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Chapter 5

Simulations and results

The numerical method described in Chapter 3 solves the evolution of the flow field and the coupled

dynamic behavior of a sphere moving in the flow. When there is an additional solid boundary (a

solid wall) existing in the flow field, the impact and rebound behavior of the sphere can be calculated

by including the contact model introduced in Chapter 4. The experiments presented in Chapter 2

provide an effective validation for the proposed contact model since the sphere is released from zero

velocity under quiescent ambient fluid condition, which makes the initial condition for the simulation

easy to enforce. Thus the numerical simulations for the different experimental cases are performed

with the corresponding initial conditions and material properties described in Chapter 2. After

comparing the calculated trajectory with different δss to the measured result in a single case, a

unique value for δss that results in the best fit to the experimental trajectory is chosen to complete

the proposed contact model. The accuracy of the contact model over different Reynolds numbers is

discussed by comparing trajectories and calculating the difference on the maximum height achieved

in rebound process. Besides the particle trajectories, the velocity profiles, the evolution of the

vorticity distribution of the flow field and the coefficient of restitutions are also investigated.

5.1 Simulation setup

To simulate the settling process of a sphere and the evolution of the surrounding flow field as

described in the experiments in Chapter 2, a three-level computational multi-domain is used to

enforce the same boundary conditions as used in the experiments as shown in figure (5.1). The
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releasing surface and the target wall are represented with two segments fixed in the computational

domain which make two plates in the axisymmetric system. A half circle which represents the sphere

is initially placed 2dz away from the releasing surface to avoid a direct contact of the two solid bodies

that may cause a singularity problem in simulation, where dz = dr = 0.01D is the uniform grid size

for the first level computational domain in figure 5.1(a)) For the second level computational domain

(figure 5.1(b)) that is twice the size of the first domain, the grid size is dz2 = dr2 = 2dz = 0.02D.

Similarly, the grid size for the third level domain is dz3 = dr3 = 2(3−1)dz = 0.04D (figure 5.1(c)).

A far field boundary condition (slip but non-penetrating) is applied at the boundary of the third

level computational domain as required by the numerical method. For the symmetric axis r = 0,

the boundary condition is strictly satisfied. For the other three boundaries, the slip-non-penetrating

boundary condition for the large domain with coarser mesh is appropriate since the tank used in

the experiments is large and accordant with the third domain.

The coupled systems are non-dimensionalized with characteristic length, the diameter of the

sphere, Lo = D, and characteristic time to =
√
D/g where g = 9.8 m/s2 is the gravitational

acceleration. The Navier-Stokes equations have a non-dimensional parameter Reg = D
√
Dg/ν and

the velocity variable can be non-dimensionalized by
√
Dg. For the different experiments described

in Table (2.2), the Reynolds number, Reg, for the Navier-Stokes equations are slightly different

since although the same sphere is used in these different cases but the dynamic viscosity of the

liquid changes slightly when room temperature varies. The initial distance of the sphere from the

target wall is different in the experiments. Correspondingly, the position of the target wall is defined

at different value in the simulation for different case. In the equation of the sphere motion, the

density ratio of the sphere to the liquid, τ = ρp/ρl, also varies slightly with the temperature. The

simulations start from t = 0 when the sphere is 0.02D away from the releasing surface with zero

velocity and the flow field is static. The effect of gravity and buoyancy results in an acceleration

and the sphere starts to move. The motion is coupled with the evolution of the flow field with a

second order Runge-Kutta method as discussed in Chapter 3. The analytical formulas with the wall

correction terms for the hydrodynamic forces are not used when the sphere is just released from the
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(a) grid level 1 (b) grid level 2

(c) grid level 3

Figure 5.1: The initial setup for the 3-level multi-domain.
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releasing surface since the velocity of the sphere is very small, which makes the dominant drag force

much smaller than the result when the sphere is about to collide with the target wall.

