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ABSTRACT

We investigate the features of the bootstrap mechanism in
a complex case involving many channels. The ¢ meson is gener=
ated in the oy v , 970 , and KK channels, while the K* meson is
simultaneously formed in the 4 K and n K channels. A single
self-consistent solution to the seven coupled equations which
result from the bootstrap conditions exists, and the calcula-
tion produces predictions for the P and K* masses and for the
five coupling constants'rm (orY? o )’T?KK ’A“wKK ’TV\KK"‘ ’
IL:KK* - Typical results are M, = 765 Mev, M., = 900 Mev,
while the prediction for the only experimentally known coupling
constant (¥ or ¥ ) matches the experimental value.

enn Prw

The other coupling constants approximate SU, symmetry with the

exception of "(:lKK, and possiblyTwKK . Thz effecta of the g
meson, including g = mixing, the 4 ¢ channel, and g ex-
change forces, are discussed and estimated. The basic calcu-
lational tool is the matrix ND-1 technique with the first det-
erminental approximétion-—the influence of this approximation is
evaluated through a comparison of the results using the approx-
imation with those from solving the exact equations for a
suitable test problem. The results apparantly justify the use
of the approximation. The good results obtained from the
calculation demonstrate that the bootstrap idea continues to
work even for rather complicated cases, and continues to give

sensible answers.
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I. INTRODUCTION

The following material describes a test of the bootstrap
hypothesis (1,2,Appendix III)=—the idea that all particles are
merely bound or resonating states of each other—in a complex
case involving many channels. The salient features of the results
of most bootstrap calculations are the predictions of masses to
a fair degree of accuracy and predictions of widtha and/or coup-

' ling constants typically two to five times those experimentally
observeds In view of the many drastic approximations made it is
rewarding that any predictions may be made at all. One of the
more serious deficiencies has been the rather cavalier treatment
of inelastic processes. It is expected that a more realistic
treatment of inelastic effects would reduce the calculated widths
toward the observed figures, and a first crude inclusion of in-
elasticity by Balazs (3) in a bootstrap calculation has demon-
strated this. The technique involved replacing the partial wave

elastic unitarity relation

mt = |t] 2 (1.1)
for a suitably defined partial wave amplitude t, by the exact
Imt = |t] 2R (1.2)

where R is the ratio of the total cross section to the elastic
cross section. Unfortunately, R, which measures the deviation
from complete elasticity, is unknown except for the elastic
region where R = 1. Balazs took R = 1 for this low energy region,
R = 2 for all higher energies. The result is to approximately
halve the computed width.

More realistically such problems should be treated as involv-
ing many competing channels; however the computational labor
required increases rapidly as channels proliferate. Also very
serious for the bootstrapper is the profusion of undeterminable
paramaters such as masses and coupling constants introduced by
the additional chennels. ©One must include enough of the neighbor-
ing and low-lying channels to¢ give a fair description of the
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physics involved while avoiding these practical mathematical
difficulties. An example of a problem amenable to such compro-
mises is the popular Pbootstrap (4,5)« The channels with the
lowest thresholds are 2 4 (276 Mev), 4 4 (552 Mev), 6 4 (828 Mev),
e (923 Mev)(6), KK (997 Mev), 8 4 (1104 Mev),rLQ (1310 Mev)(?),
K*K (1378 Mev)(8), 10 4 (1380 Mev),... The channels involving
several pairs of pions may be expected to contribute little due
to the much smaller phase space available. Thus it is assumed
that the major effect of the 4 4y state arises from situations in
which three of the pions are resonating in the w state. After
the removal of the n 4y channels, n > 4, the remaining channels
break up into several distinct groups. First is the 4y ¢4 channel,
widely separated from the next two, qr¢) and KK. Then there is a
second gap of the order of 300 Mev to the next set,vtp ,K*f(',...

A reasonable sequence of approximations would first involve a
single channel qvqy = ¢ calculation. However the 4y and KK
thresholds are quite close to the mass of the particle we're
trying to predict, and these channels are doubtlessly important.
All things being equal, for consistency both channels should be
included. Then if the algebra involved and computing budgets
permit, the next set.of channels may be added.

To the present time the three channel e bootstrap has not
been attempted. Apart from algebraic difficulties the reason is
that the problem is not closed, in the sense that all or even
most of the paramaters involved are not determined by the self-
consistency bootstrap equations. Consider first the e bootstraps
which are closed, or are nearly so. The single channel problem

(9) involves m Mg , and Ywo+(10). Since M ¢ and “[P". appear

n? pw

as outputs the problem is completely closed (m_“, is not determina
ed, but is required only to fix the energy scale). If the Trw
channel is now included (9) we introduce the quantities M, and
T‘"“ « But r?“w appears as output and M,, may be taken from
experiment. The inclusion of the second channel (g4 ) to the

original 4y qv channel as much as halves the computed @ width and
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greatly improves the predicted p mass. A two channel 3 bootstrap
including 4y ¢ and KK is somewhat more unsavory. I1f done complete-
ly it requires as inputs three masses and three coupling constants
in addition to the paramaters of the single channel case. For
this it gets one additional equation. A truncated version of the
problem has been treated (11) ignoring the KK = KK forces.
Actually, of course, any reason for excluding either of the
W or KK channels while including the other is fragile on phys-
ical grounds, although possibly very compelling for practical
reasons. The thresholds are very close and the various couplings,
where known, are not drastically different. Isotopic spin cross-
ing constants favor 4y¢) over KK to some extent, but little choice
may be made between them otherwise (12). The physically reasone
able jump from the single channel calcﬁlation is to a three
channel problem. However if this next step is attempted the
happy state of affairs in which the problem is closed abruptly
dissolves. In addition to the paramaters of the single channel
problem we now require as inputs m, , M, , M ’Tprw ’Teku R
Tomu ,Y“.K K’I,K;KK'I, while we derive just two additional equa~
tions. The problem is no longer closed. If we try to cure this
by including the next higher group of communicating channels,\-\'g,
K*K, etc., the problem is only aggravated. However there is
another means to close the bootstrap which is physically reason-
able—we simultaneously bootstrap the K*(885 Mev). For this
meson the communicating channels with lowest thresholds are w K
(631 Mev),n K (1043 Mev), o K* (1023 Mev), pK (1253 Nev), @ K™
(1645 Mev), @ K* (1660 Mev),...{again we have ignored channels
involving more than two particles). Consider bootstrapping the
K* from the 4y K channel alone. This calculation involves my,
Mg o MP ’ MK*’T("”' ’T?“" "(‘WKK*' These quantities are all
required in the three channel P problem as well, while we obtain
two further equations. Therefore a three channel e bootstrap
and a single channel K* bootstrap performed simultaneously would

very nearly form a closed problem. Unfortunately, however, it
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doesn't make much physical sense to bootstirap K* solely from the
1 K channel-—indeed it is only marginally possible. The exchange
of (4 in the t channel does produce an attractive force in the

I =%, J =1 channel, but the exchange of K* itself in the u
channel is strongly repulsive. For large enough ‘6'”,,“0'?..“ a
resonant state is possible, but it is quite broad. The other
channels may confidently be expecterd to have a large effect, and
we therefore agree to include more of them. The next highest
channel is 4 K*. This shares with the pl( channel a disagree-
able pathology-—they are not orthogonal channels, but rather
different forms of 4y qv K. The unsnarling of this difficulty has
yet to be demonstrated. We turn therefore to the n K channel.
The inclusion of this in the K* bootstrap supplies the forces to
~make a reasonable two channel bootstrap, aa Capps (13) has demon-

strated. This now demands my and ank*, but 4 appears as

1413 §

output and m, may be taken from experiment.

All of the preceeding discussion has ignored the existence
of the ¢§ meson (6) and the g-w mixing phenomonon (14,15). We
discuss the problem of including the 4y g channel in Appendix I
and show that the effects are likely to be small, even apart
from the much higher threshold of the 44 § channel. A somewhat
different treatment of g-w mixing is discussed in chapter VI.

Consider then the following "double bootstrap". The p is
found as the I = 1, JPG = 1'+, strangeness O resonance in the 4 ¢y,
W » and KK channels. K* is the I = %, J = 1, strangeness 1
resonance in the 4 K and n K channels. As inputs to the calcu=
lation we require the masses

Mys My Moy Mgy Myyy Myew
and the coupling constants
Tenx » T?""' » Wy i® 9*‘1\(%‘:?()”& yBokk s Swrw's
From the self-consistency equations we shall derive seven rela-
tions among these paramaters. Therefore six of these thirteen
numbers must be fed in at the beginning. Four of these we take

to be m 4 m, 4 My, and M, . Of the seven coupling constants
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just two, ‘((,"“_ and “( ¢t are known with any precision; Tm,,, has
been estimated by various means (9,16). The most convenient
choice for calculation is (cf. chapter V) to take'feru, and Y;Kk*
from experiment and to calculate the remainder. However in the
calculation'T}uh; is varied until the experimental value of T}w,.
is predicted. This is then equivalent to using ¥Veww and ¥y
as the input paramaters. Therefore the results of the calcula-
tion (assuming that a self-consistent solution is found) will be
the prediction of the masses of e and K*, and the coupling
constants

K?*“ (or x?"“ ) ¥'kk*’ ek ? Ywxk » Y *

It has been implicitly assumed in the foregoing, and here
we make it explicit, that this calculation is a bootstrap only
in the original restricted sense of producing predictions of
particle masses and coupling constants. We do not attempt to
bootstrap internal symmetries, the existence of multiplets, the

number of dimensions, etc. We explicitly assume SU, symmetry

(isospin) and SU, symmetry is mentioned only for puiposes of
examining the results for the various coupling constants, most
of which are experimentally undetermined.

The basic calculational tool will be the matrix xp~} tech-
nique (17). However, if done properly, even after all of the
approximations made up 'till now, the procedure results in some
staggering number of coupled integral equations. We shall there-
fore approximate still further and use the first determinental
approximation (18). This makes it possible to write in the
dependence of various quantities on the coupling constants
explicitly and then eliminate some of these by hand until a
reasonable number of simultaneous equations remain which may then
be amenable to numerical solution. This method is possible at
all only due to the happy chance that, experimentally, the loca-
tions of the(: and K* poles in the (energy)2 plane do not lie on
top of any cuts arising from the forcing terms. If this were

not the case this approximation technique would predioct complex
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coupling constants. Of course nothing guarantees that the
results of the calculation will place the masses in these safe
regions—-the demand that they do so imposes some restrictions
on the output masses acceptable. It is found (chapter VI) that
the predicted p mass must fall within the rather narrow window
698 Mev £ MF £ 772 Mev
and likewise
740 Mev £ My o
Otherwise we get an inconsistency.
In Appendix II we investigate the effects of employing
the first determinental approximation by comparing the results
obtained using the approximation with those obtained from solving
the complete integral equations for a suitable test problem. The
results apparantly justify the use of the approximation.
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II. KINEMATICS and UNITARITY

Consider reactions involving four arbitrary particles A,B,
C,D and their antiparticles. The particle A will be distinguish-
ed by its four-momentum Pyy mass m,, spin 51 helicity )\1,
intrinsic parity'ql, isotopic spin Il, and z-projection of iso-
spin 11; similarly for B,C, and D, and the antiparticles A,B,C,
and D. Figure 1 describes such reactions; note that for maximum
symmetry all barticles are formally considered incoming, although
in any given reaction two of the four-momenta will be time-like
and two will be space~like. We define the product of four-vec-
tors a+b as _

ash = ab - &b (2.1)

and further define the usual Mandlestam variables

8 = (p1 + pz)? = (p3 + p4)2
t = (p1 + p3)2 = (p2 + p4)2 (2.2)
u=(p + 1’4)2 = (py + Ps)z

A crucial part of the ensuing calculation is the subastitu-
tion law—the same analytic function of the invariants s,t and/
or u describes the six reactions in which alternately s,t, or u
is the square of the total center of mass energy; that ia, the

8ix reactions

ii) €(pg) + D(p,) - Al-p,) + B(-p,)
111) A(p)) + Clpy) = Bl-py) + Dl-p,) (4 channel)
iv) B(pz) + D(p4)-* A(-pl) + C(-ps)

v) A(pl) + D(p4) *'E(-p3) + E(-Pz)

- - (u channel)
vi) C(p3) + B(pz)-* A(-pl) + D(-p4)

Consider the first of these. To describe this reaction it
is convenient to work in the center of mass system of A and B.
We may define the co-ordinate axes such that the outgoing c
travels along the positive z direction, while A and B lie in
the x-z plane. If QO is the angle of scattering between the

direction of the incident A and the outgoing E, and x = cos O,
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Fig. |

1. The standard two particle reaction
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then in this frame (19)

= (E;,p(1 - xz)%, 0,xp)

3
ot
¥

(Ez,-p(l - xz)%,o,-xp)

(2.3)

o
(%)
]

(~E,0,0,-9)

= (-E4,0,O,q)

ke
N
1

Here all energies Ei are positive, and p and q are the magnitudes
of the initial and final three-momenta, respectively. We have

. the relations 5 o
5 + m -m
El , = (p2 N “‘f 2)%= 1.2% 2,1
’ ’ (48)
2 % s*"‘it}““ia e
E3 4= (q° + m3 4) = 2 s A
] Y (45)
2 2 2
pzcs-(ml-mz) ]Es—(m1+m2) ]/43
(2.5)
2 2 2
q =[s-(m3-m4)][:s-(m3+m4) Vs
2 2
8 = (E1 + E2) = (E3 + E4)
t = (E1 - E3)2 - pz - q2 + 2pgx (2.6)
u = (El-E4)2-p2-q2-2qu
2 2 2 2
8+t +u= m o+ omy b Mg+ om, (2.7)

The analytic function describing these six reactions is the
expectation value of an operator 5 between the various initial
and final states. 5 is defined below in terms of the Heisenberg
é operator which transforms the initial state into the final
state. Before considering the definition of ;-we make a short
digression concerning the mathematical expression for the term
"a sum over intermediate states'" which is needed below.

Consider two states consisting of r and s particles respec-
tively:

l a) = ]pl,zlgpz,zzg...;pr,zr)



’b) = ‘ql,wl;qz,wzg...;qa,ws> (2.8)

where Py and q, are four-momenta and z, and w, include all other

i i
quantum numbers of the particles (charge, spin, isospin, etc.).

