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Abstract

We prove a large monodromy result for a family of complex algebraic surfaces of general

type, with invariants pg = q = 1 and K2 = 3, that has been introduced by Catanese and

Ciliberto. Unlike other classes of surfaces with pg = 1 studied previously, this monodromy

result cannot be proved by showing that the image of period map contains an open ball.

Instead we proceed via an analysis of the degenerations of these surfaces and a generalization

of Lefschetz’s work on the monodromy of hyperplane sections of a smooth projective variety.

As corollaries, we verify three conjectures regarding the Galois representation on the

middle `-adic cohomology of such a surface when it is defined over a finitely generated

extension of Q, namely semisimplicity, the Tate Conjecture, and the Mumford-Tate Con-

jecture. We also give an application to the existence of such surfaces over number fields

with minimal Picard number. Finally, we use the period map of the given family to give

examples of nonspecial subvarieties of certain a Shimura variety of orthogonal type.
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Chapter 1

Introduction

Convention: In this thesis, all fields under consideration will be subfields of C; in particular,

any statements of an arithmetic nature (e.g., regarding the Tate Conjecture) will always

refer to finitely generated extensions of Q.

In the Enriques classification of algebraic surfaces, the surfaces of general type are far

less understood than their counterparts of nonmaximal Kodaira dimension. This state of

affairs is not only true geometrically, but arithmetically as well. In particular, given that

surfaces of general type are, in some sense, the most common among all surfaces, they

offer an important testing ground for a number of well-known, wide open conjectures in

arithmetic geometry.

A second class of arithmetically intriguing surfaces are those with geometric genus one.

Via the Hodge structure on their middle singular cohomology groups, these surfaces are

related to objects that have traditionally received more attention in arithmetic geometry,

namely abelian varieties, K3 surfaces, and Shimura varieties. In particular, the relation

with abelian varieties, first discovered by Kuga and Satake [KS], is a priori only of a

transcendental nature, but one expects it to be algebraic in light of the Hodge Conjecture.

This expectation opens one to the possibility of being able to transfer known arithmetic

results for abelian varieties to surfaces of geometric genus one, an idea first explored by

Deligne [Del1].

With this in mind, we focus on a class of surfaces of general type that also have geometric

genus one. More specifically, they are surfaces with geometric genus pg = 1, irregularity

q = 1, self-intersection number K2 = 3 of the canonical divisor, and Albanese fiber genus

g = 3. These surfaces were introduced and classified over C by Catanese and Ciliberto [CC].
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For this reason, they have been called Catanese-Ciliberto surfaces of fiber genus three by

Ishida [Ish], but for brevity they will be referred to in this thesis simply as CC surfaces.

Catanese and Ciliberto showed that the canonical models of all complex CC surfaces

fit into a projective flat family over a smooth irreducible 5-dimensional base. When its

canonical model is smooth, we will call a CC surface admissible. Since it turns out that the

general CC surface has this property, it follows that there is a smooth projective family πC :

XC → SC containing all admissible complex CC surfaces, where SC is a smooth irreducible

variety of dimension 5. Our first theorem concerns the monodromy representation of the

topological fundamental group π1(S(C), σ) on the second singular cohomology of the fiber

Xσ; to state it, we need some notation.

Every CC surface has two numerically independent curves, one being the canonical

divisor K and the other a smooth Albanese fiber f . In the family πC : XC → SC, one can

show that the cycle classes of K and f in H2(Xσ,Q)(1) both come from global sections of

the local system H := R2(πan
C )∗Q(1). Note also that, as each Xσ is admissible, the class of

K is ample. Denote by V the polarized variation of rational Hodge structure over SC that

one gets by taking the orthogonal complement in H of these two global sections with respect

to cup product. Let φσ denote the polarization on Vσ. Then the Hodge structure Vσ is of

dimension 9 and type {(−1, 1), (0, 0), (1,−1)}, with a polarization of signature (2, 7).

Our main theorem is a large monodromy result for the family πC : XC → SC:

Theorem A. The image of the monodromy representation

Λ : π1(S(C), σ)→ O(Vσ, φσ)

is Zariski-dense.

Now suppose one has an admissible CC surface X defined over a finitely generated sub-

field k of C. The work of Kuga and Satake mentioned above gives a Hodge correspondence

between the primitive part of the second cohomology of XC and that of a certain complex

abelian variety KS(XC), called its Kuga-Satake variety. Using Theorem A, one can show

that KS(XC) has a model A over a finite extension k′ of k. After applying a theorem of

Polizzi [Pol] and Deligne’s “Principle B” [DMOS], it follows that the Hodge correspondence

between XC and KS(XC) actually arises from an absolute Hodge correspondence between

Xk′ and A. Using this and the work of Faltings [FW], one obtains the following:
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Theorem B. Let X be an admissible CC surface defined over a finitely generated field k

with algebraic closure k̄. For a prime number `, let

r` : Gal(k̄/k)→ Aut
(
H2(Xk̄,Q`)(1)

)
denote the action of the absolute Galois group on the Tate-twisted second `-adic cohomology

of Xk̄. Then the following hold:

(i) The representation r` is semisimple.

(ii) (Tate Conjecture) Let Valg be the Q`-subspace generated by the image of the cycle class

map

c` : CH1(Xk̄)→ H2(Xk̄,Q`)(1).

Then Valg is exactly the subspace of elements in H2(Xk̄,Q`)(1) that are stablized by

an open subgroup of Gal(k̄/k).

(iii) (Mumford-Tate Conjecture) Let G = MT(H2(XC,Q)(1)) denote the Mumford-Tate

group of the Hodge structure H2(XC,Q)(1) and, by comparison, identify GQ`
with

an algebraic subgroup of Aut
(
H2(Xk̄,Q`)(1)

)
. Then the image r`

(
Gal(k̄/k)

)
is a Lie

subgroup of Aut
(
H2(Xk̄,Q`)(1)

)
and we have

Lie r`
(
Gal(k̄/k)

)
= Lie G(Q`).

A second application of Theorem A is to Picard numbers of CC surfaces. One easily

shows that all CC surfaces have Picard number 2 ≤ ρ ≤ 9, and Polizzi [Pol] gives examples

of complex CC surfaces that show this upper bound is sharp. On the other hand, Theorem

A can be used to show that the lower bound is also sharp over C, and this in turn combines

with a general theorem of André [And2] to give:

Theorem C. There exist CC surfaces X over Q̄ with Picard number ρ(X) = 2.

To describe the context of our next theorem, we begin by remarking that the method

described above to deduce parts (i) and (ii) of Theorem B from Theorem A has been known

to experts for some time (e.g., see [Tat, p.80]). The prototype is the case of K3 surfaces,

which follows from work of Deligne [Del1]. André [And1] axiomatizes this strategy and
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shows how it also implies the Mumford-Tate Conjecture. He shows these axioms apply

not only to K3 surfaces, but also to abelian surfaces, a class of surfaces of general type

appearing in [Cat, Tod], and cubic fourfolds (where one is concerned with the cohomology

group H4 rather than H2). In deducing Theorem B from Theorem A, we follow the proof

laid out in [And1], but at certain steps we must account for one key difference. In each of the

aforementioned cases, the proof of the large monodromy theorem is obtained as a corollary

of the following fact: the image of the period map of the family in question contains a

Euclidean open ball in the period domain. In the case of CC surfaces, though, where the

dimension of moduli is 5 and the dimension of the relevant period domain is 7, this method

of proof cannot work.

Fortunately, this inequality of dimensions has a positive aspect as well: if Theorem A

can be proved by other means, then one obtains as a corollary an interesting subvariety

of a Shimura variety. Indeed, the classifying space for the Hodge structure on the primi-

tive second cohomology of a complex CC surface is a 7-dimensional Hermitian symmetric

domain, and so certain quotients yield 7-dimensional Shimura varieties of orthogonal type.

Upon taking an appropriate base change π′ : X ′ → S ′ of the family π : X → S, one obtains

a period map

Φ : S ′C → V,

where V is a connected component of such a Shimura variety. The image of Φ is an algebraic

subvariety of V by a theorem of Borel [Bor]. Taking its closure Z := Φ(S ′C), one can show

that 1 ≤ dimZ ≤ 5. The key property of Z obtained from Theorem A is:

Theorem D. The subvariety Z is not contained in any proper special subvariety of V. In

particular, Z itself is nonspecial.

Recall that a special subvariety of a Shimura variety is an irreducible component of a

Hecke-translated Shimura subvariety. (Alternatively, this is called a subvariety of Hodge

type or an irreducible component of a Hirzebruch-Zagier cycle.) Special subvarieties can

be combined to give explicit algebraic cycles on the given Shimura variety but, in general,

this construction does not give all cycles on the Shimura variety, even modulo homological

equivalence (in some smooth compactification). Despite this, it appears to be difficult

to explicitly construct examples of nonspecial subvarieties, and herein lies the interest of

Theorem D. A similar but more explicit example in this direction is given in Theorem E
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below.

Let us now say a few words about how Theorem A is proved. The route that we

take parallels the classical work of Lefschetz regarding the monodromy of the family of

smooth hyperplane sections of a fixed smooth projective variety (see [Lam]). The reason

for the parallel is the following. In their classification of complex CC surfaces, Catanese

and Ciliberto showed that the admissible CC surfaces X with Alb(X) = E are exactly the

smooth divisors in a certain complete linear system |D| on the symmetric cube E(3) of E.

Moreover, by construction of their smooth family πC : XC → SC, there is a 4-dimensional

subvariety of SC over which the pullback of XC is exactly the family of smooth divisors in

|D|. To prove Theorem A, it suffices to instead prove that the monodromy of one of these

subfamilies has dense image; more explicitly, it suffices to pick an elliptic curve E and prove

that the monodromy of the family of all smooth divisors in |D| has dense image.

Since D is not very ample on E(3), Lefschetz’s theory does not apply directly. Neverthe-

less, we show that a mild generalization results in a number of hypotheses that, if satisfied,

will give the proof. The most difficult of these hypotheses to verify concern the structure

of the collection of singular elements in |D|: they say that this collection must have exactly

one irreducible component of codimension one in |D| and that the general singular element

has a singular locus of just one ordinary double point. We use equations for étale covers of

elements of |D| given by Ishida [Ish] to show that this holds when E is the following elliptic

curve:

E1 : y2 = x3 + x2 − 59x− 783/4.

Specifically, we use the computer program Singular to find one suitably nice pencil J1 ⊆

|D| on E
(3)
1 , and then show that this implies the necessary facts about |D|. This gives the

proof.

Finally, let us comment on this pencil J1. Using the period map, the smooth elements

of J1 give rise to a curve C in V. One consequence of the generalized Lefschetz theory used

in the proof of Theorem A is that pencils in general position in the linear system |D| on

E
(3)
1 give 1-dimensional families with large monodromy. In particular, one can show that

J1 is in general position, which allows one to prove:

Theorem E. The curve C is not contained in any proper special subvariety of V, and hence

is not a special subcurve of V. Moreover, C is numerically nontrivial.
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This result is of course very similar to Theorem D, but it warrants separate mention

due to the low dimension and explicit nature of J1. Indeed, the equations of Ishida that

describe J1 make the curve C a much more tractable object than the variety Z. Hopefully

there is more to be said about this interesting curve and ones like it.

Here is a brief outline of the thesis.

In §2 we give background on CC surfaces, indicating in particular how the work of

Catanese and Ciliberto easily implies similar results for admissible CC surfaces over any

algebraically closed subfield of C. We carry out our analysis of the singular elements of |D|

on E(3)
1 in §3 . In §4 we give the description of the generalization of Lefschetz’s theory, which

we then apply to prove Theorem A. Theorem B is proved in §5 following [And1]. Finally, we

prove Theorems C, D and E in §6, all of which are deduced from an intermediate corollary

of Theorem A about the generic Mumford-Tate group of V.

We end by noting that the source code and data files for all computer calculations

referred to in this thesis (specifically, in Propositions 3.4, 3.5, and 3.7) are available online

at [Lyo].

Notations and Conventions: Along with that mentioned at the beginning of this chap-

ter, there are various points where we establish further conventions about the fields under

consideration. More precisely, the reader should take note at the beginning of §3, §4.3, and

§5.

For a rational Hodge structure W of weight w, we define the Mumford-Tate group

MT(W ) as in [PS2, p.30]. That is, if S = ResC/R(Gm) and h : S → GL(WR) defines the

Hodge structure on W , then MT(W ) is the largest algebraic subgroup of GL(W ) defined

over Q such that Im(h) ⊆ MT(W )R.

For a smooth projective variety X over a field k, let ρ = ρ(X) denote its geometric

Picard number, i.e., ρ is the rank of the Néron-Severi group NS(Xk̄) := Pic(Xk̄)/Pic0(Xk̄)

of Xk̄.
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Chapter 2

Preliminaries on CC surfaces

2.1

We begin by giving the definition of CC surfaces in terms of abstract invariants:

Definition. Let k be a field with algebraic closure k̄. A surface X over k̄ will be called a

CC surface if it possesses the following invariants:

• geometric genus pg = h0(X,Ω2
X) = 1

• irregularity q = h1(X,OX) = 1

• self-intersection number K2 = 3 of the canonical divisor K

• As the Albanese variety Alb(X) is of dimension q = 1, the Albanese map Alb : X →

Alb(X) gives a fibration; then the fibers of Alb should have genus g = 3.

