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Abstract

Resource allocation has long been a fundamental research problem across several disciplines. While

traditional approaches to this problem were centralized, recent research has focussed on distributed

solutions for resource allocation, for reasons of scalability, reliability and efficiency in many real-

world applications. Game-theoretic control is a promising new approach for distributed resource

allocation. In this thesis, we describe how game-theoretic control can be viewed as having an

intrinsic layered architecture, which provides a modularization that simplifies the control design.

We illustrate this architectural view by presenting details about one particular instantiation using

potential games as an interface. This example serves to highlight the strengths and limitations of

the proposed architecture while also illustrating the relationship between game-theoretic control and

other existing approaches to distributed resource allocation. We also demonstrate the power of this

approach by reformulating the power control problem in sensor networks as a game-theoretic control

problem in the potential games instantiation of our framework. This allows us to relax several

assumptions made by previous contributions, and consider more complex objective functions.
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Chapter 1

Introduction

Resource allocation is a fundamental problem that arises in nearly all computer systems. Traditional

approaches to determine efficient allocations involved mostly centralized algorithms [2, 3, 19]. How-

ever, in many modern applications, these centralized algorithms are not applicable and/or desirable,

due to their poor reliability, efficiency and scalability. As a result, increasingly, resource allocation

is a problem that needs to be solved in a distributed, decentralized manner, e.g., power control and

frequency selection problems in wireless networks [5, 7, 9, 18, 28] and coverage problems in sensor

networks [10, 38]. Resultantly, there is a large and growing literature that focuses on developing

distributed resource allocation protocols. This is an extremely diverse literature where protocols

are designed using a wide variety of tools, e.g., distributed optimization [41, 60], distributed control

[33, 48], physics-inspired control (e.g. Gibbs-sampler-based control) [28, 40], and game-theoretic

control [4, 6, 38, 58].

In this thesis, we focus on game-theoretic control, which is a promising new approach for dis-

tributed resource allocation. The game-theoretic approach involves modeling the interactions of

agents within a noncooperative game where the agents are ‘self-interested’. This is motivated by the

fact that the underlying decision making architecture in economic systems is identical to the desired

decision making architecture in distributed engineering systems, i.e., local decisions based on local

information where the global behavior emerges from a compilation of these local decisions. This

parallel makes it possible to utilize the broad set of economic/game-theoretic tools in distributed

control. However, a key distinction between game theory for economic systems and game theory

for engineering systems is that decision makers are inherited in economic systems while decisions

makers are designed in engineering systems. This difference means that using game-theoretic tools

for distributed control requires a new perspective on the economic literature.

Applying game-theoretic control requires specifying decision makers, their respective choices,

their objective/utility functions, and the learning rules for the agents. In this thesis, we focus on

two of these components: (i) the design of the agents’ utility functions, i.e., utility design, and (ii)

the design of the distributed learning rules for the agents, i.e., learning design. The goal is to design
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the utility functions and the learning rules so that the emergent global behavior is desirable. There

are wide-ranging advantages to the game-theoretic approach including robustness to failures and

environmental disturbances, minimal communication requirements, and improved scalability.

Game-theoretic resource allocation designs are increasingly popular in a variety of wireless and

sensor network applications, e.g., channel access control in wireless networks [7, 28], coverage prob-

lems in sensor networks [10, 38], and power control in both [5, 9, 18]. A comprehensive survey of

applications can be found in [6]. However, nearly all of these designs are highly application-specific,

with both the utility and learning designs crafted carefully for the specific setting. There have been

only a few papers that focus on general designs and even these papers tend to focus on only one

aspect of the design – either the utility design, e.g., [38, 39], or the learning design, e.g., [34, 35, 53].

Our contribution in this thesis is to present an ‘architectural’ view of game-theoretic control as a

whole. We describe, at a high-level, our proposed architecture for game-theoretic control in Chapter

2. Then, to make the ideas more concrete, in Chapter 3 we present details about one particular

instantiation of the architecture, based on potential games, which aligns with a number of current

approaches. To bring out the strength of our approach, in Chapter 4, we use this instantiation to

propose a solution for the power control problem in sensor networks in a much more general and

powerful model than those considered in literature, allowing a complex objective function to be

optimized in a distributed manner. Next, in Chapter 5, we provide some new results highlighting

how two other existing approaches for distributed system design (distributed constraint optimization

and Gibbs-sampler-based control) can be viewed as instances of designs in the potential-games-based

architecture. Finally, in Chapter 6 we conclude with a discussion of a number of important research

directions outside of the potential games framework that are suggested by the architectural view of

game-theoretic control.
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Chapter 2

A Layered Architecture

As described in the introduction, game-theoretic control has two key design tasks – utility design and

learning design. While each of these tasks, by itself, is complex and subject to diverse application-

specific constraints, game theoretic control is made even more difficult due to the complex inter-

actions between the two – not all learning rules lead to desirable global behavior when matched

with a particular utility design, and vice versa. As a result, most applications of game-theoretic

control have performed application-specific co-design of the utility functions and the learning rule,

e.g., [6, 21, 49, 50], which is typically a difficult task.

