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Abstract

The design of reliable embedded control systems inherits the difficulties involved in designing

both control systems and distributed (concurrent) computing systems. Design bugs in these

systems may arise from the unforeseen interactions among the computing, communication

and control subsystems. Motivated by the difficulties of finding this type of design bugs, this

thesis develops mathematical frameworks, based on formal methods, to facilitate the design

and analysis of such embedded systems. An expressive specification language of linear

temporal logic (LTL) is used to specify the desired system properties. The practicality

of the proposed frameworks is demonstrated through autonomous vehicle case studies and

autonomous urban driving problems.

Our approach incorporates methodology from computer science and control, includ-

ing model checking, theorem proving, synthesis of digital designs, reachability analysis,

Lyapunov-type methods and receding horizon control. This thesis consists of two comple-

mentary parts, namely, verification and design. First, we introduce Periodically Controlled

Hybrid Automata (PCHA), a subclass of hybrid automata that abstractly captures a com-

mon design pattern in embedded control systems. New sufficient conditions that exploit

the structure of PCHAs in order to simplify their invariant verification are presented.

Although the aforementioned technique simplifies invariant verification of PCHAs, find-

ing a proper invariant remains a challenging problem. To complement the verification

efforts, in the second part of the thesis, we present a methodology for automatic synthesis

of embedded control software that provides a formal guarantee of system correctness, with

respect to its desired properties expressed in linear temporal logic. The correctness of the

system is guaranteed even in the presence of an adversary (typically arising from changes

in the environments), disturbances and modeling errors. A receding horizon framework

is proposed to alleviate the associated computational complexity of LTL synthesis. The

effectiveness of this framework is demonstrated through the autonomous driving problems.
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Chapter 1

Introduction

1.1 Motivation

Modern engineering systems often comprise a network of sensors and actuators, equipped

with computing and communication capabilities. These systems may also need to read-

ily react to changing environments and operational situations. Such “embedded systems”

appear in diverse areas including aerospace, automotive, civil infrastructure, energy, health-

care, manufacturing and transportation. Design bugs in these systems can be fairly subtle

and may arise from the unforeseen interactions among the computing, the communication

and the control subsystems. Finding this type of design bug is challenging, but is neverthe-

less important to ensure reliability of the systems. In most cases, traditional techniques for

analyzing systems based on testing and simulation are not adequate to ensure the absence

of these bugs.

Consider, for example, the autonomous vehicle Alice built at Caltech for the 2007

DARPA Urban Challenge [1]. The DARPA Urban Challenge required all the competing

vehicles to navigate, in a fully autonomous manner, through a partially known urban-like

environment populated with static and dynamic obstacles, including live traffic. These ve-

hicles also had to perform different tasks such as street and off-road driving, parking and

visiting certain areas while obeying traffic rules. These tasks were specified by a sequence

of checkpoints that the vehicle had to cross. For the vehicles to successfully complete the

race, they need to be capable of negotiating an intersection, handling changes in the envi-

ronment or operating condition (e.g., newly discovered obstacles) and reactively replanning

in response to those changes (e.g., making a U-turn and finding a new route when the newly

discovered obstacles fully block the road).
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Figure 1.1: Alice, Team Caltech’s entry in the 2007 DARPA Urban Challenge.

Alice (Figure 1.1) is a modified Ford E350 van, equipped with mechanical actuators

(brake, throttle, steering and transmission), sensors (LADARs, RADARs and cameras) and

an Applanix INS (for state estimation). The embedded computing system of Alice consists

of approximately 25 programs and 200 execution threads to be executed concurrently in

the 25 processors onboard. This system can be divided into the sensing and the control

subsystems. The sensing subsystem provides a representation of the environment around

the vehicle. The control subsystem determines and executes desired motion of the vehicle

to satisfy the mission goals, which include crossing GPS waypoints, avoiding obstacles,

following traffic rules, etc.

The National Qualifying Event (NQE) of the DARPA Urban Challenge was split into

three test areas to assess the vehicle’s capabilities in different aspects of urban driving. Each

of the competing autonomous vehicles had two chances to perform each test. Test Area A

(Figure 1.2) involved making left turns while merging into traffic. There were 10–12 human-

operated traffic vehicles involved in this test. These traffic vehicles circled around the outer

loop of the figure eight road network (Figure 1.2(b)). The autonomous vehicle started in the

middle, single lane road and merged into traffic, which had the right of way, after coming

to a complete stop at the bottom T-intersection. It then continually circled around the

right loop of the figure eight in the counter-clockwise direction for 30 minutes. Test Area B

(Figure 1.3) was designed to test basic navigation, which includes route planning, staying

in lanes, parking and obstacle avoidance. There was no additional traffic involved in this
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(a) (b)

Figure 1.2: (a) Test Area A. (b) Road network for Test Area A.

(a) (b)

Figure 1.3: (a) Test Area B. (b) Road network for Test Area B.

test. Test Area C (Figure 1.4) was designed to test intersection precedence with 3–4 human-

operated traffic vehicles at intersections. In this test area, the autonomous vehicle also had

to demonstrate the replanning and U-turn capabilities by finding an alternate route when

it encountered a surprise roadblock.

Alice performed reasonably well in Test Area B and Test Area C [18, 121, 30]. It suc-

cessfully completed the course of Test Area B with only minor errors. It also demonstrated

correct intersection and U-turn operations throughout the run of Test Area C even though

it could not finish the run within the time limit. In both executions at Test Area A, how-

ever, its behavior was unsafe and almost led to a collision. Alice was stuck at the corner of

a sharp turn dangerously stuttering in the middle of an intersection.

It was later diagnosed that this behavior was caused by bad interactions between the re-

active obstacle avoidance subsystem (ROA) and the relatively slowly reacting path planner .



4

Figure 1.4: Road network for Test Area C.

The planner incrementally generates a sequence of waypoints based on the road map, obsta-

cles and the mission goals. The ROA is designed to rapidly decelerate the vehicle when it

gets too close to (possibly dynamic) obstacles or when the deviation from the planned path

gets too large. Finally, to protect the vehicle steering system, Alice’s low-level controller

limits the rate of steering at low speeds. Thus, accelerating from a low speed, if the planner

produces a path with a sharp left turn, the controller is unable to execute the turn closely.

Alice deviates from the path; the ROA activates and slows it down. This cycle continues,

leading to stuttering. In order to avoid this type of unsafe behavior, the planner needs to

be aware of the constraints imposed by the controller.

The above example illustrates how design of reliable embedded control systems inher-

its the difficulties involved in designing both control systems and distributed (concurrent)

computing systems. The described design bug manifests as undesirable behavior only un-

der a very specific set of conditions and only when the controller, the ROA and the vehicle

interact in a very specific manner. Therefore, such a bug had never been discovered in thou-

sands of hours of extensive simulations and over three hundred miles of field testing. Formal

methods provide tools and techniques for uncovering such subtle design bugs and mathe-

matically prove correctness of designs. More recently, formal techniques have also been used

to automatically generate controllers that are provably correct by construction [64, 33].

Motivated by the failure of Alice, in this thesis, we develop frameworks, based on for-

mal methods, to facilitate design and analysis of such system and other embedded control

systems with similar features such as autonomous automotive systems, robots and auto-

matic pilot avionics. This work primarily focuses on the embedded control component that

regulates the underlying physical process, which we refer to as the plant. An expressive
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and powerful specification language of linear temporal logic (LTL) is used throughout the

thesis to specify the desired properties. The practicality of the proposed frameworks is

demonstrated through Alice and the autonomous urban driving problem.

1.2 Related Works

Formal methods have been extensively studied in both computer science and control. These

approaches rely on applying mathematically-based techniques in proving system correctness.

Computer-science oriented approaches are mainly directed towards discrete systems. A large

class of properties including deadlocks, livelocks, correctness of system invariants, safety,

non-progress execution cycles have been considered. ω-regular languages and temporal

logics are widely used to precisely describe such properties [8]. One of the main challenges

in this domain lies in dealing with concurrency and proving system correctness for any

interleaving of concurrent processes. Model checking and theorem proving are commonly

used techniques to enable such proofs. Model checking is attractive because it is fully

automatic. However, it is limited to systems with a finite number of states. It also faces a

combinatorial blow up of the state space, commonly known as the state explosion problem.

Theorem proving, on the other hand, is not limited to finite state systems but it requires

a skilled human interaction. Recently, the development of a polynomial-time algorithm to

construct finite state automata from their temporal logic specifications enables automatic

synthesis of digital designs that satisfy a large class of properties including safety, guarantee

and response even in the presence of an adversary (typically arising from changes in the

environments) [98].

Control systems, on the other hand, are generally described by a set of differential equa-

tions and hence contain an infinite number of states. Reachability analysis and Lyapunov-

type approaches are commonly used to verify stability and safety properties of such con-

tinuous systems. Optimization-based approaches, receding horizon control (also known as

model predictive control) and the abundance of computational resources enable automatic

synthesis of continuous controllers that ensure safety and stability even in the presence of

disturbances and modeling errors [91, 42, 14].

As previously discussed, embedded control systems usually contain both continuous

(physical) and discrete (computational) components. Hybrid system formulation has been
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developed to handle such systems. Control of hybrid systems has been studied extensively

but properties of interest are typically limited to stability and safety [27, 47]. For systems

to perform complex tasks, a wider class of properties such as guarantee (e.g., eventually

perform task 1 or task 2 or task 3) and response (e.g., if the system fails, then eventually

perform task 1 or perform tasks 1, 2 and 3 infinitely often in any order) need to be consid-

ered. Temporal logics have therefore garnered great interest due to their expressive power.

Methodology from computer science and control has been integrated to incorporate tem-

poral logics in design and verification of hybrid systems. A model checking tool, HyTech,

was developed for automatic verification of hybrid systems [5, 45]. Its successor, PHAVer,

was designed to address many limitations of HyTech such as the overflow problem, which

prohibits the use of HyTech with complex systems [34]. Both HyTech and PHAVer are

symbolic model checkers for linear hybrid automata, a subclass of hybrid automata that are

defined by linear predicates and piecewise constant bounds on the derivatives. Hence, the

applications of HyTech and PHAVer are limited to systems whose continuous dynamics is

defined by linear differential inequalities of the form Aẋ ∼ b where ∼ ∈ {≤,≥}, A is a constant

matrix and b is a constant vector.

Approaches that incorporate temporal logic in control include an approach based on

mixed integer linear programming [58]. Reference [68] introduced LTLC, an extension of

linear temporal logic for specifying properties of discrete-time linear systems, and described

LTLC model checking that allows a sequence of control inputs to be automatically computed

such that a complex control objective expressed in LTLC is satisfied.

Digital design synthesis and hybrid system theory has been integrated to allow auto-

matic synthesis of provably correct embedded control software for continuous systems. Such

integration is enabled by the development of language equivalence and bisimulation notions,

which allows abstraction of the continuous component of the system to a purely discrete

model while preserving all the desired properties [6]. This subsequently provides a hierar-

chical approach to system design. In particular, a two-layer design is common and widely

used in the area of planning and control [65, 25, 64, 33, 113, 40]. In the first layer, a discrete

planner plans, in the abstracted discrete domain, a set of transitions of the system to ensure

the satisfaction of the desired properties, taking into account all the possible behaviors of

the environment. This abstract plan is then continuously implemented by a continuous con-

troller in the second layer. Simulations/bisimulations provide the proof that the continuous
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execution preserves the desired properties. The planner can be automatically synthesized

using the digital design synthesis tool while the controller can be automatically generated

using, for example, an optimization-based or other control-theoretic approach.

1.3 Thesis Overview and Contributions

The objective of this thesis is to develop a framework for systematic design and analysis of

embedded control systems to provide a formal, mathematical guarantee of the correctness

of such a system with respect to its desired properties. The systems of our particular

interest are those with both the low-level (continuous) dynamics associated with the physical

hardware and the high-level (discrete) logics that govern the overall behavior of the systems.

Design and analysis of these systems thus require integration of reasoning about discrete

and continuous behaviors within a single framework.

The research presented here consists of three key components—specification, design and

verification. Specification refers to a precise description of both the system and its desired

properties. This precise description of the system, however, does not need to capture all

the details of the actual implementation itself. To simplify the analysis of the system, one

may want to capture only the important aspects and abstract the actual implementation

in this description.

Verification is the process of checking the correctness of the system. Here, correctness

is only defined relative to the desired properties. Hence, specifications of both the system

and its desired properties are essential in this process. It is well known that verifying the

correctness of complex systems such as autonomous vehicles can be very difficult due to the

interleaving between their continuous and their discrete components as previously discussed.

Although much work has been done in this domain, verification of such systems remains a

time consuming process and requires some level of expertise.

To complement the verification efforts, there has been a growing interest in automatic

design of embedded control software that provides a formal guarantee of system correctness.

This avenue of research is appealing and promising. Once it is brought to practicality, this

type of automatic design can potentially reduce the time and cost of the system develop-

ment cycle as it helps reduce the number of iterations between redesigning the system and

verifying the new design.
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The planner-controller subsystem of Alice and the autonomous urban driving problem of

the DARPA Urban Challenge are considered as case studies throughout the thesis. Linear

temporal logic is used as the main specification language for describing desired properties.

A detailed description of the planner-controller subsystem of Alice and an overview of LTL

are provided in Chapter 2 as the background for later chapters.

This thesis has two main parts. The first part focuses on the verification aspect while

the second part focuses on the design aspect. Specification is mentioned in both parts as a

key requirement that enables systematic verification and design. The original contributions

of this work cover both theoretical and application aspects as outlined below.

Part I: Verification

Chapters 3–5 focus on the verification aspect of this work. First, Chapter 3 summarizes

related work on system verification. A brief overview of approaches from computer science

and control to system verification is provided. In particular, formal verification based on

model checking and theorem proving is discussed. Reachability analysis and Lyapunov-

type approaches which have been proved successful in verifying safety of control systems

are presented. This chapter ends with verification of hybrid systems, a formalism that has

been utilized to handle both discrete and continuous behaviors. The limitations of existing

approaches are identified.

The main contribution of Chapter 4 is in the applications of existing verification ap-

proaches to Alice. First, it describes the Canonical Software Architecture that has been

implemented to facilitate the coordination of different components in the planner-controller

subsystem of Alice. This description is followed by two verification case studies. The first

case study illustrates the use of model checking to prove the correctness of the finite state

machine implemented in Gcdrive to handle multiple concurrent commands. The second

case study demonstrates the provably correct decomposition of the desired system proper-

ties into components’ properties based on the structure imposed by the Canonical Software

Architecture.

Chapter 5 contains the main theoretical contributions of the verification part of the

thesis. First, we introduce Periodically Controlled Hybrid Automata (PCHA), a class of

hybrid automata for modular specification of embedded control systems. In a PCHA,

control actions that change the control input to the plant occur roughly periodically, while
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other actions that update the state of the controller may occur in the interim, changing

the set-point of the system. Such actions could model, for example, sensor updates and

information received from higher-level planning modules that change the set-point of the

controller. Based on periodicity and subtangential conditions, a new sufficient condition

for verifying invariant properties of PCHAs is presented. In principal, for PCHAs with

polynomial continuous vector fields, it is possible to check these conditions automatically

using, for example, quantifier elimination or sum of squares relaxations. We examine the

feasibility of this automatic approach on a small example. The proposed technique is

also used to manually verify safety and progress properties of a fairly complex planner-

controller subsystem of Alice. Geometric properties of planner-generated paths are derived

that guarantee that such paths can be safely followed by the controller. The material

presented in this chapter has been reported in [118, 119, 120].

Part II: Design

Chapters 6–7 focus on the design aspect of this work. Specifically, we propose an approach

for automatically synthesizing embedded control software that ensures system correctness

with respect to its desired properties regardless of the environment in which the system

operates. The material presented in this part of the thesis has been published in [122, 123,

124].

Chapter 6 summarizes related work on automatic synthesis of embedded control soft-

ware, including background on automatic design of digital and control systems. A common

approach to automatic synthesis of embedded control software that provably satisfies a

given LTL property is to construct a finite transition system that serves as an abstract

model of the physical system (which typically has infinitely many states) and synthesize a

strategy, represented by a finite state automaton, satisfying the desired properties based on

the abstract model. This leads to a hierarchical, two-layer design with a discrete planner

computing a strategy based on the abstract model and a continuous controller comput-

ing a control signal based on the physical model to continuously implement the strategy.

Simulations/bisimulations [6] provide the proof that the continuous execution preserves the

desired properties. To increase the robustness of the system against the effects of direct,

external disturbances and a mismatch between the actual system and its model, we extend

the hierarchical approach to account for exogenous disturbances. Specifically, the contribu-
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tion of this part of the thesis is to consider a discrete-time linear time-invariant state space

model with exogenous disturbances and provide an approach to automatically compute a

finite state abstraction for such a model.

The main practical limitation of the hierarchical approach is the well-known state ex-

plosion problem inherent in LTL synthesis. To alleviate this problem, Chapter 7 proposes

a receding horizon framework that effectively reduces the synthesis problem into a set of

smaller problems while preserving the desired system-level temporal properties. An im-

plementation of the proposed framework leads to a hierarchical, modular design with a

goal generator, a trajectory planner and a continuous controller. The goal generator es-

sentially reduces the trajectory generation problem into a sequence of smaller problems of

short horizon while preserving the desired system-level temporal properties. Subsequently,

in each iteration, the trajectory planner solves the corresponding short-horizon problem

with the currently observed state as the initial state and generates a feasible trajectory to

be implemented by the continuous controller. Based on the simulation property, we show

that the composition of the goal generator, trajectory planner and continuous controller

and the corresponding receding horizon framework guarantee the correctness of the system.

The effectiveness of this framework is demonstrated through an example of an autonomous

vehicle navigating an urban environment.
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Chapter 2

Background

This chapter provides background for later chapters. This includes a detailed description

of the planner-controller subsystem of Alice and an overview of linear temporal logic.

2.1 Alice: An Autonomous Vehicle

Alice was equipped with 25 CPUs and utilized a networked control system architecture

to provide high performance and modular design. The embedded control component of

Alice is shown in Figure 2.1. This hierarchical control architecture comprises the following

modules [18, 30, 121]:

Mission Planner computes the route, i.e., a sequence of roads the vehicle has to nav-

igate in order to cross a given sequence of checkpoints. A sequence of checkpoints

was provided by DARPA approximately 5 minutes before the start of each run. Mis-

sion Planner is also capable of recomputing the route when the response from Traffic

Planner indicates that the previously computed route cannot be navigated success-

fully. This type of failure occurs, for example, when the road is blocked.

Traffic Planner makes decisions to guide Alice at a high level. Specifically, based on the

traffic rules and the current environment, it determines how Alice should navigate

the Mission Planner generated route, that is, whether Alice should stay in the travel

lane or perform a passing maneuver, whether it should go or stop and whether it is

allowed to reverse. Traffic Planner also implements an obstacle clearance requirement.

In addition, it is responsible for intersection handling (e.g., keeping track of whether

it is Alice’s turn to go through an intersection). Based on these decisions, it sets up
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Figure 2.1: The embedded control component of Alice.

the constraints for the path planning problem.

The logic implemented in Traffic Planner can be described by a two-level finite state

machine (FSM). First, the high-level mode is determined based on the current status

of the vehicle, the current status of Traffic Planner and the current position of the vehi-

cle with respect to the road network. This high-level mode includes road region, zone

region, off-road, intersection, U-turn, failed and paused. Each of the high-level modes

can be further decomposed to completely specify the planning problem described by

the drive state, the allowable maneuvers and the obstacle clearance requirement. The

drive state includes DR (drive), BACKUP (reverse) and STO (stop for an obstacle).

When the drive state is DR or STO, the allowable maneuvers are specified by the fol-

lowing modes: NP (no passing or reversing allowed), P (passing allowed but reversing

not allowed) and PR (both passing and reversing allowed). The obstacle clearance

modes include S (the nominal, or safe, mode), A (an aggressive mode) and B (a very

aggressive, or bare, mode). When the obstacle clearance mode is A or B, both pass-

ing and reversing maneuvers are allowed by default. As an example, the finite state

machine associated with the road region mode consists of 11 states and 25 transitions

as shown in Figure 2.2.
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DR,NP,S STO,NP,S

DR,P,S STO,P,S

no coll.-free path

coll.-free path found

stopped & obs detected

no coll.-free path

coll.-free path found

passing finished or
obs disappeared

DR,PR,S

no coll.-free path & #lanes = 1 

STO,PR,S

no coll.-free path &
#DR,PR,S < M

coll.-free path found

passing finished or obs disappeared

STO,A

BACKUP

no coll.-free path & #lanes > 1 

no coll.-free path &
#DR,PR,S >= M &
#lanes > 1 

backup finished
& #BACKUP >= N

no coll.-free path
& #DR,PR,S >= M

& #lanes = 1 

backup finished
& #BACKUP < N

DR,A
no coll.-free path

coll.-free path found

STO,BDR,B
no coll.-free path

coll.-free path found

no coll.-free path

FAILED

no coll.-free path
         & #lanes>1

PAUSEDOFF-ROAD

no coll.-free path
& #lanes=1

ROAD REGION

no coll.-free path 

coll.-free path for
DR,A found

coll.-free path for
DR,PR,S found

Figure 2.2: Traffic Planner FSM for the road region mode.

Path Planner generates a path that satisfies the constraints determined by Traffic Plan-

ner. Since Alice needs to operate in both structured and unstructured regions, three

types of path planner have been implemented to exploit the structure of the environ-

ment: (1) the rail planner (for structured regions such as roads and intersections),

(2) the off-road rail planner (for unstructured regions such as obstacle fields and sparse

waypoint regions), and (3) the clothoid planner (for parking lots and unstructured re-

gions). All the maneuvers available to the rail planner are pre-computed; thus, the

rail planner may be too constraining. To avoid a situation where Alice gets stuck in a

structured region (e.g., when there is an obstacle between the predefined maneuvers),

the off-road rail planner or the clothoid planner may also be used in a structured

region. This decision is made by Traffic Planner.

Path Follower computes control signals (acceleration and steering angle) that keep Alice
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on the path generated by Path Planner [73]. Although these paths are guaranteed

to be collision-free, since Alice cannot track them perfectly, it may get too close

or even collide with an obstacle if the tracking error is too large. To address this

issue, a reactive obstacle avoidance (ROA) component was implemented. The ROA

component can override the acceleration command to rapidly stop the vehicle if the

deviation from the planned path is too large or the projected position of Alice overlaps

with an obstacle. The projection distance depends on the velocity of Alice. Path

Follower will report failure to Path Planner if the ROA is triggered, in which case

Path Planner will recompute the path.

Gcdrive is the overall driving software for Alice. It receives actuation commands from

Path Follower, determines if they can be executed and, if so, sends the appropriate

commands to the actuators. Gcdrive also performs checking on the health and op-

erational state of the actuators, resets the actuators that fail, and broadcasts the

actuator state. Also included in the role of Gcdrive is the implementation of physical

protections for the hardware to prevent the vehicle from hurting itself. This includes

three functions: (1) limiting the steering rate at low speeds, (2) preventing shifting

from occurring while the vehicle is moving, and (3) transitioning to the paused mode

in which the brakes are depressed and commands to any actuator are rejected when

any of the critical actuators such as steering and brake fail. Furthermore, Gcdrive

implements the emergency stop functionality for Alice and stops the vehicle when an

externally produced emergency stop command is received.

A Canonical Software Architecture (CSA) has been developed to support a hierarchical

decomposition and separation of functionality in this planner-controller subsystem, while

maintaining communication and contingency management. More details on CSA can be

found in Chapter 4.

Note that this planner-controller subsystem, including the complicated finite state ma-

chines implemented in Traffic Planner, was designed and implemented completely by hand

in an ad-hoc manner. Furthermore, it was validated only through simulations and tests.

Hence, there was absolutely no formal guarantee that the system would work as desired.

This thesis develops methods and tools for systematic design and analysis of embedded con-

trol system such as Alice and illustrates their applications to the autonomous urban driving
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problem. Linear temporal logic provides a precise mathematical language for describing

desired system properties.

2.2 Linear Temporal Logic

Temporal logic is a branch of logic that implicitly incorporates temporal aspects and can

be used to reason about a time line [8, 32, 50, 82]. Its use as a specification language was

introduced by Pnueli [100]. Since then, temporal logic has been demonstrated to be an

appropriate specification formalism for reasoning about various kinds of systems, especially

those of concurrent programs. It has been utilized to formally specify and verify behavioral

properties in various applications [23, 101, 37, 72, 48, 15, 112, 35, 54, 19, 55].

In this thesis, we consider a version of temporal logic, namely linear temporal logic

(LTL), which is particularly suitable for describing properties of software systems. Before

describing LTL, we need to define an atomic proposition, which is LTL’s main building

block. An atomic proposition can be defined based on a variable structure of the system as

follows.

Definition 2.2.1. A system consists of a set V of variables. The domain of V , denoted by

dom(V ), is the set of valuations of V . A state of the system is an element v ∈ dom(V ).

Definition 2.2.2. An atomic proposition is a statement on system variables υ that has a

unique truth value (True or False) for a given value of υ. Let v ∈ dom(V ) be a state of

the system and p be an atomic proposition. We write v ⊩ p if p is True at the state v.

Otherwise, we write v ⊮ p.

In this language, an execution of a system is described by an infinite sequence of its

states. Specifically, for a discrete-time system whose state is only evaluated at time t ∈

{0,1, . . .}, its execution σ can be written as σ = v0v1v2 . . . where for each t ≥ 0, vt ∈ dom(V )

is the state of the system at time t.

LTL has two kinds of operators: logical connectives and temporal modal operators.

The logic connectives are those used in propositional logic: negation (¬), disjunction ( ∨ ),

conjunction ( ∧ ) and material implication (Ô⇒). The temporal modal operators include

next (#), always (◻), eventually (3) and until ( U ).

An LTL formula is defined inductively as follows:
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(1) any atomic proposition p is an LTL formula; and

(2) given LTL formulas ϕ and ψ, ¬ϕ, ϕ ∨ ψ, #ϕ and ϕ U ψ are also LTL formulas.

Other operators can be defined as follows:

• ϕ ∧ ψ ≜ ¬(¬ϕ ∨ ¬ψ),

• ϕÔ⇒ ψ ≜ ¬ϕ ∨ ψ,

• 3ϕ ≜ True U ϕ, and

• ◻ϕ ≜ ¬3¬ϕ.

A propositional formula is one that does not include temporal operators. Given a set of

LTL formulas ϕ1, . . . , ϕn, their Boolean combination is an LTL formula formed by joining

ϕ1, . . . , ϕn with logical connectives.

Semantics of LTL: An LTL formula is interpreted over an infinite sequence of states.

Given an execution σ = v0v1v2 . . . and an LTL formula ϕ, we say that ϕ holds at

position i ≥ 0 of σ, written vi ⊧ ϕ, if and only if (iff) ϕ holds for the remainder of

the execution σ starting at position i. The semantics of LTL is defined inductively as

follows:

(a) For an atomic proposition p, vi ⊧ p iff vi ⊩ p;

(b) vi ⊧ ¬ϕ iff vi ⊭ ϕ;

(c) vi ⊧ ϕ ∨ ψ iff vi ⊧ ϕ or vi ⊧ ψ;

(d) vi ⊧ #ϕ iff vi+1 ⊧ ϕ; and

(e) vi ⊧ ϕ U ψ iff there exists j ≥ i such that vj ⊧ ψ and ∀k ∈ [i, j), vk ⊧ ϕ.

Based on this definition, #ϕ holds at position i of σ iff ϕ holds at the next state vi+1,

◻ϕ holds at position i iff ϕ holds at every position in σ starting at position i, and 3ϕ

holds at position i iff ϕ holds at some position j ≥ i in σ.

Definition 2.2.3. An execution σ = v0v1v2 . . . satisfies ϕ, denoted by σ ⊧ ϕ, if v0 ⊧ ϕ.

Definition 2.2.4. Let Σ be the set of all executions of a system. The system is said to be

correct with respect to its specification ϕ, written Σ ⊧ ϕ, if all its executions satisfy ϕ, that

is, (Σ ⊧ ϕ) iff (∀σ, (σ ∈ Σ) Ô⇒ (σ ⊧ ϕ)).
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Examples of LTL formulas: Given propositional formulas p and q, important and

widely used properties can be defined in terms of their corresponding LTL formulas

as follows.

(a) Safety (invariance): A safety formula is of the form ◻p, which asserts that the

property p remains invariantly true throughout an execution. Typically, a safety

property ensures that nothing bad happens. A classic example of safety property

frequently used in the robot motion planning domain is obstacle avoidance.

(b) Guarantee (reachability): A guarantee formula is of the form 3p, which guar-

antees that the property p becomes true at least once in an execution. Reaching

a goal state is an example of a guarantee property.

(c) Obligation: An obligation formula is a disjunction of safety and guarantee for-

mulas, ◻p ∨ 3q. It can be shown that any safety and progress property can be

expressed using an obligation formula. (By letting q ≡ False, we obtain a safety

formula and by letting p ≡ False, we obtain a guarantee formula.)

(d) Progress (recurrence): A progress formula is of the form ◻3p, which essentially

states that the property p holds infinitely often in an execution. As the name

suggests, a progress property typically ensures that the system makes progress

throughout an execution.

(e) Response: A response formula is of the form ◻(p Ô⇒ 3q), which states that

following any point in an execution where the property p is true, there exists a

point where the property q is true. A response property can be used, for example,

to describe how the system should react to changes in the operating conditions.

(f) Stability (persistence): A stability formula is of the form 3 ◻ p, which asserts

that there is a point in an execution where the property p becomes invariantly true

for the remainder of the execution. This definition corresponds to the definition

of stability in the controls domain since it ensures that eventually, the system

converges to a desired operating point and remains there for the remainder of the

execution.

Example 2.2.1. Consider a robot motion planning problem where the robot is moving in

an environment that is partitioned into six regions as shown in Figure 2.3.
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Example

Nok Wongpiromsarn, Ufuk Topcu, and Richard Murray Receding Horizon Temporal Logic Planning

Desired Properties

• Visit the blue cell infinitely often.

• Eventually go to the red cell when 
a PARK signal is received.

Assumption

• Infinitely often, PARK signal is not 
received.

C0 C1 C2

C3 C4 C5

ϕ = ! ! (¬park) =⇒ (! ! (s ∈ C5) ∧
!(park =⇒ !(s ∈ C0)))

Figure 2.3: The robot environment of Example 2.2.1.

Let s represent the position of the robot and C0, . . . ,C5 represent the polygonal regions

in the robot environment. Suppose the robot receives an externally triggered PARK signal.

Consider the following desired behaviors.

(a) Visit region C5 infinitely often.

(b) Eventually go to region C0 when a PARK signal is received.

Assuming that infinitely often, a PARK signal is not received, the desired properties of the

system can be expressed in LTL as

◻3(¬park) Ô⇒ ( ◻3(s ∈ C5) ∧ ◻(park Ô⇒ 3(s ∈ C0))).

Here, park is a boolean variable that indicates whether a PARK signal is received.

Remark 2.2.1. Properties typically studied in the control and hybrid systems domains are

safety (usually in the form of constraints on the system state) and stability (i.e., convergence

to an equilibrium or a desired state). LTL thus offers extensions to properties that can be

expressed. Not only can it express a more general class of properties, but it also allows more

general safety and stability properties than constraints on the system state or convergence

to an equilibrium since p in ◻p and 3 ◻ p can be any propositional formula.
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Chapter 3

System Verification

System verification is the process of checking that a system meets its requirements. The

requirements specify the allowed behaviors and formalize the desired properties of the sys-

tem. This chapter reviews existing approaches to system verification that provides a formal

guarantee that the system satisfies the desired properties. These approaches rely on a math-

ematical model of the system and analyze the correctness of the model, instead of the actual

implementation itself, with respect to the requirements.

3.1 Formal Methods

Formal methods are mathematically-based techniques that provide a guarantee of system

correctness and enable the developers to construct a system that operates reliably despite

its complexity. This approach relies on constructing a mathematical model of the system

and proving that the model respects the system requirements. There are two key elements

involved in this process—specification and verification.

Formal specification is a precise mathematical representation of a system and its re-

quirements. It helps remove ambiguities from the description of the expected behaviors of

the system. Examples of such mathematical objects typically used in modeling systems

include finite state machines, differential equations, time automata and hybrid automata.

Formal verification relies on a repertoire of proof techniques by which the correctness of

the abstract mathematical model of the system relative to the requirements can be analyzed.

It gives a formal guarantee that the desired properties hold over all possible executions of

the system, provided that the actual execution of the system respects its model.

System correctness may be formally verified by hand in the style of mathematical proofs.
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This approach is usually slow and often error prone. It also requires a high level of math-

ematical sophistication and expertise. As a result, there have been growing interests in

automating or semi-automating such proofs. In this section, we summarize existing ap-

proaches for system verification from computer science and control theory.

3.1.1 Computer-Science Oriented Approaches

In computer science, automated proofs typically fall into two categories: algorithmic ap-

proaches and deductive approaches. The algorithmic approach relies on exhaustively ex-

ploring the state space to check that the desired properties of the system are satisfied.

Model checking is a well-established technique that enables such exploration [24, 8]. The

key requirement of this technique is that the description of the system and its requirements

be formulated in some precise mathematical language. From the description of the system,

all of its possible behaviors can be derived. In addition, all the invalid behaviors can be

obtained from the system requirements. A model checker then checks whether an inter-

section of all the possible behaviors of the system and all the invalid behaviors is empty.

It terminates with a yes/no answer and provides an error trace in case of a negative re-

sult. This technique is very attractive because it is automatic, fast and requires no human

interaction. However, to achieve the decidability, model checking is limited to finite state

systems. It also faces a combinatorial blow up of the state space, commonly known as the

state explosion problem.

Various model checkers have been developed for different specification languages. TLC

[125] is a model checker for specifications written in TLA+, which is a specification language

based on Temporal Logic of Actions (TLA) [2, 70, 71]. TLA introduces new kinds of tempo-

ral assertions to traditional linear temporal logic to make it practical to describe a system

by a single formula and to make the specifications simpler and easier to understand. SPIN,

on the other hand, is a model checker for specifications written in Process Meta-Language

(PROMELA) [49]. This language was influenced by Dijkstra, Hoare’s CSP language and C.

It emphasizes the modeling of process synchronization and coordination, not computation

and is not meant to be analyzed manually. SPIN can be run in two modes—simulation and

verification. The simulation mode performs random or iterative simulations of the modeled

system’s execution while the verification mode generates a C program that performs a fast

exhaustive verification of the system state space. SPIN is mainly used for checking for dead-
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locks, livelocks, unspecified receptions, unexecutable code, correctness of system invariants

and non-progress execution cycles. It also supports the verification of linear time temporal

constraints. SPIN has been used in many applications, especially in proving correctness

of safety-critical software [44, 41]. Other popular model checkers include Symbolic Model

Verifier (SMV) [84] and its successor NuSMV [22].