We call X admissible if, additionally, its canonical model is smooth or, equivalently, if K

is ample.

A surface X over k will be called an (admissible) CC surface if the base change Xk̄ is

an (admissible) CC surface.

These are surfaces of general type. In [CC], Catanese and Ciliberto [CC] classify all CC

surfaces over C. To describe their classification, we need some preliminary notation.

If E is a complex elliptic curve, let ⊕ denote the addition law and let E(3) denote its

symmetric cube. Then the Abel-Jacobi map

AJ : E(3) −→ E

[a, b, c] 7→ a⊕ b⊕ c
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sending an unordered triple of points on E to their sum makes E(3) into a P2-bundle over

E. Denoting by 0 the identity on E, define on E(3) the two divisors

D0 := {[0, b, c] | b, c ∈ E} ,

F0 := AJ−1(0) = {[a, b, c] | a⊕ b⊕ c = 0} .

We set

D := 4D0 − F0. (2.1)

Theorem 2.1 (Catanese–Ciliberto [CC]). Let X be a CC surface over C and let E =

Alb(X). Then there is a morphism ξ : X → E(3) such that

(i) the image ξ(X) is isomorphic to the canonical model of X and

(ii) such that ξ(X) to a divisor in the linear system |D| on E(3).

Conversely, if E is any complex elliptic curve, then the general element of the linear

system |D| on E(3) is smooth, and any element of |D| with at most rational double points

is the canonical model of a CC surface with Albanese variety E.

Catanese and Ciliberto show that

h0(E(3),OE(3)(D)) = 5, (2.2)

so that the parameter space for the elements of |D| is isomorphic to P4. We also note that,

if E is an elliptic curve over the algebraically closed field k, then E(3), D0, and F0 are all

defined over k. Thus CC surfaces exist over k as well:

Corollary 2.2. Let k be an algebraically closed field and let E be an elliptic curve over k.

Then the minimal resolution of any element in the linear system |D| on E(3) with at most

rational double points is a CC surface over k with Albanese variety E. Furthermore, the

general element of |D| is an admissible CC surface over k.

We note that the divisors in |D| are not hyperplane sections of E(3):

Proposition 2.3. The line bundle OE(3)(D) is ample but not very ample.
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Proof. It suffices to prove this when the base field is C. The fact that OE(3)(D) is ample is

shown in [CC, Prop. 1.14].

On the other hand, suppose for contradiction that OE(3)(D) is very ample. Then it

gives an embedding of E(3) as a hypersurface in P4. One can use [CC, Theorem 1.17] to

calculate the Hilbert polynomial of E(3) with respect to this embedding and show that the

hypersurface must be of degree 16. But a hypersurface in P4 of degree 16 has middle Betti

number 15
16(154 − 1) = 47460. Since h3(E(3),Q) = 2, this is impossible.

2.2

In [CC], Catanese and Ciliberto describe the construction of a family over a smooth con-

nected base that contains all complex admissible CC surfaces. In fact, their construction

works over any algebraically closed k, as we show below.

The basic idea draws from Theorem 2.1, which can be used to construct a family con-

taining all admissible CC surfaces with fixed Albanese variety E; indeed, these are simply

the smooth divisors in the linear system |D| on the symmetric cube of E, and so one can put

them into a family over an open subset of P4. In the general case below, we work instead

with the relative symmetric cube of a universal elliptic curve over a modular curve. The

parameter space will not be an open subset of P4, but rather an open subset of a P4-bundle

over this modular curve.

Let Y be an open connected modular curve over k with sufficient level structure to

guarantee that we have a universal elliptic curve E → Y . For instance, if N > 3, one can

set Y = Y1(N).

We denote the identity section of E → Y by

O : Y → E ;

this map is a closed immersion, giving a closed subscheme of E that we also denote by O.

Let the relative cube of E be

E3 := E ×Y E ×Y E ,

which has three projection maps pi : E3 → E . Another map of Y -schemes between E3 and
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E is given by addition, which denote by

⊕ : E3 → E .

The group S3 acts on E3 as follows:

σ ∈ S3 ←→ (pσ1, pσ2, pσ3) ∈ Aut(E3).

According to [MFK, Thm 1.10], there exists a quotient variety E(3) and a finite quotient

map q : E3 → E(3) that one can show has a number of expected properties, including:

• There is a unique Y -scheme structure p : E(3) → Y such that the diagram

E3
q

//

!!CC
CC

CC
CC

E(3)

p

��

Y

is commutative.

• For a geometric point y ∈ Y (Ω), the fiber (E(3))y is the symmetric cube E(3)
y of Ey.

• The morphism p : E(3) → Y is smooth and projective.1

Define the following divisors on E3:

D′0 := p−1
1 (O),

F ′0 := ⊕−1(O).

Define D0 (resp., F0) to be the image of D′0 (resp., F ′0) under q in E(3). Then D0 and F0

give divisors on E(3), and we form a third divisor 4D0 −F0 with associated invertible sheaf

L := OE(3)(4D0 −F0).

For y ∈ Y (C), let Ly denote the pullback of L to the fiber E(3)
y . If we denote the

scheme-theoretic intersections of D0 and F0 with the fiber E(3)
y by D0,y and F0,y, then

Ly = OE(3)
y

(4D0,y −F0,y). (2.3)

1In the sense of [Gro, 5.5].
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Note that if we write Ey = E then, in our previous notation, D0,y is just D0, F0,y is F0, and

thus (2.3) says that Ly on E(3)
y is OE(3)(D) on E(3). Thus by (2.2), we have

dimCH
0(E(3)

y ,Ly) = 5.

If y actually arises from a point x ∈ Y (k), so that E(3)
y is the base change to C of E(3)

x and

Ly is the pullback of Lx, this implies that

dimkH
0(E(3)

x ,Lx) = 5.

Therefore, since p is proper and since L is flat over Y , the sheaf W = p∗L is a locally

constant sheaf of rank 5 with the property that

H0(E(3)
x ,Lx) =Wx ⊗ κ(x).

Let S0 be the P4-bundle P(W) := Proj(Sym(W∨)) over Y . The fiber of S0 over x ∈ Y (k)

is PH0(E(3)
x ,Lx). We form the fiber product E(3) ×Y S0 and define on it a divisor

X0 =
{

(Q, σ) ∈ E(3) ×Y S0 | σ(Q) = 0
}
.

Denote the projection onto S0 by π : X0 → S0.

Proposition 2.4. The morphism π : X0 → S0 is flat and projective.

Proof. The flatness can be proved locally, so we choose affine open sets U = SpecA ⊆ Y ,

V = SpecB ⊆ S0, and W = SpecC ⊆ E(3) such that V and W map into U . More

precisely, we assume that (p∗L)|U is a trivial OU -module of rank 5, and we let {σ0, . . . , σ4}

be a basis of sections of p∗L over U (which, by definition, are just sections of L over

π−1(U)). Then S0|U ' U × P4, with (σ∨0 : . . . : σ∨4 ) forming homogeneous coordinates

over U . We let V = {σ∨0 6= 0}, so that if ti = σ∨i /σ
∨
0 , then B = A[t1, . . . , t4]. We also

suppose that σi is represented in W by a single element fi ∈ C. Then X0 is represented in

V ×U W = Spec(B ⊗A C) by the element f0 + f1t1 + . . . + f4t4 ∈ B ⊗A C = C[t1, . . . , t4].

To prove flatness in this explicit local setting, one can adapt the method of [Mum, §10, Ex.

P].
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Next, since p : E(3) → Y is projective, so is its base change

E(3) ×Y S0 → S0.

But π is the composition of a closed immersion and this projection, so it is projective as

well.

Since π is proper, it maps closed sets to closed sets. In particular, the set

{(Q, σ) ∈ X0 | σ is singular at Q} ⊆ X0

is a closed subset of X0, and so projects to a closed subset of S0 that represents the locus

of singular fibers of π. We let S ⊆ S0 denote its open complement, which represents the

locus of smooth fibers of π by Proposition 2.4. By construction, if y ∈ Y (k) corresponds

to the elliptic curve E = Ey, then the fiber of S0 over y parametrizes the elements of the

linear system |4D0,y − F0,y| = |D| on E(3)
y = E(3). Hence by Corollary 2.2, S is nonempty

(in fact, has nonempty intersection with each fiber of S0 over Y ). In particular, dimS = 5.

Let X = π−1(S) and by abuse of notation we again use π to denote the projection

π : X → S.

Corollary 2.5. The morphism π : X → S is smooth and projective.

By construction every fiber of π : X → S is an admissible CC surface. The next aim is

to prove that any admissible CC surface over k appears in the family π : X → S. This will

follow from the analogous result over C:

Theorem 2.6 (Catanese-Ciliberto). Form the base change πC : XC → SC of π to C. Then

every fiber of this family is a complex admissible CC surface and, conversely, any complex

admissible CC surface is isomorphic to a fiber of this family.

Corollary 2.7. Let k0 ⊆ k be a subfield such that k̄0 = k. Let X be an admissible CC

surface over k0. Then there is a finite extension k′0 of k0 such that

1. the varieties X , S, and π : X → S are all defined over k′0, and
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2. there is a point s ∈ S(k′0) such that X ⊗k0 k′0 ' Xs.2

Proof. By a theorem of Gieseker [Gie], there is a coarse moduli space for CC surfaces that is

a quasiprojective variety defined over Q̄, and hence over k. This moduli space is irreducible,

as can be seen from the fact that a subfamily of X0 → S0 contains the canonical models

of all complex CC surfaces and from the irreducibility of S0. Moreover, there is an open

subset M of this moduli space parametrizing those CC surfaces whose canonical model is

smooth, i.e., the admissible CC surfaces. By Theorem 2.6, the family π : X → S yields

a morphism of varieties f : S → M over k such that the base change fC : SC → MC is

surjective on closed points. It follows that fC is a surjective morphism of topological spaces.

Since MC →M is also surjective, the commutative diagram

SC
fC //

��

MC

��

S
f

//M

then implies that f : S →M is a surjection.

In particular, there is some s′ ∈ S(k) such that f(s′) = [X⊗k0 k] ∈M(k), which implies

that

Xs′ ' X ⊗k0 k (2.4)

over k. So we take k′0 to be some finite extension of k0 over which X , S, and π are defined,

and furthermore such that s′ arises from a point s ∈ S(k′0) and the isomorphism (2.4) arises

from a k′0-isomorphism X ⊗k0 k′0 ' Xs of k′0-varieties.

From the construction of the family π : X → S, we can now conclude:

Corollary 2.8. Let k be algebraically closed. Then every isomorphism class of admissible

CC surfaces over k is realized as a smooth element of the linear system |D| on E(3) for

some elliptic curve E over k.

Finally, we record a result of Polizzi that will be of importance in §5:

Theorem 2.9 (Polizzi). If E is any complex elliptic curve, then there exists on E(3) a

smooth divisor in |D| having maximal Picard number 9. Furthermore, the Hodge structure
2Note that we are abusing notation here; we should really speak of a model S ′ for S over k′0 and of

s ∈ S ′(k′0).
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on its middle cohomology is of CM-type (i.e., its Mumford-Tate group is abelian).

Proof. See [Pol, Prop. 6.18] for the existence of the smooth divisor with Picard number 9.

Since the Hodge group of its middle cohomology is a necessarily a subgroup of SO(2), its

Mumford-Tate group is abelian.
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Chapter 3

Mildly singular elements in |D|

Note: In §3, the base field will always be C.

3.1

Let E be a complex elliptic curve and let |D| be the complete linear system on E(3) defined

in (2.1). Here we describe the techniques used to make certain calculations about the

elements of |D|. These techniques are found in [Ish], which in turn draws from more general

situations considered in [Tak], and we refer to either of these sources for more details.

The two fundamental observations that underlie the relevant equations in [Ish] are the

following:

1. The Abel-Jacobi map

AJ : E(3) → E, [a, b, c] 7→ a⊕ b⊕ c,

makes E(3) into a P2-bundle P(B)→ E, where B can be taken to be an indecompos-

able locally free sheaf of rank 3 and degree 1.

2. Let Ẽ be an elliptic curve with identity 0̃ ∈ Ẽ, and let ϕ : Ẽ → E be an isogeny of

degree 3. Then B′ := ϕ∗OẼ(0̃) is an indecomposable locally free sheaf of rank 3 and

degree 1 with the property that ϕ∗B′ is a direct sum of three invertible sheaves on Ẽ.

