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Chapter 3

Numerical method

To fully resolve the flow field around moving particles and to make a direct coupling between the

particles and the fluid motion, an immersed boundary method computer code for axisymmetric flow

is developed in cylindrical coordinates based on a fast immersed boundary projection method.

3.1 Immersed boundary method

The immersed boundary method, a popular numerical method for simulating incompressible flow

with fluid-structure interaction, was introduced by Peskin in 1970’s (see Peskin, 1972). In the

present study, the immersed boundary method is used because it is good at handling a moving

or deforming body with complex surface geometry. In this method, the flow field is solved on an

Eulerian coordinate system that does not need to conform to the solid boundaries. Typically, a

Cartesian mesh is used. The solid boundaries are represented by a set of Lagrangian points which

can move freely through the fixed Cartesian mesh. Over those Lagrangian points, appropriate

forces are applied to enforce the non-slip boundary condition. The forces exist in the continuous

Navier-Stokes equations as singular functions, and convolutions with Dirac delta functions are used

to exchange information between the Eulerian grid and the Lagrangian points. The computational

domain with Eulerian grid discretization and immersed boundary formulation is shown in figure

(3.1).

The immersed boundary method was first used to simulate blood flow patterns around heart

valves by considering the solid surfaces as flexible elastic membranes with a constitutive rela-
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Figure 3.1: Two-dimensional computational domain D with Eulerian grid and immersed boundary
formulation,B, for a body. Lagrangian points, ξk, are shown along ∂B with filled dots where
boundary forces, fk, are applied.

tion (see Peskin, 1972); Hooke’s law relates the forces to the motion of the Lagrangian points.

Beyer & LeVeque (1992) and Lai & Peskin (2000) extended it to rigid surfaces by taking the spring

constant to be a large value. However, the above techniques need an appropriate choice of gain

(stiffness), which has an obvious influence on the numerical results. A large value of gain in a con-

stitutive relation limits the choice of the time step and a small gain leads to slip error at the solid

surface. Higher order extensions are developed to get better results, see Mittal & Iaccarino (2005)

for a general review.

3.2 Immersed boundary projection method

To circumvent the tuning parameters in immersed boundary method, an alternative is to consider the

boundary forces as Lagrangian multipliers. Similar to the method in which the discretized pressure

is treated as Lagrange multiplier to satisfy the continuity constraint (see Chang et al., 2002), the

values of the boundary forces are chosen to satisfy the non-slip constraint (see Glowinski et al.,

1998). Based on this idea, Taira & Colonius (2007) developed an immersed boundary projection
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method to solve the incompressible Navier-Stokes equations with boundary forces as given below:

∂u
∂t

+ u · ∇u = −∇p+
1

Re
∇2u +

∫
s

f(ξ(s, t))δ(ξ − x)ds (3.1)

∇ · u = 0 (3.2)

u(ξ(s, t)) =
∫
x

u(x)δ(x − ξ)dx = uB(ξ(s, t)) (3.3)

where u, p and Re are the suitably non-dimensionalized velocity vector, pressure and the Reynolds

number, respectively. Spatial variable x represents position in the flow field, D , and ξ denotes

coordinates along the immersed boundary, ∂B, with a velocity of uB . The third term on the right

hand side of equation (3.1) is the boundary force added at the Lagrangian points.

The equations are discretized with a staggered-mesh finite volume formulation. By using appro-

priate interpolation and regularization operators and certain time marching schemes for the viscous

term and the convective terms, the equations can be written as a system of algebraic equations:

⎡
⎢⎢⎢⎢⎢⎢⎣
A G −H

D 0 0

E 0 0

⎤
⎥⎥⎥⎥⎥⎥⎦

⎛
⎜⎜⎜⎜⎜⎜⎝

qn+1

φ

f

⎞
⎟⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎝

rn

0

un+1
B

⎞
⎟⎟⎟⎟⎟⎟⎠

+

⎛
⎜⎜⎜⎜⎜⎜⎝

bc1

bc2

0

⎞
⎟⎟⎟⎟⎟⎟⎠

(3.4)

where qn+1 and φ are the discretized velocity flux and pressure vectors; A = 1
ΔtM−αLL results from

the implicit treatment of the vector term, Δt is the discrete time step, and M and L are the mass

matrix and discrete Laplacian operator; G and D are the discrete gradient and divergence operators

and are related as G = −DT . The operators H and E are the regularization and interpolation

operators resulting from the regularized Dirac delta function in equations (3.1) and (3.3). They

are introduced to smear the singular boundary force over a few cells and interpolate velocity values

defined on the staggered grid onto the Lagrangian points, respectively. Hf corresponds to the last

term in equation (3.1) with f = (fx, fy)T . Eqn+1 = un+1
B enforces the non-slip constraint. A

superscript for time level is not placed on φ and f because they are treated as Lagrange multipliers

that do not play a direct role in time advancement but minimize the system energy and satisfy
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the kinematic constraints. After introducing a transformed force, f̃ , the operators are related as

Hf = −ET f̃ . The choice of E and H will be discussed in detail later in section 3.4. Here rn, bc1 and

bc2 are the explicit terms in the momentum equation, the boundary condition vector resulting from

the Laplacian operator, and the boundary condition vector generated from the divergence operator,

respectively. Thus, the linear system (3.4) can be written as:

