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Chapter 4

Contact model

The numerical method described in Chapter 3 computes the motion of a sphere and the evolution

of the surrounding flow field before the sphere collides with a wall. To simulate the collision process,

a contact model is required to capture the contact mechanism of an immersed collision process. In

the beginning of this chapter, the physics of a lubricated impact of a steel sphere on a glass plate

is introduced briefly. Then, a contact model is developed to deal with the two difficult points in

numerical simulations, the thin lubrication layer effect and the elastic deformation of the solid parts.

The liquid-solid interaction forces for a sphere moving in a viscous liquid with steady/unsteady

velocity are briefly reviewed especially for the case when there is another solid boundary, such as

a solid wall. Based on the analytical formulas that are presented and well proven by previous

researchers, a liquid-solid interaction force is proposed to incorporate the lubrication effect when

a sphere is close to a wall. The elasticity of the solid materials is incorporated by applying an

elastic-like force on a sphere when the distance between the sphere and the wall diminishes below

a threshold value. The new force term is defined based on Hertz elastic theory and includes the

inelastic effect to dissipate the kinetic energy of the sphere during collision.

4.1 Physics of a lubricated impact of a sphere on a wall

People investigated the contact mechanism of a lubricated impact of a sphere on a wall by coupling

the fluid dynamics and the elastic solid mechanics. The results of a steel ellipsoidal sphere impacting

on a glass plate given by Al-Samieh & Rahnejat (2002) are represented in figure (4.1). The shape
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Figure 4.1: Physics of a lubricated impact of a sphere on a wall. The shape of the elastic sphere
and the pressure distribution in the interstitial liquid layer are presented together at different time
steps.

of the elastic sphere is presented together with the pressure distribution in the interstitial liquid

layer. As the sphere approaches the plate, high pressure building up in the lubrication layer deforms

the elastic body and makes the sphere rebound before it actually contacts the plate. This can be

considered to be the essential physics during an immersed collision process.

As shown in figure (4.1), the liquid layer is very thin (about several micrometers) and hard to be

resolved in a numerical simulation. Using a finer grid can delay but not prevent the problem. Also,

the particle and wall are rigid in the current simulations; hence, the elasticity of the materials is not

included. As a result, the simulations do not include the energy stored in the elastic deformation of

the sphere and the wall, which is critical to the rebounding of an impacting sphere. To deal with

those problems, a contact model is developed to capture the collision process: the effect of the liquid

layer is incorporated by using a liquid-solid interaction force term; the elastic deformation of the

solid parts is incorporated by using an elastic force term.
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4.2 Liquid-solid interaction force with wall effect

The interaction between a moving solid particle and the surrounding fluid has been studied by differ-

ent researchers. A thorough review can be found in Michaelide (1997). Three types of hydrodynamic

forces are most widely discussed and established. The Stokes drag force is an expression for the force

exerted on a sphere steadily moving in an unbounded viscous liquid. The unsteady forces due to

acceleration of the relative velocity of a body can be divided into two parts: the added mass force

and the history force. The added mass force accounts for the inertia added to a solid body because

of an acceleration or deceleration relative to the fluid. The history force addresses the temporal

delay of the boundary layer development when the relative velocity between the particle and the

surrounding fluid varies in time. When there is an additional solid boundary, the hydrodynamics

forces are influenced because the fluid is restricted by the second solid boundary. Prior studies have

developed correction terms for the gap between the two solid boundaries on the three forces. Yang

(2006) summarized and simplified the analytical formulas for the hydrodynamic forces including

the wall effect and validated the formulas with experimental results. The forces and the simplified

formulas are briefly introduced in the following subsections and are applied in the contact model.

4.2.1 Stokes drag force

For a sphere of radius, a, with a steady velocity, U , moving through an incompressible fluid with

viscosity, μ, when the Reynolds number is small, Stokes (1880) derived a drag force as f̃D = 6πaμU .