As E(3) = P(B) and P(B′) are isomorphic, we fix an identification between the two. Defining

the P2-bundle P̃ := P(ϕ∗B′), with projection p̃ : P̃ → Ẽ, one obtains a commutative
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diagram

P̃
Φ //

p̃

��

E(3)

AJ

��

Ẽ
ϕ

// E

in which P̃ is the fiber product of Ẽ and E(3) over E. Thus, if we letG = kerϕ =
{
0̃, C1, C2

}
,

then both ϕ and Φ are Galois coverings with group G. More specifically, if Q ∈ Ẽ and

τQ ∈ Aut(Ẽ) denotes translation by Q, then γ ∈ G acts on Ẽ by τγ and on P̃ by the base

change τ̃γ of τγ .

Define L = OE(3)(D). Then the idea is to transfer the study of sections of L to the

study of G-invariant sections of Φ∗L:

Proposition 3.1. The pullback map

Φ∗ : H0(E(3), L) −→ H0(P̃ ,Φ∗L)G. (3.1)

is an isomorphism.

The advantage of this is that equations for elements belonging to the right hand side of

(3.1) are simpler than those on the left. This is due to the aforementioned fact the locally

free sheaf ϕ∗B′ splits into a sum of invertible sheaves:

ϕ∗B′ ' OẼ(0̃)⊕OẼ(C1)⊕OẼ(C2). (3.2)

Thus

H0(P̃ ,OP̃ (1)) ' H0(Ẽ, ϕ∗B′)

' H0(Ẽ,OẼ(0̃))⊕H0(Ẽ,OẼ(C1))⊕H0(Ẽ,OẼ(C2)).

Let Z0 (resp., Z1, Z2) denote the rational function in H0(P̃ ,OP̃ (1)) that corresponds to the

constant function 1 in H0(Ẽ,OẼ(0̃)) (resp., H0(Ẽ,OẼ(C1)), H0(Ẽ,OẼ(C2))). The action

of G on these functions is described by

τ̃∗C1
Z0 = Z2, τ̃∗C2

Z0 = Z1. (3.3)
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Following [Tak, p.286], Ishida [Ish, Lemma 1.4] uses the functions Z0, Z1, Z2 to produce

five equations that span H0(P̃ ,Φ∗L)G, which are described as follows. First pick an affine

equation y2 = w(x) for Ẽ, where w is a monic cubic polynomial with nonzero discriminant.

If C1 = (α, β) (and thus C2 = (α,−β)), we define three rational functions on Ẽ (and, by

pullback, on P̃ ) by

f(Q) := x(Q)− α,

g(Q) := x(Q⊕ C2)− α,

h(Q) := x(Q⊕ C1)− α.

Setting µ = w′(α), one can use the facts that β2 = w(α) and that α is a root of the 3-torsion

polynomial of Ẽ to obtain

f = x− α, (3.4)

g =
4β2(x− α)

2β(y − β)− µ(x− α)
, (3.5)

h =
4β2(x− α)

−2β(y + β)− µ(x− α)
. (3.6)

One also has the relation fgh = −4β2. From the definition, the G-action is given by

g = τ∗C2
f, h = τ∗C1

f. (3.7)

Proposition 3.2 ([Ish, Tak]). A basis for the space H0(P̃ ,Φ∗L)G is given by:

Ψ1 := fZ4
0 + gZ4

1 + hZ4
2 ,

Ψ2 := Z0Z1Z2(Z0 + Z1 + Z2),

Ψ3 := fZ3
0Z2 + gZ3

1Z0 + hZ3
2Z1,

Ψ4 := fZ3
0Z1 + gZ3

1Z2 + hZ3
2Z0,

Ψ5 := ghZ2
1Z

2
2 + fhZ2

0Z
2
2 + fgZ2

0Z
2
1 .
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3.2

Next we describe the coordinate charts in which we will work and we adapt the equations

of Proposition 3.2 to these coordinates. Let U := Ẽ \
{
0̃, C1, C2

}
. Since y2 = w(x) is an

affine Weierstrass equation for Ẽ we get

Ẽ \
{
0̃
}
' Spec

(
C[x, y]

〈y2 − w(x)〉

)

and, since C1 = (α, β) and C2 = (α,−β), it follows that

U ' Spec
(

C[x, y, t]
〈y2 − w(x), (x− α)t− 1〉

)
.

The definitions of the rational functions Z0, Z1, Z2 on P̃ , being a consequence of (3.2),

show that P̃ |U ' U × P2 via the isomorphism

P̃ |U −̃→ U × P2 (3.8)

r 7→
(
p̃(r),

(
Z0(r) : Z1(r) : Z2(r)

))
. (3.9)

Inside P̃ |U we make the choice of affine open set

T := P̃ |U ∩ {Z0 6= 0}

and set u := Z1/Z0, v := Z2/Z0. Then we have

T ' Spec
(

C[x, y, u, v, t]
〈y2 − w(x), (x− α)t− 1〉

)
. (3.10)

We will work with these coordinates to establish various results about the sections in

H0(P̃ ,Φ∗L)G on the dense open set T ⊆ P̃ . In doing so, we prefer to work with polynomials

in C[x, y, u, v, t] rather than the original equations Ψi. Upon setting (Z0 : Z1 : Z2) = (1 :

u : v), we get Ψi ∈ C(x, y, u, v, t) on T . Hence, by clearing denominators, we can obtain a

polynomial basis for H0(P̃ ,Φ∗L)G on T . More specifically, if we set

b1 := 2β(y − β)− µ(x− α)

b2 := −2β(y + β)− µ(x− α),
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so that (using (3.4)–(3.6)) g = −4β2(x − α)/b1 and h = −4β2(x − α)/b2, then we can use

the relation fgh = −4β2 to get b1b2 = −4β2(x−α)3. One sees that multiplying each of the

Ψi by b1b2 will clear their common denominator, and (upon removing a common factor of

(x− α)) this yields the following choice of equations ωi:

ω1 := b1b2 + 4β2b2u
4 + 4β2b1v

4,

ω2 := −4β2(x− α)2uv(1 + u+ v),

ω3 := b1b2v + 4β2b2u
3 + 4β2b1v

3u,

ω4 := b1b2u+ 4β2b2u
3v + 4β2b1v

3,

ω5 := 4β2(x− α)
(
4β2u2v2 + b1v

2 + b2u
2
)
.

The equations ωi give a basis of Γ(T,Φ∗L) satisfying

(ω1 : · · · : ω5) = (Ψ1 : · · · : Ψ5)

on T .

Next, equations for elements of H0(P̃ ,Φ∗L)G near the fiber p̃−1(0̃) are handled via the

method given in [Ish, p.40]. Since Z0 vanishes on p̃−1(0̃), (Z0 : Z1 : Z2) do not form relative

homogenous coordinates near this fiber. However, if we let t = x/y (not to be confused with

the t-coordinate in the affine chart T ) then t is a local parameter of Ẽ near 0̃ and, upon

setting Z ′0 = t−1Z0, it follows that (Z ′0 : Z1 : Z2) do form relative homogeneous coordinates

near p̃−1(0̃). Furthermore, the equations

χi
(
t, (Z ′0 : Z1 : Z2)

)
:= t−1Ψi(tZ ′0 : Z1 : Z2)

for 1 ≤ i ≤ 5 form a basis for H0(P̃ ,Φ∗L)G near p̃−1(0̃). When one expands f, g, h in terms
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of t (for details, see [Ish, p.39]), these equations become

χ1 = 2β(Z4
1 − Z4

2 ) + t(Z ′40 + µZ4
1 + µZ4

2 ) + (higher terms),

χ2 = Z ′0Z1Z2(Z1 + Z2) + tZ2
0Z1Z2,

χ3 = Z ′30 Z2 − 2βZ1Z
3
2 + t(µZ1Z

3
2 + 2βZ ′0Z

3
1 ) + (higher terms),

χ4 = Z ′30 Z1 + 2βZ3
1Z2 + t(µZ3

1Z2 − 2βZ ′0Z
3
2 ) + (higher terms),

χ5 = 2βZ ′20 (Z2
1 − Z2

2 ) + t(µZ ′20 Z
2
2 + µZ ′20 Z

2
1 − 4β2Z2

1Z
2
2 ) + (higher terms).

These are the equations we will utilize in our study of H0(P̃ ,Φ∗L)G near p̃−1(0̃). Note that

outside p̃−1(0̃) we have

(χ1 : · · · : χ5) = (Ψ1 : · · · : Ψ5).

Finally, we address those points of P̃ that lie outside T ∪ p̃−1(0̃). First note that

the action of G interchanges the fibers over
{
0̃, C1, C2

}
, and hence it also preserves their

complement P̃ |U .

For the action of G on r ∈ P̃ |U , let r = (u, (Z0 : Z1 : Z2)) as in (3.8). Using γ ∗ r to

denote the action of γ ∈ G on r, (3.3) gives

0̃ ∗ r = (u, (Z0 : Z1 : Z2))

C1 ∗ r = (u⊕ C1, (Z2 : Z0 : Z1))

C2 ∗ r = (u⊕ C2, (Z1 : Z2 : Z0)).

(3.11)

Thus all elements of P̃ |U have G-orbits that intersect T . This observation will allow us to

perform the calculations we have in mind only on T , and to then deduce similar information

about all of P̃ |U .

Likewise, since G permutes the fibers over
{
0̃, C1, C2

}
, doing calculations for the fiber

p̃−1(0̃) will in fact give us sufficient information about the other two fibers.

One instance of this use of symmetry is in the investigation of local properties of a

section in H0(E(3), L): for each point q ∈ E(3), at least one point of the preimage Φ−1(q)

lies in either T or p̃−1(0̃), and hence it suffices to investigate the the local properties of the

lifted section in H0(P̃ ,Φ∗L)G only on T ∪ p̃−1(0̃).

Let us illustrate the usefulness of the equations given in [Ish] to answer a question posed

in [CC] about |D|, namely whether it is base-point free.
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Proposition 3.3. There are exactly four base points of |D| is smooth, each of which is

simple and belongs to the fiber F0. Furthermore, if X ∈ |D|, then the trace of the linear

system |D| on X also has four simple base points.

Proof. It is shown in [CC, Lemma 3.3] that any possible base points of |D| must be simple.

In [Pol, Theorem 3.8], it is shown that there are at most four base points, each of which

lies in the fiber F0. Hence, to prove the proposition, it will suffice to show the existence of

at least four base points in F0.

If q ∈ E(3) is a base point of |D|, then all three members of Φ−1(q) are base points of

Φ∗|D|. Conversely, if r ∈ P̃ is a base point of Φ∗|D|, then so are all members of the G-orbit

of r and Φ(r) is a base point of |D|. Since all potential base points of |D| must lie in F0, to

prove the first statement it suffices to show that Φ∗|D| has at least four base points in the

fiber p̃−1(0̃).

For this purpose, we use the local equations χi near p̃−1(0̃). The base points in p̃−1(0̃)

form the subvariety

Z(χ1, . . . , χ5, t) ⊆ p̃−1(0̃).

If r1, r2, r3 are the roots of x3 − 2β (note that β 6= 0 since C1 is 3-torsion), one finds that

the four values

(1 : 0 : 0), (r1 : 1 : −1), (r2 : 1 : −1), (r3 : 1 : −1)

for (Z ′0 : Z1 : Z2) are solutions. This proves the first statement.

For the second statement, the trace of |D| on X will have exactly four base points and

we must show they are simple. For this purpose, it suffices to show that, at each of the

four base points of |D|, there are two divisors that are smooth at that base point. In fact,

as one can check directly using the equations χ1 and χ3 and the coordinates for the base

points of Φ∗|D| in p̃−1(0̃) given above, both ψ1 and ψ3 are smooth at all four base points.

This completes the proof.

Remark. This gives a second proof that L is not very ample.
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3.3

Let E1 denote the elliptic curve given by the Weierstrass equation

E1 : y2 = x3 + x2 − 59x− 783/4

and let Ẽ1 denote

Ẽ1 : y2 = w(x) := x3 + x2 + x− 3/4.

Then there is an isogeny ϕ : Ẽ1 → E1 such that kerϕ =
{
0̃, C1, C2

}
, where C1 = (α, β) :=

(1, 3/2). As in §3.1, we have the commutative diagram

P̃
Φ //

p̃

��

E
(3)
1

AJ

��

Ẽ1

ϕ
// E1

.

Define

S1 := PH0(E(3)
1 , L) ' P4.

We will investigate the pencil J1 ⊆ S1 defined parametrically by

J1 :=
{
aψ1 + b(ψ3 − ψ4) | (a : b) ∈ P1

}
. (3.12)

The base locus of J1 is

A1 := Z(ψ1, ψ3 − ψ4) ⊆ E(3)
1 .

Proposition 3.4. A1 is smooth.

Proof. Since this is a local question and Φ : P̃ → E
(3)
1 is étale, it suffices to show that

Φ−1(A1) = Z(Ψ1,Ψ3 −Ψ4) ⊆ P̃

is smooth at the points of T and p̃−1(0̃) (see the discussion before Proposition 3.3).

In the affine open T (to use the notation in (3.10)), Φ−1(A1) corresponds to the ideal

I =
〈
y2 − w(x), (x− α)t− 1, ω1, ω3 − ω4

〉
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in C[x, y, u, v, t]. One forms the 4-by-5 Jacobian matrix of partial derivatives of the gener-

ators of I and puts its four 4-by-4 minors into an ideal IJac. Then one can use Singular

to compute that the set of singular points Z(I, IJac) ⊂ T of Φ−1(A1) in T is empty.