⎡
⎢⎢⎢⎢⎢⎢⎣

A G ET

GT 0 0

E 0 0

⎤
⎥⎥⎥⎥⎥⎥⎦

⎛
⎜⎜⎜⎜⎜⎜⎝

qn+1

φ

f̃

⎞
⎟⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎝

rn

0

un+1
B

⎞
⎟⎟⎟⎟⎟⎟⎠

+

⎛
⎜⎜⎜⎜⎜⎜⎝

bc1

−bc2

0

⎞
⎟⎟⎟⎟⎟⎟⎠

(3.5)

By grouping the pressure and the force variables as λ and reorganizing the sub-matrices in the

following form:

Q ≡ [G,ET ], λ ≡

⎛
⎜⎜⎝ φ

f̃

⎞
⎟⎟⎠ , r1 ≡ rn + bc1, r2 ≡

⎛
⎜⎜⎝ −bc2

un+1
B

⎞
⎟⎟⎠ ,

it becomes an algebraic system of equations that is recognized as a Karush-Kuhn-Tucker system:

⎡
⎢⎢⎣ A Q

QT 0

⎤
⎥⎥⎦
⎛
⎜⎜⎝ qn+1

λ

⎞
⎟⎟⎠ =

⎛
⎜⎜⎝ r1

r2

⎞
⎟⎟⎠ . (3.6)

A fractional step method can be used to solve the overall system. After performing an LU decom-

position, equation (3.6) becomes:

⎡
⎢⎢⎣ A 0

QT QTBNQ

⎤
⎥⎥⎦
⎡
⎢⎢⎣ I BNQ

0 I

⎤
⎥⎥⎦
⎛
⎜⎜⎝ qn+1

λ

⎞
⎟⎟⎠ =

⎛
⎜⎜⎝ r1

r2

⎞
⎟⎟⎠+

⎛
⎜⎜⎝ −ΔtN

2N (LM−1)NQλn+1

0

⎞
⎟⎟⎠

where, BN is the Nth order Taylor series expansion of A−1 and can be made symmetric and positive

definite with appropriate choices of Δt and N . There is an Nth order splitting error in the second

term of the right hand side which is the leading order error resulting from the truncation in BN so
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a third-order expansion for BN is required, see Taira & Colonius (2007).

The matrices can be recombined such that an intermediate velocity q∗ is formed as

⎛
⎜⎜⎝ q∗

λ

⎞
⎟⎟⎠ =

⎡
⎢⎢⎣ I BNQ

0 I

⎤
⎥⎥⎦
⎛
⎜⎜⎝ qn+1

λ

⎞
⎟⎟⎠

Finally, three steps are performed to solve the whole system:

Aq∗ = r1 (3.7)

QTBNQλ = QT q∗ − r2 (3.8)

qn+1 = q∗ −BNQλ (3.9)

Equations (3.7) and (3.8) can be solved by using conjugate gradient method since the matrices

in these equations are symmetric and positive definite. The third equation is the projection step

resulting in the solution of the whole system. In this method, the divergence-free constraint and the

non-slip boundary condition can be satisfied to an arbitrary accuracy implicitly at the next time

level, and the CFL number is only limited by the choice of the time marching schemes of the viscous

and convective terms. The method is second order accurate in time and better than first order

accurate in space in L2 norm.

To apply the above method and the relative code (courtesy of Kunihiko Tiara) in simulating the

evolution of the flow field during a wet collision process, the motion of the particle needs to be known

prior to the simulation. As a first step, the motion of the sphere was described with experimental

data. In the pendulum-wall collision experiments performed by Joseph et al. (2001), the trajectory

of a sphere before and after colliding with a stationary wall in a glycerol-water mixture was recorded

by a CCD camera. As an example, during a collision process at St = 186, the position of the sphere

center can be plotted as functions of time, as shown in figure (3.2).

In the experiment record, the time interval between two neighbor points was dt = 0.001 s because

the frame speed of the camera was 1000 fps. Based on the points near the wall, the impact and
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Figure 3.2: Trajectory of a steel particle with diameter 7.39mm during the collision process in a
mixture of glycerol and water with specific density 1.143, viscosity 7.305cp. The points are the
positions of the center of the sphere at different time.

rebound velocities were obtained as shown in figure (3.3).

The collision position of the sphere center xc is taken to be the intersection of the two lines fitting

the trajectory before and after the collision. Because of the uncertainty in the location of the wall,

the position of the wall was determined artificially. Leweke, Thompson & Hourigan (2004) took the

minimum distance between the sphere and wall as 0.005D when they calculated the collision with

Re ≥ 1000. Both experimental and computational tests were conducted in Leweke et al. (2004) to

verify that this had negligible influence on the predictions. For our cases with Re < 250, as a first

try, the minimum distance between the sphere and the wall was taken as 0.02D. So, the wall position

was taken as xc + 0.5D + 0.02D in our cases. With linear interpolation, more points were inserted

into the trajectory so that the time interval was decreased to dt = 0.25 ms. The simulation was

performed for different cases with different Stokes numbers. For example, in one case with St = 186,

the initial grid geometry is sketched in figure (3.4). Then, for every time step, the positions of the

Lagrangian points on the particle surface are updated according to the experiment record. The

collision happened at the 279th time step which corresponds to the maximum value of the position

xc in figure (3.3).