We include the masses in z, and w,. We define the scalar product

<a! b> as ! '

{a|ry =8, L{l 2 m° 6(3)(31—?{1) 2B, 6(z,,w,) (2.9)

where ars is the Kronecker delta and a(zi,wi) = 0 unless all
quantum numbers of the two particles being compared are identical,

in which case 8(z;,w.) = 1. Here E, is the energy of the i th

particle of either [ad or |b)> . This definition of {a|b)
is relativistically invariant. :

We now introduce the operator
6= Y led(el
¢

and insist that

alvd - §<a Ledle|v) (2.10)

if |e) = [k sv 3Ky, Va3eeesk, V. then the requirement that O
be the identity operator becomes

r
Cal|v)= oraﬂ(z m° a‘“’(ﬁi-a’i)in 8(z,w,)

r

B 3 ,(3) > =
| Sre ];[;(2 m” 877 (py-k; )28, 8(zy,v4) _

N
o~

B 3 ,(3),> -
x | 8 Zj;(z I (I:c:j-q‘,‘):’..E:i a(vj-,wj)

3 3) > -
LI ﬁ& -n-). 8( )(Pi-qi)in 6(21"1)

t
x E L ;j]=1[ (24)" 0 (p‘_i--k:‘)zrz‘.:j G(zj,vj) (2.11)
c
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Therefore t
3, (3) = =\ _ |
§°rt E(z LI kJ.)ZEj O(ZJ,wd) =1 (2412)
: c
so that -
0 t MR
_ T[ e I | (2.13)
i (2q)° 22 e
c to1 g=1 (v G iV,
511
= 8(k -y )O(E -m,) (2.14)
4 2m i }
t=1l j=1 L_U (z")
where ® is the step function
0 if x<0 '
o(x) = 1 if x>0 (2.18)

This defines the operator 2 3 it is manifestly covariant.
We shall use this result dxrectly.
We now define the operator T in terms of S by

~ 4 (4) '3
{a|s|8) =5, =<alv) - iem® 6 (p -p)alT{B) (2026)
Pa and Pb represent the total four-momenta of the states ‘a)
: (4)
and [b) . Since 5,,,(a|b),and 8"° (P ~P,) are relativis-
tically invariant, so is<{a | T| b) = Tope Now 8 is a unitary
operator, s*s = 1 ( we denote the adjoint operator by +). In

terms of T this reads

1 1 4 (4) +
B, - o) = -3 @0t ) e W po T 1, 2an)

c

This is the condition forced upon % by the unitarity of g. For
we understand the operator of equation (2.14).

It is henceforth assumed that equations (2.17) and (2.14),

together with the substitution law and the requirements of rel-

c

ativistic invariance suffice to determine Tab completely. 1In
practice the sum in (2.14) is truncated at some (small) value of

t (i.e. only few-particle intermediate states are included) and
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only the less massive particles are included in E:v.' This
reduces the problem to manageable levels and approximate solu=-
tions may be found. The details of such a calculation are the
subjects of the following chapters.

In the ensuing computation we shall work in the helicity
representation of Jacob and Wick (20) in which states are char-
acterized by values of the total helicity. The pértial wave

expansion takes the form (20)

< E("P;p ‘)s)yﬁ("l’,p" )-4)‘ '5‘ A(PI) }1)95(1’2: >~2)>

= ) (2311 Topg-X ) 5-pg= 2T (D1 0 ) BRL X D
J

J
Ap

where )\ =\1-\2, M= )'4-).3, and @, as defined earlier, is the

scattering angle between A and C. The inversion of (2.18) reads

1>

S Ty - (- dadl. N = \ N,
CClapg=n3) 3 D(=p =X I T 1A(Py, M )9 B(Pgy A 5) 2

[

ad 3‘ < Tepgr=N 30,52 n-2 O\ T\ Ao 0 ) 1Bpy N
-l
x dip (0)sin © 40 (2.10)

The diyi(e) are either tabulated in reference (20) or may be
computed with the aid of the formulae found there.

Before concluding this chapter it is convenient to demon-
strate the following amusing and useful fact: the quantity
pq(E1 + Ez)(l - xz)% is invariant under any interchange of
particles. To show this we use equation (2.6) to solve for 4pgx,
eliminating the various E's with the aid of (2.4). We find
(m2 - mg)(mg - mz)

4pgx = t - u + 1 4 (2.20)

B

Equation (2.5) is next used to find 16p2q2 and the square of

(2.20) is subtracted from the resulting expression. Then
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2

2,2
1 )

16p2q2 - 16p2q2x2 = 8% - 2s(m "

¢ me o+ ome s n2)+ (m> = m
2 3 g/t \Mg =

+ (mf - m§)2+ 4(mf + mg)(mi + m:) - (t = u)2
- %[ (m§ % mgl(mg - mi) - (m? - mg)(m§+m§)]
- g££—§~gl(mf - mg)(mg - mi) | (2.21)

Part of this may be simplified as follows:

2 2,2 2 2,2

- 2 2 2 2 2
Q=8 - Za(m1 * Mg + My 4 m4)+ (m3 - m4) + (m1 - m2)
2 2 2 2 2
+ 4(m1 + mz)(m3 + m4) - (t = u)
= - 82 - t2 - u2 - 25t = 28u ~ 2tu + 4tu + (mf - mg)z
2 2.2 2 2 2 2
+ (m3 - m4) + 4(m1 + mz)(m3 + m4) (2.22)

where we have used (2.7). The first six terms are just

~{s + ¢t + u)zg again using (2.7) and cancelling terms, we have

2 2 22 22 2 2 2 2 2 2 ;
Q = 4tu + 2(mlm3 +omimy 4+ moma + m2m4) - 4(m1m2 + m3m4) (2.23)

We put this back into (2.21), factor out a common 2/s, rearrange
terms, and at length discover

22 2 2 222 222 222 222
16p°q (1 = x7) = ;[Zstu + 4(m1m2m3 MMM, + moMam, + Wym.m )

2 2 22 2 2 2
- 2s(mlm2 + m3m4) - 2t(mlm3

2 2 2.2
- 2u(m1m4 + mzms)] v (2.24)

Since (E1 +_E2)2 = 8, we finally obtain the result:

1 2 2 2

pq(El + Ez)(l» - ::2)3'é = -[ stu + 2(m m_.m. + m 2

2 2+ 22m2
2 17203 1Moy + MMM,
2 2 2 2 2
m

+ m.m mz) « s(m +m m2)
_ 2 3 4 12 34

22 2 2 22 2 2 1%
- t(mlm3 + m2m4) - u(mlm4 + mzms)]

vees(2.25)
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which, taking into account (2.2), is manifestly covariant under
any exchange of particles. This result will be used below in
the derivation of the Born forces {(chapter IV).
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III. ISOTOPIC SPIN and CROSSING MATRICES

In this chapter the complications due to isotopic spin are
discussed; The result is the evaluation of the isospin "crossing
matrices" relating amplitudes of definite isotopic spin in the
direct channel to corrésponding amplitudes in the t and u chan~
nels. At the heart of the calculation is the substitution law;
Consider the six reactions indicated by figure 1. If we assign
to particles A,B,C,D (as in chapter II all particles are formally
taken as incoming) the values 11,12,13,14 for the isotopic spin,
and 11,12,13,14
the same function T is the amplitude describing the reactions

for the z~projection of the isotopic spin, then

i) A(I5,15) + B(I,,i,) - 6(13,-13) + 5(14,-14) (s channel)
ii) A(1,,i,) + C(Igyig) E(Iz,-iz) + 5(14,-14) (t channel)

iid) A(T,,i,) + D(I,,1,) = C(Ig,-i,) + B(I,,-i,) (u channel)
That is=s, -

T(ABCD) = C(Tgymiy),D(T -1 )] T|A(T,1,),B(T,,i,))

=B1y,10),0(1 y-i )| TlA(T 10,8 15-10 Y G

= {C(T-1,),B(T,,1) | T]aCx,,1,),5(1,,-1,) )
Here the long bar over a particle denotes the charge conjugated
state, For example, if the particle. state is related to the
isospin state through a phase a (e.g. "ﬂ'+>= a, \-W;I=1,Iz=1> )
Jagz,i)
| &(1,i")

ag | a1,15 (3.2)
a | A31:1'>

then the charge conjugated state is

Ja(x,i)

¢ JA,1) = a, ClAT, i) = a, 6, | KiT,-1)

aa_, 6, K(1,-1)> (3.3)

k]

where C is the charge conjugation operator and ﬂA is the intrin-

sic charge conjugation quantum number of the particle A (gy = 1,



$e = -1, ete.) Thus C\K)= k. €| K3 I=%) = k, g |KiI,=-%)
= k+k_ ‘K lK1> =lK+>. These phases are important and must be
carried alonge.

We now introduce into (3.1) eigenstates of I and I, ,|I,I;>,
and express T(ABCD) in terms of this complete set.

{Bl1,,-1,),501,,-1 ] Tlac,1),B01,,1,0)

= E < C(Is,-is),D(I4,-i4) | 1,12)(1,12\T(1',1;>

I,I,,I',I} _
x {1',1} [A(T,4,),B(I,,i,)) (3.4)
But T is diagonal in I and independent of Iz:

<1,Iz|5[i-,1;> 6.1, GIzI:z {1,12\'}(1,12>

= §

8 -T (3.5)
I1! Izli I
Moreover TI of course depends on what particles composed the
states of definite I and Iz; we denote this information with the
use of a superscript on T indicating the channel, and exhibit

the individual isospins of the particles explicitly, e.g.

(s) ]
Ty (13,14,11,12).

Note. that the order of the I's in the argument of TI is impor-
tant. Then

(E(I3,-i3),5(14,-i4)l'ﬂA(Il,il),B(Iz,iz)> |

(s) (s) .
= 2 Ty (1,1,31,,1,) P; (I5,1,31,,1,) (3.6)
i

where
PP (1, 1,51,,1,) = ClIg-1g),D(1 =1 )| PLlAT;,1),B(1,,1,)

cona(3e7)
is the matrix element in the s channel of the isotopic spin

projection operator
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P = E \I,Iz><1,lzl | (3.8)

I
z

The same expansion is carried out in the t and u channels with
the result

T(ABCD) = §'T§S)(I3’I4;II’12) Pis)(13:14311,12)
1
_ (t) (t)
- E 0 (1,,1,51,,1) P @
I
- (u) . (w) )
= E T (15, 1,51,,1,) PP (I4,1051,,1,)

I1.) (3.9)

These last equations may be inverted to give

(s) ) - (t)
Tp  (TgIg3TpnIn) = ) Bppa (T XyiTy,Tp) Try (T, 1,51,15)
| yA

= }EII'(IB’I 3 1 ) T(u)(13,12311,14)
I :
0001(3010)

Equation (3.10) then gives the contribution from the exchange
of particles in definite isotopic spin states in the t and u
channels to the corrésponding s channel amplitudes.

We illustrate this process with an example. Consider the
reaction in which two iso-vector particles produce a pair of
isospinors, €.g. q7v v ~* KK K L e N'ﬁ', etc.

In the s channel

A(1,i) + B(1,i,) = Chy=ig) + D(%y=1,). (I=0,1)

In the t channel

A(1,1)) + COhyidg) - B(1,-1,) + D(¥#,=i,). (1-2,2) (3.11)
In the u channel | |
A(1,1,) + D(%yi,) = CO=ig) + Bl1,-1,). (1=3,3

The relations between the charge states of the various particles

and the corresponding isospin states are taken as:

1,0 =a 4> =1 |B")



11,0) = a_|4°) = u_|5%)
|1,-0)= a_|a" )= b | B7) (3.12)
| %% ) = c+]C+) c,|8=a,|p") = AP

|

|%,-%)= e_|c7) = 5_|T)= d_ln') aln)

We take ali phases real. In the last two equations of (3.12)
the + and - represent only the Iz value of the particle and not
necessarily the charge; e.g. if C is a kaon, then

+ + - o -t =0 ! - (3.13)

le*y = &), {c™) = [x°),|T") = |E®), 1eD)= {K7) .

The reaction proceeds through definite isotopic spin chan-
nels, and the initial and final states are formed with the usual
Clebsch-Gordon coupling formulae (we use the fact that B = B,

since we shall apply the resulits to mesons only).

.g., -32->= ac, IA+C+> - b+E+’B+I_)' “): b+Z+iE:' +B+> = a+d+]A*n+>

53

ac,(2/3)2]A%") + ae_(1/3)F[a%cT)

boﬁ+(2/3)%jnﬁﬁ' *‘) + b+5_(1/3)%iB+3 DR

i

1

boE+(2/3)%IE 8% b+:_(1/3)%](—: -B+>

a°d+(2/3)%|A°D+> +ad_ (1/3)%]A+D->

' (3414)
13,-3) = age_2/3)"|a%7) a_c_(1/3)%]a7c*)
= bo'&'_(z/:s)%\fﬁ ')+ b_3+(1/3)%lB'3 ")
= b.o_(2/3)%[T "%+ b 3, (1/5)%[T *87)
s aod_(2/3)%lA°ﬁ-> + a_d+(1/3)%‘A-D )
1-2.,_%) =a_c_|ACY=b d |8 ) = b |TB) = aa|aD7)

L 3) = meae RRINC) + e ta/m¥late)

N

|

= -b0?1'+(1/3)"“‘}3‘?ﬁ *)+ b*ﬁ_(z/s)%)n""ﬁ ‘>
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L d) v /) - 7 )
= -a°d+(l/3)%lA°D+>+ a+d_(2/3)%1A+D->
3om 3)= age (/3)P[a%) - a_e, (2/3)¥]a7c?) (3.15)

bo'&'-(l/S)%lBoﬁ-> - b_3+(2/3)%lB-'l_)'+>

-hOE_ (1 /3)%‘6.B°>+ b_'é';( 2/3 )%l 'c‘*B')

[}

aod_(l/S)%‘AoD-) - a-d+(2/3)%lA-D+>

a,b_(1/2)%]a"8% - a_b_(1/2)%|a78*) = €3, |T'D)

|2:1)
|1,0)

a+b_(1/2)%‘A+B-) - a_b+(1/2)"élA-B> (3.16)

¢, 3 (/2)%e57) + 54, (1/2)%c D)

|1,-1) = & v_(1/2)%|a%) - a_b (1/2)%]a78°) = T3 |TT)

|0,0)

a,b_(1/9%a*87) + a_b, (1/)%a8%) - a b _(1/3)%|4%9)

c, 3 a/2*en) - 4, /2% (3.17)
The next step is to compute the matrix elements of the projec-

tion operators between the various physical incoming and out-

going states.