In the local coordinates near the fiber p̃−1(0̃), Φ−1(A1) is given by Z(I), where

I = 〈χ1, χ3 − χ4〉 .

To find the singular points in p̃−1(0̃), one makes three calculations, one for each of the

cases Z ′0 6= 0, Z1 6= 0, Z2 6= 0. For instance, for Z ′0 6= 0, one sets Z ′0 = 1 and writes

the 2-by-3 Jacobian (for the coordinates t, Z1, Z2) coming from the generators of I written

above. Placing the 2-by-2 minors into an ideal IJac, the singularities of Φ−1(A1) in p̃−1(0̃)

with Z ′0 6= 0 are then given by

Z(t, I, IJac).

One can use Singular to show that this is empty.

The calculations for Z1 6= 0, Z2 6= 0 give similar results. Thus Φ−1(A1) has no singular-

ities in p̃−1(0̃) or T .

Next, the total space of the pencil J1 is

Y1 := BlA1(E
(3)
1 ) =

{
(q, s) ∈ E(3)

1 × J1 | s(q) = 0
}
.

We let the second projection be p1 : Y1 → J1, which has fibers

Y1,s = Z(s)× {s} ' Z(s) ⊆ E(3)
1

for each s ∈ J1.

Proposition 3.5. There are exactly 42 values of s ∈ J1 such that Y1,s is singular. Moreover,

each of these singular fibers contains exactly one singular point.

Proof. We start by finding all values of (a : b) ∈ P1 such that aψ1 + b(ψ3 − ψ4) is singular.

Again, since this is a local question, we can instead study the equations aΨ1 + b(Ψ3 −Ψ4).

More precisely, using the shorthand Ψ(a : b) to denote aΨ1 +b(Ψ3−Ψ4), we will show there

are exactly 42 values of (a : b) such that Ψ(a : b) is singular, and that each such Ψ(a : b)

has exactly three singularities.
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First we claim there are 42 values of (a : b) such that Ψ(a : b) has at least one singularity

in the open affine T . In fact, one knows Ψ1 = Ψ(1 : 0) is smooth by [Ish, Example 2.2], so

we may assume that b = 1. Setting

e1 = y2 − w(x)

e2 = (x− α)t− 1

e3 = aω1 + (ω3 − ω4),

the zero set of Ψ(a : 1) in T corresponds to the ideal 〈e1, e2, e3〉 inside C[x, y, u, v, t]. One

finds the singular locus of Ψ(a : 1) in T to be given by the ideal

I =
〈
e1, e2, e3,

∂e1
∂x

∂e3
∂y
− ∂e1
∂y

∂e3
∂x

,
∂e3
∂u

,
∂e3
∂v

〉
.

In order to find all a such that we have a proper inclusion I ( C[x, y, u, v, t], let us instead

regard I as an ideal in the ring C[x, y, u, v, t, a]. Then the values of a in question are the

roots of a generator of the principal ideal I ∩ C[a]. One can use Singular to show that

I ∩ C[a] is generated by a polynomial of degree 42 with distinct roots. This proves the

claim.

A computation in Singular shows that the ring C[x, y, u, v, t, a]/I has Krull dimension

0 and has dimension 126 as a vector space over C. Thus there are at most 126 distinct

points in

Z(I) ⊆ Spec
(
C[x, y, u, v, t, a]

)
.

On the other hand, one can numerically approximate the coordinates of all points in Z(I)

to find 126 distinct solutions. As one would expect, upon inspection of these numerical

coordinates, one finds:

(i) For each of the 42 values of a, there are three singularities of Ψ(a : 1) in T .

(ii) The u and v coordinates of each singularity are nonzero.

From (ii) we conclude that, for these 42 values of a, all singularities of Ψ(a : 1) in P̃ |U

actually lie in T or, equivalently, that Ψ(a : 1) has no singularities in

P̃ |U ∩ {Z0 = 0} .
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Indeed, if there were such a singularity, then by (3.11) its G-orbit would produce a singular

point of the G-symmetric equation Ψ(a : 1) in T that satisfied u = 0 or v = 0; this is ruled

out by (ii).

The same argument rules out the existence of any value of a such that Ψ(a : 1) has a

singularity in

P̃ |U ∩ {Z0 = 0} :

if it existed, then by G-symmetry it would have appeared already in the list of the 42 values

of a above and been in contradiction with (ii).

Finally, we check there is no value of a for which Ψ(a : 1) has singularities in the fiber

p̃−1(0̃). As in Proposition 3.4, we check the three cases Z ′0 6= 0, Z1 6= 0, and Z2 6= 0. For

instance, in the case of Z ′0 6= 0, we first set Z ′0 = 1 in aχ1 + (χ3 − χ4); let us denote this

substitution by p0 ∈ C[a, Z1, Z2][[t]]. Then there exists some a such that Ψ(a : 1) has a

singular point over p̃−1(0̃) with Z ′0 6= 1 if and only if

Z

(
t, p0,

∂p0

∂t
,
∂p0

∂Z1
,
∂p0

∂Z2

)

is nonempty. One can check using Singular that it is in fact empty. Similar conclusions

hold for the cases Z1 6= 0 and Z2 6= 0. Thus, for all a, Ψ(a : 1) is smooth over p̃−1(0̃) and

hence, by G-symmetry, it is also smooth in the fibers over C1 and C2 as well.

In summary, we have found there are exactly 42 values of (a : b) such that Ψ(a : b) is

singular, and have shown that each such Ψ(a : b) contains exactly three singularities.

Proposition 3.6. Suppose that Y1,s is singular for some s ∈ J1. Then the singular locus

of Y1,s is one ordinary double point.

Proof. Let s ∈ J1 be such that Y1,s is singular. By Proposition 3.5, there is only one

singularity q(s) ∈ Y1,s ' Z(s), and we denote its Milnor number as µ(s). Recall that µ(s)

is a positive integer and that µ(s) = 1 if and only if q(s) is an ordinary double point of Y1,s.

By Proposition 3.4, Y1 is nonsingular and so according to [Ful, 14.1.5(d)] there is a

certain zero-cycle γ on Y1 satisfying each of the following:

1. γ is supported on the set of critical points of p1 : Y1 → J1.

2. Let a critical point of p1 correspond to the isolated singularity q(s) ∈ Y1,s, s ∈ J1.
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Then the restriction of γ to {q(s)} is the zero-cycle µ(s)q(s).

3. Letting e denote the topological Euler characteristic, one has

deg(γ) = e(J1)e(X)− e(Y1), (3.13)

where X is a typical fiber of p1 : Y1 → J1.

Thus we obtain

e(J1)e(X)− e(Y1) =
∑
s∈J1,

Y1,s singular

µ(s). (3.14)

We have e(J1) = 2, as J1 ' P1, and, as X is an admissible CC surface, Noether’s

formula gives e(X) = 9. Since Y1 = BlA1(E
(3)
1 ), it follows from [GH, pp.605–606] that

e(Y1) = e(E(3)
1 ) + e(A1). We have e(E(3)

1 ) = 0 [Mac] and, regarding A1 as a smooth curve

on X, the adjunction formula gives

−e(A1) = 2g(A1)− 2 = A1.(A1 +K),

where K is a canonical divisor on X. If ι : X → E
(3)
1 denotes the embedding then, up to

numerical equivalence, we have A1 = ι∗D = ι∗(4D0 − F0) and K = ι∗(D0). Since X is

numerically equivalent to 4D0 − F0 in E(3)
1 , we calculate

A1.(A1 +K) = ι∗
(
(4D0 − F0).(5D0 − F0)

)
= ι∗(20D2

0 − 9D0.F0)

= (4D0 − F0).(20D2
0 − 9D0.F0)

= 80D3
0 − 56D2

0.F0

= 24.

Thus e(Y1) = −24 and we get

e(J1)e(X)− e(Y1) = 2 · 9− (−24) = 42.



27

Therefore (3.14) becomes ∑
s∈J1,

Y1,s singular

µ(s) = 42,

and since there are 42 singular values of s ∈ J1, we conclude that µ(s) = 1 for all s.

3.4

Recall that

S1 = PH0(E(3)
1 , L) ' P4.

Define

R1 := {s ∈ S1 | Z(s) is singular} ⊆ S1. (3.15)

By the fact that |D| has only simple base points [CC, Lemma 3.3], R1 is a proper Zariski-

closed subset of S1. Endow R1 with its unique structure as a reduced subscheme of S1.

There is a rational map η : E(3)
1 → R1 that, if it is defined somewhere, is given by

η : E
(3)
1 99K R1

q 7→ (the unique s such that Z(s) is singular at q).

To express this map more algebraically, pick a point q ∈ E(3)
1 and let (x1, x2, x3) be local

coordinates of E(3)
1 at q. Then the divisor

Z(a1ψ1 + . . .+ a5ψ5)

(passes through and) has a singularity at q if and only if the column vector (a1, . . . , a5)t

belongs to the kernel of the matrix

M(q) :=


ψ1(q) . . . ψ5(q)

(∂ψ1/∂x1)(q) . . . (∂ψ5/∂x1)(q)

(∂ψ1/∂x2)(q) . . . (∂ψ5/∂x2)(q)

(∂ψ1/∂x3)(q) . . . (∂ψ5/∂x3)(q)

 .

Thus η(q) is defined if and only if M(q) has rank 4, in which case the projectivized kernel

η(q) can be described easily in terms of the five 4-by-4 minors of M(q). Indeed, if mi(M(q))
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denotes the 4-by-4 minor of M(q) obtained by omitting the ith column, then

η(q) =
5∑
i=1

(−1)imi(M(q))ψi ∈ R1. (3.16)

The following shows that η is defined on a dense subset of E(3)
1 :

Proposition 3.7. Choose any s ∈ J1 such that Y1,s ' Z(s) is singular, and let q ∈ Z(s)

denote the unique singularity. Then rank(M(q)) = 4, so that η is defined at q and η(q) = s.

Proof. To verify the local property of the matrix M(q) having full rank, it suffices to show

instead that, for r ∈ Φ−1(q) ∈ P̃ , the matrix

M̃(r) :=


ω1(r) . . . ω5(r)

(∂ω1/∂y1)(r) . . . (∂ω5/∂y1)(r)

(∂ω1/∂y2)(r) . . . (∂ω5/∂y2)(r)

(∂ω1/∂y3)(r) . . . (∂ω5/∂y3)(r)

 , (3.17)

has full rank, where (y1, y2, y3) are some local coordinates of P̃ near r.

Suppose that Φ−1(Z(s)) is singular at the point r ∈ P̃ . We recall from the proof

of Proposition 3.5 that in fact r ∈ T ⊆ P̃ , and thus we may write coordinates r =

(x0, y0, u0, v0, t0). In fact, we are only concerned with local information at r, we may

ignore the t-coordinate and write r = (x0, y0, u0, v0) as a point in

Spec
(

C[x, y, u, v]
〈y2 − w(x)〉

)
.

As discussed in the proof of Proposition 3.5, one can use Singular to represent these

coordinates represented numerically. Upon doing so, a fact one finds is that y0 6= 0. This

implies that if we set

x̄ = x− x0, ȳ = y − y0, ū = u− u0, v̄ = v − v0,

then x̄ is a local parameter of Ẽ near (x0, y0). Hence {x̄, ū, v̄} is a set of local parameters

for P̃ near r. Since

ȳ =
w′(x0)

2y0
x̄+ (higher powers of x̄),
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one can use this substitution to get expressions for the ωi in terms of the parameters

{x̄, ū, v̄}. Then one checks numerically (e.g., using a program such as Mathematica) that

the minor m1(M̃(r)) is nonzero. Therefore, M̃(r) has full rank and so does M(q).

The equality η(q) = s then follows by definition.

From the rational map η : E(3)
1 → R1, we obtain one irreducible component of R1: let

R̂1 := η(E(3)
1 ) ⊆ R1

denote the Zariski-closure of the image of η.

Theorem 3.8. The following hold:

(a) dim R̂1 = 3.

(b) The only irreducible component of R1 having dimension 3 is R̂1.

(c) deg R̂1 = 42.

(d) There is a Zariski-dense open subset U ⊆ R̂1 such that, for all s ∈ U , the singular

locus of Z(s) is exactly one ordinary double point.

Proof. Suppose that dim R̂1 < 3 = dimE
(3)
1 . Then all fibers of η have dimension at least

1. In particular, if Z(s) is singular for some s ∈ J1, then the preimage η−1(s) (which is

well-defined by Proposition 3.7) must be a 1-dimensional subvariety Z(s) consisting entirely

of singular points. But Z(s) has only one singularity by Proposition 3.5, a contradiction.

This proves (a).

Before proceeding, we claim the following: inside every 3-dimensional irreducible com-

ponent of R1, there is a dense open subset whose points represent divisors having only

isolated singularities. To see this, define the variety

Z1 :=
{

(q, s) ∈ E(3)
1 ×R1 q ∈ Sing(Z(s))

}
.