However, it is clearly desirable to decouple these two design choices. The central question that

this thesis explores is how to achieve a modularization/decoupling of utility and learning design.

Such a decoupling would allow for the development of a rich set of utility and learning designs from

which a design can be chosen ‘off the shelf’ according to the requirements of the resource allocation

problem being considered.

It turns out that this sort of modularization is possible for game-theoretic control – and many of

the prior utility and learning designs can immediately be viewed within a modular architecture. In

particular, game-theoretic control naturally falls into an ‘hourglass’ architecture, that is a cornerstone

of computer system design. An hourglass architecture is a type of layered architecture where within

the highest and lowest layers there is a large diversity of available designs, but near the middle, or

waist, the design is highly constrained. The most famous example of such an ‘hourglass’ architecture

is the IP network stack [31, 45, 61]; however, this architecture is quite common in computer systems

and has also been observed in wide-ranging areas such as biology [15]. In the context of the network

stack, there is large diversity at the application and physical layers, but the network layer is very

restrictive (IP). The benefit of the small ‘waist’ of an hourglass architecture is that it provides a

simple interface that allows the ’virtualization’ of the lower layers for the higher layers, e.g., IP

virtualizes the details of the network for applications.

In the context of game-theoretic control, there are diverse sets of utility designs and learning

rules, and the goal is to simplify design by virtualizing the learning rules and utility designs from
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Figure 2.1: An illustration of the ‘hourglass’ architecture using potential games as the interface.

each other’s perspective. To accomplish this, it is necessary to define a constrained interface that

binds the two (like IP for the network stack). It is appealing to let the class of allowable games

(that result from the utility designs) be the waist. Specifically, we impose a restriction on the class

of games that could emerge from a utility design, and enforce the same restriction on the class of

games for which a learning rule would work. This enforced structure then serves as the interface

between utility design and learning design; thus providing the desired modularity.

In Chapter 3, we discuss a concrete example of this constrained interface, the class of potential

games. (See Figure 2.1 for an illustration.) This interface requires utility designs to guarantee that

the resulting game is a potential game and requires learning rules to guarantee to provide desirable

behavior when run on a potential game. Thus, requiring the structure of potential games enforces

additional constraints on utility and learning design, but also deconstrains at a higher level by

allowing modularization. Though this layered architecture was not explicitly used in prior work, the

modularization provided by potential games underlies many successful examples of game-theoretic

control [9, 23, 30, 38]. The change in perspective provided by this architectural view is not simply

superficial; it highlights that the utility and learning designs in these papers can be ‘mixed and

matched’ while still obtaining the same performance.

Though we focus on potential games in much of this thesis, it is important to note that they are

not the only choice for the interface – we discuss moving beyond potential games in Chapter 6.
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Chapter 3

Layering via Potential Games

We now illustrate how using potential games as an interface provides modularization of utility and

learning design. We focus on potential games because many recent applications of game-theoretic

control have relied on potential games, e.g., [9, 23, 30, 38]. A key reason that potential games are

a powerful choice for the interface is that they are a highly studied class of games in the economics

literature, e.g., [16, 42, 52, 59, 66] and so there is a large literature of results that can be used in the

context of game-theoretic control for both utility and learning design.

In this chapter, we highlight the variety of utility and learning designs that have been adapted

from the economics literature and can be used interchangeably ‘off the shelf’, greatly simplifying the

task of design. However, we also illustrate that layering via potential games has some limitations,

which highlights the need to consider other interfaces as well. In order to illustrate these issues

formally, we first define a simple resource allocation model.

3.1 Preliminaries

3.1.1 A model for resource allocation

We use a simple, but general, model of resource allocation problems in this thesis. Consider a set of

distributed agents N = {1, . . . , n} and a set of resources R = {r1, . . . , rm} that are to be shared by

the agents. Each agent i ∈ N is capable of selecting potentially multiple resources in R; therefore,

we say that agent i has action set Ai ⊆ 2R. An allocation, or an action profile, is represented by a

tuple a = (a1, a2, ..., an) ∈ A where the set of possible allocations is denoted by A = A1 × . . .×An.

We will frequently denote an allocation a as (ai, a−i) where a−i ∈ A−i =
∏
j 6=iAj denotes the

allocation of all agents except agent i.