#

PLY 00 11,1) = €00k -15),000-1) [P la(1,1),8(1,1,))

(1/6)%[ €,d_ab_(1,-1,-%,%) + cdab
(-1,1,-%,%) - Z+3.a°b°(0,0,-‘/ﬁ,’,é) -cdab_
(1,-1,%,«) = E_E+a_b+(-1,1,%,.%)

+ € d.a b (0,0,%, -}é)] (3.18)
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where (w,x,y,z) denotes.the following product of Kronecker
deltas: 61 - 61 < Bi ¥ 81 . ¢ In a similar fashion we find
1 2 3 4. .
(8) 4, - - -
P{®) (94,%11,1) =( Tty -1,),50%,-1,)] P, {4 (1,4,),B(1,1,))
= (1/2)%E+3+a+bo(1,0,-%,.%) E*Ejraob_"(o 1 ) =Yo, =10)
+ ;-E-aob-(o’-l’%,%) had E_E-a_bo(-l,o,%,%)]
+ (1/2)] €, d_a b_(1,-1,-%,%)-c d_a_b (-1,1,-%,%)

+ 'E_E+a+b_(1,-1,%,-%)-E_E+a_b+(-1,1,%,-%)]
é};u e 1,00 =B, -1,), 50k -1)\P5 5 | 4(1,1),006,10)
= “B“l{ b+-d-+a+c+(1,‘lg%,-%) + b..a_a_c_(-l,l,-‘/ﬁ,%)}
+}-¢¢ 2b d ac (00%-%)+2y"bdac (1,0,=1,=%) |
3"B o+ o0+ 1737 0+ + = 272
+2% T a_c, (0,-1,%,k)+b T a c_(1,-1,%%)
+2poﬁ'~aoc_(o,o,.%,%) + 2"%05_a_c+(-1,o,3é,%)
+2y‘,b_a+aoc-(0,1,-%,-%)+b_a+a_c+(-1,1,%,_-%)1
{2(1,%;1,%) = (B(1,-1,),D(}%,~1 )\91/2 {A(1,1,),C0%, 4, )y
1 - yﬁb -
3'3‘#Bd bod+a°c+(0,0,%,-%)-2 °d+a+c‘(l’o’-%,-%)
-Z%b*_a-aoc.*(0,-1,%’%)+2b+-d-_a+c-(1"'1,"%,%)
A+b°a_aoc_(0,0,-%,%)-2%1)03_&}_'_(-1,O,%,%)

—2%b—z+ﬂoc-(o’ l’ -%’ -%) +2b_:i-+a_c+ (=1 Y 1 ,%’ "%)]



=2]le

;(.,%(%,1;1,%)- <C(’/—’,-i ),B(1,-1 )\Pz/z\ A(1,1,),D0%,1 ))

= B8, a+b+3+d+(1,-1,-%,%)+a_d_b_2_(-1,1,%,-%)]
+ %"B"c 2aob03+ d, (0,0, -%,%)+2%a+boz+d_( 1,0,-%,-1%)
+2%a°b+-€-d+ (0, "1 ’%’%) +a+b+z-d- (1 [ Sad 1 ’%' -%)

+2&°bog_d_(0,0,%, -%)+2%’a_bo€_d+ (~1,0,%,%)

+2%aob_z+ d_ (0’ 1 9 "%’ -%)‘Fa-b_-é_’d*( -]l ’ 1, -%,%)]

P{Y) (151, = <C(%,-i 115(1,-1,)| B /o] 401,008,107

e g [a b_5,d, (0,0,-%,%)+2%a b T a_(1,0,-t,-%)
+2% b, 4, (0,=1,%,%)-2a b T_d_(1,-1,%,-%)

-aoboé'_d_ {0,0,%, -}é)+2%a_b°'5_d+ (=1,0,%,%)

+2%a becd (041, =¥, «%)=2a b ¢ d (-1,1,-%,%)]
0 = + = - -+
The final step consists of insisting that the equations

(s),(s) _ (t) (t) (u) (u)
ZTI PI } I PI' = I" I“ (3.19)

I| I!l
hold for every possible combination of 11,12,13,14. We have
together with the restraint

i + 13 + 14 = 0 (3.20)

1t i
There are ten combinations satisfying these requirements:
(0,1, -%,=%), (0,0,%,=1%), (0,0,-15,%), (0,~1,%,1), (1,=-1,k%, %),
(1,=1,=%,%), (1,0,=¥,<%), (=1,1,%,-%), (~1,1,-1%,%}, (=1,0,%,%) .
The ten equations which result from substituting these
choices for i;,i5,1i5,1, into (3.19) are found to be consistent

if and only if the following‘relations.between-tha various
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particle phases are satisfied:

b+b_ = =1 (and aa_ = -1)% cc, ==cc_j d_d+ = -d+d_ (3.21)

With these conditions the ten equations reduce to just four
different cquations-

1,% ,.(s) (t) (t) (u) ( )
(37 77 = e e Bpde T(T:s/z Ty2) = 4 8,68, (T:s?z 7172

1,% (8) (t)_1 .(t) () _Lp(u)y
(& Tos = -c_c Apf (drs/z 3 Ty2) =4 IR (3 3?2 1;2

(3.22)

(t)--ddﬁp'( (\1)2 (U))

1.% .(s) 1 ,(s) -
- Tos 2 Tla = c_c f,9; T3/2 3 T3/273 T1/2

G2, Lale) 5y ,,C(s r{t).2 ij; a3 oy o

Further, we have

(3.22)e + (3.22)d = 2 (3.22)a

(3.22)d = (3.22)c = 2 (3.22)b
and just two of the equations are independent, as required;
From (3.22)a and (3.22)b we obtain

(s)_ (t) (t) (w) | ()
(s) %2 o(t)  1.(¢) = %2 p(u) pl¥)
T,%'= ~c_c g8 6 (3 3/2 1T1/2) = d_d fpd, 67(3 Ty /)y = 3 Ty/2)

For definiteness we choose the phases as follows:

-a, =a =a =1=-b =D =b_ (g |7 D=-]1, 1))

c=c+=c=1=d =d="a‘+=a (e'g“K>\%’%)

‘K )- -|¥%,%) =it is assumed in such channels as KK that C

-C

]

is the outgoing particle (K) and D is the outgoing antiparticle
(X))o Then -c ¢ _=dd = -1 and
&  2(0)%

- S—

grp ¥, )= gd. [ 75 T 3

2
3

1
(21N



e 2(6)"
- 3 3
-3 °3
In & similiar fashion we learn
i 3 S
3 3
- 1 1 5
8rpi{1,13L,1) = dpée | 3 5 5
1 1 1
3 2 6
1 5
3 13
z - -1 L 3
111
3 2 6

Bryo (l,%;l,%) = ’{B#C

— s,
-
¥
H
| S =

,_...._\
[ §
ajo ape R

SIIo(%a%i%’%) = "B"C

al~  aps

E]‘_Ii(%!%;%j%) = “B"D

T ——
[STEE I STESTRN VT Lo vl
]

i~ Dje PP Pla

PR
]

1
(1,031,0) == 3,815 8144 Bpfc  Eppn

3

(1,031,0)

611 aI'()“B"‘D’

8

By

it

8110 (10051,1) = = 85y 87,3 Spfe  Ery1(1,031,1) = By 8;.,48,
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2% 4 %

Bry0(0)%30,%) = "2}% O S1v gl Eppr (09%30.%) = 0y, 87y £id
g (01,1 = (3 8, 8., bosc

By (0,181,%) = < 8., 810, Apdp

In the matrices the smaller isospin values correspond to
the smaller row and column numbers. These results are used in
chapter V in which the forces due to exchange of particlea are

calculated in the Born approximations



IV. BORN TERMS

The dispersion relafion approach to strong interaction
physics utilizes Cauchy's Theorem to recover the invariant
amplitude describing some process from a knowledge of that
amplitude's singularities. IHere the latter information is
assumed to be given completely by the unitarity condition (2.17)
and the substitution law. 1In this chapter the approximate dis-
continuities of T obtained by terminating the unitarity sum at
t = 1 (the Born terms) are calculated.

In the present bootstrap only the pseudoscalar mesons (PS)
and the vector mesons (V) are assumed to exist, we consider only
states involving at most two particles, and moreover we totally
ignore couplings involving three V's. Then the possible types
of states we need consider are PS + PS and PS + ¥V, and there are
just three types of reactions: PS + PS -+ PS + PS, PS + V - PS +
PS, PS + V- PS + V. The Born terms for each of these processes
are calculated below for arbitrary PS and V and the results
later specialized to the particular cases of interest. In all
of the following isospin is ignored, since such complications .
were treated in chapter III, and the problems of symmetrization

are likewise deferred.

A. PS + PS -» PS + PS

-=the 8 channelew

Consider the reactions shown in figure 2. Here A,B,6,5
are PS and V,V',V" are V's of momentum k, helicity )b, and masses
My s My s Myn - For the s-channel reaction of figure 2 equations
(2.14) and (2.17) give '

pase € C(-py),D(-p,)| 7(a(p,),B(p, = = ¢ jd4k 8(x%- 20k -M,)

x Z(‘é(-ps),ﬁ(-p4)\'i*]v(k,}.,))(v(k,}.)\’E\A(pl),s(p))

x 6(4)(p1 + Dy = k) (4.1)
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where, following Olive (21) we have replaced the left side of
(2.17) by the discontinuity of T in the s variable;

Tab(s + ig ) = Tab(s - i€ )
2i

Disc Tabfa) =

T (8+4i€) =T (s + i€ )
_ _ab ab
= 33 (4.2)

In (4.1) it is assumed that the sum over all guantum numbers,
z Yi, has been carried out with the exception of the helicity
sum.

The vertex functions, e.g. <V(k’)*)tﬂA(P1)aB(P2)> , are
strongly limited by the constraints of relativistic invariance.
Since V is a vector particle it is described by a polarization
four-vector € (Vi;k, M), and we have

v, d | Tlate)) B> = €4 (i, M) By, (403)

Here HVAB

momenta pl,pz,k, only two are independent since P, + P, = k is

must be a relativistic four-vector; of the three

imposed by the 8 - function in (4.1). Therefore the most general

form for HVAB is

Byap = Fyap(Py = Po) + Gyup(py + py) (4.4)

with FVAB and G invariant functions. Only one invariant may
2

be formed from pl,p2, and k under the restrictions p? = my,
2
Pz =My, P; + Py = k, which may be taken a; (p1 + pz) (p1 ; pz),
G AB(k )y

or in other words, kz. Then F (k

vaB = Fvab )s Gypap=

and
- v
v, YV Tlae)),,)) - g (Vi) ["‘vm‘kgﬂpl -5

VAB(k )(p1 + Pz?] (4.5)

It simplifies matters considerably to notice that these expres-
sions will be inserted into (4.1) which contains an integral
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including IS(k2 - M3 )e 8o we may as well evaluate (4.5) at
2
k

= M\2f immediately and save some labor. But on the mass shell
we have '

€(Vsk,X)sk = 0O (4.6)
which, since k = P; *+ Py is real, may be written

\4
€, (Vik, N (py + py) = 0 (4.7)
The result is to eliminate the GVAB(kz) form factor. Moreover,
2 2
FVAB(k ) evaluated at k

= MV is just some constant; for reasons
of convenience and convention we write

2 2
Fyaplk = My) = fVABTVAB (4.8)
where f and]f are constants and fVAB is chosen so that in the
iimit in which SU:5 symmetry is exact all § 's are equal (22)

_ - _ - 1o
(fe'rm = 2, f(-'KK’ 1, f-"KK*"f\KK* = (3/2)7 £

1%
KKW = ). Then
inside the integral of (4.1)

- \4
<V, N A, B0, = £, Wyap €5(Viks M) () = By)

. esee(4e9)
In a similar fashion

<G(-pg),5C-p )T vy 20D = vy W T | ECopg),Bl-p D *

t.55 v e;(vzk,).)(-ps + p4)&] )

- fVCD'KVCD €,£V;k,>)(})3 - P4)» (4010)

is true under the integral; we have used the fact that
£y55 Sv&s = fvep S vop (4.11)

If we abbreviate <E(-p3),'ﬁ(-p4)]r‘ ]A(pl),n(p2)> by Tep AB(s,t),
then we have . ’
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. _ 4 2 .2
Discg Téf),AB(s’t) = fyapfvep Yvas Svep jd ke (k™ - My)
P 4
x ok, - M)(py -~ p,) Puv (p; = py) (4.12)

with

PW =Z €P(V;k,>-)€‘:‘(V;k,)\-) - (4413)

The most general form for P,y is evidently P',v = aguv +bkpkv’
with a and b constants. But from (4.6) we know that

k¥ B, = 0= ak,+ bk’k, (4.14)
80 that b = = a/kz. Further
€ (Vik,X)e € (Vik,N) = = 8,y (4.15)

and therefore

} € (Vsk, X ) € *(V;k, ) ) = =3 = B, g = a4 - K¥/%) = 3a
)ﬁ 00.0(4.16)

Therefore a = -1, and

(4.17)
Then

(pg = py) Puy (py = Py) = ={pg = py)e(py - py)

- (p5 = ) (py + p,)(p; + By)°(p)-py)
k2 '

2 2,,2 2

(my = m,)(m) - m)

= at+ua 3 42 1 2 (4.18)

Mv

Therefore

Dise Tﬁﬁ,AB(s’t) = =7 fyapfven ¥ vas T vep 6(s - M‘Z,)

(mz - mz)(mz - m2)
x[t-u-l CA 3] (4.19)

2

My

and finally
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: 2 2 2
T ( ) fVABfVCD\‘{VABNirVCD (ml-m2)(m4-m3
2p,aB' 50t 5 t -u = =
) 5 -
“v My
.".(4020)
or
2
TLE) (s.t) = fVAvacnafbABnKQCD(Zt + 8 =M) (e.21)
CD,AB"? = 5 .
s - My
where (mz mz)(mz mz)
2 2 2 2 2 1~ Mo/t T M3
M = m1 + m, + My + M, + (4.22)

:
and we have added a superscript to T indicating that this result
came from unitarity in the s-channel.

The step from (4.19) to (4.20) is not rigorous, for (4.19)
implies (4.20) only to within a ratio P(s)/P(M?), where P is
a polynomial of any order. In particular s could be replaced
by Ms anywhere in the numerator of (4.20) without changing the
validity of (4.19). The full dispersion relation technique
utilizes only the discontinuities and this ambiguity does not
arise (or at least not until later in the calculation). In the
approximation to be made below, however, we use the actual
amplitude. We shall simply take the prescriptibn (which leads
to the results of Feynmann rules) that for any Born term we
make the replacement
1

Z - M?

(4.23)

- 8(z - M) -

where z could be either s,t, or u, when going from the discon-
tinuity of the amplitude in the variable z to the amplitude
itself.

We are interested in P waves in the direct channel, since
we're looking for vector mesons, d¥ = 1°. Therefore the J = 1
projection of (4.21) is taken according to the prescription of



The PS + PS - PS + PS Reactions

(c)

(b)

Fig. 2
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(2.19). Since A,B ,5 are all PS we have

(8)Jd=1 (s)
TeD, a8 Ya) = f dx P, (x) T cg ap(est)

4

i

with p and q as in equation (2.3).

