragments make additive contributions to thermostability [17]. Another 

consequence may be that structural rearrangements that can alter the catalytic effects of 

mutations are highly unlikely.  

Furthermore, chimeras that have roughly the same activity as their parents, such 

as those in the present study, are likely to contain less disruption than the average 

chimera in the library because, in general, non-native contacts are deleterious. Non-native 

contacts that make neutral contributions to fitness are less common. In fact, the six 

chimeras that were chosen because of their similarity in fitness to the native Cel6As have, 

on average, lower m and E, than the average m and E of the 38 chimeras they were 

selected from as shown in Figure 3.S4 in the SM. Thus, while it is desirable to break 

interactions to gain access to novel combinations of amino acids, too much disruption 

leads to poorly active chimeras, limiting the number of possible broken interactions. All 

of these limitations, combined with the reality that beneficial mutations are rare, may 
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make it extremely unlikely for SCHEMA to gain access to new beneficial mutaitons.  

The fact that no significantly beneficial mutations were found in the neighborhood of 

chimera 12 supports this conclusion.  

 Alternatively to homologous recombination, novel enzymes with unexplored 

mutational neighborhood may be generated using de novo design. In 1997 Mayo and co-

workers pioneered the first fully automated design and experimental validation of a novel 

sequence for an entire protein. Using computational methods, they completely redesigned 

the sequence of a 28-residue zinc finger using an algorithm that used as input only the 

backbone fold and had no knowledge of the naturally occurring sequence. Their final 

designed sequence was shown to properly fold to the target structure despite very low 

sequence identity (21%) with the naturally occurring sequence [110]. Baker and co-

workers extended this work to the complete redesign of nine globular proteins [111]. 

Again, their modeling algorithm had no knowledge of the natural sequences and used 

only the backbone structure to design the novel sequences. On average 65% of the 

residues in the designed sequences differed from wild-type over all protein residues and 

50% differed from wild-type in the core. Yet eight out of the nine designs encoded 

properly folded proteins. In one case, the designed sequence encoded a protein that was a 

striking ~7 kcal/mol more stable than the corresponding wild-type. This technique could 

be used to design highly mutated cellulases based on the Cel6A backbone fold. Enzyme 

size would be the major limitation. The CD of cellulases is approximately 360 residues 

long while the designs by Baker and co-workers spanned at most 100 residues. 

In 2008, Baker and co-workers [112] successfully designed eight enzymes with 

two different catalytic motifs that could catalyze the Kemp elimination reaction. If it is 

possible to design a novel enzymatic function, it may be possible to preserve an existing 

native one while simultaneously diversifying the active site. In the case of the Cel6As, 

this could be done by preserving the key catalytic residues, while mutating the active site 

in such a way that does not create steric hindrance with the substrate. If this is done with 

sufficient care, it may be possible to preserve most of the native activity while strongly 

diversifying the sequence of the designed enzyme- both on the surface and in the core. 

This approach may bypass the limitations of chimeragenesis because the designed 

enzymes would not have large portions of their structure identical to those of native 
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enzymes. If this were to succeed for several independent designs, while it would not 

guarantee that the activity of the non-native enzymes could be improved beyond that of 

their native counterparts, it may shed light on the distribution of activities in the cellulase 

landscape. 

 

3.4.2  Fitness Peaks Taller than the Native Peak are Rare in Sequence Space 

The hydrolysis and utilization of cellulose is widely distributed among many genera in 

the domain Bacteria and in the fungal groups within the domain Eucarya. Recently, it has 

been discovered that certain animal species, including crayfish and termites, produce 

their own cellulases [98]. Currently, there are hundreds of known genes encoding 

enzymes with cellulolytic activity. Often they exhibit fairly different folds. The 

abundance of cellulose, the strong selective pressure conferred to any organism capable 

of utilizing it efficiently, and the rich reportoire of identified cellulases could suggest that 

these enzymes have been highly optimized by natural evolution to degrade cellulose. 

However, cellulases appear to be much less active on their native substrate than their 

related glycoside hydrolases [98,113] are on their native substrates. Klyosov [113] 
calculates kcat values of 0.5 to 0.6 s-1 for T. reesei cellulases, 58 s-1 for amylase, and up to 
100 to 1,000 s-1 for other hydrolases. Another example is the specific activity of a T. 

reesei cellulase on crystalline cellulose (filter paper) which has been found to be 100 fold 

lower than that of amylase on starch [114].  