An accurate description of the evolvution of the flow field was obtained. Figure (3.5) presents

the streamline configuration before and after the collision. The direction of the streamline around
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Figure 3.3: Details of the trajectory close to the wall. “+” represents the recorded position. “·”
represents the interpolated point. The arrows give the impact and the rebound velocities before and
after the collision. The intersection of the arrows is considered as the final collision point, xc.
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Figure 3.4: Initial grid geometry of the case with St= 186.
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Figure 3.5: (a) Stream line distribution 0.25 ms before the collision. (b) Stream line distribution
0.25 ms after the collision.

the particle and close to the wall changes after the collision, resulting in a high shear stress in those

regions. The distribution of the vorticity field before and after the collision is shown in figure (3.6).

The shear stress generated along the wall changes with time, as shown in figure (3.7). The

variables are non-dimensionalized with the diameter of the sphere. As the solid body approaches

the wall the amplitude of the shear stress along the wall increases and the position corresponding

to the maximum shear stress moves toward the final contact point. After the collision, as the solid

body moves away from the wall, the surrounding liquid reenters the growing gaps between the solid

body and the wall. Thus, the shear stress changes to opposite direction and its magnitude decreases

as the gap increases.

Because the simulation is two dimensional, it is impossible to quantitatively verify whether the

simulated results are right. Experimentally, it is difficult to perform an experiment in which a two

dimensional cylinder collides with a planar wall exactly parallel as it impacts the wall and rebounds.

When trying to apply the numerical method to a three dimensional case, the limitation of this

method makes it unfeasible. To solve equation (3.8), the conjugate gradient method requires a large

number of iterations to make the convergence error small to satisfy the divergence-free and no-slip

constraints. Thus, in a three dimensional case, a significantly longer time is required to yield a
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Figure 3.6: Vorticity distribution of the flow field before and after the collision.
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Figure 3.7: Shear stress distributions along the wall. The dash-dot and solid lines represent the
shear stress distributions before and after the collision, respectively.
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suitable solution.

3.3 Fast immersed boundary projection method

To improve the above numerical method, Colonius & Taira (2008) used a null space approach and

a multi-domain technique to develop a fast immersed boundary projection method.

To eliminate the most computationally expensive component of the projection method, the pres-

sure Poisson solver for equation (3.8), the nullspace approach is used by applying discrete curl

operator, C, to the Navier-Stokes equations, such that

q = Cs, γ = CT q.

where q, s and γ are the discrete velocity flux vector, streamfunction and circulation. Here, C is a

constructed null space for the discrete divergence operator. Thus:

DC ≡ 0

which corresponds to the relation ∇ · ∇× ≡ 0. Hence,

Dqn+1 = DCsn+1 ≡ 0

which means the divergence-free constraint can be automatically satisfied.

When using a uniform Cartesian mesh and simply boundary conditions, the discrete Laplacian

can be diagonalized by a sine transform. Thus, after applying the implicit trapezoidal rule on the

viscous term with αL = 1
2 and second-order Adam-Bashforth method on the convective term, the

transformed system of equations has only one linear system that need to be solved. This system

with a positive definite and symmetric left-hand side operator can be solved by conjugate gradient

method. Moreover, by applying this curl operator to the momentum equation, the pressure variable

is eliminated so that the dimension of equation (3.8) is dramatically decreased from N × N to
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Figure 3.8: Schematic of a 3-level multi-domain solution of the Poisson equation. The figure is taken
from figure 5 in Colonius & Taira (2008).

Nf ×Nf , where N is the Eulerian grid size and Nf is the number of boundary forces which is two

times the number of Lagrangian points in a two dimensional case. Nf 	 N . Many fewer iterations

are required than the original modified Poisson equation. Thus, this approach saves significant

computation time.

However, applying uniform grid over the whole computational domain with simple boundary

conditions results in low computational efficiency if the grid size is fine everywhere as that for the

region of interest. Thus, to achieve high efficiency with uniform grid and simultaneously get sufficient

resolution at the region of interest, a multi-domain technique is employed, as shown in figure (3.8).
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A series of computation domains are used. The solution in a larger domain with simplified far-field

boundary conditions and coarser grid is interpolated along the inner boundary of a smaller domain

and provides the boundary condition for the smaller domain with finer grid. Thus, the domain of

interest is solved with high efficiency but still enough resolution and with boundary values known

in a simple form. Colonius & Taira (2008) should be consulted for further details.

3.4 Modification for axisymmetric system

The purpose of this study is to understand the contact mechanism of an immersed collision process.

A normal collision is good enough to capture the essence of the relevant physics. An axisymmetric

flow field surrounding the sphere particle and the horizontal wall resulted from a normal collision is

simpler to solve than the three-dimensional problem. To apply the fast immerse boundary projection

method to an axisymmetric system, modifications are made to the Navier-Stokes equations and the

algorithms to solve the discrete linear systems.

3.4.1 Discrete Navier-Stokes equations for axisymmetric system

For an axisymmetric incompressible flow in cylindrical coordinates, the velocity u(uz, ur, 0), the

vector potential B(0, 0, ψ/r) and the vorticity w(0, 0, ω) are related as u = ∇×B, w = ∇×u, and

w = −∇2B. The relation between the scalar variables (uz,ur) and streamfunction ψ are:

uz =
1
r

∂ψ

∂r
, ur = −1

r

∂ψ

∂z
.