-—=the t channel=

= SN - S
5 fvasfven FvanTven s 2

(4.24)

We now treat the case of a single vector particle exchanged

in the t channel, figure 2b, We invoke the substitution law

which ultimately says the result is exactly the same as (4.20)

if the substitution B(pz,mz) - C(ps,ms) i

8 made. Then s & t,

U u, m, v ng, and we find
200 acfvinn Vv acs (m2em) (ma=m2)
(t) V'AC ' V'BD Yv'ACO V'BD 4"
T -3 (B,t) = - -
CD,AB % 2
- My, My,
20 xofuran S vrac Syomn (28 + t = M'2)
viactvien d vrac O vemp
= 5 (4.25)
t - Mv,
2 2 2
2 _ 2 2 2 (my = w5) (my - mp)
M = ml + m, + m3 + m4 + 5 (4.26)
M
V’
Again the J = 1 wave is projected out:
+1
(t)d=1 fV’ACfV'BD‘{V'ACTV'BD 2 2 xdx
T (s) = (2s+Mv,-M') —_—
CD,AB 2 -1 t_M‘z,
1
We write
t - M:, = 2pg(x - K) (4.27)
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2 2., 2 2
2 2 2 2 2 (my = m;)(my = m)
8 - (m1 +mg o+ Mg+ m4) + ZMV' + =
K = (4.28)
4pq

and learn
£

viacty'ep Sviac¥viep  (2e + 02, = M'2)
4 ' R T

x [2 - K In \K * iU (4.29)

-—the u channele

(t)J=1
TCﬁ‘ AB (#) =

To find the amplitude corresponding to figure 2¢ we again
use the substitution lawe. The result is (4,20) with the re-

placements 8 «» u, t+ t, m, e m,.
2
(u) fynapfynpe Tyvrap ¥ ynpe (28 + u = M)
Tep,ap(®rt) = - 5 (4.30)
u - Mvn
2 2 2
2 2 2 2 g f(my - mi)(“‘s - m,)
M = ml o+ om, o+ omy w4 Mé (4.31)
t
We put
u - “3" = =2pq(x + L) (4.32)

2 2 2 2 2
8 = (ml + Wy + Wy ok my) + 2M,, -

L= 2 (4.33) -
4pq
Then 0 2
T(u)J— (s) = fV"ADfV"Bch"ADWv"Bc (28 + My = M" )
CD,AB = 2 e

x [2-L1nL+l\] (4.34)
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Finally it must be ensured that the parity of the inter-
acting states is correct. Since we are looking in the Jpz 1"
channels we must have P = ~l. According to Jacob and Wick (20)

-

if P is the parity operator
-~ J- -
Plamsdn,n,d> =, m, (-1"17%2 | oMz -2 =2

core(4.35)
whereﬂi and 8, are the intrinsie parity and spin of the parti=-
clese. For this first case all particles have n; = -1, B, = 0,
)'1 = Q. Then‘ :
Pl1 M;00) = - |1 M;00) (4.36)
and the parity is indeed ~l. Therefore equations (4.24),(4.29),

and (4.34) require no modification. We summarize:

PS + PS - PS + P8

TL§)JP"1-(5) e

- Pq
CD,AB 3 VABfVCDv VABTVCD

8B =

<o

P . =~ 28 + . = M

D, AB =1

viacfvep Tviac Svemn
x [2 - K ln\%—%—%—‘] - & (4.37)

2
(u)JP=1- 28 + Mg,, - M"

CD,AB fV"ADfV“BC ’.6. V"ADTV"BC 4pq
L + 1‘
x[2-L1n\————-L_ 1]

Be PS + PS - PS5 + V

=3
]
]
-~
3
~
i

——the 8 channele

Consider now the process indicated in figure 3a. We



(9)

(xya (xa

¢ b1y

(q)

The PS + PS - PS + V Reactions



-35~

assume that D is the external vector meson, with helicity ~\.
We have

Discs TCB(-X),AB(B’t) = -.w‘j;4k 6(k2 - Ms)e(ko - Mv)ﬁ(p1+p2-k)
x YKB-p),Bl-p s 2 £ | vk, 300>

x V(k, ' |7 | A(p,),B(p,)> (4.38)

If we again agree to imply the value inside the integral, we

use equation (4.9):

NYTINR : ¢
v, Xo| | A(p1)B(py = 2y, Wy g E;(V;k')' )(py = py)e

We again argue from relativistic invariance to find the PS~V.V

coupling:

< Tlopg)yBap w2 T V0, X = V1, X\ T Tlpy),Blop 2 e

[ ) v — x
= [g;(v;k,).) Rng GtSD;-pl;,-)- )]

v . vese(4e39)
To form the tensor RVCD we have just the vectors Py and Py
since k is not independent. Further, RVCD must be odd under
space inversion in order that the vertex function be a world
scalar function; the unique choice is

Y TRYM
= F P P~ (4.40)
Rycp = Fvep € 3. 74 %
Here FVCD is an invariant function of k2 with the dimensions

2

of (energy)-l. We use this evaluated at k- = Ms and write

- EY-Q-D—;&@- (4.41)

2 2
FVCD(k = Mv) =
e

where &ycp performs the same function as the fVCD defined

earlier (g?.“w = 1, Byggr = 1/(2(3)%) )e The scale factor m_
common to a;l couplings, is chosen to make the various {'s as



nearly equal as possible when symmetry breaking is allowed
{cf. chapter VI). We then find

7 fyanBvep ¥ VAB ¥ VD

Dise, Tag(_y) ap{®it) = - 6(s = M“?) Z (4.42)
? x
s AL 2 o
Z = GP(D:-D'*'-}’)G 131.‘.'1:,&“(-3‘”r + K kg /M, )(p,-p,)  (4.43)
~ v V& _
= zenv,.ps Py P& (D;-p4,-7~) (4.44)

It is next necessary to determine €_*(3;-p4,-l—). For -;4
along the +z axis, -p, = (E4,0,0,q), the conditions

€(3;-p4,). )+ € '(3;-p4, N') = - by

€(Dsmp 0 ) py = O (4.45)
S, € (Di-p X)) = X&lDs=p,, X)
where Sz is the operator for the third component of spin, suffice
" to determine €(5;-p4,)\.) to within a phase. In order to ensure

time reversal invariance we take the following phase convention:

in this frame where -;; is along the +z axis

i€ (Dy-pyHN) =

- : 1
8,2 %(0,= X y-1,0) + 8, -n—14(q,0,0,E4) (4.46)

Now in the case of interest, -34 is not along the +z axis, but
rather along the -z axis; according to Jacob and Wick (20) we

must make the transformation

Since also we want the results for helicity -\ instead of N\,
we finally take

€ (ﬁ;-p4,-).,) = - iu iz'%(o,-L,-i,o) -8, ;:'4(q,0,0,~E4) (4.48)

We may now evaluate Z of equation (4.44) with the help of the

equations (2.3); we find

= l-x 1%
‘Z = -2 6):“ pq(El + Ez) [ 5 2] (4.49)
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Therefore

- (o.4) = . T vanbven¥vasTven L L
&H(-2),Ap' Y = = Mo N TR T

Disc
-3

2 % 2
X pq [2(1 - X )] 6(s = M) (4.50)

and with the prescription (4.23) we deduce

E +E,)pa 27(1-x)" 8y 4,

(s) fyas®vep Svas Svep ¢
Ten(->) (%) = | 3
m,,(s - MV)

.'.¢(4‘.51)
Now the J = 1 partial wave is projected out:

+1 _

(s)J=1 1 1 (s)
Téﬁ(_)), AB(S) = Ej‘-l dx dol (x) Tcl—)(_» ,AB(s’t) (4452)
o, (%) = Moy, 270 - 4 x 6, (4.53)

and the result is

Pq(El + E,)

m“,(s - Mﬁ)

(s)d=1 .2 '
T&D(-&),AB(S) = 3 TvasSvcp § vas ¥ vep

(4.54)

~—the t channel=

For the exchange term represented by figure 3b we invoke
as usual the substitution law. The amplitude for this reaction
is given by (4.51) with the substitution B(pz,mz)toc(ps,ms).
In chapter II it was shown that the quantity

2,%
pa(E; + Ej)(1 - x7)
is invariant under particle exchange. Therefore

b 2.%
Lriac®yep ¥yrac Tvip (BptEo)Pa 27(1-x")"85

;
(s,t) =
(=X2),AB"? my (t - Mé.)

Tt

(

TC
ceee(4e55)

Again we want the J = 1 projection of this amplitude. We use

(4.53) and the analogue of (4.52) for T(t) and find



(t)J=1 o1 N(E) + Ep)
Téﬁ(-).),AB(s)_ == % HoacBvipYviacYvimp g
x[ 2K - _(Kz - 1)1n|§—§-—}D (4.56)

with K given by (4.28).

~=the u channele

Here we use (4.51) with B(pz) - D(p4, n)

' Y 2,%
(u) fyupcEynap § viap¥ yrpe (By+Ep)Pa 27(1-x7)78, 4,
Teb(-2),ap{®t) = 5
Tt . m (u = Mgy,)
™ " |
csse(4e57)

and
p{B)I=l oy _ 1, ME, + E,)

¢D(-2) ,aB ‘" 2 TyvpcByrap VvranT vese
}

m"ﬂ’
x [ZL - a2 - 1)1n‘%—*_——i{] (4.58)

Again we must ensure that the proper eigenstates of the
parity operator are used. For the PS + V state equation (4.35)

gives -
Pl1M;03)=]1M0> (4.59)

Therefore the proper state is

{1 M;00> - {1 M0 D (4.60)
2

and - 1 -
<ps,v|{T]| ps,pPs) = % [(ps,v(x )| 7| Ps,ps
-{P3,v(=X )\’5}?5,?3) ] (4461)

since {PS,V(X\)|T|Ps,PS)> is proportional to )\ (equations
(4454),(4.56),(4.58)) the net result is to multiply these terms

by 2%. In summary,
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PS + PS = PS + V(=)

\
(s)d¥=1" , \ 2.2% HPa(By + By)
TeB(-2), an{®) = =5 1u008vepY vas Vvep 5
M. (8 » MV)
(t)dF=1" _ 2" ' E. + E)
T2 (-2, AB( 8) = = Z Tyuac8yrpp TvracT vimD ---%t—-ﬁ
™
x [21( - (€ - 1in }é - i\] >(4.62) 
(u)JP-l" o NE; +E,)
Te5(=\),a8(®) = = T fynpcBymapT yrap Tymae m_
2 L +1
x [21. - (L° = l)ln\m‘]
Also we find for the reaction /
PS + V(M) = PS + PS
(s)aF=1" 2.2% APa(E; + E,)
T== (8) = =« == £ . &1n'S
CD,AB()\) 5 Tvcp®van Svep ¥ vas e (s - ”5)
1 NE + E.)
(t)J =1" 2 1
Ten, a0 ¥ = T fyracSvep Yvrac¥veep o
x [21( - (k2 - l)ln\%—t—i‘\] > (4.63)
% NE, + Ey)
(u)JP- 2 2
T AB(X)(S) = T fynapByopc Cvuap Svene m
x[ZL - (1% - D|E2 lﬂ
/

Coe PS + V=PS +V
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—=the 8 channele=

We now consider the reaction of figure 4a. It is assumed
that B and D are the external vector particles of helicities

X and =A', respectively. We begin with unitarity:

Di_scs< E(-Ps)’s(-l’é,")\ ' )1';'!A(P1))B(P2) )‘ )>
= - atc 802 - Mﬁ)e(ko - M) 8(p; + py - k)

x YKEpg),Blopgp-n Ol v, 2
k.
Vi, A M| 1a(p)) By, 20D  (4.64)
For the vertex functions we use the form of (4.39),(4.40), and
(4e41). We find

. 7 EyapBycD Y VAR Y VCD 2 |
Dlscs T&b(_i) ’AB(\)(s’t) = - m2 G(S-MV)Z (4.65)
w
where ' w
s ' oc@¥ % 2, €77
Z = eK(D;-p4,-‘>. )psup%g (~gy o+ ke /ME plepzv
x € {Bspyy N ) -~ (4.686)
- *(De ! '6’9(@\‘ P .o w
= =€ (Di=py,=X )p:&p%e Erempl Py € (Bypgy N) (4.67)

We now use the identity

e 6? 8?
Yo gic o N "
- € evea-uf & a; 6‘:‘ (4.68)
o€
sw 6N 60)
‘and find that
Z = (p3~pl)[(p4-p2)(€ 3°€2) -~ (p-€ (€ ;-Dz)]
- (g (g py) (€30 €) - (o€ ) (€ 5omp) | (4.69)

+ (p3-€2)t(?4-p1)(€ 10py) = (e py)(€ ;-pl)]
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where &*(D;-p4,-),') and e(B;pz,);) have been replaced by €}
and €,, respectively. We know &z from (4.48):

€; = 6)11-. 127750, =N ', +1,0) + 8o ;4(q,0,0,-1~34) (4.70)

To find€ , we note that if p, = (Ez,o,o,p) we would have

. -t 1
i€, = 6., 277(0,-X,-1,0) + 8, ;2(p,O,O,E2) (4.71)

But since p, = (Ez,(l-xz)%P,O,-.px) we have

-iJj(Tl’ + 6)
€y e €5 (4.72)
: -iJ ©
with e Y given by
1 0 0 0
2,%
-iJjB 0 x 0 (1-x")

0 ~-(1-:a:2)}é 0 x
so that

€,=- 14, iz'”(o,). xy-i,- X(l-xz)g) -8, ;"‘;2(1:,-32(1-;2)%,

0,-E,) (4.74)

With these expressions forga and €59 equations (2.3) are used
to discover that

1
z=3 pas(x -X\-')Gxn 6):1‘ + 2z (4.75)
where z involves the terme not containing 6“:\6{,“ + Then
(s) &yasfvcp § VABY vep [ pas
Ta=? (s,t) = (x= WN")6 . 8,
CD(=X),AB(})) "‘i(s R Mg) 2 b {4
+ {] (4.76)

The J = 1 partial wave is projected according to (2.19) with



1 _1 =X2Xx .
d_)x (x) = S am 6)(:.+ d (4.77)

where d' contains terms not proportional te 6).’1 6)':’! « Then

YJ=1 + 8yan&vep U var 8 vep PA8
(=) ,4B00) ¢8) = =X\ -y 2
e (8 = M)

Again T' contains those terms not involving 8

(s
TCﬁ + T (4.78)

8

S IS¢ Y]

—the t channel—

The t channel reaction, figure 4b, involves a V-VaV
 coupling which we have agreed to ignore. This channel is not

considered further.
—the u channel—

The contribution from the u channel reaction, figure 4c,
could be calculated from the substitution law, as in earlier
cases. However it appears in this case to be simpler to cal-

culate it directly from unitaritye.
Dise {T(-pg),B-py,-3 T A(p)),D(p,, ) )
_ 4 2 2
= - T‘:Sd k 86(k” = MV")e(kO - Mv") 6(P1 + p4 - k)

x ) <Tlepg), Bl -\ | Vi, X0

x -
RS AICANDI I PYCIB I e W) (4.79)
g 1" nf .
- v ey CBgV”Ag anBC‘X‘VuAD §(u - Mﬁu) Z1 (4.80)
b
had d T R '
Z' = -¢ Px P, P, Pa€S € (4.81)
venp 3~ 2(; 174 2P4
where
65 = G.*(Ei"sz')")

Sar 1270 N0, N AN g %ﬁz(P,’Ez(l-xz)%,O:
-sz)
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€5 = €EDipgyN") = = 8, 1274(0,=0 1,-4,0)

- & %4((1,0,0,}-34) (4.82)

After a short computation we find

P4

Z' = E—(axz + bx + c)ﬁ)»!'l 6)1!1 + 2" (4.83)
where

a = =pq = \)\ ' BB,

b = E;Eg + EjE, - AN (§E3E4 N ﬂp E,E,) (4.84)

c

L}

D g ]
pq + q E3E4 + > E1E2 SN E]‘E3

and z' contains terms not involving Gxtiﬁi*‘ « After project-

ing out the J = 1 partial wave the result is

{u)J=1 ooy Brapdyrec Cvian viee 1
TeB(-x),am0n) (&) = WX on2 R
w
+ %(ElES - I.Q)ln{%—::-}i-\] + ™ (4.85)
where q P
2 .
Q = pq + 2EE, 3" 2E3E4a— - L(2E2E4+ ElEs)- L pq (4.86)

and T" is that part of T not proportional to ) )'.
Finally we ensure the proper parity eigenvalue using the
state of (4.60).

