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Abstract

We extend some recent results of Lubinsky, Levin, Simon, and Totik from measures

with compact support to spectral measures of Schrödinger operators on the half-line.

In particular, we define a reproducing kernel SL for Schrödinger operators and we

use it to study the fine spacing of eigenvalues in a box of the half-line Schrödinger

operator with perturbed periodic potential. We show that if solutions u(ξ, x) are

bounded in x by eεx uniformly for ξ near the spectrum in an average sense and the

spectral measure is positive and absolutely continuous in a bounded interval I in the

interior of the spectrum with ξ0 ∈ I, then uniformly in I

SL(ξ0 + a/L, ξ0 + b/L)

SL(ξ0, ξ0)
→ sin(πρ(ξ0)(a− b))

πρ(ξ0)(a− b)
,

where ρ(ξ)dξ is the density of states. We deduce that the eigenvalues near ξ0 in a

large box of size L are spaced asymptotically as 1
Lρ

. We adapt the methods used to

show similar results for orthogonal polynomials.
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Chapter 1

Introduction

1.1 Intro

In this thesis we exploit the similarities between differential and difference equations

to show a half-line Schrödinger operator analogue of recent results of Lubinsky, Levin,

Simon, and Totik. In this paper we provide definitions of a reproducing kernel SL

and of regularity for half-line Schrödinger operators. We prove the analogues of

universality and clock behavior of eigenvalues in a box for perturbed periodic half-

line Schrödinger operators.

1.2 Notations

Let

τφ(x) = −d
2φ(x)

dx2
+ V (x)φ(x) (1.2.1)

be a differential expression. We assume throughout that V is locally integrable and

bounded from below. Let u, y be the standard fundamental solutions of

τφ(ξ, x) = ξφ(ξ, x) (1.2.2)

with initial conditions

u(ξ, 0) = 1 = y′(ξ, 0), u′(ξ, 0) = 0 = y(ξ, 0). (1.2.3)
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Throughout the paper, u′, y′ denote the derivative with respect to x.

Associated to τ is a Schrödinger operator A in L2([0,∞)) given by

Aφ = τφ (1.2.4)

φ ∈ domA = {φ ∈  L2 : φ, φ′ ∈ AC([0, c])∀c ∈ (0,∞);φ(0) = 0},

where AC([a, b]) are the absolutely continuous functions on [a, b], as in [GZ06]. This

operator is then maximal, as shown in Chap. 3 of [Wei87]. Our results are valid for

both Dirichlet and Neumann boundary conditions, but we only give the proofs for

the Neumann case.

The adjoint operator A∗ of a densely defined linear operator A is defined by

D(A∗) = {ψ ∈ H : ∃ψ̃ ∈ H, 〈ψ,Aφ〉 = 〈ψ̃, φ〉∀φ ∈ D(A)}

A∗ψ = ψ̃,

and an operator A is self-adjoint if A = A∗ and D(A) = D(A∗). Since V is assumed to

be bounded from below, Theorem 1.1 of [BS91] gives that A is essentially self-adjoint,

and therefore there exists a unique self-adjoint extension (Section 2.2 [Tes09]).

There is a shift of notation here from the orthogonal polynomials literature, so x

in our setup is analogous to n of the discrete case, and our ξ is the analogue of x of

the discrete case. The analogues are illustrated in the following ”translation” table:
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Difference Differential

recurrence relation differential expression

orthogonal polynomials solutions of eigenvalue equation

xn cos(
√
ξx)

xn + an−1x
n−1 + ...

∫ L
0
f(x) cos(

√
ξx)dx with f ∈ L2(0,∞]

x ξ in u(ξ, x)

n x in u(ξ, x)

The spectral measure of an operator A is given by Theorem 2.2.3 of [Mar86] as

follows. It is a measure dµ which makes the following two formulas hold for every

function f ∈ L2[0,∞):

W (ζ, f) =

∫ ∞
0

f(x)u(ζ, x)dx (1.2.5)

f(x) =

∫
W (ζ, f)u(ζ, x)dµ(ζ) (1.2.6)

and

〈f, g〉dm = 〈W (ζ, f),W (ζ, g)〉dµ(ζ).

Its existence is guaranteed by the theorem. We change variables from Marchenko so

that his
√
ξ is our ξ. In other words, for the Neumann boundary condition, there is a

unitary transform U : L2([0,∞))→ L2(dµ), given by integration against the solution

u(ξ, x)dx. The inverse transform is given by integration against u(ξ, x)dµ(ξ). These

transforms are isometries. We let e = σess(A).

We now define a reproducing kernel SL for Schrödinger operators.

Definition 1.2.1. Given a Schrödinger operator A as in (1.2.4) with the Neumann
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boundary condition, we let the reproducing kernel be

SL(ξ, ζ) =

∫ L

0

u(ξ, t)u(ζ, t)dt. (1.2.7)

We see that the reproducing property is satisfied with respect to dµ:

u(ξ, x)χ[0,L](x) =

∫
SL(ξ, ζ)u(ζ, x)dµ(ζ). (1.2.8)

We are primarily interested in the case where the potential V = q + p where p is

periodic with period P and continuous.

Definition 1.2.2. We call a perturbation q non-destructive if it leaves the essential

spectrum unchanged and zero-average if

1

x

∫ x

0

|q(t)|dt→ 0. (1.2.9)

We assume throughout that the perturbation q is a non-destructive zero-average

perturbation e.g. q → 0 at ∞.

The spectrum of a periodic Schrödinger operator e is a union of closed intervals

(Background Section 2.2.1). Let ∆(ξ) = y(ξ, P ) + u′(ξ, P ) be the discriminant and

let e = ∪[ln, rn] so that ∆ is a invertible on each [ln, rn]. We call each [ln, rn] a band

and each interval in R\e a gap. When rn = ln+1, we call the point ξ = rn a closed

gap. Furthermore, there exists a first band, so shifting q by a constant in energy, we

can assume that min e = 0.

We let A = − d2

dx2 + p(x) + q(x) be our perturbed periodic Schrödinger operator,

where p is continuous periodic potential and q is the perturbation.

1.3 Results

We can now state our main result:

Theorem 1.3.1. Let A = − d2

dx2 + p(x) + q(x) with periodic and continuous p and

non-destructive zero-average q and let dµ(ξ) = w(ξ)dξ + dµs be its spectral measure.
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Let I ⊂ eint be a closed and bounded interval such that w is continuous and non-zero

on I and supp(dµs) ∩ I = ∅. Let ξ0 ∈ I and a, b, B ∈ R. Then uniformly in I and

|a|, |b| < B
SL(ξ0 + a/L, ξ0 + b/L)

SL(ξ0, ξ0)
→ sin(πρ(ξ0)(a− b))

πρ(ξ0)(a− b)
, (1.3.1)

where ρ(ξ)dξ is the density of states.

Like in the discrete case, the asymptotic behavior of the kernel SL for the per-

turbed periodic operator A depends on the density of states ρ(ξ)dξ of the periodic

operator A#, defined, for example, in Berezin-Shubin (see Background Section 2.2.2).

The measure ρ(ξ)dξ is the same for Dirichlet and Neumann boundary conditions.

It is well known that for the Christoffel–Darboux kernel

Kn(x, y) =
γn−1

γn

pn(x)pn−1(y)− pn−1(x)pn(y)

x− y
,

where pn’s are orthonormal polynomials and γn is the leading coefficient as in [ST92].

This expression is called the Christoffel–Darboux formula (Background Section 2.4.4),

and we show its analogue in Section 3.2 for SL.

From (1.3.1) and the Christoffel–Darboux formula (3.2.4) we deduce that the zeros

of u′(−, L), scaled by the density of states, will be asymptotically equally spaced, like

the zeros of the sine function. We adapt the definition from [LS08] (Background

Section 2.5.3):

Definition 1.3.2. Fix ξ∗ in an interval I, and number the zeros ξN of u′(−, L) with

increasing positive integers to the right of ξ∗ and decreasing negative integers to the

left so that ... < ξ−1 < ξ∗ ≤ ξ0 < .... We say there is strong clock behavior of

zeros of u′ at ξ∗ on an interval I if the density of states ρ(ξ)dξ is continuous and

nonvanishing on I and for fixed n

lim
L→∞

L|(ξn − ξn+1)|ρ(ξ∗) = 1, (1.3.2)

and we say there is uniform clock behavior on I if the limit in (2.5.3) is uniform

on I for fixed n.
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In Section 3.5, we show

Corollary 1.3.3. Let A, e, I, ξ0 as in Theorem 1.3.1. Then there is uniform clock

behavior of the zeros of u′ and y on I.