Cellulase activity on soluble or pre-treated cellulose substrates is generally higher. 

For example Bernardez et al. [115] compared initial hydrolysis rates of a Clostridium 

thermocellum cellulase system on Avicel and dilute-acid-pretreated mixed hardwood. 

Pretreated wood was hydrolyzed up to 10-fold faster than Avicel. Similarily, Zhang and 

coworkers [116] found that the initial hydrolysis of PASC (phosphoric acid swollen 

cellulose) is more than 100 fold higher than that of Avicel. In fact, available data suggests 

that the specific activity of exo-acting saccharolytic enzymes on comparable substrates is 

similar. For example the specific activity of the T. reesei Cel6A on cellohexaose is highly 

comparable to that of a Aspergillus awamori glucoamylase on maltohexaose [116]. These 

arguments may imply that the recalcitrant nature of microcrystalline cellulose poses a 
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physical limitation to further improving the specific activity of cellulases (i.e., native 

cellulases are globally optimized) or that, alternatively, native cellulases are not globally 

optimized but better cellulases are so rare and distant in sequence (and perhaps structure) 

from native cellulases that evolution just has not found them yet and perhaps will never 

find them.  

In both of these scenarios, the first being that native cellulases are globally 

optimized and the second being that more efficient cellulases are extremely rare, any 

engineering approach will fail at discovering cellulases with higher catalytic activities. 

 

3.4.3  Limitations of the High-Throughput Avicel Screen 

Besides the obvious limitation that a whole cell screen may miss mutants that have 

increased specific activity but not increased whole cell activity, the high-throughput 

Avicel screen may suffer from other limitations. In particular it is well known that the 

rate of cellulose hydrolysis declines sharply as the reactions proceeds. Several 

explanations to this have been proposed including enzyme deactivation, product 

inhibition, decreases in substrate reactivity (presumably because the more accessible 

glycosidic bonds are hydrolyzed first), and the formation of unproductive and irreversible 

substrate-enzyme complexes [98,114]. It is possible that the differences reflecting 

changes in specific activity are more visible early on in the reaction as opposed to two 

hours into it when these inhibitory effects may have become significant. In other words, 

if there is fixed amount of substrate that can be hydrolyzed before the reaction rate slows 

down dramatically (as would be the case in most of the scenarios proposed to lead to a 

decrease in reaction rate), and the native enzymes take two hours to hydrolyze that fixed 

amount of substrate, even a significantly more efficient mutant, that could do it, in say, 

only five minutes, would not be selected by this screen. Unfortunately the most obvious 

solutions to this problem are not very practical (screening for shorter amounts of time or 

using significantly more substrate).  

However, the fact that all the parents, chimeras, and mutants that have been tested 

so far have almost identical specific activities on Avicel but not on PASC [53] suggests 
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that the current protocol of the Avicel screen may be inadequate for detecting differences 

in activity and that it may be worthwhile to investigate this further.  

 

3.5 Experimental Procedures 

3.5.1 Chimeras Construction and Generation of Random Mutagenesis 

Libraries Using Error-Prone PCR 

Details of chimera construction have been reported previously [53]. S. cerevisiae cells 

bearing the Cel6A plasmids were obtained from Dr. Heinzelman and Indira Wu from the 

California Institute of Technology. All plasmid DNA used for cloning purposes was 

extracted from S. cerevisiae cells using the ZYMOPREP yeast miniprep kit and 

transformed into E. coli. Transformed cells were allowed to grow overnight and then the 

plasmid DNA was extracted using the Qiagen Miniprep Kit. The Cel6A genes were 

sequenced using primers cellSeqFor (gtcgggtccgacttgctgtgcttccgg) located in the linker 

region 224 base pairs upstream of the CD and cellSeqRev (gcaacacctggcaattccttacc) 

located 108 base pairs downstream of the gene to ensure the presence of the correct gene. 