The deductive approach relies on using axioms and proof rules to prove the correctness

of a system. The proofs are typically based on inductive invariants: If property ϕ holds at

the initial stage of the system and all legal successors of every ϕ-state are ϕ states, then

ϕ always holds. Theorem proving is a machinery that allows such proofs to be partially

automated. This approach is not limited to finite state systems. However, it demands a

skilled human interaction. An example of a commonly used theorem prover is Prototype

Verication System (PVS) [94, 93, 52].

3.1.2 Control Oriented Approaches

Control systems are described by a set of differential or difference equations, e.g., ẋ(t) =

f(x(t), u(t)) or x[t + 1] = f(x[t], u[t]) where x represents the state of the system and u

represents the control input to the plant. These systems have been a subject of research

in the control community for many decades. Parallel to the studies of formal methods

in computer science, control theorists have developed a methodology for verifying that

such a continuous system remains within a certain set, namely, the safe set. The dual of

this safety problem is the reachability problem that concerns proving the existence of a

trajectory that starts from an initial set and reaches another given set. This kind of safety

and reachability analysis is typically based on two main approaches: direct reachability

analysis and Lyapunov-type methods.

The detailed examination of direct reachability analysis can be found in [87] and refer-

ences therein. In summary, these approaches seek to compute either the set of all states

that can be reached along trajectories that start within a given set of initial states (forward

reachability), or the set of all states from which trajectories start such that a given set of

target or final states can be reached (backward reachability). Lyapunov-type methods, on

the other hand, do not require explicit computation of reachable sets. In addition, non-

linearity, uncertainty and constraints can be handled directly. The underlying idea is to

search for a Lyapunov-type function that satisfies certain algebraic conditions. This func-
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tion, together with the corresponding algebraic conditions, provides a certificate that all

trajectories of the system starting from a given initial set remain within the safe set. An

example of such function is a barrier certificate [103, 104, 105]. The existence of a feasible

solution to the dual of this safety analysis problem provides a certificate for the existence

of a trajectory from the initial set to the unsafe set [107]. This dual test can be formulated

using the concept of convex duality and density functions. The roles of a barrier certificate

and a density function in proving safety and reachability can also be interchanged so that

a density function is used to prove safety while a barrier certificate is used to prove reacha-

bility. This approach can be extended to analyze the eventuality property: All trajectories

starting from a given initial set eventually reach a given final set in a finite time. More

details regarding this primal-dual approach can be found in [107].

A barrier certificate and a density function can be automatically constructed using sum

of squares techniques in conjunction with semidefinite programming, provided that the

vector field is polynomial and the sets are semialgebraic (i.e., can be described by poly-

nomial equalities and inequalities) [106]. Such construction relies on using the generalized

S-procedure [116] (a special case of the Positivstellensatz) and sum of squares relaxations

to translate the set containment constraints to a sum of squares optimization problem. The

applicability of this sum of squares technique can be extended to certain non-polynomial

systems by using a recasting procedure [95].

S-Procedure Given functions f0(x) = xTF0x and f1(x) = xTF1x where x ∈ Rn, n ∈ N and

F0 and F1 are n × n symmetric matrices, if there exists α ≥ 0 such that

f0(x) − αf1(x) ≥ 0,∀x ∈ Rn,

then the following equivalent statements hold:

(i) f0(x) ≥ 0 for all x such that f1(x) ≥ 0,

(ii) {x ∈ Rn ∣ f1(x) ≥ 0} ⊆ {x ∈ Rn ∣ f0(x) ≥ 0},

(iii) {x ∈ Rn ∣ f1(x) ≥ 0 and f0(x) < 0} = ∅,

(iv) ∀x ∈ Rn, f1(x) ≥ 0 Ô⇒ f0(x) ≥ 0.

Generalized S-Procedure Given polynomials f0, f1, . . . , fm ∶ Rn → R, if there exist



23

positive semidefinite polynomials r1, . . . , rm such that

f0(x) −
m

∑
i=1

ri(x)fi(x) ≥ 0,∀x ∈ Rn,

then {x ∈ Rn ∣ fi(x) ≥ 0,∀i ∈ {1, . . . ,m} ⊆ {x ∈ Rn ∣ f0(x) ≥ 0}.

Sum of Squares Relaxations The sum of squares relaxations simply replace all the non-

negativity constraints obtained from the generalized S-procedure with the constraint

that they are sum of squares polynomials, i.e., polynomials that can be represented as

a sum of squares of finitely many polynomials. This sum of squares constraint is more

restrictive but more computationally tractable than the non-negativity constraint.

A constraint-based technique [43] for computing inductive invariants can be thought of

as a variant of the Lyapunov-type methods. Similar to Lyapunov-type methods, it requires

a template for the unknown inductive invariant I. With this template, sufficient conditions

for an invariance of I can be expressed as satisfiability of a ∃∀ formula over reals, where the

existential quantification is over the template variables and the universal quantifier is over

the state variables. The universal quantifier can then be eliminated using a special case

of the generalized S-procedure known as Farkas Lemma. The following variant of Farkas

Lemma is presented in [43] and duplicated here for convenience.

Farkas Lemma Let J and K be finite sets. For each j ∈ J and k ∈ K, let pj and rk be

polynomials of bounded degrees over the state variables. The formula

⋀
j∈J

pj > 0 ∧ ⋀
k∈K

rk ≥ 0

is unsatisfiable over reals if there exist non-negative constants µ, µj , j ∈ J and νk, k ∈K

such that

µ + ∑
j∈J

µjpj + ∑
k∈K

νkrk = 0,

and at least one of the µj or µ is strictly positive.

We refer the reader to [43] for a detailed discussion on converting an arbitrary universally

quantified arithmetic formula into an existentially quantified formula using this variant of

Farkas Lemma. The resulting satisfiability checking can then be converted to a bit-vector
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satisfiability problem. A solution, in a bounded range, of this satisfiability problem can be

searched for using the bit-vector decision procedure of a satisfiability modulo theory (SMT)

solver.

3.2 Hybrid System Verification

3.2.1 Hybrid Automata

The hybrid system formalism [3, 4, 38] provides a rich mathematical language for speci-

fying embedded systems where computing and control components interact with physical

processes. In this framework, a hybrid system is characterized by (a) a set of continuous

states, (b) a finite set of locations or discrete states, (c) the set of initial states, (d) an

invariant set associated with each location, (e) a set of vector fields, and (f) a set of discrete

transitions between two locations. A guard set and a reset map can be derived from the set

of discrete transitions between two locations. Reference [38] adds continuous and discrete

input sets to this description.

Reachability analysis, Lyapunov-type methods and the constraint-based approach de-

scribed in Section 3.1.2 can be applied to verify safety properties of systems modeled in this

hybrid automata framework. Forward reachability analysis has been implemented in model

checkers for hybrid systems such as HyTech [45] and PHAVer [34]. Backward reachability

has been applied, for example, in [10] to analyze safety of aircraft autoland systems.

To explicitly capture the concurrency and asynchronous characteristics of distributed

algorithms and distributed systems, a family of system modeling frameworks based on

interacting infinite-state machines was introduced by Lynch et al. [80, 59, 76, 79, 88]. These

frameworks are based on input/output (I/O) automata model and come in many flavors,

e.g., basic asynchronous I/O automata, timed I/O automata and hybrid I/O automata.

Properties of these automata can be proved by hand or with the assistance of theorem

provers. Algorithms and proofs described in this I/O-automata-style modeling framework

can be found in [78]. Of our particular interest is hybrid I/O automata (HIOA), which add

a set of trajectories to describe the evolution of system state over intervals of time.

In the HIOA framework, the discrete behavior of a system is described by a set of discrete

state transitions (actions). The continuous behavior is described by a set of trajectories that

specify the behavior of the variables of an automaton with time. An execution of HIOA is
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described by a finite or infinite alternating sequence of trajectories and actions. A safety

or invariant property I of an HIOA A is typically deduced by finding a stronger inductive

invariant I ′ ⊆ I and checking, through case analysis, that all the actions and trajectories of

A preserve I ′. Specifically, the set I of states is an invariant of an HIOA A if

• (Start condition) any initial state of the system x0 ∈ I,

• (Transition condition) For any action a, if x
a→ x′ and x ∈ I, then x′ ∈ I,

• (Trajectory condition) For any trajectory τ , if the first state of τ , τ.fstate ∈ I, then

the last state of τ , τ.lstate ∈ I.

This technique allows the reasoning about the actions and the trajectories to be decoupled.

Theorem prover strategies (PVS programs) that partially automate construction of such

proofs can be found, for example, in [88].

HIOA has been applied, for example, to prove the correctness of a vehicle deceleration

maneuver part of an automated transportation system [77] and to verify the safety of

the automated highway system of the California PATH project and the Traffic Alert and

Collision Avoidance System (TCAS) that is used by aircraft to avoid midair collisions

[28, 74]. More details of HIOA can be found in Chapter 5 where we introduce its subclass

that is suitable for modeling embedded systems with periodic sensing and actuation.

An important aspect of these hybrid and I/O automata frameworks is that they allow

composition of automata to make larger ones. This enables modular specification of hybrid

and distributed systems as each component of the system can be individually specified.

These component specifications can then be composed to describe the whole system.

3.2.2 Other Modeling Frameworks

Computational and Control Language (CCL) is another formalism for expressing systems

with a tight link between the computing and the control components [62]. It was influenced

by the UNITY formalism [20] and was originally developed for expressing cooperative con-

trol systems. The main idea of CCL is to divide an execution of a system into epochs during

which each process is executed exactly once. The order that the processes are executed in

one epoch, however, is arbitrary. This allows us to take into account the small-time in-

terleaving that may occur between processors executing at essentially the same rate. It
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is a stronger assumption of the fairness constraint adopted by I/O automata and other

distributed system modeling frameworks that only assume that each process gets executed

eventually . Analysis of a CCL program is typically based on inductive techniques. Sum-

mary of distinctions between CCL and other modeling frameworks can be found in [63].

CCL has been applied to analyze a simplified version of a capture-the-flag system [62, 26].

3.2.3 Limitations

The algorithmic verification problem for hybrid systems with general dynamics is known

to be computationally hard [46]. Restricted subclasses that are amenable to algorithmic

analysis have been identified, such as the rectangular-initialized hybrid automata [46], o-

minimal hybrid automata [69], and more recently planar [102] and STORMED [117] hybrid

automata. Although these restricted subclasses improve our understanding of the decid-

ability frontier for hybrid systems, the imposed restrictions are artificial, i.e., they are not

representative of structures that arise in real-world systems. For example, initialized hybrid

automata require the continuous state of the system to be reset every time the automaton

enters a new mode. STORMED hybrid automata, on the other hand, require all the vector

fields and reset maps to be monotonic with respect to a certain fixed direction.

On the other hand, deductive verification of hybrid systems is typically very time con-

suming and can be error prone due to the required human interaction. Although some proofs

can be partially automated using theorem provers, significant human interaction remains

necessary, especially for models with non-linear dynamics. More automation is needed in

order to make this approach more practical and attractive.
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Chapter 4

Applications of Formal Methods to
Alice

This chapter illustrates the applications of formal methods presented in Chapter 3 to the

embedded control component of Alice (Figures 2.1). The case studies presented in this

chapter focus on the two low-level modules, namely Path Follower and Gcdrive.

4.1 Overview

As described in Section 2.1, the control subsystem of Alice consists of five software modules:

Mission Planner, Traffic Planner, Path Planner, Path Follower and Gcdrive. These modules

are responsible for reasoning at different levels of abstraction and are executed concurrently

in the onboard processors. A Canonical Software Architecture is used to support this hi-

erarchical decomposition and separation of functionality, while maintaining communication

and contingency management.

The case studies considered in this chapter focus on the two lower-level modules—

Path Follower (or Follower, for short) and Gcdrive. Path Follower receives a planned path

and computes commands to throttle, brake and transmission that enable Alice to track

this path. Gcdrive receives actuation commands from Path Follower and an externally

produced emergency stop (estop) command from DARPA. It then performs checking to

make sure that the commands are reasonable. For example, gear can be changed only when

Alice is stopped. Based on the received commands and actuators’ states, Gcdrive computes

appropriate commands to all the actuators.

This chapter is organized as follows. Section 4.2 describes the Canonical Software Ar-
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chitecture. Section 4.3 illustrates the use of model checking to prove the correctness of the

finite state machine implemented in Gcdrive to handle concurrent commands from Follower

and DARPA. Section 4.4 describes the use of the Canonical Software Architecture in system-

atically decomposing system-level requirements into a set of component-level requirements.

It is followed by a case study where we mathematically prove that the component-level

requirements of Follower and Gcdrive are sufficient to ensure that certain system-level re-

quirements are satisfied. Section 4.5 concludes the chapter.

4.2 Canonical Software Architecture

One of the main issues with distributed systems is synchronization. A Canonical Software

Architecture (CSA)1 has been developed in order to address this issue. This architecture

builds on the state analysis framework developed at the Jet Propulsion Laboratory (JPL)

and takes the approach of clearly delineating state estimation and control determination as

described in [31, 108, 9, 51].

In CSA, we can think of the entire system as being broken up into “modules,” each of

which has a separate, dedicated function. There are two types of modules in CSA: estimation

modules and control modules. An estimation module estimates the system state or provides

an abstraction of the system state for the corresponding control module(s). A control

module gets inputs, performs actions based on the inputs, and delivers outputs. This section

only discusses CSA control modules, which are the focus of this thesis. For modularity, each

software module in the control subsystem may be broken down into multiple CSA modules.

An example of the control subsystem in CSA we have implemented on Alice is shown in

Figure 4.1.

The CSA imposes a structure on both the interface between control modules and the

major operations that happen within a control module. As shown in Figure 4.2, inputs to

a CSA control module are restricted to be one of the followings: state information, direc-

tives/instructions (from other modules wishing to control this module) and responses/status

reports (from other modules receiving instructions from this module). The outputs can only

be either status reports from this module or directives/instructions for other control mod-

ules.
1The idea of this architecture came from discussions with Robert D. Rasmussen and Michel D. Ingham

from the Jet Propulsion Laboratory.
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Figure 4.1: The planner-controller subsystem of Alice in the Canonical Software Architec-
ture. Boxes with double lined borders are subsystems that will be broken up into multiple
CSA modules.

For each directive that a control module is designed to accept, the following must be

(implicitly or explicitly) specified:

(a) Entry (initial) condition: defines what must be true before starting to execute this

directive; could result in rejection if not readily achievable;

(b) Exit (end) condition: defines what must be true to complete the execution of this

directive; could result in rejection if not readily achievable; could result in failure if

deadlines are not met;

(c) Rules: constraints, control objectives, etc. that must be satisfied during the execution

of the directive; otherwise, failure is declared;

(d) Performance criteria: performance or other items to be optimized.

For each directive received, a response that indicates rejection, acceptance, failure or com-

pletion of the directive and the reason for rejection or failure must be reported to the source

of the directive. Rejection or failure of a directive occurs when the entry or exit condition

is not readily achievable, the deadlines are not met, or one of the constraints cannot be

satisfied. It results in dropping the problem directive and all subsequent directives from

that source until an acknowledgement of the failure or rejection is received. This directive-

response mechanism allows CSA to support distributed goal and contingency management,
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Figure 4.2: A generic control module in the Canonical Software Architecture.

an approach where each of the modules is responsible for handling the faults in its own

domain and anything the module is unable to handle is propagated “up the chain” until

the correct level has been reached to resolve the fault or conflict.

To separate communication requirements from the given module’s core function re-

quirements, the CSA decomposes a module into three components: Arbitration, Control

and Tactics. Arbitration is responsible for (1) managing the overall behavior of the control

module by issuing a merged directive, computed from all the received directives, to Con-

trol ; and (2) reporting rejection, acceptance, failure and completion of a received directive

to Control of the issuing control module. Control is responsible for (1) computing the out-

put directives to the controlled module(s) or the commands to the hardware based on the

merged directive, received responses and state information; and (2) reporting failure and

completion of a merged directive to Arbitration. Tactics provides the core functionality of

the control module and is responsible for providing the logic used by Control for computing

output directives.

4.3 Verification of Gcdrive Finite State Machine

Gcdrive consists of five CSA modules: Actuation Interface, Acceleration Module, Steer-

ing Module, Transmission Module and Turn Signal Module. Acceleration Module, Steering

Module, Transmission Module and Turn Signal Module are the interfaces to the correspond-
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Figure 4.3: Finite state machine implemented in Actuation Interface.

ing actuators. The logic in Gcdrive is contained in Actuation Interface and can be described

by a finite state machine. This example illustrates the use of model checking in proving the

correctness of the implementation of this finite state machine.

Gcdrive takes independent commands from Path Follower and DARPA and sends appro-

priate commands to the actuators. Commands from Path Follower include control signals

to throttle, brake and transmission. Commands from DARPA include estop pause, estop

run and estop disable. An estop pause command should cause the vehicle to be brought

quickly and safely to a rolling stop. An estop run command resumes the operation of the

vehicle. An estop disable command is used to stop the vehicle and put it in the disable

mode. A vehicle that is in the disable mode may not restart in response to an estop run

command.

The finite state machine to handle these concurrent commands is shown in Figure 4.3.

To prove the correctness of its implementation in Actuation Interface, we model Follower,

Actuation Interface and DARPA (see Figure 4.4) in the SPIN model checker with the

following global variables.

• state ∈ {DISABLED (D), PAUSED (P), RUNNING (Ru), RESUMING (Re), SHIFT-

ING (S)} is the state of the finite state machine as described in Figure 4.3.

• estop ∈ {DISABLE (0), PAUSE (1), RUN (2)} is the emergency stop command sent

by DARPA.

• acc ∈ [−1,1] and acc cmd ∈ [−1,1] are the acceleration commands sent from Actuation

Interface to Acceleration Module and from Follower to Actuation Interface, respec-
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Figure 4.4: The components involved in the Gcdrive FSM example.

tively.

• gear ∈ {−1,0,1} and gear cmd ∈ {−1,0,1} are the gear commands sent from Actu-

ation Interface to Transmission Module and from Follower to Actuation Interface,

respectively.

• timer ∈ {0,1,2,3,4,5} keeps track of the time after which the latest estop run com-

mand is received.

We make the following assumptions.

(a) Actuation Interface gets executed at least once each time an estop command is sent.

(b) Actuation Interface reads the current estop status at the beginning of each iteration.

It then performs a computation based on this estop status for the rest of the iteration.

(c) All the estop commands are eventually received.

We introduce a global variable enableEstop in the PROMELA model to incorporate as-

sumption (a). Assumption (b) is enforced using atomic sequences. Lastly, assumption (c) is

enforced by letting the variable estop represent the estop command received by Gcdrive as

well. With these assumptions, SPIN can verify the correctness of the system with respect

to the following desired properties.
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(1) If DARPA sends an estop disable command, Gcdrive state will eventually stay at DIS-

ABLED and Acceleration Module will eventually command full brake forever.

◻ ((estop = DISABLE) Ô⇒ 3 ◻ (state = DISABLED ∧ acc = −1)) (4.1)

(2) If DARPA sends an estop pause command while the vehicle is not disabled, eventually

Gcdrive state will be PAUSED.

◻ ((estop = PAUSE ∧ state /= DISABLED) Ô⇒ 3(state = PAUSED)) (4.2)

(3) If DARPA sends an estop run command while the vehicle is not disabled, eventually

Gcdrive state will be RUNNING or RESUMING or DARPA will send an estop disable

or estop pause command.

◻((estop = RUN ∧ state /= DISABLED) Ô⇒

3(state ∈ {RUNNING,RESUMING} ∨ estop /= RUN))
(4.3)

(4) If the current state is RESUMING, eventually the state will be RUNNING or DARPA

will send an estop disable or pause command.

◻((state = RESUMING) Ô⇒ 3(state = RUNNING ∨ estop ∈ {DISABLE,PAUSE}))

(4.4)

(5) The vehicle is disabled only after it receives an estop disable command.

((state /= DISABLED) U (estop = DISABLE)) ∨ ◻(state /= DISABLED) (4.5)

(6) Actuation Interface sends a full brake command to the Acceleration Module if the

current state is DISABLED, PAUSED, RESUMING or SHIFTING. In addition, if the

vehicle is disabled, then the gear is shifted to 0.

◻(state ∈ {DISABLED, PAUSED, RESUMING, SHIFTING} Ô⇒ acc = −1) ∧

◻(state = DISABLED Ô⇒ gear = 0)
(4.6)
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(7) After receiving an estop pause command, the vehicle may resume the operation 5 sec-

onds after an estop run command is received.

◻ (state = RUN Ô⇒ timer ≥ 5) (4.7)

The PROMELA models of the components involved in this example can be found in Ap-

pendix 4.A. Note that assumptions (a)–(c) are necessary for all the above desired properties

to be satisfied. In fact, assumptions (a) and (b) were not realized until we model checked

the early implementation of Gcdrive. Realizing that these assumptions needed to be en-

forced, we then modified the implementation of Alice by having Gcdrive store all the estop

commands in a queue and process all these commands one by one. If an estop command is

not stored but only sampled at the beginning of each iteration, an estop disable or pause

command may not be handled appropriately. Consider, for example, the case where an

estop pause command is sent while Actuation Interface is in the middle of an iteration and

an estop run command is sent immediately after. In this case, Alice will not stop because

the estop pause command is not processed, leading to an incorrect, unsafe behavior.

4.4 Composing Requirements

As described in Section 4.2, the inputs, outputs and major operations within a CSA control

module have a well-defined structure. To facilitate the design and verification of the sys-

tem, system requirements should be decomposed into the requirements for the Arbitration

component and the requirements for the Control and Tactics components for each of the

modules. The requirements for the Arbitration component specify the relationship between

the received directives and the merged directives while the requirements for the Control

and Tactics components specify the relationship between the merged directives, responses,

state knowledge and the output directives as presented later in this section.

Besides module requirements, communication requirements such as bandwidth, packet

drop, delay, etc also need to be specified. Modules’ requirements and communiation require-

ments can then be composed either manually or with the assistance of tools such as theorem

provers [36, 94] to verify that they are sufficient to ensure that the system requirements are

satisfied.
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We illustrate this requirement composition idea in the following case study where we

prove that the CSA can ensure the state consistency between different software modules.

The example considered here focuses on the two lower-level modules: Follower and Gcdrive

(see Figure 4.1). Specifically, we want to prove that Follower, the module that commands

a gear change, has the right knowledge about the gear Alice is currently in even though it

does not talk to the actuator directly and sensors may fail. Otherwise, it will command full

brake. This example involves six components—the Control of Follower, Actuation Interface,

Transmission Module, Acceleration Module, the actuators and the network—as shown in

Figure 4.4.

In this example, we are only interested in acceleration and transmission commands. The

following variables are involved in this example as shown in Figure 4.5:

• Transf,s: transmission directive sent from Follower;

• Transf,r: transmission directive received by Actuation Interface;

• Transa,s: transmission directive sent from Actuation Interface;

• Transa,r: transmission directive received by Transmission Module;

• Accf,s: acceleration directive sent from Follower;

• Accf,r: acceleration directive received by Actuation Interface;

• Acca,s: acceleration directive sent from Actuation Interface;

• Acca,r: acceleration directive received by Acceleration Module;

• TransRespf,s ∈ {COMPLETED,FAILED}: response sent from Actuation Interface;

• TransRespf,r ∈ {COMPLETED,FAILED}: response received by Follower;

• TransRespa,s ∈ {COMPLETED,FAILED}: response sent from Transmission Module;

• TransRespa,r ∈ {COMPLETED,FAILED}: response received by Actuation Interface.

Each of these variables is represented by a finite sequence, whose nth element represents

its value in the nth iteration, with the following operators:

• Last(s): The last element of sequence s;
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Figure 4.5: The variables involved in the CSA example.

• Len(s): The length of sequence s;

• s[n]: The nth element of sequence s.

Let Trans be the actual gear and Transf be the gear that Follower thinks Alice is in.

Assume that when Len(Transf,s) = 0 (i.e., before any command is sent from Follower),

Transf = Trans, we want to verify the following desired system-level properties:

(1) Follower has the right knowledge about the gear that Alice is currently in, or it com-

mands full brake. Mathematically, this can be written as:

◻((Len(TransRespf,r) = Len(Transf,s) ∧ Last(TransRespf,r) = COMPLETED)

Ô⇒ Transf = Trans) ∧ ◻(Transf = Trans ∨ Accf,s = −1).
(4.8)

(2) At infinitely many instants, Follower has the right knowledge about the gear that Alice

is currently in, or a hardware failure (HWF ) occurs:

◻3(Transf = Trans ∨ HWF). (4.9)

We consider the following component-level properties:

A. Transmission Module and transmission actuator:
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• The number of responses cannot be greater than the number of directives. This

can be formalized by the following LTL formula:

◻ (Len(TransRespa,s) ≤ Len(Transa,r)). (4.10)

• For each of the directives that Transmission Module receives, a response will even-

tually be sent. If the gear is successfully changed, the completion of the directive

will be reported. Otherwise, a hardware failure occurs and the failure will be re-

ported. This property can be mathematically represented by the conjunction of

the following three LTL formulas:

◻(n = Len(Transa,r) Ô⇒

3((Trans = Transa,r[n] ∧ TransRespa,s[n] = COMPLETED)

∨ (HWF ∧ TransRespa,s[n] = FAILED)));

(4.11)

◻(Last(TransRespa,s) = COMPLETED Ô⇒

Trans = Transa,r[Len(TransRespa,s)]);
(4.12)

◻ (Last(TransRespa,s) = FAILED Ô⇒ HWF). (4.13)

B. Actuation Interface: All the transmission directives and responses received are always

sent (to Transmission Module and to Follower, respectively). This property can be

described by the conjunction of the following LTL formulas:

◻(Len(Transa,s) = Len(Transf,r) ∧

∀i ∈ {1, . . . , Len(Transf,r)} ∶ Transa,s[i] = Transf,r[i]);
(4.14)

◻(Len(TransRespf,s) = Len(TransRespa,r) ∧

∀i ∈ {1, . . . , Len(TransRespa,r)} ∶ TransRespf,s[i] = TransRespa,r[i]).
(4.15)

C. Network: All messages are eventually delivered. An example of this assumption for

the transmission directive sent from Actuation Interface and received by Transmission
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Module, formalized in LTL, is given by

◻(Len(Transa,r) ≤ Len(Transa,s)) ∧

∀i ∈ {1, . . . , Len(Transa,r)} ∶ Transa,r[i] = Transa,s[i]).
(4.16)

D. The Control of Follower:

• If the response is not yet received, send a brake command:

◻ (Len(TransRespf,r) /= Len(Transf,s) Ô⇒ Accf,s = −1). (4.17)

• If the last response indicates failure, send a brake command:

◻ (Last(TransRespf,r) = FAILED Ô⇒ Accf,s = −1). (4.18)

• Do not send a new directive until a response for the last directive is received:

◻ (Len(Transf,s) ≤ Len(TransRespf,r) + 1). (4.19)

• Infinitely often, the number of the transmission directives is not greater than the

number of the responses (i.e., once a response is received, Follower processes it

before sending out another directive):

◻3(Len(Transf,s) ≤ Len(TransRespf,r)). (4.20)

• If the last response indicates completion of the directive, Follower updates Transf

to the corresponding directive:

◻(Last(TransRespf,r) = COMPLETED Ô⇒

Transf = Transf,s[Len(TransRespf,r)]).
(4.21)

To prove the above component-level requirements are sufficient to ensure system-level

requirements, we use the following lemmas and proposition.

Lemma 4.4.1. Any execution of the program satisfies the following properties:

(1) ◻(Len(TransRespa,r) ≤ Len(Transa,s);
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(2) ◻(Len(TransRespf,r) ≤ Len(Transf,s);

(3) ◻(Len(Transa,s) ≤ Len(TransRespa,r) + 1).

Proof. These properties can be derived from the assumptions about the network, (4.10),

(4.14), (4.15) and (4.19).

Lemma 4.4.2. Any execution of the program satisfies the following properties:

(1) ◻((Len(TransRespa,r) = Len(Transa,s))∨(Len(Transa,s) = Len(TransRespa,r)+1);

(2) ◻((Len(TransRespf,r) = Len(Transf,s))∨(Len(Transf,s) = Len(TransRespf,r)+1).

Proof.

1. Let

A ≡ Len(Transa,s) ≥ Len(TransRespa,r),

B ≡ Len(Transa,s) ≤ Len(TransRespa,r),

C ≡ Len(Transa,s) = Len(TransRespa,r) + 1.

From Lemma 4.4.1, we get that any execution satisfies

◻((A ∧B) ∨ (A ∧C)).

Since

A ∧B ≡ Len(TransRespa,r) = Len(Transa,s)

and

A ∧C ≡ Len(Transa,s) = Len(TransRespa,r) + 1,

this completes the proof.

2. This can be proved using Lemma 4.4.1(2) and property (4.19) and following the same

steps as in the previous proof.
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Lemma 4.4.3. Any execution of the program satisfies

◻(Len(TransRespf,r) = Len(Transf,s) Ô⇒

Len(TransRespf,r) = Len(TransRespf,s) = Len(TransRespa,r) = Len(TransRespa,s)

= Len(Transa,r) = Len(Transa,s) = Len(Transf,r) = Len(Transf,s)).

Proof. This can be derived from the assumptions about the network, (4.10), (4.14) and

(4.15).

Lemma 4.4.4. Any execution of the program satisfies

◻((Len(TransRespf,r) ≤ Len(TransRespf,s) ≤ Len(TransRespa,r) ≤ Len(TransRespa,s))

∧ (∀i ∈ {1, . . . , Len(TransRespf,r)} ∶ TransRespf,r[i] = TransRespf,s[i] =

TransRespa,r[i]) = TransRespa,s[i])).

Proof. This is clear from (4.15) and the assumptions about the network.

The following proposition can be proved using the truth table.

Proposition 4.4.1. The following propositional formula is a tautology:

((¬A ∨B) ∧ (A ∨C)) Ô⇒ (B ∨C).

We now prove that the system-level requirements hold, provided that all the component-

level requirements are satisfied.

Theorem 4.4.1. Any execution of the program satisfies

◻((Len(TransRespf,r) = Len(Transf,s) ∧ Last(TransRespf,r) = COMPLETED)

Ô⇒ Transf = Trans).

Proof. The case where Len(Transf,s) = 0 is trivial so we only consider the case where

Len(Transf,s) > 0. Suppose Len(TransRespf,r) = Len(Transf,s) and Last(TransRespf,r) =
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COMPLETED). Then, we get

Transf
(4.21)= Transf,s[Len(TransRespf,r)]

Lemma4.4.3= Transf,s[Len(Transa,s)]
(4.14),network= Transa,s[Len(Transa,s)].

Also, from Lemma 4.4.3 and Lemma 4.4.4, we get

Last(TransRespa,s) = COMPLETED.

Using (4.12), we can then conclude that

Trans = Transa,s[Len(TransRespa,s)]
Lemma4.4.3= Transa,s[Len(Transa,s)]

= Transf .

Theorem 4.4.2. Any execution of the program satisfies

◻(Transf = Trans ∨ Accf,s = −1).

Proof. From (4.17),

◻(Len(TransRespf,r) /= Len(Transf,s) Ô⇒ Accf,s = −1).

Or equivalently,

◻(Len(TransRespf,r) = Len(Transf,s) ∨ Accf,s = −1).

Similarly, from (4.18), we get

◻(Last(TransRespf,r) = COMPLETED) ∨ Accf,s = −1).
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Let

A ≡ Len(TransRespf,r) = Len(Transf,s),

B ≡ Last(TransRespf,r) = COMPLETED,

C ≡ Transf = Trans,

D ≡ Accf,s = −1.

The system has the following property

◻((A∧B) Ô⇒ C) ∧ (A∨D) ∧ (B ∨D)) ≡ ◻((¬A∨¬B ∨C)) ∧ (A∨D) ∧ (B ∨D)).

Applying Proposition 4.4.1 twice, we can complete the proof.

Theorem 4.4.3. Any execution of the program satisfies

◻3(Transf = Trans ∨ HWF).

Proof. From Lemma 4.4.2(2),

◻((Len(TransRespf,r) = Len(Transf,s)) ∨ (Len(Transf,s) = Len(TransRespf,r) + 1)).

Consider an arbitrary kth1 cycle. From (4.20) and Lemma 4.4.2, ∃k > k1 such that in the kth

cycle, Len(TransRespf,r) = Len(Transf,s).

Consider this kth cycle. The case where Len(Transf,s) = 0 is trivial. (By assump-

tion, Transf = Trans.) So we only consider the case where Len(Transf,s) > 0. If

Last(TransRespf,r) = COMPLETED, then from Theorem 4.4.1, (4.21) and Lemma 4.4.3,

Transf = Trans = Last(Transf,s).

Otherwise, Last(TransRespf,r) = Last(TransRespa,s) = FAILED, so from (4.13), HWF .
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4.5 Conclusions

This chapter described the Canonical Software Architecture that supports the hierarchical

decomposition and separation of functionality in the control subsystem of Alice, while main-

taining communication and contingency management. Two case studies were presented to

illustrate the applications of formal methods to the complex embedded control system of

Alice. The first case study used an off-the-shelf model checker SPIN to verify the correctness

of the implementation of the finite state machine that handled multiple concurrent com-

mands. SPIN uncovered a crucial assumption to ensure system correctness. The second

example exploited the structure imposed by the Canonical Software Architecture to verify

the desired system-level properties from the components’ properties.