As an example we consider the case p = 0. In Section 3.6 we show by direct

computation that given same conditions on the measure as in Theorem 1.3.1 we have

lim
L→∞

SL(ξ + a
L
, ξ + b

L
)

SL(ξ, ξ)
=

sin
(
a−b
2
√
ξ

)
(2
√
ξ)

a− b

which yields that the eigenvalues in a box of size L are spaced asymptotically as 1
2L
√
ξ
.

1.4 Methods

Regularity is a key property of measures on compact support, and has received a lot

of attention in OP literature (Background Section 2.3.2). We adapt the regularity

condition to spectral sets of half-line Schrödinger operators as follows:

Definition 1.4.1. Suppose e ⊂ R is the essential support of a spectral measure dµ

of a Schrödinger operator with Neumann boundary condtion. We say dµ satisfies

regularity bounds if for any ε > 0 there exists δ1 > 0, C such that for all ξ with

dist(ξ, e) ≤ δ1 the solution u satisfies

∫ L

0

u(ξ, x)2dx ≤ CeεL, (1.4.1)

with C not dependent on ξ, L.

In Section 3.1 we show that a Schrödinger operator with potential of the form

q(x) + p(x) with continuous periodic p and non-destructive zero-average q (as in

Definition 1.2.2) satisfies regularity bounds.

Lubinsky’s inequality carries over to our setup, as we show in Section 3.5. Given

two measures dµ ≤ dµ∗, this inequality gives us a bound on the difference of off-

diagonal kernel in terms of ratios of diagonal kernels. Then similar to Lubinsky
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[Lub09], we use the variational principle (see Background Section 2.4.3) to get asymp-

totics of ratios of diagonal kernels. We find a model measure, for which we can show

universality directly. In our case it is the periodic Schrödinger operator. We construct

a comparison measure that dominates both the model measure and the measure of

interest. Then we use our version of Lubinsky’s inequality (3.5.1) to compare the

kernels of the measure of interest to the comparison measure and the kernels of the

model measure to the comparison measure. Then we deduce that the asymptotics of

the model measure kernel and that of the measure of interest are close to the same

thing (namely, the asymptotics of the kernel of the comparison measure), they are

close to each other. Since we know the universality for the model measure, we thus

get it for the measure of interest as well.

Similar to Simon [Sim08b] and Lubinsky [Lub09], we need a measure dµ#(ξ) =

w#(ξ)dξ + dµ#
s , which corresponds to a Schrödinger operator A# and satisfies the

following properties (we call such a measure a model)

(1) σess(µ
#) = e

(2) w# is continuous and nonvanishing on e

(3) For any compact interval I ⊂ eint and ε > 0 as L→∞ uniformly on I

sup
ξ∈I

e−εLSL(ξ, ξ, dµ#)→ 0. (1.4.2)

(4) For any compact interval I ⊂ eint for all ξ ∈ I uniformly,

lim
ε→0

lim
L→∞

SL+εL(ξ, ξ, µ#)

SL(ξ, ξ, µ#)
= 1. (1.4.3)

(5) For ξ(L)→ ξ0 in eint

lim
L→∞

SL(ξ(L), ξ(L))

SL(ξ0, ξ0)
= 1 (1.4.4)

and this limit is uniform in I.
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We need these properties in the proof of Theorem 1.4.2. Theorem 3.4.3 immedi-

ately implies that the operator A# with periodic potential satisfies model conditions

3-4. In Theorem 3.4.1, we notice that model condition 5 is satisfied. Thus, A# is a

model. We therefore can use the periodic potential as a model for e, whenever q is

non-destructive.

We construct the comparison measure dµ∗ to dominate both dµ and dµ# and to

be continuous and non-vanishing on I with w∗(ξ0) = w(ξ0). We let dµ∗ be the sup of

dµ, dµ# on a compact subset of R and dµ + dµ∗ on the rest of R. The comparison

measure is a scalar multiple of a spectral measure, as we show in Section 3.5. We

call such measures unnormalized spectral measures, as analogous to unnormalized

measures on compact sets. If u, y is a fundamental system of solutions and SL the

reproducing kernel associated to a spectral measure dµ, then for s > 0 we associate

u√
s
, y√

s
, and the reproducing kernel 1

s
SL(ζ, ξ, dµ(ξ)) to d(sµ). A spectral measure

dµ must have a prescribed asymptotic at infinity (Theorem 2.4.2 of [Mar86]), which

implies that the normalization constant s is unique and the reproducing kernel is

well-defined. Henceforward, we use the letters dµ, dµ∗ to denote spectral measures

which may be unnormalized and all results in Section 3.2 are shown for unnormalized

spectral measures. Also, the definition of regularity bounds works just as well.

The perturbed operator may have countably many eigenvalues in each gap, but

the only limit points are the bands’ endpoints. When p is bounded and continuous,

the size of the nth gap goes to 0 as n→∞ (Lemma 2.9 of [MW66]), so only finitely

many gaps and finitely many eigenvalues do not lie in {ξ : dist(ξ, e) ≤ δ1} for any

δ1 > 0. By construction, the same will be true for the comparison measure. We end

up needing this fact in the proof of Lemma 3.3.3.

In Section 3.3, we show

Theorem 1.4.2. Suppose dµ(ξ) = w(ξ)dξ + dµs, dµ
∗(ξ) = w∗(ξ)dξ + dµ∗s are un-

normalized spectral measures with σess(dµ) = σess(dµ
∗) = e. Suppose dµ, dµ∗ satisfy

regularity bounds and have finitely many eigenvalues outside of {ξ : dist(ξ, e) < δ1}

for any δ1 > 0. Suppose that at least one of dµ, dµ∗ is a model measure. Let I ⊂ eint

be a closed and bounded interval such that w,w∗ are continuous and strictly positive
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on I and (supp(dµs) ∪ supp(dµ∗s)) ∩ I = ∅. Let ξ0 ∈ I and ξ(L) → ξ0 as L → ∞.

Then uniformly in I
SL(ξ(L), ξ(L), µ)

SL(ξ(L), ξ(L), µ∗)
→ w∗(ξ0)

w(ξ0)
. (1.4.5)

In Section 3.4, we compute the universality limit of the kernel in the unperturbed

periodic case to be

lim
L→∞

SL(ξ0 + a
L
, ξ0 + b

L
)

SL(ξ0, ξ0)
=

sin(πρ(ξ0)(a− b))
πρ(ξ0)(a− b)

, (1.4.6)

where ρ(ξ)dξ is the density of states corresponding to the periodic Schrödinger oper-

ator. To make this calculation, we use a standard formula to express the density of

states in terms of the imaginary part of the diagonal Green’s function, and then we

express the Green’s function in terms of the solution u.

From Theorem 1.4.2 and adapted Lubinsky’s inequality we deduce Theorem 1.3.1.
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Chapter 2

Background

2.1 Introduction

Before we get to the proofs of the main results, we give brief introductions into the sev-

eral areas used. In Section 2.2, we give an overview of spectral theory of Schrödinger

operators, focusing particularly on the periodic case and its perturbations. In Sec-

tion 2.3, we give a brief introduction into the area of orthogonal polynomials, since

we use a lot of their methods. In Section 2.4, we give some details of the theory of

reproducing kernels, as it features prominently in our work. In Section 2.5, we give

some history of the problem.

2.2 Schrödinger operators

2.2.1 Periodic Schrödinger Operator: Floquet Solutions and

the Discriminant

Here we review the theory of the periodic Schrödinger operator. The analysis of

periodic Schrödinger operators dates back to Bloch and Floquet. Most of the material

presented here can be found in [RS78] and [BS91].

Consider a differential operator τ with periodic potential with period P . One

notes that the translation operator T given by Tψ(x) = ψ(x+ P ) maps the solution

space of the differential equation τφ = ξφ to itself. We want to diagonalize T , so we
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solve the equation ψ(x + P ) = eiθPψ(x) so that the solution ψ can be written as a

product ψ(ξ, x) = eiθxφ(ξ, x), where φ(ξ, x) is periodic.