5.2 Calibration of δss

The non-dimensional parameter δss from the contact model plays an important role in the simulation

for a collision process. As explained in Chapter 4, δss is the threshold distance where the elastic-like

force starts to take effect. When δ < δss, the elastic-like force becomes dominant since its magnitude

is very large compared with the other hydrodynamic forces and gravity. The velocity of the sphere

decreases rapidly and becomes negative (sphere moves in opposite direction) under the effect of the

elastic-like force. Thus, the value of δss, influences the rebound trajectory of the sphere. The effect

of δss on the collision process is shown in figure (5.2).

In figure (5.2), the computed trajectories from simulations of the experimental case 3 with

different values of δss are compared. The vertical and horizontal axes represent the dimensionless

gap between the sphere and the wall, δ and the dimensionless time, t, respectively. The value of δss

is taken to be small, ranging from 0.016D to 0.020D, since the elastic force is irrelevant until the two

solid surfaces are very close to each other. The first impacting process is not affected by the value

of δss. However, the rebound trajectory is different. Larger values of δss result in smaller maximum

height achieved in the rebound process.

To calibrate the value of δss, the trajectory measured from the experiment case 3 is compared

with the simulated result, as shown in figure (5.3). To distinguish the experimental points, the

experimental data are presented in 2 ms time interval omitting the intermediate points. The sim-

ulation using δss = 0.017 gives the best fit for the first two rebounds. Thus δss = 0.017 is used

to complete the proposed contact model. The adequacy of this value for the other collisions with

different Reynolds numbers is investigated in the following section.
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Figure 5.2: The simulated particle trajectories of case 3 with different δss
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Figure 5.3: Comparison of the simulated trajectory to the measured trajectory of case 3
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5.3 Particle velocity profile

The velocity profile for a sphere falling under gravity toward a solid wall in a viscous liquid environ-

ment is obtained from a numerical simulation with the contact model. The velocity decreases that

have been observed in the current experiments are found in the simulated result.

Figure (5.4) shows the particle velocity in case 3 as a function of the gap between the particle

and the wall. The velocity has been non-dimensionalized by
√
Dg. In figure 5.4(a), the particle

starts to fall from δ = 1.6 with zero velocity. The velocity increases as the gap decreases. The

dashed line is an analytical result when only the gravitational and buoyancy forces are considered

under the same initial condition. Thus, the difference between the solid line and the dashed line

shows the viscous effect of the surrounding liquid on the motion of the particle. Figure 5.4(b) shows

the enlarged details when the particle is about to collide with the wall. The impact velocity begins

to decrease well before δ reaches δss, where the elastic-like force resulting from the approaching of

the two solid surfaces starts to take effect. This decrease in velocity results from the liquid-solid

force that increases sharply as the gap, δ, diminishes. The particle decelerates before it rebounds.

This phenomenon was observed in the current experiments, and also found in the experiments of

Joseph et al. (2001) and the simulations of Ardekani & Rangel (2008). As the gap decreases to less

than δss, the elastic-like force stops the approach of the particle and makes it rebound. The rebound

velocity has a sudden decrease after δ > δss that is shown in figure 5.4(c). The reason is because

the elastic-like force falls to zero and the liquid-solid forces that always resist the sudden change of

the relative velocity increases the viscous dissipation as more of the surrounding liquid re-enters the

growing gap between the particle and the wall.

5.4 Qualitative flow features

The numerical simulation with the contact model captures not only the dynamics of the particles

but also the evolution of the surrounding flow field during the falling and rebounding process. For

the experimental case 7, figure 5.5(b) shows the snapshots of the vorticity field of the flow around
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Figure 5.4: Velocity of the incoming and outgoing particle as a function of the gap between the
particle and the wall. The solid line is the simulated result for case 3. The dashed line is the
analytical result when just considering gravity and buoyancy effect on the particle and no liquid
viscous effect. (b) and (c) present the enlarged details of the portions of (a) circumscribed in black
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Figure 5.5: Snapshots of the vorticity field around the sphere at different time. Contour levels from
-0.5 to 0.5 in increment of 0.05 are chosen for a good depiction of the weak vorticity field structure.
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release surface is omitted in this simulation.
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the sphere at different times corresponding to the points on the trajectory in figure 5.5(a). The

particle Reynolds number of the first impact is 134. Unlike the study of vorticity dynamics in