Appendix

4.A PROMELA Models for the Gcdrive Finite State Ma-

chine Example

System Model

Atomic sequences and an auxiliary variable enableEstop are used to ensure that Actuation

Interface gets executed at least once each time an estop command is sent.

mtype = { D, P, Ru, Re, S };

mtype state = P;

byte estop = P;

short acc = -1;

short acc_cmd = 0;

short gear = 1;

short gear_cmd = 0;

bool enableEstop = true;

byte timer = 0;
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active proctype Follower()

{

do

:: acc_cmd = -1

:: acc_cmd = 0

:: acc_cmd = 1

:: gear_cmd = -1

:: gear_cmd = 0

:: gear_cmd = 1

od

}

active proctype sendEstop()

{

do

:: atomic{ enableEstop == true ->

if

:: estop = 0

:: estop = 1

:: estop = 2

fi;

enableEstop = false;

}

od

}

active proctype ActuationInterface()

{

do

:: atomic{ (estop == 0 || state == D) ->

state = D;

acc = -1;
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gear = 0;

enableEstop = true;

}

:: atomic { (estop == 1 && state != D) ->

state = P;

acc = -1;

enableEstop = true;

}

:: atomic{ else ->

if

:: estop == 2 && state == P ->

state = Re;

timer = 0;

:: state == Re && timer == 5 ->

state = Ru;

:: state == Ru && gear_cmd == gear ->

acc = acc_cmd;

:: state == Ru && gear_cmd != gear ->

state = S;

acc = -1;

:: state == S ->

gear = gear_cmd;

state = Ru;

:: else ->

skip;

fi;

enableEstop = true;

}

od

}

active proctype clock()
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{

do

:: atomic{ timer < 5 -> timer = timer + 1 }

od

}

Desired Properties

(1) If DARPA sends an estop disable command, Gcdrive state will eventually stay at DIS-

ABLED and Acceleration Module will eventually command full brake forever (see Equa-

tion (4.1)).
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never {

T0_init :

if

:: (1) -> goto T1_S1

:: (estop == 0) -> goto T0_S3

fi;

T1_S1 :

if

:: (1) -> goto T1_S1

:: (estop == 0) -> goto accept_S3

fi;

accept_S3 :

if

:: (1) -> goto T0_S3

:: (acc != -1) || (state != D) -> goto accept_S3

fi;

T0_S3 :

if

:: (1) -> goto T0_S3

:: (acc != -1) || (state != D) -> goto accept_S3

fi;

}

(2) If DARPA sends an estop pause command while the vehicle is not disabled, eventually

Gcdrive state will be PAUSED (see Equation (4.2)).
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never {

T0_init :

if

:: (1) -> goto T0_init

:: (state != D && state != P && estop == 1) -> goto accept_S2

fi;

accept_S2 :

if

:: (state != P) -> goto accept_S2

fi;

}

(3) If DARPA send an estop run command while the vehicle is not disabled, eventually,

Gcdrive state will be RUNNING or RESUMING or DARPA will send an estop disable

or estop pause command (see Equation (4.3)).

never {

T0_init :

if

:: (1) -> goto T0_init

:: (state != D && state != Re && state != Ru && estop == 2 &&

estop == 2) -> goto accept_S2

fi;

accept_S2 :

if

:: (state != Re && state != Ru && estop == 2) -> goto accept_S2

fi;

}

(4) If the current state is RESUMING, eventually, the state will be RUNNING or DARPA

will send an estop disable or pause command (see Equation (4.4)).
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never {

T0_init :

if

:: (1) -> goto T0_init

:: (estop != 0 && estop != 1 && state != Ru && state == Re) ->

goto accept_S2

fi;

accept_S2 :

if

:: (estop != 0 && estop != 1 && state != Ru) -> goto accept_S2

fi;

}

(5) The vehicle is disabled only after it receives an estop disable command (see Equation

(4.5)).

never {

T0_init :

if

:: (estop != 0) -> goto T0_init

:: (state == D && estop != 0) -> goto accept_all

fi;

accept_all :

skip

}

(6) Actuation Interface sends a full brake command to the Acceleration Module if the

current state is DISABLED, PAUSED, RESUMING or SHIFTING. In addition, if the

vehicle is disabled, then the gear is shifted to 0 (see Equation (4.6)). After receiving an

estop pause command, the vehicle may resume the operation 5 seconds after an estop

run command is received (see Equation (4.7)).
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active proctype invariant()

{

assert( (state == Ru || acc == -1) &&

(state != D || gear == 0) &&

(state != Ru || timer >= 5) )

}
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Chapter 5

Periodically Control Hybrid
Automata

This chapter introduces Periodically Controlled Hybrid Automata (PCHA), a subclass of

hybrid automata suitable for modeling sampled control systems and embedded systems with

periodic sensing and actuation. A sufficient condition for verifying invariance of PCHAs is

presented. This technique is then used to analyze the design flaw that caused the failure

of Alice at the National Qualifying Event of the DARPA Urban Challenge as described in

Section 1.1.

5.1 Overview

While real-world hybrid systems are large and complex, they are also engineered, and hence,

have more structure than general hybrid automata [3]. With the motivation of abstractly

capturing a common design pattern in embedded control systems, such as Alice, and other

motion control systems [89], in this chapter we study a new subclass of hybrid automata.

The two main contributions of this chapter are the following:

First, we define a class of hybrid control systems in which certain control actions oc-

cur roughly periodically. Each control action sets the controlling output that drives the

underlying physical process, which we refer to as the plant. In the interval between two

control actions, the state of the plant evolves continuously with fixed control inputs. Also,

in the same interval, other discrete actions may occur, updating the state of the system.

Such discrete changes may correspond, for example, to sensor inputs and changes of the

waypoint or the set-point of the controller. These changes may in turn influence the compu-
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tation of the next control action. For this class of Periodically Controlled Hybrid Systems,

we present a sufficient condition for verifying invariant properties. The key requirement in

applying this condition is to identify a collection of subset(s) C of the candidate invariant

set I, such that if the control action occurs when the system state is in C, then the subse-

quent control output guarantees that the system remains within I for the next period. The

technique does not require solving the differential equations; instead, it relies on checking

conditions on the periodicity and the subtangential condition at the boundary of I. For

systems with polynomial vector fields, we show how these checks can be automated using

sum of squares decomposition and semidefinite programming [106]. These formulations are

illustrated by analyzing a simple example in which an invariant is automatically determined

using the constraint-based approach presented in [43]. We believe that other techniques for

finding invariants, for example those presented in [99, 111], could also be effectively used

for computing invariants of PCHAs.

Second, we apply the above technique to manually verify the safety and progress prop-

erties of the planner-controller subsystem of Alice. Since the model of Alice involves com-

plex, non-polynomial dynamics, the proposed automatic approach is not directly applicable.

Thus, the analysis is done completely by hand. First, we verify a family of invariants {Ik}k∈N
using the above-mentioned technique. This step is fairly simple, requiring only algebraic

simplification of expressions defining the vector fields and Ik’s. Then, we determine a se-

quence of shrinking Ik’s as the vehicle makes progress along the planned path. From these

shrinking invariants, we are able to deduce safety. That is, the deviation—distance of the

vehicle from the planned path—remains within a certain constant bound. In the process, we

also derive geometric properties of planner paths that guarantee that they can be followed

safely by the vehicle. Informally, these geometric properties require that sharp turns in

the path are only present after relatively long segments. In executing a long segment, the

vehicle converges to small deviation as well as small disorientation with respect to the path.

Thus, the instruction for executing a subsequent sharp turn, does not make the deviation

grow too much.

This chapter is organized as follows: In Section 5.2, we briefly present the key defini-

tions for the hybrid I/O automaton framework. In Section 5.3, we present PCHA and a

sufficient condition for proving invariance. The formulation of this sufficient condition as

a sum of squares optimization problem for automatic verification is also provided. In Sec-
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tions 5.4 and 5.5, we present the formal model and verification of Alice’s Controller-Vehicle

subsystem.

5.2 Preliminaries

We use the Hybrid Input/Output Automata (HIOA) framework of [76, 59] for modelling

hybrid systems and the state model-based notations introduced in [88]. A HIOA is a non-

deterministic state machine whose state may change instantaneously through a transition,

or continuously over an interval of time following a trajectory . In this section, we briefly

present important terminology and notations that are used throughout the chapter. We

refer the reader to [59, 88] and references therein for more details.

A variable structure is used for specifying the states of an HIOA. Let V be a set of

variables. Each variable v ∈ V is associated with a type which defines the set of values v can

take. The set of valuations of V is denoted by dom(V ). For a valuation v ∈ dom(V ) of set of

variables V , its restriction to a subset of variables Z ⊆ V is denoted by v ⌈ Z. A variable may

be discrete or continuous. (See [88] for formal definition of these variable dynamic types.)

Typically, discrete variables model protocol or software state, and continuous variables

model physical quantities such as time, position and velocity.

A trajectory for a set of variables V models continuous evolution of the values of the

variables over an interval of time. Formally, a trajectory τ is a map from a left-closed

interval of R≥0 with left endpoint 0 to dom(V ). The domain of τ is denoted by τ.dom. The

first state of τ , τ.fstate, is τ(0). A trajectory τ is closed if τ.dom = [0, t] for some t ∈ R≥0,

in which case we define the last time of τ , τ.ltime ≜ t, and the last state of τ , τ.lstate ≜ τ(t).

For a trajectory τ for V , its restriction to a subset of variables Z ⊆ V is denoted by τ ↓ Z.

The set of allowed trajectories of all the variables of an HIOA is defined by state models,

as follows. For given set V of variables, a state model S is a triple (FS , InvS , StopS), where

(a) FS is a collection of differential equations (DEs) involving the continuous variables in

V , and

(b) InvS and StopS are predicates on V called invariant condition and stopping condition

of S.

S defines a set of trajectories, denoted by traj(S), for the set V of variables. A trajectory
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τ for V is in the set trajs(S) iff

(a) the discrete variables in V remain constant over τ ;

(b) the restriction of τ on the continuous variables in V satisfies all the DEs in FS ;

(c) at every point in time t ∈ dom(τ), (τ ↓ V )(t) ∈ InvS ; and

(d) if (τ ↓ V )(t) ∈ StopS for some t ∈ dom(τ), then τ is closed and t = τ.ltime.

5.3 Periodically Controlled Hybrid Automata

In this section, we define a subclass of HIOAs that is suitable for modeling sampled control

systems and embedded systems with periodic sensing and actuation. The main result of

this section, Theorem 5.3.1, gives a sufficient condition for proving invariant properties of

this subclass.

5.3.1 Definition of Periodically Controlled Hybrid Automata

A Periodically Controlled Hybrid Automaton (PCHA) is an HIOA with a set of (control)

actions that occur roughly periodically. These control actions alter the actual control sig-

nal (input) that feeds to the plant and may change the continuous and the discrete state

variables of the automaton. The automaton may have other actions that change only the

discrete state of the automaton. These actions can model, for example, sensor inputs and

the change in the set-point of the controller from higher-level inputs. However, these exter-

nal commands do not affect the dynamics of the system immediately; they only change the

internal variables of the controller. Formally, a PCHA is defined as follows.

Definition 5.3.1. Let X ⊆ Rn, for some n ∈ N, and L,Z and U be arbitrary types. A

Periodically Controlled Hybrid Automaton (PCHA) A is a tuple (X,Q,Q0,A,D,S ) where

(a) X = {s, loc, z, u,now ,next} is a set of internal or state variables where s is a continuous

state variable of type X , loc is a discrete state (location or mode) variable of type L,

z is a command variable of type Z, u is a control variable of type U , now is a real

continuous variable and next is a real discrete variable;

(b) Q ⊆ dom(X) is a set of states and Q0 ⊆ Q is a non-empty set of start states;
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(c) A is a set of actions, consisting of a set of update actions and a single control action;

(d) D ⊆ Q ×A ×Q is a set of discrete transitions. A transition (x, a,x′) ∈ D is written in

short as x
a→A x′ or as x

a→ x′ when A is clear from the context. An action a ∈ A is said

to enabled at a state x ∈ Q if there exists a state x′ ∈ Q such that x
a→ x′; and

(e) S is a collection of state models for X, such that for every S,S ′ ∈ S , InvS ∩ InvS′ = ∅

and Q ⊆ ⋃S∈S InvS .

In addition, A must satisfy the property that every update action is enabled1 at every state

and may only change the value of z, while control actions occur roughly periodically starting

from time 0; the time gap between two successive occurrences is within [∆1,∆1+∆2] where

∆1 > 0 and ∆2 ≥ 0.

We denote the components of a PCHA A by XA,QA, etc. For a set X of variables, a

state x is an element of dom(X). We denote the valuation of a variable y ∈ X at state x,

by the usual (.) notation x.y.

The continuous state typically includes the continuous state of the plant and some

internal state of the controller. The discrete state represents the mode of the system. The

command variable is used to store externally produced input commands or sensor updates.

The control variable stores the control input to the plant. Finally, the now and next

variables are used for triggering the control action periodically.

PCHA A has two types of actions: (a) through input action update, A learns about new

externally produced input commands such as set-points, waypoints. When an update(z′)

action occurs, z′ is recorded in the command variable z. (b) The control action changes the

continuous and discrete state variables s and loc and the control variable u. When control

occurs, loc and s are computed as a function of their current values and that of z, and u is

computed as a function of the new values of loc and s. Observe, from this definition, that

the external commands do not affect the dynamics of the system immediately, i.e., they

do not change the location nor the input value of the hybrid system but only the internal

variables of the controller. The modification of the dynamics due to the external commands

are effective at the next control cycle.

For each value of l ∈ L, the continuous state s evolves according to the trajectories

specified by state model smodel(l). That is, s evolves according to the differential equation
1In the terminology of HIOA, an update action is an input action.
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1signature
internal control

3input update(z′ ∶ Z)

5variables
internal s : X := s0

7internal discrete loc : L := l0,
z : Z := z0, u : U := u0

9internal now : R≥0 := 0, next : R := −∆2

11transitions
input update(z′)

13eff z := z′

14internal control
pre now ≥ next

16eff next := now + ∆1;
⟨loc, s ⟩:= h(loc, s, z);

18u := g(loc, s)

20trajectories
trajdef smodel(l : L)

22invariant loc = l
evolve d(now) = 1;

24d(s) = fl(s, u)
stop when now = next + ∆2

Figure 5.1: PHCA with parameters ∆1, ∆2, g, h, {fl}l∈L. See, for example, [88] for the
description of the language.

ṡ = fl(s, u). The timing of control behavior is enforced by the precondition of control and

the stopping condition of the state models.

Note that as opposed to a general HIOA, a PCHA does not contain input and output

variables. For the sake of simplicity, we consider the PCHAs of the form shown in Figure 5.1

with only one update action and a unique starting state. However, Theorem 5.3.1 generalizes

to PCHAs with multiple update actions as illustrated later in Section 5.5.

An execution of a PCHA A records the valuations of all its variables and the occurrences

of all actions over a particular run. An execution fragment of A is a finite or infinite sequence

α = τ0a1τ1a2 . . ., such that for all i in the sequence, ai ∈ AA, τ ∈ trajs(S) for some S ∈ SA,

and τi.lstate
ai+1→ τi+1.fstate. An execution fragment is an execution if τ0.fstate ∈ Q0. An

execution is closed if it is finite and the last trajectory in it is closed. The first state of an

execution fragment α, α.fstate, is τ0.fstate, and for a closed α, its last state, α.lstate, is the

last state of its last trajectory. The limit time of α, α.ltime, is defined to be ∑i τi.ltime.

The set of executions and reachable states of A are denoted by ExecsA and ReachA. A set

of states I ⊆ QA is said to be an invariant of A iff ReachA ⊆ I.

5.3.2 Invariant Verification

Proving invariant properties of hybrid automata is a central problem in formal verifica-

tion. Invariants are used for overapproximating the reachable states of a given system, and

therefore, can be used for verifying safety properties.

Given a candidate invariant set I ⊆ Q, we are interested in verifying that ReachA ⊆ I.

For continuous dynamical systems, checking the well-known subtangential condition as in



57

the Lyapunov-type methods provides a sufficient condition for proving invariance of a set I

that is bounded by a closed surface (see, for example, [13]). Theorem 5.3.1 below provides

an analogous sufficient condition for PCHAs. In general, however, invariant sets I for

PCHAs have to be defined by a collection of functions instead of a single function. For each

mode l ∈ L, we assume that the invariant set Il ⊆ X for the continuous state is defined by

a collection of m boundary functions {Flk}mk=1, where m is some natural number and each

Flk ∶ X → R is a differentiable function.2 Formally,

Il ≜ {s ∈ X ∣ ∀k ∈ {1, . . . ,m}, Flk(s) ≥ 0} and I ≜ {x ∈ Q∣ x.s ∈ Ix.loc}.

Note that the overall candidate invariant set I does not restrict the values of the command

or the control variables. In the remainder of this section, we develop a set of sufficient

conditions for checking that I is indeed an invariant of a given PCHA. Lemma 5.3.1 modifies

the standard inductive technique for proving invariance, so that it suffices to check invariance

with respect to control transitions and control-free execution fragments of length not greater

than ∆1+∆2. It states that I is an invariant if it is closed under (a) the discrete transitions

of the control actions, and (b) control-free execution fragments of length at most ∆1 +∆2.

Lemma 5.3.1. Suppose Q0 ⊆ I and the following two conditions hold:

(a) (control steps) For each state x,x′ ∈ Q, if x
control→ x′ and x ∈ I then x′ ∈ I.

(b) (control-free fragments) For each closed execution fragment β = τ0 update(z1) τ1 update(z2)

. . . τn starting from a state x ∈ I where each zi ∈ Z, if x.next − x.now = ∆1 and

β.ltime ≤ ∆1 +∆2, then β.lstate ∈ I.

Then ReachA ⊆ I.

Proof. Consider any reachable state x of A and any execution α such that α.lstate = x. We

can write α as β0 control β1 control . . . βk, where each βi is control-free execution fragment

of A, i.e., execution fragments in which only update actions occur. From condition (a), it

follows that for each i ∈ {0, . . . , k}, if βi.lstate ∈ I, then βi+1.fstate ∈ I.

Thus, it suffices to prove that for each i ∈ {0, . . . , k}, if βi.fstate ∈ I, then βi.lstate ∈ I. We

fix an i ∈ {0, . . . , k} and assume that βi.fstate ∈ I. Let βi = τ0 update(z1) τ1 update(z2) . . . τn,
2Identical size m of the collections simplifies our notation; different number of boundary functions for

different values of l can be handled by extending the theorem in an obvious way.
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where for j ∈ {0, . . . , n}, zj ∈ Z and τj is a trajectory of A. If i = 0, then βi.ltime = 0 and

βi.lstate ⌈ {loc, s} = βi.fstate ⌈ {loc, s} since the first control action occurs at time 0 and

update transitions do not affect the value of loc and s. Therefore, βi.lstate ∈ I. Otherwise,

i > 0 and since βi starts immediately after a control action, β.fstate ⌈ next−β.fstate ⌈ now =

∆1. From periodicity of main actions, we know that βi.ltime ≤ ∆1 + ∆2, and hence from

condition (b) it follows that βi.lstate ∈ I.

Invariance of control steps can often be checked through case analysis, which can be

partially automated using a theorem prover [93]. The next key lemma provides a sufficient

condition for proving invariance of control-free fragments. Since control-free fragments do

not change the valuation of the loc variable, for this part, we fix a value l ∈ L. For each

index of the boundary functions j ∈ {1, . . .m}, we define the set ∂Ij to be part of the set Il

where the function Flj vanishes. That is, ∂Ij ≜ {x ∈ X ∣ Flj(x) = 0}. For the sake of brevity,

we call ∂Ij the jth boundary of Il even though strictly speaking, the jth boundary of Il is

only a subset of ∂Ij according to the standard topological definition. Similarly, we say that

the boundary of Il, is ∂Il = ⋃j∈{1,...,m} ∂Ij .

Lemma 5.3.2. Suppose that there exists a collection {Cj}mj=1 of subsets of Il such that the

following conditions hold:

(a) (Subtangential) For each s0 ∈ Il ∖Cj and s ∈ ∂Ij, ∂Flj(s)

∂s ⋅ fl(s, g(l, s0)) ≥ 0.

(b) (Bounded distance) ∃ cj > 0 such that ∀ s0 ∈ Cj , s ∈ ∂Ij, ∣∣s − s0∣∣ ≥ cj.

(c) (Bounded speed) ∃ bj > 0 such that ∀ s0 ∈ Cj , s ∈ Il, ∣∣fl(s, g(l, s0))∣∣ ≤ bj,

(d) (Fast sampling) ∆1 +∆2 ≤ minj∈{1,...,m}
cj
bj

.

Then, any control-free execution fragment β, with β.ltime ≤ ∆1 +∆2, starting from a state

in Il where next − now = ∆1, remains within Il.

In Figure 5.2, the control and control-free fragments are shown by bullets and lines,

respectively. A fragment starting in I and leaving I, must cross ∂I1 or ∂I2. Consider the

following four cases.

(1) If u is evaluated outside both C1 and C2 (e.g., τ2, τ4 and τ6), then condition (a)

guarantees that the fragment does not cross ∂Ij where j ∈ {1,2} because when it

reaches ∂Ij , the vector field governing its evolution points inwards with respect to ∂Ij .
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Figure 5.2: A graphical explanation of Lemma 5.3.2 showing an invariant set Il defined by
two boundary functions. The boundary ∂I1 is drawn in solid line whereas the boundary
∂I2 is drawn in dotted line. The corresponding sets C1 and C2 are also shown.

(2) If u is evaluated inside C1 but outside C2 (e.g., τ1 and τ7), then by the previous rea-

soning, condition (a) guarantees that the fragment does not cross ∂I2. In addition,

conditions (b) and (c) guarantee that it takes finite time before the fragment reaches

∂I1 and condition (d) guarantees that this finite time is at least ∆1 +∆2; thus, before

the fragment crosses ∂I1, u is evaluated again.

(3) If u is evaluated outside C1 but inside C2 (e.g., τ3), then by a symmetric argument, the

fragment does not cross ∂I1 or ∂I2.

(4) If u is evaluated inside both C1 and C2 (e.g., τ5), then conditions (b), (c) and (d)

guarantee that u is evaluated again before the fragment crosses ∂I1 or ∂I2.

Proof. We fix a control-free execution fragment β = τ0update(z1)τ1update(z2) . . . τn such

that at β.fstate, next − now = ∆1. Without loss of generality we assume that at β.fstate,

z = z1, loc = l and s = x1, where z1 ∈ Z, l ∈ L and x1 ∈ Il. We have to show that at β.lstate,

s ∈ Il.

First, observe that for each k ∈ {0, . . . , n}, (τk ↓ s) is a solution of the differential

equation(s) d(s) = fl(s, g(l, x1)). Let τ be the pasted trajectory τ0
⌢ τ1

⌢ . . . τn.3 Let τ.ltime

be T . Since the update action does not change s, τk.lstate ⌈ s = τk+1.fstate ⌈ s for each

k ∈ {0, . . . , n − 1}. As the differential equations are time-invariant, (τ ↓ s) is a solution of

d(s) = fl(s, g(l, x1)). We define the function γ ∶ [0, T ] → X as ∀ t ∈ [0, T ], γ(t) ≜ (τ ↓ s)(t).
3τ1

⌢ τ2 is the trajectory obtained by concatenating τ2 at the end of τ1.
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We have to show that γ(T ) ∈ Il. Suppose, for the sake of contradiction, that there exists

t∗ ∈ [0, T ], such that γ(t∗) /∈ Il. By the definition of Il, there exists i such that Fli(γ(0)) ≥ 0

and Fli(γ(t∗)) < 0. We pick one such i and fix it for the remainder of the proof. Since Fli

and γ are continuous, from intermediate value theorem, we know that there exists a time

t1 before t∗ where Fli vanishes and that there is some finite time ε > 0 after t1 when Fli

is strictly negative. Formally, there exists t1 ∈ [0, t∗) and ε > 0 such that for all t ∈ [0, t1],

Fli(γ(t)) ≥ 0, Fli(γ(t1)) = 0, and for all δ ∈ (0, ε], Fli(γ(t1 + δ)) < 0.

Case 1: x1 ∈ Il ∖Ci. Since Fli(γ(t1)) = 0, by definition, γ(t1) ∈ ∂Ii. But from the value

of Fli(γ(t)) where t is near to t1, we get that ∂Fli
∂t (t1) = ∂Fli

∂s (γ(t1)) ⋅ fl(γ(t1), g(l, x1)) < 0.

This contradicts condition (a).

Case 2: x1 ∈ Ci. Since for all t ∈ [0, t1], Fli(γ(t)) ≥ 0 and Fli(γ(t1)) = 0, we get

that for all t ∈ [0, t1], γ(t) ∈ Il and γ(t1) ∈ ∂Ii. So from condition (b) and (c), we get

ci ≤ ∥γ(t1) − x1∥ = ∥∫ t10 fl(γ(t), g(l, x1))dt∥ ≤ bit1. That is, t1 ≥ ci
bi

. But we know that

t1 < t∗ ≤ T and periodicity of control actions T ≤ ∆1 + ∆2. Combining these, we get

∆1 +∆2 > ci
bi

, which contradicts condition (d).

For PCHAs with certain properties, the following lemma provides sufficient conditions

for the existence of the bounds bj and cj , which satisfy the bounded distance and bounded

speed conditions of Lemma 5.3.2.

Lemma 5.3.3. For a given l ∈ L, let Ul = {g(l, s) ∣ l ∈ L, s ∈ Il} ⊆ U and suppose Il is

compact and fl is continuous in Il ×Ul. The bounded distance and bounded speed conditions

(of Lemma 5.3.2) are satisfied if Cj ⊂ Il satisfies the following conditions: (a) Cj is closed,

and (b) Cj ∩ ∂Ij = ∅

Proof. From the continuity of Flj , we can assume, without loss of generality, that ∂Ij /= ∅.

This is because if ∂Ij = ∅, then for all s ∈ X , it must be either Flj(s) > 0 or Flj(s) < 0,

that is, Flj is not needed to describe Il. In addition, the case where Cj = ∅ is trivial since

conditions (b) and (c) of Lemma 5.3.2 are satisfied for any arbitrary large cj and arbitrary

small bj . So for the rest of the proof, we assume that ∂Ij /= ∅ and Cj /= ∅. Since Il is

compact and Cj and ∂Ij are closed, Cj and ∂Ij are also compact. Consider a function

Gj ∶ ∂Ij → R defined by

Gj(s) = min
s0∈Cj

∥s − s0∥,
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where ∥ ⋅ ∥ is a norm on Rn. Due to the continuity of ∥ ⋅ ∥ and the compactness and non-

emptiness of Cj , Gj is continuous and since Cj∩∂Ij = ∅, we get that for all s ∈ ∂Ij ,Gj(s) > 0.

Since ∂Ij is compact and non-empty, Gj attains its minimum in ∂Ij . So there exists cj > 0

such that mins∈∂Ij Gj(s) ≥ cj .

Next, consider a function Hj ∶ Il → R defined by

Hj(s) = max
s0∈Cj

∥fl(s, g(l, s0))∥.

Using the continuity of fl, the compactness and non-emptiness of Cj and Il and the same

argument as above, we can conclude that there exists bj ≥ 0 such that maxs∈IlHj(s) ≤ bj .

Theorem 5.3.1 combines the above lemmas and provides sufficient conditions for invari-

ance of I.

Theorem 5.3.1. Consider a PCHA A and a set I ⊆ QA. Suppose Q0A ⊆ I, A satisfies

control invariance condition of Lemma 5.3.1 and conditions (a)–(d) of Lemma 5.3.2 for

each l ∈ LA. Then ReachA ⊆ I.

Proof. The proof follows directly from Lemma 5.3.1 and Lemma 5.3.2 since if conditions

(a)–(d) of Lemma 5.3.2 are satisfied for any l ∈ L, then condition (b) of Lemma 5.3.1 is

satisfied.

Theorem 5.3.1 essentially exploits the structure of PCHAs in order to simplify their in-

variant verification. It can be applied to any PCHAs, including those with non-polynomial

vector fields such as Alice, as illustrated later in Section 5.5. Although the PCHA of Fig-

ure 5.1 has one action of each type, Theorem 5.3.1 can be extended for PCHAs with an

arbitrary number of update actions. For PCHAs with polynomial vector fields, given semi-

algebraic sets Il and Cj , checking condition (a) and finding cj and bj that satisfy conditions

(b) and (c) of Lemma 5.3.2 can be formulated as a sum of squares optimization prob-

lem (provided that Il and Cj are basic semialgebraic sets) or proving emptiness of certain

semialgebraic sets based on quantifier elimination. The sum of squares formulation is pre-

sented in the next section and allows the proof to be automated using, for example, SOS-

TOOLS [106]. The quantifier elimination problem can also be formulated and allows the

proof to be automated using, for example, QEPCAD [17]. Alternatively, in Section 5.3.4,
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we show how an invariant set can be automatically computed using the constraint-based

approach presented in [43].

5.3.3 Sum of Squares Formulation for Checking the Invariant Conditions

Suppose the candidate invariant set Il is a basic semialgebraic set, i.e., each of the boundary

functions Flk ∶ X → R is a real polynomial. This section presents a sum of squares formu-

lation for (1) checking condition (a) and finding the cj and bj that satisfy conditions (b)

and (c) of Lemma 5.3.2 for a given basic semialgebraic subset Cj , and (2) finding a subset

Cj such that conditions (a)–(c) of Lemma 5.3.2 are satisfied. For the first case, the sum of

squares problem is convex and can be solved using, for example, SOSTOOLS [106]. For the

second case, however, the problem is not convex but can still be automatically solved using

an iterative scheme as presented in [104].

Checking the Invariant Condition for a Given Subset

Suppose Cj is a basic semialgebraic set, that is, there exists a natural number p such that

Cj can be written as

Cj = {s ∈ Il ∣ ∀i ∈ {1, . . . , p},Gji(s) ≥ 0} (5.1)

where Gji ∶ X → R is a real polynomial for each i ∈ {1, . . . , p}. Using the generalized S-

procedure (a special case of the Positivstellensatz) [116], we obtain the following sufficient

condition for condition (a) of Lemma 5.3.2.

Proposition 5.3.1. Suppose for each k ∈ {1, . . . , p}, there exist sums of squares κ1,k(s, s0),

µk(s), ρk,i(s) and σk,i(s) for i ∈ {1, . . . ,m} and a polynomial νk(s) such that

∂Flj(s)

∂s ⋅ fl(s, g(l, s0)) = κ1,k(s, s0) +∑mi=1 ρk,i(s)Fli(s) + νk(s)Flj(s) +∑mi=1 σk,i(s0)Fli(s0)

− µk(s0)Gjk(s0).
(5.2)

Then, For each s0 ∈ Il ∖Cj and s ∈ ∂Ij,

∂Flj(s)
∂s

⋅ fl(s, g(l, s0)) ≥ 0.



63

Given arbitrary s ∈ ∂Ij and s0 ∈ Il ∖ Cj , non-negativity of κ1,k(s, s0), ρk,i(s), σk,i(s0)

and µk(s0) implies that the derivative term on the left-hand side of the equation (5.2) is

non-negative. In other words, the condition in (5.2) ensures that for each k ∈ {1, . . . , p},

{(s, s0) ∈ X × X ∣ ∀i ∈ {1, . . .m}, Fli(s) ≥ 0, Flj(s) = 0, Fli(s0) ≥ 0,Gjk(s0) ≤ 0}

⊆ {(s, s0) ∈ X × X ∣ ∂Flj(s)
∂s ⋅ fl(s, g(l, s0)) ≥ 0}.

That is, for all s ∈ ∂Ij and s0 ∈ Il ∖ Cj , we have ∂Flj(s)

∂s ⋅ fl(s, g(l, s0)) ≥ 0. Similarly,

based on the generalized S-procedure, checking condition (b) and checking condition (c)

of Lemma 5.3.2 can be formulated as an optimization problem according to the following

propositions.

Proposition 5.3.2. There exists cj > 0 such that for all s0 ∈ Cj and s ∈ ∂Ij, ∥s − s0∥ ≥ cj
if the solution c∗j of the following optimization problem is positive.

Maximize cj such that there exist sums of squares κ2(s, s0), γi(s) for i ∈ {1, . . . ,m} and λi(s)

for i ∈ {1, . . . p} and a polynomial γm+1(s) such that

∥s − s0∥2 − c2
j = κ2(s, s0) +

m

∑
i=1

γi(s)Fli(s) + γm+1(s)Flj(s) +
p

∑
i=1

λi(s0)Gji(s0).

Proposition 5.3.3. There exists bj > 0 such that for all s0 ∈ Cj and s ∈ Il, ∥fl(s, g(l, s0))∥ ≤

bj if the solution b∗j of the following optimization problem is positive.

Minimize bj such that there exist sums of squares κ3(s, s0), ζi(s) for i ∈ {1, . . . ,m} and ηi(s)

for i ∈ {1, . . . p} such that

b2j − ∥fl(s, g(l, s0)∥2 = κ3(s, s0) +
m

∑
i=1

ζi(s)Fli(s) +
p

∑
i=1

ηi(s0)Gji(s0).

Finding a Subset for Checking the Invariant Conditions

Suppose Cj = {s ∈ Il ∣ Gj(s) ≥ 0}. In this case, we only have to find a polynomial Gj(s).

According to the generalized S-procedure, this problem can be formulated as follows: Find

sums of squares ρi(s), σi(s), µ(s), γi(s), λ(s), ζi(s) and η(s) for i ∈ {1, . . . ,m} and poly-

nomials Gj(s), ν(s) and γm+1(s) such that the following are sums of squares:

(a) ∂Flj(s)

∂s ⋅ fl(s, g(l, s0)) −∑mi=1 ρi(s)Fli(s) − ν(s)Flj(s) −∑mi=1 σi(s0)Fli(s0) + µ(s0)Gj(s0),
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(b) ∥s − s0∥2 − c2
j −∑mi=1 γi(s)Fli(s) − γm+1(s)Flj(s) − λ(s0)Gj(s0), and

(c) b2j − ∥fl(s, g(l, s0)∥2 −∑mi=1 ζi(s)Fli(s) − η(s0)Gj(s0).

5.3.4 Example

In this section, we illustrate how invariant verification of a PCHA can be partially automated

on a simple example. Consider a one-dimensional system whose global state (e.g., position

or velocity) needs to be regulated such that it stays within some safe ball with respect to a

reference point, given by an external command. The reference point is given as an input to

the system and may change throughout an execution. We assume that the distance between

the reference point and the global state of the system at the time the reference point is

received is not larger than δ. The system has the following variables: (a) a continuous state

variable s of type R that represents the deviation of the system from the current reference

point; (b) a discrete state variable loc of type R that represents the current reference point;

(c) a command variable z of type R that stores the last external command, i.e., the reference

point for the next control cycle; and (d) a control variable u of type U = {a1, a2} where

a1 ∈ R− and a2 ∈ R+ are system parameters.

Figure 5.3 shows the HIOA specification of this state regulator system. The control

action occurs once every ∆ time starting from time 0 where ∆ ∈ R+. This action updates

the values of the variables s, loc and u as follows.

A. First, set the value of loc and s so that they correspond to the new reference point and

the deviation of the system from the new reference point, respectively (lines 16–17).

1signature
internal control

3input update(z′ ∶ Z)

5variables
internal s : R := s0 = 0

7internal discrete loc : R, z : R, u : {a1, a2}

internal now : R≥0 := 0, next : R≥0 := 0
9

transitions
11input update(z′)

eff z := z′

internal control
14pre now ≥ next

eff next := now + ∆;
16s ∶= s − z + loc;

loc ∶= z;
18if s > 0 then u := a1

else u := a2 fi
20

trajectories
22evolve d(now) = 1; d(s) = u

stop when now = next

Figure 5.3: The state regulator system with parameters a1 ∈ R−, a2 ∈ R+, ∆ ∈ R+, δ ∈ R≥0

and D ∈ R.
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B. Based on the updated value of s, u is computed as follows (lines 18–19): If s > 0, then

u is set to a1. Otherwise, u is set to a2.

Along a trajectory, the continuous state s evolves according to the differential equation

ṡ = u (line 22). That is, for any l ∈ L, the function fl of line 24 of Figure 5.1 is defined as

fl(s, u) = u.

Invariant For each mode l ∈ L, we let Il = [−δ + a1∆, δ + a2∆]. That is, the candidate

invariant set Il is defined by two boundary functions Fl1(s) = s + δ − a1∆ and Fl2(s) =

−s + δ + a2∆. The overall candidate invariant set is then given by I ≜ {x ∈ Q∣ Fl1(x.s) ≥

0 and Fl2(x.s) ≥ 0}.