Since u(ξ, x + P ), y(ξ, x + P ) satisfy the same differential equation and u(ξ, x),

y(ξ, x) form a basis of the solution space, we can write

u(ξ, x+ P ) = c11y(ξ, x) + c12u(ξ, x)

u(ξ, x+ P ) = c21y(ξ, x) + c22u(ξ, x).

Substituting the boundary condition at 0 into the above and into the same system

differentiated with respect to x and solving for cij, we get

c11 = y(ξ, P ), c12 = y′(ξ, P ), c21 = u(ξ, P ), c22 = u′(ξ, P ).

The matrix of T in the u, y basis is called the monodromy matrix, and by the

constancy of the Wronskian, its determinant is 1. The characteristic equation for the

eigenvalues s of T becomes

s2 −∆(ξ)s+ 1 = 0,

where ∆(ξ) = y(ξ, P ) + u′(ξ, P ). Then we need |s| = 1 so that the solutions of

the differential equation are not exponentially growing [Sim82], which happens only

when |∆(ξ)| < 2, so {ξ : |∆(ξ)| ≤ 2} is the spectrum. One can furthermore show that

∆′(ξ) 6= 0 whenever ∆(ξ) ∈ (−2, 2).

2.2.2 Density of States

If we restrict our periodic operator A# with period P to L2[0, nP ] and consider a

periodic boundary condition (either Neumann or Dirichlet), it will have a countable

discrete set of eigenvalues. For an interval (a, b), let NnP ((a, b)) be the number of

eigenvalues in the interval (a, b). Then the limit

lim
n→∞

NnP ((a, b))

nP
=

∫
ρ(ξ)dξ
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exists and defines an absolutely continuous measure on R called the density of

states. Here ρ turns out to be a non-negative locally integrable function [BS91].

2.2.3 Asymptotics of Solutions and Gap Sizes for Periodic

Schrödinger Operators

Proposition 2.2.1. Let Au = − d2

dx2u + V (x)u be a Schrödinger operator with V

bounded. Then

|u(ξ, x)| ≤ e
Mx√
ξ

|y(ξ, x)| ≤ e
Mx√
ξ .

Proof. One can show this proposition using the method of successive approximations;

see for example [MW66] and [CS77]. Let

un(x, ξ) =
1√
ξ

∫ x

0

V (t)un−1(t) sin((x− t)
√
ξ)dt (2.2.1)

yn(x, ξ) =
1√
ξ

∫ x

0

V (t)yn−1(t) sin((x− t)
√
ξ)dt (2.2.2)

and

u0(x) = cos(
√
ξx) (2.2.3)

y0(x) = sin(
√
ξx) (2.2.4)

Then u =
∑
un is the solution of A. One can check this by taking two derivatives,

and substituting the sum into the original equation. It remains to check that the

sums are absolutely convergent. We show by induction that |un| ≤ (Mx)n√
ξ
n
n!
, where

M = sup |V (x)|. Clearly, u0 ≤ 1. We assume that

|un−1| ≤
(Mx)n−1

√
ξ
n−1

(n− 1)!
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Then

|un| =
∣∣∣∣ 1√
ξ

∫ x

0

V (t)un−1(t) sin((x− t)
√
ξ)dt

∣∣∣∣
≤ 1√

ξ

∫ x

0

∣∣∣∣∣V (t)
(Mt)n−1

√
ξ
n−1

(n− 1)!
sin((x− t)

√
ξ)

∣∣∣∣∣ dt
≤ Mn

√
ξ
n
(n− 1)!

∫ x

0

tn−1 =
(Mx)n√
ξ
n
n!

Similarly, |yn| ≤ (Mx)n√
ξ
n
n!

for ξ > 1.

Both sums converge absolutely for all x, and recalling the Taylor series for the

exponential function the proposition follows.

Further details can be found in [MW66]. We need this proposition to show reg-

ularity bounds for perturbed periodic Schrödinger operator. The method of proof of

this proposition can also be used to prove the following proposition:

Proposition 2.2.2.

lim
ξ→∞

√
ξ(∆(

√
ξ)− 2 cosπ

√
ξ) = 0 (2.2.5)

We need the following fact about gap sizes, and this is weaker than Lemma 2.9 of

[MW66].

Lemma 2.2.3. When p is bounded, the size of the nth gap goes to 0 as n→∞.

This follows from (2.2.5).

2.2.4 The Green’s Function

The Green’s function associated to a differential operator is its fundamental solution

with the given boundary condition. If A is our Schrödinger operator with the Neu-

mann boundary condition, then (A−z)G(z, x, x′) = δ(x−x′) in x, and d
dx
G(z, 0, x′) =

0, i.e. G satisfies the same boundary condition. Equivalently, the Green’s function is

the integral kernel of the resolvent of A, i.e. ((A−z)−1f)(x′) =
∫∞

0
G(z, x, x′)f(x)dx.
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We assume that our operator is limit point, meaning that exactly one solution for

each complex z is in L2. We call this solution ψ, and we normalize it as ψ′(z, 0) =

1. Given the fundamental solutions u and y of A and the solution ψ, the Green’s

function with the Neumann boundary condition at the origin will be given piecewise

by G(z, x, x′) = u(z, x)ψ(z, x′) for 0 ≤ x ≤ x′ and G(z, x, x′) = u(z, x′)ψ(z, x),

otherwise, as given in [CL55]. Similarly, for Dirichlet boundary condition, we use y

instead of u in the same formula.

There is a standard formula to express the density of states in terms of the imag-

inary part of the diagonal Green’s function [Rei04], which we use in Section 3.4. Let

AL be the restriction of the operator A to L2([0, L]). Then if ξAL,n are the eigenvalues

for AL, the trace of the resolvent will be given by

Tr(z − AL)−1 =
∑
n

1

z − ξn
.

Furthermore,

lim
ε↓0

1

ξ − ξn + iε
= <(

1

ξ − ξn
)− iπδ(ξ − ξn),

so that

= lim
ε↓0

Tr(AL + ξ + iε)−1 =
∑

δ(ξ − ξAL,n).

Linking the trace of the resolvent to the diagonal Green’s function and taking limits

in L to get the density of states and letting B ⊂ R,

∫
B

ρ(ξ)dξ =

∫
B

lim
L→∞

1

L

∑
δ(ξ − ξAL,n)dξ =

∫
B

lim
L→∞

lim
ε↓0

1

L

∫ L

0

=G(ξ + iε, x, x)dxdξ.

2.2.5 Herglotz functions and the m-function

Here we give a different description of the spectral measure via the m-function. Most

of the material summarized here can be found in [GZ06], [Tes09]. Let A = − d2

dx2 +

V (x) be a self-adjoint Schrödinger operator, and let u and y be the solutions of the

differential equation Aφ = zφ corresponding to Neumann and Dirichlet boundary
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conditions respectively. Since u and y will span the solution space for each z, then

the L2 solution ψ as defined in the previous section is given by

ψ(z, x) = u(z, x) +m(z)y(z, x).

The m(z) in the above equation is the definition of the Titchmarsh-Weyl m-

function. One can show that the m-function is a Herglotz function, and the Herglotz

inversion theorem yields a measure on R, which happens to be the spectral measure

of A. Here I will sketch a proof that appears in [Tes09]. First one shows that

=(m(z)) = =(z)

∫ ∞
0

|ψ(z, x)|2dx (2.2.6)

using the well-known formula (can be checked directly) relating the integral of two

solutions φ1, φ2 at different points to the Wronskian:

(z1 − z2)

∫ x

0

φ1(z1, t)φ2(z2, t)dt = W (φ1(z1, x)φ2(z2, x))−W (φ1(z1, 0)φ2(z2, 0)).

Then we can use ψ(z, x) and ψ(z, x) = ψ(z, x) as our two solutions and z, z as our

two points to get the desired result.

Recall there exists U a unitary map U : L2[0,∞) → L2(R, dµ), given by inte-

gration against u(ξ, x)dx and the inverse given by integration against u(ξ, x)dµ(ξ).