With those additional radial factors, the corresponding discrete variables have new relations:

q = R̂−1CRs (3.10)

where, C =

⎡
⎢⎢⎣

∂
∂r

− ∂
∂z

⎤
⎥⎥⎦ is the discrete curl operator, R = diag(Ri,j) is a diagonal matrix of the

radial coordinates of the vertices of the cells where the discrete streamfunction s is defined and



35

r

z

zu

ru

, jiR , jiR ,1
ˆ

jiR ,2
ˆ

Figure 3.9: Location of Eulerian variables on cylindrical coordinates and the definition of matrices
R̂ and R.

R̂ =

⎡
⎢⎢⎣ diag(R̂1i,j) 0

0 diag(R̂2i,j)

⎤
⎥⎥⎦ is a diagonal matrix of the radial coordinates of the center points

on the cell edges where the discrete velocity flux q is defined. Figure (3.9) shows the configuration of

the Eulerian variables defined on cylindrical grids for an axisymmetric system (z,r) and the definition

of matrices R and R̂.

The relation between streamfunction ψ and vorticity ω gives:

ω = − ∂

∂r

(
1
r

∂ψ

∂r

)
− ∂2

∂z2

(
ψ

r

)
.

Then, discretely, the circulation γ corresponding to ω is related to s as:

γ = −CT R̂−1CRs. (3.11)

So that

s = −(CT R̂−1CR)−1γ. (3.12)

since CT R̂−1CR is a square matrix and can be inverted. Thus, combining equation (3.10) and (3.12)

yields:

q = R̂−1CR(CT R̂−1CR)−1γ, (3.13)
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Now, considering the Navier-Stokes equation of momentum with the immersed boundary forces:

∂u
∂t

+ u · ∇u = −∇p+
1

Re
∇2u +

∫
s

f(ξ(s, t))δ(ξ − x)ds

with the relation

u · ∇u = ∇(
1
2
u2) − u× (∇× u),

and

∇2u = ∇(∇ · u) −∇× (∇× u) = −∇× (∇× u),

which incorporates incompressible condition ∇·u = 0, the momentum equation can be rewritten as:

∂u
∂t

+ ∇(p+
1
2
u2) = u× w − 1

Re
∇× w +

∫
s

f(ξ(s, t))δ(ξ − x)ds.

After applying a curl operator, it becomes:

∂w
∂t

= ∇× (u × w) − 1
Re

∇× (∇× w) + ∇×
∫

s

f(ξ(s, t))δ(ξ − x)ds

Then, the semi-discrete circulation form of the Navier-Stokes equations is:

dγ

dt
= CT N(q) − βCT R̂−1CRγ + CTHf + bcγ . (3.14)

where CT is the discrete curl operating on the variables defined at the centers of cell edges, C is

the discrete curl operating on the variables defined at the vertices of cells, β is a constant equal to

1/(ReΔz2), where Δz is the uniform grid spacing and Δr = Δz, and bcγ is the inhomogeneous term

depending on the particular boundary conditions. N(q) denotes discretized non-linear term (u×w),

which is calculated as: ∣∣∣∣∣∣∣∣∣∣∣∣

êz êr êθ

uz ur uθ

0 0 ω

∣∣∣∣∣∣∣∣∣∣∣∣
= urωêz − uzωêr
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Because the velocity variables are defined on the center of a cell edge and the vorticity is defined at

the vertices of a cell, as shown in figure (3.9), then, in z direction:

(urω)i,j =
1
2
(ūr(i,j+1)ωi,j+1 + ūr(i,j)ωi,j)

in r direction:

(uzω)i,j =
1
2
(ūz(i+1,j)ωi+1,j + ūz(i,j)ωi,j)

where i and j are the indices for grids in z and r direction, respectively. The bar values are the

averages at the center of an edge calculated as:

ūz(i,j) =
1
2
(uz(i,j) + uz(i,j−1)),

and

ūr(i,j) =
1
2
(ur(i,j) + ur(i−1,j))

from the values at the vertices. Thus, the nonlinear term finally is still defined at the vertices of

cells.

The regularization operator, H , is related to the delta function and its form will be given as

following together with the interpolation operator E. For the delta function, in two dimensional

problems, a discrete form that is proposed by Roma et al. (1999) is used in Taira & Colonius (2007).

A similar form is used here for an axisymmetric system in cylindrical coordinates:

d(r) =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

1
6Δr

[
5 − 3 |r|

Δr −
√
−3(1 − |r|

Δr )2 + 1
]

for 0.5Δr ≤ |r| ≤ 1.5Δr;

1
3Δr

[
1 +

√
−3

(
r

Δr

)2 + 1
]

for |r| ≤ 0.5Δr;

0 otherwise.

(3.15)

where Δr is the cell width of the staggered grid in the r-direction. This discrete delta function

is specifically designed for use on staggered grids. In this form, the delta function is supported
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over only three cells which is an advantage for computational efficiency. Taira & Colonius (2007)

compared the results for the current formulation with other discrete functions and did not find

significant differences.

Then, for a two-dimensional axisymmetric case, discretizing the convolution of u and δ in equa-

tion (3.3) yields

uk = ΔzΔr
∑

i

uid(zi − ξk)d(ri − ηk) (3.16)

where ui is the discrete velocity vector defined on the staggered grid (zi,ri) and uk is the discrete

boundary velocity at the kth Lagrangian point(ξk,ηk). Using α to denote the factor preceding the

summation, the interpolation operator in equation (3.16) is defined as

Êk,i = αd(zi − ξk)d(ri − ηk). (3.17)

Letting E ≡ ÊR−1 for use of the velocity flux, qn+1 = Run+1, the non-slip boundary condition can

be represented as

Êk,iui
n+1 = Ek,iqi

n+1 = un+1
Bk

(3.18)

The regularization operator, H , is a discrete version of the convolution operator in equation (3.1)

that passes information from the Lagrangian points, ξk, to the neighboring Eulerian grid points, xi.