To generate random mutagenesis libraries using error-prone PCR, the gene segments 

coding for the CD were amplified using the forward primer cellCloneFor 

(ccaacgactattactcccagtgtcttc) located in the linker region 180 base pairs upstream of the 

CD and the reverse primer cellCloneRev (gacatgggagatcgaattcaactcc) located 47 base 

pairs downstream of the gene. Error-prone PCR was carried out in 100 µl total volume 

containing 100 ng DNA, 0.2 µM of each primer, 10 µl of 10X Roche PCR buffer, 10 µl 

of 55 mM MgCl2, 200 µM of dATP, 200 µM of dGTP, 500 µM of dTTP, 500 µM of 

dCTP, MnCl2 (50-400 µM), 5 units of Roche Taq DNA polymerase. Libraries with 

MnCl2 concentrations ranging from 50 to 400 µM were prepared for four chimeric and up 

to three native Cel6As. To reduce mutational bias across libraries with an equal 

concentration of MnCl2 but different templates, PCR master mixes were prepared 

containing the primers, the PCR buffer, the nucleotides and the MgCl2. This master mix 

was then divided into x tubes corresponding to the x concentrations of MnCl2 and to each 

tube the appropriate amounts of MnCl2 and PCR water were added. Each of these tubes 

was then split into n tubes corresponding to the p parental and the n-p chimeric Cel6As to 
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which template DNA and Taq DNA polymerase were added. The PCR program was 

95°C for 30 s, and then 20 cycles of 95°C for 30 s, 55°C for 30 s, and 72°C for 2 min, 

and then 72°C for 5 min. The mutated amplified DNA from each library was then gel 

purified and co-transformed with vector digested with the New England Biolabs (NEB) 

restriction enzymes Xho1 and Acc651 into S. cerevisiae using the homologous 

recombination protocol described in [117]. Transformed cells were then plated on SD-

URA agar plates. The SD-URA mix was purchased from MP-biomedicals. Selected 

clones from this library were sequenced with forward and reverse primers, cellSeqFor 

and cellSeqRev, respectively.  

 

3.5.2  Recombination of Best Mutants 

The best nine mutations selected from the library of chimera 12 were recombined by 

amplifying six fragments spanning the nine mutations and then assembling them using 

overlap extension PCR. The forward and reverse primers for the six fragments were 1) 

cellCloneFor and 12REV_T73A (gtagtagtagaaccaggtggaggcgycgcggagctcga), 2) 

12FOR_T73A (tcgagctccgcgrcgcctccacctggttctactactac) and 12REV_Y93N 

(tggattacctgaatwcgtagcggttcccg), 3) 12FOR_Y93N (cgggaaccgctacgwattcaggtaatcca) and 

12REV_D282E_P283L_N290D (ttgtaaacatytgcaaacagctgcgcagcgrgwtcctgatttg), 4) 

12FOR_D282E_P283L_N290D (caaatcaggawcycgctgcgcagctgtttgcaratgtttacaa) and 

12REV_V398A_S410P (ggagcagaagratcactcgttccatctgactctcctccgggttttrcccaaacgaa), 5) 

12FOR_V398A_S410P (ttcgtttgggyaaaacccggaggagagtcagatggaacgagtgatycttctgctcc) and 

12REV_N445Y_V440A (ggattggcgtwagtcagtaattgtrcaaaataagcttggaacc), and 6) 

12FOR_N445Y_V440A (ggttccaagcttattttgyacaattactgactwacgccaatcc) and  

CellCloneRev, respectively. The mutations carried by the primers are indicated in their 

names. The primers are degenerative and allow the inclusion of either the native or the 

mutated amino acid. The lengths of the six fragments are 139, 86, 615, 402, 160, and 126 

base pairs. Six PCR reactions were carried out in parallel in 100 µl total volume 

containing 50 ng of chimera 12 DNA, 200 µM of each dNTP, 0.2 µM each of the forward 

and reverse primers listed above, 2 units of NEB Phusion DNA polymerase, and 20 µl of 

5X Phusion HF buffer to amplify each fragment. The PCR program was 98°C for 30 s, 
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and then 30 cycles of 98°C for 10 s, 55°C for 20 s, and 72°C for 10 s, and then 72°C for 