Furthermore, if RA(z) is the resolvent of A,

RA(z)f = U−1 1

ξ − z
Uf,

so ∫ ∞
0

G(z, x, y)f(y)dy =

∫
u(ξ, x)F (ξ)

ξ − z
dµ(ξ),

where F = Uf . At x = 0, substituting for the Green’s function and by continuity of
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both sides in x, we obtain

∫ ∞
0

ψ(z, y)f(y)dy =

∫
F (ξ)

ξ − z
dµ(ξ),

for all compactly supported F . Since such F are dense. we get that

Uψ(z)(ξ) =
1

ξ − z
.

Since U is an isometry, we get that

=(m(z)) = =(z)

∫ ∞
0

|ψ(z, x)|dx = =(z)

∫
1

|ξ − z|2
dµ(ξ).

Since

=(
1

ξ − z
− ξ

1 + ξ
) =

=(z)

|ξ − z|2
,

m(z) is the Herglotz transform of the spectral measure dµ, so the Herglotz inversion

theorem gives us the dµ.

2.3 Orthogonal Polynomials

2.3.1 Introduction

Let dη = w(x)dx + dηs be a probability measure supported on a compact set e.

Polynomials form a Hilbert space with L2(dη) inner product, and the set {1, x, x2, ...}

forms a basis. We can obtain a set of orthonormal polynomials pn by the Gram-

Schmidt algorithm. One can furthermore show that orthonormal polynomials pn

satisfy a three-term recurrence relation, i.e. for suitable {an, bn}∞n=1,

xpn(x) = an+1pn+1(x) + bn+1pn(x) + anpn−1(x).

This three term recurrence relation gives us a tridiagonal matrix, called the Jacobi

matrix, which, given a boundary condition, gives an operator on l2. For a given x,
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the vector pn(x) is the solution of the corresponding the eigenvalue equation with the

boundary condition p0(x) = 1.

The recurrence relation also gives the leading coefficient γn of the orthonormal

polynomials in terms of an’s: γn = (anan−1...a1)
−1.

2.3.2 Regularity

A definition of regularity is most natural in terms of logarithmic capacity of the

support of the measure, call it C(e). One can show that for any measure with compact

support e

lim sup γ−1/n
n ≤ C(e),

so it is natural to study the class of measures for which equality holds. Such mea-

sures are called regular, and they satisfy several equivalent properties. Firstly, it is

equivalent to root asymptotics of orthogonal polynomials i.e.

lim
n→∞

|pn(dµ, z)| = eg(z,∞)

for all z outside of the convex hull of the support of dη. Regularity implies the

existence of an equilibrium measure, and the converse is almost true as well, up

to some degenerate cases. Additionally, regularity is usually an assumption on the

measure in proofs of universality of the reproducing kernel, as in [Lub09]. It is for

this last capacity that we seek to define an analogue of regularity for Schrödinger

operators.

Regular measures are described in detail in [ST92]. For the interval, Erdos-Turan

[ET55] show the relationship between root asymptotics, the existence of equilibrium

measures, and positivity of the weight. Ullman [Ull72] then studied systematically

regularity and asymptotics of orthogonal polynomials for arbitrary measures sup-

ported on [−1, 1].

Since spectral measures are supported on unbounded sets, no useful notion of

capacity is possible. An equivalent capacity-free definition of regularity that we adapt
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to our purposes is the following. The measure dη on a compact set e is regular [ST92]

if for any ε > 0 there exist δ > 0 and a constant C so that

sup
dist(y,e)≤δ

|pn(y, dη)| ≤ Ceεn. (2.3.1)

2.4 Reproducing Kernels

2.4.1 The Reproducing Kernel for Orthogonal Polynomials

The Christoffel–Darboux kernel Kn, given by

Kn(x, y) =
n∑
k=0

pk(x)pk(y). (2.4.1)

(see for example [ST92], [Lub09], [Sim08a]), is characterized by the reproducing prop-

erty, i.e. for all k < n,

pk(y) =

∫
Kn(x, y)pk(x)dη(x). (2.4.2)

This is easy to see: interchanging the sum and the integral, each term except kth is

0, by orthonormality.

2.4.2 Paley-Wiener Space and the Reproducing Kernel for

Schrödinger Operators

In our setup, we use the space

HL =

{
π : π(ξ) =

∫ L

0

f(x) cos(
√
ξx)dx, f ∈ L2[0,∞)

}
(2.4.3)

as the analogue of the space of polynomials with degree less than or equal to n.

The orthogonal polynomials with degree smaller than or equal to n are a basis for

the space of polynomials with degree less than or equal to n. The analogous property

of HL is

HL = {π : π(ξ) =

∫ L

0

f(x)u(ξ, x)dx, f ∈ L2[0,∞)}.
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This follows easily from Marchenko (see (1.2.10), (1.2.10”) of [Mar86]), which gives

the existence of a continuous integral kernel M , such that

π(ξ) =

∫ L

0

f(x)

(
u(ξ, x) +

∫ x

0

M(x, t)u(ξ, t)dt

)
dx. (2.4.4)

The parameter L is analogous to the polynomial degree. Here is how:

Proposition 2.4.1. Let π ∈ HL and σ ∈ HN . If π ∗ σ ∈ L2, then πσ ∈ HL+N .

Proof. Let π(ξ) =
∫ L

0
f(x) cos(

√
ξx)dx and σ(ξ) =

∫ N
0
g(y) cos(

√
ξx)dy, then

π(ξ)σ(ξ) =

∫ L

0

∫ N

0

f(x)g(y) cos(
√
ξx) cos(

√
ξy)dxdy.

Let f̃ , g̃ be even functions with f = f̃χ[0,L] and g = g̃χ[0,N ], then the Fourier sine

transform of f̃ and g̃ is 0 and

π(ξ)σ(ξ) =1/2

∫ L

−L

∫ N

−N
f̃(x)g̃(y)ei

√
ξ(x+y)dxdy

=1/2

∫ L+N

−L−N

∫ N

−N
χ[−L,L](u− x)f̃(x)g̃(u− x)dxei

√
ξudu.

Since σ∗π ∈ L2, so is f̃ ∗ g̃. Suffices to show that
∫ N
−N χ[−L,L](u−x)f̃(x)g̃(u−x)dx

is symmetric in u:

∫ N

−N
χ[−L,L](u− x)f̃(x)g̃(u− x)dx =

∫ N

−N
χ[−L,L](−u+ x)f̃(−x)g̃(−u+ x)dx =

=

∫ N

−N
χ[−L,L](−u− x)f̃(x)g̃(−u− x)dx

by the change of variables x 7→ −x.

The space of polynomials of degree less than or equal to n is usually considered

with the L2(dη) inner product. Analogously, we give HL the following inner product:

〈π1, π2〉 =

∫
π1(ζ)π2(ζ)dµ(ζ), (2.4.5)
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where dµ is the spectral measure.

2.4.3 Variational Principle

The minimizer of ‖π(y)‖L2(dη) over polynomials π with deg π ≤ n and π(x) = 1 is

equal to Kn(x,y)
Kn(x,x)

and the minimum is equal to Kn(x, x)−1. This property is called the

variational principle and we show its analogue for SL:

Theorem 2.4.2. If µ is an unnormalized spectral measure, then

min{‖Q‖dµ : Q ∈ HL, Q(ξ0) = 1} = SL(ξ0, ξ0)
−1, (2.4.6)

and the minimizer is given by
SL(ξ, ξ0)

SL(ξ0, ξ0)
. (2.4.7)

We give the minimum its own letter:

λL(ξ) = SL(ξ, ξ)−1. (2.4.8)

2.4.4 Christoffel–Darboux Formula

This formula is very well-known and useful. In particular it is used to show interlac-

ing of zeros of orthogonal polynomials, and the link between universality and clock

behavior of zeros, as discussed later. One can find a discussion of the Christoffel-

Darboux formula in Simon’s 1.9 of [Sim05]. If Kn(x, y) is the reproducing kernel as

before and {an, bn} are the coefficients of the corresponding two-term recurrence, then

Kn(x, y) = an+1
pn+1(x)pn(y)− pn(x)pn+1(y)

x− y
.

To see this, one lets

Qj(x, y) = aj(pj(x)pj−1(y)− pj(y)pj−1(x)).
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Then note that

(x− y)pj(x)pj(y) = Qj+1(x, y)−Qj(x, y).