From experimental results for Reynolds number greater than one, a coefficient, φ(Re), is multiplied

as a correction factor to account for the inertia effect. Hence, the drag force is computed as:

f̃D = 6πaμUφ(Re) (4.1)

with

φ(Re) = 1 + 0.15Re0.687 (4.2)
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for 1 < Re < 800; a complete list of φ(Re) for a sphere over a range of Reynolds numbers can be

found in Clift et al. (1978).

When a sphere moves close to a wall, the existence of the second boundary restricts the evolution

of the fluid flow surrounding the sphere. Brenner (1961) developed a correction term for Stokes

drag by solving the quasi-steady Stokes equation; the viscous drag force is represented as f̃D =

6πaμUλ(δ∗), where δ∗ = h/a is the non-dimensional gap scaled by the radius of the sphere. A ‘*’

mark is used to distinguish from the previous non-dimensional gap δ = h/D scaled by the diameter.

The value of λ(δ∗) increases with diminishing gap and converges to the classical lubrication theory

when δ∗ = 0.

For flow at higher Reynolds number, the convective acceleration of the liquid between the two

solid boundaries becomes important and a small gap Reynolds number, Reh = hU/ν, is defined.

Cox & Brenner (1967) extended the correction term and incorporated the gap Reynolds number as:

λ(δ∗,Reh) =
1
δ∗

[
1 +

1
5
(1 ± 1

4
Reh)δ∗ log

1
δ∗

]
(4.3)

where a plus sign in front of the gap Reynolds number is used for an approaching sphere and a

negative sign is used when the sphere rebounds from the wall. Then, the wall-modified viscous drag

can be written as:

f̃D = 6πaμUλ(δ∗,Reh). (4.4)

Thus, for a sphere moving toward a solid wall, the drag force can be calculated by using equation

(4.1) with (4.2) when it is far from the wall and equation (4.4) with correction term (4.3) when it

is close to the wall. The transition is made at the position where two different correction terms

converge to a single value.

4.2.2 Added mass force

Friedrich Bessel proposed the concept of added mass in 1828 to describe the motion of a pendulum

in a fluid (see Stokes, 1851). The period of such a pendulum increased relative to its period in a
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vacuum (even after accounting for buoyancy effects), indicating that the surrounding fluid increased

the effective mass of the system. Added mass, also known as ‘virtual’ mass is the inertia added

to a body because it must move some volume of surrounding fluid as it accelerates or decelerates

since the body and fluid cannot occupy the same physical space simultaneously. A recent paper by

Bagchi & Balachandar (2003) can be consulted for a detailed discussion.

To find the added mass force with the wall effect, the kinetic energy in the fluid phase when a

solid sphere moves towards a wall at velocity U(t) is calculated (see Milne-Thomson, 1968) as:

T =
1
4
mlU

2(t) [1 + 3W (δ∗)] ,

whereml = 4/3πa3ρl is the mass of the liquid displaced by the sphere andW (δ∗) =
∑∞

n=1

(
μn

μ0

)
. The

infinite sum term results from a series of dipole images accounting for the wall in the upstream flow.

The upstream flow is considered to be potential flow since the vorticity is confined to boundary

layer for the particle Reynolds numbers beyond the Stokes flow regime. The functions μn with

n = 0, 1, · · · depend on sphere center-to-wall distance l = (δ∗ + 1).

When using the time rate of change of the total kinetic energy in the fluid phase as the work

done by a moving sphere, the added mass force can be calculated as:

f̃AM = − 1
U

dT

dt
= −1

2
ml
dU

dt
− 3

2
mlW (δ∗)

dU

dt
− 3

4
mlU

dW (δ∗)
dt

. (4.5)

The first term involving dU/dt on the right hand side is the conventional added mass term for a

sphere moving in an unbounded flow. The last two terms account for the wall effect. With the

relation dW (δ∗)/dt = (dW/dδ∗)(dδ∗/dt) and dδ∗/dt = (1/a)dh/dt = −U/a, the third term can be

written as (3/4)ml(U2/a)(dW/dδ∗).