10 min for fragments 1, 2, 5, and 6. The PCR program for fragments 3 and 4 were 

identical but had an elongation time of 10 s. Amplified fragments were gel purified and 

then reassembled in three steps (five PCR reactions). In the first step fragments 1 and 2 

and fragments 5 and 6 were assembled using primers cellCloneFor and 12REV_Y93N 

and 12FOR_V398A_S410P and cellCloneRev, respectively. The PCR reactions were 

carried out in 50 µl total volume containing 50 ng of each fragment, 200 µM of each 

dNTP, 0.2 µM each of the forward and reverse primers, 2 units of NEB Phusion DNA 

polymerase, and 10 µl of 5X Phusion HF buffer. The PCR program was the same as that 

used to generate the individual fragments with an elongation time of 10 s. The assembled 

fragments were gel purified and used for the next step of the assembly. In the second step 

the assembled fragments 1 and 2 were assembled with fragment 3 and the assembled 

fragments 5 and 6 were assembled with fragments 4 using the forward and reverse 

primers cellCloneFor and 12REV_D282E_P283L_N290D and 

12FOR_D282E_P283L_N290D and cellCloneRev, respectively. The PCR conditions and 

program were the same as in the previous assembly step but the elongation times were 30 

s. The assembled fragments were gel purified and used for the final assembly step in 

which assembled fragments 1, 2, and 3 were assembled with assembled fragments 4, 5, 

and 6 using forward and reverse primers cellCloneFor and cellCloneRev, respectively. 

The PCR conditions and program were identical to the previous assembly steps with an 

elongation time of 45 s. The final construct was gel purified and co-transformed with 

vector digested with Xho1 and Acc651 (NEB) into S. cerevisiae using the homologous 

recombination protocol described in [117]. The transformed cells were then plated on 

SD-URA agar plates. Selected clones from this library were sequenced with forward and 

reverse primers, cellSeqFor and cellSeqRev, respectively.  

 

3.5.3 Addition of HIS6 Tags to Best Mutants from the Recombination 
Library 

PCR reactions were carried out to append a HIS6 tag to the C-terminus of the best mutants 

from the recombination library. The forward primer is located 421 base pairs upstream of 
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the CD domain and includes the Nhe1 restriction site (gctgaagctgtcatcggttacttag) and the 

reverse primer has a HIS6 over hang, the Acc651 restriction site, and a stop codon 

(ctgcaggtaccctaatggtggtgatggtgatgtagaaaactaggattggcgttagtcag). The PCR reactions were 

carried out in 50 µl total volume containing 50 ng of DNA, 0.2 µl of each the forward 

and reverse primer, 200 µM of each dNTP, 2 units of Phusion DNA polymerase and 10 

µl of 20X HF Phusion buffer. The PCR program was 98°C for 30 s, and then 30 cycles of 

98°C for 10 s, 55°C for 20 s, and 72°C for 60 s, and then 72°C for 10. Amplified DNA 

was digested using NEB dpn1, gel purified, and then digested using NEB restrictions 

enzymes Nhe1 and Acc651. The vector was prepared by digesting the plasmid bearing 

the gene of chimera 89 with the same restriction enzymes (Nhe1 and Acc651) and then 

by gel-purifying it. Vector and PCR inserts were ligated using NEB T4 ligase at 16°C for 

16 hours. The ligation mixture was purified using the QIAGEN DNA purification kit and 

then transformed into E. coli cells and plated on LB plates and allowed to grow 

overnight. Individual colonies were then picked and grown overnight in 5 ml of LB 

media supplemented with ampicillin, and then the plasmid DNA was extracted using the 

QIAGEN miniprep kit and sequenced using primers cellSeqFor and cellSeqRev to ensure 

correct incorporation of the HIS6 tag. Plasmids were then transformed into S. cerevisiae 

cells using the Zymo EZ frozen yeast transform kit and plated on SD-URA plates.  

 

3.5.4 Protein Expression  

Cells were grown for 72 hours at 30°C on SD-URA agar plates and then individual 

colonies were used to inoculate 96-well plates containing 50 µl of SD-URA media. Cells 

were allowed to grow overnight at 30°C and 250 RPM in a Kuhner shaker and were then 

expanded by adding 350 µl of YPD media (10 g yeast extract, 20 g peptone, and 20 g 

dextrose in 1 L of water). Cells were allowed to grow an additional 48 hours at 30°C and 

250 RPM and were then centrifuged and the supernatant used for the high-throughput 

Avicel screen.  
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3.5.5  Protein Purification 

Protein purification was achieved by growing cells for 72 hours at 30°C on SD-URA agar 

plates and then inoculating 5 ml of SD-URA media with a single colony. The cell culture 

was allowed to reach saturation overnight and then expanded by adding it to 50 ml of 