Thompson, Leweke & Hourigan (2007) that prescribed the velocity of the sphere at a constant value

and did not include the rebound, the current simulation solves the vorticity field when the sphere

accelerates, decelerates and reverses directions. The first snapshot shows the primary vortex ring

generated from the wake vorticity and the opposite-sign vorticity generated at the wall when the

particle is just about to collide. The second snapshot is taken during the rebound after the first

collision. The vorticity of opposite sign generates at the sphere surface as the rebounding sphere

moves upwards through the primary wake ring to form a secondary vortex ring. Near the wall, the

new vorticity forms as the result of the liquid re-entering the gap. As the sphere continues moving

upwards, the primary vorticity is stretched and expanded as the sphere passes. A vortex-ring dipole

forms from the combination of the primary and the secondary vorticity structures. The new positive

vorticity attached to the bottom of the sphere shown in the third snapshot is formed because the

sphere’s velocity decreases to zero as it approaches the maximum height of the first rebound. When

the sphere starts to fall again, the attached vorticity becomes a new stronger primary ring. The

secondary vorticity is slowly dissipated by the surrounding opposite-sign vortices and the original

primary vortex ring propagates radially before being stretched and merged with the new primary

vorticity, as shown in the fourth and the fifth snapshots. The complex vorticity structure entangles

the particle and dissipates a part of its kinetic energy.

5.5 Validation of the contact model

When the proposed contact model with the picked value δss = 0.017 is applied to the collision

processes with different Reynolds numbers in the experimental cases 1-7, the trajectories calculated

from the simulation show good agreement with the experimental results for most of the cases. To

estimate the deviation, a relative error defined as η = (Hs−He)/He is used where Hs and He are the

maximum height that the particle reached during rebound in the simulation and in the experiment,

respectively, as indicated in figure (5.3).
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Figure 5.6: Relative error η based on maximum rebound height.

Figure (5.6) shows the relative error for the first and second impacts for each case. For the cases

with Reynolds numbers ranging from 50 to 140, the relative error is small and within the uncertainty

of the experiments. For smaller Re number, such as Re = 29, the simulation with δss = 0.017 results

in a higher rebound than found in the experiment. The inaccuracy at low Re numbers is also seen in

the third rebound in figure (5.3). To simulate the measured trajectory for lower Reynolds number,

larger values of δss are tried in different simulations since, as discussed in the previous section, a

larger δss results in a lower maximum height achieved in a rebound. The results are also shown in

figure (5.6), which confirms that the relative error decreases when a larger δss is used. With a 5%

increase in δss, the relative error falls within the uncertainty of the experimental region. The reason

is discussed in section 5.7.
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5.6 Discussion of the parameter δss

In the current simulations, the calculated results are influenced by the value of the non-dimensional

parameter δss taken in the contact model. For Stokes number larger than 30, the simulations

with δss = 0.017 produce the good agreement with experimental results for the trajectory and

the coefficient of restitution. For Stokes number less than 30 but larger than 10 (runs 18-20 and

runs 30-32), the simulation predicts a higher coefficient of restitution when using δss = 0.017; a

lower coefficient of restitution that agrees with the experimental result is obtained when using

δss = 0.017 + 5%. The combined effect of the liquid-solid interaction and the elastic force terms is

believed to be the reason. From equations (4.18) and (4.19), the elastic-like force depends on the

impact velocity at δss. In simulations with Stokes number less than 30, when δss < δ < δsl, the

particle velocity decreases remarkably because of the effect of the liquid-solid interaction term, as

discussed in section 5.3. Thus, a smaller impact velocity results in a smaller elastic force that leads

to lower dissipation and a higher rebound velocity. When using δss = 0.017 + 5% (runs 30-32), the

elastic force term is activated earlier where the particle velocity is larger than the value at δss = 0.017.