Cps,v|T]|Ps,v)= %[(Ps,v(x')\’ﬂPS,V( PB)*
+ &PS,VE=- 2O T[PS,V(-X)D - <Ps,v( W 1)| T} Ps, V(2

- {ps,v(-3") Tl s, V( X))] (4.87)
For TJ=1 of the form

SRS AU ST . U (4.88)



the net result is
TJP‘l =230 T
all other terms cancelling. Therefore in summary

20N 2y,p8yep Y yanY yep P98

MEIL e ST S
CI_’( ) ,AB(N) 3may (5 = M)
plw)dt=1" (g) = 22 Eynap®yvac § vrap Yvnac
Teh(=X),aB()) (8) = an?

T

+
o

. %(‘ElE‘., - LQ)lan]

-1
3 P4

(4.89)

(4.90)

In the following chapter equations (4;37),(4.62),(4.63),
and (4.90) will be specialized to the cases of interest in the

present bootstrap.
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V. DERIVATION OF THE
SELF-CONSISTENT EQUATIONS

The invariant amplitude Tij defined by (2.16) satisfies
the unitarity condition (2.17). If the complete unitarity sum
is approximated by the term with t = 2 we find for this con-

tribution in_the s channel

s 1 - + i
Disc Tij z - 5 q 8 Gk dj}k Tk Tkj (5.1)
32 7 :
where Gk = 9(8 - sk), 81 is the physical threshold energy in the

k th channel, df}k is the infinitesimal scattering solid angle
in this channel, and summation over repeated indices is implied.
For the moment we ignore the complications arising from the
presence of identical particles. If we further project the
partial waves according to (2.18) and (2.19) the result is

1 % +J J
=-F5o* T.. q,_© T (5.2)

Dise ik 9% "k “kj

J
s Tij
In this approximation all Tij refer to two particle states,
The cut of T given by (5.2) will be called the "right-hapd cut",
All other cuts of T in the variable s will be collectively
termed "left-hand cuts". We define a new amplitude T by
. -
= _=me=n J =1
Tij'" 9 qj Tij
-1 (5.3)
= Ny Dy
where Ei: qi/mvr’ and m and n are for the moment undetermined;
they are chosen so that the decomposition of T into ND"l gives
N only the left-hand cuts of T and D only the right-hand cut.
Then '
- 1 e miy = lemen =
Discs T:i.j = -5 mps T G ki (5.4)
and at threshold
7. —'m+l E n+l

1j~ ql j (505)



Note that T and T are dimensionless. We then have

y ) .l;.f DiscL Tik(s') ij(s')ds'
L

ij o™ 8' = B
. (5.6)
@
(6 = am. {1 T1™ " (s"IN,  (s")ds"
D.,. = 8., + 5 a 7
i 7 743 8 of , (8" -8)s -5 s
i

Here L denotes the union of all left-hand cuts and DiscL T is
the sum of the discontinuities of T on all these cuts. The
subtraction point so in Dij may depend on i and j, and it is
assumed that no further subtractions are required. In order to
reduce the problem to tractable dimensions we must make still
further approximations. The circular cuts of T arising from
mass differences are dismissed without further apology. In |
addition we use the first determinental approximation (18) and
set ij:s ij in the first of equations (5.6). Therefore

=L

i3 (5.7)

I

Nij
where TL is the result of dispersing DiscL T « For TL we take
the t and u channel Born terms calculated in chapter IV. We
write (%'EJ)i. as an abbreviation for the product of the two
coupling consgants, whichever they may be, appearing in the

expression for T?j’ and further write

=L ! = m+l = n+l
Ty = ("ﬁf)i.j q; P 1,4 (5.8)
fij is dimensionless and smooth at threshold. For the second
of equations (5.6) we therefore find
] : 4
Dy4 = 613 + (’6"3')1j LI (5.9)
- o — 2 —
_ 2" 5% g, (s') TP (s)E, (8') ds!
g. = 1 | ia
i 8 I (5.10)
T Jg (8"~ 8)(s' - 5 )(s/nT,)

i



which is put into dimensionless form

@ 2-n l+n
) x = x vi—z- (x*) quzr(X') fij(x') ax* .
16 U, (x' = x)(x' = x ) x!
o
i
2,2 -2 2
when the substitution vy = qi/m“ =q; , X = s/4q", etc. is made.
Therefore (5.3) becomes
- m+l n+l - =1 |
('3"3') q; ik (I + g) ij (5.12)

where I is the unit matrix and

[]
g5 = (YW, gy, (5.13)
Equivalent to this ias
t..= 3V, G/30 ™ e 1+ D (5.14)
ij = ik ‘97 9y ik &) kj .
where
- m+1 - n+1
5.15
tlj / q; (5.15)

is smooth at threshold. To complete the self-consistency equa-
tions, we demand that (5.14) hold in the region of the resonance,
8 = Mg « At such points T approximates the form of the s-chan-
nel Born terms calculated in chapter IV. We insert the observed

_w1dth and write .
(80, . ..
t”.(szmg) = o —— (5.16)

8 = Mp + 3Mip -
which i& put in dimensionlesa form

(¥¥),: 7.,

P B 5 (5.17)

X = xp + i(Mer‘Q/‘}mw)

tij(xsz) =

while from (5.14)

tlj(xz xR) = ("{’K)ik (Ek / Ej) n+l £ ﬁkj/ D (5.18)

where D is the cofactor matrix of D-l.'.
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ij = ij/ D (5.19)

and D is the determinant of Dij' Near x = xR we write

DRs Dr(xR) + (x = xR)D;(xR) + 4 Di(xR) (5.20)

where the subscripts r and i denote the real and imaginary
parts, respectively. 1In order that (5.17) and (5.18) be con-

sistent it is apparent that at x = x_, we require

R

D=0
by

! - - n+l =
A0y 2 (9 /37D

koo o(ry).

ij Tij

D!
r

Equations (5.21) are the self-consistent equations for any
general reaction. In an exact calculation the second of these
equations is satisfied for i # j if it is satisfied for the
diagonal terms and the first equation is also true., In this
calculation in which the first determinental approximation is
employed the off-diagonal equations will not be satisfied, and
they cannot be used as further self-consistent equations.

After a solution is found the divergence of the off—diagbnal
terms from the value given by (5.21) will be a measure of the
crudeness of the approximation (23).

We must now choose the values of m and n appearing in

(543)« These should be selected so that the preceeding equations

--which are certainly true above the largest g ——may be analyt-

k
ically continued to lower s values. In the first determinental
method the threshold behavior is satisfied automatically, and

cannot be used to limit m and n. However the integrals g

ij?
equation (5.11), indicate that l%ﬂ should be an integer in

order to avoid cowmplex values arising in the cases where s£<sj

from integration over a region where vj is negative., The
S =1
common choices are n = +l,«1. For n = +1 we are writing ND

for'(qiqj)% eia gin §; for n = «1 we assume that the amplitude
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-3/2 eis

(qiqj) sin 8 is reducible to ND'I. The first of these
2

behaves like q? qj at threshold, the second is smooth. There
is a problem with the choice n = +1; barring accidents from D-l,
equation (5.14) predicts poles at the j th threshold for tij
instead of the smooth behavior known there. For this reason we
choose n = -1, ‘

We now specialize the foregoing results to the particular
problem in mind. Consider first the K* bootstrap. From (5.3)
and (5.8) for n = -1 we have

et _ s 2 )
<?ff)ij Iij = Tij (m7, / qiqj) (5.22)

The left-hand cuts of Tij(K*) we approximate as arising from
the logarithms of equations (4.37) which refer to the exchange
forces of figure 5. The isotopic spin crossing matrix elements
fbr projection into the s channel I = % state for the reactions
S5a through 5d are 1,~ % »1,1 respectively. We call 4y K channel

one,n K channel two, and eventually discover

- 2 — A
i¥5 T1p + V3T T3¥4 T22
o}
(8485 (K)= - . (5.23)
T3¥y 12 4 T2
where
’ 2% + R2 - 1+ Rl IBI + 1\-
. =2 2 |2 = B. In|ete—
11 = 1 B o1
1
1+R (R -1)2
2x + R, = 1 - 1
3~ 73 T6R C. + 1
T.=z-= 3 2 - €. 1n|=t—
115" 2 z = €y Inje=3
v 1
1
2
R.+R .
2X + R, = 1+ 4 (Rl R4>

22

o
}
[ M4
ol
(&
&
-
&
—-——‘-".".
O
+
[
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Exéhange diagrams for the X* bootstrap

Fig. 5
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11 1 1
2 - {= -— — - ——— - -
5 X + Ry = (Z+ 3R + 7Ry 16 R, (1 - RIRY, = Ry)
f12=3
Vi Ve
c 1
x[2-C31n02+1l]
2
_ 2 _ 2 2 2 2 .2 2,
x-s/4m,n,,R1—mK /mT‘_,Rz-Me/lim“;RS-MK*/4m“_,
2 2 2 2
R4=mn/m,ﬂ ,R5=Mw/4mw;
1 1 2
v, =x =51 + R + 752(1 - R))
1 1 2
vz-x-E(R4+Rl)+m(R4 Rl)
oR 2R
2 3 1 2
B, =1+ =3 C,. =1+ —=a==(1«R,)";
1 v;L 1 v1 val 1
1 1. 1 1 _
x-(Z+-2-R1+ZR4)-W(I-Rl)(R4-R1)+2R3
C, = %
2 (vlvz)
2R
3 1 2
C, =1+ —= uw = (R, = R,)
3 v2 8xv2 1 4
and

“6‘1 = ?eﬂ'n';\gg =Teww 3'\?{‘3 = k'WKK* 3?4 =“6"1KK*
Vs ='F?KK Ve =V ¥ =T ks

-

Then we have

‘ 2 —
i +T1T5 811 +"{3 811 'K\s'\(fq, €45
Dy ;(K*) = (5.24)

2
T3 Vs 821 1+ 82



with v2(x1) £, (x') ax’
X - X i ij
gij - o 1% (5.25)
2 (x' =« x){x' = x ) x
1611' " [+]

i
If we desire the real part of Dij the principle value of the

integral is implied if X>X, o The thresholds x, are given by:

1

b $ x

L =2 +rH? o = 2R 4 RH2 (5.26)

For the right-hand side of (5.21) we find from (4;37)
2 1
*Y) .
('B"B)ij r, (K")= | (5.27)

1 rai

N
2
[} ]
2
£
=

For the K* case equations (5.21) give three relations

between the unknownsrXiﬁ{5,ﬁ¥s, %‘i , M e and M, (all PS

masses are taken from experiment). We also take f - =.6:'n'KK*
from experiment and use the three equations to solve for
“5175’71 , and M, in terms of M e We arrive at the
equations - '
52 B * (8% . a)”
4 A

" n2a2 | (5.28)
_ B34 221812 n2 =

T Vs L. ~2 381 "1
4 %22
€11
where
A=eg22+822(g'f)+bd
1
B=eg22+-§(ag22+g-f-bc)

C =e + a

2 2
a =Ty 8y f1p 3 =T 5 8 8p 7 €= Ly



_ = ) LN 2 ~
4= r22 géz ' e = r22 [‘3‘3 11 11 (1 ”"z 811 ]
(5.29)
- 2 gil
£=ry,%5 (8jp 63y + 81 837) 3 & = Ty Eﬁ'xs 81 812

In the above ' denotes differentiation with respect to x = s/ 4m§.
The third equation reads

2 = 2 2. 2 2
(B85 13y +¥5 110+ 859 -F3T 5 £35 €5 - "1173[

(¥,%5 8y + V5 gll)(l f¥2 g0 0 UV g +U2E )

The solution of equations (5.28),(5.29) and (5.30) proceeds as
follows: a value of ble is chosen and for this M e a series of

M., values is taken. For each such pair (Mp ,M,,) the quantities

of (5.29) and calculated'ﬁ and'flﬁrs are found from (5.28)

and inserted into (5.30). For a given M p a value of M., is

eventually found such that (5.30) is satisfied. For this }1¢
the values of M., ,'\Si , and 71"55 are therefore all known
which satisfy the first set of self-consistency equations. The
procedure is then repeated for other M P values until a table
of hé. ’5.5 :'3 y and MK*

"then inserted into the self-consistency equations arising from

V& }1? ig formed. These values are

the e bootstrap to be developed below. It is noted thatl in
solving for °5 an ambiguity has developed in which two values
are possible. Of course the conditions that'ﬁi be neither
complex nor negative eliminate some solutions, but in general
both solutions must be carriecd along to the e bootstrap where
presumably only one will be such as to satisfy the remaining
equations.

The G bootstrap, involving as it does three channels, is

somewhat more complicated in details although the procedure is
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similar to that described above. We call ;v , M > KK the
first, second, and third channels respectively. To take into
account the identity of particles in channel one we must modify

the t matrix according to the prescription

1 - k"
11 Y12 Y3 3 Y1 %7t 2 7t,
-t
tar  taa taz T | 2 Tty to, ta3
. _}é
Tz tzo  tsg 2 gty tas
For the pole residues corresponding to figure 6(a - f) we have
1%
22 2 1% 2
501 3%, TRy T 195,
(¥D,.F..(p) = 2%, R® 2r2p ﬁ'h"l’ R” | (5.31)
ijijf"slaz 3 V2 T2 3252 |*V°
1o
2 " 2 : % 1~n2
50 ¥ s T Ui sR, AR

We have used <= =1, \' = +1. The final result of the cal-
culation is independent of this choice so long as WM\ = =1,
The contributions to the left-hand cuts arise from the processes
shown in figure 7(a -~ g) and the various time reversed processes.
The isospin crossing constants for projection into the I =1
8 channel state are (24) -é-+ %, 1+1, - % -5 1, (z );é (z )%

1 1 s .
-3 5 respectively. The result is

X? Fla V182 Fpp 25

3 F13
sy n 2
wmij £,5(p) =| Q¥ Foy 5 Fp 3T, Fyy (5.32)

Fﬁi Fia T4, Fay szsz "76 33

B3+l‘]
Bs-l
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Pole diagrams for the e bootstrap
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Exchange diagrams for the e bootstrap
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4 1,2
5+ 4x - ;(R5 -=)" 3 a, =3v. + 8R. + 1 ;5 a, = ~v

a, = Vv 2

1

The equations for the fij and Fij must be analytically continued
in the case that the B's or C's appearing in the logarithms
become complex. Since these variables are of the form h(s)/qiqj
they become complex only for off-diagonal terms, and only
between the i th and j th thresholds. For the PS+PS+PS+PS

reaction we have

+1
‘ 2
B+1\_ xdx ., , 2B -1 %
2-BlnB_1—-lx_B 2+(-B)%tn(1/(-B))

ceee(5.33)
for Bz< O, and the same holds for B - C, For the PS + PS ~
PS + V amplitudes

B + 1 x =1
28 - (8% - 1)10|223| f e 2q1q3(q—3—)

2
x[l + -El—-—-—l tan '1(1/(-13 )V")] (5.34)
(-83)*

if B2< 0. Again the same is true for B - C., These expressions

are sufficient to ensure the reality of the t amplitude except

where
B + 1 . C + 1
- 1 E—-—:—i'(+ 1 and -1( 1‘( +1e.