YPD media in Tunair flasks purchased from IBI Scientific. The cultures were then 

centrifuged, and the supernatant filtered using VWR 0.2 µm Nalgene filters. 500 µl of 

100 mM phenylmethanesulfonylfluoride (PMSF), 500 µl of 2% NaN3, and 50 µl of 10 M 

NaOH were then added to the sample to inhibit protease activity, preserve the sample, 

and improve binding to the column, respectively. The sample was then purified using a 1 

ml HisTrap HP column precharged with nickel (GE Healthcare) and an AKTA purifier 

FPLC system (GE Healthcare). The binding buffer was composed of 20 mM Tris, 100 

mM NaCl, and 10 mM imidazole at pH 8.0. The elution buffer was composed of 20 mM 

Tris, 100 mM NaCl, and 300 mM imidazole at pH 8.0. First, the column was equilibrated 

with five column volumes (cv) of binding buffer. Then, the sample was injected and 

washed with another seven cvs of binding buffer. Sample elution was achieved with a 

linear gradient. The proteins eluted at a concentration of about 100 mM imidazole. Buffer 

exchange was performed using SARTORIUS STEDIM 10,000 mwco VIVASPIN 

columns. The purified proteins were concentrated to about 500 µl in 50 mM sterile 

sodium acetate buffer at pH 5.0. An additional 5 µl of 100 mM PMSF and 5 µl of 2% 

NaN3 were then added, and the purified protein was stored at 4°C. The presence of a band 

at about 55 kDa on an SDS PAGE gel verified the presence of the correct protein. The 

concentration of the purified protein was determined by adding different amounts of the 

purified protein to 1 ml of a solution composed of 6 M guanidine hydrochloride and 25 

mM Na2HPO4 at pH 6.5 and measuring the absorption at 280 nm (A280). Once a linear 

relationship was observed between the amount of added sample and the A280, the 

concentration of the proteins was calculated using an extinction coefficient of  

92,425 M-1cm-1 [105]. 
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3.5.6  High-Throughput Avicel Activity Assays 

An Avicel slurry containing 50 mg/ml of Avicel and 134 mM NaCl was stirred until it 

was visually homogenous. While still stirring, 60 µl of this slurry were added to PCR 

plates (TemPlate III 96-well, half skirted, 0.2 ml, thin wall, standard depth, and rimmed 

well, USA Scientific) with the aid of an 8-channel RAININ multichannel pipettor. 100 µl 

of protein supernatant were transferred from the 96-well culture plate to the PCR plate 

containing Avicel with the aid of a pipetting robot (Multimek 96 automated pipettor). The 

plates were then covered and placed at 4°C for 90 min to allow the enzymes to bind to 

the Avicel. The plates were then centrifuged to allow the Avicel and bound enzyme to 

settle at the bottom of the PCR plate wells. With the aid of the robot the supernatant was 

removed taking care not to disrupt the Avicel-enzyme pellet. With the aid of the pipetting 

robot, 180 µl of 50 mM sterile sodium acetate buffer pH 5.0 was then added to the pellet. 

The purpose of this step is to remove the sugars present from the growth media that 

would otherwise interfere with the reducing sugar assay. The centrifugation and wash 

steps were repeated four times. On the fourth time, the bound enzyme was re-suspended 

in 75 µl of 50 mM sterile sodium acetate buffer pH 5.0, the plates were sealed with 

Biorad microseal B film PCR sealers, and the reaction was initiated by placing the PCR 

plates in a Fisher Scientific Isotemp 220 water bath at 50°C. After two hours the plates 

were placed for ten min on ice to quench the reaction. The plates were then centrifuged 

and 50 µl of the supernatant were transferred to a new PCR plate to perform the Nelson-

Somogy reducing sugar assay [107,108]. Somogyi reagent was prepared by mixing 4.8 

ml of Somogyi reagent 1 with 1.2 ml of Somogyi reagent 2 per plate and then adding 50 

µl of this solution to each well of the PCR plates with the aid of a 12-channel RAININ 

multichannel pipettor. Somogyi reagent 1 was prepared by dissolving 72 g of Na2SO4, 6 g 

of potassium sodium tartrate tetrahydrate (Rochelle salt), 12 g of Na2CO3, and 8 g of 