As a result, Wo is larger and the larger elastic-like term results in large deceleration. The combined

effect of the liquid-solid interaction term and the elastic term provides more dissipation for the

collision process. The results of coefficient of restitution for runs 25-28 fall within the experimental

uncertainty. This kind of influence is hidden for Stokes number greater than 30 since the particle

inertia is larger and the liquid has less viscous effect.

a
'a

Figure 5.7: Schematic effective radius

The physical meaning of δss can be explained by employing a concept of ‘effective radius’. As
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a sphere is about to collide onto a wall, the hydrodynamic pressure building up in the fluid layer

between the two solid surfaces becomes large. Under the extreme pressure, the approaching solid sur-

faces deform elastically even before the real contact occurs (Davis et al. (1986)). Also, it is expected

that the fluid may also compress and its density and viscosity may increases. Barnocky & Davis

(1989) investigated the influence of pressure-dependent density and viscosity on the elastohydrody-

namic collision of two spheres and showed that the pressure buildup during the collision process

becomes sufficiently large so that the corresponding viscosity increase causes the interstitial fluid

to behave nearly as a solid and to limit the close approach of the surfaces. Thus, the approaching

sphere can be considered to have a virtual radius larger than the physical value. When the gap

between the sphere and the target wall decreases to δss, the virtual sphere with the effective radius

a′ = a+ δss begins to reach the wall. Thus the elastic-like force starts to take effect at that moment

so that the combined effect of elasticity and hydrodynamic forces resists the further approaching of

the sphere. This effective radius becomes larger (increase from 0.0170 to 0.0178) for the collisions

with smaller Stokes numbers (less than 30) in which the liquid is more viscous. In another word,

the sphere starts to deform earlier and cannot penetrate as further as before. Similar concept was

employed by Nguyen & Ladd (2002) who proposed a hydrodynamics radius for particles approach-

ing another solid boundary to account for the lubrication layer effect; the hydrodynamics radius is

ahy = a+ � and the value of � varies from 0 to 0.05a depending on the viscosity of the fluid and

the particle radius a.

5.7 Coefficient of restitution

The coefficient of restitution, defined by the ratio of the rebound velocity Vr to the impact velocity Vi,

e = Vr/Vi, is an important parameter that describes a collision in which the effects of the interstitial

fluid are important. Here, the dependence of the coefficient of restitution on the Stokes number is

computed from the simulation to evaluate the proposed contact model for immersed particle-wall

collision process. To calculate the coefficient of restitution from the current simulations, consider

the comparison between the simulated trajectory and the measured trajectory when the particle
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is about to collide the wall shown in figure (5.8). Although the overall profile and the maximum

height achieved in the rebound process from the simulation fit the experimental result as shown

in figure (5.3), the simulated trajectory deviates from the measured trajectory during the short

collision process to avoid the singularity problem arising when the two solid surfaces are too close.

The deviation is the result of the proposed contact model.
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Figure 5.8: Particle trajectory when it is close to the wall

The coefficient of restitution for the simulated trajectory, denoted by es, is:

es =
Vrs

Vis
=

(h1 − h0)/�t
(h2 − h0)/�t =

h1 − h0

h2 − h0
(5.1)

where �t = 2 ms; h0, h1, and h2 are the gap values defined in figure (5.8) as the positions of the

sphere at 2 ms after and before it reaches the lowest point h0 in the simulation, respectively.

However, the actual coefficient of restitution for the measured trajectory is:

e =
Vr

Vi
=
h′1/�t
h′2/�t

=
h′1
h′2

(5.2)

where h′1 and h′2 are the measured position of the sphere at 2 ms before and after it reaches the wall
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in the experiment. The two results are different and they can be compared as:

es

e
=

(h1 − h0)/(h2 − h0)
h′1/h

′
2

=
h1 − h0

h′1

h′2
h2 − h0

� h1h2 − h2h0

h1h2 − h1h0
=
h1h2 − h1h0 + h1h0 − h2h0

h1h2 − h1h0

= 1 +
(h1 − h2)h0

(h2 − h0)h1

where an approximation is taken as h′2 � h2 and h′1 � h1 since the simulated trajectory only deviates

from the experimental result when the sphere is very close to the wall. The relation between these

gap values are: h1 ≤ h2 since e = h1/h2 ≤ 1; h2 > h0 otherwise the impact velocity is zero in the

simulation. Then

es

e
≤ 1

The coefficient of restitution for the simulated trajectory es is smaller than the experimental result

e.