By definition of R1, the second projection pr2 : Z1 → R1 is surjective and pr−1
2 (s) '

Sing(Z(s)). Thus the claim will be proved if we show that each 3-dimensional component

of R1 contains one point s such that Sing(Z(s)) has dimension zero. But this follows from

Proposition 3.5, since the line J1 must intersect all 3-dimensional components of R1.
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Now consider the set Qψ1 of all lines through ψ1 ∈ S1\R1, to which we give the structure

of P3. Note that J1 ∈ Qψ1 and thus by Propositions 3.3 and 3.4, there is a dense open subset

of V ⊆ Qψ1 such that if J ∈ V then

(i) J is in general position with respect to the 3-dimensional irreducible components of

R1,

(ii) the base locus of J is smooth, and

(iii) if s ∈ J , then Z(s) contains at most isolated singularities.

By Propositions 3.5 and 3.7, we know that deg R̂1 ≥ 42. Thus to prove the rest of the

theorem, it will suffice to show the following: if J ∈ V , then there are exactly 42 values of

s ∈ J such that Z(s) is singular and, for each such s, Sing(Z(s)) is exactly one ordinary

double point. But given that J has properties (ii) and (iii), we can reach this conclusion by

using the same type of intersection theory calculation done for J1 in the proof of Proposition

3.6.

Remark. Although not needed in the sequel, one can prove that the analog of Theorem

3.8 holds for all but perhaps finitely many isomorphism classes of elliptic curves E. More

precisely, we have the following, which we state without proof:

Let E be any elliptic curve, let S = PH0(E(3), L), and let R ⊆ S denote the closed subvariety

of S that represents the singular elements of |D|. Then dimR = 3 and one irreducible 3-

dimensional component R̂ of R is a hypersurface of degree 42 in S.

Furthermore, for all but at most finitely many isomorphism classes of E, this component

R̂ is the only 3-dimensional component of R and it has is a dense open subset U ⊆ R̂ such

that, for all s ∈ U , Sing(Z(s)) is one ordinary double point.
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Chapter 4

Large monodromy

4.1

Let us recall some notation from §2. Let k be an algebraically closed subfield of C. We have

the symmetric cube E(3) → Y of the universal elliptic curve E → Y over the modular curve

Y over k, which has two divisors F0 and D0. We have the open subset S of a projective

bundle S0 over Y and the divisor X ⊆ E(3) ×Y S, whose projection to S gives the smooth

family π : X → S that contains all admissible CC surfaces over k.

We form two divisors FX and DX on X , arising from the following pullback diagram:

FX //

��

F0 ×Y S

$$IIIIIIIIII

��

X // E(3) ×Y S // S.

DX //

OO

D0 ×Y S

::uuuuuuuuuu

OO

On a fiber Xs, s ∈ S(k), FX and DX cut out an Albanese fiber f and the canonical divisor

K.

Lemma 4.1. Let X be any CC surface and let f be an Albanese fiber and let K be its

canonical divisor. Then f and K are numerically independent.

Proof. Suppose that af+bK is numerically equivalent to zero. Then as f2 = 0 and f.K = 4

(coming from the adjunction formula), we must have a = b = 0.

Corollary 4.2. For every CC surface X over k, the Picard number ρ(X) satisifies ρ(X) ≥

2.
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Now we focus on the situation over C, bringing in singular cohomology and Hodge

theory. Let X̄ be a smooth compactification of X over k and let F X̄ and DX̄ denote the

Zariski-closure of FX and DX in X̄ . Let [F X̄C], [DX̄C] ∈ H2(X̄C,Z) denote their cycle

classes in the singular cohomology of X̄C.

Define the local system of abelian groups HZ := R2(πan
C )∗Z(1)/(torsion) on SC and let

H := HZ ⊗ Q. Using the Leray spectral sequence and the map H2(X̄C,Q) → H2(XC,Q),

one has a map

H2(X̄C,Q)→ H0(SC,H).

(This map is surjective by Deligne’s Theorem of the Fixed Part, though we will not need

this.) In particular, the classes [F X̄C] and [DX̄C] give two global sections η1, η2 of the local

system H.

Proposition 4.3. The global sections η1, η2 ∈ H0(SC,H) are linearly independent.

Proof. It suffices to show the restrictions of these sections to the fiber H2(Xs,Q) of H at a

point s ∈ S(C) are independent. But by construction, these restrictions are just the cycle

classes of an Albanese fiber and the canonical divisor on Xs, so this follows from Lemma

4.1.

Let

φ : HZ ⊗HZ → R4(πan
C )∗Z(2) ' Z

be the cup product form. Noting that the global sections η1, η2 of H actually come from

global sections of HZ, let VZ be the orthogonal complement under φ of the rank 2 local

subsystem of HZ generated by {η1, η2}. Let V = VZ ⊗ Q. Then V underlies a variation

of Hodge structure of weight zero and (by Noether’s formula) rank 9 with Hodge numbers

h1,−1 = h−1,1 = 1, h0,0 = 7. Moreover, one of the global sections ηi of HZ restricts to the

class of the canonical divisor in each fiber HZ,s = H2(Xs,Z)(1), which is ample since each

Xs is an admissible CC surface. Thus the cup product form φ : V⊗V→ Q makes V into a

polarized variation of Hodge structure on SC.

Pick a point σ ∈ S(C). The local system underlying V is equivalent to the monodromy

representation

Λ : π1(SC, σ)→ O(Vσ, φσ).
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Then the assertion of Theorem A, whose proof is the goal of §4, is that the image of Λ is

Zariski-dense.

4.2

While Theorem A refers to the entire family πC : XC → SC, it can be deduced from a similar

result for a subfamily. Recall that in the construction of π : X → S in §2.2, we started

with a P4-bundle S0 over the modular curve Y . Choose a subvariety J ↪→ (S0)C and let

J∗ := J ∩ SC, with ι : J∗ ↪→ SC the embedding. If we consider the pullback ι∗V to J∗ and

have a closed point σ ∈ J∗ ⊆ SC, then the two monodromy representations arising from V

and ι∗V are related via the diagram

π1(J∗, σ) //

ι∗

��

O
(
(ι∗V)σ, φσ

)
π1(SC, σ) // O(Vσ, φσ).

Thus if the image of π1(J∗, σ) is Zariski-dense in O(Vσ, φσ), then so is the image of π1(SC, σ).

In §4.4, we will make the following choice for J . Suppose the point y ∈ Y (C) corresponds

to the elliptic curve E1 defined in §3.3. Then S0,y ' S1 = PH0(E(3)
1 , L). Under this

identification, J ⊂ S0,y will chosen to be a general line representing a pencil in |D|, and

hence the pullback of X → S to J∗ will be the restriction of the total space Y → J of the

pencil J to the smooth fibers. Thus our aim is to prove:

Theorem 4.4. For σ ∈ J∗, the Zariski-closure of the image of the monodromy representa-

tion

λ : π1(J∗, σ)→ O(Vσ, φσ) (4.1)

is O(Vσ, φσ).

In summary, we are reduced to investigating the monodromy a sufficiently nice pencil

of divisors in the complete linear system |D| on the smooth projective variety E(3)
1 . While

this is reminiscent of the classical theory of Lefschetz concerning hyperplane sections of a

smooth projective variety, this theory does not apply directly to our case, since D is not

very ample by Proposition 2.3. But as we show below, a sufficiently general version of

Lefschetz’s theory will suit our purposes.
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4.3

Note: In §4.3, the base field will always be C. Moreover, while in many instances

purposefully similar, the notation in §4.3 will be independent of all previous chapters.

Here we describe a mild generalization, presumably known to experts, of Lefschetz’s

classical work on the monodromy representation of the family of hyperplane sections of a

smooth projective variety. Our exposition draws from the two accounts [Lam] and [PS1,

§3]; one can also consult [DK, Expose XVII]. See the end of this chapter for the specific

choices that give the original context of Lefschetz.

Let W be a smooth projective variety of dimension n + 1 and let X be a smooth

subvariety of W of codimension 1, with i : X ↪→ W denoting the inclusion. Letting

PD : Hn(X,Q) → Hn(X,Q) denote the Poincaré duality isomorphism, we define two

subspaces of Hn(X,Q):

I = im
(
i∗ : Hn(W,Q)→ Hn(X,Q)

)
,

V = PD−1
(
ker

(
i∗ : Hn(X,Q)→ Hn(W,Q)

))
.

Let φ denote the nondegenerate bilinear form on Hn(X,Q) arising from cup product. Then

unraveling the definitions shows that, with respect to φ, we have V ⊥ = I.

Here are the first two assumptions we will make:

(L1) The maps

i∗ : Hk(W,Q)→ Hk(X,Q)

are isomorphic for 0 ≤ k ≤ n− 1 and injective for k = n.

(L2) The map

· ∪ [X] : Hn(W,Q)→ Hn+2(W,Q)

given by taking the cup product with the cycle class [X] ∈ H2(W,Q) of X is an

isomorphism.

Lemma 4.5. The assumptions (L1) and (L2) imply the vector space decomposition

Hn(X,Q) = I ⊕ V. (4.2)
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Proof. See [PS1, Prop. 3.6].

Next consider the space

S := PH0(W,OW (X)).

We will assume:

(L3) dimS ≥ 2.

Given this assumption, we may fix a pencil J ⊆ S, i.e., J ' P1 is a projective line in S.

The base locus of J is

A :=
⋂
s∈J

Z(s) ⊆W

and the total space of J is

Y := BlA(W ) = {(s, w) ∈ J ×W | s(w) = 0} .

Let p : Y → J denote the first projection. We assume that J satisfies the following three

assumptions:

(L4) If σ denotes the equation of X, then σ ∈ J . Thus Yσ ' Z(σ) = X.

(L5) A is smooth.

(L6) If Ys is singular for s ∈ J , then its singular locus consists exactly of one ordinary

double point.

Since X is smooth, (L4) implies that the number of singular fibers of p : Y → J is

finite; choose an indexing s1, . . . , sr of those s ∈ J such that Ys is singular. The assumption

(L5) implies that Y = BlA(W ) is smooth. Rephrasing (L6) in terms of critical values and

nondegenerate critical points of the map p : Y → J , we conclude:

Proposition 4.6. With the assumptions (L4)–(L6), p : Y → J is a holomorphic map from

an (n + 1)-dimensional compact complex manifold to the complex projective line, having r

critical values and r nondegenerate critical points.

It is exactly in the setup of Proposition 4.6 that classical Picard-Lefschetz theory is

applicable, a detailed reference for which is [Lam, §5,6]. Let us summarize what we need of
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this theory. Let

J∗ := J \ {s1, . . . , sr}

denote those s ∈ J such that Ys is nonsingular. Then we choose generators for π1(J∗, σ)

as follows. For each 1 ≤ i ≤ r, we let κi be a path that starts at the base point σ and

travels to a point s∗i near si; let ci be a loop based at s∗i that travels once around si in the

counterclockwise direction. We set γi = κi · ci · κ−1
i and assume that each of the r paths γi

do not cross in any point other than the base point σ. Then the γi generate π1(J∗, σ).

The nth cohomology groups of the fibers Ys piece together to give the local system

Rn(pan
∗ )Q on J∗ that respects the cup product φ; we let

λ0 : π1(J∗, σ)→ Aut(Hn(X,Q), φ) =


O(Hn(X,Q), φ) if n even

Sp(Hn(X,Q), φ) if n odd
(4.3)

denote the corresponding monodromy representation at σ. For each 1 ≤ i ≤ r, Picard-

Lefschetz theory yields a so-called vanishing cycle, which is a class inHn(X,Q). Considering

their Poincaré duals gives a collection of cocycles in Hn(X,Q) that we will denote by δi,

1 ≤ i ≤ r. It can be shown that V is generated by the collection {δi}i. Let Ti := λ0(γi);

then these {Ti}i generate the image of λ0.

Theorem 4.7 (Picard-Lefschetz formula). With the assumptions (L4)–(L6), we have

Ti(x) = x+ (−1)
(n+1)(n+2)

2 φ(x, δi)δi (4.4)

for all x ∈ Hn(X,Q) and

φ(δi, δi) =


0, n odd

2 · (−1)n/2, n even.
(4.5)

Proof. See [Lam, §6] (where the theorem is phrased homologically).

Using these formulas, one can conclude:

Corollary 4.8. With the assumptions (L1)–(L6), we have

Hn(X,Q)π1(J∗,σ) = I.
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Furthermore, V is a subrepresentation of Hn(X,Q), i.e., the direct sum decomposition (4.2)

also holds as π1(J∗, σ)-modules.

Our final set of assumptions concerns the collection of singular divisors in the linear

system |X|. With S = PH0(W,OW (X)) as above, let

R := {s ∈ S | Z(s) ⊆W is singular } .

Then R is a proper closed subset of S, and we give R its unique reduced subscheme structure.

Our final assumptions are:

(L7) The subvariety R has codimension 1 in S.

(L8) J is in general position with respect to R (meaning it only intersects the codimension

1 components of R, and does so transversally).