The social welfare function W (a) captures the global valuation of the agent allocation. In general,

a resource allocation design seeks to find an allocation that optimizes the global welfare. In this work,

we assume W (a) is linearly separable across resources, i.e., W (a) =
∑
r∈RWr ({a}r) , where {a}r =
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{i ∈ N : r ∈ ai} is the set of agents that are allocated to resource r in a and Wr : 2N → R+ is the

local welfare function for resource r. Hence, the welfare generated at a particular resource depends

only on which agents are allocated to that resource. While separable welfare functions cannot

model all resource allocation problems, they are useful for several important classes of problems

including, but not limited to, routing over a network [51], vehicle target assignment problem [43],

sensor coverage [10, 38], content distribution [25], network coding [36].

Further, we restrict our attention to submodular welfare functions, i.e., for each resource r ∈ R

and any player sets X ⊆ Y ⊆ N ,

Wr(X) +Wr(Y ) ≥Wr(X ∪ Y ) +Wr(X ∩ Y ).

A variety of resource allocation problems such as power control and coverage problems in sensor

networks [9, 38], wireless access point assignment and frequency selection [28], outbreak detection

[32], path planning [56], clustering [44], and influence maximization [29] all have submodular welfare

functions.

3.1.2 Resource allocation games

Our goal is to utilize game theory to obtain distributed solutions to such resource allocation prob-

lems. This goal requires modeling the interactions of the agents in a noncooperative game theoretic

environment where the agents act in a self-interested fashion. While we inherit the players N ,

the welfare function W , and the action sets {Ai}i∈N , we are left to design a utility function for

each player of the form Ui : A → R. A resource allocation game G is then defined by the tuple

G = (N, {Ai}, {Ui},W ).

In general, a system designer has free reign in the design of utility functions; however, layering

via potential games requires that the utility functions lead to a potential game. Formally, a game is

called a potential game, if there exists a potential function Φ : A → R such that ∀ i, ∀ a−i ∈ A−i,

and ∀ ai, a′i ∈ Ai:

Φ(ai, a−i)− Φ(a′i, a−i) = Ui(ai, a−i)− Ui(a′i, a−i).

Potential games possess several nice properties that can be utilized in distributed control. One

such property is the guaranteed existence of a pure Nash equilibrium in any potential game. A (pure

Nash) equilibrium is an action profile a∗ ∈ A such that for each player i,

Ui(a
∗
i , a
∗
−i) = max

ai∈Ai

Ui(ai, a
∗
−i).

In a distributed system, a pure Nash equilibrium takes on the role of a stable operating point.

To discuss the efficiency of games we use the notions of Price of Anarchy (PoA) and Price of
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Stability (PoS) [46], which compare the welfare of the set of equilibria to the globally optimal welfare.

Let G denote a set of games and S(G) denote the set of equilibria for a game G. Then,

PoA(G) = inf
G∈G

(
min

a∗∈S(G)

W (a∗)
max
a∈AW (a)

)

PoS(G) = inf
G∈G

(
max

a∗∈S(G)
W (a∗)

max
a∈AW (a)

)

So, the PoA measures the worst-case efficiency of any equilibrium while the PoS measures the

worst-case efficiency of the best equilibrium across all games.

3.2 Utility design

There are several desirable properties that a global planner must consider when designing utility

functions. These properties include the following conditions on utility functions:

(a) computable using only local information,

(b) guarantee the existence of an equilibrium,

(c) computable in polynomial time,

(d) guarantee PoS=1,

(e) guarantee a PoA close to 1, and

(f) guarantee that utilities are budget-balanced, i.e., the sum of the utilities of all the players is

equal to the social welfare for every action profile.

In the context of the considered resource allocation games, we want to design utility functions

that are linearly separable, i.e., that satisfy

Ui(ai, a−i) =
∑
r∈ai

fr(i, {a}r),

where fr : N × 2N → R, i.e., a player’s utility is only dependent on the resources the players choose

and the other players that choose the same resources.

Recent work [38] has observed that the task of utility design is strongly related to the cost sharing

literature in economics. Here, we present a few promising utility designs that have emerged, though

it is important to point out that there are a variety of other possible choices, e.g., [13, 38].
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3.2.1 Wonderful life utility design (WLU)

Wolpert and Tumer [62] introduced this design in 1999, in the context of designing reward (utility)

functions for distributed agents in reinforcement learning algorithms that would result in optimizing

the global utility function (social welfare). This design defines the utility of each player i as their

marginal contribution to the social welfare,

Ui(ai, a−i) = W (ai, a−i)−W (∅, a−i)

=
∑
r∈ai

(Wr({a}r)−Wr({a}r \ i)) .

Note that this is linearly separable. Additionally, it has been shown in [38] that WLU leads to a

potential game with Φ = W [62]. As a consequence, the social optimum is also a Nash equilibrium

and so, PoS = 1. Also, for submodular resource allocation games, PoA = 1/2. But, WLU is not

budget-balanced.