Thus, to compare with the current experiments and the other researcher’s results, the coefficient

of the restitution e is calculated as:

e =
h1

h2
(5.3)

where h2 and h1 are the approximation of h′2 and h′1, respectively.

The impact Reynolds number and Stokes number is calculated based on a similar idea. The

value of Vi is calculated from the simulation as:

Vi =
h2

�t . (5.4)

And correspondingly,

Re =
DVi

ν
, (5.5)

St =
mpVi

6πμa2
=

1
9
ρp

ρl
Re. (5.6)
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The approximation of h′2 � h2 and h′1 � h1 might cause a slight difference between the calculated

coefficient of restitution and the value measured from the experiments. To examine the difference,

the results obtained by using equation (5.2) and (5.3) are compared in figure (5.9) for the first two

impacts in the seven experimental cases described in Table (2.2).
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Figure 5.9: The coefficient of restitution for the first two impacts in the cases described in Table
(2.2).

Figure (5.9) shows that the two sets of results are close for most of the cases with Stokes number

greater than 30. The slight difference on Stokes number results from the approximation of h′2 = h2

in calculating the impact velocity by using equation (5.4). The results for the second impacts of

case 1 and 2 with Stokes number smaller than 30 are higher. As discussed in section (5.5), the

simulated trajectory deviates from the experimental result when using δss = 0.017 in the simulation

for the collisions with Reynolds number less than 40 (corresponding Stokes number approximately

less than 30). A larger value of δss, δss = 0.017+5% results in a trajectory with much lower relative

error. When using the simulated trajectory with δss = 0.017 + 5%, the calculated coefficient of

restitutions are closer to the experimental value as shown by the two cross points in figure (5.9).

Thus, the coefficient of restitution calculated from equation (5.3) based on the simulation result can
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run ρl(g·cm−3) μ(cP) ρp(g·cm−3) E(GPa) ν comment

1-3 1.17 15.2 7.6 200 0.33 steel sphere, 65% glycerol

4-10 1.20 50.0 7.6 200 0.33 steel sphere, 78% glycerol

11-14 1.20 50.0 11.35 16 0.44 lead sphere, 78% glycerol

15 1.20 50.0 24.0 200 0.33 artificial sphere, 78% glycerol

16 1.20 50.0 36.0 200 0.33 artificial sphere, 78% glycerol

17 1.20 50.0 48.0 200 0.33 artificial sphere, 78% glycerol

18-24 1.22 109 7.6 200 0.33 steel sphere, 85% glycerol

25-29 1.25 523 7.6 200 0.33 steel sphere, 95% glycerol

30-32 1.22 109 7.6 200 0.33 steel sphere, 85% glycerol

Table 5.1: Simulations with different input parameters and the corresponding material description.
Runs with the same material properties have different initial distance; thus, the impact Stokes
numbers are different. For the viscosity unit, 1 cP = 1×10−3 Pa·s.

be considered good approximation for the actual coefficient of restitution that represents the effect

of the surrounding liquid on a collision process.

To examine the current contact model over a larger range of impact Stokes numbers and to

compare with more experimental results found in the literature, simulations were run for denser

particles and glycerol-water mixtures with different viscosity. The input parameters for each of the

simulations are described in Table (5.1). For the runs with the same material properties, the initial

distance between the sphere and the wall is set to be different so that the impact Reynolds number

and Stokes number are different. In runs 15, 16 and 17, a sphere with an artificially large density

is used to observe larger values of Stokes number (up to about 1000) while keeping the Reynolds

number below 250 to ensure that the flow field remains axisymmetric. For runs 1 to 29, δss = 0.017

is used in the contact model. As a comparison, in runs 30, 31 and 32 that have the same initial

condition and material properties as used in runs 18, 19 and 20, δss = 0.017 + 5% is used in the

contact model, which results in different coefficient of restitution for impact Stokes number ranging

from 10 to 30. The dimensionless distance δ0, the corresponding Reynolds number Re, the Stokes

number St and the coefficient of restitution e calculated from equation (5.3) based on the simulated

result are listed in Table (5.2).
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run δ0 ReI StI e run δ0 ReI StI e