In a similar manner as E, H is defined as

Hi,k = βM̂id(zi − ξk)d(ri − ηk) =
β

α
M̂iÊ

T
k,i, (3.19)

where β is the numerical integration factor proportional to the interval between two neighboring

Lagrangian points. The diagonal matrix M̂ is used for consistency with the fractional step formu-

lation.

To relate the regularization operator with the interpolation operator in a similar manner as
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mentioned in section 3.2, a transformed forcing function f̃ is introduced so that

Hf = −ET f̃ .

Thus, the original boundary force can be retrieved by f = −(EH)−1EET f̃ . Because of the uniform

grid with Δz = Δr, the relation simplifies to f = − 1
Δz2

α
β f̃ .

So, the final semi-discrete momentum equation in circulation form, equation (3.14) can be written

as:

dγ

dt
+ CTET f̃ = CT N(q) − βCT R̂−1CRγ + bcγ . (3.20)

After applying the second order Adam-Bashforth method to the nonlinear convective term:

CT N(q) → CT

[
3
2
N(q)n − 1

2
N(q)n−1

]

and implicit trapezoidal rule to the viscous term:

βCT R̂−1CRγ → βCT R̂−1CR
1
2
(γn+1 + γn),

the fully discrete system is

(I +
Δt
2

L)γn+1 + ΔtCTET f̃ = (I − Δt
2

L)γn − ΔtCT

[
3
2
N(q)n − 1

2
N(q)n−1

]
+ Δtbcγ (3.21)

where L = βCT R̂−1CR is the discrete Laplacian operator for an axisymmetric system in cylindrical

coordinates.

Now consider the boundary condition for the Navier-Stokes equations:

∫
x

u(x)δ(x − ξ)dx = uB(ξ(s, t))
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Using the relation (3.13), the discrete form is written as:

Eqn+1 = ER̂−1CR(CT R̂−1CR)−1γn+1 = un+1
B (3.22)

After combining the equation (3.21) and (3.22), the linear system for axisymmetric case is:

⎛
⎜⎜⎝ I + Δt

2 L ΔtCTET

ER̂−1CR(CT R̂−1CR)−1 0

⎞
⎟⎟⎠
⎛
⎜⎜⎝ γn+1

f̃

⎞
⎟⎟⎠ =

⎛
⎜⎜⎝ rhs

un+1
B

⎞
⎟⎟⎠ (3.23)

where rhs is a simplified denotation for the right hand side of equation (3.21).

Following the idea of the fast immersed boundary projection method and applying LU decom-

position to the coefficient matrix yields:

⎛
⎜⎜⎝ I + Δt

2 L ΔtCTET

EQ 0

⎞
⎟⎟⎠ =

⎛
⎜⎜⎝ I + Δt

2 L 0

EQ −EQ(I + Δt
2 L)−1ΔtCTET

⎞
⎟⎟⎠
⎛
⎜⎜⎝ I (I + Δt

2 L)−1ΔtCTET

0 I

⎞
⎟⎟⎠

where Q = R̂−1CR(CT R̂−1CR)−1 for simplification. After defining the intermediate variable:

⎛
⎜⎜⎝ γ∗

f̃

⎞
⎟⎟⎠ =

⎛
⎜⎜⎝ I (I + Δt

2 L)−1ΔtCTET

0 I

⎞
⎟⎟⎠
⎛
⎜⎜⎝ γn+1

f̃

⎞
⎟⎟⎠ , (3.24)

the three steps to solve the linear system for axisymmetric case are:

(I +
Δt
2

L)γ∗ = rhs, (3.25)

EQ(I +
Δt
2

L)−1ΔtCTET f̃ = EQγ∗ − un+1
B , (3.26)

γn+1 = γ∗ − (I +
Δt
2

L)−1CTET f̃ . (3.27)
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To solve the above system, consider sine transform which is denoted as:

γ̂ = Sγ ↔ γ = Sγ̂,

where the circumflex denotes the Fourier coefficients.

In the current simulation, the grid is uniform and Dirichlet boundary condition is used: the

velocity normal to the boundary is zero and the vorticity is zero. It is appropriate at the axis of

symmetry, r = 0, since ur |r=0≡ 0 and ω = ∂ur

∂z − ∂uz

∂r ≡ 0 resulting from ∂
∂r ≡ 0. For the other

three boundaries, the error caused by using such kind of simplified far-field boundary conditions in

smaller computational domains is minimized by applying a multi-domain technique as mentioned in

section 3.3, see Colonius & Taira (2008) for a detailed description and discussion of the technique.

Hence, first type of sine transform in Fortran fast fourier transform library which is odd around

k = −1 and odd around k = n is used. The relation of the sine transform pair means that the sine

transform can be normalized so that it is identical to its inverse, S−1 = S. So, SS = I.