Yang (2006) analyzed the expression of the wall correction terms in detail and approximated the

infinite sum with a finite sum. After compared with experimental results from a pendulum collision,
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Yang presented W (δ∗) in the second term of equation (4.8) and dW/dδ∗ in the third term as:

W7(δ∗) =
1

8l3
+

1
(4l2 − 1)3

+
1

(8l3 − 4l)3
+

1
(16l4 − 12l2 + 1)3

+
1

(32l5 − 32l3 + 6l)3

+
1

(64l6 − 80l4 + 24l2 − 1)3
+

1
(128l7 − 192l5 + 80l3 − 8l)3

;

(4.6)

dW

dδ∗
=

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

1
128l2(l2 − 1)(2l2 − 1)3

− 3l(4l2 − 3)
2(l2 − 1)(4l2 − 1)4

+
l

2(l2 − 1)(4l2 − 1)3

− 8l4 − 8l2 + 1
128l4(l2 − 1)(2l2 − 1)4

+
1

16l2(l2 − 1)
− 2l2 − 1

16l4(l2 − 1)

for l > 2;

0.24 − 2.3×10−4

δ∗1/2 − 0.31δ∗1/2 + 0.066δ∗ + 0.098 log δ∗ − 2.06×10−4 log δ∗

δ∗1/2 for l ≤ 2

(4.7)

where l = δ∗ + 1 is the non-dimensionalized sphere center-to-wall distance.

Then, the added mass force exerted on the sphere as it approaches to a wall can be calculated as

f̃AM = −1
2
ml
dU

dt
− 3

2
mlW (δ∗)

dU

dt
+

3
4
ml
U2

a

dW (δ∗)
dδ∗

. (4.8)

with the wall effect terms defined in equations (4.6) and (4.7).

4.2.3 History force

The history force, also known as Basset force, describes the force due to the lagging boundary

layer development with changing relative velocity (acceleration or deceleration) of a body moving

through a viscous fluid (see Crowe et al., 1998b). It is a direct consequence of non-constant vorticity

generation at an unsteady solid surface, which affects the boundary layer development as compared

to the growth on a surface moving with constant velocity. The varying boundary layer interacts with

the unsteady surface motion resulting in a viscous force that is not accounted for by a quasi-steady

drag. The history force is difficult to implement and is commonly neglected for practical reasons;

however, it can be substantially larger than the added mass force when the body is accelerated at a

high rate.

After solving the creeping flow with a low Reynolds number, Boussinesq (1885) and Basset (1888)
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found the total hydrodynamic force for a sphere moving with velocity U(t) in an unbounded viscous

liquid as:

f = −6πμaU(t) − 1
2
ml
dU

dt
− 6πμa2 1√

πν

∫ t

0

dU

dτ

dτ√
t− τ

. (4.9)

where the first two terms are the steady drag force and the added mass force. The third term is the

history force, which is calculated as a time integral that depends on the acceleration history of the

sphere and a time kernel K(t − τ) = (t − τ)−1/2. The time kernel describes the local dissipation

mechanism and diminishes the effect of the history force due to the earlier sphere acceleration.

Coimbra et al. (2004) confirmed the decay rate 1/2 for Stokes flows by their experiments involving

an oscillating flow over a stationary sphere in which the flow unsteadiness was limited to high

frequency and small amplitude.

To extend the history force for a moderate Reynolds number flow, numerical simulations were

performed to investigate the unsteady hydrodynamic forces on a solid sphere. When preserving the

forms of drag force and the added mass force, Mei & Adrian (1992) developed a new time kernel

KMA(t − τ,Re) for the history force through regular perturbation with low frequency. The term

KMA(t − τ,Re) has a form in which a faster decay as (t − τ)−2 is dominant when the Reynolds

number is higher. Thus the history force has a shorter memory of flow disturbance at early times,

as compared to (t− τ)−1/2 for low Reynolds number.