1 0.30 121 100 0.71 18 0.60 22 18 0.46

2 0.50 171 141 0.77 19 1.00 30 25 0.49

3 1.00 241 198 0.79 20 1.60 37 30 0.52

4 0.58 58 42 0.54 21 2.00 42 34 0.53

5 1.10 77 55 0.63 22 3.00 50 40 0.53

6 1.60 90 65 0.69 23 4.00 55 44 0.56

7 2.06 103 74 0.72 24 5.00 59 48 0.59

8 2.66 111 80 0.72 25 2.00 4.5 3.6 0.00

9 2.98 116 83 0.73 26 3.00 5.8 4.6 0.01

10 3.75 134 96 0.75 27 4.00 6.1 4.9 0.02

11 3.75 140 147 0.77 28 5.00 6.4 5.1 0.00

12 5.00 158 166 0.80 29 6.00 6.5 5.2 0.01

13 6.00 169 177 0.79 30 0.60 22 18 0.23

14 7.00 178 188 0.82 31 1.00 30 25 0.31

15 6.00 201 445 0.90 32 1.60 37 30 0.34

16 6.00 213 705 0.97 - - - - -

17 6.00 217 961 0.99 - - - - -

Table 5.2: Results of the different simulations.

The coefficient of restitution is plotted as a function of Stokes number as shown in figure (5.10).

For runs 15, 16 and 17 with large Stokes number (400 ∼ 103), the coefficient of restitution approaches

to the dry value ed, which indicates the liquid effect is becoming negligible and the elastic force plays

the main role and makes the sphere rebound as in a dry collision process. When the Stokes number

is in the range of 10 ∼ 200, the hydrodynamic forces exert more effect on the particle and the

coefficient of restitution decreases as the Stokes number decreases. For runs 25-29, a higher liquid

viscosity was used so that the kinetic energy of the sphere is dissipated by viscous effects from the

liquid-solid interaction term. The impact velocity is small and the corresponding impact Stokes

number is smaller than 10. There is no rebound and the coefficient of restitution is zero. Thus, the

combined effect of the hydrodynamic force term and the elastic-like force term lead to a complete

contact model for a impact Stokes number from 1 to 1000.

The relation between the coefficient of restitution calculated from the current simulations and
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Figure 5.10: Simulation results of coefficient of restitution as a function of Stokes number.
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the particle impact Stokes number agrees with the empirical trend, as shown in figure (5.11) that

compares the simulated results with the measured results from the current experiments and Joseph

et al.’s pendulum experiments [2001] for a steel sphere and Zerodur wall. For Stokes number ranging

from 90 to 200, the values of the coefficient of restitution calculated from the current simulations

overlap with the experimental results of Joseph et al. (2001) even though the whole flow field con-

figurations are different (the sphere falls under gravity and collides with the wall vertically in the

simulations while in Joseph et al.’s pendulum experiments the sphere collides with the wall horizon-

tally). For Stokes number ranging from 30 to 90 where Joseph et al. (2001) has fewer experimental

points, the simulated results overlap with the measured results from the current experiments. For

Stokes number ranging from 10 to 30, the coefficient of restitution increases with large slope with

increasing St and the experimental data are scattered within the small range of Stokes number.

The results obtained from the simulations are sensitive to the non-dimensional parameter δss. When

using δss = 0.017 + 5% the simulations produce the coefficient of restitutions that follow the trend

of a fit curve of the experiment data in Joseph et al. (2001) and Gondret et al. (2002) given by

Ruiz-Angulo & Hunt (2010) as efit = 1 − 8.65/St0.75.

In summary, the different material properties including the solid elastic property, liquid viscosity

and the density ratio are incorporated appropriately in the proposed contact model. The current

simulations represent the dependence of the coefficient of restitution on the impact particle Stokes

number demonstrating that the contact model captures the essential physics of a particle-wall colli-

sion process in a liquid environment.