3.2.2 Shapley value utility design (SVU)

Shapley [55] introduced this design in the context of coalitional games in 1953, aiming to propose

the fairest allocation of collectively gained profits between the several collaborative agents. This

design defines the utility of each player i as their Shapley value to the social welfare,

Ui(ai, a−i) =
∑
r∈ai

Shi({a}r;Wr)

where Shi({a}r;Wr), the Shapley value of player i at resource r, is

∑
S⊆{a}r:i∈S

(|{a}r| − 2)!(|S| − 1)!

|{a}r|!
(Wr(S)−Wr(S\{i})).

Notice that this utility design is also linearly separable. Furthermore, SVU leads to a potential

game [59], with the following potential function:

Φ(a) =
∑
r∈R

∑
S⊆{a}r

1

|S|

∑
T⊆S

(−1)|S|−|T |Wr(T )


Also, SVU is budget-balanced, and guarantees a PoA = PoS = 1/2 for submodular resource

allocation games [38]. However, in general, SVU is not polynomial-time computable [14].
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3.2.3 Weighted Shapley value utility design (WSVU)

This design [26, 55] is similar to the SVU design, except that each player i has as their utility, their

weighted Shapley value to the social welfare,

Ui(ai, a−i) =
∑
r∈ai

S̃hi({a}r;Wr)

where S̃hi({a}r;Wr), the weighted Shapley value of player i at resource r, is

∑
S⊆{a}r:i∈S

wi∑
j∈S wj

∑
T⊆S

(−1)|S|−|T |Wr(T )

 .

where wi ∈ R+ denotes the weight of player i. Note that when all players have the same weight,

WSVU reduces to SVU. WSVU also leads to a potential game, but with a potential function that

doesn’t have a clean closed form, and can only be computed recursively. Like SVU, its weighted

version is also budget-balanced, and guarantees a PoA = PoS = 1/2 for submodular resource

allocation games. WSVU is also not polynomial-time computable in general.

3.3 Learning design

As with utility design, there are several desirable properties that a global planner must consider

when designing distributed learning rules. These properties include:

(a) the asymptotic global behavior,

(b) equilibrium selection,

(c) informational dependencies, and

(d) convergence rates.

Learning design takes on the form of a one-shot repeated game where at each time t ∈ {0, 1, 2, . . .}

each player i ∈ N simultaneously chooses an action ai(t) ∈ Ai according to probability distribution

pi(t) and receives a utility Ui(a(t)) where a(t) = (a1(t), . . . , an(t)). We refer to pi(t) as the strategy

of player i at time t and denote the probability that player i will play action ai at time t by paii (t).

A players strategy at time t can rely only on actions (and their corresponding utilities) from times

{0, 1, 2, . . . , t− 1}.

In the most general form, this mechanism can be expressed as

pi(t) = Fi(a(0), ..., a(t− 1);Ui).
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In general, a system designer would like to assign each agent a mechanism Fi(·) to ensure as

many desirable properties as possible.

One of the benefits of using potential games as the interface is that there are several learning

designs available in the literature, each providing different guarantees. Therefore, the system designer

can choose the learning design that is most appropriate for the given application off the shelf without

the need for application specific adjustments.

Here, we present a few promising learning designs that have emerged, though it is important to

point out that there are a variety of other possible choices, e.g., [20, 53, 54, 66].

3.3.1 Joint strategy fictitious play (JSFP)

In many settings, such as routing over a network, the information that each agent has access to

is extremely limited. The JSFP algorithm [35] works within these limitations to provide strong

guarantees on the resulting asymptotic behavior. This algorithm requires that each agent maintains

a hypothetical payoff for each action ai of the form

V aii (t) =

t−1∑
τ=0

1

t
Ui(ai, a−i(τ)).

Note that this hypothetical payoff can be computed recursively and that a player only needs access

to the payoff for alternative actions at each time step. Using this hypothetical payoff, the strategy

of player i at time t is of the form

p
ai(t−1)
i (t) = ε, p

a∗i
i (t) = 1− ε

where a∗i ∈ arg maxai∈Ai V
ai
i (t) and ε > 0 is referred to as ‘inertia’. For any potential game, if all

players adhere to this strategy, then the global behavior will converge almost surely to a pure Nash

equilibrium [35]. Hence, the efficiency is bounded by the price of anarchy of the utility design used.

3.3.2 Log-linear learning

In many settings, it is desirable to converge to a specific Nash equilibrium, rather than just any

equilibrium. This is termed ‘equilibrium selection’ and is not provided by JSFP. Log-linear learning

[8, 37] provides equilibrium selection, but it also requires more structure on the learning environment.