Kim, Elghobashi & Sirignano (1998) further extended Mei and Adrian’s results by including

unsteadiness from low to high frequencies and small to large amplitudes. A new time kernel is

proposed as

K(t− τ,Re) =

⎧⎨
⎩
[
π(t− τ)ν

a2

]1/2C1

+G(τ)

[
π|U(t)|3(t− τ)2

2aνg3
H(Re)

]1/C1
⎫⎬
⎭

−C1

(4.10)

where gH(Re) = 0.75 + C2Re is a fitted function, C1 = 2.5 and C2 = 0.126. G(τ) is a weight

function of the primary and the secondary flow acceleration number, with M1(τ) = (2a/U2)|dU/dτ |

and M2(τ) = (2a2/|U3|)|d2U/dτ |2, as G(τ) = 1/
[
1 + β(τ)

√
M1(τ)

]
. A second fitted function,

β(τ) = C5/{1 + φ1+C4
r /[C3(φr + φC4

r )]}, depends on the acceleration ratio, φr(τ) = M2(τ)/M1(τ)
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with C3 = 0.07, C4 = 0.25, C5 = 22.0. This time kernel covers both of the previous results for

creeping flow and for moderate Reynolds number flow with a complete range of oscillating conditions.

As summarized by Yang (2006), various history kernels have been proposed that focus on the

long-time behavior of the history force beside the above citations. Different velocity variations,

including an impulsive start or stop, constant acceleration, and a step velocity change, have been

employed to evaluate the unsteady drag on a solid body (see Hinch, 1993; Lovalenti & Brady, 1993;

Lawrence & Mei, 1995; Chaplin, 1999). The history kernels for the different flows have different

forms: K(t − τ) ∼ e−(t−τ), (t − τ)−n, or (t − τ)−ne−(t−τ) with n > 1/2. However, experimental

result that can validate the long-term history force behavior is absent.

The influence of the existence of a solid wall on the history force exerted on a moving sphere was

investigated by Yang (2006) based on a similar technique as used for the added mass force. Based

on a wall-modified potential function, a modified history force different from the no-wall results was

formulated by examining the effect of the potential pressure field on the boundary layer development

as:

f̃H = −6πμaKH(δ∗)3/2

∫ t

0

dU

dτ
K(t− τ)dτ (4.11)

where KH(δ∗) is the the wall-effect factor and it has a form with l = δ∗ + 1 as

KH(δ∗) = 1 +
0.375 − 0.03125/(1− 2l2)3

l3
− 3

(1 − 4l2)3
− 0.015625

(l − 2l3)3

+
1

(1 − 12l2 + 16l4)3
+

0.375
(3l− 16l3 + 16l5)3

.

(4.12)

The argumentation factor, to the order of l−15, is found to increase monotonically with diminishing

δ∗.

Yang (2006) did pendulum-wall collision experiments and validated the history force with the

wall-modified factor (4.12) and also the kernel (4.10). For a particle-wall collision process, a short-

term characterization of f̃H is more important. Thus, the expression (4.11) with (4.10) and (4.12)

is used to calculate the history force exerted on a sphere in the following contact model.
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4.2.4 Liquid-solid force term in the contact model

The formulas for the hydrodynamic forces exerted on a sphere moving in a liquid environment

developed by Yang (2006) provide a direct and simple source for modeling the liquid-solid interaction

force in a numerical simulation for a sphere-wall collision process when the sphere is close to the

wall and the resolution is insufficient.