Taking the sum over j and doing appropriate cancelations, we get the desired result.

A similar formula holds for reproducing kernels of Schrödinger operators, as we

show in Section 3.2.

2.5 Universality and Clock Behavior

2.5.1 History of Universality Problems in Orthogonal Poly-

nomials

Kuijlaars-Vanlessen [KV02] use Riemann-Hilbert techniques to obtain universality

limits for generalized Jacobi weights, both in the bulk and at the edge. Lubinsky

[Lub09] shows universality for weights on (−1, 1) under much weaker hypotheses than

used previously. In particular, there is no requirement of analyticity on the weight as

in [KV02]. This result is interesting for both the study of orthogonal polynomials and

of random matrices. It relates a fundamental object to the sine kernel and implies

that the left hand side of (2.5.1) only depends on the continuity and positivity of the

measure dη at x0 and its essential support. Simon [Sim08b] and Totik [Tot] extend

this argument to measures with suppess(dη) = ∪Ij a finite union of intervals. In this

thesis I adapt all the steps to Schrödinger operators.

Universality with variable weights was studied a lot in the context of random

matrices. It in dates back to Dyson in the 60’s, making the hypothesis of universality

for all unitary, orthogonal, and symplectic ensembles. In random matrix theory, a

reproducing kernel arises as a two point correlation function of the point process that

describes the eigenvalue distribution. A survey of the random matrix literature can

be found in [KV02].
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2.5.2 Lubinsky’s Results and Methods

Let I ⊂ (−1, 1) be a closed interval and dη is regular such that supp(dµs) ∩ I = ∅

and w is continuous and nonvanishing on I. Then Lubinsky [Lub09] shows that for

a, b ∈ R and uniformly for x0 ∈ I

lim
n→∞

Kn(x0 + a
n
, x0 + b

n
)

Kn(x0, x0)
=

sin(πρ[−1,1](x0)(a− b))
πρ[−1,1](x0)(a− b)

, (2.5.1)

where ρ[−1,1](x0) = (π
√

1− x2
0)
−1 is the density of states for [−1, 1].

We summarize Lubinsky’s method for showing (2.5.1). He notes that if dη, dη∗ are

regular measures on [−1, 1] with dη ≤ dη∗ and K∗ is the Christoffel-Darboux kernel

associated with dη∗,

|Kn(x, y)−K∗n(x, y)|
Kn(x, x)

≤
(
Kn(y, y)

Kn(x, x)

)1/2(
1− K∗n(x, x)

Kn(x, x)

)1/2

. (2.5.2)

This inequality, called Lubinsky’s inequality, implies that in order to understand

the left hand side of (2.5.1), it is sufficient to understand K#
n (x, y) for some model

measure dη# and the behavior of a ratio of diagonal kernels. A model dη# with

w#(x0) = w(x0) is chosen, for which K#
n (x, y) can be computed directly. Then dη∗ =

sup{dη#, dη} dominates both dη and dη# and a has similarly nice local behavior at x0

with w∗(x0) = w(x0). By the variational principle, the ratios of the diagonal kernels

K#
n (x,x)

K∗n(x,x)
and Kn(x,x)

K∗n(x,x)
both converge to 1, and Lubinsky’s inequality and a comparison

of the two resulting expressions yields the desired result.

2.5.3 Clock Behavior for Orthogonal Polynomials

The equilibrium measure dη = ρ(x)dx gives us an estimate of the number of zeros of

pn in a given interval for any large n. This gives that the estimate on the distance

between two consecutive zeros near x∗ is ρ(x∗)−1. If we multiply all zeros of pn by ρ,

the average distance between them will be 1. One then seeks the distribution of the

distances between consecutive zeros.
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If we view zeros of pn as a point process on the line, one can distinguish two

extreme cases. The zeros might not ”interact” at all, i.e. be distributed as a Poisson

process, or they can ”repel each other,” i.e. be equally spaced. Both cases are possible

under different conditions. Minami [Min96] shows Poisson behavior for some ergodic

Jacobi matrices. Stoiciu in his dissertation shows Poisson behavior under similar

conditions for the case of orthogonal polynomials on the unit circle. Recently, Avila-

Jitomirskaya show that something in between can also occur, in particular, for the

the almost Mathieu operator with λ > 1 and Diophantine coupling.

A precise definition of clock behavior for the zeros of orthogonal polynomials is

given in [LS08].

Definition 2.5.1. Fix x∗ in an interval I, and number the zeros x of pn with increas-

ing positive integers to the right of x and decreasing negative integers to the left so

that ... < x−1 < x∗ ≤ x0 < .... We say there is strong clock behavior of zeros at

x∗ on an interval I if the density of states ρ(x)dx is continuous and nonvanishing on

I and for fixed k

lim
n→∞

n|(xk − xk+1)|ρ(x∗) = 1, (2.5.3)

and we say there is uniform clock behavior on I if the limit in (2.5.3) is uniform

on I for fixed k.

This nomenclature comes from the theory of orthogonal polynomials on the unit

circle. There, when zeros of polynomials exhibit clock behavior, they do indeed look

like marks on a clock.

Szego in [Sze75] shows clock behavior for Jacobi polynomials, and Erdos-Turan

[ET55] for a more general class of measures on [−1, 1]. Last-Simon in [LS08] show

clock behavior of zeros of orthogonal polynomials on the real line under weak con-

ditions namely when Jacobi parameters approach the free ones and are of bounded

variation.

In [Fre71], Freud notes that universality implies clock behavior. Levin-Lubinsky

in [LL08] have a similar result. They use the interlacing property and the Christoffel-

Darboux formula, and we adapt their proof to our setup. Here is a sketch of their
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proof: We number the zeros near a point x∗ as before. By the Christoffel–Darboux

formula (3.2.4),
pn(x∗)

pn−1(x∗)
=

pn(x∗ + a/n)

pn−1(x∗ + a/n)
(2.5.4)

for a 6= 0 if and only if Kn(x∗, x∗ + a/n) = 0. Given universality, and since

Kn(x∗, x∗) = O(n), Kn(x∗, x∗ + a/n) = o(1/n) if and only if a = k
ρ(x∗)

+ o(1/n).

Our proof of clock spacing for eigenvalues of the halfline Schrödinger equation follows

a similar method.

2.5.4 Spacing of Eigenvalues for Schrödinger Operators

Similar to the discrete case, we scale the eigenvalues in a box for a Schrödinger

operator and consider the distances between consecutive eigenvalues. We can once

again distinguish the two cases of ”no interactions” and ”repulsion”. In the former

case, the scaled eigenvalues are a Poisson process, when viewed as a point process. In

the latter case, the eigenvalues are asymptotically equally spaced. We say then there

is clock behavior, and we give a precise definition of what that means in this thesis.

Poisson statistics for eigenvalues arise for some random potentials, and were first

demonstrated by Molcanov [Mol81] in one dimension in the case of Brownian motion

potentials. Later the proofs were much simplified and extended to multiple dimensions

by Minami [Min96]. Molcanov considers restrictions of the original spectral problem

to small intervals, thus ”decoupling” the point process. There is a crucial difference

between his setup and ours that leads to such different local behaviors of eigenvalues.

In Molcanov’s setup, there is no a.c. spectrum, while in ours we assume the existence

of an interval I where the spectrum is purely a.c.

If the potential of the Schrödinger operator is in L1, Clock behavior of eigenvalues

of Schrödinger operators follows almost immediately from Jost asymptotics of solu-

tions. Jost introduced the notion of Jost solutions in the 40’s in [Jos47], i.e. solutions

which are asymptotically free. In particular, he shows that for L1 potential, there
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exist two solutions ψ+ and ψ− such that

e∓iξxψ±(ξ, x)→ 1

as x→∞. Taking real and imaginary parts of ψ+, we see that there are two solutions:

one asymptotically sine, the other asymptotically cosine. The zeros of either will be

asymptotically locally equally spaced, like the zeros of sine and cosine. Universality,

as described in Section 2.5.1, 2.5.2 can be interpreted as miniature Jost asymptotics.