NaHCO3 in 400 ml of ddH20. The solution was then filtrated using a VWR 0.2 µm 

Nalgene filter for sterilization purposes. Somogyi reagent 2 was prepared by dissolving 

18 g of Na2SO4, 2 g of CuSO4•5H20 in 100 ml of ddH20. The solution was then filtrated 

using a VWR 0.2 µm Nalgene filter for sterilization purposes. Somogyi reagents 1 and 2 

were prepared in advance and stored at room temperature. The plates were then sealed 

with Biorad microseal B film PCR sealers and placed at 98°C in a Fisher Scientific 
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Isotemp 220 water bath for 15 min. The plates were then allowed to cool on ice for 15 

min, and then 50 µl of Nelson reagent was added to each well with the aid of a RAININ 

multichannel pipettor. The Nelson reagent was prepared by dissolving 25 g of ammonium 

molybdate in 450 ml of ddH20 in a glass bottle wrapped in aluminum foil to protect the 

solution from light. 21 ml of concentrated H2SO4 were then added to the solution. 3 g of 

Na2H arsenate were dissolved in 25 ml of ddH20 and then added to the ammonium 

molybdate-H2SO4 solution. The solution was incubated at 37°C for 24 hours and then 

filtrated for sterilization purposes. The Nelson reagent was stored in the dark at room 

temperature. The plates were then centrifuged to remove the air bubbles. The pipetting 

robot was then used to thoroughly mix the PCR wells by pipetting and dispensing several 

times. 100 µl of the reaction mixture were then transferred to 96-well assay plates and the 

absorbance at 520 nm was measured. The amount of released cellobiose was determined 

using a calibration curve constructed with a cellobiose standard.  

 

3.5.7  Measurement of Avicel Specific Activity 

Reactions were carried out in 100 µl total volume, 300 nM purified protein, 50 mg/ml 

Avicel, and 80 mM NaCl. Each protein was assayed six times in six wells of a PCR plate. 

The PCR plate was kept on ice as the components of the reaction were being added and 

was then sealed with Biorad microseal B film PCR sealers. The reaction was initiated by 

placing the PCR plate in a Fisher Scientific Isotemp 220 water bath at 50°C for two 

hours. After two hours the PCR plate was placed on ice for 10 min to quench the 

reaction. The plates were then centrifuged and 50 µl of the supernatant were then 

transferred to a new PCR plate and Avicel activity was measured using the Nelson-

Somogyi method as described in section 3.5.6. 

 

3.5.8  Determination of Initial Rate of Reaction on Avicel 

The initial rate of reaction of purified proteins was determined using the Park-Johnson 

(PJ) assay [106]. There are three PJ reagents. PJ reagent A is made by dissolving 0.5 g of 

K3Fe(CN)6 and 34.84 g of K2HPO4 into 1 L of ddH20, then adjusting the pH to 10.6 and 
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then filtrating the solution using a VWR 0.2 µm Nalgene filter for sterilization purposes. 

PJ reagent B is made by dissolving 2.65 g of Na2CO3 and 0.325 g of KCN into 500 ml of 

ddH2O and then filtrating the solution for sterilization purposes. PJ reagent C is make by 

adding 2.5 g of Fe(III)Cl3, 10 g of polyvinylpyrrolidone, and 56.4 ml of H2SO4 into 1 L of 

ddH20 and then filtrating the solution for sterilization purposes. A slurry containing 10 

mg/ml of Avicel and 134 mM NaCl was prepared and heated in an Eppendorf 

thermomixer set to 50°C for 1 hour. Enzyme was then added to the tube to reach a final 

concentration of 300 nM in a volume of 600 µl. The sample was immediately vortexed 

and 100 µl were removed and placed into another tube kept on ice. This corresponds to 

the first time point. This procedure was repeated 5 more times in intervals of 30 seconds 

to finish the 600 µl of solution. The tubes containing the 100 µl aliquots were then 

centrifuged and 50 µl of the supernatant was transferred to a PCR plate. Then 100 µl of 

PJ reagent A and 50 µl of PJ reagent B were added to the sample and the PCR plate was 

sealed with Biorad microseal B film PCR sealers. It was then incubated at 95°C in a PCR 

thermocycler for 15 minutes, and then 180 µl of this were transferred to an assay plate 

containing 90 µl of PJ reagent C. The absorbance at 595 nm was read immediately and 

the amount of sugar formed determined using a calibration curve made with a cellobiose 

standard and the PJ assay.  