As a first step, the computed results obtained from a numerical simulation for a sphere falling

toward a wall under gravity are compared with the results calculated from the theoretical expres-

sions developed by Yang (2006). To obtain the simulated and analytical results, the experimental

results from the current experiments described in chapter 2 are used. Sixth order polynomial curves

are employed to fit the measured trajectories so that the velocity and acceleration of the sphere at

different times can be calculated by differentiating the polynomial. The fitting curves are used to

prescribe the motion of the sphere in the numerical simulation. The force obtained from the simu-

lation is still marked as f̃sim. For the analytical results, the total hydrodynamic force is calculated

as:

f̃thr = f̃D + f̃AM + f̃H (4.13)

where f̃D is the Stokes drag force calculated from equation (4.1) and (4.4) with the wall correction

term (4.3); the added mass force f̃AM is calculated from equation (4.8) with the wall correction terms

(4.6) and (4.7); the history force f̃H is calculated from equation (4.11) with the wall correction

term (4.12) and the time kernel (4.10). The smooth velocity and acceleration profiles calculated

by differentiating the polynomial fitting curves are used in the equations mentioned above. After

performing the numerical simulations and the corresponding calculations, the comparison shows

that the simulated force matches with the theoretical result well at moderate gap and there is no

deviation until the gap becomes small.

As an example, for a sphere moving with a prescribed trajectory obtained from the experimental

case 3 with particle impact Reynolds number Re = 90, the hydrodynamic forces are plotted as a

function of the non-dimensional gap between the sphere and the wall, δ = h/D, as well as its wall
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Figure 4.2: The Stokes drag as a function of the gap

correction coefficient.

The Stokes drag forces calculated with the Reynolds number correction and the wall correction

are shown in figure (4.2) respectively as solid line and dashed line. The force is non-dimensionalized

by 4
3πa

3ρlg and denoted as fD without the hat tilde. The same non-dimensionalization is performed

for all the other forces. The wall correction term for the Stokes drag force, λ(δ∗,Reh), is plotted

in figure (4.3). When the gap is large (δ > 0.6), the calculated result is negative, which is not

correct since equation (4.3) is for small gap. As shown in figure (4.2), the results obtained from the

two different formulas have a matching range around δ = 0.3 so that the value calculated with the

Reynolds number correction is used for δ > 0.3 and the value calculated with the wall correction

is used for δ < 0.3. The magnitude of the drag force increases dramatically with the diminishing

gap. It plays a dominant role in the hydrodynamic forces exerted on the sphere when it is about to

collide with a wall.

Similarly, the non-dimensional added mass force fAM and its wall correction terms W (δ∗) and

dW (δ∗)/dδ∗ are plotted as a function of the gap as shown in figure (4.4) and (4.5). The non-
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Figure 4.3: Wall correction term for Stokes drag as a function of the gap

dimensional history force fH and its wall correction term KH(δ∗) are plotted in figure (4.6) and

(4.7).

After comparing the results in figure (4.2), (4.4) and (4.6), the magnitude of the added mass

force and the history force are smaller than the Stokes drag force when the sphere is approaching

to the wall. The total force effect as fthr = fD + fAM + fH when the sphere is close to the wall is

plotted as a dashed line in figure (4.8).

In the same figure, the simulated result obtained from a numerical simulation by prescribing the

motion of the sphere with the measured trajectory from the experiment case 3 is plotted as a solid

line. The two results match well when the gap is moderate. The results deviate when the gap is less

than 0.1 and there is insufficient resolution in the numerical simulation.

To resolve the flow when the gap is small, a liquid-solid interaction model is proposed that blends

the simulated and the theoretical forces whenever the gap decreases below a threshold value, δsl.

The solid-liquid force, f̃sl is obtained as

f̃sl = H
(
δ

δsl

)
f̃thr + [1 − H

(
δ

δsl

)
]f̃sim, (4.14)



67

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6
−2

−1.8

−1.6

−1.4

−1.2

−1

−0.8

−0.6

−0.4

−0.2

0

δ

f A
M

Figure 4.4: The added mass force as a function of the gap

where

H
(
δ

δsl

)
=

1

1 + e10(
δ

δsl

−1)
(4.15)

is a smoothed Heaviside function, as shown in figure (4.9). Based on figure (4.8), δsl is conservatively

taken as 0.2. Clearly, the necessary value of δsl depends on the grid resolution of the fluid simulation.