Proving Invariance We use Theorem 5.3.1 to show that I is in fact an invariant of

the system. Clearly, the initial state is contained in I. To verify the control invariance

condition of Lemma 5.3.1, we define ŝ ≜ s + loc to be the global state of the system. From

the assumption on the distance between the reference point and the global state of the

system at the time an update action occurs and periodicity control actions, it can be checked

that when a control action occurs, ŝ − z ∈ [−δ + a1∆, δ + a2∆]. Hence, from the update rule

of s (line 16), the control invariance condition of Lemma 5.3.1 is satisfied. Finally, define

C1 ≜ [0, δ+a2∆] and C2 ≜ [−δ+a1∆,0]. We get that conditions (a)–(d) of Lemma 5.3.2 are

satisfied with c1 = δ − a1∆, c2 = δ + a2∆, b1 = −a1, b2 = a2.

Automatically Finding an Invariant We consider the case where a1 = −1 and a2 = 1.

Assume that an invariant Il for any mode l ∈ R has the following form: Il = {s ∈ R ∣ Fl1(s) ≥

0 and Fl2(s) ≥ 0} where Fl1(s) = s − η1, Fl2(s) = −s + η2 and η1 ≤ −δ + a1∆ and η2 ≥ δ + a2∆

are constants that need to be computed such that all the conditions of Lemma 5.3.2 are

satisfied. (From the previous proof, these constraints on η1 and η2 ensure that the initial

state is contained in I and the control invariance condition of Lemma 5.3.1 are satisfied.)

To prove that Il is in fact an invariant, we use the sets C1 and C2 of the following forms:

C1 = {s ∈ R ∣ G1(s) ≥ 0 and Fl2(s) ≥ 0} and C2 = {s ∈ R ∣ Fl1(s) ≥ 0 and G2(s) ≥ 0} where

G1(s) = s − κ1, G2(s) = −s + κ2 and κ1 and κ2 are constants to be determined.

Clearly, for any s, s0 ∈ R and l ∈ L, ∥fl(s, g(l, s0))∥ = ∥g(l, s0)∥ = 1. Thus, condition (c)

of Lemma 5.3.2 is satisfied with bj = 1 for any sets Cj and Il. With the particular form of
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the sets C1, C2 and Il we have previously chosen, it is straightforward to check that the

problem of finding η1, η2, κ1 and κ2 such that all the conditions of Lemma 5.3.2 are satisfied

for j = 1 is equivalent to finding η1, η2, κ1 and κ2 such that for all s, s0 ∈ R, the followings

are satisfied:

(a) (Fl1(s0) < 0) ∨ (Fl2(s0) < 0) ∨ (G1(s0) ≥ 0) ∨ (Fl1(s) /= 0) ∨ (Fl2(s) < 0) ∨ (s0 ≤ 0),

(b) κ1 ≤ η2, κ1 > η1 and κ1 − η1 ≥ ∆.

Note that condition (a) is obtained from condition (a) of Lemma 5.3.2 while condition

(b) is obtained from conditions (b) and (d) of Lemma 5.3.2. Similarly, for j = 2, the following

conditions need to be satisfied for all s, s0 ∈ R:

(c) (Fl1(s0) < 0) ∨ (Fl2(s0) < 0) ∨ (G2(s0) ≥ 0) ∨ (Fl1(s) < 0) ∨ (Fl2(s) /= 0) ∨ (s0 > 0),

(d) κ2 ≥ η1, κ2 < η2 and η2 − κ2 ≥ ∆.

Applying Farkas Lemma, condition (a) can be proved by finding a constant λ1 and

non-negative constants ν1, . . . , ν3 and µ1, . . . , µ3 such that

ν1Fl1(s0) + ν2Fl2(s0) − µ1G1(s0) + λ1Fl1(s) + ν3Fl2(s) + µ2s0 + µ3 = 0 (5.3)

and at least one of the µ1, µ2, µ3 is strictly positive. Similarly, the validity of condition (c)

can be proved by finding a constant λ2 and non-negative constants ν4, . . . , ν7 and µ4, µ5

such that

ν4Fl1(s0) + ν5Fl2(s0) − µ4G2(s0) + ν6Fl1(s) + λ2Fl2(s) − ν7s0 + µ5 = 0 (5.4)

and either µ4 > 0 or µ5 > 0 (or both).

Using the tool presented in [43], the unknowns that satisfy (5.3), (5.4) and conditions

(b) and (d) are found for δ = 0.08 and ∆ = 0.02 to be: η1 = −0.2, η2 = 0.2, κ1 = −0.1, κ2 = 0.1,

ν1 = 1, ν2 = 2, µ1 = 16, λ1 = 0, ν3 = 0, µ2 = 17, µ3 = 1, ν4 = 0, ν5 = 0, µ4 = 20, ν6 = 0,

λ2 = 0, ν7 = 20 and µ5 = 2. That is, the invariant set is given by Il = [−0.2,0.2] (whereas the

invariant set we have verified manually is given by Il = [−0.1,0.1]).
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Planner

Controller

Vehicle

Brake
Controller

plan(p)

a,φ
x, y
θ, v

brake(b)

Figure 5.4: Planner-controller system.

5.4 Case Study: Alice

In this section, we describe an autonomous ground vehicle (Alice) consisting of the physical

vehicle, modeled by the Vehicle automaton, and the controller, modeled by the Controller

automaton (see Figure 5.4). Vehicle captures the position, orientation and velocity of the

vehicle in the plane. Controller receives information about the state of the Vehicle and

periodically computes the input steering (φ) and acceleration (a). It also receives an infinite4

sequence of waypoints from a Planner and its objective is to compute a and φ such that

the Vehicle (a) remains within a certain bounded distance emax of the planned path, and

(b) makes progress towards successive waypoints at a target speed. Property (a) together

with the assumption (possibly guaranteed by Planner) that all planned paths are at least

emax distance away from obstacles, imply that the Vehicle does not collide with obstacles.

While the Vehicle makes progress towards a certain waypoint, the subsequent waypoints may

change owing to the discovery of new obstacles and changes in the mission plan. Finally,

the Controller may receive an externally triggered brake input, to which it must react by

slowing the Vehicle down. The Vehicle and Controller are modeled as HIOAs, but as we shall

see shortly, the composed system has no inputs and in fact is a PCHA.

5.4.1 Vehicle

The Vehicle automaton of Figure 5.5 specifies the dynamics of the autonomous ground

vehicle with acceleration (a) and steering angle (φ) as inputs. It has two parameters:

(a) φmax ∈ (0, π2 ) is the physical limit on the steering angle, and (b) L is the wheelbase.

The main output variables of Vehicle are (a) x and y coordinates of the vehicle with respect
4The verification technique can be extended in an obvious way to handle the case where the Vehicle has

to follow a finite sequence of waypoints and halt at the end.
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1variables
output x : R := x0; y: R := y0;

3θ: R := θ0; v: R := v0
input a, φ: R

5

trajectories
7evolve d(x) = v cos(θ)

d(y) = v sin(θ)
9if ∣u.φ∣ ≤ φmax

then d(θ) = v
L

tan(φ)

11else d(θ) = v
L

tan( φ∣φ∣φmax) fi

if v > 0 ∨a ≥ 0
13then d(v) = a

else d(v) = 0 fi

Figure 5.5: Vehicle.

to a global coordinate system, (b) orientation θ of the vehicle with respect to the positive

direction of the global x axis, and (c) vehicle’s velocity v. These variables evolve according

to the differential equations of lines 7–14. Two aspects of this Vehicle model are noteworthy:

(i) In determining the orientation of the Vehicle, if the input steering angle φ is greater than

the maximum limit φmax, then the maximum steering in the correct direction is applied.

(ii) The acceleration can be negative only if the velocity is positive, and therefore the Vehicle

cannot move backwards. This Vehicle model requires bounds on minimum and maximum

acceleration, however, the Controller ensures that the input acceleration is always within

such a bound. It is assumed that the Vehicle can execute any valid command without delay.

5.4.2 Controller

Figure 5.6 shows the HIOA specification of the Controller automaton that reads the state

of the Vehicle periodically and issues acceleration and steering outputs to achieve the afore-

mentioned goals. Controller is parameterized by: (a) the sampling period ∆ ∈ R+, (b) the

target speed vT ∈ R≥0, (c) proportional control gains k1, k2 > 0, (d) a constant δ > 0 relating

the maximum steering angle and the speed, that is, while the Vehicle is moving at speed

v, the maximum steering angle is given by δv, and (e) maximum and braking accelerations

amax > 0 and abrake < 0. Restricting the maximum steering angle instead of the maximum

steering rate is a simplifying but conservative assumption. Given a constant relating the

maximum steering rate and the speed, there exists δ as defined above that guarantees that

the maximum steering rate requirement is satisfied.

A path is an infinite sequence of points p1, p2, . . . where pi ∈ R2, for each i. The main
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signature
2input plan(p:Seq[R]); brake(b ∶ On,Off)

internal main
4

variables
6input x, y, θ, v: R

output a,φ: R := (0, 0)
8internal brake: {On, Off} := Off

path: Seq[R2] := arbitrary

10new path: Seq[R2] := path
seg: N := 1

12e1, e2, d ∶ R := [e1,0, e2,0, d0 ]

now: R := 0; next:R≥0 := 0
14

transitions
16input plan(p)

eff new path := p
18

input brake(b)
20eff brake := b

22internal main
pre now = next

24eff next := now + ∆
if path ≠ new path ∨d ≤ 0 then

26if path ≠ new path
then seg := 1; path := new path

28elseif d ≤ 0
then seg := seg + 1 fi

30let p⃗ = [
path[seg + 1].x − path[seg].x
path[seg + 1].y − path[seg].y

]

q⃗ = [
path[seg + 1].y − path[seg].y

−(path[seg + 1].x − path[seg].x)
]

32r⃗ = [
path[seg + 1].x − x
path[seg + 1].y − y)

]

e1 ∶=
1
∥q⃗∥ q⃗ ⋅ r⃗

34e2 ∶= θ −∠p⃗

d ∶= 1
∥p⃗∥ p⃗ ⋅ r⃗

36fi

38let φd = −k1 e1 − k2 e2

φ =
φd
∣φd ∣ min(δ × v, ∣φd∣)

40

if brake = On then a := abrake
42elseif brake = Off ∧ v < vT

then a := amax
44else a := 0 fi

46trajectories
evolve d(now) = 1

48d(e1) = v sin(e2)
d(e2) =

v
L

tan(φ)

50d(d) = -v cos(e2)
stop when now = next

Figure 5.6: Controller with parameters vT , k1, k2 ∈ R≥0, δ,∆ ∈ R+ and abrake < 0.

state variables of Controller are the following:

(a) brake and new path are command variables that store the information received through

the most recent brake (On or Off ) and plan (a path) actions.

(b) path is the current path being followed by Controller.

(c) seg is the index of the last waypoint visited in the current path. That is, seg + 1 is the

index of the current waypoint. The straight line joining path[seg] and path[seg + 1 ] is

called the current segment .

(d) deviation e1 is the signed perpendicular distance from the current position of the Vehicle

to the current segment (see Figure 5.7).

(e) disorientation e2 is the difference between the current orientation (θ) of the Vehicle and

the angle of the current segment.

(f) waypoint-distance d is the signed distance of the Vehicle to the current waypoint mea-

sured parallel to the current segment.
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vehicle

p[seg]
p[seg + 1]

current seg.

θ

e2

e 1

d

Figure 5.7: Deviation and disorientation.

The brake(b) action is an externally controlled input action that informs the Controller

about the application of an external brake (b = On) or the removal of the brake (b = Off ).

When brake(b) occurs, b is recorded in the command variable brake. The plan(p) action

is controlled by the external Planner and it informs the Controller about a newly planned

path p. When this action occurs, the path p is recorded in the variable new path. The main

action occurs once every ∆ time starting from time 0. This action updates the values of

the variables e1 , e2 ,d ,path, seg ,a and φ as follows:

A. If new path (obtained from the Planner) is different from path, then seg is set to 1 and

path is set to new path (line 27).

B. If new path is the same as path and the waypoint-distance d is less than or equal to 0,

then seg is set to seg + 1 (line 29).

C. For both of the above cases several temporary variables are computed that are in turn

used to update e1 , e2 ,d as specified in lines 33–35; otherwise these variables remain

unchanged.

D. The steering output to the Vehicle φ is computed using a proportional control law

saturated at δ×v (for the mechanical protection of the steering). That is, the magnitude

of the steering output φ is set to the minimum of ∣ − k1e1 − k2e2∣ and v × δ (line 39).

E. The acceleration output a is computed using a “bang-bang” control law. If brake is On,

then a is set to the braking deceleration abrake; otherwise, it executes amax until the

Vehicle reaches the target speed, at which point a is set to 0.

Along a trajectory, the evolution of the variables are specified by the differential equa-

tions on lines 48–50. These differential equations are derived from the update rules described

above and the differential equations governing the evolution of x, y, θ and v.
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5.4.3 Complete System

Let A be the composition of the Controller and the Vehicle automata. The continuous

state of A is defined by the valuations of x, y, θ, v, e1, e2 and d of Vehicle and Controller.

For convenience, we define a single derived variable s of type X = R7 encapsulating all

these variables. The discrete state of A is defined by the valuations of brake, path and seg

of Controller. A derived variable loc of type L = Tuple[{On,Off },Seq[R2],N] is defined

encapsulating all these variables. It can be checked easily that the composed automaton A

is a PCHA. Appendix 5.A describes the variables, actions, state transition functions of the

corresponding PCHA.

5.5 Analysis of the System

The informally stated goals of the system translate to the following subgoals:

A. (safety) At all reachable states of A, the deviation (e1) of the Vehicle is upperbounded

by emax, where emax is determined in terms of system parameters.

B. (waypoint progress) The Vehicle reaches successive waypoints.

First, in Section 5.5.1 and 5.5.2, we define a family {Ik}k∈N of subsets of QA and using

Lemma 5.3.2 and Lemma 5.3.3, we conclude that they are invariant with respect to the

control-free execution fragments of A. From the specification of main action, we see that

the discrete state changes only occur if path /= new path or waypoint-distance d ≤ 0 (i.e.,

the Vehicle has reached the end of the current segment). Hence, using Theorem 5.3.1, we

conclude that any execution fragment starting in Ik remains within Ik, provided that path

and current segment do not change.

In Section 5.5.3, we establish the following segment progress property: There exist cer-

tain threshold values of deviation, disorientation and waypoint-distance such that from any

state x with greater deviation, disorientation and waypoint-distance, the Vehicle reduces

its deviation and disorientation with respect to the current segment, while making progress

towards its current waypoint. This intermediate result is proved by showing that start-

ing from Ik, Ik+1 ⊆ Ik is reached in a finite amount of time and for k smaller than the

threshold value k∗, Ik+1 is strictly contained in Ik. Finally, in Section 5.5.4, we prove an

invariance of I0 and derive geometric properties of planner paths that can be followed by A
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safely. These geometric properties specify the minimum length of a path segment and the

relationship between the segment length and the maximum difference between consecutive

segment orientations and are derived from the segment progress property. An invariance

of I0 provides a proof certificate that A satisfies the safety property (A) and the waypoint

progress property (B). Since Alice’s original parameters violate the sufficient conditions for

an invariance of I0, it is not guaranteed that the behavior of Alice satisfies these subgoals.

In fact, during the NQE of the 2007 DARPA Urban Challenge, Alice violated the safety

property (A), leading to the stuttering behavior.

5.5.1 Family of Invariants

We define, for each k ∈ N, the set Ik that bounds the deviation e1 of the Vehicle to be

within [−εk, εk]. This bound on deviation alone, of course, does not give us an inductive

invariant. If the deviation is εk and the Vehicle is highly disoriented, then it would violate

Ik. Thus, Ik also bounds the disorientation such that the steering angle computed based

on the proportional control law is within [−φk, φk]. To prevent the Vehicle from not being

able to turn at low speed and to guarantee that the execution speed of the Controller is fast

enough with respect to the speed of the Vehicle, Ik also bounds the speed of the Vehicle.

Formally, Ik is defined in terms of εk, φk ≥ 0 as

Ik ≜ {x ∈ Q ∣ ∀i ∈ {1, . . .6}, Fk,i(x.s) ≥ 0} (5.5)

where Fk,1, . . . , Fk,6 ∶ R7 → R are defined as follows:

Fk,1(s) = εk − s.e1; Fk,2(s) = εk + s.e1; (5.6)

Fk,3(s) = φk + k1s.e1 + k2s.e2; Fk,4(s) = φk − k1s.e1 − k2s.e2; (5.7)

Fk,5(s) = vmax − s.v; Fk,6(s) = δs.v − φb. (5.8)

Here vmax = vT + ∆amax and φb > 0 is an arbitrary constant. As we shall see shortly,

the choice of φb affects the minimum speed of the Vehicle and also the requirements of

a brake action. We examine a state x ∈ Ik, that is, Fk,i(x.s) ≥ 0 for any i ∈ {1, . . . ,6}.

Fk,1(s), Fk,2(s) ≥ 0 means s.e1 ∈ [−εk, εk]. Fk,3(s), Fk,4(s) ≥ 0 means that the steering angle

computed based on the proportional control law is within the range [−φk, φk]. Further, if
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φk ≤ φmax, then the computed steering satisfies the physical constraint of the Vehicle. If, in

addition, we have φb ≥ φk and Fk,6(s) ≥ 0, then the Vehicle actually executes the computed

steering command. Fk,5(s) ≥ 0 means that the speed of the Vehicle is at most vmax.

For each k ∈ N, we define

θk,1 =
k1

k2
εk −

1
k2
φk and θk,2 =

k1

k2
εk +

1
k2
φk. (5.9)

That is, θk,1 and θk,2 are the values of e2 at which the proportional control law yields the

steering angle of φk and −φk, respectively, given that the value of e1 is −εk. From the above

definitions, we make the following observations about the boundary of the Ik sets: for any

k ∈ N and x ∈ Ik, (a) x.e2 ∈ [−θk,2, θk,2], (b) Fk,1(x.s) = 0 implies x.e2 ∈ [−θk,2,−θk,1],

(c) Fk,2(x.s) = 0 implies x.e2 ∈ [θk,1, θk,2], (d) Fk,3(x.s) = 0 implies x.e2 ∈ [−θk,2, θk,1], and

(e) Fk,4(x.s) = 0 implies x.e2 ∈ [−θk,1, θk,2].

We assume that φb and all the ε′ks and φk’s satisfy the following assumptions that are

derived from physical and design constraints on the Controller. The region in the φk,εk

plane that satisfies Assumption 5.5.1 is shown Figure 5.8.
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Figure 5.8: (a) The set of (εk, φk) that satisfies Assumptions 5.5.1 (c) and (d) and are
represented by the green region. (b) The relationship between the maximum bound on ∆
and φk for εk = 1

k1
φk.

Assumption 5.5.1. (Vehicle and controller design) (a) φk ≤ φb ≤ φmax and φk < π
2 ,

(b) 0 ≤ θk,1 ≤ θk,2 < π
2 , (c) L cotφk sin θk,2 < k2

k1
, (d) ∆ ≤ c

b where c = 1√
k2
1+k

2
2

(φk − φ̃),

b = vmax
√

sin2 θk,2 + 1
L2 tan2(φ̃) and φ̃ = cot−1 ( k2

k1L sin θk,2
),5 and (e) tanφk

2L vmax∆ ≤ π
2 .

5Using Assumption 5.5.1(c), it can be shown that φ̃ < φk so c
b
> 0.
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If the Vehicle is forced to slow down too much at the boundary of an Ik by the brakes,

then it may not be able to turn enough to remain inside Ik. Thus, in verifying the above

properties we need to restrict our attention to executions in certain good brake controllers in

which brake inputs do not occur at low speeds and are not too persistent. This is formalized

by the next definition.

Definition 5.5.1. A brake controller is good if its composition with Controller gives rise to

an execution α = τ0a1τ1a2 . . . that satisfies: If a brake(On) action occurs at time t, then for

any i ∈ N such that t ∈ dom(τi), (a) (τi ↓ v)(t) > φb
δ + ∆∣abrake∣, and (b) brake(Off ) must

occur within time t + 1
∣abrake∣

((τi ↓ v)(t) − φb
δ −∆∣abrake∣).

We assume that the brake controller satisfies the above assumption and for the remainder

of this section, we only consider executions in good brake controllers. A state x ∈ QA is

reachable if there exists an execution α in a good brake controller with α.lstate = x.

5.5.2 Invariance Property

We fix a k ∈ N for the remainder of the section and denote Ik, Fk,i as I and Fi, respectively,

for i ∈ {1, . . . ,6}. As in Lemma 5.3.2, we define I = {s ∈ X ∣Fi(s) ≥ 0} and for each

i ∈ {1, . . . ,6}, ∂Ii = {s ∈ X ∣ Fi(s) = 0} and let the functions f1, f2, . . . , f7 ∶ R7 × R2 → R

describe the evolution of x, y, θ, v, e1, e2 and d, respectively. We prove that I satisfies the

control-free invariance condition of Lemma 5.3.1 by applying Lemma 5.3.2.

First, we check that the conditions in Lemma 5.3.2 are satisfied. This analysis appears

in Appendix 5.B. It does not involve solving differential equations but relies on algebraic

simplification of the expressions defining the vector fields and the boundaries {∂Ii}i∈{1,...6}

of the invariant set.

The next lemma shows that the subtangential, bounded distance and bounded speed

conditions (of Lemma 5.3.2) are satisfied. The proof for j = 5 is presented here as an

example. The rest of the proof is provided in Appendix 5.B.

Lemma 5.5.1. For each l ∈ L and j ∈ {1, . . . ,6}, the subtangential, bounded distance and

bounded speed conditions (of Lemma 5.3.2) are satisfied.

Proof. Define C5 ≜ {s ∈ I ∣ s.v ≤ vT }. We apply Lemma 5.3.3 to prove the bounded distance

and the bounded speed conditions. First, note that the projection of I onto the (e1, e2, v)
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space is compact and C5 is closed. Let UI = {g(l, s) ∣l ∈ L, s ∈ I}. From the definition

of I, it can be easily checked that f is continuous in I × UI . In addition, s.v = vmax for

any s ∈ ∂I5. Since amax,∆ > 0, vmax = vT + ∆amax > vT . Therefore, C5 ∩ ∂I5 = ∅. Hence,

from Lemma 5.3.3, the bounded distance and bounded speed conditions are satisfied. To

prove the subtangential condition, we pick an arbitrary s ∈ ∂I5 and s0 ∈ I ∖ C5. From the

definitions of I and C5, vT < s0.v ≤ vmax. Therefore, for any l ∈ L, either f4(s, g(l, s0)) = 0 or

f4(s, g(l, s0)) = abrake and we can conclude that ∂F5

∂s ⋅ f(s, g(l, s0)) = −f4(s, g(l, s0)) ≥ 0.

From the definition of each Cj , we can derive the lower bound cj on the distance from Cj

to ∂Ij and the upper bound bj on the length of the vector field f where the control variable

u is evaluated when the continuous state s ∈ Cj . Using these bounds and Assumption

5.5.1(d), we prove the sampling rate condition.

Lemma 5.5.2. For each l ∈ L, the sampling rate condition is satisfied.

Thus, conditions (a)–(d) of Lemma 5.3.2 are satisfied. From Theorem 5.3.1, we obtain

that good execution fragments of A preserve invariance of I, provided that the path and

current segment do not change over the fragment.

Proposition 5.5.1. For any plan-free execution fragment β starting at a state x ∈ I and

ending at x′ ∈ QA, if x.path = x.new path and x.seg = x′.seg, then x′ ∈ I.

Proof. From Lemma 5.5.1 and 5.5.2, we see that all the conditions in Lemma 5.3.2 are

satisfied. Thus, we can conclude that the control-free invariance condition of Lemma 5.3.1 is

satisfied. In addition, from the specification of main action, we see that a discrete transition

in the continuous state s only occurs when path /= new path (i.e., a new path is received)

or s.d ≤ 0 (i.e., the Vehicle has reached the end of the current segment). Hence, if a

closed execution β does not contain a plan action, β.fstate ⌈ path = β.fstate ⌈ new path and

β.lstate ⌈ seg = β.fstate ⌈ seg, then a discrete transition in the continuous state s does not

occur in β. Applying Theorem 5.3.1, we get the desired result.

5.5.3 Segment Progress

In this section, we establish the segment progress property, i.e., there exist certain threshold

values of deviation, disorientation and waypoint-distance such that from any state x with

greater deviation, disorientation and waypoint-distance, the Vehicle reduces its deviation
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and disorientation with respect to the current segment, while making progress towards its

current waypoint. First, we prove the progress property over a pasted trajectory τ between

any two main actions. That is, suppose right after an occurrence of a main action, x ∈ Ik
for some k ∈ N. Then, right before an occurrance of the next main action, x ∈ Ik+1 where

Ik+1 ⊆ Ik and if k is less than some threshold k∗, then Ik+1 is strictly contained in Ik.

Next, in Lemma 5.5.4, we compute the bound d∗ on the maximum change in the value

of the waypoint-distance d over τ . Given the progress property over τ and the bound d∗, we

can then establish the segment progress property defined at the beginning of Section 5.5.

That is, starting from a state x and ending at x′, if x ∈ Ik, then x′ ∈ Ik+n where an integer

n ≥ 0 depends on x.d − x′.d and the system parameters, provided that path and current

segment do not change. Furthermore, if x.d−x′.d is large enough, then n is strictly positive.

By solving the differential equation that describes the evolution of e1 and e2 along τ

and using the periodicity of main actions, the next lemma provides the desired progress

property over τ . The complete proof appears in Appendix 5.C.

Lemma 5.5.3. Suppose τ.fstate ∈ Ik for some k ∈ N. Then τ.lstate ∈ Ik+1 whose parameters

εk+1 and φk+1 are given by εk+1 = εk − ε̂k and φk+1 = φk − φ̂k for some ε̂k, φ̂k ≥ 0. In addition,

there exists a natural number k∗ such that for any k < k∗, ε̂k and φ̂k are strictly positive,

that is, Ik+1 ⊊ Ik.

The precise definitions of ε̂k, φ̂k and k∗ are given in Appendix 5.C. The plots showing the

progress in the deviation and disoriantation are shown in Figure 5.9(a) and Figure 5.9(b),

respectively.

The following lemma provides the value of the bound d∗ on the maximum change in the

value of d over τ .

Lemma 5.5.4. Suppose τ.fstate ∈ Ik for some k ∈ N. For any t ∈ dom(τ), ∣(τ ⌈ d)(t) −

τ.fstate ⌈ d∣ ≤ d∗ where d∗ = vmax∆.

Proof. From Proposition 5.5.1, the definitions of F5 and F6 and the definition of f7 that

describes the evolution of d, we get that maxs,s0∈I ∥f7(s, g(l, s0))∥ ≤ vmax. Since dom(τ) =

[0,∆], we get ∣(τ ↓ d)(t) − τ.fstate ⌈ d∣ ≤ maxs,s0∈I ∥f7(s, g(l, s0))∥∆ ≤ vmax∆.

Using Lemma 5.5.3 and Lemma 5.5.4, we establish the relationship between the progress

of Ik’s and the decrease in the value of d. The complete proof can be found in Appendix 5.C.
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Figure 5.9: The progress in (a) deviation and (b) disorientation. (c) A sequence of shrinking
Ik’s visited by A in making progress towards a waypoint.

Lemma 5.5.5. For each k ∈ N, starting from any reachable state x ∈ Ik such that x.d >

vmax∆, x.path = x.new path and x.next = x.now, any plan-free execution fragment β with

β.ltime = ∆ satisfies β.lstate ∈ Ik+1 and β.lstate ⌈ d ≥ x.d − vmax∆.

Finally, we conclude the section by establishing the segment progress property defined

at the beginning of Section 5.5.

Proposition 5.5.2. For each k ∈ N, starting from any reachable state x ∈ Ik, any reachable

state x′ is in Ik+n where n = max(⌊x.d−x′.d
vmax∆ ⌋ − 1,0), provided that path and current segment

do not change.

Proof. Consider an arbitrary closed execution fragment β starting at x and ending at x′.

Since by assumption, β is a plan-free execution fragment such that β.lstate ⌈ path = β.fstate ⌈

new path and β.lstate ⌈ seg = β.fstate ⌈ seg, from Proposition 5.5.1, we know that β.lstate ∈
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Ik. This completes the proof for the case where ⌊x.d−x′d
vmax∆ ⌋ − 1 ≤ 0.

Next, consider the case where ⌊x.d−x′.d
vmax∆ ⌋ − 1 > 0. From the structure of a PCHA, we see

that next = now every ∆ time. So, the first state in β such that next = now occurs no later

than time ∆. Using Lemma 5.5.4, we see that at this state, d ≥ x.d − vmax∆. Applying

Lemma 5.5.5 and using an invariance of Ik for any k proved in Proposition 5.5.1, we get

that β1.lstate ∈ Ik+n where n = ⌊x.d−vmax∆−x′.d
vmax∆ ⌋.

A sequence of shrinking Ik’s visited by A in making progress towards a waypoint is

shown in Figure 5.9(c).

5.5.4 Safety and Waypoint Progress: Identifying Safe Planner Paths

In this section, we derive a sufficient condition on planner paths that can be safely followed

with respect to a candidate invariant set I0 whose parameters ε0 ∈ [0, emax] and φ0 ∈

[0, φmax] satisfy Assumption 5.5.1 and are chosen such that I0 contains the initial state

Q0A. Then, we prove an invariance of I0 and conclude that the safety and waypoint

progress properties (A) and (B) defined at the beginning of Section 5.5 are satisfied.

The proof is structured as follows. First, we consider an execution fragment where path

does not change and starting with waypoint-distance not shorter than some threshold D∗.

Lemma 5.5.6 uses the segment progress property established in Section 5.5.3 to prove that

this execution fragment preserves an invariance of I0. Then, in Lemma 5.5.7 and Lemma

5.5.8, we show that right after the path changes, the waypoint-distance is not shorter than

D∗ and the state of A remains in I0. Using these results, Lemma 5.5.9 concludes that an

execution fragment that updates the path exactly once by the first main action preserves an

invariance of I0. Finally, we use Lemma 5.5.6 and Lemma 5.5.9 to conclude the section that

I0 is in fact an invariant of A and with this result, we conclude that the system satisfies

the safety and waypoint progress properties (A) and (B) defined at the beginning of Section

5.5.

The following assumption provides sufficient conditions for planner paths that can be

safely followed. The key idea in the condition is: Longer path segments can be succeeded by

sharper turns. Following a long segment, the Vehicle reduces its deviation and disorientation

by the time it reaches the end; thus, it is possible for the Vehicle to turn more sharply at

the end without breaking an invariance of I0.
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Assumption 5.5.2. (Planner paths) Let p0, p1, . . . be a planner path; for i ∈ N, let λi be

the length of the segment pipi+1 and σi be the difference in orientation of pipi+1 and that

of pi+1pi+2. Then, for each i ∈ {0,1, . . .},

(a) λi ≥ 2vmax∆ + ε0.

(b) Let n = ⌊λi−ε0−2vmax∆
vmax∆ ⌋. Then, λi and σi satisfy the following conditions:

εn ≤ 1
∣ cosσi∣

(ε0 − vmax∆∣ sinσi∣), (5.10)

φn ≤ φ0 − k1vmax∆ sin ∣σi∣ − k1εn(1 − cosσi) − k2∣σi∣, (5.11)

where, given ε0 and φ0, εn and φn are defined recursively for any n > 0 by εn = εn−1− ε̂n−1

and φn = φn−1 − φ̂n−1 where for each k ∈ N, ε̂k and φ̂k are defined in Lemma 5.5.3.

The relationship between λ and the maximum value of σ which satisfies this assumption

is shown in Figure 5.10.
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Figure 5.10: Segment length vs. maximum difference between consecutive segment orien-
tations, for different values of L and δ.

Remark 5.5.1. The choice of ε0’s and φ0’s affects both the requirements on a safe path

(Assumption 5.5.2) and the definition of a good brake controller (Definition 5.5.1). Larger

ε0’s and φ0’s allow sharper turns in planned paths but force brakes to occur only at higher

speeds. That is, relaxing the constraint on a path results in the tighter constraint on a

brake action. This tradeoff is related to the design flaw of Alice as discussed in Section 1.1.

Without having quantified the tradeoff, we inadvertently allowed a path to have sharp turns

and also brakes at low speeds—thus violating safety.
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To establish that I0 is an invariant of A, we further assume that (a) new planner paths

begin at the current position, (b) Vehicle is not too disoriented with respect to new paths,

and (c) Vehicle speed is not too high as stated in Assumption 5.5.3.

Assumption 5.5.3. (plan action and new path)

(a) Any new path p = p1p2 . . . satisfies p1 = [xp, yp] where xp and yp are the values of the

variable x and y, respectively, when the path is received (i.e., when the plan action

occurs). That is, for any new input path, the path must begin at the current position

of the Vehicle.

(b) Let vp and θp be the speed and the orientation of the Vehicle, respectively, when a plan

action occurs. Then, vp < ε0

∆
√

1+sin2 θ0,2
−amax∆ where given ε0 and φ0, θ0,2 is defined as

in (5.9). In addition, let p = p1p2 . . . be the received path and let p⃗ be the vector that

represents a straight line defined by p1 and p2. Then,

∣∠p⃗ − θp∣ ≤
φ0

k2
− (vp + amax∆)∆(k1

k2

√
1 + sin2 θ0,2 +

tanφ0

L
) .

First, we consider an execution fragment where path does not change and starting with

a large enough waypoint-distance. Using the progress property established in Section 5.5.3,

the update rule of the variable seg and Lemma 5.5.4, we can show that before switching to

the next segment, x ∈ In where n ≥ 0 depends on the segment length. (See Appendix 5.D

for the complete proof.) Since we restrict the sharpness of the turn with respect to segment

length (Assumption 5.5.2), we can then conclude that this execution fragment preserves an

invariance of I0.

Lemma 5.5.6. Consider a plan-free execution fragment β starting at a state x ∈ I0. Suppose

x.path = x.new path and x.d ≥ D∗ where D∗ = λ1 − ε0 − vmax∆ and λ1 is the length of the

segment x.seg. Then β.lstate ∈ I0.

The next two lemmas show that Assumption 5.5.3 is sufficient to guarantee that if the

path is changed, then all the assumptions in the Lemma 5.5.6 are satisfied. All the proofs

appear in Appendix 5.D.

Lemma 5.5.7. For each state x,x′ ∈ Q such that x.path /= x.new path, if x ∈ I0 and

x
main→ x′, then x′.d ≥ λ−vmax∆ > 0 where λ is the length of the first segment of x.new path.
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Lemma 5.5.8. For each state x,x′ ∈ Q such that x.path /= x.new path, if x ∈ I0 and

x
main→ x′, then x′ ∈ I0.

Using the previous three lemmas, the following lemma concludes that an execution

fragment that updates the path exactly once by the first main action preserves an invariance

of I0.

Lemma 5.5.9. Consider a plan-free execution fragment β starting at a state x ∈ I0. If

x.path /= x.new path, then β.lstate ∈ I0.