Under log-linear learning, at each time t, one agent i ∈ N is randomly selected to update its action

while all other agents are required keep their actions fixed, i.e., a−i(t) = a−i(t − 1). Player i plays
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a strategy at time t of the form

paii (t) =
e

1
T Ui(ai,a−i(t−1))∑

a′i∈Ai
e

1
T Ui(a′i,a−i(t−1))

where T ≥ 0 is a temperature coefficient. For any potential game, if all players adhere to this

mechanism, then the global behavior obeys an ergodic Markov chain with a unique stationary

distribution given by:

µa =
e

1
T Φ(a)∑

a′∈A e
1
T Φ(a′)

.

As the process cools (anneals), i.e., T → 0+, all the weight of the stationary distribution falls on

the action profiles that maximize the potential function, thus providing equilibrium selection [37].

Often, e.g., for WLU where Φ = W , this guarantees that the global performance achieves the bound

set by the PoS, highlighting the importance of the PoS as a measure for efficiency.

3.3.3 Gradient play

In gradient play [17, 54], each player maintains running averages (empirical frequencies) of the past

actions of all players:

qji (t) =
1

t

t−1∑
τ=0

1{ai(τ) = j} ∀ j ∈ Ai

where 1 denotes the indicator function. Let p = (p1, p2, . . . , pn) denote a mixed strategy profile,

where pi denotes the vector of probabilities of choosing actions for player i. Define the expected

utility function Ui(p) as follows (note the overloading of Ui here):

Ui(p) =
∑
a∈A

(
n∏
k=1

pakk

)
Ui(a)

The strategy of each player at time t is then given by:

pi(t) = Π∆i

[
qi(t) + ρi(t) ∇piUi(p)|p=q(t)

]
where Π∆i

[·] denotes the orthogonal projection onto the |Ai|-dimensional probability simplex, and

ρi(t) > 0 is the step size at time t. It can been shown for potential games [17], that the global

behavior will converge to a Nash equilibrium if all the players employ gradient play in an almost

cyclical fashion with ρi(t) ∈
[
εi,

2
Ki
− εi

]
, where 0 < ε < 2

Ki
, and Ki > 0 is a Lipschitz constant of

the marginal payoff, i.e., ∀ qi, q′i, q−i,
∥∥∥∇piUi(p)|p=(qi,q−i)

− ∇piUi(p)|p=(q′i,q−i)

∥∥∥ ≤ Ki ‖qi − q′i‖.
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3.4 Limitations

To this point, we have highlighted that using potential games as an interface provides modularization

and diverse options for utility and learning design. However, recent research [39] has identified that

there are also fundamental limitations of layering via potential games. In particular, it is not possible

for a utility design to achieve all of the properties one might desire.

For example, there are conflicts between maintaining a PoS = 1 and being budget-balanced.

Specifically, a limitation of layering via potential games is that any linearly separable, budget-balanced

utility design that guarantees the existence of an equilibrium for all resource allocation games has

PoS ≤ 1
2 [39].

WLU and SVU provide an illustration of this limitation: SVU is linearly separable and budget-

balanced but has PoS = 1/2 while WLU is linearly separable and has PoS = 1 but is not budget-

balanced.

Notice that this limitation focuses on budget-balanced utility design. While being local1 and

having a PoS close to one are nearly always desirable, not all applications require budget-balanced

utilities. Thus, in many cases this limitation may not be relevant. However, limitations of potential

games have only begun to be studied, and there are likely more severe ones yet to be discovered.

1The notion of locality is meant to ensure that a design is practically implementable, i.e., it only depends on
information local to the resource. Formally, a set of distribution rules {fr} is local if and only if for all r, fr(i, S)
does not depend on any information about other resources, e.g., the number of resources, players not at r, the other
actions available to players at r.
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Chapter 4

An Example: Power Control in
Sensor Networks

In this chapter, we consider a specific application, namely, power control in sensor networks, as an

example in which to illustrate the power of the potential-games-based architecture. First, we briefly

introduce the problem and survey existing results in Section 4.1. Then, in Section 4.2, we present our

model for this problem, which is much more general and powerful than those existing in literature.

Finally, in Section 4.3, we demonstrate how this problem can be viewed in the potential-games-based

architecture for game-theoretic control, using which we propose a practical solution to the problem.

4.1 Related work

While the principal objective in sensor networks is to maximize the sensing capability of the network

as a whole, there are other concerns. For example, participant nodes in sensor networks typically

run on batteries which have limited power. Therefore, power management is a dominating problem.

In most cases, these networks are multi-hop, meaning that nodes must forward packets for each

other. So, in addition to power minimization, maintaining connectivity is also important. Typically,

when there are multiple conflicting objectives like in this case, there are tradeoff parameters that

are introduced in order to combine them into a single overall objective function.