 

3.5.9  Stability Measurements 

In order to determine whether increases in specific activity were due to increases in 

thermostability some of the purified enzymes were incubated for 0, 3, 6, and 9 hours at 

50°C and then assayed for 2 hours at 30°C to determine whether enzyme denaturation 

was occurring under the assay conditions (50°C for 2 hours). A master mix of 550 µl 

containing 1.8 µM protein in 50 mM sodium acetate buffer pH 5.0 was prepared for each 

protein sample and then 100 µl of this solution were distributed to five separate 1.7 ml 

eppendorf tubes. Two of these tubes were placed on ice and the other three placed in a 

thermomixer at 50°C and stirred at 300 RPM for 3, 6, and 9 hours, respectively. Once a 

tube was removed from the thermomixer it was placed back on ice until all three tubes 

had completed their time at 50°C. At this point 60 µl of an Avicel slurry containing 50 
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mg/ml of Avicel and 134 mM NaCl was added to each of the tubes and they were then 

placed back in the thermomixer at 30°C at 300 RPM for 2 hours. After 2 hours the tubes 

were centrifuged and two 50 µl aliquots from each tube were placed in a PCR plate and 

the activity on Avicel measured as described in section 3.5.6. The amount of activity 

remaining relative to the sample that was kept on ice corresponds to the amount of 

protein that denatures at 50°C after the amount of time the tube was kept in the 

thermomixer at 50°C.  
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3.7 Supplementary Material 

Table 3.S1: Summary of the sequences and T50s of the 38 chimeras and two parental 

Cel6As used in the initial characterization performed to select the chimeras to mutate. 

The 8-digit chimera sequence specifies the parental origin of the blocks. 

chimera sequence T50 (°C) chimera sequence T50 (°C)  

Chimera 3 11332333 65.3 Chimera 68 13322332 69.8 

Chimera 12 22232132 68.0 Chimera 73 12111332 68.0 

Chimera 14 33213332 66.0 Chimera 75 12311332 69.5 

Chimera 15 23233133 61.0 Chimera 77 12131332 68.8 

Chimera 18 13231111 63.3 Chimera 78 13131332 70.0 

Chimera 20 12213111 63.3 Chimera 79 12331332 70.0 

Chimera 23 31311112 61.0 Chimera 81 12112332 68.0 

Chimera 35 22212231 62.0 Chimera 82 13112332 67.0 

Chimera 41 12133333 64.0 Chimera 84 13312332 70.0 

Chimera 42 13333232 67.3 Chimera 85 12132332 69.8 

Chimera 47 23311333 66.0 Chimera 86 13132332 70.5 

Chimera 48 33133132 65.0 Chimera 87 12332332 69.0 

Chimera HJ+ 12222332 71.3 Chimera 88 13332332 69.8 

Chimera 52 12112132 69.8 Chimera 89 11113332 70.0 

Chimera 53 12111131 69.3 Chimera 90 12113132 70.5 

Chimera 54 12132331 69.8 Chimera 91 13113132 70.0 

Chimera 55 12131331 68.8 Chimera 92 11111132 70.8 

Chimera 56 12332331 66.8 Chimera 93 11112132 70.3 

Chimera 60 13332331 69.5 P1 11111111 64.8 

Chimera 66 22311331 68.0 P3 33333333 64 
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Figure 3.S1: Purification profile of chimera 12, parent P3C311S, and a selected set of 

enzyme mutants selected from the recombination library.  
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Figure 3.S2: SDS-PAGE gels of purified chimera 12, parent P2C311S (P2), the top 

mutants from the recombination library, 2C, 3D, 6D, 7D, 7G, and 8E, and the top mutant 

from the error-prone library, P8F9. Chimera 12, parent P2C311S (P2), and 6D were 

purified twice as indicated by the subscript. 
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Figure 3.S3: Linear curves used to estimate the concentration of the purified proteins 

using the molar extinction coefficient of 92,425 M-1cm-1 [105] as described in the EM.  
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Figure 3.S4: Average E and m of the six chimeras selected for their similarity in whole 

cell activity on Avicel relative to P1 and P3.  
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