Proof. β can be written as β = β1mainβ2 where β1 = τ0brakeτ1brake . . . τn and β2 is a plan-

free execution fragment with β2.fstate ⌈ path = β2.fstate ⌈ new path. Clearly, β1.lstate ⌈

path /= β1.lstate ⌈ new path. In addition, β1.fstate ∈ I0 and thus, from Proposition 5.5.1,

β1.lstate ∈ I0. Applying Lemma 5.5.7 and Lemma 5.5.8, we see that β2.fstate ⌈ d ≥ λ1 −

vmax∆ ≥ λ1 − ε0 − vmax∆ and β2.fstate ∈ I0 where λ1 is the length of the first segment of

x.new path. Therefore, from Lemma 5.5.6, β.lstate ∈ I0.

Finally, we conclude that I0 is an invariant of A.

Theorem 5.5.1. Suppose the initial state x0 ∈ I0 and x0.d ≥ λ1 − ε0 − vmax∆ where λ1 is

the length of the first segment of the initial path. Then, I0 is an invariant of A.

Proof. Any execution α can be written as α = β1planβ2plan . . . where β1 is a plan-free

execution fragment with β1.fstate ⌈ path = β1.fstate ⌈ new path and for any i ≥ 2, βi is a

plan-free execution fragment with βi.fstate ⌈ path /= βi.fstate ⌈ new path. Since plan action

does not affect the variable s, if β1.lstate ∈ I0, then β2.fstate ∈ I0 and using Lemma 5.5.9, we

get that for any i ≥ 2, βi.lstate ∈ I0. Thus, we only need to show that β1.lstate ∈ I0. But this

is true from Lemma 5.5.6 since β1.fstate ⌈ d = x0.d ≥ λ1 − ε0 − vmax∆ and β1.fstate ∈ I0.

Since for any state x ∈ I0, ∣x.e1∣ ≤ ε0 ≤ emax, invariance of I0 guarantees the safety

property (A). For property (B), we note that for any state x ∈ I0, there exists vmin > 0 such

that x.v ≥ vmin > 0 and ∣x.e2∣ ≤ θ0,2 < π
2 , that is, ḋ = f7(x.s, u) ≤ −vmin cos θ0,2 < 0 for any

u ∈ U . Thus, it follows that the waypoint-distance decreases and the Vehicle makes progress

towards its waypoint.

The simulation results are shown in Figure 5.11, which illustrate that the Vehicle is

capable of making a sharp left turn, provided that the path satisfies Assumption 5.5.2. In
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Figure 5.11: The positions of Alice (dashed line) as it follows a path (solid line) to execute
a sharp left turn. The initial path is drawn in thick solid (black) line. When brake is
triggered, a thick dashed (red) line is drawn on the position of Alice. (a) The path satisfies
Assumption 5.5.2. (b) The path does not satisfy the assumption and the replan occurs due
to excessive deviation. The replanned paths are drawn in thin solid (grey) line.

addition, we are able to replicate the stuttering behavior described in Section 1.1 when

Assumption 5.5.2 is violated.

5.6 Conclusions

Motivated by a design bug that caused an undesirable behavior of Alice, an autonomous

vehicle built at Caltech for the 2007 DARPA Urban Challenge, this chapter introduced

Periodically Controlled Hybrid Automata (PCHA), a subclass of Hybrid I/O Automata

that is suitable for modeling embedded control systems with periodic sensing and actuation.
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New sufficient conditions for verifying invariant properties of PCHAs were presented. For

PCHAs with polynomial continuous vector fields, it is possible to check these conditions

automatically using, for example, quantifier elimination or sum of squares relaxations. The

intuition behind these conditions is that for an execution fragment to leave an invariant set

I, it needs to cross the boundary ∂I of I. Hence, to verify invariance of I, it is sufficient

to identify a subset C of I such that: (a) there is enough separation between C and ∂I

to ensure that if a control law is evaluated when the state is inside C, then it is evaluated

again before an execution fragment reaches ∂I, and (b) if the control law is evaluated

when the state is outside C, then the vector field on ∂I points inwards with respect to

∂I. These conditions can be generalized to the case where a collection of subsets C’s

corresponding to different parts of ∂I is needed to prove invariance of I. An example that

illustrates automatic construction of an invariant set using the constraint-based approach

was provided.

We then applied the proposed technique to manually verify a sequence of invariant

properties of the planner-controller subsystem of Alice. Geometric properties of planner-

generated paths were derived that guarantee that such paths can be safely followed by

the controller. The analysis revealed that the software design was not inherently flawed;

the undesirable behavior was caused by an unfortunate choice of certain parameters. The

simulation results verified that with the proper choice of parameters, the observed failure

does not occur.

Appendix

5.A Vehicle∥Controller as a PCHA

Here we show that the composed automaton A = Vehicle∥Controller is a Periodically Con-

trolled Hybrid Automaton. We define an automaton A′ that is identical to A except that

its variables, actions and transition functions are renamed to match the definition of the

generic PCHA of Figure 5.1.

Variables.

A′ has the following variables.
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(a) a continuous state variable s ≜ ⟨x, y, θ, v, e1, e2, d⟩ of type X = R7.

(b) a discrete state variable loc ≜ ⟨brake, path, seg⟩ of type L = Tuple[{On,Off },Seq[R2],N].

(c) a control variable is u = ⟨a,φ⟩ of type U = R2.

(d) two command variables z1 ≜ brake of type Z1 = {On,Off } and z2 = new path of type

Z2 = Seq[R2].

Actions and transitions.

A has two input update actions, brake(b) and plan(p), and the command variables z1 and

z2 store the values b and p, respectively, when these actions occur.

An internal control action main occurs every ∆ time, starting from time 0. That is,

values of ∆1 and ∆2 as defined in a generic PCHA are ∆1 = ∆ and ∆2 = 0. The control law

function g and the state transition function h of A can be derived from the specification of

main action in Figure 5.6. Let g = ⟨ga, gφ⟩ where ga ∶ L×X → R and gφ ∶ L×X → R represent

the control law for a and φ, respectively, and are given by

ga(l, s) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

abrake if l.brake = On

amax if l.brake = Off ∧ s0.v < vT
0 otherwise

gφ(l, s) = φd
∣φd∣

min(δ × s.v, ∣φd∣)

where φd = −k1s.e1 − k2s.e2. Let h = ⟨hs,1, . . . , hs,7, hl,1, hl,2, hl,3⟩ where hs,1, . . . , hs,7 ∶ L ×

X ×Z1 ×Z2 → R describe the discrete transition of x, y, θ, v, e1, e2 and d components of s,

respectively, and hl,1 ∶ L × X × Z1 × Z2 → {On,Off }, hl,2 ∶ L × X × Z1 × Z2 → Seq[R2] and

hl,3 ∶ L×X ×Z1×Z2 → N describe the discrete transition of brake, path and seg, respectively.
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Then, the function h is given by

hs,1(l, s, z1, z2) = s.x

hs,2(l, s, z1, z2) = s.y

hs,3(l, s, z1, z2) = s.v

hs,4(l, s, z1, z2) = s.θ

hs,5(l, s, z1, z2) =
⎧⎪⎪⎪⎨⎪⎪⎪⎩

s.e1 if l.path = z2 ∧ s.d > 0
1

∥q⃗∥ q⃗ ⋅ r⃗ otherwise

hs,6(l, s, z1, z2) =
⎧⎪⎪⎪⎨⎪⎪⎪⎩

s.e2 if l.path = z2 ∧ s.d > 0

s.θ −∠p⃗ otherwise

hs,7(l, s, z1, z2) =
⎧⎪⎪⎪⎨⎪⎪⎪⎩

s.d if l.path = z2 ∧ s.d > 0
1

∥p⃗∥ p⃗ ⋅ r⃗ otherwise

hl,1(l, s, z1, z2) = z1

hl,2(l, s, z1, z2) = z2

hl,3(l, s, z1, z2) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

1 if l.path /= z2

l.seg + 1 if l.path = z2 ∧ s.d ≤ 0

l.seg otherwise

where the temporary variable p⃗, q⃗ and r⃗ are computed as in the Controller specification

based on the updated value of path and seg.

Trajectories.

From the the state models of Vehicle and Controller automata specified on line 14 of Fig-

ure 5.5 and lines 48–50 of Figure 5.6, we see that A only has one state model. For any value

of l ∈ L, the continuous state s evolves according to the differential equation ṡ = f(s, u)

where f = ⟨f1, f2, . . . , f7⟩ and f1, . . . , f7 ∶ X ×U → R are associated with the evolution of the

x, y, θ, v, e1, e2 and d components of s, respectively. Using the definition of the control
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law function g defined above, we can derive the following components of f(s, g(l, s0)):

f1(s, g(l, s0)) = s.v cos(s.θ), f2(s, g(l, s0)) = s.v sin(s.θ)

f3(s, g(l, s0)) = f6(s, g(l, s0)) =
s.v

L
tan( φd∣φd∣

min(∣φd∣, δs0.v, φmax))

f4(s, g(l, s0)) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

abrake if l.brake = On ∧ s.v > 0

amax if l.brake = Off ∧ s0.v < vT
0 otherwise

f5(s, g(l, s0)) = s.v sin(s.e2)

f7(s, g(l, s0)) = −s.v cos(s.e2)

where φd = −k1s0.e1 − k2s0.e2.

5.B Invariant Verification

From the definition of a good execution (Definition 5.5.1), we show that when the value of

the variable brake is On, the speed of the Vehicle is at least φb
δ +∆∣abrake∣.

Lemma 5.B.1. At any reachable state x of A, if x.brake = On then x.v ≥ φb
δ +∆∣abrake∣.

Proof. Consider an arbitrary execution fragment, α = τ0a1τ1a2 . . . and an arbitrary i ∈ N

such that (τi ↓ brake)(0) = On. Since the initial value of the variable brake is Off , there

must exists j ≤ i such that aj is a brake(On) action and for any natural number m ∈ [j, i],

am is not a brake(Off ) action. Let (τj−1.lstate) ⌈ v = vb. Since aj is a brake(On) action which

does not affect v, we get (τj .fstate) ⌈ v = vb. From Definition 5.5.1, vb > φb
δ +∆∣abrake∣ and

there must exists k > i such that ak is a brake(Off ) action and ∑k−1
m=j τm.ltime ≤ 1

∣abrake∣
(vb −

φb
δ −∆∣abrake∣). So for any t ∈ dom(τi), we get

(τi ↓ v)(t) ≥ vb + min
s,s0∈X ,l∈L

f4(s, g(l, s0))(t +
i−1

∑
m=j

τm.ltime)

≥ vb + abrake(
k−1

∑
m=j

τm.ltime) = φb
δ
+∆∣abrake∣.

The next lemma shows that the subtangential, bounded distance and bounded speed
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conditions (of Lemma 5.3.2) are satisfied. The proof utilizes Lemma 5.3.3. The knowledge

about the reachable state x of A with x.brake = On, provided in Lemma 5.B.1, is needed

to prove the subtangential condition for j = 6.

Lemma 5.5.1. For each l ∈ L and j ∈ {1, . . . ,6}, the subtangential, bounded distance and

bounded speed conditions (of Lemma 5.3.2) are satisfied.

Proof. First, we define the sets {Cj}j∈{1,...,6} as follows:

C1 ≜ C2 ≜ ∅,

C3 ≜ {s ∈ I ∣ − k1s.e1 − k2s.e2 ≤ 0 ∨L cot(−k1s.e1 − k2s.e2) sin θk,2 ≥
k2

k1
},

C4 ≜ {s ∈ I ∣ − k1s.e1 − k2s.e2 ≥ 0 ∨L cot(k1s.e1 + k2s.e2) sin θk,2 ≥
k2

k1
},

C5 ≜ {s ∈ I ∣ s.v ≤ vT },

C6 ≜ {s ∈ I ∣ s.v ≥ φb
δ
+∆∣abrake∣}.

Since C1,C2 = ∅, we see that the bounded distance and bounded speed conditions are

automatically satisfied for j = 1,2 with any arbitrary large cj and arbitrary small bj . Now,

consider an arbitrary s0 ∈ I and s ∈ ∂I1. By definition, F1(s) = 0. From the definition of θk,1

and θk,2 and Assumption 5.5.1(b), s.e2 ∈ [−θk,2,−θk,1] ⊂ (−π2 ,0]. In addition, since s ∈ I,

F6(s) = δs.v − φb ≥ 0 and since δ > 0 and φb ≥ 0, s.v ≥ 0. Thus,

∂F1

∂s
(s) ⋅ f(s, g(l, s0)) = −

de1

dt
= −s.v sin(s.e2) ≥ 0.

For j = 2, the subtangential condition can be proved in a similar way.

To prove the bounded distance and the bounded speed conditions for j = 3, . . . ,6, we

apply Lemma 5.3.3. Let UI = {g(l, s) ∣l ∈ L, s ∈ I}. From the definition of I, we get that

for any s0 ∈ I, −k1s0.e1 − k2s0.e2 ∈ [−φk, φk] ⊂ (−π2 ,
π
2 ). Therefore, f is continuous in I ×UI .

In addition, it can be easily checked that the projection of I onto the (e1, e2, v) space

is compact and for any j ∈ {3, . . . ,6}, Cj is closed. Since the only variables involved in

proving the control-free invariance condition of Lemma 5.3.1 are e1, e2 and v whose evolution

along a trajectory can be described without other variables, from the proof of Lemma 5.3.2

and Lemma 5.3.3, we see that the requirement that I is compact can be relaxed to the

requirement that the projection of I onto the (e1, e2, v) space is compact. Hence, from
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Lemma 5.3.3, to prove that conditions (a)–(c) of Lemma 5.3.2 hold, we only need to show

that for any l ∈ L, the following conditions are satisfied for each j ∈ {3, . . . ,6}:

1. Cj ∩ ∂Ij = ∅,

2. For any s0 ∈ I ∖Cj and s ∈ ∂Ij , ∂Fj
∂s ⋅ f(s, g(l, s0)) ≥ 0.

Consider an arbitrary s ∈ ∂I3. From the definition of I3, −k1s.e1 − k2s.e2 = φk > 0. So

from Assumption 5.5.1(c), L cot(−k1s.e1 − k2s.e2) sin θk,2 < k2
k1

. Therefore, C3 ∩ ∂I3 = ∅.

Pick an arbitrary s0 ∈ I ∖ C3. From the definition of I and C3, 0 < −k1s0.e1 − k2s0.e2 ≤ φk
and L cot(−k1s0.e1 − k2s0.e2) sin θk,2 < k2

k1
. Combining this with Assumption 5.5.1(a), we

get 0 < −k1s0.e1 − k2s0.e2 ≤ π
2 and ∣ − k1s0.e1 − k2s0.e2∣ ≤ φmax. In addition, since s0 ∈ I,

F6(s0) ≥ 0 and so δs0.v ≥ φb ≥ φk ≥ ∣ − k1s0.e1 − k2s0.e2∣, and since s ∈ I, s.v ≥ 0. Therefore,

we can conclude that
ds.e2

dt
= s.v
L

tan(−k1s0.e1 − k2s0.e2) ≥ 0

and from Assumption 5.5.1(b), s.e2 ∈ [−θk,2, θk,1] ⊂ (−π2 ,0]. So we get

ds.e1

ds.e2
= L cot(−k1s0.e1 − k2s0.e2) sin(s.e2)

≥ −L cot(−k1s0.e1 − k2s0.e2) sin θk,2

> −k2

k1
.

Thus,
∂F3

∂s
⋅ f(s, g(l, s0)) = k2

ds.e2

dt
+ k1

ds.e1

dt
= ds.e2

dt
(k2 + k1

ds.e1

ds.e2
) ≥ 0.

This completes the proof for j = 3.

For j = 4, we can follow the previous proof to show that C4 ∩ ∂I4 = ∅, ds.e2
dt ≤ 0 and

ds.e1
ds.e2

> −k2k1 , and so

∀s0 ∈ I ∖C4,
∂F4

∂s
⋅ f(s, g(l, s0)) ≥ 0.

Next, consider an arbitrary s ∈ ∂I5. From the definition of ∂I5, s.v = vmax. Since

amax,∆ > 0, vmax = vT +∆amax > vT . Therefore, C5 ∩∂I5 = ∅. Pick an arbitrary s0 ∈ I ∖C5.

From the definition of I and C5, vT < s0.v ≤ vmax. Therefore, we can conclude that

∂F5

∂s
⋅ f(s, g(l, s0)) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩

−abrake
0

≥ 0.
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This completes the proof for j = 5.

Finally, consider an arbitrary s ∈ ∂I6. From the definition of ∂I6, s.v = φb
δ . Since

∆, ∣abrake∣ > 0, φbδ < φb
δ +∆∣abrake∣. Therefore, C6∩∂I6 = ∅. Consider an arbitrary s0 ∈ I ∖C6.

From Lemma 5.B.1 and the definition of f4, we see that f4(s, g(l, s0)) = abrake only if

s0.v ≥ φb
δ +∆∣abrake∣. But since s0 ∈ I∖C6, from the definition of I and C6, s0.v < φb

δ +∆∣abrake∣.

Therefore, f4(s, g(l, s0)) is either 0 or amax and so we can conclude that

∂F6

∂s
⋅ f(s, g(l, s0)) = f4(s, g(l, s0)) ≥ 0.

Now, we prove that Assumption 5.5.1(d) provides the bound on ∆ such that the sampling

rate condition of Lemma 5.3.2 is satisfied.

Lemma 5.5.2. For each l ∈ L, the sampling rate condition is satisfied.

Proof. For each j ∈ {1, . . . ,6}, we want to find cj and bj that satisfy conditions (b) and (c)

of Lemma 5.3.2. First, we note that for j = 1,2, Cj = ∅, so cj can be arbitrary large and

bj can be arbitrary small and therefore any ∆ ∈ R+ satisfies the sampling rate condition of

Lemma 5.3.2. For j = 5,6, it can be easily shown that c5 = ∆amax, b5 = amax, c6 = ∆∣abrake∣

and b6 = ∣abrake∣; thus, cj
bj

= ∆. That is, ∆ can be an arbitrary large number if we only

consider j = 1,2,5,6. So we only have to consider j = 3,4. From Assumption 5.5.1(c), there

exists

φ̃ = cot−1 ( k2

k1L sin θk,2
) < φk.

Using symmetry, we get that for j = 3 and j = 4, the shortest distance between Uj and ∂Ij

is then given by

cj = min
s∈∂Ij ,s0∈Uj

∥s − s0∥ =
1√

k2
1 + k2

2

(φk − φ̃).

Since ∀s ∈ I, s.e2 ∈ [−θk,2, θk,2] ⊂ (−π2 ,
π
2 ), we have

bj = max
s∈I,s0∈Uj

∥f(s, g(l, s0))∥

≤ vmax

√
sin2 θk,2 +

1
L2

tan2(φ̃)

From Assumption 5.5.1(d), we see that ∆ ≤ minj∈{1,...,6}
cj
bj

.



90

Having proved that all the conditions of Lemma 5.3.2 are satisfied, it follows that the

control-free invariance condition of Lemma 5.3.1 holds. Applying Theorem 5.3.1, we can

conclude the following invariance property of I.

5.C Proofs for Segment Progress

First, we solve the differential equation that describes the evolution of e1 and e2 along

τ . From periodicity of main actions we see that dom(τ) = [0,∆]. Define the functions

e1, e2, v, vavg ∶ dom(τ) → R as follows: e1(t) = (τ ↓ e1)(t), e2(t) = (τ ↓ e2)(t), v(t) = (τ ↓

v)(t) and vavg(t) = 1
t ∫

t
0 v(t′)dt′. From the state models of the Vehicle and the Controller

specified in Figure 5.5 and Figure 5.6, since φ and a are constant along τ , the solution to

the differential equations can be solved analytically and are given by

e1(t) =
⎧⎪⎪⎪⎨⎪⎪⎪⎩

e1(0) +L cotφ cos e2(0) −L cotφ cos e2(t) if φ /= 0

e1(0) + vavg(t)t sin e2(0) otherwise
,

e2(t) = e2(0) + tanφ
L vavg(t)t,

(5.12)

where φ = τ.fstate ⌈ φ and a = τ.fstate ⌈ a.

The following lemma provides a bound on the change in e1 over τ and on the change in φ

between two consecutive main actions assuming that a discrete transition in the continuous

state s does not occur.

Lemma 5.C.1. Suppose τ.fstate ∈ Ik for some k ∈ N. Then, ∣e1(0) − e1(∆)∣ ≤ ∆e and

∣(k1e1(0)+k2e2(0))−(k1e1(∆)+k2e2(∆))∣ ≤ ∆φ where ∆e = vmax∆ and ∆φ = vmax∆ (k1 + k2
tanφk
L ).

Proof. From (5.12), we see that ∣e1(∆) − e1(0)∣ ≤ vmax∆ and ∣e2(∆) − e1(0)∣ ≤ tanφk
L vmax∆.

So

∣(k1e1(0) + k2e2(0)) − (k1e1(∆) + k2e2(∆))∣ ≤ k1∣e1(∆) − e1(0)∣ + k2∣e2(∆) − e2(0)∣

≤ k1vmax∆ + k2
tanφk
L

vmax∆.

The next lemma proves the desired progress property over τ .
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Lemma 5.5.3. Suppose τ.fstate ∈ Ik for some k ∈ N. Then τ.lstate ∈ Ik+1 whose parameters

εk+1 and φk+1 are given by

εk+1 = εk − ε̂k, (5.13)

φk+1 = φk − φ̂k, (5.14)

where ε̂k, φ̂k ≥ 0 and are given by

ε̂k = εk −max(ε′k+1,
1
k1
φ′k+1) , (5.15)

φ̂k = φk −max(φ′k+1, ϕ), (5.16)

ε′k+1 =
⎧⎪⎪⎪⎨⎪⎪⎪⎩

max (εk − ξk, ε∗k) if εk > ε∗k
εk otherwise

, (5.17)

φ′k+1 =
⎧⎪⎪⎪⎨⎪⎪⎪⎩

max (φk − ψk, φ∗k) if φk > φ∗k
φk otherwise

, (5.18)

ε∗k = ε′k + vmax∆, (5.19)

φ∗k = φ′k + k1vmax∆ + k2
tanφk
L

vmax∆, (5.20)

ξk = −2L max
φ∈[−φk,φk]

cotφ sin(−k1ε
∗
k

k2
− φ

k2
+ vmax∆ tanφ

2L
) sin(φb∆ tanφ

2Lδ
) , (5.21)

ψk = k2

L
tanφ∗k

φb
δ

∆ − 2k1L cotφ∗k sin θk,2 sin(tanφk
2L

vmax∆) , (5.22)

ε′k = max
φ̃∈[−φk,φk]

(− 1
k1
φ̃ + k2

k1

tan φ̃
2L

vmax∆) , (5.23)

φ′k = max
⎛
⎝

tan−1

√
2k1L2δ

k2φb∆
sin θk,2 sin(tanφk

2L
vmax∆),∆φ

⎞
⎠
, (5.24)

where ϕ is the minimum value of φk+1 such that ε′k+1 and φk+1 satisfy Assumption 5.5.1(c).

In addition, define k∗ to be the minimum value of k such that εk ≤ ε∗k or φk ≤ φ∗k. (If for any

k, εk > ε∗k and φk > φ∗k, just pick an arbitrary natural number k∗.) Then, for any k < k∗, ε̂k

and φ̂k are strictly positive, that is, Ik+1 ⊊ Ik.

Proof. Since by definition εk+1 ≥ ε′k+1 and φk+1 ≥ φ′k+1, we see that if ∣τ.lstate ⌈ e1∣ ≤ ε′k+1 and

∣k1(τ.lstate ⌈ e1) + k2(τ.lstate ⌈ e2)∣ ≤ φ′k+1, then τ.lstate ∈ Ik+1. To show that εk+1 and φk+1

satisfy Assumption 5.5.1 and that ε̂k, φ̂k ≥ 0, we use the following observations: (a) ψk ≥ 0

and ξk ≥ 0 and thus, ε′k+1 ≤ εk and φ′k+1 ≤ φk, (b) given φ′k+1, 1
k1
φ′k+1 is the minimum value
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of εk+1 such that εk+1 and φ′k+1 satisfies Assumption 5.5.1, (c) given ε′k+1, ϕ is the minimum

value of φk+1 such that ε′k+1 and φk+1 satisfies Assumption 5.5.1, and (d) ϕ decreases as ε′k+1

decreases. With these observations and the assumption that εk and φk satisfy Assumption

5.5.1, it can be easily checked that (a) εk+1 ≤ εk and φk+1 ≤ φk, (b) if εk > ε∗k and φk > φ∗k,

then ε′k+1 < εk and φ′k+1 < φk, and (c) if εk+1 /= ε′k+1, then φk+1 = φ′k+1 and if φk+1 /= φ′k+1, then

εk+1 = ε′k+1. Thus, we can conclude that εk+1 and φk+1 satisfy Assumption 5.5.1 and that if

εk > ε∗k and φk > φ∗k, then εk+1 < εk and φk+1 < φk.

So what remains to be proved are ∣τ.lstate ⌈ e1∣ ≤ ε′k+1 and ∣k1(τ.lstate ⌈ e1)+k2(τ.lstate ⌈

e2)∣ ≤ φ′k+1. From Theorem 5.5.1, τ.lstate ∈ Ik. Thus, we can conclude that φ′k+1 ≤ φk and

ε′k+1 ≤ εk. This completes the proof for the second case of (5.17) and (5.18).

Next, we prove the first case of (5.18). Let φf = −k1e1(0) − k2e2(0) and φl = −k1e1(∆) −

k2e2(∆). Suppose ∣φf ∣ ≥ ∆φ. From (5.12), we get that

φl = −k1 (e1(0) +L cotφ1 cos(e2(0)) −L cotφ1 cos(e2(∆))) − k2 (e2(0) +
tanφf
L

vavg∆)

where vavg is the average speed of the Vehicle over τ . Substituting e1(0) = −k2k1 e2(0) − 1
k1
φf ,

we get

φl = φf − (k2

L
tanφfvavg∆ + 2k1L cotφf sin(1

2
(e2(0) + e2(∆))) sin(tanφf

2L
vavg∆)) .

Since τ.fstate, τ.lstate ∈ Ik, from the definition of θk,2, we see that ∣e2(0)∣, ∣e2(∆)∣ ≤ θk,2. So
1
2 ∣e2(0)+e2(∆)∣ ≤ θk,2. In addition, from Theorem 5.5.1 and the definition of F5 and F6, we

know that φb
δ ≤ vavg ≤ vmax. From Lemma 5.5.3, we get that φf and φl have the same sign.

So it is easy to show that

∣φl∣ ≤ ∣φf ∣ − (k2

L
tan ∣φf ∣

φb
δ

∆ − 2k1L cot ∣φf ∣ sin θk,2 sin(tanφk
2L

vmax∆)) .

Define the function Ψ ∶ [0, φk] → R by

Ψ(φ) = k2

L
tanφ

φb
δ

∆ − 2k1L cotφ sin θk,2 sin(tanφk
2L

vmax∆) .

That is ψk = Ψ(φ∗k). It can be easily checked that with Assumption 5.5.1(e), Ψ(φ) increases

with φ and vanishes when φ = tan−1

√
2k1L2δ
k2φb∆

sin θk,2 sin ( tanφk
2L vmax∆), which does not ex-
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ceed φ′k defined in (5.24). For φ > φ′k, Ψ(φ) > 0. From Lemma 5.C.1, we also know that for

any φf ∈ [−φk, φk],

∣φl∣ ≤ ∣φf ∣ + k1vmax∆ + k2
tanφk
L

vmax∆.

Since φ∗k > φ′k, we arrive at the following conclusion:

∣φl∣ ≤

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

∣φf ∣ − ψk if ∣φf ∣ > φ∗k
φ∗k if φ′k ≤ ∣φf ∣ ≤ φ∗k
∣φf ∣ + k1vmax∆ + k2

tanφk
L vmax∆ if ∣φf ∣ < φ′k

.

Thus, ∣φl∣ ≤ max(φk − ψk, φ∗k).

Finally, we prove the first case of (5.17). From (5.12), we get that

e1(∆) = e1(0) + 2L cotφ1 sin(e2(0) +
tanφf

2L
vavg∆) sin(tanφf

2L
vavg∆) .

Note that the case where φf = 0 is also captured by this equation as

lim
φf→0

2L cotφf sin(tanφf
2L

vavg∆) = vavg∆.

Define the function Ξ ∶ [0, εk] → R by

Ξ(ε) = −2L max
φ∈[−φk,φk]

cotφ sin(−k1

k2
e − 1

k2
φ + tanφ

2L
vmax∆) sin(tanφ

2L
φb
δ

∆) .

That is ξk = Ξ(ε∗k). It can be easily checked that with Assumption 5.5.1(e), Ξ(ε) > 0 for any

ε > ε′k and that if e1(0) ≥ ε′k, then e2(0) ≤ −k1k2 ε
′
k − 1

k2
φf . So

2L cotφf sin(e2(0) +
tanφf

2L
vavg∆) sin(tanφf

2L
vavg∆) ≤ −ξk.

Using symmetry, we can derive a similar lower bound for the case where e1(0) ≤ −ε′k. From

Lemma 5.C.1, we also know that

∣e1(∆)∣ ≤ ∣e1(0)∣ + vmax∆.
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So we arrive at the following conclusion:

∣e1(∆)∣ ≤

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

∣e1(0)∣ − ξk if ∣e1(0)∣ > ε∗k
ε∗k if ε′k ≤ ∣e1(0)∣ ≤ ε∗k
∣e1(0)∣ + vmax∆ if ∣e1(0)∣ < ε′k

.

Thus, ∣e1(∆)∣ ≤ max(εk − ξk, ε∗k).

Using Lemma 5.5.3 and Lemma 5.5.4, we establish the relationship between the progress

of Ik’s and the decrease in the value of d.

Lemma 5.5.5. For each k ∈ N, starting from any reachable state x ∈ Ik such that x.d >

vmax∆, x.path = x.new path and x.next = x.now, any plan-free execution fragment β with

β.ltime = ∆ satisfies β.lstate ∈ Ik+1 and β.lstate ⌈ d ≥ x.d − vmax∆.

Proof. Since x.next = x.now and β.ltime = ∆, we see that β can be written as β = β′ or

β = β′mainτjbrake(bj)τj+1brake(bj+1) . . . τn where β′ is an execution fragment with exactly

one main action ai that occurs at time 0 and is immediately followed by a main action

in the execution, β′.ltime = ∆ and τj , . . . τn are point trajectories. Let τ be the pasted

trajectory of all the trajectories after ai in β′. Then, τ is a pasted trajectory of all the

trajectories between two main actions and so Lemma 5.5.3 and Lemma 5.5.4 apply. Since

the main action ai occurs at time 0 in β and brake action does not affect the value of

s, we see that τi−1.lstate ⌈ s = x.s. So τi−1.lstate ⌈ d > vmax∆ > 0 and hence ai does

not change the value of s. That is, τ.fstate = x ∈ Ik. From Lemma 5.5.3, we get that

β′.lstate ∈ Ik+1. In addition, from Lemma 5.5.4, we see that β′.lstate ⌈ d ≥ x.d − vmax∆.

Since x.d > vmax∆, we get β′.lstate ⌈ d > 0. Therefore, the main action following β′ does

not change the value of s. In addition, since brake action only affects the brake variable,

we see that β.lstate ⌈ s = β′.lstate ⌈ s. Hence, we can conclude that β.lstate ∈ Ik+1 and

β.lstate ⌈ d ≥ x.d − vmax∆.

5.D Proofs for Safety and Waypoint Progress

Lemma 5.5.6. Consider a plan-free execution fragment β starting at a state x ∈ I0.

Suppose x.path = x.new path and x.d ≥D∗ where D∗ = λ1− ε0−vmax∆ and λ1 is the length

of the segment x.seg. Then β.lstate ∈ I0.
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Proof. First, observe that β can be written as β = β1a1β2a2 . . . βm where for any i, ai is a

main action and βi is a plan-free execution fragment such that βi.lstate ⌈ path = βi.fstate ⌈

new path and βi.lstate ⌈ seg = βi.fstate ⌈ seg. From Theorem 5.5.1, we get that for any i,

if βi.fstate ∈ I0, then β.lstate ∈ I0. So, suppose β1.fstate ∈ I0, β1.fstate ⌈ path = β1.fstate ⌈

new path and β1.fstate ⌈ d ≥ λ1 − ε0 − vmax∆. We only need to show that for any i > 1,

βi.fstate ∈ I0.

Consider the base case i = 2. If β2.fstate ⌈ seg = β1.lstate ⌈ seg, then a1 does not change

the continuous state s, and so β2.fstate ∈ I0. Otherwise, β2.fstate ⌈ seg = β1.fstate ⌈ seg + 1.

But from the update rule of the variable seg and Lemma 5.5.4, it can be easily shown

that −vmax∆ < β1.lstate ⌈ d ≤ 0. Applying Theorem 5.5.2, we get that β1.lstate ∈ In where

n = ⌊λ1−ε0−2vmax∆
vmax∆ ⌋ because by Assumption 5.5.2(a), λ1 − ε0 − 2vmax∆ > 0.

Let x1 = β1.lstate and x2 = β2.fstate and let σ1 be the difference between the orientation

of β1.fstate ⌈ seg and β1.fstate ⌈ seg + 1. From the update rule for e1 and the definition

of p⃗, q⃗ and r⃗ in Figure 5.6, it can be shown that x2.e1 = x1.d sinσ1 + x1.e1 cosσ1. But

since β1.lstate ∈ In, from the definition of In, ∣x1.e1∣ ≤ εn. Therefore, using the bounds on

x1.d provided earlier in the proof, we get ∣x2.e1∣ ≤ vmax∆∣ sinσ1∣ + εn∣ cosσ1∣. Hence, from

Assumption 5.5.2(b), ∣x2.e1∣ ≤ ε0, that is, F1(x2.s), F2(x2.s) ≥ 0.

Next, we prove that F3(x2.s), F4(x2.s) ≥ 0. From the definition of In, we know that

−k1k2 x1.e1 − 1
k2
φn ≤ x1.e2 ≤ −k1k2 x1.e1 + 1

k2
φn. From the update rule for e2, it can be easily

shown that x2.e2 = x1.e2 − σ1. Thus, we get that −k1k2 x1.e1 − 1
k2
φn − σ1 ≤ x2.e2 ≤ −k1k2 x1.e1 +

1
k2
φn−σ1. Using the bounds on x2.e1, x2.e2 and x1.d, we can derive that k1x2.e1+k2x2.e2 ≤

k1vmax∆ sin ∣σ1∣ + k1εn(1 − cosσ1) + φn + k2∣σ1∣ and k1x2.e1 + k2x2.e2 ≥ −k1vmax∆ sin ∣σ1∣ −

k1εn(1 − cosσ1) − φn − k2∣σ1∣. That is,

∣k1x2.e1 + k2x2.e2∣ ≤ k1vmax∆ sin ∣σ1∣ + k1εn(1 − cosσ1) + φn + k2∣σ1∣.

Therefore, Assumption 5.5.2(b) guarantees that ∣k1x2.e1+k2x2.e2∣ ≤ φ0. That is, F3(x2.s) ≥

0 and F4(x2.s) ≥ 0. In addition, since a main action does not affect v, F5(x2.s) = F5(x1.s)

and F6(x2.s) = F6(x1.s), so F5(x2.s), F6(x1.s) ≥ 0.