One of the first distributed schemes for efficient power management in sensor networks appeared

in [12]. They proposed Span, a randomized and distributed power-saving technique that reduces

energy consumption without significantly diminishing the capacity or connectivity of the network.

The key observation is that when a region of a shared-channel wireless network has a sufficient

density of nodes, only a small number of them need be on at any time to forward traffic for active

connections. Following this, several more distributed solutions have been published [22, 24, 27, 63,

64, 65]. However, all of them are based on heuristic arguments that may work well for specific

application scenarios, but lack a theoretical performance guarantee.
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Campos-Nañez, Garcia and Li [9] were the first to analyze the problem in a game theoretic

setting. They came up with a distributed solution to this problem that was guaranteed to converge

to an approximate solution (the Nash equilibrium of the game). The drawback is that their model is

simplistic – the sensors, their sensing radii, and their cost of power are assumed to be fixed, only two

operational sensing modes – ‘on’ and ‘off’ are available, every part of the sensing area is assumed

to be equally important, the sensing attenuation with distance from the sensor is also ignored. In

this model, a coverage function is defined, and a global objective function that trades off consumed

power and coverage is constructed. The authors then formulate this problem as a game where the

sensors are the players, the action set of each sensor is {on, off}, the social welfare function is the

global objective function itself. What they indirectly do from this point onwards, is to employ the

WLU design so that the optimal solution is always a Nash equilibrium. The authors then invoke

the JSFP learning algorithm on this game so as to converge to a Nash equilibrium of the game in a

purely distributed manner. They prove that full coverage is guaranteed in any Nash equilibrium of

the game; however, no theoretical bound on the price of anarchy is provided.

4.2 A generalized model

Now, we present our model for the sensor network. It is much more general and powerful than the

one in [9] in several key aspects:

(a) We relax the assumption that the sensors are fixed – each sensor can choose its position in a

dynamic manner.

(b) We allow for different sensing radii – each sensor can choose its sensing radius as it sees fit.

(c) We permit any discrete number of operating levels for sensing (which also correspond to the

available power levels).

(d) We explicitly incorporate the sensing attenuation with distance from the sensors.

(e) We allow for the sensing area to have parts of varying importance.

(f) We admit a family of cost functions for the power consumption.

Consider a set S of n sensors to be deployed over a fine grid specified by R, the set of tiny squares

that make up the grid. The sensors constitute the players of the game. Each sensor i can choose

the sector ri at which to center itself, its sensing radius xi (measured in number of sectors), and the

power level pi at which it performs the sensing. Clearly, pi directly affects the probability of sensing

an event by sensor i. To avoid more notations, we let pi denote the peak sensing probability (the

detection probability of the sensor i in the sector where it is centered, ri). Hence, the action set
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Ai for sensor i just contains all feasible tuples of the form (ri, xi, pi). Let dri denote the distance of

sector r from sensor i, measured in number of sectors (also called the distance of sector r from the

sector ri). We allow the detection probability of a sensor to vary within its sensing area (this models

the sensing attenuation) – let pri = f(pi, d
r
i ) denote the detection probability of sensor i at sector r.

Let c(xi, pi) denote the cost to sensor i of operating at power level pi and sensing radius xi. Finally,

let V (r) denote the importance of detecting an event in sector r. Given all these notations, for an

arbitrary action profile a, the probability of detecting an event at sector r can be written as

P (r, a) = 1−
∏
i

(1− pri ).

Then the social welfare garnered from sector r can be written as

Wr(a) = P (r, a)V (r),

and the total social welfare to be optimized is given by

W (a) =
∑
r∈R

Wr(a)−
∑
i∈S

c(xi, pi).

It must be noted that the state space is effectively two dimensional, because, once a sensor i chooses

ri and xi, the optimum value of pi is simply obtained by solving the optimization problem in a single

variable (maximizing Ui).

4.3 Applying game-theoretic control

If we view this problem in the potential-games-based framework, our solution would simply involve

picking a utility design and a learning rule that work in this framework. First, let us analyze the

WLU design for assigning utilities for the individual sensors, which yields:

Ui(a) =
∑
r∈ai

fr(i, a)− c(xi, pi),

where ‘r ∈ ai’ means that sector r is covered by the choice ai, and

fr(i, a) = Wr(a)−Wr(a
0
i , a−i) = pri · V (r) ·

∏
j 6=i

(1− prj).

Since WLU design guarantees a potential game, we can invoke any learning rule of our choice

(depending on the desired performance) that works with potential games. For example, JSFP would

result in quick convergence to a Nash equilibrium, whereas log-linear learning would result in slower
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convergence, but guarantee convergence to the best Nash equilibrium, which in the case of WLU

design, would be the global social welfare maximizer. Now, the only question remains as to whether

these utilities are calculable with local information (this is required by the learning algorithm).