For a Poisson equation:

Lx = b

after applying a sine transform, it becomes:

SLx = Sb

It can be written as:

SLSSx = Sb

Let T ≡ SLS, x̂ = Sx, and b̂ = Sb, then

T x̂ = b̂

Here, T for an axisymmetric system in cylindrical coordinates can be reordered to become a tri-
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diagonal matrix ⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

b2 c2 0

a3 b3 c3

a4 b4
. . .

. . . . . . cN−1

0 aN bN

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

with

aj =
j − 2
j − 3/2

, j = 3, 4, · · · , N

bj = −2 + 2 cos
(
i− 1
M

π

)
− j − 1
j − 1/2

− j − 1
j − 3/2

, j = 2, 3, · · · , N (3.28)

cj =
j

j − 1/2
, j = 2, 3, · · · , N − 1 (3.29)

where N and M are the grid size in r direction and z direction, respectively.

Thus, the Poisson equation and the first step (3.25) with this tri-diagonal system can be solved

by a routine code.

But, the resulting matrix in the second step (3.26) is not symmetric; hence, the conjugate

gradient method cannot be used. Although general minimal residual method(GMRES) method can

be applied to solve this non-symmetric system, a large number of iterations are required and the

numerical method is not efficient as before.

3.4.2 Non-slip boundary condition for axisymmetric system

A modification of the representational form for the non-slip boundary condition is proposed for

solving an axisymmetric system based on the fast immersed boundary projection method. Consid-

ering the axisymmetric flow surrounding a moving sphere and a wall in cylindrical coordinates, an

additional radial weight factor is inserted into equation (3.3) making new boundary conditions for
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r
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z

Figure 3.10: The configuration of the cylindrical coordinates for the axisymmetric flow surrounding
a moving sphere and a wall.

an axisymmetric system in cylindrical coordinates as:

ru(ξ(s, t)) =
∫

x

ru(x)δ(x − ξ)dx = rBuB(ξ(s, t)), (3.30)

where rB is defined as shown in figure (3.10).

Thus, the discrete form given in equation (3.22) is changed to:

ER̂qn+1 = ECR(CT R̂−1CR)−1γn+1 = rBu
n+1
B ; (3.31)

And the corresponding system of algebraic equations is:

⎛
⎜⎜⎝ (I + Δt

2 L) CTET

ECR(CT R̂−1CR)−1 0

⎞
⎟⎟⎠
⎛
⎜⎜⎝ γn+1

f̃

⎞
⎟⎟⎠ =

⎛
⎜⎜⎝ rhs

rBu
n+1
B

⎞
⎟⎟⎠ (3.32)

After applying the projection approach to decompose the matrix, the coefficient matrix becomes:

⎛
⎜⎜⎝ (I + Δt

2 L) 0

ECR(CT R̂−1CR)−1 −ECR(CT R̂−1CR)−1(I + Δt
2 L)−1CTET

⎞
⎟⎟⎠
⎛
⎜⎜⎝ I (I + Δt

2 L)−1CTET

0 I

⎞
⎟⎟⎠

(3.33)

Using the definition for the intermediate variable γ∗ given in equation (3.24), the new three steps

to solve the system are:

((I +
Δt
2

L)γ∗ = rhs, (3.34)
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ECR(CT R̂−1CR)−1(I +
Δt
2

L)−1CTET f̃ = ECR(CT R̂−1CR)−1γ∗ − rBu
n+1
B Δz, (3.35)

γn+1 = γ∗ − (I +
Δt
2

L)−1CTET f̃ . (3.36)

The first equation (3.34) is exactly the same as before and can be solved with a routine solver for a

tri-diagonal matrix. The current second step, equation (3.35), can be solved with conjugate gradient

method since its coefficient matrix is symmetric positive definite as proven below:

(CT R̂−1CR)−1(I +
Δt
2

L)−1 = [(I +
Δt
2

L)(CT R̂−1CR)]−1

= [CT R̂−1CR +
Δt
2
CT R̂−1CRCT R̂−1CR]−1

= R−1[CT R̂−1C +
Δt
2
CT R̂−1CRCT R̂−1C]−1 (3.37)

R and R̂ are positive diagonal matrices, thus
(
R̂−1

)T

= R̂−1. Then

(
CT R̂−1C

)T

= CT R̂−1C.

So, CT R̂−1CRCT R̂−1C must be symmetric positive definite. Thus, the coefficient matrix of (3.35)

ECR(CT R̂−1CR)−1(I +
Δt
2

L)−1CTET = EC[CT R̂−1C +
Δt
2
CT R̂−1CRCT R̂−1C]−1CTET

must be symmetric and positive definite.

The whole axisymmetric flow field can be solved accurately with high efficiency if the solid

boundary velocity is known.

3.5 Verification of the modification for axisymmetric system

To validate the cylindrical coordinate modifications, the code was run to solve different problems

with and without immersed boundaries in the flow field. The simulated results are compared with

theoretical results and the results reported by other researchers.
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Figure 3.11: The known vorticity field.

3.5.1 Verification of the solution for the Poisson-like equation

The first step in the resulting linear system, equation (3.34), is a Poisson-like equation with the

Laplacian operator in cylindrical coordinates for axisymmetric system. To verify the solution of this

Poisson-like equation, the code was run to solve a streamfunction from a Poisson equation with a

known vorticity field. The equation to be solved is:

−∇2ψ = ω

with an arbitrary picked vorticity field:

ω = −8r(1 + 63r2 + 8r4 + 8r2z2 − 48zr2) exp
(−4[r2 + (z − 3)2]

)
.