Therefore, by definition of I0, we get β2.fstate ∈ I0. In addition, from the bounds on

x1.d and x1.e1, it can be easily shown that β2.fstate ⌈ d ≥ λ2 − ε0 − vmax∆ where λ2 is the

length of the segment β2.fstate ⌈ seg.
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Next, consider an arbitrary i ≥ 2 and assume that βi−1.fstate ∈ I0 and if i = 2 or i > 2

and βi−1.fstate ⌈ seg /= βi−2.lstate ⌈ seg, then βi−1.fstate ⌈ d ≥ λi−1 − ε0 − vmax∆ where λi−1 is

the length of the segment βi−1.fstate ⌈ seg. Simply following the previous proof for i = 2, we

get βi.fstate ∈ I0 and if βi.fstate ⌈ seg /= βi−1.lstate ⌈ seg, then βi.fstate ⌈ d ≥ λi − ε0 − vmax∆

where λi is the length of the segment βi.fstate ⌈ seg.

By mathematical induction, we conclude the proof that for any i > 1, βi.fstate ∈ I0.

Lemma 5.5.7. For each state x,x′ ∈ Q such that x.path /= x.new path, if x ∈ I0 and

x
main→ x′, then x′.d ≥ λ−vmax∆ > 0 where λ is the length of the first segment of x.new path.

Proof. Consider an arbitrary execution α = τ0a1τ1a2 . . .. Pick an arbitrary natural number

i such that ai is a main action and let x = τi−1.lstate and x′ = τi.fstate. We want to show

that if x ⌈ path /= x ⌈ new path, then x′.d ≥ λ− vmax∆ > 0. Notice that x.path /= x.new path

if and only if there exists a natural number j < i such that aj is a plan action and for any

natural number k ∈ {j + 1, . . . , i − 1}, ak is not a main action. Using Assumption 5.5.3(a),

we get ⟨τj .fstate ⌈ x, τj .fstate ⌈ y⟩ = pi,1 where pi,1 is the first waypoint in x.new path. Since

main action occurs every ∆ time, the time between ai and aj is at most ∆. Therefore, from

Theorem 5.5.1, the definition of F5 and F6 and the definition of f1 and f2 which describe the

evolution of x and y, we see that ∥⟨x.x,x.y⟩−pi,1∥ ≤ vmax∆. Furthermore, from Assumption

5.5.2(a), we know that λ = ∥pi,2 − pi,1∥ > vmax∆+ ε0 where pi,2 is the second waypoint in pi.

Thus, x.d ≥ ∥pi,2 − pi,1∥ − ∥⟨x.x,x.y⟩ − pi,1∥ ≥ λ − vmax∆ > 0.

Lemma 5.5.8. For each state x,x′ ∈ Q such that x.path /= x.new path, if x ∈ I0 and

x
main→ x′, then x′ ∈ I0.

Proof. Consider an arbitrary execution α = τ0a1τ1a2 . . .. Pick an arbitrary natural number

i such that ai is a main action and let x = τi−1.lstate and x′ = τi.fstate. We want to show

that if x ∈ I0 and x.path /= x.new path, then x′ ∈ I0. So suppose x ∈ I0. Notice that

x.path /= x.new path if and only if there exists a natural number j < i such that aj is a plan

action and for any natural number k ∈ {j + 1, . . . , i − 1}, ak is not a main action. Let pj1

and pj2 be the first two waypoints of the new path. Consider a closed execution fragment

β = τjaj+1 . . . τi−1. From Assumption 5.5.3(a), we get that pj1 = τj .fstate ⌈ ⟨x, y⟩. Since

main action occurs every ∆ time, we see that β.ltime ≤ ∆. From the differential equations
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describing the evolution of x and y, we get that

∣(τj .fstate ⌈ x) − (x.x)∣ ≤ ((τj .fstate ⌈ v) + amax∆)∆,

∣(τj .fstate ⌈ y) − (x.y)∣ ≤ sin θ0,2((τj .fstate ⌈ v) + amax∆)∆.

So from the definition of r⃗ in Figure 5.6, we get that

∥r⃗∥ ≤ (τj .fstate ⌈ v) + amax∆)∆
√

1 + sin2 θ0,2.

Using Assumption 5.5.3(b), we can conclude that ∥r⃗∥ ≤ ε0. So from the update rule for e1,

∣x′.e1∣ ≤ ∥r⃗∥ and so

∣x′.e1∣ ≤ (τj .fstate ⌈ v) + amax∆)∆
√

1 + sin2 θ0,2 ≤ ε0, (5.25)

that is F1(x′.s), F2(x′.s) ≥ 0.

Similarly, from the differential equation describing the evolution of θ, we get that

∣(τj .fstate ⌈ θ) − (x.θ)∣ ≤ 1
L

tanφ0((τj .fstate ⌈ v) + amax∆)∆.

Using Assumption 5.5.3(b), we can conclude that

∣∠p⃗ − (x.θ)∣ = ∣(∠p⃗ − (τj .fstate ⌈ θ)) + ((τj .fstate ⌈ θ) − (x.θ))∣

≤ ∣(∠p⃗i − (τj .fstate ⌈ θ))∣ + ∣((τj .fstate ⌈ θ) − (x.θ))∣

≤ φ0

k2
− k1

k2
((τj .fstate ⌈ v) + amax∆)∆

√
1 + sin2 θ0,2.

So we get

∣k2x′.e2∣ ≤ φ0 − k1((τj .fstate ⌈ v) + amax∆)∆
√

1 + sin2 θ0,2.

Combining this with (5.25), we get that

∣k1(x′.e1) + k2(x′.e2)∣ ≤ ∣k1(x′.e1)∣ + ∣k2(x′.e2)∣ ≤ φ0,

that is, F3(x′.s), F4(x′.s) ≥ 0.
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In addition, since main action does not affect v, we see that F5(x′.s) = F5(x.s) and

F6(x′.s) = F6(x.s), so F5(x′.s), F6(x′.s) ≥ 0. Therefore, by definition of I0, we get that

x′ ∈ I0.
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Chapter 6

Automatic Synthesis of Embedded
Control Software

The design flaw in Alice as described in Section 1.1 was, in fact, partially known shortly

before the second run of Test Area A. However, it was difficult to modify and verify the

design during the National Qualifying Event due to the complexity of the system and the

lack of sufficient time. Although it might be impossible to make such a system simple, part

of the complexity could have been avoided if the system had been designed in a systematic

way. As an effort towards this systematic design direction, this chapter presents an approach

that allows embedded control software such as the planner-controller subsystem of Alice to

be automatically synthesized such that the system is provably correct with respect to its

requirements expressed in linear temporal logic.

6.1 Overview

In this chapter, we investigate the problem of automatically synthesizing an embedded

control component to provide a formal guarantee that, by construction, the system satisfies

the desired properties, which we also refer to as the specification. We assume that the

desired properties are expressed in linear temporal logic.

A common approach to such a synthesis problem is to construct a finite transition system

that serves as an abstract model of the physical system (which typically has infinitely many

states) [57, 65, 25, 64, 113, 40, 122, 124]. Then based on this abstract model, synthesize

a strategy, represented by a finite state automaton, satisfying the specification. This leads

to a hierarchical, two-layer design with a discrete planner computing a discrete plan based



100

on the abstract model and a continuous controller computing a sequence of control signals

based on the physical model to continuously implement the plan. Simulations/bisimulations

[6] provide the proof that the continuous execution preserves the correctness of the discrete

plan.

The correctness of this hierarchical approach relies on the abstraction of systems evolv-

ing on a continuous domain into equivalent (in the simulation sense) finite state models.

If the abstraction is done properly such that the continuous controller is capable of imple-

menting any discrete plan computed by the discrete planner, then it is guaranteed that the

correctness of the plan is preserved in the continuous execution.

Several abstraction methods have been proposed based on a fixed abstraction. For ex-

ample, a continuous-time, time-invariant model was considered in [65], [25] and [64] for

special cases of fully actuated (ṡ(t) = u(t)), kinematic (ṡ(t) = A(s(t))u(t)) and piecewise

affine dynamics, respectively, while a discrete-time, time-invariant model was considered

in [122] and [113] for special cases of piecewise affine and controllable linear systems, re-

spectively. Reference [40] deals with more general dynamics by relaxing the bisimulation

requirement and using the notions of approximate simulation and simulation functions [39].

More recently, a sampling-based method has been proposed for µ-calculus specifications

[57]. However, these approaches do not take into account the presence of exogenous distur-

bances and the resulting system may fail to satisfy its specification if its evolution does not

exactly match its model.

To increase the robustness of the system against the effects of direct, external distur-

bances and a mismatch between the actual system and its model, in this chapter, we extend

the existing abstraction approaches to deal with a discrete-time linear time-invariant state

space model with exogenous disturbances and provide an approach to automatically com-

pute a finite state abstraction for such a model.

The remainder of the chapter is organized as follows. In Section 6.2, we present the key

definitions and notations. A brief description of a digital design synthesis tool that we use

for automatically synthesizing a discrete planner is also provided. The planner-controller

synthesis problem is formulated in Section 6.3. The hierarchical approach is described

in detail in Section 6.4. Section 6.5 provides an approach to automatically compute a

finite state abstraction for a discrete-time linear time-invariant system, taking into account

exogenous disturbances.



101

6.2 Preliminaries

We use a variable structure to specify the states of the system (as described in Defini-

tion 2.2.1) and linear temporal logic to specify properties of a system (see Section 2.2).

As previously discussed, a finite transition system is used as a mathematical object that

represents an abstraction of the physical system.

Definition 6.2.1. A finite transition system is a tuple T ∶= (V,V0,→) where V is a finite

set of states, V0 ⊆ V is a non-empty set of inital states, and → ⊆ V×V is a transition relation.

Given states νi, νj ∈ V, we write νi → νj if there is a transition from νi to νj in T.

Observe that we use ν to represent a state of a finite transition system and v to represent

a state of a general, possibly non-finite state system.

6.2.1 Synthesis of a Digital Design: A Two-Player Game Approach

In many applications, systems need to interact with their environments and whether they

satisfy the desired properties depends on the behavior of the environments. For example,

whether an autonomous car exhibits the correct behavior at an intersection depends on the

behavior of other cars at the intersection, e.g., which car gets to the intersection first, etc.

In this section, we informally describe the work of Piterman, et al. [98]. We refer the reader

to [98] and references therein for the detailed discussion of automatic synthesis of a finite

state automaton from its specification.

From Definition 2.2.4, for a system to be correct, its specification ϕ must be satisfied

in all of its executions regardless of the behavior of the environment in which it operates.

Thus, the environment can be treated as an adversary and the synthesis problem can be

viewed as a two-player game between the system and the environment: the environment

attempts to falsify ϕ while the system attempts to satisfy ϕ. We say that ϕ is realizable if

the system can satisfy ϕ no matter what the environment does.

For a specification of the form

(⋀
i∈I

◻3ϕi) Ô⇒ (⋀
j∈J

◻3ψj),

known as Generalized Reactivity(1), Piterman et al. shows that checking its realizability

and synthesizing the corresponding automaton can be performed in polynomial time. In
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particular, we are interested in a specification of the form

ϕ = (ϕe Ô⇒ ϕs)

where roughly speaking, ϕe characterizes the initial states of the system and the assumptions

on the environment and ϕs describes the correct behavior of the system, including the valid

transitions the system can make. We refer the reader to [98] for precise definitions of ϕe

and ϕs. Note that since ϕe Ô⇒ ϕs is satisfied whenever ϕe is False, if the assumptions on

the environment or the initial state of the system violate ϕe, then the correct behavior ϕs

of the system is not ensured, even though the specification ϕ is satisfied.

If the specification is realizable, the digital design synthesis tool presented in [98] gener-

ates a finite state automaton that represents a set of transitions the system should follow in

order to satisfy ϕ. Assuming that the environment and the initial state of the system satisfy

ϕe, then at any instance of time, there exists a node in the automaton that represents the

current state of the system and the system can follow the transition from this node to the

next based on the current knowledge about the environment. However, if ϕe is violated, the

automaton is no longer valid, meaning that there may not exist a node in the automaton

that represents the current state of the system, or even though such a node exists and the

system follows the transitions in the automaton, the correct behavior ϕs is not guaranteed.

If the specification is not realizable, the synthesis tool provides an initial state of the

system starting from which there exists a set of moves of the environment such that the

system cannot satisfy ϕ. The knowledge of the realizability of the specification is useful

since it provides information about the conditions under which the system will fail to satisfy

its desired properties.

The main limitation of the synthesis of finite state automata is the state explosion

problem. In the worst case, the resulting automaton may contain all the possible states

of the system. For example, if the system has N variables, each can take any value in

{1, . . . ,M}, then there may be as many as MN nodes in the automaton.
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6.2.2 Synthesis of a Continuous Controller: An Optimization-Based Ap-

proach

Control systems are usually described by a set of differential or difference equations. These

continuous systems typically contain an infinite number of states. Hence, the digital design

synthesis tool, which relies on the finiteness of the number of system states as described in

Section 6.2, cannot be directly applied. For certain classes of systems, however, a provably

correct controller can be automatically constructed using an optimization-based approach,

provided the desired system properties are restricted to a certain class of safety and guar-

antee properties.

Consider the discrete-time linear control system

s[t + 1] = As[t] +Bu[t], t ∈ {0,1, . . .},

where s[t] ∈ Rn represents the state of the system, u[t] ∈ Rm represents the control input

to the plant and A ∈ Rn×n and B ∈ Rn×m.

Given a fixed horizonN ∈ {0,1, . . .} and a cost function J ∶ (s[0], . . . , s[N], u[0], . . . , u[N−

1]) ↦ R, the problem of finding a sequence of control signals u[0], . . . , u[N−1] that optimizes

the given cost function subject to linear inequality constraints on the states s[0], . . . , s[N]

and control signals u[0], . . . , u[N − 1] can be formulated as a convex optimization problem,

provided that the cost function is convex. An example of such convex cost function is

J(s[0], . . . , s[N], u[0], . . . , u[N − 1]) ≜ ∥Ps[N]∥2 +
N−1

∑
t=0

(∥Qs[t]∥2 + ∥Ru[t]∥2)

where P and Q are positive semidefinite matrices and R is a positive definite matrix. l1-

norm and l∞-norm can also be used with some extra assumptions on P , Q and R.

In particular, we are interested in the problem of controlling the state of the system

from a given initial state s[0] ∈ Rn to a given goal region G ⊆ Rn. We also require that for

all t ∈ {0, . . . ,N − 1}, s[t] stays within a given safe set S ⊆ Rn and u[t] stays within the set

U ⊆ Rm of admissible control inputs. The corresponding finite horizon constrained optimal
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control problem is given by

min
u[0],...,u[N−1]

∥P ŝ[N]∥2 +
N−1

∑
t=0

(∥Qŝ[t]∥2 + ∥Ru[t]∥2)

such that s[N] ∈ G,

s[t + 1] = As[t] +Bu[t],

u[t] ∈ U,

s[t] ∈ S,

∀t ∈ {0, . . . ,N − 1},

(6.1)

where for any t ∈ {0, . . . ,N}, ŝ[t] = s[t]−sj for some chosen sj ∈ G (e.g., sj may be the center

of the goal region G). As previously discussed, for the case where P and Q are positive

semidefinite matrices, R is a positive definite matrix and G, S and U are polyhedral sets,

i.e., sets defined by affine inequalities, the explicit solution u[0], . . . , u[N − 1] of (6.1) can

be computed using convex optimization [16].

This optimization-based approach can be extended to handle a linear time-invariant

state space model with bounded exogenous disturbances

s[t + 1] = As[t] +Bu[t] +Ed[t], d[t] ∈D, t ∈ {0,1, . . .},

provided that the set D ⊆ Rp of exogenous disturbances is polyhedral. In this case, the

constraints on the states s[0], . . . , s[N] and control signals u[0], . . . , u[N − 1] need to be

ensured for any sequence of exogenous disturbances d[0], . . . , d[N − 1] ∈D.

More details on solving such constrained optimal control problems can be found in [14].

Off-the-shelf software such as MPT [67], YALMIP [75] or NTG [92] provides a computational

tool for solving such a constrained optimal control problem.

6.3 Problem Formulation

We consider a system that comprises the physical component, which we refer to as the

plant, and the (potentially dynamic and not a priori known) environment in which the plant

operates. Assuming that the system specification ϕ is expressed in LTL, we are interested

in automatically synthesizing a planner-controller subsystem that generates control signals

to the plant in order to ensure that ϕ is satisfied in the presence of exogenous disturbances
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for any initial condition and any environment in which the plant operates. Specifically, we

define the system model S and the specification ϕ as follows.

System Model : Consider a system model S with a set V = S ∪ E of variables where

S and E are disjoint sets that represent, respectively, the set of plant variables that are

regulated by the planner-controller subsystem and the set of environment variables whose

values may change arbitrarily throughout an execution. The domain of V is given by

dom(V ) = dom(S) × dom(E) and a state of the system can be written as v = (s, e) where

s ∈ dom(S) ⊆ Rn and e ∈ dom(E). In this thesis, we call s the controlled state and e the

environment state.

Assume that the controlled state evolves according to the following discrete-time linear

time-invariant state space model: for t ∈ {0,1,2, . . .},

s[t + 1] = As[t] +Bu[t] +Ed[t],

u[t] ∈ U,

d[t] ∈ D,

s[0] ∈ dom(S),

(6.2)

where U ⊆ Rm is the set of admissible control inputs, D ⊆ Rp is the set of exogenous

disturbances and s[t], u[t] and d[t] are the controlled state, the control signal and the

exogenous disturbance, respectively, at time t.

Example 6.3.1. Consider a robot motion planning problem where a robot needs to navigate

an environment populated with (potentially dynamic) obstacles and explore certain areas

of interest. S typically includes the state (e.g., position and velocity) of the robot while

E typically includes the positions of obstacles (which are generally not known a priori and

may change over time). The evolution of the controlled state (i.e., the state of the robot)

is governed by its equations of motion, which can be written in the form of (6.2) (after

linearization, if necessary).

System Specification : We assume that the specification ϕ consists of the following com-

ponents:

(a) the assumption ϕinit on the initial condition of the system,

(b) the assumption ϕe on the environment, and
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(c) the desired behavior ϕs of the system.

Specifically, we assume that ϕ can be written as

ϕ = (ϕinit ∧ ϕe) Ô⇒ ϕs. (6.3)

Let Π be a finite set of atomic propositions of variables from V . Each of the atomic

propositions in Π essentially captures the states of interest. We assume that the desired

behavior ϕs is an LTL specification built from Π and can be expressed as a conjunction of

safety, guarantee, obligation, progress, response and stability properties as follows:

ϕs = ⋀j∈J1
◻ps1,j ∧ ⋀j∈J2

3ps2,j ∧

⋀j∈J3
(◻ps3,j ∨ 3qs3,j) ∧ ⋀j∈J4

◻3ps4,j ∧

⋀j∈J5
◻(ps5,j Ô⇒ 3qs5,j) ∧ ⋀j∈J6

3 ◻ ps6,j ,

(6.4)

where J1, . . . , J6 are finite sets and for any i and j, psi,j and qsi,j are propositional formulas

of variables from V that are built from Π.

Furthermore, we assume that ϕinit is a propositional formula built from Π and ϕe can

be expressed as a conjunction of safety and justice requirements as follows

ϕe = ⋀
i∈I1

◻pef,i ∧ ⋀
i∈I2

◻3pes,i, (6.5)

where pef,i and pes,i are propositional formulas built from Π and only contain variables from

E.

Example 6.3.2. Consider the robot motion planning problem described in Example 6.3.1.

Suppose the workspace of the robot is partitioned into cells C1, . . . ,CM and the robot needs

to explore (i.e., visit) the cells C1 and C2 infinitely often. In addition, we assume that one

of the cells C1, . . . ,CM may be occupied by an obstacle at any given time and this obstacle-

occupied cell may change arbitrarily throughout an execution but infinitely often, C1 and

C2 are not occupied. Let s and o represent the position of the robot and the obstacle,

respectively. In this case, the desired behavior of the system can be written as

ϕs = ◻3(s ∈ C1) ∧ ◻3(s ∈ C2) ∧ ◻((o ∈ C1) Ô⇒ (s /∈ C1)) ∧

◻((o ∈ C2) Ô⇒ (s /∈ C2)) ∧ . . . ∧ ◻((o ∈ CM) Ô⇒ (s /∈ CM)).
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Assuming that initially, the robot does not occupy the same cell as the obstacle, we simply

let

ϕinit = ((o ∈ C1) Ô⇒ (s /∈ C1)) ∧ ((o ∈ C2) Ô⇒ (s /∈ C2)) ∧ . . . ∧ ((o ∈ Cm) Ô⇒ (s /∈ Cm)).

Finally, the assumption on the environment can be expressed as

ϕe = ◻3(o /∈ C1) ∧ ◻3(o /∈ C2).

Planner-Controller Synthesis Problem : Given the system model S and the system

specification ϕ, synthesize a planner-controller subsystem that generates a sequence of con-

trol signals u[0], u[1], . . . ∈ U to the plant to ensure that starting from any initial condition,

ϕ is satisfied for any sequence of exogenous disturbances d[0], d[1], . . . ∈D and any sequence

of environment states.

Remark 6.3.1. We restrict ϕs and ϕe to be of the form (6.4) and (6.5), respectively, for

the clarity of presentation. Our framework only requires that the specification (6.3) can be

reduced to the form of Equation (6.7), presented later.

Remark 6.3.2. The specification ϕ has to be satisfied for any initial condition and envi-

ronment, including those that violate the assumptions ϕinit and ϕe. However, according to

(6.3), satisfying ϕ ensures that the system exhibits the desired behavior ϕs only when ϕinit

and ϕe are satisfied.

6.4 Hierarchical Approach

As described in Section 6.1, we follow a hierarchical approach to attack the Planner-

Controller Synthesis Problem defined in Section 6.3. First, we construct a finite transition

system D (e.g., a Kripke structure) that serves as an abstract model of S (which typically

has infinitely many states). With this abstraction, the problem is then decomposed into

• synthesizing a discrete planner that computes a discrete plan satisfying the specifica-

tion ϕ based on the abstract, finite-state model D, and

• designing a continuous controller that implements the discrete plan.
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The success of this abstraction-based approach thus relies on the following two critical steps:

(a) an abstraction of an infinite-state system into an equivalent (in the simulation sense)

finite state model such that any discrete plan generated by the discrete planner can be

implemented (i.e., simulated ; see, for example, [114] for the exact definition of simula-

tion) by the continuous controller, provided that the evolution of the controlled state

satisfies (6.2), and

(b) synthesis of a discrete planner (i.e., a strategy), represented by a finite state automaton,

that ensures the correctness of the discrete plan.

In Section 6.5, we present an approach to handle step (a), assuming that the physical

system is modeled as described in Section 6.3. To handle step (b) and ensure the system cor-

rectness for any initial condition and environment, we apply the two-player game approach

presented in [98] to synthesize a discrete planner as in [65, 122]. In summary, consider a

class of LTL formulas of the form

⎛
⎝
ψinit ∧ ◻ψe ∧ ⋀

i∈If

◻3ψf,i
⎞
⎠
Ô⇒

⎛
⎝⋀i∈Is

◻ψs,i ∧ ⋀
i∈Ig

◻3ψg,i
⎞
⎠
, (6.6)

known as Generalized Reactivity[1] (GR[1]) formulas. Here, ψinit, ψf,i and ψg,i are proposi-

tional formulas of variables from V ; ψe is a Boolean combination of propositional formulas

of variables from V and expressions of the form #ψte where ψte is a propositional formula of

variables from E that describes the assumptions on the transitions of environment states;

and ψs,i is a Boolean combination of propositional formulas of variables from V and ex-

pressions of the form #ψts where ψts is a propositional formula of variables from V that

describes the constraints on the transitions of controlled states. The approach presented

in [98] allows checking the realizability of this class of specifications and synthesizing the

corresponding finite state automaton to be performed in time O(∣V∣3) where ∣V∣ is the size

of the state space of the finite state abstraction D of the system. We refer the reader to [98]

and references therein for a detailed discussion.

Proposition 6.4.1. A specification of the form (6.3) can be reduced to a subclass of GR[1]

formula of the form

⎛
⎝
ψinit ∧ ◻ψee ⋀

i∈If

◻3ψef,i
⎞
⎠
Ô⇒

⎛
⎝⋀i∈Is

◻ψs,i ∧ ⋀
i∈Ig

◻3ψg,i
⎞
⎠
, (6.7)
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where ψinit, ψs,i and ψg,i are as defined above and ψee and ψef,i are propositional formulas

of variables from E.

In this thesis, we call the left-hand side and the right-hand side of (6.7) the “assumption”

part and the “guarantee” part, respectively.

The proof of Proposition 6.4.1 is based on the fact that all safety, guarantee, obligation

and response properties are special cases of progress formulas ◻3p, provided that p is allowed

to be a past formula [82]. Hence, these properties can be reduced to the “guarantee” part

of (6.7) by introducing auxiliary Boolean variables. For example, a guarantee property

3ps2,j can be reduced to the “guarantee” part of (6.7) by introducing an auxiliary Boolean

variable x, initialized to ps2,j . 3ps2,j can then be equivalently expressed as a conjunction of

◻((x ∨ ps2,j) Ô⇒ #x), ◻(¬(x ∨ ps2,j) Ô⇒ #(¬x)) and ◻3x. Obligation and response

properties can be reduced to the “guarantee” part of (6.7) using a similar idea. In addition,

a stability property 3◻ ps6,j can be reduced to the “guarantee” part of (6.7) by introducing

an auxiliary Boolean variable y, initialized to False. 3 ◻ ps6,j can then be equivalently

expressed as a conjunction of ◻(y Ô⇒ ps6,j), ◻(y Ô⇒ #y), ◻(¬y Ô⇒ (#y ∨ #(¬y)))

and ◻3y. Note that these reductions lead to equivalent specifications. However, for the case

of stability, the reduction may lead to an unrealizable specification even though the original

specification is realizable. Roughly speaking, this is because the auxiliary Boolean variable

y needs to make clairvoyant (prophecy), non-deterministic decisions. For other properties,

the realizability remains the same after the reduction since the synthesis algorithm [98] is

capable of handling past formulas. The detail of this discussion is beyond the scope of this

thesis and we refer the reader to [98] for more detailed discussion on the synthesis of GR[1]

specification.

6.5 Computing Finite State Abstraction

To construct a finite transition system D from the physical model S, we first partition

dom(S) and dom(E) into finite sets S and E , respectively, of equivalence classes or cells

such that the partition is proposition preserving [6]. Roughly speaking, a partition is said to

be proposition preserving if for any atomic proposition π ∈ Π and any states v1 and v2 that

belong to the same cell in the partition, v1 satisfies π iff v2 also satisfies π. We denote the

resulting discrete domain of the system by V = S×E . We call v ∈ dom(V ) a continuous state



110

and ν ∈ V a discrete state of the system. For a discrete state ν ∈ V, we say that ν satisfies

an atomic proposition π ∈ Π, denoted by ν ⊩d π, if and only if there exists a continuous

state v contained in the cell labeled by ν such that v satisfies π. Given an infinite sequence

of discrete states σd = ν0ν1ν2 . . . and LTL formula ϕ built from Π, we say that ϕ holds at

position i ≥ 0 of σd, written νi ⊧d ϕ, if and only if ϕ holds for the remainder of σd starting

at position i. With these definitions, the semantics of LTL for a sequence of discrete states

can be derived from the general semantics of LTL.

Next, we need to determine the transition relations → of D. In Section 6.5.1, we use a

variant of the notion of reachability that is sufficient to guarantee that if a discrete controlled

state ςj is reachable from ςi, the transition from ςi to ςj can be continuously implemented

or simulated by a continuous controller. A computational scheme that provides a sufficient

condition for reachability between two discrete controlled states and subsequently refines

the state space partition is also presented in Section 6.5.3 and 6.5.4.

6.5.1 Finite Time Reachability

Let S = {ς1, ς2, . . . , ςl} be a set of discrete controlled states. We define a map Ts ∶ dom(S) → S

that sends a continuous controlled state to a discrete controlled state of its equivalence class.

That is, T−1
s (ςi) ⊆ dom(S) is the set of all the continuous controlled states contained in the

cell labeled by ςi and {T−1
s (ςi), . . . , T −1

s (ςn)} is the partition of dom(S). We define the

reachability relation, denoted by ↝, as follows.

Definition 6.5.1. A discrete state ςj is reachable from a discrete state ςi, written ςi ↝ ςj ,

only if starting from any point s[0] ∈ T −1
s (ςi), there exists a horizon length N ∈ {0,1, . . .}

and a sequence of control signals u[0], u[1], . . . , u[N − 1] ∈ U that takes the system (6.2) to

a point s[N] ∈ T −1
s (ςj) satisfying the constraint s[t] ∈ T−1

s (ςi) ∪ T−1
s (ςj),∀t ∈ {0, . . . ,N} for

any sequence of exogenous disturbances d[0], d[1], . . . , d[N − 1] ∈ D. We write ςi   ςj if ςj

is not reachable from ςi.

In general, for two discrete states ςi and ςj , verifying the reachability relation ςi ↝ ςj is

hard because it requires searching for a proper horizon length N . Therefore, we consider the

restricted case where the horizon length is fixed and given and U , D and T−1
s (ςi), i ∈ {1, . . . , l}

are polyhedral sets. Our approach relies on solving the following problem.

Reachability Problem : Given an initial continuous controlled state s[0] ∈ Rn, discrete
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controlled states ςi, ςj ∈ S, the set of admissible control inputs U ⊆ Rm, the set of exogenous

disturbances D ⊆ Rp, the matrices A, B and E as in (6.2), a horizon length N ≥ 0, determine

a sequence of control signals u[0], u[1], . . . , u[N −1] ∈ Rm such that for all t ∈ {0, . . . ,N −1}

and d[t] ∈D,

s[t + 1] = As[t] +Bu[t] +Ed[t],

s[t] ∈ T−1
s (ςi),

u[t] ∈ U,

s[N] ∈ T−1
s (ςj).

(6.8)

6.5.2 Preliminaries on Polyhedral Convexity

We consider the case where U , D and T−1
s (ςi), i ∈ {1, . . . , l} are polyhedral sets defined as

follows.

Definition 6.5.2. A subset P of Rn is said to be a polyhedral set if it is non-empty and has

the form P = {p ∣ Gp ≤ h} for some G ∈ Rr×n and h ∈ Rr, where the inequality ≤ is evaluated

elementwise.

Definition 6.5.3. Let P be a non-empty convex set. A point p ∈ P is an extreme point of

P if and only if it does not lie strictly between the endpoints of any line segment contained

in the set, i.e., for an extreme point p,

p = λp1 + (1 − λ)p2, p1, p2 ∈ P, λ ∈ (0,1) Ô⇒ p = p1 = p2.

To compute the set S0 of initial states for which the Reachability Problem is feasible,

we apply the following results on polyhedral convexity. The proofs for the next three

propositions can be found in [11].

Proposition 6.5.1. Let P be a polyhedral subset of Rn. If P has the form P = {p ∈

Rn ∣ g′jp ≤ hj , j = 1, . . . , r} where gj ∈ Rn, g′j is the transpose of gj and hj ∈ R, then a point

p ∈ P is an extreme point of P if and only if the set Gp ≜ {gj ∣ g′jp = hj , j ∈ {1, . . . , r}}

contains n linearly independent vectors.

Proposition 6.5.2. Let P be a non-empty convex subset of Rn. If P is closed, then P has

at least one extreme point if and only if it does not contain a line, i.e., a set of the form

{p + λh ∣ λ ∈ R}, where h ∈ Rn is non-zero and p ∈ P .
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Proposition 6.5.3 (Fundamental Theorem of Linear Programming). Let P be a polyhedral

set that has at least one extreme point. A linear function that is bounded below over P attains

a mininum at some extreme point of P .

Using Proposition 6.5.1, we can derive the following proposition.

Proposition 6.5.4. Let P be a polyhedral subset of Rn and let P be the set of all its extreme

points. For any natural number N , PN ≜ P × . . . × P (N times) is a polyhedral subset of

RnN and P
N ≜ P × . . . × P (N times) is the set of all its extreme points.

Proof. Since P is a polyhedral set, by definition, it can be written as P = {p ∈ Rn ∣ Cp ≤D}

for some matrix C ∈ Rr×n and vector D ∈ Rr. Clearly, PN is a polyhedral subset of RnN

since it can be written as PN = {p ∈ RnN ∣ C̃p ≤ D̃} where C̃ ∈ RrN×nN is a block diagonal

matrix whose diagonal blocks are C and D̃ = [D′, . . . ,D′]′ ∈ RrN .

Let Q be the set of all the extreme points of PN . First, we will show that P
N ⊆ Q.

Consider any point q ∈ PN . Then, q = [p′1, . . . , p′N ]′ for some p1, . . . , pN ∈ P . Let c′j be

the jth row of C and let dj be the jth element of D. From Proposition 6.5.1, we get

that for each i ∈ {1, . . . ,N}, the set Cpi ≜ {cj ∣ c′jpi = dj , j ∈ {1, . . . , r}} contains n linearly

independent vectors. Let c̃′j be the jth row of C̃ and let d̃j be the jth element of D̃. Define

Cq ≜ {c̃j ∣ c̃′jq = d̃j , j ∈ {1, . . . , rN}}. From the block diagonal structure of C̃, it can be easily

verified that

Cq =
N

⋃
i=1

0n(i−1) ×Cpi × 0n(N−i),

where for any natural number m, 0m is a zero vector of length m. Since for each i ∈

{1, . . . ,N}, Cpi contains n linearly independent vectors, it can be easily shown that Cq

contains nN linearly independent vectors. Thus, using Proposition 6.5.1, we can conclude

that q ∈ Q.

Next, we will show that Q ⊆ PN . Consider any point q ∈ Q. Then, q = [p′1, . . . , p′N ]′

for some p1, . . . , pN ∈ P . From Proposition 6.5.1, we get that the set Cq ≜ {c̃j ∣ c̃′jq = d̃j , j ∈

{1, . . . , rN}} contains nN linearly independent vectors. From the block diagonal structure

of C̃, it can be easily verified that for each i ∈ {1, . . . ,N}, the set Cpi ≜ {cj ∣ c′jpi = dj , j ∈

{1, . . . , r}} must contain n linearly independent vectors. Using Proposition 6.5.1, we can

conlude that for each i ∈ {1, . . . ,N}, pi ∈ P .

In addition, the following proposition can be proved using Proposition 6.5.2.
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Proposition 6.5.5. Let P be a polyhedral subset of Rn. If P is closed and bounded, then

P has at least one extreme point.

Proof. Assume, to arrive at a contradiction, that P does not have an extreme point. Then,

from Proposition 6.5.2, P contains a line L = {p + λh ∣ λ ∈ R} where h ∈ Rn is non-zero and

p ∈ P . This contradicts the assumption that P is bounded.

Finally, the next three propositions can be found in standard textbooks on topology,

e.g., [109].