(L9) R has exactly one irreducible component R̂ of codimension 1.

Theorem 4.9. Let

λ : π1(J∗, σ)→ Aut(V, φ)

denote the subrepresentation V . With the assumptions (L1)–(L9), λ is absolutely irre-

ducible.

Proof. A proof follows along the lines of that given in [Lam, §7] of the classical case. The

main ingredients are the Picard-Lefschetz formula (4.4) and the fact that one can show the

operators {λ(γi)}i are pairwise conjugate in the image of λ. By abuse of notation, let us

also use Ti to denote λ(γi). We indicate only those steps in the proof that need modification

in our more general situation, and leave the reader to consult [Lam] for full details.

By an easy modification of the argument in [Lam, (7.4.1)], the two assumptions (L7)

and (L8) imply that the inclusion J∗ ↪→ S∗ induces a surjection of fundamental groups

π1(J∗, σ) � π1(S∗, σ). (4.6)

The necessary modification is as follows. Given our current definitions of S, R, and σ, let

Qσ be the set of lines in S passing through σ (which can be identified with any hyperplane

in S \ {σ}) and let `σ : S \ {σ} → Qσ be the morphism sending a point to the line through
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itself and σ. Finally, let C ⊆ Qσ be the image under `σ of all points in R that are nonsmooth

(as points in R) or that lie off of R̂; in other words, the elements of Qσ \ C represent lines

that are in general position with respect to R. Then the argument in [Lam] makes the extra

assumption that all components of R have codimension 1, which we cannot assume in our

case. In either case, though, C is still a proper closed subvariety of Qσ and, since this key

point holds, the argument in [Lam] still applies to prove (4.6).

Next, given that the family Y → J over J is just the base change via J ↪→ S of a similar

family over S (whose fibers are the elements of the linear system |X|), we know that λ0

factors as

π1(J∗, σ) // //

λ0

((QQQQQQQQQQQQQ
π1(S∗, σ)

��

Aut(Hn(X,Q), φ).

Furthermore, the surjection π1(J∗, σ) � π1(S∗, σ) shows that V is also a π1(S∗, σ)-module,

and so λ factors as

π1(J∗, σ) // //

λ

&&NNNNNNNNNNN
π1(S∗, σ)

��

Aut(V, φ).

Hence, to show that the operators {Ti}i ⊆ Aut(V, φ) are pairwise conjugate, it suffices to

show that the images of the paths {γi}i are pairwise conjugate in π1(S∗, σ). But this is

implied by the assumptions (L3), (L7), and (L9), thanks to an easy modification of the

argument in [Lam, (7.5.1)]. The modification one must make is similar to that above, i.e.,

we must take note of the possibility of lower dimensional components of R. Define the

subvariety

Z := `−1
σ (C) ∩R ⊆ R,

consisting of those points s ∈ R such that `σ(s) ∈ Qσ is not in general position with respect

to S; in particular, R \Z = R̂ \Z ⊆ R̂ by virtue of (L9). By virtue of (L3) and (L7), R has

dimension at least 1. As in the case of [Lam, (7.5.1)], dimZ < dimR = dim R̂, and so one

can find a path through the dense open subset R \ Z of R̂ between any two of the points

in {si}i ⊆ J ∩ R̂. The rest of the argument in [Lam] applies to prove that the {γi}i are

pairwise conjugate in π1(S∗, σ).

Now that we know the operators {Ti}i are pairwise conjugate, the rest of the proof
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follows exactly as in [Lam]. In particular, one byproduct of the proof that we record for

future reference is the following. If we choose a pair 1 ≤ i, j ≤ r and g ∈ π1(L∗, σ) such

that λ(gij)−1 · Ti · λ(gij) = Tj , then

λ(gij)δj = ±δi. (4.7)

For a strengthened form of Theorem 4.9, we exploit the following general lemma of

Deligne:

Lemma 4.10 (Deligne). Let U be a finite-dimensional complex vector space equipped with

a nondegenerate bilinear form φ0, let M be an algebraic subgroup of Aut(U, φ0), and let O

be an orbit of M that generates U .

(a) Suppose that φ0 is alternating and that M is the smallest algebraic subgroup of Aut(U, φ0) =

Sp(U, φ0) which contains all of the transvections

u 7→ u+ φ0(u, δ)δ

as δ ranges over O. Then M = Sp(U, φ0).

(s) Suppose that φ0 is symmetric, that all elements δ ∈ O satisfy φ0(δ, δ) = 2, and that

M is the smallest algebraic subgroup of Aut(U, φ0) = O(U, φ0) that contains all of the

reflections

u 7→ u− φ0(u, δ)δ

as δ ranges over O. Then either M is finite or M = O(U, φ0).

Proof. See [Del2, Lemmas 4.4.2a, 4.4.2s].

Corollary 4.11. If (L1) through (L9) hold, we have the following:

(a) If n is odd, the Zariski-closure of the image of λ is the full group Aut(V, φ) = Sp(V, φ).

(s) If n is even, the Zariski-closure of the image of λ is either finite or the full group

Aut(V, φ) = O(V, φ).
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Proof. Let O be the orbit of δ1. By (4.7) we see that O contains either δi or −δi for all i,

and hence O generates V . Let

φ0 :=


φ if n ≡ 0, 3 (mod 4)

−φ if n ≡ 1, 2 (mod 4).

Let U := V ⊗Q C and extend φ0 from V to U .

Suppose that n is odd, so that φ0 is alternating, and let M be defined as in Lemma

4.10(a); we must show thatM is the Zariski-closureN ⊆ Sp(U, φ0) of the image λ(π1(J∗, σ)).

In one direction, we have M ⊆ N ; indeed, the generators of M are the transvections

v 7→ v + φ0(v, λ(g)δ1)λ(g)δ1 (4.8)

for g ∈ π1(J∗, σ), and (4.8) is equal to λ0(gγ1g
−1) ∈ N . In the other direction, (4.7)

shows that M must contain all of the transvections Ti. Since the collection {Ti}i generates

λ(π1(J∗, σ)), and hence N , we see that N ⊆M .

Thus we have shown that the smallest algebraic subgroup of Sp(U, φ0) defined over C

that contains the image of λ is Sp(U, φ0) itself. It follows that the Zariski-closure of the

image of λ in (the rational algebraic group) Sp(V, φ0) is Sp(V, φ0) itself. This completes the

proof of part (a), since Sp(V, φ0) = Sp(V, φ).

When n is even, we have φ0(δ1, δ1) = 2 and thus all δ ∈ O satisfy φ0(δ, δ) = 2. The rest

of the proof of part (s) is similar to part (a).

Remark. We note that the classical case considered by Lefschetz is the following. Let X

be a smooth very ample divisor on W and let W ↪→ PN be an embedding given by the

complete linear system |X|. Then X is a smooth hyperplane section of W relative to this

embedding, S = (PN )∨ is the dual projective space, and R ⊆ S is the dual variety of W .

One knows that R is always irreducible, but it need not always be a hypersurface. (But this

is “usually” the case, see [Tev, Theorem 1.18].) If R is a hypersurface, then J is a pencil

that intersects R transversally in degR = r points.
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4.4

We now return to the setting of complex CC surfaces. Following the outline in §4.3, we will

verify that the assumptions (L1) through (L9) hold in the case when

• W = E
(3)
1 (and hence n = 2),

• S = S1 and R = R1,

• σ ∈ S any point in S \R, so that X = Z(σ) is smooth.

• J ⊆ S is a line through σ that is in general position with respect to R, that has smooth

base locus, and such that Sing(Z(s)) is one ordinary double point for all s ∈ J ∩ R;

by Theorem 3.8 (as well as its proof), such a J exists.

Immediately we obtain:

Proposition 4.12. (L3) through (L9) hold.

Proof. First, (L3) holds as h0(E(3)
1 , L) = 5. Since σ ∈ J by definition, (L4) holds. By

definition of J , (L5), (L6), and (L8) hold. Finally, (L7) is given by Theorem 3.8(a) and

(L9) by Theorem 3.8(b).

Proposition 4.13. (L1) holds.

Proof. By [Mac], we have

h1(E(3)
1 ,Q) = h2(E(3)

1 ,Q) = 2.

As the case k = 0 is clear, we consider the case k = 1. By Theorem 2.1 we have E1 ' Alb(X).

Thus we have the commutative diagram

X //

Alb

��

E
(3)
1

��

Alb(X) ∼ // E1.

Since Alb∗ : H1(Alb(X),Q) → H1(X,Q) is an isomorphism, this implies H1(E1,Q) →

H1(E(3)
1 ,Q) is injective. Furthermore, h1(E1,Q) = h1(E(3)

1 ,Q) = 2, implying thatH1(E1,Q)→

H1(E(3)
1 ,Q) is actually an isomorphism. Therefore, so must H1(E(3)

1 ,Q) → H1(X,Q) be

an isomorphism.
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For the case k = 2, one can show by a proof similar to that of Proposition 4.3 that the

two divisor classes [D0], [F0] ∈ H2(E(3),Q) have linearly independent images in H2(X,Q).

This completes the proof.

Proposition 4.14. (L2) holds.

Proof. By Proposition 2.3, the line bundle L⊗j is very ample for large j. Thus, by the Hard

Lefschetz Theorem, the map

· ∪ [jX] : H2(E(3)
1 ,Q)→ H4(E(3)

1 ,Q)

is an isomorphism. Hence the same is true with [X] in place of [jX], proving that (L2)

holds.

Having verified properties (L1) through (L9), Theorem 4.9 and Corollary 4.11 give:

Corollary 4.15. The monodromy representation λ in (4.1) is absolutely irreducible. Fur-

thermore, the image of λ is either finite or Zariski-dense in O(Vs, φs).

Proof of Theorem A. Recall that we may instead prove Theorem 4.4 from the end of §4.2.

Let M denote the Zariski-closure of the image of λ and assume that M is finite. Since

the action of M on Vs is absolutely irreducible by Corollary 4.15, this implies that any

M -invariant nonzero bilinear form Vs is either positive or negative definite. But φs, which

is nonzero and M -invariant, has signature (2, 7). This is a contradiction.
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Chapter 5

Applications to Galois
representations

Note: Throughout §5, k will be a finitely generated subfield of C and k̄ will be its algebraic

closure in C. We will frequently replace k by a finite extension when necessary, sometimes

without mention. This will not be problematic since it is sufficient to prove the statements

in Theorem B over some finite extension of the original field of definition.

Our proof of Theorem B follows the axiomatic approach given by André [And1], and we

refer the reader there for full details. However, a modification of André’s axioms is required

in the present situation (see the end of §5.1), and we discuss more carefully those points of

the argument that are potentially affected by this modification.

5.1

Let X be an admissible CC surface defined over k and assume that the canonical divisor K

and an Albanese fiber f are both defined over k as well. Let

ξ1 = [K]B, ξ2 = [f ]B ∈ HZ := H2(XC,Z)(1)/(torsion)

be their cycle classes. Then {ξ1, ξ2} generates a rank 2 subgroup of HZ by Lemma 4.1. If

θ : HZ ⊗HZ → H4(XC,Z)(2) ' Z
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is the bilinear form given by the cup product, we define the orthogonal complement

VZ := {ξ1, ξ2}⊥ ⊆ HZ. (5.1)

Because K is ample, (VZ, θ) is an integral polarized Hodge structure. Let V = VZ ⊗Q.

We will take the smooth projective family π : X → S constructed in §2.2, with S smooth

and geometrically irreducible, to be defined over k and to possess the following properties:

(F1) There is a point s ∈ S(k) such that X is isomorphic to Xs over k. (Corollary 2.7)

After fixing such an isomorphism, we may assume that X = Xs.

(F2) The elements ξ1, ξ2 extend to global sections η1, η2 of HZ = R2(πan
C )∗Z(1), the first of

which restricts to an ample divisor class on every fiber. Recall the cup product form

φ : HZ ⊗HZ −→ R4(πan
C )∗Z(2) ' Z.

The orthogonal complement VZ of the global sections η1, η2 is a polarized variation

of Hodge structure of weight zero with h−1,1 = h1,−1 = 1, h0,0 = 7, and hp,q = 0

otherwise. (See §4.1.) Let V = VZ ⊗ Q. Define σ = sC ∈ S(C). Then (VZ,σ, φσ) =

(VZ, θ).

(F3) There exists µ ∈ S(C) such that Vµ is a Hodge structure of CM-type. (Theorem 2.9)

(F4) The image of the monodromy representation

Λ : π1(SC, σ)→ O(Vσ, φσ) = O(V, θ)

is Zariski-dense. (Theorem A)

(F5) For all τ ∈ S(C), the elements of Vτ ⊆ H2(Xτ ,Q)(1) of type (0, 0) are algebraic,

i.e., they belong to the subspace generated by the cycle classes of divisors on Xτ .

(Lefschetz (1,1)-Theorem)

These properties are similar to the axioms being considered in [And1, p.207], but they

differ in two ways. The first is that in (F2) we focus on a subvariation of the full primitive

cohomology of the family, albeit one whose complement in H = R2(πan
C )∗Q(1) is still alge-

braic. The second and more significant difference is that the image of the period map of the
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variation V over SC cannot possibly contain an open subset of the period domain (which

has dimension 7). We replace this instead with (F3) and (F4).