Since it is reasonable to assume that the communication radius is typically larger than the sensing

radius and communication takes negligible power compared to sensing, if two sensors overlap in their

sensing area, they can definitely communicate. From the expression for fr(i, a), it is clear that a

sensor i only needs information from other sensors that cover its sensing area to compute its utility.

Also, one can verify that the social welfare function is submodular for realistic functions f and c

(for example, radially decaying f and increasing, convex c).

While we could have used SVU or WSVU designs instead of WLU, these designs, apart from

their computational hardness, place impractical informational requirements on the agents for them

to be able to compute their utilities, and as a result, any learning algorithm would not be realistically

implementable.

So we have essentially proposed a solution (at a high level) for the power control problem in a

very general model. The key observation here is that we could do this very easily because of the

change in perspective towards game-theoretic control that is provided by our architectural view, and

the modularization that it entails.
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Chapter 5

Relationships to Other Approaches

In this section, we highlight some interesting connections between layering via potential games and

other distributed system design tools. We show formally that two other tools (distributed constraint

optimization and Gibbs-sampler-based control) can be viewed as instances of layering via potential

games (though they do not fall into our simple illustrative model of resource allocation games). This

relationship highlights that in retrospect one could have used the layered architecture presented in

this thesis to design Gibbs-sampler based control modularly via ‘off the shelf’ utility and learning

designs. Further, it highlights that other utility and learning designs can easily be swapped into

these designs.

In addition, we want to highlight that there is a strong relationship between potential-games-

based control and Lyapunov-based control. Specifically, it is possible to use a given Lyapunov

function as the potential function of a game. Then, either WLU or SVU can be applied in combi-

nation with any of the learning rules described above to develop a game-theoretic design. Often,

Lyaponov-based control (e.g., [47]) can be viewed as using WLU in combination with gradient play

learning dynamics.

5.1 Gibbs-sampler-based control

Gibbs-sampler-based control [28, 40] is a popular physics-inspired approach for wireless protocol

design. To introduce Gibbs-sampler based control we adapt the description of [28]. We represent

a distributed system by an undirected graph G(N,E) with |N | = n. Each node stores a state

variable from a finite state space S. The state of the graph is s = (s1, . . . , sn). An energy function

E : Sn → R represents the global cost of the system as a function of its state. The objective is to

find a state of minimum energy. The Gibbs sampler approach provides an efficient solution for this

problem, if E(s) is of the form

E(s) =
∑
k

∑
M∈Ck

V (M)
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where Ck is the set of all cliques of order k, and V : 2N → R+ is defined such that V (M) depends

only on the states of nodes in M , and is zero if M is not a clique. We say that E derives from V (or

conversely, V generates E). We then define the local energy of a node i ∈ N to be the sum of those

terms in E(s) that involve si,

Ei(si, (sj)j 6=i) =
∑
k

∑
M∈Ck:i∈M

V (M)

The Gibbs measure associated with an energy function E and temperature T > 0 is defined as the

following probability distribution on the states of the graph,

π(s) = e−
E(s)
T /

( ∑
s′∈Sn

e−
E(s′)

T

)
(5.1)

It is easy to observe that this distribution favors low-energy states when T is small. Moreover, it is

a Markov random field – given the states of all its neighbors, the state of a node n is independent

of all non-neighbor nodes i 6= n.

The Gibbs sampler is an iterative procedure where during each step, each node i, given the states

of all other nodes, samples its new state from the following distribution on S,

µ(si) = e−
Ei(si,(sj)j 6=i)

T /

∑
s′i∈S

e−
Ei(s
′
i,(sj)j 6=i)

T

 , si ∈ S

When T is fixed, the Gibbs sampler converges to a steady state that is distributed according to

(5.1).

Finally, for convergence to the global minimum of the energy function, we use the ‘annealed’

Gibbs sampler, which adds a small decrease of T to this algorithm at every step. When this decrease

with time t > 0 is proportional to 1/log(1+t), the system converges to a set of states of minimal

global energy.

The above description of Gibbs-sampler-based control already highlights the connection with

potential games – it is equivalent to using WLU in combination with log-linear learning. It is

immediate to see that the Gibbs sampler is the same as the log-linear learning algorithm described

earlier. To show that the utility design is equivalent to WLU, we construct a game as follows.