Proposition 6.5.6 (Heine-Borel Theorem). A subset of Euclidean space Rn is compact if

and only if it is closed and bounded.

Proposition 6.5.7 (Tychonoff’s Theorem). The product of any collection of compact topo-

logical spaces is compact.

Proposition 6.5.8 (Extreme Value Theorem). A continuous real-valued function on a

non-empty compact space is bounded and attains its supremum.

6.5.3 Verifying the Reachability Relation

Given two discrete controlled states ςi, ςj ∈ S, to determine whether ςi ↝ ςj , we essentially

have to verify that T−1
s (ςi) ⊆ S0 where S0 is the set of s[0] starting from which the Reach-

ability Problem defined in Section 6.5.1 is feasible. In this section, we describe how S0 can

be computed using an idea from constrained robust optimal control [14].

We assume that U , D and T−1
s (ςi), i ∈ {1, . . . , l} are polyhedral sets, i.e., there exist

matrices L1, L2 and L3 and vectors M1, M2 and M3 such that T−1
s (ςi) = {s ∈ Rn ∣ L1s ≤M1},

U = {u ∈ Rm ∣ L2u ≤M2} and T−1
s (ςj) = {s ∈ Rn ∣ L3s ≤M3}. Then, by substituting

s[t] = Ats[0] +
t−1

∑
k=0

(AkBu[t − 1 − k] +AkEd[t − 1 − k])

and replacing s[t] ∈ T−1
s (ςi), u[t] ∈ U and s[N] ∈ T−1

s (ςj) with L1s[t] ≤ M1, L2u[t] ≤ M2

and L3s[N] ≤M3, respectively, in (6.8), it can be easily checked that equation (6.8) can be

rewritten in the form

L

⎡⎢⎢⎢⎢⎢⎣

s[0]

û

⎤⎥⎥⎥⎥⎥⎦
≤M −Gd̂, (6.9)
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where û ≜ [u[0]′, . . . , u[N − 1]′]′ ∈ RmN , d̂ ≜ [d[0]′, . . . , d[N − 1]′]′ ∈ DN and the matrices

L ∈ Rr×n+mN and G ∈ Rr×pN and the vector M ∈ Rr can be obtained from L1, L2, L3, M1,

M2, M3, A, B and E.

Using properties of polyhedral convexity, we can prove the following result.

Theorem 6.5.1. Suppose D is a closed and bounded polyhedral subset of Rp and D is the

set of all its extreme points. Let P ≜ {y ∈ Rn+mN ∣ Ly ≤M −Gd̂,∀d̂ ∈DN} and let S0 be the

projection of P onto its first n coordinates, i.e.,

S0 =
⎧⎪⎪⎪⎨⎪⎪⎪⎩
s ∈ Rn ∣ ∃û ∈ RmN s.t. L

⎡⎢⎢⎢⎢⎢⎣

s

û

⎤⎥⎥⎥⎥⎥⎦
≤M −Gd̂,∀d̂ ∈DN

⎫⎪⎪⎪⎬⎪⎪⎪⎭
.

Then, the Reachability Problem defined in Section 6.5.1 is feasible for any s[0] ∈ S0.

Proof. From the Heine-Borel theorem and the Tychonoff’s theorem, we get that DN is

compact. For each j ∈ {1, . . . , r}, let mj be the jth element of M and g′j be the jth row

of G and define a linear function fj ∶ DN → R by fj(d̂) = mj − g′j d̂. Since fj is continuous

and DN is compact, from the extreme value theorem, fj is bounded below over DN . In

addition, since DN is compact, from the Heine-Borel theorem and Proposition 6.5.5, DN

has at least one extreme point. Using the fundamental theorem of linear programming, we

can conclude that fj attains a minimum at some extreme point of DN .

Assume, for the sake of contradiction, that there exists s0 ∈ S0 and d̂0 ∈ DN such

that for any û ∈ RmN , L

⎡⎢⎢⎢⎢⎢⎣

s0

û

⎤⎥⎥⎥⎥⎥⎦
> M − Gd̂0. Then, there exists j ∈ {1, . . . , r} such that

l′j

⎡⎢⎢⎢⎢⎢⎣

s0

û

⎤⎥⎥⎥⎥⎥⎦
> fj(d̂0) where l′j is the jth row of L. But since fj attains a minimum at some

extreme point of DN , there exists d̂ ∈ DN
such that l′j

⎡⎢⎢⎢⎢⎢⎣

s0

û

⎤⎥⎥⎥⎥⎥⎦
> fj(d̂). This contradicts the

assumption that s0 ∈ S0.

Using Theorem 6.5.1, the problem of computing the set S0 such that the Reachability

Problem is feasible for any s[0] ∈ S0 is reduced to computing a projection of the intersection

of finite sets and can be automatically solved using off-the-shelf software, for example, the

Multi-Parametric Toolbox (MPT) [67].
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6.5.4 State Space Discretization and Correctness of the System

In general, given the previous partition of dom(S) and any i, j ∈ {1, . . . , n}, the reachability

relation between ςi and ςj may not be established through the set S0 of s[0] starting from

which the Reachability Problem defined in Section 6.5.1 is feasible since T−1
s (ςi) is not

necessarily covered by S0 (due to the constraints on u and a specific choice of the finite

horizon N). To partially alleviate this limitation, we refine the partition based on the

reachability relation defined earlier to increase the number of valid discrete state transitions

of D. The underlying idea is that starting with an arbitrary pair of ςi and ςj , we determine

the set S0 of feasible s[0] for the Reachability Problem. Then, we partition T−1
s (ςi) into

T−1
s (ςi) ∩ S0, labeled by ςi,1, and T−1

s (ςi)/S0, labeled by T−1
s (ςi,2), and obtain the following

reachability relations: ςi,1 ↝ ςj and ςi,2   ςj . This process is continued until some pre-

specified termination criteria are met. Table 6.1 shows the pseudo-code of the algorithm

where a prescribed lower bound Volmin on the volume of each cell in the new partition is used

as a termination criterion. The algorithm terminates when no cell can be partitioned such

that the volumes of the two resulting new cells are both greater than Volmin . Larger Volmin

causes the algorithm to terminate sooner. Other termination criteria such as the maximum

number of iterations can be used as well. Note that the point at which the algorithm

terminates affects the reachability between discrete controlled states of the new partition

and as a result, affects the realizability of the specification. Generally, a coarse partition

makes the specification unrealizable but a fine partition causes state space explosion. A

way to decide when to terminate the algorithm is to start with a coarse partition and keep

refining it until the specification is realizable.

We denote the set of all the discrete controlled states corresponding to the resulting

partition of dom(S) after applying the discretization algorithm by S ′. Since the partition

obtained from the proposed algorithm is a refined partition of {T−1
s (S1), . . . , T −1

s (Sn)} and

V = S × E is proposition preserving, it is trivial to show that V ′ = S ′ × E is also proposition

preserving. For simplicity of notation, we call S ′ as S and V ′ as V for the rest of the chapter.

We define the finite transition system D that serves as the abstract model of S as follows:

V = S ×E is the set of states of D and for any two states νi = (ςi, εi) and νj = (ςj , εj), νi → νj

(i.e., there exists a transition from νi to νj) only if ςi ↝ ςj . Using the abstract model D, a

discrete planner that guarantees the satisfaction of ϕ while ensuring that the discrete plans
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Table 6.1: Discretization Algorithm.

Discretization Algorithm
input: The lower bound on cell volume (Volmin), the parameters A, B, E, U , D, N

of the Reachability Problem, and the original partition ({T−1
s (ςi) ∣ i ∈ {1, . . . , n}})

output: The new partition sol

sol = {T−1
s (ςi) ∣ i ∈ {1, . . . , n}}; IJ = {(i, j) ∣ i, j ∈ {1, . . . , n}};

while (size(IJ ) > 0)
Pick arbitrary ςi and ςj where (i, j) ∈ IJ ;
Compute the set S0 of s[0] starting from which the Reachability Problem is feasible

for the previously chosen ςi and ςj ;
if (volume(sol[i] ∩ S0) > Volmin and volume(sol[i]/S0 > Volmin) then
Replace sol[i] with sol[i] ∩ S0 and append sol[i]/S0 to sol ;
For each k ∈ {1, . . . , size(sol)}, add (i, k), (k, i), (size(sol), k) and (k, size(sol)) to IJ ;

else
Remove (i, j) from IJ ;

endif
endwhile

are restricted to those satisfying the reachability relations can be automatically constructed

using the digital design synthesis tool [98].

From the stutter-invariant property of ϕ [97], the formulation of the Reachability Prob-

lem and the proposition preserving property of V, it is straightforward to prove the following

proposition.

Proposition 6.5.9. Let σd = ν0ν1 . . . be an infinite sequence of discrete states of D where

for each natural number k, νk → νk+1, νk = (ςk, εk), ςk ∈ S is the discrete controlled state

and εk ∈ E is the discrete environment state. If σd ⊧d ϕ, then by applying a sequence of

control signals, each corresponding to a solution of the Reachability Problem with ςi = ςk and

ςj = ςk+1, the infinite sequence of continuous states σ = v0v1v2 . . . satisfies ϕ.

Proof. From the formulation of the Reachability Problem, the (continuous) execution of the

system (i.e., the infinite sequence of continuous states) can be written as

σ = v0,0v0,1 . . . v0,N−1v1,0v1,1 . . . v1,N−1 . . . ,

where N is the horizon length of the Reachability Problem and for each i ∈ {0,1, . . . ,} and

j ∈ {0, . . . ,N − 1}, the continuous state vi,j belongs to the cell labeled by νi. Thus, for
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each atomic proposition π ∈ Π, vi,j ⊩ π if and only if νi ⊩d π. Since σd ⊧d ϕ, from the

stutter-invariant property of ϕ, we can conclude that σ ⊧ ϕ.

As described in Section 6.2.2, a solution u[0], . . . , u[N − 1] of the Reachability Problem

can be computed by formulating a constrained optimal control problem, which can be solved

using off-the-shelf software such as MPT [67], YALMIP [75] or NTG [92].

6.5.5 Example

We consider a point-mass omnidirectional vehicle navigating a straight road while avoiding

obstacles and obeying certain traffic rules. It was shown in [56] that the non-dimensional

equations of motion of the vehicle are given by

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

ẍ

ÿ

θ̈

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦

+

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

ẋ

ẏ

2mL2

J θ̇

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

qx

qy

qθ

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (6.10)

with the following constraints on the control efforts:

∀t, q2
x(t) + q2

y(t) ≤ (3 − ∣qθ(t)∣
2

)
2

and ∣qθ(t)∣ ≤ 3. (6.11)

Conservatively, we can set ∣qx(t)∣ ≤
√

0.5, ∣qy(t)∣ ≤
√

0.5 and ∣qθ(t)∣ ≤ 1 so that the constraints

(6.11) are decoupled.

In this section, we are only interested in the translational (x and y) components of the

vehicle state. Discretizing the dynamics (6.10) with time step 0.1, we obtain the following

discrete-time linear time-invariant state space model

⎡⎢⎢⎢⎢⎢⎣

z[t + 1]

vz[t + 1]

⎤⎥⎥⎥⎥⎥⎦
=
⎡⎢⎢⎢⎢⎢⎣

1 0.0952

0 0.9048

⎤⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎣

z[t]

vz[t]

⎤⎥⎥⎥⎥⎥⎦
+
⎡⎢⎢⎢⎢⎢⎣

0.0048

0.0952

⎤⎥⎥⎥⎥⎥⎦
qz (6.12)

where z represents either x or y and vz represents the rate of change in z. Let Cz be

the domain of the vehicle state projected onto the (z, vz) coordinates. We restrict the

domain Cz to [zmin, zmax]× [−1,1] and partition Cz as Cz = ⋃i∈{zmin+1,...,zmax}Cz,i where

Cz,i = [i−1, i]×[−1,1] as shown in Figure 6.1. Throughout the section, we call this partition

the original partition of the domain Cz.
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Figure 6.1: The original partition of the domain Cz.

We consider a road with two lanes, each of width 1, so we set ymin = 0 and ymax = 2.

Since the vehicle dynamics are translationally invariant, without loss of generality we set

xmin = 0 and xmax = L where L is the length of the road.

For each i ∈ {1, . . . , L} and j ∈ {1,2}, we define a Boolean variable Oi,j that is assigned

the value True if and only if an obstacle is detected at some position (xo, yo) ∈ [i − 1, i] ×

[j − 1, j]. The state of the system is therefore a tuple (x, vx, y, vy,O1,1,O1,2, . . . ,OL,1,OL,2)

where (x, vx, y, vy) ∈ [0, L]×[−1,1]×[0,2]×[−1,1] is the vehicle state or the controlled state

and (O1,1,O1,2, . . . ,OL,2) ∈ {0,1}2L is the environment state.

State Space Discretization

Since the dynamics and the constraints on the control efforts for the x and y components

of the vehicle state are decoupled, we apply the discretization algorithm presented in Sec-

tion 6.5.4 for the x and y components separately for the sake of computational efficiency.1

Since the vehicle dynamics (6.10) are translationally invariant, we can use similar partitions

for all Cz,i. The discretization algorithm with horizon length N = 10 and Volmin = 0.1 yields

a partition with 11 cells {C1
z,i,C

2
z,i, . . . ,C

11
z,i} for each Cz,i as shown in Figure 6.2. For each

i ∈ {zmin + 1, . . . , zmax} and j ∈ {1, . . . ,11}, we let Cjz,i be the state label of cell Cjz,i and

let Cz,i = {C1
z,i, . . . ,C11

z,i}. A discrete state is therefore a tuple (νx, νy,O1,1, . . . ,OL,2) where

(νx, νy) ∈ Cx,i × Cy,i is the discrete controlled state. The reachability between discrete con-

trolled states can be determined by checking set inclusion and applying Thereom 6.5.1 as

described in Section 6.5.3. By solving the associated constrained optimal control problem

using off-the-shelf software such as MPT, a controller associated with each reachable pair of

them can be generated such that the resulting continuous execution implements the discrete
1Before performing the discretization, we partition each Cz,i into (C+

z,i ∪C
−
z,i) where C+

z,i = [i−1, i]×[0,1]
and C−

z,i = [i− 1, i] × [−1,0] to allow the possibility of enforcing other traffic laws such as disallowing reverse
motion of the vehicle.
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Figure 6.2: The partition of each cell Cz,i in the original partition of the domain Cz.

transition between them.

6.6 Conclusions

This chapter proposed an approach to automatically compute a finite state abstraction of a

discrete-time linear time-invariant system, taking into account the presence of exogenous dis-

turbances. This, together with the digital design synthesis tool, allows us to automatically

synthesize embedded control software for the system that is guaranteed, by construction,

to satisfy its specification regardless of the environment in which it operates (subject to

certain assumptions on the environment that need to be stated in the specification). The

resulting system is provably robust with respect to bounded exogenous disturbances.
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Chapter 7

Receding Horizon Framework for
Temporal Logic Specifications

This chapter describes a receding horizon framework that satisfies a class of linear temporal

logic specifications sufficient to describe a wide range of properties including safety, stability,

progress, obligation, response and guarantee. The resulting embedded control software

consists of a goal generator, a trajectory planner and a continuous controller. The goal

generator reduces the trajectory generation problem to a sequence of smaller problems of

short horizon while preserving the desired system-level temporal properties. Subsequently,

in each iteration, the trajectory planner solves the corresponding short-horizon problem

with the currently observed state as the initial state and generates a feasible trajectory to

be implemented by the continuous controller. Based on the simulation property, we show

that the composition of the goal generator, trajectory planner and continuous controller and

the corresponding receding horizon framework guarantee the correctness of the system. To

handle failures that may occur due to a mismatch between the actual system and its model,

we propose a response mechanism and illustrate, through an example, how the system is

capable of responding to certain failures and continues to exhibit a correct behavior.

7.1 Overview

Synthesis of correct-by-construction embedded control software based on temporal logic

specifications has attracted considerable attention in the recent years due to the increasing

frequency of systems with tight integration between computational and physical elements

and the complexity in designing and verifying such systems. The hierarchical approach
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presented in Chapter 6 is a commonly used to attack this synthesis problem. One of the

main challenges of this approach, which is the focus of Chapter 6, is in the abstraction of

systems evolving on a continuous domain into equivalent (in the simulation sense) finite

state models.

Another challenge of this hierarchical approach that remains an open problem and has

received less attention in the literature is the computational complexity in the synthesis

of finite state automata. In particular, the synthesis problem becomes significantly harder

when the interaction with the (potentially dynamic and not a priori known) environment

has to be taken into account. Piterman et al. [98] treated this problem as a two-player

game between the system and the environment and proposed an algorithm for the synthesis

of a finite state automaton that satisfies its specification regardless of the environment

in which it operates (subject to certain assumptions on the environment that need to be

stated in the specification). Although for a certain class of properties, known as Generalized

Reactivity[1] , such an automaton can be computed in polynomial time, the applications of

the synthesis tool are limited to small problems due to the state explosion issue.

Similar computational complexity is also encountered in the area of constrained optimal

control. In the control domain, an effective and well-established technique to address this

problem is to design and implement control strategies in a receding horizon manner, i.e.,

optimize over a shorter horizon, starting from the currently observed state, implement the

initial control action, move the horizon one step ahead, and reoptimize. This approach

reduces the computational complexity by essentially solving a sequence of smaller opti-

mization problems, each with a specific initial condition (as opposed to optimizing with any

initial condition in traditional optimal control). Under certain conditions, receding horizon

control strategies are known to lead to closed-loop stability [83, 92, 53]. See, e.g., [91, 42]

for a detailed discussion on constrained optimal control, including finite horizon optimal

control and receding horizon control.

This chapter describe an extension of traditional receding horizon control to incorporate

linear temporal logic specification of the form (6.7) in order to reduce the computational

complexity of the synthesis problem. Specifically, we develop the receding horizon frame-

work for executing finite state automata while ensuring system correctness with respect to

a given temporal logic specification. This essentially allows the synthesis problem to be

reduced to a set of smaller problems of short horizon.
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The remainder of the chapter is organized as follows. Section 7.2 provides a brief descrip-

tion of traditional receding horizon control. Section 7.3 formulates the planner synthesis

problem. To reduce the complexity of the synthesis problem, in Section 7.4, we propose

the receding horizon framework for executing finite state automata while ensuring system

correctness with respect to a given linear temporal logic specification. The proposed frame-

work allows the synthesis problem to be reduced to a set of smaller problems of short

horizon. Its implementation, presented in Section 7.5, leads to the decomposition of the

discrete planner into a goal generator and a trajectory planner. The goal generator reduces

the synthesis problem to a sequence of short horizon problems while preserving the desired

system-level temporal properties. Subsequently, in each iteration, the trajectory planner

solves the corresponding short-horizon problem with the currently observed state as the

initial state and generates a feasible trajectory to be implemented by the continuous con-

troller. This design corresponds to Alice’s planner-controller subsystem (Figure 2.1) with

the goal generator having similar functionality as Mission Planner, the trajectory planner

having similar functionality as the composition of Traffic Planner and Path Planner, and

the continuous controller having similar functionality as Path Follower. Also presented in

Section 7.5 is a response mechanism that potentially increases the robustness of the system

with respect to a mismatch between the actual system and its model and violation of the

environment assumptions. Finally, in Section 7.6, we demonstrate the effectiveness of the

proposed technique through an example of an autonomous vehicle navigating an urban en-

vironment. This example also illustrates that the system is not only robust with respect

to exogenous disturbances but is also capable of handling violation of the environment

assumptions.

7.2 Preliminaries on Receding Horizon Control

Computational complexity is an inherent problem in the area of constrained optimal con-

trol. Consider, for example, the two degree of freedom controller design [7] of Figure 7.1

commonly used in motion control systems to handle non-linear designs, including global

non-linearities, input saturation and state space constraints, taking into account noise and

unmodeled dynamics. This control architecture separates the control component into the

trajectory generation (feedforward compensator) and the local control (feedback compen-
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Figure 7.1: A typical control system with trajectory generation implemented in a receding
horizon manner. ∆ models uncertainties in the plant model.

sator) components. Given a reference trajectory, the trajectory generation component com-

putes a feasible state space trajectory sd and the nominal control signals u that enable the

system to track sd based on the differential equations that govern the evolution of the plant

state. The local control is implemented to account for the effect of the noise and unmodeled

dynamics captured by ∆.

In traditional constrained optimal control [91, 42], the trajectory generation component

solves a constrained optimization problem to generate an optimal state space trajectory

sd. This component is typically run in an open-loop manner, i.e., there is no dashed

arrow labeled “Receding Horizon Control” and sd is computed offline, taking into account

all the possible initial conditions. An effective and well-established approach to deal with

computational complexity pertaining to this problem is to “close the loop” at the trajectory

generation level as shown in Figure 7.1 and allow control strategies to be designed and

implemented in a receding horizon manner. In summary, at each sampling instant, the

current state of the plant is sampled and a finite horizon optimal control problem (see

Section 6.2.2) is solved using the current plant state as the initial state. Only an initial

part of the resulting control strategy is then implemented. The plant state is sampled

again and the computation is repeated starting from the new current plant state. Hence,

this strategy essentially reduces the original constrained optimal control problem into a

sequence of smaller problems, each with a specific initial condition.

To ensure closed-loop stability, certain terminal state constraints need to be imposed [60,

85, 83]. A more sophisticated approach is to use an appropriate control Lyapunov function

(CLF) as a terminal cost [53, 92]. The absence of terminal constraints in this CLF approach

results in a significant speedup in computation time and even allows a trajectory generation
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problem to be solved in real-time [86].

Receding horizon control is known to not only reduce computational complexity but also

increase the robustness of the system with respect to exogenous disturbances and modeling

uncertainties [92]. With disturbances and modeling uncertainties, an actual execution of

the system usually deviates from a state space trajectory sd. Receding horizon control

allows the current state of the system to be continually reevaluated so sd can be adjusted

accordingly based on the externally received reference if the actual execution of the system

does not match it. Receding horizon control has been successfully demonstrated in many

applications [96, 29, 92, 61].

7.3 Problem Formulation

We consider the Planner-Controller Synthesis Problem formulated in Section 6.3. The

hierarchical approach described in Section 6.4 is commonly used to attack this problem.

In this chapter, we focus on the computational complexity issue of the discrete planner

synthesis problem (step (b) as described in Section 6.4). We assume that a finite state

abstraction D of the physical model S of the system has been constructed using, for example,

the discretization algorithm presented in Section 6.5.4. We denote the (finite) set of states

of D by V.

We consider a specification of the form (6.7) since, from Proposition 6.4.1, the specifi-

cation (6.3) can be reduced to this form. The following aspects of specification (6.7) are

noteworthy:

(i) The desired properties include the safety properties, ⋀
i∈Is

◻ψs,i, and the progress prop-

erties, ⋀
i∈Ig

◻3ψg,i.

(ii) Each progress property, ◻3ψg,i, i ∈ Ig, specifies the set of states that the system needs

to visit infinitely often. In other words, it represents a system goal. The conjunction

of these progress properties allows multiple goals to be specified. Each of these goals

has to be achieved infinitely often. However, the order in which they are achieved is

irrelevant.

Discrete Planner Synthesis Problem : Given a finite state abstraction D of the physical

system and the system specification ϕ of the form (6.7), synthesize a discrete planner that
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computes a discrete plan to ensure that starting from any initial condition, ϕ is satisfied

for any sequence of environment states.

7.4 Receding Horizon Framework

The digital design synthesis tool presented in Section 6.2.1 was designed to solve the Discrete

Planner Synthesis Problem. However, in many cases, this tool fails because of the state

explosion problem. In the worst case, the resulting automaton may contain all the possible

states of the system. For example, if the system has N variables, each can take any value

in {1, . . . ,M}, then there may be as many as MN nodes in the automaton. This type of

computational complexity limits the application of the systhesis to relatively small problems.

To reduce computational complexity in the synthesis of finite state automata, we apply

an idea similar to the traditional receding horizon control described in Section 7.2. First, we

observe that in many applications, it is not necessary to plan for the whole execution, taking

into account all the possible behaviors of the environment since a state that is very far from

the current state of the system typically does not affect the near future plan. Consider, for

example, the robot motion planning problem described in Example 6.3.2. Suppose C1 or

C2 is very far away from the initial position of the robot. Under certain conditions, it may

be sufficient to only plan out an execution for only a short segment ahead and implement

it in a receding horizon fashion, i.e., recompute the plan as the robot moves, starting from

the currently observed state (rather than from all initial conditions satisfying ϕinit as the

original specification (6.3) suggests). In this section, we present a sufficient condition and

a receding horizon strategy that allows the synthesis to be performed on a smaller domain;

thus, substantially reduces the number of states (or nodes) of the automaton while still

ensuring the system correctness with respect to the LTL specification (6.3).

We use the notion of partial order to provide a measure of closeness to the goal states.

Definition 7.4.1. A partially ordered set (V,⪯) consists of a set V and a binary relation

⪯ over the set V satisfying the following properties: for any v1, v2, v3 ∈ V , (a) v1 ⪯ v1; (b) if

v1 ⪯ v2 and v2 ⪯ v1, then v1 = v2; and (c) if v1 ⪯ v2 and v2 ⪯ v3, then v1 ⪯ v3.

First, for each progress property ◻3ψg,i, i ∈ Ig, we construct a collection of subsets

W i
0, . . . ,W i

p of V such that
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Figure 7.2: Illustration of the receding horizon framework showing the relationships between
the states of V and between the subsets W i

0, . . . ,W i
p.

(a) W i
0 ∪W i

1 ∪ . . . ∪W i
p = V,

(b) ψg,i is satisfied for any ν ∈ W i
0, i.e., W i

0 is the set of goal states associated with the

progress property ◻3ψg,i, and

(c) P i ≜ ({W i
0, . . . ,W i

p},⪯ψg,i) is a partially ordered set defined such thatW i
0 ≺ψg,i W i

j ,∀j /=

0.

Define a function F i ∶ {W i
0, . . . ,W i

p} → {W i
0, . . . ,W i

p} such that F i(W i
j) ≺ψg,i W i

j ,∀j ≠ 0.

As we shall see shortly, the function F i(W i
j) defines an intermediate goal for starting from

a state in W i
j .

Consider a simple case where {ν1, . . . , ν10} is the set V of states, ν10 satisfies ψg,i, and the

states in V are organized into five subsetsW i
0, . . . ,W i

4. The relationships between the states

in V and the subsets W i
0, . . . ,W i

4 are illustrated in Figure 7.2. The partial order may be

defined as W i
0 ≺ W i

1 ≺ . . . ≺ W i
4 and the mapping F i may be defined as F i(W i

j) = W i
j−2,∀j ≥

2, F i(W i
1) = W i

0 and F i(W i
0) = W i

0. Suppose ν1 is the initial state of the system. The key



127

idea of the receding horizon framework, as described later, is to plan from the initial state

ν1 ∈ W i
4 to any state in F i(W i

4) = W i
2, rather than planning from the initial state ν1 to the

goal state ν10 in one shot, taking into account all the possible behaviors of the environment.

Once a state in W i
3, i.e., ν5 or ν6 is reached, we then replan from that state to a state

in F i(W i
3) = W i

1. We repeat this process until ν10 is reached. Under certain sufficient

conditions presented later, this strategy ensures the correctness of the overall execution of

the system.

Formally, with the above definitions of W i
0, . . . ,W i

p and F i, we define a short-horizon

specification Ψi
j associated with W i

j for each i ∈ Ig and j ∈ {0, . . . , p} as

Ψi
j ≜ ((ν ∈ W i

j) ∧ Φ ∧ ◻ψee ∧ ⋀k∈If ◻3ψef,k)

Ô⇒ (⋀k∈Is ◻ψs,k ∧ ◻3(ν ∈ F i(W i
j)) ∧ ◻Φ) .

(7.1)

Here, ν is the state of the system and ψee, ψ
e
f,k and ψs,k are defined as in (6.7). Φ is a

propositional formula of variables from V such that ψinit Ô⇒ Φ is a tautology, i.e., any

state ν ∈ V that satisfies ψinit also satisfies Φ. The role of Φ is to add assumptions on

the initial states that need to be considered when synthesizing an automaton satisfying Ψi
j .

These assumptions may need to be added in order to make Ψi
j realizable. For example,

Φ may be used to exclude an unsafe state from the set of initial states. A more detailed

discussion on the role of Φ can be found in Remark 7.4.2.

An automaton Aij satisfying Ψi
j defines a strategy for going from a state ν1 ∈ W i

j to a

state ν2 ∈ F i(W i
j) while satisfying the safety requirements ⋀i∈Is ◻ψs,i and maintaining the

invariant Φ (see Remark 7.4.2 for the role of Φ in this framework). Roughly speaking, the

partial order P i provides a measure of “closeness” to the states satisfying ψg,i. Since each

specification Ψi
j asserts that the system eventually reaches a state that is smaller in the

partial order, it ensures that each automaton Aij brings the system “closer” to the states

satisfying ψg,i. The function F i thus defines the horizon length for these short-horizon

problems. In general, the size of Aij increases with the horizon length. However, with too

short a horizon, the specification Ψi
j is typically not realizable. A good practice is to choose

the shortest horizon, subject to the realizability of Ψi
j , so that the automaton Aij contains

as small a number of states as possible.

Receding Horizon Strategy : For each i ∈ Ig and j ∈ {0, . . . , p}, construct an automa-
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ton Aij satisfying Ψi
j , defined in (7.1). Let Ig = {i1, . . . , in} and define a corresponding

ordered set (i1, . . . , in). Note that this order only affects the sequence of progress properties

ψg,i1 , . . . , ψg,in that the system tries to satisfy. Hence, it can be picked arbitrarily without

affecting the correctness of the receding horizon strategy.

(1) Determine the index j1 such that the current state ν0 ∈ W i1
j1

. If j1 /= 0, then execute the

automaton Ai1j1 until the system reaches a state ν1 ∈ W i1
k where W i1

k ≺ψg,i1 W
i1
j1

. Note

that since the union of W i1
1 , . . . ,W i1

p is the set V of all the states, given any ν0, ν1 ∈ V,

there exist j1, k ∈ {0, . . . , p} such that ν0 ∈ W i1
j1

and ν1 ∈ W i1
k . This step corresponds to

going from W i1
j1

to W i1
j1−1 in Figure 7.3.

(2) If the current state ν1 /∈ W i1
0 , switch to the automaton Ai1k where the index k is chosen

such that the current state ν1 ∈ W i1
k . Execute Ai1k until the system reaches a state that

is smaller in the partial order P i1 . Repeat this step until a state ν2 ∈ W i1
0 is reached.

Note that it is guaranteed that a state ν2 ∈ W i1
0 is eventually reached because of the

finiteness of the set {W i1
0 , . . . ,W i1

p } and its partial order. See the proof of Theorem 7.4.1

for more details. This step corresponds to going all the way down the leftmost column

in Figure 7.3.

(3) Switch to the automaton Ai2j2 where the index j2 is chosen such that the current state

ν2 ∈ W i2
j2

. Repeat step (2) with i1 replaced by i2 for the partial order P i2 until a state

ν3 ∈ W i2
0 is reached. Repeat this step with i2 replaced by i3, i4, . . . , in, respectively, until

a state νn ∈ W in
0 is reached. In Figure 7.3, this step corresponds to moving to the next

column, going all the way down this column and repeating this process until we reach

the bottom of the rightmost column.

(4) Repeat steps (1)–(3).

Theorem 7.4.1. Suppose Ψi
j is realizable for each i ∈ Ig, j ∈ {0, . . . , p}. Then the proposed

receding horizon strategy ensures that the system is correct with respect to the specification

(6.7), i.e., any execution of the system satisfies (6.7).

Proof. Consider an arbitrary execution σ of the system that satisfies the “assumption”

part of (6.7). We want to show that the safety properties ψs,i, i ∈ Is, hold throughout the

execution and for each i ∈ Ig, a state satisfying ψg,i is reached infinitely often.
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Figure 7.3: A graphical description of the receding horizon strategy for a special case where
for each i ∈ Ig, W i

j ≺ψg,i W i
k,∀j < k, F i(W i

j) = W i
j−1,∀j > 0 and F i(W i

0) = W i
0. Starting

from a state ν0, the system executes the automaton Ai1j1 where the index j1 is chosen such
that ν0 ∈ Ai1j1 . Repetition of step (2) ensures that a state ν2 ∈ W i1

0 (i.e., a state satisfying
ψg,i1) is eventually reached. This state ν2 belongs to some set, say, W i2

j2
in the partial

order P i2 . The system then works through this partial order until a state ν3 ∈ W i2
0 (i.e., a

state satisfying ψg,i2) is reached. This process is repeated until a state νn satisfying ψg,in is
reached. At this point, for each i ∈ Ig, a state satisfying ψg,i has been visited at least once
in the execution. In addition, the state νn belongs to some set in the partial order P i1 and
the whole process is repeated, ensuring that for each i ∈ Ig, a state satisfying ψg,i is visited
infinitely often in the execution.

Let ν0 ∈ V be the initial state of the system and let the index j1 be such that ν0 ∈ W i1
j1

.

From the tautology of ψinitÔ⇒ Φ, it is easy to show that σ satisfies the “assumption” part

of Ψi1
j1

as defined in (7.1). Thus, if j1 = 0, then Ai10 ensures that a state ν2 satisfying ψg,i1 is

eventually reached and the safety properties ψs,i, i ∈ Is hold at every position of σ up to and

including the point where ν2 is reached. Otherwise, j1 /= 0 and Ai1j1 ensures that eventually,

a state ν1 ∈ W i1
k where W i1

k ≺ψg W i1
j1

is reached, i.e., ν1 is the state of the system at some

position l1 of σ. In addition, the invariant Φ and all the safety properties ψs,i, i ∈ Is, are

guaranteed to hold at all the positions of σ up to and including the position l1. According

to the receding horizon strategy, the planner switches to the automaton Ai1k at position l1

of σ. Since ν1 ∈ W i1
k and ν1 satisfies Φ, the “assumption” part of Ψi1

k as defined in (7.1) is

satisfied. Using the previous argument, we get that Ψi1
k ensures that all the safety properties

ψs,i, i ∈ Is, hold at every position of σ starting from position l1 up to and including position

l2 at which the planner switches the automaton (from Ai1k ) and Φ holds at position l2. By

repeating this procedure and using the finiteness of the set {W i1
0 , . . . ,W i1

p } and its partial

order condition, eventually the automaton Ai10 is executed which ensures that σ contains a
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state ν2 satisfying ψg,i1 and step (2) terminates.

Applying the previous argument to step (3), we get that step (3) terminates and before

this step terminates, the safety properties ψs,i, i ∈ Is, and the invariant Φ hold throughout

the execution and for each i ∈ Ig, a state satisfying ψg,i has been reached at least once. By

continually repeating steps (1)–(3), the receding horizon strategy ensures that ψs,i, i ∈ Is,

hold throughout the execution and for each i ∈ Ig, a state satisfying ψg,i is reached infinitely

often.

Remark 7.4.1. As discussed in Section 7.2, by continually evaluating the current plant

state and adjusting the state space trajectory sd based on the actual execution of the

system, traditional receding horizon control is known to increase the robustness of the

system with respect to exogenous disturbances and modeling uncertainties. Such an effect

may be expected in our extension of the traditional receding horizon control. Verifying this

property is subject to current study.