The finer the grid, the smaller the value of δsl that could be used. On the other hand, it seems

reasonable to fix the value at a conservative value independent of the grid resolution.

Thus, for a sphere approaching a wall, the hydrodynamic force exerted on it is computed directly

from the simulation when the distance between the sphere and the wall is large (δ > 0.4); the

analytical results start to be counted in when δ < 0.4 and the hydrodynamic force has a form:

f̃sl =
1
2
f̃thr +

1
2
f̃sim

at δ = 0.2; when the sphere is about to collide with the wall, the hydrodynamic forces are taken as

the values calculated from the analytical expressions as the gap decreases to zero.
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Figure 4.5: The wall correction term for added mass as a function of the gap
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Figure 4.8: The liquid-solid interaction force for a impact process with Re = 90.
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Figure 4.9: The smooth Heaviside function H for δsl = 0.2.
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4.3 Elastic effect of the solid parts

The hydrodynamic forces discussed in section 4.2 increase rapidly as a sphere approaches a wall and

dissipate the kinetic energy of the system. At an extreme, the velocity decreases to zero so that the

sphere stops and rests on the wall, as shown in the settling experiments in chapter 2. However, part

of the kinetic energy is stored when the incoming velocity is large and the sphere has more inertia.

This kinetic energy is transformed into elastic-strain energy so that the sphere deforms and rebound

may occur.

In elastohydrodynamic theory, the two deformable solid surfaces are assumed to be smooth and

to be separated by a thin incompressible Newtonian fluid layer that prevents the surfaces from ac-

tually touching. A large hydrodynamic pressure builds up as the fluid is squeezed out from the gap

between the sphere and the wall and causes the elastic solid to deform. Davis, Serayssol & Hinch

(1986) first simultaneously accounted for elastic formation and viscous fluid forces by describing

the deformation of the sphere following the development of Hertz contact theory of linear elasticity.

Lubrication theory is employed to couple the deformation geometry with the pressure profile of the

interstitial liquid. They were not able to obtain the analytical solution for the dynamic deformation

and viscous forces. Wells (1993) and Lian, Adams & Thornton (1996) proposed their more simpli-

fied models where the dynamic deformation of the spheres was assumed to be Hertzian-like and

presented approximate analytical solutions for the evolution of the relative particle velocity, force

and restitution coefficient.

In the current work, the coupling between the elastic solid mechanics and fluid dynamics is inter-

preted in another way. The hydrodynamic force building up in the interstitial fluid is incorporated in

the liquid-liquid interaction term f̃sl since the analytical expressions with the wall correction terms

converge to the lubrication theory with diminishing gap between the sphere and the wall. The defor-

mation of the solid surfaces are not included in the numerical simulations. However, the conversion

between the kinetic energy and the elastic-strain energy is represented by adding an additional term

into the equation of the sphere motion based on the Hertz contact theory. When the gap between

the two solid surfaces decreases below a threshold value, the solid elastic term starts to take effect
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Figure 4.10: Schematic of a contact between a sphere and an elastic half space.

decreasing the impacting velocity and making the sphere rebound.

4.3.1 Hertz contact theory

Hertz contact theory investigates the local stresses that develop as two curved surfaces come into

contact and deform slightly under an imposed load. It is named after Heinrich Hertz, who initiated

the study of the deformation of solids that touch each other (see Hertz, 1882) and provided many

important ideas for the development of contact mechanics.