The self~consistency equations for the Q problem yield
four equations for the unknowns Mg ‘,“61,'?{6, %, ('Tz and Ta
are taken from experiment, while ‘Xl"ﬂs, "64, and MK are known
as functions of M P from the K* bootstrap). The method of
solution is as follows: ’KG and 'T,; are eliminated analytically
and determined in terms of M P and "[l. This requires two
equations. For a given value of Ml’ a series of "6'1 values is
taken until values are found such that the remaining two equa-
tions are satisfied. In general this will happen for two dis=-
tinct values of "(fl. A new Mp is chosen and the process repeat-
ed until eventually a value of M P is found for which a single
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"{1 suffices to satisfy both remaining equations. This is the

self-consistent solution.

Accordingly we proceed to eliminate "fﬁ and ’Y‘,? from the
proeblem. Raquation (5.32) assumeas the form

' 8, 85 &3
-(TT)“ £,0P) = | o a (5.35)

2 4 2709
2
ag a5V, 2576 *+ ay

with :
2 2 2
ay =MiFy 1 8y =¥ Fp s ag =T Fy s a, =T Fyy s
- 2
8 = T3 Fa3 1 ag = Fgg 1 ap =5 Fys- (5.36)
all known in terms of Mf’ and 71. Further
by b, b,
Dij( P ) = b, LA b Y (5.37)
- e 2
by b5 T, ban‘S 6 * Py
where
2 ~ 2
by =1+ Gy 5 by =T Wy 6o 5 by = T Gy s
- 2
b, = Tlvz Goy 5 Py =1 *72 Gyp 3 by =T3 Goy (5.38)
- 2 - - 2
by =¥3 063 3 P5 =TG5 5 bg=0Cy53 by =1+Tg Gy
and Nij
X - X vg{z(x') F, .(x') dx'
Gy, = 5 7 (5.39)
J 16 47 (x' - x)(x' - x ) x!
xi,

For x®>x. , the principle value is taken in order to find the

real part. Here i! and j' are given by

3 i,5=1
i',j' =45 i,j=2 (5.40)
\a 4,5 =3 '

[

[H



in order to make the transition from the labelling of the
channels to the labelling of the momenta. The threshold X
are given by
: 1 % 2
Xg =13 X, =R, §X = (5 + Rg )

5 (5.41)

The cutoff A is needed only for G22, and the manner in which
the solution depends onA_ is explored in the succeeding
chapter. The requirement that Dr( P )‘x - &, = O becomes

- 2 ’ 2
Al + AMG g+ AT, 4 A,ﬂ{ - =0 (5.42)

with

=
¥
-2
o~
o
o
1
o
o'
S’
o
o

5
u
-2
—
o
(-2
1
o’
o’

-

- - (5.43)
As = hsb b3 b3b2b5
A4 = 1b b
The residue self-consistency equation for the 11 channel reads
2 2
A5+A6"(6+A7T7+AB"6‘7-0 (5.44)
where
= - i - - 1
Ag = a;b,b, = ayboby asb4b3 VI TP A
- - '
Ag = 8;b4g bzbe TP A (5.45)

Ay = a,Dybg + asboby "11 r(P) A'
5 —
g = = 8,b50; =TI r(pP) A

>
§

Here ' denotes differentiation with respect to x = s/ 4m§ .
Equations (5.42) and (5.44) suffice to determine"ﬁg and "6'7.
The two final self-consistency equations are:

(a4b1b7 - azbab - a b3b3) +"$ c(abib. - a byb.)

+"6'7(a2 3 5 + a5b3b2) +"{ (-a b b ) -"6 ' (P) - 4]

2 ool P

ocao(5a46)
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and

— a —
(a,(b;b, - byb,) = asbob ) + Yo as(bib, = bb,)

+% plagBaby + aghybg) ¥ 7l-aghibg) - Fg ry(p D (p )L=a2 =0
ceee(5.47)
_ Ambiguity is introduced 1nto the problem by the two roots
of the quadratic eguation for 7[7 deriving from (5.42) and (5.44)
although presumably only one solution will satisfy all of the
self-consistent equations. In the following section the
solution to the system of equations presented here ie desecribed

and the self-consistent solutions displayed.



VI. RESULTS

The system of equations described in the preceeding section
must now be solved. All numerical calculations were carried
out on the CIT-IBM=7094 computor system. The majority of the
calculation consists in the evaluation of the integrals gij’
Gij’ and their derivatives gij
subtracted; unlike the exact solutions to the integral equations

) G;j. These integrals are once

the solutions found with the approximations made here are not
independent of the subtraction points. Accordingly the choice
must be. made with some care and then varied to determine the
sensitivity’of the solutions to these paramaters. It is cus-
tomary to perform the subtraction in the region of the left-
hand cuts. We next describe the location of these cuts for the
various forcing functions.
All left-hand cute are supposed to originate from the

presence of the terms

K+ 1 L + 1
in X -1 0 ln‘ir:—i

in the Born amplitudes (we ignore the circular cuts due to mass
differences). K and L are defined by (4.28) and (4.33). The

cuts arise in the regions of s for which \K\( 1 and/or ‘Ll( 1.
This translates to the statemant that cuts arise for values of

8 such that a2 a. 2 2
I P (m2 some s me 4 mz)- (ml N ms)(m4 Y
1t Mgt Myt Ty 2
m2m2 m2m2
2 2,2 2 14" 23 2 2 2 -
¥ (my = my)(mg - m,) + % (m] = my = my + m ) 0

ceee(Bel)
where the inequality is assigned £ 0 for s = 0. Equation
(6.1) is the statement \K\<’1; the condition for ‘L‘<’1 is
obtained from (6.1) by the substitutions M' = M", m

-+ M,

4 3°
Consider first the K* bootstrap and equation (6.1). There
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arise cuts on the real axis for reactions of figures 5b and 5d.
Foxr 5b the cut exists for
2 2 2
~w< a< 2(mw_+ mK) - 2,

(6.2)

and
g ]

0 <'s'<'—%—(mi_ - mi)z

In order that the predicted K* pole escape these cuts it is
necessary that the resultant K* mass satisfy

2 2,\%
Mo > (mK - my)" = 475 Mev (6.3)
Reaction 5d produces a cut for
~0 <8< O
(6.4)

and

1 2 2 2 2 2
Mf'; (m'1 - mK)< s < 2(m.‘.\'+ mK) - MK"
L 3
In order to avoid this cut we require
2 2 2.%
Mps > (mK + m‘\) = 740 Mev (6.5)
The other processes produce cuts off the real axis; the ends
of the cuts are
fig- S5a: xc = wed ¥ 2,91
fig- T xc = 06 * 2,01

(6.6)

where x_ = s,/ 4m%,, and s denotes the end of the cuts (the
‘values for which |K| = 1 or JL] = 1.) The subtraction point

for the various K* integrals is now chosen as xo(K*) = 0.0

for all K* integrals. This is near the thresholds for all cuts;
the dependence of the final solutions for varying xo(K*) is
described below.

Now examine the ? bootstrap. The cut arising from figure
7a runs for
~c0 <8 4m:,2'“ -sz (6.7)

If the experimental values are used this is for x< =6.7.
"From 7b comes a cut off the real axis whose ends are at x, = «55

+ 1.3i. The cut from 7¢c is on the real axis for negative s if
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MK"‘> m,".+ me = 632 Mev. Since we already require MK" > 740
Mev this requirement is met. The cut runs for
2 2 2 1 2 2,2
~0 <8< 2(m“_+ mK) - MK"‘ - —-é—-(m“,- mK)
E ]
(6.8)

or =« x < ~4.4

whén'exper_imental magses are inserted. From 7d arise cuts

for
o< 80
and 1 2 2.2 2 2 2
F(M” -m)°< 8 <2(m“_+ M, - M{, _ (6.9)
e _

In order that the e pole avoid these cuis we require that
2 2,% '
Mo< (M, = m )™ = 772 Mev (6.10)

Further off axis cuts arise from figure 7e, whose ends are at
X, = 2.42 ¥ 3.22i. Finally, a real cut comes from 7f for

o<s<4m§-M§
(6.11)

and O<s<4m§-Mi

In order to avoid these cuts it ism sufficient to demand that

1
M> 2/é mK = 698 Mev
P (6.12)
and 5 2 1%
MP> ‘(4mK - M,)" = 600 Mev

Again we shall choose a single subtraction point for all
integrals. The standard choice will be xo( P) = -5.0. Effects
of variations of this paramater are studied below.

As mentioned above the calculation conveniently splits
into two distinet parts. 1In the first, the K* bootstrap
equations are used to find Tl'\{ 5,"{2, and MK"‘ as functions of
MP » There are two sets of solutions, corresponding to the
two roots of the quadratic equation for"‘i (equation (5.28)).
The data adopted as the "standard case", from which variationa

of paramaters are made, are
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m_ = 138.1 ' 493.8 j m, = 550.0 ;2»1u = 78540
T, = 1.37(1“/ 4y = o15)3 Y5 = 4.67 (1“KK,A; 1,74, T = 50
Mev); x (K*) = 0.0 3 x (p) = = 5.0 4

A22 = "-’°‘A1:j m oty byl kR (6.13)

The results of this first ﬁhase (phase I) of the standard
case are shown in figure 8. The range of @ masses is 600 Mev
to 900 Mef, and the acceptable window for ¢ masses of 698 Mev
to 772 Mev is indicated by the arrows. The Root 1 solutions
arise from taking the + sign in front of the radical of equation
(5.28), Root 2 involves the - sign. It is noted that Root 1
would be much the desired solution since the couplings are much
smaller than those of Root 2. However each solution must be
taken over to phase II, the @ bootstrap. Here a second ambi-
guity appears, again owing to the two roots of a quadratic
equation; we call these two solutions root 1 and root 2.

Consider first the Root 2-root 1 case. Within the per-
missible Ble window it is impossible to find a simultaneous
solution to equations (5.46) and (5.47). The same is true for
the Root 2-root 2 case. This situation continues to hold as
xo(K*)’ xo(e ),y and A\ ij are allowed to vary. Thus Root 2
leads to no solutions.

We next investigate the more promising Root 1 solutions.
For the Root l-root 2 case it is impossible to find values of
M(, and "6'1 such that equation (5.46) is ever satisfied, much
less simultaneously with equation (5.47) {(root 1 involves taking
the + esign in front of the radical resulting from eliminating
Ké from equations (5.42) and (5.44) and solving for '57;
root 2 takes the - sign). Therefore the only remaining candid-
ates for the complete self-consistent solution are those of the
Root l-root 1 variety. One of them works. A convenient method
illustrating the solution is a plot of the'Yi values which
satisfy (5.46)~—curve 1 of figure 9——and which satiefy (5.47)-—

curve 2 of figure Sevs. MP « The results are shown in figure
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Root I Root 2
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Fig. 8

Results of Phase I for the standard conditions
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9+ The two curves do in fact intersect and the self-consistent.

values predicted for the standard case are:

Mg = 756 Nev -“:m(*/”‘" = 9.31
Mes = 903 Mev
"5 = 1.95
f2 = 1. QKK ,
gwr/‘l’ﬂ 1.83 = §.33 {6.14)

/
"62“, /4 = +15 (fed in) N“"KK o

2
T»iKK*/% = 1.74 (fed in) ﬁ“w m*/% = 716

For the definition of coupling constants employed here, the
axperimental value of 'T(,%‘“. /4w corresponding to a @ width of
100 Mev is approximately 1.0, It is noted that there is appre-
ciable breaking of SU3 symmetry predicted. It is recalled that
for exact .SU3 symmetry we would have

RY '“"N{ﬂxx* "fwem =Yox ;611 KK*

pTw

and -7
: ﬁﬁ}wu» W KK*

The results obtained above show large deviations by’K~ and

Y W KK

TY{KK* g approximately 2.3 times the YQKK 3 O KK |
and Tf,-ﬁ values (however see Appendix I). For the PS-V-V
coupl1ngswf w KK* is approximately 2.2 t1mes'f‘gu « However this
is for a rather small’?%ww, /4w value of .15, the self-consis-
tent result of reference (9). If instead the value of’?},.,/4ﬂ
of .35, obtained from the theory of reference (16) with a full
width for the @ of 9 Mev, is used instead the solution (6.14)

changes to
Mo = 720 Mev T“I KK*/qm. = 9431

| MK"‘ = 905 Mev
= 2081
T?KKM'" (6.15)

15"“ /417 = 1.05

1r%wu /4
¥ e /o

10.7

"

Faxk” 4T

¢35 (fed in) 5 :
vwm*/% = +576

1.74 (fed in)

[}
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The PS-V-V splitting is now much smaller, and in addition the
value of'rg"w /4n is equal to the experimental value! Thus if
we had chosen to employ'z.w” and'fﬂxx* as the input quantities
instead of Wy, and ¥ o Ve would have obtained the resulta
of (6.15). It should bo remarked thatTP“.u and'b;m_ are
comparable only because the same scale factor (mTv) was used for
each in the definition of the vertex function, equation {4.41).
If we had used some other convention, for instance that of

using the mass of the PS involved instead of m“.for all couplings
the value of7r-KK,

If we translate the results of Capps' K* bootstrap into

would be increased by a factor mK/m",= 3.57.

the notation used here (25) we find that when7f“KK, assumes its

experimental value Capps predicts
p s

"5 "T(’m‘ = 2.00

while this calculation gives

8.68

2

T o

The results are very close considering the very dlfferent

1.90

techniques. The main reason for this is no doubt because the
seif—consistent results found here are so close to the exper-
imental values used by Capps (26). _

We next investigate the effects of varying some of the
paramaters of (6.13). Consider first the cutoff A g9+ This
is the only cutoff necessary, as all integrals except 622
converge. The standard choice 131\ = 40, in units of 4m, ,
or \ 0o = (1750 Mev) Calculat;ons were performed with
A 5, = 200 ((3900Mev) 2) and/\ ,, = 1000((8750 Mev)Z). The
solutions agree in all respects within 2%, even though the
value of the cutoff integral 622 changed by ~570%. The results

are sufficiently insensitive to the cutoff.
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It is next aéked how sensitive‘the results are to cutoffs

on integrals other than G,,, that is, to the unknown high

energy regions. To test 3§13 we place the same cutoffl\,on all
integrals and inspect the resulta for \ other than infinity.
The effects are significant (Table I). The trend toward dras-
tically increased coupling constants, especially‘t‘KK, , 18
evident. Physically this stema from the fact that the cutoff
reduces the size of the forces and the coupling constants must
be increased to make up the difference. TheT;LKK* has a par-
ticularly difficult time since it supplies most of the forces
to bind the K* (in the region of interest the attractive P ex-
chénge outweighs the repulsive K* exchange in the 4 K, indicating
that a single channel K* bootstrap is possible). The same
trend toward larger couplings was found by Zachariasen and
Zemach (9).