The spacing of eigenvalues for functions on [0, L] with periodic Dirichlet boundary

condition is the same as the spacing of zeros of y(ξ, L) in ξ in case of the Dirichlet

boundary condition at 0 and L, since whenever y(ξ0, L) = 0 the periodic boundary

condition is satisfied. Similar logic applies to the zeros of u′(ξ, L) in case of the

Neumann boundary condition.

Levin-Lubinsky’s proof that universality implies clock behavior of zeros for or-

thogonal polynomials requires the zeros of pn to interlace with the zeros of pn−1.

Similarly, in our proof, we need the roots of the solution to interlace with the roots of

its derivative (in x). But if a solution ψ and its derivative are both zero at some point

x0, then ψ is the solution of the second order differential equation with the trivial

boundary condition, and therefore must be identically 0.
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Chapter 3

Proofs of Main Results

3.1 The Perturbed Periodic Potential

Let e be the essential spectrum of a Schrödinger operator with period P periodic

potential p and either Neumann or Dirichlet boundary condition. The goal of this

section is to show

Proposition 3.1.1. A Schrödinger operator with essential spectrum e and potential

V (x) = p(x)+q(x), where p is periodic and continuous and 1
x

∫ x
0
|q(t)|dt→ 0, satisfies

regularity bounds.

Fix ε > 0 and let 1
x

∫ x
0
|p(t) + q(t)|dt ≤ M for x > x0, for some x0. To prove

(1.4.1), it is sufficient to show that
∫ L

0
u(ξ, x)2dx ≤ CeεL separately for three cases of

ξ, where C is uniform in ξ, L:

(1) ξ > 4M2

ε2
, shown in Lemma 3.1.2

(2) ξ ≤ 4M2

ε2
, ξ in the interior of e, but slightly away from the endpoints of the

intervals, i.e. ξ ∈ (∪[ln + ε, rn − ε]) ∩ [0, 4M2

ε2
], shown in Lemma 3.1.3

(3) ξ ≤ 4M2

ε2
and ξ near the interval endpoints i.e. ξ ∈ (∪[ln− ε, ln+ ε]∪ [rn− ε, rn+

ε]) ∩ [0, 4M2

ε2
], shown in Lemma 3.1.4

The three cases are illustrated in the following picture:
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Figure 3.1:
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Lemma 3.1.2. Let A = − d2

dx2 +V (x) be a Schrödinger operator such that 1
x

∫ x
0
|V (t)|dt

is bounded in x as x→∞. Then the solutions u, y of the eigenvalue equation satisfy

|u(ξ, x)| ≤ Ce

∫ x
0 |V (t)|dt
√
ξ (3.1.1)

|y(ξ, x)| ≤ Ce

∫ x
0 |V (t)|dt
√
ξ . (3.1.2)

Proof. Using successive approximations, we can perturb about the solutions with

V = 0. Chadan-Sabatier ((I.2.3), (I.2.4), (I.2.6), (I.2.8a) [CS77]) show (3.1.2), and

using cos(
√
ξx) as initial data, instead of (I.2.3), gives (3.1.1).

This lemma indeed implies that for
√
ξ ≥ 2M

ε
the solution u satisfies u(x) ≤ Ce

1
2
εx,

which implies
∫ L

0
u(ξ, x)2dx ≤ CeεL.

Lemma 3.1.3. Let [ln, rn] be a band of the spectrum for a Schrödinger operator A =

− d2

dx2 + q(x) + p(x) with periodic and continuous p and non-destructive zero-average q

(Definition 1.2.2). Then the solution u of the eigenvalue equation with the Neumann

boundary condition satisfies
∫ L

0
u(ξ, x)2dx ≤ CeεL for ξ ∈ (∪[ln + ε, rn − ε]) ∩ [0, R],

where R = 4M2

ε2
, and same holds for the solution with the Dirichlet boundary condition.

Proof. Let up(ξ, x), yp(ξ, x) be the solutions of A# = − d2

dx2 + p(x) with boundary

conditions

up(ξ, 0) = 1 = y′p(ξ, 0)

yp(ξ, 0) = 0 = u′p(ξ, 0).
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By Floquet’s theorem (for example Section 1.2 of [MW66] and Theorem XIII.89

of [RS78]), there exists a solution f(ξ, x) = eiθ(ξ)xφ(ξ, x), where φ is periodic in x

with period P . We normalize f ′(ξ, 0) = 1. The exponent θ(ξ) is not 0 or π away from

band endpoints, so that f is linearly independent of f for ξ ∈ ∪[ln + ε, rn − ε]. Then

u(ξ, x) = a1(ξ)f(ξ, x) + a2(ξ)f(ξ, x). (3.1.3)

We solve for a1, a2 in terms of ξ. We get that

1 = u(ξ, 0) = a1(ξ)f(ξ, 0) + a2(ξ)f(ξ, 0)

0 = u′(ξ, 0) = a1(ξ)f
′(ξ, 0) + a2(ξ)f ′(ξ, 0) = a1(ξ) + a2(ξ),

so that

a1(ξ) = −a2(ξ)

Substituting

1 = a1(ξ)f(ξ, 0)− a1(ξ)f(ξ, 0),

we get

a1(ξ) = (2i=f(ξ, 0))−1 = −a2(ξ).

Since f , f are independent, =f 6= 0 and, by Theorem XIII.89 of [RS78], f is analytic

in ξ on [ln+ ε, rn− ε]. This implies that a1, a2 are analytic as well. The function |f | is

continuous in both x and ξ on [0, P ]× (∪[ln + ε, rn − ε] ∩ [0, R]), therefore it achieves

its maximum on this set. Since |f | is periodic and continuous in x with period P ,

the maximum of |f | in x for fixed ξ occurs on [0, P ]. This implies that up(ξ, x) ≤ K,

where K is constant in x and ξ ∈ ∪[ln + ε, rn − ε] ∩ [0, R].

We use the method of variation of parameters about up(ξ,−), yp(ξ,−) and Gron-

wall inequality. Let d = u′pyp − y′pup 6= 0 be the Wronskian. We let

 u(x)

u′(x)

 =

 up(x) yp(x)

u′p(x) y′p(x)

 a(x)

b(x)
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.

Then a, b satisfy the differential equation a′(x)

b′(x)

 = d−1

 −yp(−u′′p + (q + p− ξ)up) −yp(−y′′p + (q + p− ξ)yp)

up(−u′′p + (q + p− ξ)up) up(−y′′p + (q + p− ξ)yp)

 a(x)

b(x)


=
q(x)

d

 −ypup −y2
p

u2
p upyp

 a(x)

b(x)


with the boundary condition (a(0), b(0)) = (1, 0). This is equivalent to the integral

equation a(x)

b(x)

 =

 1

0

+

∫ x

0

q(x)

d

 −ypup −y2
p

u2
p upyp

 a(t)

b(t)

 dt (3.1.4)

If we let the norm of a matrix M equal

|M | =
∑
|Mij|,

we take the norm of both sides of the integral equation to get∣∣∣∣∣∣
 a(x)

b(x)

∣∣∣∣∣∣ =

∣∣∣∣∣∣
 1

0

+

∫ x

0

q(x)

d

 −ypup −y2
p

u2
p upyp

 a(t)

b(t)

∣∣∣∣∣∣ dt
≤ 1 +K1

∫ x

0

q(x)

∣∣∣∣∣∣
 a(t)

b(t)

∣∣∣∣∣∣ dt,
where K1 ≥ |ypup|+y2

p +u2
p+ |upyp| is constant in x and ξ by the argument above.

We apply the Gronwall inequality to this integral equation to get

|a(x)|+ |b(x)| ≤ K2e
K1

∫ x
0 |q(t)|dx. (3.1.5)

Then we take the matrix norm in (3.1) and, recalling that 1
x

∫ x
0
|q(t)|dt → 0, we get

(1.4.1) for large L and for all L by choosing C appropriately.
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Lemma 3.1.4. Let [ln, rn] be a band of the spectrum for a Schrödinger operator

A = − d2

dx2 + q(x) + p(x) with continuous periodic p and non-destructive zero-average

q (Definition 1.2.2). Then the solution u of the eigenvalue equation with Neumann

boundary condition satisfies
∫ L

0
u(ξ, x)2dx ≤ CeεL for

ξ ∈ (∪[ln − ε, ln + ε] ∪ [rn − ε, rn + ε]) ∩
[
0,

4M2

ε2

]
.