For an elastic sphere with radius a indenting an elastic half-space to depth ε, with a contact area

of radius b, as shown in figure (4.10), the contact force calculated from the Hertz contact theory (see

Johnson, 1985) is:

W =
4
3
E∗a1/2ε3/2 (4.16)

where E∗ = [(1−ν2
1)/E1 +(1−ν2

2)/E2]−1 is the reduced modulus based on the Young’s Modulus, E,

and the Poisson ratio, ν, for the two materials. The indentation depth ε is related to the impacting

velocity as V = dε
dt . The equation of motion of the sphere can be described as:

mp
d2ε

dt2
= −4

3
E∗√aε3/2 (4.17)

Solving this equation with an initial condition dε
dt = VI when ε = 0 yields:

dε

dt
=

√
V 2

I − 16E∗√a
15mp

ε5/2
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At the end of the elastic deformation process, the maximum depth is given when V = dε
dt = 0. So:

εmax =
(

15mpV
2
I

16E∗√a
)2/5

Thus, the maximum elastic force for a spheres with an impacting velocity VI is:

Wo =
4
3
E∗√a

(
15mpV

2
I

16E∗√a
)3/5

which can be simplified by applying mp = 4/3πa3ρp into:

Wo =
4
3
a2E∗

(
5π
4E∗ ρpV

2
I

)3/5

(4.18)

4.3.2 Elastic effect term in the equation of motion

Based on the expression (4.18) of the maximum Hertz elastic force achieved during a collision process

for an elastic sphere and an elastic wall, an elastic force is proposed for the contact model as:

f̃ss = F
(
δ

δss

)
edWo, (4.19)

where the subindex ss indicates the elastic force results from the approaching of the two solid surfaces.

The dry coefficient of restitution ed is taken as 0.97 as mentioned in Chapter 1, which incorporates

the inelasticity. The function F
(

δ
δss

)
is used to introduce the elastic effect gradually after the gap

between the sphere and the wall decreases below a threshold value, δss; Wo is the maximum elastic

force calculated from equation (4.18) where the impact velocity VI is taken to be the value when

δ = δss. Different forms of the function F
(

δ
δss

)
have been tried and the one that produces the best

fit for the particle trajectory has the following form:

F
(
δ

δss

)
=

⎧⎪⎪⎨
⎪⎪⎩

e(− δ
δss

)−e−1

1−e−1 , 0 ≤ δ ≤ δss;

0, δ > δss.
(4.20)
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Figure 4.11: F function for δss = 0.05

The dependence of F on the gap is plotted in figure (4.11).

Thus, when the gap is large, there is no elastic effect on the sphere; however, when the gap

decreases and approaches zero, the elastic effect increases and approaches the maximum elastic force

achieved in a dry collision. This additional elastic force term converts the kinetic energy of the

impacting sphere and make it rebound. The non-dimensional parameter δss, is the threshold where

the elastic force starts to take effect and it plays an important role in the contact model. The choice

of the value and physical meaning of δss will be discussed in detail in Chapter 5.

At distance δ < δss, the velocity of the impacting sphere decreases dramatically due to the elastic

force and becomes zero when the gap between the sphere and the wall reaches a minimum value.

The velocity of the sphere keeps decreasing to negative (opposite direction) value so that the sphere

rebounds under the elastic effect until the growing gap exceeds the threshold value δss.
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4.4 Contact model for normal sphere-wall collisions

After including the liquid-solid interaction force term and the elastic effect term, the final equation

of the motion in the vertical direction with the contact model is written as:

mp
dṼ

dt̃
= f̃sl + f̃ss +mpg + f̃b, (4.21)

It can be non-dimensionalized after applying the same characteristic length Lo = D and time

to =
√
D/g:

τ
dV

dt
= fsl + fss + τ − 1, (4.22)

where τ = ρp/ρl is the density ratio, fsl and fss are the non-dimensional liquid-solid interaction and

elastic forces. After coupling the equation (4.22) with the evolution of the flow field:

∂u
∂t

+ u · ∇u = −∇p+
1

Re
∇2u +

∫
s

f(ξ(s, t))δ(ξ − x)ds

and the boundary condition:

ru(ξ(s, t)) =
∫

x

ru(x)δ(x − ξ)dx = rBuB(ξ(s, t)),

both the motion of the sphere before and after the collision process can be computed with known

input parameters based on the initial distance, the gravitational acceleration, the solid-liquid density

ratio, the diameter of the sphere, and the viscosity of the liquid.