We next investigate the effects of placement of the sub-
tragtion points. Consider first the position xo(K*) used in the
K* bootstrap. The standard case used xo(K*) = 0., We now vary
xo(K*) between +3 and =3. The results of Phase I for such
values of xo(K*) are shown in figure 10 with MP as a paramater
(we show only the Root 1 solution). The effects are appreciable.
As the subtraction point becomes more positive the coupling
constants must become larger in order to allow D to move from +1

~at the subtraction point to O at M s & shorter distance as

K" :
xo(K*),becomes more positive. This is compounded by the curious

effect that M_, decreases with increasing xo(K*), instead of

K*
increasing.

We next restore x (K*) to its standard value and allow
x ( E) to vary from 1ts standard value of =~5.0 in the negative
direction. The values of'KP“w /4m and KK*/4" are fixed,
TZKK*/% is very insensitive to Mp and therefore to xo((i ),

n

and therefore retains its standard value of 9.3. M, is also

insensitive to Mp and remains approximately 9033 Mev. 1In

a manner similar to the K* case the various coupling constants
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TABLE I.
A= 1000 (8.75 Gev)? A= 200 (3.9 Gev)?

Me 760 Mev ' 768 Mev
MK‘ 903 Mev : 902 Mev
'Xf/tlﬂ 2.23 3.2
72/411 .15 (fed in) .15
75/411 1.74 (fed in) 1.74

2 /4m 10.7 o 15.4
'T:/‘l-n' 1.71 1.81
¥/ 10.6 13.9
'(.?/4-,, 1.02 1.68

Table I. Variation of the self-consistent solution with
changing the cutoff
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Fig. 10

Dependence of Phase I results on xo(K*)
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decrease with decreasing xo(P )« This is not true for“{?xx
because .even though decreasing x_(Q ) yields smaller values of
Mg (as expected) and therefore smaller values of ¥ TY XE“JU;K“
(cf. figure 8), the self-consistent result for'ﬁ;vfrdecreasea
even faster. Thus as x (G ) moves to =10,0, the self—consistent
paramaters become Mf 750 Mev, "5'”‘.,- Jdm = 1421, ’T /4."- =
2,9 “uxx/‘l‘" = 7.6 Tum«:*/q’“ .59; for x (p) -20. o the
results are M= 735 Mev, "6(,,,,, [oy = o7, '~5PKK/4.,,- = 4.6; fwm{/zxﬂ- |
6.2, kK*/¢" = o4 These results are gimilar to those obtained
by Zachariasen and Zemach (9).

The model described above has ignored the existence of the
g meson at 1020 Mev and the ramifications of g -w mixing (14,
15). Ve iﬁvestigate the effects of this omission by the crude
expedient of changing the input mass of the W from 785 Mev to
930 Mev, the mass predicted by the Gell-Mann,Okubo mass formula
(22,27). We find that the self-consistent value for Mp slides
up toward the upper edge of the permissible window (M&, -m )%
we obtein MP = 000 Mev. The coupling constants are quite ine
sensitive to the change;T(,zKK/llr" becomesa approximately 3.6
while none of the remaining Y 's changes from the values of
(6.14) by more than 5%, and M., drops slightly to 896 Mev.

We finally examine the matter of the unsymmetrical nature
of the resulting solutions. As a measure of this we compute
 the ratio Mij/Mji’ where we call thé left~hand side of equation
(5.21)b the matrix M. For the K* bootstrap under the standard
conditions we find

M21/M12 = 1465

For the e bootstrap we have

(2]

12/M21 A1 ]

MIB/MBI = le3

M32/M23 = 2.5

For the two channel K* bootatrap the non-~symmetry is typieal
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of that found in other two-channel bootstraps. That found in
the three channel e bootstrap is somewhat greater; similar
calculations do not exist, so comparison is impossible. The
approximation method of reference (2J) avoida thia particular
sickness.,

In conclusion we remark that the agreement between 1‘,2““/4”
and the e and K* masses predicted here and found by experiment
is encouraging. Particularly gratifying is the fact that'X}wwr
is no longer impossibly large. The other predicted coupling
constants, experimentally unknown and likely to remain so for

the forseeable future, tend toward the SU_ values with only

3
minor splittings, with the notable exceptions off{

KK* andYuKK .'
The numerical values evidently cannot be taken seriously in
view of the dependence on the various subtraction points and
the intractable problem of the high energy behavior of the
forcing terms. The former problem may be alleviated with ime
proved approximation schemesj; the latter will be with us for
some indefinite (long) time. Yet despite these problems the
striking fact remains that the bootstrap solutions continue to
exist evenm in such complex situations as that treated here, and

continue to give sensible anawers,
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APPENDIX I.

Here we investigate the modifications to the calculation
required if we accept the existence of the g meson and the
complications of ¢ - mixing. This influences only the pportion
of the double bootetrap, since W (and hence g) do not enter into
the two channel K* bootstrap. We therefore consider a four chan-
nel @ bootstrap consisting of the channels o 17, T » 7 B KK
for channels 1,2,3,4 respectively. The numerator function
has the form

Fp, Fy Fy Fy _
F F F F '
7
N= | _° ¢+ S =Gt (a.1)
Fo Fp ¥y Fy
F; Fg Fg Fy

where Fi is the same as Fi with the replacements M ,—= M, ,

Tw AB -"("‘AB. The function Fg now includes terms involflng

e W , and g exchange. We write

F, = f(’iw £(Myy yM ) (ae2)

with £(M,,M;) the Born term (equation (4.90)) describing the
u channel contribution to the 4 A - B amplitude. Then
' = 2
F, =Yy £(M M) F, =¥ Y £(M ,M,) (a.3)
4 o nf g4 7 ew‘ erw  wlg

We define two new orthogonal states,

| A> = a |nwd+ b low 8> [x B = clunwd+dlpdd (acd)
<“Ath>=0=ac+bdg aa.2~v»b"?'=1=<:2+d2

These are three condit%ons on a,b,c,de. We shall impose a fourth

condition, thatx A | V| x &> = 0. This takes the form

2 2
a“ F, + b F'4+2abr7.-.o {a.5)

We define o by



) - 'T'P1t¢ f(M# ’ Aﬁ)

® = F /F, = T o TH,, 5 1)

The function f(M ,M ) does not strongly depend on M and M
It is a fair approximation ('“15%) to write

(a.6)

1200 ,M,, ) = £0, My) £ M) | (a.7)

_ ﬂ’
Then
F,? = GF4. (a.e)

With these approximations (a.5) may be solved to give

a=c _(m2k+ D% b=

and (a.4) then implies (a.9)
~Y -1

c=(a:2+1) d=a:(a:2+1)

The masses of A and B are

M, = (aPMg,+ Mg Yo+ 7

(6010)

Mg

(M, + el:zM,‘)(ur:2 + 1)"1/é

Note that {qy AI'ELI'"_B> = 0 automatically.

For the remaining channels we have

oo 7V, a> = ®Fp - Fy
o:2+1

(8011)

~ G!F -F
<K-IHTL'n A) = 25 2
o + 1

"Tevm'x

ey

rpwn x‘,w ¢g(m1'l' 1y 3 Mgy ’Mﬂ ) : (a.l2)
k,,y s(m W gy s My, )

‘Kwku*’if g(mK Mg ATy Mg )

kikw

g(mﬂ ’m“-’mw ’Mw )

o] e I ]

g G o w

where g(mA,mB,mc,MD) is the t or u Born term force for the
process A + B~ C + D. Again the mass dependence of g is weak



and we can make a pretty fair approximation that

g(m" L. Y My, ) f(Mx‘ ’Mﬂ‘ ) = g(m",m",mﬂ.,M“) £(M M, )

.oon(ﬂ.la)
so that F, = « F, and< l’;‘Lt A = 0. For the KK channel
2 = ) ™ v = V. _
a similar relation holds and we find
- \0’ v T "W
Fy = Prrr 28T & 5 (a.14)

YWKK‘ Y"“’(’
About ’XdKK* and quK,, we know nothing. We :herefore make the
obvious assumption that SU3 works and obtain F. = ® Fo+ Then
-1 *L 6 5
<K K lT l-n- A> also vanishes.
With the approximations made above the 4w A channel de-
couples completely and we: are left with a three channel w y ,
n B, KK problem, the mass of the B being given by (a.10).
To find the value of o we write

| 8> = cos elwe) - sin e\ul)

(8015)
Iw): 8in le8> + CcoO#8 elw1>
where “1 is the SUS unitary singlet and W 8 is the I =Y =0
member of the SU_, unitary octet. If a and b are the singlet

, 3
and octet (D - type)(22) coupling constants, respectively, then

Yor ¢ _ b cos & ~ a sin &
K@Wu} a cos 8 + b s8in ©

The quantities © and a/b have been variously evaluated by

(a;16)

many authors (15-19). For any of these solutions YQ-.ﬂ /Y;ﬂf A5,

The ratio f(M#,M“)/ £(M, M, ) < 2 for all values of the

energy. Therefore ««<".04 and the state B is almost pure W .

The effects of the q¢ § channel are seen to be quite small.
More important is the effect of g exchange in the KK - KK

amplitude. However, since the form of the Born terms for the

g and ) are so similar, to a very good approximation we can

lump the ¢ and W exchange terms together with an effective
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coupling constant (ﬁfioxx +%‘§KK)' All calculations go
through as before; it is only necessary to interpret the’Y‘:KK
found in the bootstrap as actually being'rixx +RW§KK « It is
interesting that if m;Kk~wc4KK this predicts a value of

ﬁm/‘Ln = 203

whiech is much closer to the SUa.solution that the solution of
(6.14).
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APPENDIX II.

The calculations performed in this paper have employed the
first determinental, or first iterative, solutions to the
coupled integral equations for N and D, equations (5;3). This
approximation suffers from a variety of diseases (non-symmet-
rical solutions, dependence on subtraction points, the possibil=-
ity'of complex couplings, etc.}. It is therefore of considerable
interest to compare the results obtained using the approximation
with the results deriving from the exact solution of equations
(5.6). Fuleo, Shaw, and Wong (12) (FSW) have performed calcu-
lations for the e resonance using the full integral equation
solution. They do not perform a beootstrap, but rather simply
calculate the cross section forafqr < gy in the one, two, and
three channel cases with Born term forces using experimental
values for the input paramaters-——the experimentally undetermined
couplings are taken from the predictions of SU3 symmetry.

We perform a similar calculation using the same input
forces, but calculating the output using the first determinental
approximation. Following FSW we place a cutoff on all integrals
and adjust it until we obtain the ( resonance at 760 Mev. We
then examine the resulting width of the resonance. Since this
is not a self-consistent calculation the calculated width is
quite different from that assumed for the input; The results of
FSW are compared with the first determinental type solutions in
figure 11, for the one channel (g 4y) and two channel (s 1)
cases. It must be remembered that the first determinental
solutions involve a second paramater besides the cutoff, namely
the subtraction point. The results are not independent of the
choice for xo(f )+« The curves in figure 11 employ xo(P) = =5
For xo(e) between =2, and =10. the width varies between approx-
imately 225 Mev and 300 Mev, respectively. This is about half
the width found by FSW. '

For the single channel case it is found to be impossible to



force the @ mass to be 760 Mev, for any values of x (@) and
the cutoff, using the approximation. This is different from
the resultis of FSW-—apparently the full integral equation
golutions effectively increase the single channel forces.,

To check whether the narrow width found here was due to
the larger cutoff used. (~65 m, vs.~37 m, for FSW) we per-
formed the calculation using the cutoff of 37 m, . This result
is also plotted in figure 11. The resonanece centers at ~RB40
Mev with a full width of ~320 Mevy the width has increased, but
is 8till below the results of FSW,. '

Finally we again follow FSW and plot the results of the
single channel calculation (3 1) using the cutoff found for the
two channel (y ¢1,jw ) Problem. This gives an indication of the
relative importance of the two channels (figure 11). It appears
that the gy oy channel is practically irrelevant to the shape
of the cross section—although the o 4 channel supplies all of
the attraction to bind the P , at the position of the resonance
it contributes something like 2% of the total cross section.
This is similar to the findings of FSW.

The two sets of solutions, that of F'SW and that developed
here, are undeniably different, but not unrecognizably so. The
essential features of both solutions are the same and the details
differ only by factors like two. In view of the fact that no
- numbers deriving from present bootstraps can be trusted to within
such factors anyway, the use of the first determinental approx-
imation appears permissible. With future improvements in the‘
presently intractable portions of the theory (e.g. finding the
correct forcing terms) this luxury may be no longer justified,
but for the present its use is invaluable. In complex problems
such as the bootstrap described here it is imperative to find
some way to eliminate some of the paramaters algebraically-
otherwise the computor bill generated while finding a self-
consistent solution involving, say, seven paramaters as is the
case here, is likely to exceed any preassigned positive number.
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APPENDIX IXII. INTRODUCTION TO THE BOOTSTRAP IDEA

You boil it in sawdust: You salt it in glue
You condense it with locusts and tape
Still keeping one principle object in vieww
To preserve its symmetrical shape. |
Fit the Fifth, The Hunting of the Snark

Lewis Carroll.

This appendiX will attempt to impart at least a cursory
knowledge of the bootstrap hypothesis and philosophy to the non-
afficianado of the fields The bootstrap idea is an outstanding
example of the tendency toward generalizing a successful idea,
or at least an idea not yet unsuccessful, as far as possible
until the breaking point is reached. The bootstrap began life
as a comment concerning a specific reaction, was generalized
to include all strongly interacting particies, was generalized
further by enlarging its sphere of relevance from just masses and
coupling constants to include the internal symmetries of parti-
cles, such as isotopic spin, parity, SU3 symmetry, it is current-
ly concerning itself with electromagnetic and weak interactions,
and the end is not yet in sight. The avid bootstrapper of the
preosent may elaim that the bootstrap theory, or perhaps the
theory which is presumed to be developing from the bootstrap idea,
explains why the strongly interacting particles which exist do
exist, why they have the quantum numbers that they do, and why
pafticles which do not exist really couldn't exist. If he is
very enthusiastic he may claim that‘in addition it explains how
weak interactions and electromagnetic effects can develop, why
we live in a space of 3 + 1 dimensions, and why this is the best
of all possible worlds. At present none of these claims may be
demonstrated-=neither may they be refuteds At the present state
of the art only such crude calculations as may be carried out
give suggestive inferences that there may be something to at



least part of these ideas; The present theoretical situation

is so bad that any technique which attains even a very rough
success must be treated with a certain amount of deference; And
when the same technique obtains similar successes, although in-
dividually tiny, in a rapidly growing number of cases without a
single failure or contradiction the support for the idea must
grow. A theory is deemed successful, not when it has passed all
possible tests, but when it has passed some large and impressive
number and has failed none. The bootstrap hypothesis thus far
has survived a number of tests and to date no outright failure
has been reported.