The same holds for the solution with the Dirichlet boundary condition.

Proof. Let ξ ∈ [ln−ε, ln+ε]. We once again use the method of variation of parameters

but this time about the solutions up(−, ln + ε) and yp(−, ln + ε), i. e. the periodic

solutions as before but at ξ = ln + ε fixed. Like in the previous lemma, up(x, ln + ε),

yp(x, ln + ε) < K, where K is constant in x and ξ ∈ {ln, rn}n∈N ∩
[
0, 4M2

ε2

]
. We get

∣∣∣∣∣∣
 a(x)

b(x)

∣∣∣∣∣∣ =

∣∣∣∣∣∣
 1

0

+

∫ x

0

ln + ε− ξ + q(x)

d

 −ypup −y2
p

u2
p upyp

 a(t)

b(t)

 dt

∣∣∣∣∣∣
≤ 1 +K1

∫ x

0

(2ε+ |q(x)|)

∣∣∣∣∣∣
 a(t)

b(t)

∣∣∣∣∣∣ dt.
As in proof of the previous lemma, applying Gronwall inequality and picking C ap-

propriately we get (1.4.1).

The three lemmas imply Proposition 3.1.1. From Lemma 3.1.2 we get (1.4.1) for

large ξ. This leaves only finitely many bands, so it suffices to consider the remaining

bands one at a time as in Lemmas 3.1.4 and 3.1.3.

3.2 Variational Principle and the Christoffel-Darboux

Formula

We let TLF (ξ) =
∫
F (ζ)SL(ξ, ζ)dµ(ζ), where dµ = d(sν) is a scalar multiple of a

spectral measure dν. We show that TL is the orthogonal projection onto HL. We first
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show

Lemma 3.2.1. The function cos(
√
ξN) is fixed by TL for N ≤ L.

Proof. Let u be the solution associated to dµ. There exists a continuous integration

kernel M ([GL55], (1.2.5”) [Mar86]) such that

cos(
√
ξx)√
s

= u(ξ, x) +

∫ x

0

M(x, t)u(ξ, t)dt. (3.2.1)

Substituting this expression for cos(
√
ξx)√
s

in evaluating TL( cos(
√
ξx)√
s

), we check

∫
cos(
√
ξN)√
s

SL(ζ, ξ)dµ(ξ) = u(ξ,N) +

∫ N

0

M(N, t)

∫
u(ξ, t)SL(ζ, ξ)dµ(ξ)dt =

= u(ξ,N) +

∫ N

0

M(N, t)u(ξ, t)dt =
cos(
√
ξN)√
s

.

Here we use Fubini’s theorem, the reproducing property of SL (noting that N ≤ L),

and we recover the last equality again by (3.2.1).

We then show that TL fixes πN ∈ HN for N ≤ L.

Corollary 3.2.2. If πN(ξ) =
∫ N

0
f(x) cos(

√
ξx)dx for some function f ∈ L2([0, N ])

and N ≤ L, then πN(ξ) =
∫
πN(ζ)SL(ξ, ζ)dµ(ζ).

Proof. This is a straightforward calculation, using (3.2.1):

∫
πN(ζ)SL(ξ, ζ)dµ(ζ) =

∫ ∫ N

0

f(x) cos(
√
ζx)SL(ξ, ζ)dxdµ(ζ) =

=

∫ N

0

f(x)

∫
cos(

√
ζx)SL(ξ, ζ)dµ(ζ)dx = πN(ξ).

Here we make use of Fubini’s theorem and the Lemma 3.2.1.

Theorem 3.2.3. The operator (TLπN)(ξ) =
∫
πN(ζ)SL(ξ, ζ)dµ(ζ) is an orthogonal

projection onto the Hilbert space HL.
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Proof. To show that TL is a projection, by Corollary 3.2.2, it suffices to show that

TLπN(ξ) ∈ HL for N ≥ L. Recalling that πN(ξ) =
∫ N

0
f(x) cos(

√
ξx)dx, we compute:

∫
πN(ζ)SL(ξ, ζ)dµ(ζ) =

∫
dµ(ζ)

(∫ L

0

+

∫ N

L

)
f(x) cos(

√
ζx)SL(ξ, ζ)dx

= πL(ξ) +

∫
dµ(ζ)

∫ N

L

f(x) cos(
√
ζx)SL(ξ, ζ)dx.

We substitute (3.2.1) for cos(
√
ζx) to get

∫
dµ(ζ)

∫ N

L

f(x) cos(
√
ζx)SL(ξ, ζ)dx =

=

∫
dµ(ζ)

∫ N

L

f(x)

(
u(ζ, x) +

∫ x

0

M(x, t)u(ζ, t)dt

)
SL(ξ, ζ)dx.

We then use Marchenko’s 1.2.5” to substitute for cos(
√
ζx) to get

∫
dµ(ζ)

∫ N

L

f(x) cos(
√
ζx)SL(ζ, ξ)dx =

=

∫
dµ(ζ)

∫ N

L

f(x)(u(ζ, x) +

∫ x

0

M(x, t)u(ζ, t)dt)SL(ζ, ξ)dx

By Fubini and the reproducing property of the kernel, the first term is 0. The

second term is:

∫ N

L

f(x)

∫ x

0

M(x, t)

∫
u(ζ, t)SL(ζ, ξ)dµ(ζ)dtdx =

=

∫ N

L

f(x)

∫ x

0

M(x, t)u(ξ, t)χ[0,L](t)dtdx =

=

∫ N

L

f(x)

∫ L

0

M(x, t)u(ξ, t)(t)dtdx

=

∫ L

0

∫ N

L

f(x)M(x, t)dxu(ξ, t)dt.

Letting g(t) =
∫ N
L
f(x)M(x, t)dx we need only check that

∫ L
0
g(t)u(ξ, t)dt ∈ HL,
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but this is clear from Marchenko’s 1.2.10 which gives that

u(ξ, t) = cos(
√
ξt) +

∫ t

0

K(t, y) cos(
√
ξy)dy.

Substituting, we get

∫ L

0

g(t)(cos(
√
ξt) +

∫ t

0

K(t, y) cos(
√
ξy)dy)dt =

=

∫ L

0

g(t) cos(
√
ξt)dt+

∫ L

0

∫ t

0

g(t)K(t, y) cos(
√
ξy)dydt

=

∫ L

0

g(t) cos(
√
ξt)dt+

∫ L

0

∫ L

y

g(t)K(t, y)dt cos(
√
ξy)dy ∈ HL

We next check that T is self-adjoint:

〈g, Tf〉d(sµ) =

∫
dµ(ξ)g(ξ)

∫
dµ(ζ)f(ζ)SL(ξ, ζ) =

=

∫
dµ(ζ)f(ζ)dµ(ξ)g(ξ)SL(ζ, ξ),

since our definition of SL is symmetric in ζ and ξ.

We now prove Theorem 2.4.2.

Proof. Fixing ξ0 ∈ C we consider

inf{‖π‖2 : πL(ξ) =

∫ L

0

f(x) cos(
√
ξx)dx; π(ξ0) = 1}. (3.2.2)

If φ 6= 0 is in some Hilbert space H, then

min{‖ψ‖2 : 〈ψ, φ〉 = 1} =
1

‖φ‖2
(3.2.3)

and the minimizer is given by φ
‖φ‖2 (Proposition 1.2.1 of [Sim05]). In our case, the
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Hilbert space is HL. The condition that π(ξ0) = 1 is equivalent to

1 = π(ξ0) =

∫
dµ(ζ)π(ζ)SL(ζ, ξ0) = 〈π, SL(−, ξ0)〉.

The proposition is applicable with φ(ξ) = SL(ξ, ξ0) ∈ HL as shown above. There-

fore the minimum is equal to
1

‖SL(−, ξ0)‖2
.

We compute the HL norm in the first variable.

||SL(−, ξ0)||2 =

∫ ∫ L

0

u(ζ, t)u(ξ0, t)

∫ L

0

u(ζ, x)u(ξ0, x)dxdtdµ(ζ) =

=

∫ L

0

u(ξ0, t)

∫
u(ζ, t)

∫ L

0

u(ζ, x)u(ξ0, x)dxdµ(ζ)dt =

=

∫ L

0

u(ξ0, t)
2dt = SL(ξ0, ξ0),

as desired. Furthermore, Simon 1.2.1 gives us the minimizer as

SL(λ, λ0)/SL(λ0, λ0).