5.2

In the course of proving Theorem B, we will work with motives for absolute Hodge cycles,

the main reference for which is [DMOS]. (We could have instead chosen to work with the

stronger notion of motivated cycles, as in [And1]. See [And1, §1.5] and, more generally,

[And2] for more details about this.) In particular, given two motives W1 and W2 over a

subfield F of C with Betti realizations W1 and W2, to say that a Hodge correspondence

c : W1 →W2 is absolute Hodge over F is to say that c is the Betti realization of a morphism

W1 → W2.

Here are two motives that will appear below. There is a Hodge cycle π2 ∈ H4(X ×

X,Q)(2) that is absolute Hodge over k and such that the Betti realization (under our fixed

embedding k ↪→ C) of the effective motive H 2(X) := (X,π2) is H2(X,Q) [DMOS, p.28,

Ex. 2.1(b)]. Let

δ = π2 − [K ×K]B − [f × f ]B ∈ H4(X ×X,Q)(2).

Since K and f are defined over k, δ is also absolute Hodge over k. We define the motive

Vk := (X, δ, 1). (5.2)

The Betti realization of Vk is V ⊆ H2(X,Q)(1). We will denote the base change of this

motive to k̄ (resp., C) by Vk̄ (resp., VC).

The idea of the proof of Theorem B is to show that the motive Vk is in MotAV(k), the

Tannakian category generated by the motives of abelian varieties over k (Theorem 5.3), and

then to exploit the work of Faltings [FW] on abelian varieties.

5.3

For the purposes of both this chapter and §6, we will describe elements of the Kuga-Satake-

Deligne construction, which associates complex abelian schemes to certain variations of
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Hodge structure, including VZ. For more details, we refer to [Del1, And1]. Regarding the

original construction of Kuga and Satake (i.e., the special case when the variation is over a

point), one can consult [KS, vG].

First we recall the original construction of Kuga and Satake, as recast by Deligne. Let

WZ be a free Z-module of rank N + 2, let W = WZ ⊗Q, and WR = WZ ⊗R. Suppose that

WZ has a Hodge structure of weight 0 such that h1,−1 = h−1,1 = 1 and h0,0 = N (and thus

hp,q = 0 otherwise). Furthermore, let

φ : WZ ⊗WZ → Z

be a polarization of the Hodge structure WZ. Then this is equivalent to a morphism of real

algebraic groups

h : S→ SO(WR, φR)

of a certain type. One has the short exact sequence

1 // Gm
// GSpin(WR) // SO(WR, φR) // 1

and one would like to lift h to a morphism h̃ : S→ GSpin(WR). One can do so uniquely by

imposing the following condition on h̃: the diagram

Gm
w // S

h̃
��

t // Gm

Gm
// GSpin(WR) N−1

// Gm.

must commute, where w : Gm → S denotes the weight homomorphism, t(z) = (zz̄)−2, and

N is the spinor norm. Conversely, one can recover h from h̃.

The morphism h̃ now gives rise to two different polarizable rational Hodge structures

on the even Clifford algebra C+(WZ), both as a consequence of the inclusion GSpin(W ) ↪→

C+(W )∗:

1. Via the adjoint action of GSpin(W )

g ∗ad e := geg−1
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we obtain a polarizable weight zero Hodge structure C+(WZ)ad whose nonzero Hodge

numbers belong to {(−1, 1), (0, 0), (1,−1)}.

2. Via the action of GSpin(W ) by left multiplication

g ∗s e := ge

we obtain a polarizable weight one Hodge structure C+(WZ)s whose nonzero Hodge

numbers belong to {(1, 0), (0, 1)}. Hence, up to isomorphism, there is a unique com-

plex abelian variety KS(WZ) of dimension 2N , called the Kuga-Satake variety of WZ,

such that

H1(KS(WZ),Z) ' C+(WZ)s

as Hodge structures.

Moreover, if we denote by C+ the ring C+(WZ) then C+(WZ)s is a right C+-module (by

the action of right multiplication). This action is compatible with the Hodge structure on

C+(WZ)s, and one can show that there is an isomorphism of Hodge structures

EndC+(C+(WZ)s) ' C+(WZ)ad.

Deligne shows how to relativize this construction. Rather than describe the general

picture, let us invoke what we need for our situation, all of which is a consequence of (F2).

Recall the notation in §5.1. Fix n large enough so that both of the arithmetic groups

Γ := {a ∈ SO(VZ) | a ≡ 1 (mod n)} (5.3)

Γ̃ :=
{
A ∈ GSpin(V )(Q) | A ≡ 1 (mod n) in C+(VZ)

}
(5.4)

are torsion-free and isomorphic under the map GSpin(V )(Q) → SO(V )(Q). Then one can

find a connected finite étale covering v : S ′ → S, which we may assume to be defined

over k, such that the following holds: the monodromy representation underlying (V′
Z, φ

′) :=

v∗(VZ, φ) has image contained in Γ (after making appropriate identifications between VZ

and a fiber of V′
Z as in (5.7) below). Furthermore, letting C+ be the ring C+(VZ), we obtain

(a) a complex abelian scheme a : A → S ′C,
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(b) an embedding µ : C+ ↪→ EndS′C(A), and

(c) if (V′
Z, φ

′) := v∗(VZ, φ), an isomorphism of integral variations of Hodge structure

uZ : C+(V′
Z)−̃→EndC+(R1aan

∗ Z) (5.5)

that is also an isomorphism of local systems of rings. Tensoring with Q, we get an

isomorphism of rational variations of Hodge structure

u : C+(V′)−̃→EndC+(R1aan
∗ Q). (5.6)

Let π′ : X ′ → S ′ denote the pullback of π : X → S via v, let s′ ∈ S ′(k) be a preimage of

the point s ∈ S(k) in (F1), and let σ′ = s′C. Then we make identifications X = Xs = X ′s′ ,

(VZ, θ) = (Vσ, φσ) = (V′
σ′ , φ

′
σ′), (5.7)

a complex abelian variety Aσ′ , and (via (5.7)) an isomorphism of weight zero Hodge struc-

tures

uσ′ : C+(V )−̃→EndC+(H1(Aσ′ ,Q)). (5.8)

More generally, for any τ ′ ∈ S ′(C), we have an isomorphism of Hodge structures

uτ ′ : C+(V′
τ ′)−̃→EndC+(H1(Aτ ′ ,Q))

and one can show that Aτ ′ ' KS(V′
τ ′).

5.4

We now use Theorem A to demonstrate finer properties of the complex abelian variety Aσ′

and the Hodge correspondence uσ′ .

Proposition 5.1. The Hodge correspondence uσ′ in (5.8) is absolute Hodge over C.

Proof. Let µ′ ∈ S ′(C) be a preimage of the point µ ∈ S(C) in (F3). Then V′
µ′ is a CM Hodge

structure, which implies that V′
µ′ is the Hodge realization of an object in the Tannakian

category generated by the motives of CM abelian varieties (see [Sch, §6.1]). Therefore uµ′
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is a Hodge correspondence between (subquotients of) Hodge structures of complex abelian

varieties. By [DMOS, Thm 2.11], uµ′ is therefore absolute Hodge and, by Principle B

[DMOS, Thm 2.12], this implies that uτ ′ is absolute Hodge for all τ ′ ∈ S ′(C), including

τ ′ = σ′.

Remark. Instead of using Principle B and the CM Hodge structure of Polizzi, one can

alternatively prove Proposition 5.1 by using Theorem A, following the arguments in [And1,

Prop. 6.2.1].

Proposition 5.2. There is an absolute Hodge correspondence γC over C

γC : V ↪→ EndC+(H1(Aσ′ ,Q)). (5.9)

Proof. We modify the argument in [And1, 6.2.2, 6.4.1]. First one chooses an embedding

V ⊗ detV ↪→ C+(V ) that is O(V )-invariant. As the motivic Galois group of VC is also a

subgroup of O(V ), it also fixes this embedding, meaning the embedding is an absolute Hodge

correspondence. By composition with uσ′ , we obtain an absolute Hodge correspondence

V ⊗ detV ↪→ EndC+(H1(Aσ′ ,Q)).

To finish, one must show that detV is the trivial Hodge structure. For this, one realizes

detV as the fiber over σ′ ∈ S ′(C) of the variation of Hodge structure det V′. Then one

applies a deformation argument, which involves showing that the Hodge structure det V′
µ′

at the special point µ′ ∈ S ′(C) in (F3) is trivial (using the existence of algebraic classes in

V′
µ′). For full details, see [And1].

Theorem 5.3. There is an abelian variety A over k such that AC ' Aσ′, and the absolute

Hodge correspondences uσ′ in (5.8) and γC in (5.9) descend to absolute Hodge correspon-

dences over k.

Proof. The proof of the existence of A follows that in [And1, §5.5], which in turn is a

stronger version of [Del1, Prop. 6.5]. Without reproducing the entire proof, we will take

care to make clear the role played by (F4), i.e., the Zariski-density of the monodromy.

Consider the collection C1 = (S ′, π′,X ′, a,A, µ); as this collection is defined by a finite

number of equations, we may (after replacing k by a finite extension) find a smooth con-
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nected variety T over k such that C1 descends to a collection C2 = (S2, π2,X2, a2,A2, µ2)

over the function field k(T ) of T . Note that as π′ : X ′ → S ′ is defined over k, π2 : X2 → S2

is obtained simply by base change from k to k(T ):

S2 = S ′k(T ), X2 = X ′k(T ), π2 = π′k(T ).

In fact, upon replacing T if necessary, the collection C2 is the generic fiber of a collection

C3 = (S3, π3,X3, a3,A3, µ3) defined over T . Just as before, the first three objects in C3 are

obtained by base change from k to T :

S3 = S ′T , X3 = X ′T , π2 = π′T .

To achieve the existence of A, we will first show the existence of an isomorphism of

local systems of rings over (S3)C similar to uZ in (5.5). This is not automatic, since the

transcendental isomorphism uZ does not necessarily “descend” to T along with the collection

C1. Rather we will use the Zariski-density of the monodromy representation

Λ′ : π1(S ′C, σ′)→ SO(V, θ)

that underlies V′ (using the identification (5.7)) to arrive at such an isomorphism.

For a prime number `, one uses comparison to obtain from uZ an isomorphism of Z`-

sheaves of algebras

u` : C+(V′
ét)−̃→EndC+(R1a∗Z`)

in the étale topology on S ′C; here V′
ét is the subsheaf of the Z`-sheaf R2(π′C)∗Z`(1) obtained

by removing the global sections arising from the cycle classes of K and f (i.e., the construc-

tion is exactly similar to that of V′
Z). We claim that u` is unique. To show this, it suffices to

show that the isomorphism uZ is unique. If there were two such isomorphisms, one would

obtain an automorphism of the local system C+(V′), i.e., a π1(S ′C, σ′)-invariant automor-

phism of the fiber C+(V ). But by the Zariski-density of the monodromy representation

Λ′, it follows that such an automorphism necessarily commutes with a dense subgroup of

Spin(V ) in its action on C+(V ) by left multiplication. Deligne [Del1, Lemma 3.5] shows

that this implies the automorphism of C+(V ) is the identity. Hence uZ is unique and so is
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u`.

Without using this uniqueness, u` automatically descends a priori only to an isomor-

phism of étale sheaves over S2 ⊗k(T ) k(T ), where k(T ) is the algebraic closure of k(T ). In

other words, when one restricts u` to a fiber over a point of S2, it is invariant under the

action of πgeom
1 . But in fact the action of the group πarith

1 at the point sends the restric-

tion of u` to another πgeom
1 -invariant isomorphism of Z`-algebras; by the aforementioned

uniqueness of u`, this means that πarith
1 fixes this restriction, meaning u` descends to an

isomorphism of étale sheaves over k(T ).

Hence, after perhaps replacing T again, u` is the generic fiber of a larger isomorphism

of étale sheaves over T ; this in turn gives rise to the analytic isomorphism of local systems

of rings

C+(V′
T )−̃→EndC+(R1aan

3 Z) (5.10)

over (S3)C = S ′C ×C TC; here V′
T denotes the pullback of V′ from S ′C to S ′C ×C TC. Then,

as in [And1, Lemma 5.5.1], one uses (5.10) to prove that any specialization of the abelian

scheme A3 → T to a point along s′ ×k T ⊆ T in fact gives a model for the abelian variety

A′σ′ over the residue field of that point. In particular, choosing a k-valued point of T , we

get a model A for A′σ′ over k, completing the first part of the theorem.

Finally, by definition, the absolute Hodge cycles on a variety Y over C are defined to

be the base change of the absolute Hodge cycles for a model Y0 of Y over any algebraically

closed field k0 of finite transcendence degree. (This definition is independent of the choice

of (k0, Y0), see [DMOS, Prop. 2.9].) Hence the absolute Hodge correspondence γC must

come from an absolute Hodge correspondence over k̄

γk̄ : Vk̄ ↪→ E ndC+(H 1(Ak̄)),

where the right hand side represents the object in MotAV(k̄) whose Betti realization is

EndC+(H1(AC,Q)) (which is well-defined by [DMOS]).