Consider N to be the set of players, the common state space to be their action spaces, and the

negative of the global energy function to be the social welfare function. Denote by Ck(H), the set
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of cliques of order k in graph H. The WLU design is:

Ui(s) = W (s)−W (∅, s−i)

= −E(s) + E(∅, s−i)

= −
∑
k

∑
M∈Ck(G)

V (M) +
∑
k

∑
M∈Ck(G−{i})

V (M)

Since M ∈ Ck(G − {i}) ⇐⇒ M ∈ Ck(G) and i /∈ M , all these terms cancel out, leaving only the

terms in −E(s) for which i ∈M . Hence,

Ui(s) = −
∑
k

∑
M∈Ck:i∈M

V (M) = −Ei(s)

5.2 Distributed constraint optimization

A constraint optimization problem is specified by a set of variables N = {1, . . . , n}, each of which

takes a value si from a finite state space 1 S, a set of constraints C = {c1, c2, . . . , cm}, and a global

objective function W : Sn → R, that encodes the relative desirability of each possible state s of the

system in Sn. A constraint c = 〈Nc, Rc〉 is specified by the set of variables Nc ⊆ N over which it is

defined, and a relation Rc ⊂ S|Nc| between those variables. Let C(M) denote the set of constraints

involving any of the variables in the set M ⊆ N . A function Uc (sc) specifies the reward for satisfying

constraint c, where sc is the configuration of the states of the variables in Nc. The global objective

function is typically written as W (s) =
∑
c∈C Uc(sc). The problem is to find a global maximizer of

W . Given this, a ‘distributed’ constraint optimization problem (DCOP) is produced when a set of

autonomous agents each independently control the state of a variable.

In [11], the authors formulate a ‘DCOP game’ by assigning each agent a private utility function

Ui(s), which is dependent on both its own state and the state of the other agents in the system.

They choose these utilities to be the local effect of the agent on the global objective function, i.e.,

Ui(s) =
∑
c∈C({i}) Uc(sc). When utilities are assigned thus, the authors show that the DCOP game

admits a potential function which is the same as the global objective function, thus allowing any

of the learning designs described earlier to be applied. Here, we highlight that this DCOP game

corresponds specifically to choosing a WLU design. Consider the autonomous agents of the DCOP

to be the players, the common state space to be their action sets, and the global objective function

1We assume that all variables have the same state space for simplicity. The discussion can easily be generalized to
the case of asymmetric state spaces.
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to be the social welfare function. WLU then gives:

Ui(s) = W (s)−W (∅, s−i)

=
∑

c∈C(N)

Uc(sc)−
∑

c∈C(N\{i})

Uc(sc)

=
∑

c∈C({i})

Uc(sc)

which is exactly the utility function suggested for the DCOP game in [11]. The last step follows

by observing that when variable i is not part of the DCOP, all constraints not containing i in the

original DCOP are not affected.
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Chapter 6

Conclusion

In this thesis, we have studied game-theoretic control, a promising new approach for distributed

resource allocation. We have shown how game-theoretic control, which consists of designing utility

functions and learning rules, can be viewed as having a layered hourglass architecture, where we

separate the task of utility design from that of learning design by enforcing a constraint on the class

of allowable games. We then illustrated this architectural view using potential games as a choice

for the virtualization layer, highlighting available choices for utility and learning designs in this

framework. Following this, we demonstrated the power of our approach by proposing a practical

solution to the power control problem in sensor networks in a very general model. Finally, we showed

that two other popular approaches, namely distributed constraint optimization and Gibbs-sampler-

based control, can be viewed as instances of game-theoretic control when viewed in the context of

potential-games-based architecture.

6.1 Future directions

Throughout this thesis, we have discussed only one concrete example of our game-theoretic control

architecture – using potential games as an interface between utility and learning design. However,

potential games are only one, very restrictive class of games, and current research has begun to

uncover limitations of layering via potential games (see Section 3.4).

Thus, as we move forward, it is important to consider other options for the interface. Recent

research is beginning to consider a variety of other classes of games as the basis for game-theoretic

control. For example, [39] suggests ‘state-based potential games’, which are a limited form of Markov

games, as a way to overcome the limitation of potential games described in Section 3.4. Other

examples include [57], which proposes using conjectural equilibria in the context of multi-user power

control, and [1] which proposes using oblivious equilibria in the context of large stochastic games.

However, as yet, there is little understanding of the strengths and limitations of designs using these

new classes of games. For example, which classes of games provide modularity when used as an
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interface? What is gained by broadening the interface from potential games to other classes? Is

there a penalty for broadening the interface, e.g. slower convergence rates for learning?

Our hope is that the identification of an architectural view of game-theoretic control in this thesis

can help formalize and motivate these important directions for the field. We propose that a better

understanding of the strengths and weaknesses of differing interfaces will provide useful insight into

how to choose the appropriate interface for a given class of applications. For example, for some

applications, the limitation described in Section 3.4 may not be important, while for others, the

limitation may cause design outside of potential games to be preferable.
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