The theoretical result of the streamfunction can be calculated analytically as:

ψ = r3 exp
(−4[r2 + (z − 3)2]

)
.

The distribution of the vorticity field is shown in figure (3.11). The numerical result of the stream-

function compares favorably with the analytical result as shown in figure 3.12(b) and 3.12(a).

The computational domain is taken to be [0,6]×[0,3]. The L2 norm of the difference between the

numerical and analytical results is calculated and plotted as a function of the Eulerian grid size, N .
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Figure 3.12: The streamfunction distribution.
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Figure 3.13: The L2 norm of the difference between the numerical and analytical result of the
vorticity field. The solid line is the L2 norm as a function of the grid size. The dashed line is N−2.

Figure (3.13) shows that the second order accuracy is achieved in L2 norm.

Thus, the solution of the Poisson-like equation 3.34 obtained in the same manner can also be

trusted with second order accuracy.

3.5.2 Verification of the solution with immersed boundaries

Simulations of flow passing a stationary sphere of unit diameter are performed to verify the solution

with immersed boundaries in the flow field. In an axisymmetric domain with initial uniform flow,

U∞, a set of Lagrangian points along a half circle with its center at (z = 3,r = 0) is introduced

to represent the sphere. There are two different configurations for setting the Lagrangian points,

as shown in figure (3.14). In figure 3.14(a), there are Lagrangian points on the axisymmetric z

axis, and in figure 3.14(b) there is no Lagrangian point on z axis. In those two configurations,

the intervals between the Lagrangian points are identical and equal to a cell size in Eulerian grid,

Δs ≈ Δz = Δr. Simulations with these two different configurations for Reynolds number Re = 100

are both performed and the results are compared in Table (3.1).

The simulated results of wake dimensions and drag coefficient at a steady state for different

Reynolds numbers, Re = U∞D/ν = 100, 200 are compared with the simulated results reported in
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Figure 3.14: The configuration of the setting of Lagrangian points.
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Figure 3.15: The characteristic dimensions of the wake structure. The parameters, l, a, and b
represent the length of the recirculation zone, distance from the sphere to the center of the wake
vortex, and the gap between the centers of the wake vortices, respectively. θ is the separation angle.

Taira (2008) and Johnson & Patel (1999). The good agreement is shown in Table (3.1). The size of

the wake is characterized by the characteristics lengths, l, a, b, and θ (non-dimensionalized by the

diameter) defined in figure (3.15). The grid resolution and the time step are set to Δz = Δr = 0.02

and Δt = 0.005, the same as the setting in the other two reports.

According to our simulations, with or without Lagrangian points on the z axis does not make

obvious difference. No Lagrangian point on the z axis is used in the following simulation unless

otherwise stated.

The characteristics lengths of wake are close to the reported values, except that the separation

angle, θ, is smaller. This discrepancy comes from the fact that the Lagrangian multipliers adding

to the boundary points disturb the development of the boundary layers and the disturbance leads
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l a b θ CD

Re = 100 with Lagrangian pts on axis 0.867 0.249 0.579 47.6◦ 1.10
w/o Lagrangian pts on axis 0.871 0.249 0.600 46.8◦ 1.10
Johnson & Patel (1999) 0.88 0.25 0.60 53◦ 1.10
Taira (2008) 0.91 0.28 0.59 50◦ 1.14

Re = 200 w/o Lagrangian pts on axis 1.400 0.370 0.712 51.0◦ 0.78
Johnson & Patel (1999) 1.46 0.39 0.74 63◦ 0.80
Taira (2008) 1.38 0.37 0.69 61◦ 0.82

Table 3.1: Comparison of the simulation results of steady-state wake dimensions and drag coefficient
from flow over a sphere.

to a smaller separation angle.

The force exerted by the surrounding liquid on the solid body is calculated based on the boundary

forces in the simulation. In equation (3.1), the boundary forces as Lagrangian multipliers are smeared

by the discrete delta function to the neighboring Eulerian grids. The resulting body forces are

integrated over the whole flow field as:

fz =
∑
i,j

fzi,jπ(r2j − r2j−1)Δz (3.38)

where fz is the force in z direction. As for an axisymmetric flow, the r direction force is zero. Then

the drag coefficient, CD can be calculated. As shown in Table (3.1), the results obtained from the

axisymmetric simulations with Reynolds number Re = 100, 200 are found to be in accord with the

values reported by other researchers.

Thus, the evolution of the flow field can be simulated accurately when the position and velocity

of the immersed boundaries are prescribed. The force exerted by the liquid flow on the immersed

body can be calculated from the simulation.
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3.6 The evolution of the flow coupled to the motion of the

particle

After knowing the effect of liquid force on a moving solid body, the evolution of the flow field and

the motion of the sphere are coupled by writing Newton’s law in the z direction for a falling sphere

as shown in figure (3.10) as:

mp
dṼ

dt̃
= f̃sim +mpg + f̃b, (3.39)

where Ṽ is the velocity of the sphere which is considered to be a uniform value for ub in equation

(3.30) over the whole sphere surface; mp is the mass of the sphere, g is the gravitational acceleration

and f̃sim is the liquid-solid interaction force in vertical direction calculated from the flow solution

using equation (3.38); f̃b is the vertical buoyancy force resulting from the hydrostatic pressure

gradient which is not included in f̃sim. Rotation of the sphere is not considered in this process.