On the other hand, γk̄ is fixed by an open subgroup of Gal(k̄/k), which we may assume

to be the whole group Gal(k̄/k) itself. By definition, this means that γk̄ comes from an

absolute Hodge correspondence over k

γk : Vk ↪→ E ndC+(H 1(A)). (5.11)
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One shows in a similar manner that uσ′ descends to an absolute Hodge correspondence

C +(Vk)−̃→E ndC+(H 1(A)) (5.12)

over k.

5.5

Proof of Theorem B. Note that it suffices to prove each of the three statements after replacing

k by a finite extension. Thus we may assume that both the canonical divisor K and an

Albanese fiber f of X are defined over k, that axioms (F1) through (F5) hold, and that

Theorem 5.3 holds.

It follows that the representation H2(Xk̄,Q`)(1) contains a 2-dimensional trivial sub-

representation and its orthogonal complement V`. This decomposition of vector spaces over

Q` is the `-adic realization of the decomposition of motives

H 2(X)(1) = 1k ⊕ 1k ⊕ Vk (5.13)

where 1k denotes the trivial motive over k. Thus, upon taking the `-adic realization of (5.13),

one sees that the aforementioned direct sum of vector spaces over Q` is also a decomposition

of Gal(k̄/k)-modules. The truth of part (i) now follows from the semisimplicity of V`, which

in turn follows from the absolute Hodge correspondence γk (5.11) proved Theorem 5.3 and

Faltings’ proof of the semisimplicity conjecture for abelian varieties [FW].

For part (ii), one must show the elements of V` fixed by an open subgroup of Gal(k̄/k)

are algebraic. This follows from the absolute Hodge correspondence γk, Faltings’ proof of

Tate’s isogeny conjecture for abelian varieties, and (F5). See [And1, §7.2] for details.

Finally, for part (iii), we note that G is the identity component of the motivic Galois

group H of the motive H 2(X)(1). Thus it suffices to prove that the Lie group r`(Gal(k̄/k))

is an open Lie subgroup of H(Q`). By (5.13), H is the product of two copies of the trivial

group and the motivic Galois group of Vk. The arguments in [And1, §7.3,7.4] allow one to

conclude that the image of Gal(k̄/k) in GL(V`) is an open Lie subgroup of the Q`-points

of the motivic Galois group of Vk, which implies part (iii). (We remark that this is the

point in the proof where one uses the absolute Hodge correspondence (5.12) from Theorem
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5.3.)



54

Chapter 6

Applications to Picard numbers
and the period map

6.1

The starting point for this chapter is a discussion of the Mumford-Tate group of the Hodge

structure of a fiber of the variation V on SC at a very general point. This group is intimately

related to the monodromy representation of the underlying local system of V.

Proposition 6.1. If τ ∈ S(C) is very general (i.e., if τ lies outside of a certain countable

collection of proper closed subvarieties of SC), then

MT(Vτ ) = SO(Vτ , φτ ).

Proof. Note that since Vτ is of weight zero with polarization φτ , we necessarily have

MT(Vτ ) ⊆ SO(Vτ , φτ ). On the other hand, since τ is very general, one knows that the

connected component of the closure of image of the monodromy representation is con-

tained in MT(Vτ ) [PS2, Prop. 10.14]. Thus, by Theorem A, we have the opposite inclusion

SO(Vτ , φτ ) ⊆ MT(Vτ ).

Corollary 6.2. Let Aτ := KS(VZ,τ ) be the Kuga-Satake variety of VZ,τ . If τ is very general,

then

MT(Aτ ) := MT(H1(Aτ ,Q)) = GSpin(Vτ ).

Proof. Following the notation in §5.3, let WZ = VZ,τ . Then h : S → SO(WR, φR) gives the

Hodge structure on WZ and h̃ : S → GSpin(WR) gives the Hodge structure on H1(Aτ ,Z),

so we automatically have MT(Aτ ) ⊆ GSpin(W ). Furthermore, since h(S) is dense in
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SO(WR, φR), one sees that h̃(S) must have dense intersection with Spin(WR). Finally,

Gm ⊆ h̃(S) by definition, so one concludes that h̃(S) is dense in GSpin(WR).

6.2

Proof of Theorem C. As the family X → S is defined over Q̄, it suffices to show the existence

of some t ∈ S(Q̄) such that ρ(Xt) = 2.

First consider a complex admissible CC surface Xτ . Let Tτ ⊆ Vτ denote the subspace

of transcendental classes in H2(Xτ ,Q)(1) (i.e., the orthogonal complement of the algebraic

classes). Then a general result of Zarhin [Zar] concerning surfaces with pg = 1 shows that

MT(Vτ ) = SO(Tτ , φτ ) ⊆ SO(Vτ , φτ ).

Thus if τ ∈ S(C) is very general, then we must have Vτ = Tτ by Proposition 6.1, which

implies that ρ(Xτ ) = 2. This shows the existence over C.

Given that the countable collection S(Q̄) could potentially lie in the complement of

the collection of very general points in S(C) referred to in Proposition 6.1, one needs a

stronger result to show the existence over Q̄. For this we use [And2, Thm 5.2(3)], which (as

formulated in [MP]) says the following: if η ∈ S denotes the generic point, then there exists

a point t ∈ S(Q̄) such that ρ(Xη) = ρ(Xt). (Recall our convention that ρ always denotes

the geometric Picard number.)

Thus it remains to establish that ρ(Xη) = 2. Choose τ ∈ S(C) such that ρ(Xτ ) = 2.

Then using basic arguments about Néron-Severi groups (specifically, see [MP, Prop. 3.1,

3.6]), we have

2 = ρ(Xτ ) ≥ ρ(Xη ⊗ C) = ρ(Xη) ≥ 2,

so that ρ(Xη) = 2 as desired.

6.3

Fix a complex admissible CC surface Y . In fact, for convenience, we will take Y = XC

from §5.1 and will keep the notation (VZ, θ). Let D be the set of all homomorphisms

h : S→ SO(VR, θR) that make (VZ, θ) into a polarized Hodge structure of weight zero with
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Hodge numbers h−1,1 = h1,−1 = 1, h0,0 = 7. By the Kuga-Satake construction in §5.3, D is

in canonical bijection with the set D̃ of all homomorphisms h̃ : S → GSpin(VR) such that

(i) h̃(Gm) = Gm and (ii) the composition

S h̃−→ GSpin(VR) −→ SO(VR, θR)

belongs to D. Moreover, all elements of D form a single orbit under the action of conju-

gation by elements of SO(V, θ)(R), and since GSpin(V )(R) � SO(V, θ)(R) it follows that

all elements of D̃ form a single orbit under conjugation by GSpin(V )(R). In fact, the pair

(GSpin(V ), D̃) is a Shimura datum.

If we give D the complex structure coming from its status as the classifying space

for the specified type of polarized Hodge structures on (VZ, θ), then (under the identifi-

cation D ↔ D̃) this is the same as the complex structure on D̃ coming from the sta-

tus of (GSpin(V ), D̃) as a Shimura datum. We can write D = D+ ∪ D− as the dis-

joint union of two Hermitian symmetric domains. If Γ and Γ̃ are as in (5.3) and (5.4),

then the quotient V := Γ\D+ = Γ̃\D̃+ has a canonical structure of quasiprojective va-

riety [BB]. This variety V is a connected component of a 7-dimensional Shimura variety

ShK(GSpin(V ), D̃) of orthogonal type, for a compact open subgroup K of GSpin(V )(Af )

such that Γ̃ = K ∩GSpin(Q). A similar situation holds for D−.

We recall from §5.3 the connected finite étale cover v : S ′ → S such that the pullback

variation of Hodge structure V′ on S ′C has monodromy with image in Γ. We use our earlier

identification Y = XC = X ′σ′ and (V, θ) = (V′
σ′ , φ

′
σ′). These choices induce a period map

from S ′C to Γ\D; since S ′ is connected, we may assume this period map takes the form

Φ : S ′C → V.

Initially Φ is a map in the analytic category, but a theorem of Borel [Bor] shows that it is

in fact a map of algebraic varieties.

Also living over S ′C is the abelian scheme a : A → S ′C and the associated variation

R1aan
∗ Q. By construction, the monodromy of R1aan

∗ Q has image in Γ̃, which (along with

our choice of µ′ and Y →̃X ′µ′) induces a period map

Φ̃ : S ′C → V
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that is again algebraic. Also by construction, we have Φ = Φ̃.

We are interested Z := Φ(S ′C), the closure of the image of Φ. Note that Z is necessarily

connected. As a first remark, we have:

Proposition 6.3. We have 1 ≤ dimZ ≤ 5.

Proof. First we note that Z is not a single point. Indeed, there are at least two different

Hodge structures in the family πC : XC → SC, since there are admissible CC surfaces with

Picard number 9 (Theorem 2.9) and Picard number 2 (Theorem C). This gives the first

inequality, and the second follows from the fact that dimS ′ = 5.

We wish to investigate the smallest special subvariety of V that contains Z, which is the

subject of Theorem D. The special subvarieties of V, which are also called subvarieties of

Hodge type, are defined to be the irreducible components in V of Hecke-translated Shimura

subvarieties. For further properties of special subvarieties we refer to [Moo, Yaf].

Proof of Theorem D. We use the identification V = Γ̃\D̃+ and Φ = Φ̃ : S ′C → V.

To find the smallest special subvariety of V containing Z involves the use of the generic

Mumford-Tate group of R1aan
∗ Q. (See [Yaf, p.386].) This is a subgroup MT(A) of GSpin(V )

that is canonically identified via parallel translation with MT(Aτ ′) for any very general point

τ ′ ∈ S ′(C) (i.e., MT(A) is independent of the choice very general point τ ′ and the choice

of path between σ′ and τ ′). The inclusion MT(A) ↪→ GSpin(V ) induces a morphism of

Shimura data

Sh(MT(A), D̃MT)→ Sh(GSpin(V ), D̃),

where D̃MT is the orbit under conjugation by MT(A)(R) of the chosen point hσ′ : S →

GSpin(V ) in D̃. This induces

ShK∩MT(A)(Af )(MT(A), D̃MT)→ ShK(GSpin(V ), D̃),

and the image of this map is the smallest special subvariety containing Z.

By Corollary 6.2 we have MT(Aτ ′) = GSpin(V′
τ ′) if τ ′ is very general. Applying parallel

translation, this implies that MT(A) = GSpin(V ), and thus the morphism of Shimura data

above is the identity morphism. This gives the first statement of the theorem.

For the second statement, we note that dimZ ≤ 5 < 7 = dimV. Thus Z cannot possibly

equal V and so, by the first statement, is not special.
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Finally, recall the explicit pencil J1 ⊆ |D| on E
(3)
1 defined in (3.12) that was used in

the proof of Theorem 3.8. Let J∗1 denote the open subset where the fibers are smooth. By

construction of SC, one can identify J∗1 with a curve in SC, and thus by pullback obtain a

curve in S ′C. We denote by C the closure of the image of this curve in V under the period

map Φ. This subvariety C of V is the subject of Theorem E.

Proof of Theorem E. Let J ⊆ |D| be a pencil and let J∗ be its smooth locus. Recall that,

by the generalized Lefschetz theory described in §4.3 and applied in §4.4, if J is in general

position in |D| then the total space over J∗ is a family of admissible CC surfaces with large

monodromy.

Now let us show that J1 is in general position, i.e., let us show that J1 intersects R1

(defined in (3.15)) only at smooth points of its 3-dimensional component R̂1 and does so

transversally. The first point follows from deformation theory, since the singularities of all

singular fibers of J1 are ordinary double points (Proposition 3.6). The second point follows

from the fact that J1 has 42 singular fibers, which is equal to the degree of R̂1 in |D|

(Proposition 3.5, Theorem 3.8). Therefore, by using the same methods as in the proof of

Theorems C and D, we conclude that C is not contained in any proper special subvariety

of V and that J1 must contain a smooth element with Picard number 2.

Next we claim that the smooth element Z(ψ3 − ψ4) in J1 has Picard number at least

5. One can show this by looking at the Albanese fibration of this surface, which (as can

be seen by looking at the equation) is reducible over the nontrivial 2-torsion points of E.

Components of these singular fibers can be used to show the Picard number of Z(ψ3 − ψ4)

is at least 5.

From this claim we conclude two things. First, since two elements of J∗1 have different

Picard numbers, the result of Zarhin [Zar] shows the Hodge structures of the elements of

J∗1 are not all the same. Thus the subvariety C is not a point. Second, the numerical

equivalence class of C is nonzero, since C necessarily intersects any codimension one special

subvariety of V containing the image of ψ3−ψ4 ∈ J1 in a finite nonzero number of points.
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[And1] Y. André. On the Shafarevich and Tate conjectures for hyper-Kähler varieties.

Math. Ann. 305 (1996), 205–248.
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