Remark 7.4.2. The propositional formula Φ can be viewed as an invariant of the system.

It adds an assumption on the initial state of each automaton Aij and is introduced in order

to make Ψi
j realizable. Without Φ, the set of initial states of Aij includes all states ν ∈ W i

j .

However, starting from some “bad” state (e.g., unsafe state) in W i
j , there may not exist a

strategy for the system to satisfy Ψi
j . Φ is essentially used to eliminate the possibility of

starting from these “bad” states. Given a partially ordered set P i and a function F i, one

way to determine Φ is to start with Φ ≡ True and check the realizability of the resulting

Ψi
j . If there exist i ∈ Ig and j ∈ {0, . . . , p} such that Ψi

j is not realizable, the synthesis

process provides the initial state ν∗ of the system starting from which there exists a set

of moves of the environment such that the system cannot satisfy Ψi
j . This information

provides guidelines for constructing Φ, i.e., we can add a propositional formula to Φ that

prevents the system from reaching the state ν∗. This procedure can be repeated until Ψi
j

is realizable for any i ∈ Ig and j ∈ {0, . . . , p} or until Φ excludes all the possible states, in

which case either the original specification is unrealizable or the proposed receding horizon

strategy cannot be applied with the given partially ordered set P i and function F i.

Remark 7.4.3. For each i ∈ Ig and j ∈ {0, . . . , p}, checking the realizability of Ψi
j requires

considering all the initial conditions in W i
j satisfying Φ. However, as will be further dis-

cussed in Section 7.5, when a strategy (i.e., a finite state automaton satisfying Ψi
j) is to be
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extracted, only the currently observed state needs to be considered as the initial condition.

Typically, the realizability can be checked symbolically and enumeration of states is only

required when a strategy needs to be extracted [98]. Symbolic methods are known to handle

large number of states, in practice, significantly better than enumeration-based methods.

Hence, state explosion usually occurs in the synthesis (i.e., strategy extraction) stage rather

than the realizability checking stage. By considering only the currently observed state as

the initial state in the synthesis stage, the receding horizon strategy delays state explosion

both by considering a short-horizon problem and a specific initial state.

Remark 7.4.4. The proposed receding horizon approach is not complete. Even if there

exists a control strategy that satisfies the original specification in (6.7), there may not

exist an invariant Φ or a collection of subsets W i
0, . . . ,W i

p that allow the receding horizon

strategy to be applied since the corresponding Ψi
j may not be realizable for all i ∈ Ig and

j ∈ {0, . . . , p}.

Example

We consider the point-mass omnidirectional vehicle as in Section 6.5.5. The embedded

control software has to be designed such that the vehicle is capable of navigating a straight

road while avoiding obstacles and obeying certain traffic rules. In this section, we precisely

describe these desired properties using linear temporal logic and illustrate the application

of the receding horizon framework.

System Specification

We assume that at the initial configuration, the vehicle is at least dobs away from any

obstacle and that the vehicle starts in the right lane. That is, ψinit in (6.7) is defined as:

for any i ∈ {1, . . . , L},

⎛
⎝
x ∈

i+dobs

⋃
k=i−dobs

Cx,k Ô⇒ (¬Oi,1 ∧ ¬Oi,2)
⎞
⎠
∧ y ∈ Cy,1. (7.2)

The following properties are assumed for the environment.

1. An obstacle is detected before the vehicle gets too close to it. That is, there is a lower

bound dpopup ≥ 0 on the distance from the vehicle for which obstacle is allowed to
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instantly pop up. An LTL formula corresponding to this assumption is a conjunction

of the following formula: for all i ∈ {1, . . . , L} and k ∈ {1,2},

◻
⎛
⎝
⎛
⎝
x ∈

i+dpopup

⋃
j=i−dpopup

Cx,j ∧ ¬Oi,k
⎞
⎠
Ô⇒ ◻(¬Oi,k)

⎞
⎠
. (7.3)

2. Sensing range is limited. That is, the vehicle cannot detect an obstacle that is farther

away from it than dsr > dpopup ≥ 0. An LTL formula corresponding to this assumption

is a conjunction of the following formula: for all i ∈ {1, . . . , L},

◻
⎛
⎝
x ∈ Cx,i Ô⇒ ⋀

j>i+dsr

(¬Oj,1 ∧ ¬Oj,2)
⎞
⎠
. (7.4)

3. The road is not blocked. That is, for any i ∈ {1, . . . , L},

◻ (¬Oi,1 ∨ ¬Oi,2) . (7.5)

4. To make sure that the stay-in-lane requirement (see below) is achievable, we assume

that an obstacle in the right lane does not disappear while the vehicle is in its vicinity.

That is, for any i ∈ {1, . . . , L},

◻
⎛
⎝
⎛
⎝
x ∈

i+1

⋃
j=i−1

Cx,j ∧ Oi,1
⎞
⎠
Ô⇒ ◻(Oi,1)

⎞
⎠
. (7.6)

These assumptions can be relaxed so that they have the form of the “assumption” part

of (6.6) by replacing the inner ◻ in (7.3) and (7.6) with #. Note that the resulting formula

is still not in the form of ◻ψee in (6.7). However, it can be shown that the resulting system

specification ϕ is stutter-invariant; thus, Proposition 6.5.9 can be applied to ensure the

correctness of the hierarchical approach. In addition, it can be shown that the proof of

Theorem 7.4.1 is valid for this specification; hence, the receding horizon framework can be

utilized to reduce the computational complexity of the synthesis problem while ensuring

the correctness of the system.

Next, we define the desired safety property, ⋀
i∈Is

◻ψs,i, as the conjunction of the following

properties:
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1. No collision, i.e., for any i ∈ {1, . . . , L} and j ∈ {1,2},

◻ (Oi,j Ô⇒ ¬(x ∈ Cx,i ∧ y ∈ Cy,j)). (7.7)

2. The vehicle stays in the right lane unless there is an obstacle blocking the lane. That

is, for any i ∈ {1, . . . , L},

◻ ((¬Oi,1 ∧ x ∈ Cx,i) Ô⇒ (y ∈ Cy,1)). (7.8)

Finally, we define the desired progress property ◻3(x ∈ Cx,L), i.e., we want to ensure

that the vehicle reaches the end of the road.

Receding Horizon Formulation

Based on the new partition of the vehicle state space, there are the total of 242×L discrete

vehicle states and 22×L discrete environment states. Thus, in the worst case, the resulting

automaton may have as many as 242 ×L × 22×L nodes. To avoid state explosion, we apply

the receding horizon strategy presented earlier. The partially ordered set is defined by P =

({W0, . . . ,WL−1},⪯ψg) where for each j ∈ {0, . . . , L − 1}, Wj = {(νx, νy,O1,1, . . . ,OL,2) ∣ νx ∈

Cx,L−j} and Wj ≺ψg Wk for any j < k.

Next, we follow the scheme in Remark 7.4.2 to find an invariant Φ. Starting with

Φ = True, we iteratively add, until Ψj as defined in (7.1) is realizable, a propositional

formula to exclude the initial states starting from which there exists a set of moves of the

environment such that the system cannot satisfy Ψj . A close examination of the resulting

Φ reveals that Φ is essentially the conjunction of the following logics:

1. To ensure the progress property ◻3(x ∈ Cx,L), we need to assume that νx ∉ Xnotrans
and νy ∉ Ynotrans where Znotrans is defined as: for any νz ∈ Znotrans , i ∈ {zmin +

1, . . . , zmax} and j ∈ {1, . . . ,11}, νz   Cjz,i and Z represent either X or Y.

2. To ensure no collision, the vehicle cannot collide with an obstacle at the initial state.

3. Suppose νx ∈ Cx,i. To ensure no collision, if νy can only transition to ν′y ∈ Cy,1, then

either Oi,1 or Oi+1,1 is False. Similarly, if νy can only transition to ν′y ∈ Cy,2, then

either Oi,2 or Oi+1,2 is False. Similar reasoning can be derived for the case where
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νx ∈ Cx,i such that it can only transition to ν′x ∈ Cx,i+1 and for the case where it can

only transition to ν′x ∈ Cx,i.

4. To ensure the stay-in-lane property, the vehicle cannot be in the left lane unless there

is an obstacle blocking the right lane at the initial state. In addition, the vehicle is

never in the state (νx, νy) ∈ Cx,i × Cy,1 that can only transition to (ν′x, ν′y) ∈ Cx,i × Cy,2.

5. Suppose νx ∈ Cx,i and Oi+1,1 is False. To ensure that the vehicle does not go to the

left lane when the right lane is not blocked, it is not the case that νy ∈ Cy,1 that can

only transition to ν′y ∈ Cy,2. In addition, it is not the case that νx can only transition

to ν′x ∈ Cx,i+1 and νy ∈ Cy,2 that can only transition to ν′y ∈ Cy,2.

With dpopup = 1 and the horizon length 2 (i.e., F(Wj) = Wj−2,∀j ≥ 2), the specification

(7.1) is realizable. In addition, if we let dobs be greater than 1 and restrict the initial state of

the system such that νx ∉ Xnotrans and νy ∉ Ynotrans, we get that ψinit Ô⇒ Φ is a tautology.

Results

The synthesis was performed on a MacBook with a 2 GHz Intel Core 2 Duo processor. Using

JTLV [98], the computation time was approximately 20 seconds. The resulting automaton

contains 2845 nodes.

A simulation result with the road length of 30 is shown in Figure 7.4. The polygons

drawn in red are obstacles, which are not known a priori. Notice that when there is no

obstacle blocking the lane, the vehicle tries to stay as close to the lane boundary (y = 1) as

possible. This is expected since to be able to avoid a pop up obstacle, due to the constraint

on the admissible control inputs, the vehicle needs to stay close to the lane boundary to be

0 5 10 15 20 25 30
0

0.5

1

1.5

2

x

y

Figure 7.4: Simulation result. The solid line is the trajectory of the vehicle. The polygons
are obstacles discovered during the execution when the vehicle gets close enough to them.
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able to change lane. To force the vehicle to stay close to the center of the lane, we need a

finer partition of the road and extra LTL formula to ensure this property needs to be added

to the system specification.

7.5 Implementation of the Receding Horizon Framework

In order to implement the receding horizon strategy described in Section 7.4, a partial order

P i and the corresponding function F i need to be defined for each i ∈ Ig. In the previous

example, we show how these elements can be manually defined for a simple case. For a more

complex case, the problem of determining P i and F i may not be as straightforward. In this

section, we present an implementation of the receding horizon strategy, allowing P i and

F i to be automatically determined for each i ∈ Ig while ensuring that all the short-horizon

specifications Ψi
j , i ∈ Ig, j ∈ {0, . . . , p}, as defined in (7.1) are realizable.

Given an invariant Φ and subsets W i
0, . . . ,W i

p of V for each i ∈ Ig, we first construct a

finite transition system Ti with the set of states {W i
0, . . . ,W i

p}. For each j, k ∈ {0, . . . , p},

there is a transition W i
j →W i

k in Ti only if j /= k and the specification in (7.1) is realizable

with F i(W i
j) = W i

k. The finite transition system Ti can be regarded as an abstraction of

the finite state model D of the physical system S, i.e., a higher-level abstraction of S.

Suppose Φ is defined such that there exists a path in Ti from W i
j to W i

0 for all i ∈ Ig,

j ∈ {1, . . . , p}. (Verifying this property is basically a graph search problem. If a path does

not exist, Φ can be recomputed using a procedure described in Remark 7.4.2.) We propose

a planner-controller subsystem with three components (see Figure 7.5): goal generator,

trajectory planner, and continuous controller.

Goal generator: Pick an order1 (i1, . . . , in) for the elements of the unordered set Ig =

{i1, . . . , in} and maintain an index k ∈ {1, . . . , n} throughout the execution. Starting with

k = 1, in each iteration, the goal generator performs the following tasks.

(a1) Receive the currently observed state of the plant (i.e., the controlled state) and envi-

ronment.

1As discussed in the description of the receding horizon strategy in Section 7.4, this order can be picked
arbitrarily. In general, its definition affects a strategy the system chooses to satisfy the specification (6.7)
as it corresponds to the sequence of progress properties ψg,i1 , . . . , ψg,in the system tries to satisfy.
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Figure 7.5: A system with the planner-controller subsystem implemented in a receding hori-
zon manner. In addition to the components discussed in this section, ∆, which captures
uncertainties in the plant model, may be added to make the model more realistic. In addi-
tion, the local control may be implemented to account for the effect of noise, disturbances
and unmodeled dynamics. The inputs and outputs of these two components are drawn
dashed since they are not considered in this thesis.

(a2) If the abstract state corresponding to the currently observed state belongs to W ik
0 ,

update k to (k mod n) + 1.

(a3) If k was updated in step (a2) or this is the first iteration, then based on the higher-

level abstraction Tik of the physical system S, compute a path fromW ik
j toW ik

0 where

the index j ∈ {0, . . . , p} is chosen such that the abstract state corresponding to the

currently observed state belongs to W ik
j .

(a4) If a new path is computed in step (a3), then issue this path (i.e., a sequence G =

W ik
l0
, . . . ,W ik

lm
for some m ∈ {0, . . . , p} where l0, . . . lm ∈ {0, . . . , p}, l0 = j, lm = 0, lα /= lα′

for any α /= α′, and there exists a transition W ik
lα
→W ik

lα+1 in Tik for any α <m) to the

trajectory planner.

Note that the problem of finding a path in Tik from W ik
j to W ik

0 can be efficiently solved

using any graph search or shortest-path algorithm [110], such as Dijkstra’s, A*, etc. To

reduce the original synthesis problem to a set of problems with short horizon, the cost

on each edge (W ik
lα
,W ik

lα′
) of the graph built from Tik may be defined, for example, as an

exponential function of the “distance” between the sets W ik
lα

and W ik
lα′

so that a path with

smaller cost contains segments of shorter “distance.”

Trajectory planner: The trajectory planner maintains the latest sequence G = W ik
l0
, . . . ,W ik

lm

of goal states received from the goal generator, an index q ∈ {1, . . . ,m} of the current goal
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state in G, a strategy F represented by a finite state automaton, and the next abstract state

ν∗ throughout the execution. Starting with q = 1, F being an empty finite state automaton

and ν∗ being a null state, in each iteration, the trajectory planner performs the following

tasks.

(b1) Receive the currently observed state of the plant and environment.

(b2) If a new sequence of goal states is received from the goal generator, update G to this

latest sequence of goal states, update q to 1, and update ν∗ to null. Otherwise, if the

abstract state corresponding to the currently observed state belongs to W ik
lq

, update

q to q + 1 and ν∗ to null.

(b3) If ν∗ is null, then based on the abstraction D of the physical system S, synthesize

a strategy that satisfies the specification in (7.1) with F i(W i
j) = W

ik
lq

, starting from

the abstract state ν0 corresponding to the currently observed state, i.e., replace the

assumption ν ∈ W i
j with ν = ν0. Assign this strategy to F and update ν∗ to the state

following the initial state in F based on the current environment state.

(b4) If the controlled state ς∗ component of ν∗ corresponds to the currently observed state

of the plant, update ν∗ to the state following the current ν∗ in F based on the current

environment state.

(b5) If ν∗ was updated in step (b3) or (b4), then issue the controlled state ς∗ to the

continuous controller.

Continuous controller: The continuous controller maintains the most recent (abstract)

final controlled state ς∗ from the trajectory planner. In each iteration, it receives the

currently observed state s of the plant. Then, it computes a control signal u such that the

continuous execution of the system eventually reaches the cell of D corresponding to the

abstract controlled state ς∗ while always staying in the cell corresponding to the abstract

controlled state ς∗ and the cell containing s. Essentially, the continuous execution has

to simulate the abstract plan computed by the trajectory planner. As discussed at the

end of Section 6.5.4, such a control signal can be computed by formulating a constrained

optimal control problem, which can be solved using off-the-shelf software such as MPT [67],

YALMIP [75] or NTG [92].
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From the construction of Ti, i ∈ Ig, it can be verified that the composition of the goal

generator and the trajectory planner correctly implements the receding horizon strategy

described in Section 7.4. Roughly speaking, the path G from W i
j to W i

0 computed by the

goal generator essentially defines the partial order P i and the corresponding function F i.

For a set W i
lα

/= W i
0 contained in G, we simply let W i

lα+1 ≺ W
i
lα

and F i(W i
lα
) = W i

lα+1 where

W i
lα+1 immediately follows W i

lα
in G. In addition, since, by assumption, for any i ∈ Ig and

l ∈ {0, . . . , p}, there exists a path in Ti from W i
l to W i

0, it can be easily verified that the

specification Ψi
l is realizable with F(W i

l ) = W i
0. Thus, to be consistent with the previously

described receding horizon framework, we assignW i
l ≻ W i

0 and F(W i
l ) = W i

0 for a setW i
l not

contained in G. Note that anyW i
l that is not in the path G does not affect the computational

complexity of the synthesis algorithm. With this definition of the partial order P i and the

corresponding function F i, we can apply Theorem 7.4.1 to conclude that the abstract plan

generated by the trajectory planner ensures the correctness of the system with respect to

the specification in (6.7). In addition, since the continuous controller simulates this abstract

plan, the continuous execution is guaranteed to preserve the correctness of the system.

The resulting system is depicted in Figure 7.5. Note that since it is guaranteed to

satisfy the specification in (6.7), the desired behavior (i.e., the “guarantee” part of (6.7))

is ensured only when the environment and the initial condition respect their assumptions.

To moderate the sensitivity to violation of these assumptions, the trajectory planner may

send a response to the goal generator, indicating the failure of executing the last received

sequence of goals as a consequence of assumption violation. The goal generator can then

remove the problematic transition from the corresponding finite transition system Ti and

recompute a new sequence G of goals. This procedure will be illustrated in the example

presented in Section 7.6. Similarly, a response may be sent from the continuous controller

to the trajectory planner to account for the mismatch between the actual system and its

model. In addition, a local control may be added in order to account for the effect of the

noise and unmodeled dynamics captured by ∆.

7.6 Case Study: Autonomous Urban Driving

Motivated by the challenges faced in the design and verification of a DARPA Urban Chal-

lenge vehicle such as Alice, we consider an autonomous vehicle navigating an urban envi-
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Figure 7.6: The road network and its partition for the autonomous vehicle example. The
solid (black) lines define the states in the set V of the finite state model D used by the
trajectory planner. Examples of subsets W i

j are drawn in dotted (red) rectangles. The
stars indicate the positions that need to be visited infinitely often.

ronment while avoiding obstacles and obeying certain traffic rules. The state of the vehicle

is the position (x, y) whose evolution is governed by

ẋ(t) = ux(t) + dx(t) and ẏ(t) = uy(t) + dy(t)

where ux(t) and uy(t) are control signals and dx(t) and dy(t) are external disturbances at

time t. The control effort is subject the constraints ux(t), uy(t) ∈ [−1,1],∀t ≥ 0. We assume

that the disturbances are bounded by dx(t), dy(t) ∈ [−0.1,0.1],∀t ≥ 0.

We consider the road network shown in Figure 7.6 with three intersections, I1, I2 and

I3, and six roads, R1, R2 (joining I1 and I3), R3, R4 (joining I2 and I3), R5 (joining I1

and I3) and R6 (joining I1 and I2). Each of these roads has two lanes going in opposite

directions. The positive and negative directions for each road are shown in Figure 7.6. We

partition the roads and intersections into N = 282 cells (see Figure 7.6), each of which may

be occupied by an obstacle.

As described in Section 2.1, a planner-controller subsystem of Alice is implemented in a
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hierarchical fashion with Mission Planner computing a route (i.e., a sequence of roads to be

navigated) to achieve the given tasks, the composition of Traffic Planner and Path Planner

computing a path (i.e., a sequence of desired positions) that describes how the vehicle should

navigate the route generated by Mission Planner while satisfying the traffic rules, and Path

Follower computing a control signal such that the vehicle closely follows the path generated

by Traffic Planner. This hierarchical approach follows our general framework for designing

a planner-controller subsystem (see Figure 7.5) with Mission Planner being an instance of

a goal generator and each of the sets W i
1, . . . ,W i

p being an entire road. However, these

components are typically designed by hand and validated through extensive simulations

and field tests. Although a correct-by-construction approach has been applied in [66],

it is based on building a finite state abstraction of the physical system and synthesizing

a planner that computes a strategy for the whole execution, taking into account all the

possible behaviors of the environment. As discussed in Section 6.4, this approach fails to

handle even modest size problems due to the state explosion issue. In this section, we

apply the receding horizon scheme to substantially reduce computational complexity of the

correct-by-construction approach.

Given this system model, we want to design a planner-controller subsystem for the

vehicle based on the following desired behavior and assumptions.

Desired Behavior : Following the terminology and notations used in Section 6.3, the

desired behavior ϕs in (6.3) includes the following properties.

(P1) Each of the two cells marked by star needs to be visited infinitely often.

(P2) No collision, i.e., the vehicle cannot occupy the same cell as an obstacle.

(P3) The vehicle stays in the travel lane (i.e., right lane) unless there is an obstacle blocking

the lane.

(P4) The vehicle can only proceed through an intersection when the intersection is clear.

Assumptions: We assume that the vehicle starts from an obstacle-free cell on R1 with

at least one obstacle-free cell adjacent to it. This constitutes the assumption ϕinit on the

initial condition of the system. The environment assumption ϕe encapsulates the following

statements, which are assumed to hold throughout each execution.
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(A1) Obstacles may not block a road.

(A2) An obstacle is detected before the vehicle gets too close to it, i.e., an obstacle may

not instantly pop up right in front of the vehicle.

(A3) Sensing range is limited, i.e., the vehicle cannot detect an obstacle that is farther away

from it than a certain distance. In this example, we let this sensing range be two cells

ahead in the driving direction.

(A4) To make sure that the stay-in-lane property is achievable, we assume that an obstacle

does not disappear while the vehicle is in its vicinity.

(A5) Obstacles may not span more than a certain number of consecutive cells in the middle

of the road.

(A6) Each of the intersections is clear infinitely often.

(A7) Each of the cells marked by star and its adjacent cells are not occupied by an obstacle

infinitely often.

The LTL formulas for expressing properties (P2) and (P3) and assumptions (A1)–(A4)

can be found in Section 6.5.5. Property (P4) can be expressed as a safety formula and

property (P1) is a progress property. Finally, assumption (A5) can be expressed as a safety

assumption on the environment while assumptions (A6) and (A7) can be expressed as justice

requirements on the environment.

We follow the hierarchical approach described in Section 6.4. First, we compute a finite

state abstraction D of the system. Following the scheme in Section 6.5, a state ν of D can

be written as ν = (ς, ρ, o1, o2, . . . , oM) where ς ∈ {1, . . . ,M} and ρ ∈ {+,−} are the controlled

state components of ν, specifying the cell occupied by the vehicle and the direction of

travel, respectively, and for each i ∈ {1, . . . ,M}, oi ∈ {0,1} indicates whether the ith cell is

occupied by an obstacle. This leads to the total of 2M2M possible states of D. With the

horizon length N = 12, it can be shown that based on the Reachability Problem defined in

Section 6.5.1, there is a transition ν1 → ν2 in D if the controlled state components of ν1 and

ν2 correspond to adjacent cells (i.e., they share an edge in the road network of Figure 7.6).

Since the only progress property is to visit the two cells marked by star infinitely often,

the set Ig in (6.7) has two elements, say, Ig = {1,2}. We letW1
0 be the set of abstract states
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whose ς component corresponds to one of these two cells and define W2
0 similarly for the

other cell as shown in Figure 7.6. Other W i
j is defined such that it includes all the abstract

states whose ς component corresponds to cells across the width of the road (see Figure 7.6).

Next, we define Φ such that it excludes states where the vehicle is not in the travel lane

while there is no obstacle blocking the lane and states where the vehicle is in the same cell

as an obstacle or none of the cells adjacent to the vehicle are obstacle-free. Using this Φ,

we can show that for each i ∈ Ig, the specification in (7.1) is realizable with F i(W i
j) = W i

k

for any j, k, provided that W i
j and W i

k correspond to adjacent dotted (red) rectangles in

Figure 7.6. The finite transition system Ti used by the goal planner can then be constructed

such that there is a transition W i
j →W i

k for any adjacent W i
j and W i

k. With this transition

relation, for any i ∈ Ig and j ∈ {0, . . . , p}, there exists a path in Ti from W i
j to W i

0 and

the trajectory planner essentially only has to plan one step ahead. Thus, the size of finite

state automata synthesized by the trajectory planner to satisfy the specification in (7.1)

is completely independent of M . Using JTLV [98], each of these automata has less than

900 states and only takes approximately 1.5 seconds to compute on a MacBook with a 2

GHz Intel Core 2 Duo processor. In addition, with an efficient graph search algorithm, the

computation time required by the goal generator is on the order of milliseconds. Hence,

with a real-time implementation of optimization-based control such as NTG [86] at the

continuous controller level, our approach can be potentially implemented in real-time.

A simulation result is shown in Figure 7.7(a), illustrating a correct execution of the

vehicle even in the presence of exogenous disturbances when all the assumptions on the

environment and initial condition are satisfied. Note that without the receding horizon

strategy, there can be as many as 1087 states in the automaton, making this problem

practically impossible to solve.

To illustrate the benefit of the response mechanism, we add a road blockage on R2

to violate the assumption (A1). The result is shown in Figure 7.7(b). Once the vehicle

discovers the road blockage, the trajectory planner cannot find the current state of the

system in the finite state automaton synthesized from the specification in (7.1) since the

assumption on the environment is violated. The trajectory planner then informs the goal

generator of the failure to satisfy the corresponding specification with the associated pair

of W i
j and F(W i

j). Subsequently, the goal generator removes the transition from W i
j to

F(W i
j) in Ti and recomputes a path to W i

0. As a result, the vehicle continues to exhibit a
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(a)

(b)

Figure 7.7: Simulation results with (a) no road blockage, (b) a road blockage on R2.

correct behavior by making a U-turn and completing the task using a different path.

The result with exactly the same setup is also shown in Figure 7.8 where the presence of

exogenous disturbances is not incorporated in the planner-controller subsystem synthesis.

Once the vehicle overtakes the obstacles on R1, the continuous controller computes the

sequence of control inputs that is expected to bring the vehicle back to its travel lane as

commanded by the trajectory planner. However, due to the disturbance, the vehicle remains

in the opposite lane. As a consequence, the trajectory planner keeps sending commands to

the continuous controller to bring the vehicle back to its travel lane but even though the

control inputs computed by the continuous controller are supposed to bring the vehicle back

to its travel lane, the vehicle remains in the opposite lane due to the disturbance. In the

meantime, the disturbance also causes the vehicle to drift slowly to the right. This cycle

continues, leading to violation of the desired property that the vehicle has to stay in the

travel lane unless there is an obstacle blocking the lane.
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Figure 7.8: Simulation result with the presence of disturbances not incorporated in the
planner-controller subsystem synthesis.

7.7 Conclusions

This chapter described a receding-horizon-based framework that allows a computationally

complex synthesis problem to be reduced to a set of significantly smaller problems. The

implementation of the proposed framework led to a hierarchical, modular design with a

goal generator, a trajectory planner and a continuous controller. A response mechanism

that increases the robustness of the system with respect to a mismatch between the system

and its model and between the actual behavior of the environment and its assumptions

was discussed. The example illustrated that the system is capable of exhibiting a correct

behavior even if some of the assumptions on the environment do not hold in the actual

execution.
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Chapter 8

Conclusions and Future Work

8.1 Summary

Design and analysis of embedded control systems are complicated by the tight interactions

among their computing, communication and control components. Simulations and tests

are not sufficient to guarantee correctness of these systems. Motivated by a subtle design

bug that caused an unsafe behavior of the autonomous vehicle, Alice, built at Caltech for

the 2007 DARPA Urban Challenge, this thesis develops methods and tools for systematic

design and analysis of embedded control software that regulates the overall behavior of such

system. The control component of Alice and the autonomous urban driving problem were

considered throughout the thesis as motivating, real-world examples.

Existing verification methods were applied to prove correctness of various components

of Alice. Periodically Controlled Hybrid Automaton (PCHA), a class of hybrid automata

for modular specication of embedded control systems was introduced. Sufficient conditions

that simplify invariant verification of PCHAs by exploiting their structure were presented.

For PCHAs with polynomial continuous vector fields, it is possible to check these conditions

automatically using, for example, quantifier elimination or sum of squares relaxations. The

proposed technique is then applied to provide a detailed analysis of the design bug that

caused the failure of Alice.

Despite several efforts in simplifying the verification process, verification of embedded

control systems such as Alice remains time consuming and requires some level of expertise.

Existing verification techniques have their limitations. Algorithmic verification based on

model checking is limited to finite state systems. It also faces a combinatorial blow up

of the state space, commonly known as the state explosion problem. On the other hand,
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deductive verification based on theorem proving is applicable to a more general class of

systems. However, it requires a skilled human interaction so the theorem proving process is

slow and often error prone. Most of the control oriented verification techniques are limited

to linear or polynomial vector fields with relatively small dimension. As a consequence,

automatic verification is not applicable to the majority of embedded control systems.

Motivated by these limitations, the second part of the thesis focused on a correct-by-

construction approach to system design to complement the verification efforts. We illus-

trated how off-the-shelf tools from computer science and control can be integrated to allow

automatic synthesis of embedded control software that, by construction, ensures the cor-

rectness of the system with respect to its desired properties even in the presence of an

adversary (typically arising from changes in the environments). This avenue of research is

appealing and promising. Once it is brought to practicality, this type of automatic design

can potentially reduce the time and cost of the system development cycle as it helps reduce

the number of iterations between redesigning the system and verifying the new design.

As an effort towards making correct-by-construction design more practical, a receding

horizon framework was presented. This approach reduces computational complexity of

the synthesis problem by effectively reducing the original synthesis problem into a set of

smaller ones. An implementation of the proposed framework leads to a hierarchical, modular

design similar to the one that was manually designed for Alice. A response mechanism that

increases the robustness of the system with respect to a mismatch between the system

and its model and between the actual behavior of the environment and its assumptions

was discussed. This mechanism was motivated by the Canonical Software Architecture

implemented on Alice. By taking into account the presence of exogenous disturbances

in the synthesis process, the resulting system is provably robust with respect to bounded

exogenous disturbances. We conjecture that this architecture also increases the robustness

of the system with respect to modeling uncertainties.

The proposed receding-horizon-based approach is not complete in the sense that even if

there exists a control strategy that satisfies the system requirements, certain conditions that

allow the receding horizon method to be applied may not be satisfied. It also requires some

human involvement in defining proper elements necessary to apply this approach. Although

the receding horizon framework substantially reduces the size of the automatically generated

finite state automaton, this automaton still contains many more states than the manually
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generated one (Figure 2.2). However, the correctness of the automatically generated one is

guaranteed by construction, while the manually generated one needs to be formally verified

for correctness.

8.2 Future Work

On the verification side, an interesting direction for future research is towards automatic

invariant proofs of PCHAs combining the proofs for invariance of control steps and for

invariance of control-free fragments based on the results of Lemma 5.3.1. Invariance of

control steps can be partially automated using a theorem prover (e.g., PVS [93]) while

invariance of control-free fragments can be automated using software tools for solving sum

of squares problems (e.g., SOSTOOLS [106]) or software tools for quantifier elimination

(e.g., QEPCAD [17], the constraint-based approach [43]). We are currently examining a

collection of PCHAs with polynomial dynamics for which this direction is promising.

Another direction of future research is related to the progress property. Although the

basic principle is straightforward, the details of the progress proof in Section 5.5.3 and 5.5.4

are quite involved. This is partly owing to the difficulty of finding the appropriate Lyapunov

functions. In the future, we plan on investigating this further and using ideas from [21] for

the progress proof. A longer term goal is to integrate all these proof techniques within the

TEMPO [115] environment.

The correct-by-construction approach to system design provides a promising comple-

mentary approach to system verification. One of the main limitations of the correct-by-

construction approach lies in the computational complexity associated with LTL synthesis,

similar to that faced by LTL model checking. The proposed receding horizon framework

alleviates this state explosion problem and allows more complex embedded control software

synthesis problems to be solved. The key steps in this framework include organizing the

discrete states obtained from the state space discretization process into a partially ordered

set and defining the receding horizon invariant Φ. A systematic approach for defining these

elements needs to be further investigated.

Further investigation of the robustness of the receding horizon framework is also of in-

terest. Specifically, we want to formally identify the types of properties and faults/failures

that can be correctly handled using the proposed response mechanism. This type of mech-
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anism has been implemented on Alice for distributed mission and contingency management

[121]. Based on extensive simulations and field tests, it has been shown to handle many

types of failures and faults at different levels of the system, including inconsistency of the

states of different software modules and hardware and software failures. A similar response

mechanism also appears in the multi-layered synergistic approach presented in [12].

Online computation of the discrete plan generated by the trajectory planner is also

promising. As presented in the thesis, the trajectory planner synthesizes an automaton

satisfying each short-horizon specification Ψi
j offline, stores all the resulting automata and

executes the one associated with the current intermediate goal. Since the computation time

for synthesizing each of these automata is only 1.5 seconds for the case studies presented

in Section 7.6, online synthesis is promising, provided that enough onboard computational

power is available. Online synthesis also potentially reduces the computation time and the

number of states in the resulting automaton since the synthesis can be performed based

on the current state of the system and the environment, as opposed to having to take into

account all the possible states of the environment as in offline synthesis.

Another direction of research is to study an asynchronous execution of the goal generator,

the trajectory planner and the continuous controller. As described in Chapter 7, these

components are to be executed sequentially. However, with certain assumptions on the

communication channels, a distributed, asynchronous implementation of these components

may still guarantee the correctness of the system.

Introducing optimization in LTL synthesis is also of interest since it allows the trajectory

planner to compute an optimal correct plan, instead of any correct plan. Optimal LTL

synthesis allows the possibility of considering soft constraints such as the maximum amount

of time or energy needed to achieve the goal. Considering multiple goals in this case may

lead to exponential computational complexity since all the permutations of the goals need

to be consider. Hence, we may have to limit its application to the case where only a small

number of goals are specified and consider, for example, the worst case scenario for the

evolution of the environment.

We believe that system verification needs to be integrated in the correct-by-construction

approach in order to handle large scale systems. For instance, finite state abstraction based

on state space discretization often leads to a large number of states. Together with the

use of the receding horizon framework, a higher level abstraction such as one based on
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the set of allowable maneuvers as implemented on Alice may be needed in order to deal

with large scale systems. This type of higher level abstraction requires incorporating a

certain degree of system verification in proving properties that each maneuver satisfies.

Longer term research directions following this work include incorporating such proofs in

the receding horizon framework and illustrating its application in larger scale systems such

as smart grids and transportation systems. The challenges in applying the methodology

presented in this thesis to these different application domains include identifying the right

level of abstraction and the desired properties of these systems. In addition, the notion of

“closeness” to the goal states captured by the partially ordered set P i, which is one of the

key elements in applying the receding horizon framework, may not be as obvious as in the

examples presented in the thesis.
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