The position and the velocity of the sphere are the boundary conditions for the Navier-Stokes

equations. For the flow field surrounding a falling sphere with diameter D, the Navier-Stokes equa-

tions are non-dimensionalized with characteristic length Lo = D and time to =
√
D/g so that the

non-dimensional parameter, Reynolds number, is defined as ReD = D
√

Dg
ν where ν is the kinematic

viscosity of the liquid. After introducing the density ratio, τ = ρp

ρl
, where ρp is the density of the

particle and ρl is the density of the liquid, the equation of the motion can be non-dimensionalized

as:

dV

dt
=

1
τ

(fsim + τ − 1) (3.40)

where fsim is the non-dimensional force exerted by the surrounding fluid and can be calculated from

fz.

The coupled evolution of the flow field and the motion of the sphere are integrated in time using

a second order Runge-Kutta method. Starting from nth time step with known variables, γn, uB
n,

xB
n and fz

n, the variables at the (n+ 1)th time step come be found from the following process.

1. Calculate fsim from fz at nth time step,
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2. Solve equation (3.34) for γ∗:

(I +
Δt
2

L)γ∗ = rhs(γn, xn
B)

3. Calculate un+ 1
2

B , xn+ 1
2

B , and the corresponding operator En+ 1
2 and ET n+ 1

2 as:

u
n+ 1

2
B = un

B +
Δt
τ

(fsim + τ − 1)

x
n+ 1

2
B = xn

B + Δtun
B

4. Solve equation (3.35) for f̃∗ and calculate f∗
z and f∗

sim
:

En+ 1
2CR(CT R̂−1CR)−1(I +

Δt
2

L)−1CTET n+ 1
2 f̃∗ = En+ 1

2CR(CT R̂−1CR)−1γ∗ − rBu
n+ 1

2
B

5. Calculate un+1
B , xn+1

B , and the corresponding operator En+1 and ET n+1:

un+1
B = un

B +
Δt
τ

(
1
2
(fsim + f∗

sim
) + τ − 1)

xn+1
B = xn

B + Δt
1
2
(un

B + u
n+ 1

2
B )

6. Solve equation (3.35)for f̃ and calculate fz at (n+ 1)th time step:

En+1CR(CT R̂−1CR)−1(I +
Δt
2

L)−1CTET n+1
f̃ = En+1CR(CT R̂−1CR)−1γ∗ − rBu

n+1
B

7. Solve equation (3.36) for γn+1

γn+1 = γ∗ − (I +
Δt
2

L)−1CTET f̃ .

Thus, starting from t = 0+ with an acceleration of the effect of the gravity and buoyancy force,
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the particle moves automatically in the flow field. The kinetic behavior of the particle and also the

evolution of the flow field introduced by the moving body can both be calculated from the simulation.

3.7 Validation of the coupled solution

To validate the coupled algorithm, the simulation results are compared with the experimental results

by TenCate et al. (2002). In the experiment, a sphere settled toward the bottom of a vessel full of

silicon oil. The trajectory and associated flow field are measured from the moment of release until

rest at the bottom of the container vessel. The sphere with a diameter D = 15 mm was initially

suspended at an initial distance 120 mm. The density of the sphere is ρp = 1.12 × 103 kg·m−3

and the density of the liquid is ρl = 0.96 × 103 kg·m−3. The dynamic viscosity of the surrounding

liquid is μf = 0.058 Pa·s. The Reynolds number based on the ultimate velocity V∞ is Re = 31.9.

Simulations with the above input parameters are performed.

The trajectory and the velocity profiles are compared in figure (3.16). The circles in the figure

are digitized from figure 8 in TenCate et al. (2002). The comparison shows that the simulation

coupling the evolution of the flow field and the motion of the sphere predicts the same motion of the

sphere as found in the experiment. Note that the Stokes number at impact St = 4.1 is small and

the particle does not rebound from the wall. In the current simulations, similar results are found

with two different grid sizes supporting the convergence of the method.

Figure (3.17) shows the comparison of the spatial structure of the flow field at the moment when

the sphere is a half sphere diameter from the wall. The velocity magnitude contours show good

agreement between the experimental and the simulated flow field.

A time series of the fluid velocity at a particular point in the flow domain are compared in figure

(3.18). This point is one diameter from the wall and one diameter from the center of the sphere.

The radial and axial velocity components are given on the top and bottom in the figure, respectively.

The evolution of the velocity components show that a vortex passes the point and the wake of the

sphere follows after the sphere comes to rest. The good agreement indicates that the numerical

method accurately captures not only the dynamic behavior of the sphere but also the evolution of
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Figure 3.16: Comparison of (a) trajectory and (b) velocity profiles for the experiments of
TenCate et al. (2002), et al. and the current simulations for a sphere falling on to a surface; the
Stokes number based on the settling velocity is 4.1.
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Figure 3.17: Comparison of (a) the PIV experiment data from TenCate et al. (2002) and (b) the
simulated result of flow field when the sphere is a half sphere diameter from the wall. Contour
indicates the normalized velocity magnitude.
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Figure 3.18: Comparison of time series of the fluid velocity at a point located one diameter from
the wall and one diameter from the center of the sphere. The data on the left are the experimental
results and the lattice Boltzmann simulation from TenCate et al. (2002) and the right are the results
from the current simulation.
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the flow field.