The bootstrap hypothesis is bhsically a dynamical theory;

"in its present formulation it is firmly united to dispersion
theory, or the S;matrix theory of strong interactions, which in
turn is based on principles abstracted from field theory. It
was soon realized that physics basically consists of scattering
~experiments; accordingly great emphasis was placed on formal
scattering theory. The difficulties which arose in these cal~
culations were all traceable to relativistic effects. The
equation E = ch is justly celebrated, but the effects it de~
sceribes have virtually stopped theoretical particle physics for
the past 30 years. The equivalence of mass and energy can be a
great boon to the experimentalist who wishes to iﬁvestigate some
particle—he need only buy a sufficiently large accelerator and
make his own particles_ to look at (there are some who might
describe this account as a mild oversimplification). To the
theorist wanting to describe some reaction the effect is more
insidious. The theory instructs him to consider all energies,
but as the energy increases more particles may be produced, and
their effects must also be considered. The result is that any
given reaction is perforce coupled with an infinitude of others.
This fact effectively eliminates any possibility of performing
an exact calculation, and in pfactice the infinite chain must

be broken somewhere and partial systems considered. Both field



theory and dispersion theory break the chain in more or less
the same fashion and consider generally the same sets of coupled
reactions. They differ chiefly in the manner in which they are
rive at physical predictions which may be compared with exper-
iment. However the different steps are apparantly non-critical,
for both procedures seem invariably to arrive at the same results.
The bootstrap hypothesis may be the first means of differentiat-
ing the two theories. The bootstrap idea is a natural outgrowth
of dispersion theory over the past several years, and is heavily
couched in its 1§nguage. The field-theorist-turned-bootstrapper
could possibly arrive at the same results as the S-matricist,
but the distortions to the original concepts of field theory
would probably make the result unrecognizable. The field theorist
claims that if we postulate a certain number of elementary fields
which interact through couplings of various, given, sirengths,
then in principle all the rest of physics follows. The boot~
strapper supposes that nothing is given and still all the rest
of physics follows. The fashion in which this comes about is
discussed below, and we now turn our attention to the S-matrix.
With the recognition that physics may be explained almost
entirely in terms of scattering reactions between varioua coupled
states, Heisenberg (28) introduced the matrix é which transforms
the initial set of states into the final set. MbBller (29) later
defined the operator § - i, and factored out an energy-momentum
delta function from all of its matrix elements, leaving a matrix
T« Knowledge of 5 or 5 is sufficient to describe the cross
section or any other fedture of a given reaction. Certain
general properties of é and &‘could be imposed. First, of
4course, the theory must be Lorentz-invariant. Second, the §
“matrix is unitary, §+5 = i = 5 é*. This condition leads to
singularities of 8 in some of the momentum variables. From field
theoretic calculations it was found for all of the processes
investigated that S was analytic except for these singularities,
and no singularities were found due to ahy other mechanism than
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the unitarity condition. At times the connection is not ob-
vious, for some of the singularities may be due to the existence
of other singularities which arise directly from unitarity. The
connection was made very early of an association of the forces
acting between particles with the singularities of the S-matrix.
In field theory, the forces between particles arise from the
exchange of various objects between the particles. These ex~
change reactions produce singularities in the S-matrix, the
position and‘strengfh of which are functions of the exchanged
particle's quantum numbers. But then these singularities were
found to be exactly consistent with the unitarity condition.

The S-matricist adroitly reverses this entire outline. Here the
unitarity condition is postulated as basic, this implies singu-
larities, which may then be associated with particles whose
gquantum numbers are determined by the features of the singularitye.
The original hope of the S-matricist was this: given certain
fundamental singularities and the requirements of unitarity and
analyticity of the S-matrix, the existence of other singularities
is implied, which may then be interpreted as manifestations of
other particles whoée charactéristics are completely determined
by the features of the asmociated singularity. That is, the
consequences of the unitarity and analyaticity conditions are

so difficult to determine that the rather brilliant suggestion
was made that the conditions determine practically all of physics.
A great deal of work in this direction has been done in the past
several years.

Only rather recently, however, has a splendid new fillip
been added, the piéce de resistance of the whole affair. This
consists in the assertion that the singularities produced from
the action of the unitarity and analyticity conditions with the
original given singularities may themselves in various other
reactions imply, directly or indirectly, the existence of the
very singularities which were postulated at the outset of the



comPutation. This is the bootstrap idea, which closes the cal-
culational circle. For physical understanding, replace the word
"singularity" in all of the above, by the words "mass" or
"partiecle'. That is, because the S-matrix is a Lorentz-invariant
analytic function of all momentum variables with only those
singularities required by unitarity, particle A may help produce
particle B, which helps produce C, which is involved in the for-
mation of Dysese, while some of B,C,D,... are instrumental in the
formation of A, It is the closing of this circle which is the
heart of the bootstrap idea.

Consider an example of how such a situation may come about.
In order to explain the electromagnetic structure of the nucleon
Frazer and Fuleo (30) pbstulated the existence of a meson which
should be a resonance in the 4y gy system with I = 1, J = l. Such
a meson was eventually found (31) and was called ? « From the
theoretical side attacks were made to discover the source of the
forces whiéh bound the two pions together to form P e After a
number of failures Chew and Mandlestam (1) hit upon a successful
idea. Forces are supposed to arise from particle exchange—
the exchanges lead to singularities in the S-matrix; the residues
or discontinuities of these singularities depend both on the
quantum numbers of the exchanged particle and on the quantum
numbers of the state being formed. For example, two pions can
be in a state with I = 0,1,2, and J = 0,1,2,3,++« Both the size
and sign of the singularity produced by the exchange of a particle
of given quantum numbers varies with the choice of I and J. The
size of the singulairty refers to the magnitude of the force, the
sign determines whether it is attractive or repulsive. For an
exchanged particle with I = 1,J = 1, the resulting force is large
and attractive in the I = 1, J = 1 state of two pions. Read
differently, a large attractive force in the I = l, J = 1 system
of two pions, possibly large enough to make a resonance possible,

arises from the exchange of a dipion resonance with I =1, J = 1.
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Thus it was natural to suggest a bootstrap mechanism for the e
in which a large portion of the forces mecessary to bind two
pions together to make a f comes from P exchange. In the first
bootstrap calculation (9) the P was given a certain mass and
coupling strength to two pions, the force due to e exchange was
calculated in some approximation, and a dipion resonance in the
I =‘1, J = 1 channel was found corresponding to a certain mass
and coupling constznt. It was then demanded that the output
values of the mass and coupling constant be identical with those
originally postulated. A sonlution to this self-consistency
problem was found to exist. All such calculations are necessarily
abominably crude, but the resulting predictions are not unrecog-
nizably different from the experimental values.

The next step was the extension of the bootstrap hypothesis
to include all strongly interacting particles (2). In the @
bootstrap outlined above, the f properly bootstraps itself, but
the pions were treated as fundamental elementary particles. It
-is now proposed that we could calculate the properties of pions
in some other bootstrap-—this would involve many particles,
including f . These other particles would also be bootstrapped
~in terms of still other particles. Eventually one reaches a
closed system in which all of the particles are determined in
terms of all of the others. Unfortunately it appears that this
complete, closed set consists of the entire universe. It is
obviously necessary to break the logical chain somewhere and do
partial calculations, taking some of the input values from exper-
iment or other sources. An example of a bootstrap of greater
- complexity that is more nearly closed is the reciprical bootstrap
of the nucleon N and the famous 4 N (3,3) resonance, N*. Here
the exchange forces are such that N exchange dominates the forces
producing the N*, while N* exchange dominates the forces making
N. Here again the pion features are fed in at the beginning and

are not determined in the actual computation. In addition there
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are many more forces which have not been included, and inelastic
effectis are very important.

This last effect, inelasticity, is another consequence of
relativity. The the_ory instructs us to consider the reaction
w7 = KK whenever we talk about the qr 4y =4y ;¢ reaction (or the
KK - KK reaction). Similarly g4y = NN, qpqy = NN* | qp oy = qre0 4
etc;; all should be included. In practice approximations may
be made by ignoring the more massive stateSewthus 4 - NN
is presumed to be less important that seqp — KK because the
greater mass of NN over KK violates energy conservation, quan-
tum-mechanically-wise, to a greater extent. In a similar fashion
exchange forces from massive objects count less than those from
lighter objects because the latter forces have longer ranges—
the range of a force is inversely proporticnal to the mass of the
exchanged particle. These features permit a systematic approx=-
imation technique. One includes first the least massive particles
and in order to improve a calculation one later agrees to include
heavier and heavier systems. This is not a drawback peculair to
bootstraps, it is the barrier found by quantum-mechanicians thirty
years ago. The problems are enormously complicatéd, and calcu-
lations are crude at best. This is why competing theories‘cannot
be readily evaluated, for almost nothing may be calculated with
anything.

It is a firm principle, however, that better results should
follow from more complete calculations. In addition, outright
failure on a theory in a given case is sufficient grounds for
assassination. These points are the justification for continued
computations in new and more complex situations. Thus bootstrap
solutions should improve as more of the universe is considered;
the particular relevance of the calculation performed in this
thesis is the test of the bootstrap calculation in a case consid-
erably more complex than any hitherto treated. Further, the
bootstrap must not predict the existence of particles which in



fact do not exist. Ideally the bootstrap solution to the analy-
tic S-matrix should be unique and an exact image of the réal
world. So far the idea has been successful. _

Consider now the particular bootstrap performed in this
thesis. We assume the validity of S-matrix theory, and assume
‘that all singularities of the S-matrix arise from the unitarity
condition. In common with any problem of strong interaction
physics we must limit the universe that we investigate. Basic-
ally we are attempting to improve the P bootstrap by including
more inelastic effects. For reasons set down rather more fully
in chapter I we agree to consider the qr -y, qr (9 and KK stateé
simultaneously; FEach of these states coupies to the others and
the G)is found as an I = 1, J = 1 resonance in each. The forces
between the particles are presumed to arise solely from exchanges
of single particles——this may not be too bad an approximation,
for the single particles which we exchange are without exception
resonances in the multi-particle systems which could be exchanged,
and therefore presumably include the dominant effects. This
approximation is the standard one for any bootstrap calculation,
and for virtually all of the remaining dynamical calculations,
field theory or dispersion theory; The forces calculated in this
fashion are called Born forces. We do not have enough equations
to determine all of the features of all of the particles whiéh
are involved, so we alleviate this drawback by two methods. First
we simultaneously bootstrap the K* meson. For reasons outlined
in the firast chapter this offers two further equations. The K*
bootstrap consists of just two channels, 5y K and 1, K « Even
after this ploy some quantities are left undetermined. The
complete calculation involves thirteen numbers, while we find
Just seien equations. We therefore take six of the numbers from
experimente.

In the.course of the caleculation we have need to solve a

1

non-linear integral equation. This we solve by the ND~
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technique (17). This already confesses an inadequacy of hand=-
ling states involving more than two particles. What effects this
omission, common to any calculation in strong interaction physics
without exception may have,are by all practitioners of the art
devoutly hoped to be small. No one knows if this is true. Even
admitting the validity of this particular appréximation, we
further abuse the problem by making an approximate solution to
the integral equations, called the first determinental approx-
imation (18). This device, or something like it, is mandatory
for a problem of this complexity as the computation would othere
'wise be hopelessly beyond the abilities of a modern computor to
perfbrm, or a physics department to pay for. The price paid

for this ability to complete the solution is judged in Appendix
II to be acceptably small.

After all of these approximations any resultis obtained may
justly be regarded with a healthy degree of scepticism. Yet
sfriking agreement with experimental results can be reached,
much better than can possibly be expected in view of the paucity
of accurate procedures. This has been taken optimistically as
evidence that there is really something to the entire scheme.

The whole difficulty, of course, is that the bootstrap is a
dynamicél theory, and as yet no one has any idea how to do dynam-
ical calculations with any degree of validity. There is at
present a large and growing number of theorists who have nothing
at all to do with dynamics, they revere instead the noble visage
of Syrmetry (large S is henceforth abandoned.) We consider this
matter further.

The study of symmetries has been most profitable in the
history of physies. As an aid to calculation and as a means of
classification it has found greét utility. There are some
examples which are understood in terms of general principles.
That physics is independent of translations in space-time is
reflected in the conservation of total four-momentum. Invariance
" with respect to rotations in three-space leads to angular



momentum conservation. Other symmetries, nonuniversal, are
also famous. We include here isotopic (or rather isobaric)
8pin, and more recently the broken but recognizable symmetry
of the SU, group ( unitary symmetry). A great deal of physics
may be deduced from such symmetries——new elements were predicted
from Mendelyeev's periodic table, new particles and branching
ratios can be obtained from the consequences of isotopic spin
conservation, while the prediction of the strangeness -2 particle
Il. is a great triumph of unitary symmetry. Higher and higher
symmetries, more and more broken, are continually being suggested
and evaluated.

From the point of view of field theory these symmetries
are given, non-calculable facts. This has also been the opinion
of S-matricists up to the past few years; But in a completely
bootstrapped universe in which all particles are assumed to be
completely determined by self-consistency equations, there should
not be any arbitrary freedoms. :-In a world where masses are not
arbitrary, given quantities it appears to make little sense to
impose a priori that the masses of several different particles
should be equal, even if what it is that they are equal to is
calculable self-consistently. No one has demonstrated that
such internal symmetriés as isospin and unitary symmetry really
do follow from the bootstrap conditions, hut several attempts
have at least made the idea plausible. Parity, too, has been
investigated from the bootstrap point of view. In'sum, we are
again left with the usual situation in which no one can prove
that the idea works, but it is not implausible, and it has
certainly not been shown to be false. No’matter how succesgful
and productive a symmetry scheme may be it is most desirous
that a satisfactory basis for the existence of that symmetry
be found.

The bootstrap hypothesis has now been subjected to a variety
of tests of more and more generality. The idea that all strongly
interacting particles should have their.origin in a mechanism
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similar to that producing the ¢ is exceptionally appealing in
view of the proliferation of newly discovered (or predicted)
particles., The matter of deciding which of these are elementary
and which are not has become so difficult that a most reasonable
and welcome suggestion is that none of them are; all are on

an equifalent footing. It is possible and plausible that inter-
nal symmetries may be completely determined by the bootstrap
conditions. An indication that electromagnetic and weak inter=
action effects are not beyond the range of the bootstrap has
been made by Dashen and Frautschi (32). That everything, or
even that most of physics should follow from such esoteric and
non-intuitive laws as form the basis for S-matrix theory,
analyticity and unitarity, may be philosoﬁhically displeasing.
There are, however, many alternatives. The easiest and most
obvious escape is to say that the bootstrap idea is wrohg, or
simply an identity, and physice really doesn't follow from the
bootstrap idea. But if the bootstrap idea is thought to be
correct, one can still say that.there are really different
principles for its foundation or, alternately, that the princi=
ples of S-matrix theory are based in turn on some deeper physical
principles; If none of these attempts works it is still‘always
possible to note that the principle of least action isn't really
very intuiti&e either, yet people have accepted it as a perféctly
good foundation for a healthy portion of physics. 'If people did
philosophise to Hamilton they're forgotten now; Moral: if a

principle works, its a good one.
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