We show the analogue of the Christoffel-Darboux formula here:

Lemma 3.2.4.

SL(α, β) =
u(α,L)u′(β, L)− u(β, L)u′(α,L)

α− β
(3.2.4)

Proof.

u(α, x)u′′(β, x) = u(α, x)(q(x)− β)u(β, x)

u(β, x)u′′(α, x) = u(β, x)(q(x)− α)u(α, x)
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We subtract to get

u(α, x)u′′(β, x)− u(β, x)u′′(α, x) = (α− β)u(α, x)u(β, x). (3.2.5)

Integrating both sides dx from 0 to L, we get the desired formula. The left hand side

has to be integrated by parts:

∫ L

0

u(α, x)u′′(β, x)− u(β, x)u′′(α, x)dx

= u(α, 0)u′(β, 0)− u(α,L)u′(β, L)− u(β, 0)u′(α, 0) + u(β, L)u′(α,L)

= u(β, L)u′(α,L)− u(α,L)u′(β, L),

for any boundary condition given at 0 and independent of α, β, such as Dirichlet or

Neumann.

On the diagonal, the Christoffel-Darboux formula becomes

SL(ξ, ξ) = u′(ξ, x)
d

dξ
u(ξ, x)− d

dξ
u′(ξ, x)u(ξ, x). (3.2.6)

3.3 Bounds on the Diagonal Kernel

We will show the analogue of Lemma 3.1 in Simon [Sim08b]. Assume regularity

bounds (1.4.1) on the measure dµ. Let

QL(ξ, ξ0) =
SL(ξ, ξ0)

SL(ξ0, ξ0)
(3.3.1)

be the minimizer in (3.2.2).

Lemma 3.3.1. Let dµ be a measure that satisfies regularity bounds. Then for all

ε > 0 there exist C, δ1 such that |QL(ξ)| ≤ CeεLλL(ξ0), for ξ ∈ {ξ : dist(ξ, e) ≤ δ1}

Proof. Fix ε. A regularity bound (1.4.1) on a measure dµ implies a bound on
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|SL(ξ, ξ0)| by Cauchy-Schwarz:

SL(ξ, ξ0) = 〈u(ξ,−), u(ξ0,−)〉dm[0,L]

≤ ‖u(ξ,−)‖‖u(ξ0,−)‖

=

(∫ L

0

u(ξ, x)2dx

)1/2(∫ L

0

u(ξ0, x)2

)1/2

≤ CeεL.

Dividing both sides by SL(ξ0, ξ0) gives the desired inequality.

To show Lemma 3.3.3 we need the following fact about the spectral measure:

Lemma 3.3.2. Let A be a self adjoint Schrödinger operator and dµ be a scalar

multiple of its spectral measure. Then for n ≥ 2 there exists a constant K

∫ ∞
2

dµ(ξ)

ξn
≤ K2−n. (3.3.2)

Proof. We give a proof for the Neumann boundary condition. For the Dirichlet bound-

ary condition, a similar proof can be given using Section 6 of Gesztesy-Simon [GS00]

for the asymptotic growth of the spectral measure.

By the product rule of differentiation,

dµ(ξ)

ξn
= d

(
µ(ξ)

ξn

)
+
nµ(ξ)

ξn−1
dξ. (3.3.3)

We know from Marchenko’s [Mar86] Theorem 2.4.2 that

lim
ξ→∞

µ(ξ)− 2

π
ξ = C. (3.3.4)

This implies that for all ε1 there exists R such that for all ξ > R,∣∣∣∣µ(ξ)− C − 2

π
ξ

∣∣∣∣ ≤ ε.
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We take the integral from R to R̃ in equation 3.3.3.

∫ R̃

R

dµ(ξ)

ξn
=

∫ R̃

R

d

(
µ(ξ)

ξn

)
+

∫ R̃

R

nµ(ξ)

ξn−1
dξ

≤ µ(R̃)

R̃n
− µ(R)

Rn
+

∫ R̃

R

n(ξ + C + ε)

ξn−1
dξ

≤
2
π

√
R̃ + C + ε

R̃n
−

2
π

√
R + C − ε
Rn

+
n

−n+ 3/2
R̃−n+3/2 − n

−n+ 3/2
R−n+3/2+

+ (C + ε)
n

−n+ 2
R̃−n+2 − (C + ε)

n

−n+ 2
R−n+2

Taking R̃→∞ we get that

∫ ∞
R

dµ(ξ)

ξn
≤ KR−n+2 (3.3.5)

Now, the measure of the set [2, R] is equal to µ(R) − µ(2) < ∞. So we get the

desired bound on the integral

∫ R

2

ξ−ndµξ ≤ 2−nµ([2, R]). (3.3.6)

Lemma 3.3.3. Suppose dµ(ξ) = w(ξ)dξ + dµs, dµ
∗(ξ) = w∗(ξ)dξ + dµ∗s are two

unnormalized spectral measures with σess(dµ) = σess(dµ
∗) = e. Suppose dµ, dµ∗ satisfy

regularity bounds and have finitely many eigenvalues outside of {ξ : dist(ξ, e) < δ1}

for any δ1 > 0. Let I ⊂ eint be a closed and bounded interval such that w,w∗ are

continuous and strictly positive on I and (supp(dµs)∪ supp(dµ∗s))∩ I = ∅. Let ξ0 ∈ I

and ξ(L)→ ξ0 as L→∞. Then for all sufficiently small δ and all ε > 0 and all M

there exist γ < 1, C, n such that for all N > n+ 1

λL(ξ0, µ
∗) ≤ sup

|ξ−ξ0|<δ

(
w∗(ξ)

w(ξ)

)
λM(ξ0, µ) + Ce2εMγN + Ce2εM2−2N (3.3.7)
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where L = M + π
4ξ0
N .

Proof. We use the methods of Lubinsky [Lub09] and Simon [Sim08b].

Let QM be the minimizing function for the measure µ and

F (ξ) =
4ξ0
Tπ

(
sin( π

4ξ0
(ξ − ξ0))

ξ − ξ0
+

sin( π
4ξ0

(ξ + ξ0))

ξ + ξ0

)
, (3.3.8)

where T = 1 + 2
π
.

We notice that

(1) |F (ξ0)| = 1,

(2) |F (ξ)| < γ whenever |ξ − ξ0| ≥ δ, for some 0 < γ < 1 depending on δ, and

(3) |F (ξ)| < Cξ0
|ξ−ξ0| whenever |ξ − ξ0| > 1.

The function F is just sin(ξ)
ξ

shifted so that 0 is at ξ0, scaled so that exactly one

period of the sine happens between 0 and ξ0, then symmetrized to make it even, and

then scaled by a factor of 1
T

again to make F (ξ0) = 1. Since sin ξ
ξ

=
∫ 1

0
cos(ξx), F is

a Fourier transform of some even function f supported on [− π
4ξ0
, π

4ξ0
], and FN is the

Fourier transform of an even function with support in [−Nπ
4ξ0
, Nπ

4ξ0
].

Fix ε. Since the measures dµ and dµ∗ are essentially supported on the same set

e, we can let δ1 be as in the definition of regularity bounds (1.4.1) for both measures.

Let eδ1 = {ξ : dist(ξ, e) < δ1}. We label the mass points of dµ∗ outside eδ1 with

{ξ1, ξ2, ξ3, ..., ξn}. We can construct a polynomial P with zeros at ξ1, ..., ξn and a local

maximum at ξ0 of P (ξ0) = 1 with degree n+ 1.

Then let

Q(ξ) = QM(ξ, ξ0, µ)FNP.

Since Q(ξ0) = 1, by the minimizing property of λL,

‖Q‖2HL(dµ∗) ≥ λL(ξ0, µ
∗).
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We then find a bound on ‖Q‖2HL(dµ∗) from above.

‖Q‖2 =

∫
|Q(ξ)|2dµ∗(ξ) = (

∫
|ξ−ξ0|<δ

+

∫
|ξ−ξ0|≥δ

)|Q(ξ)|2dµ∗(ξ),

Both F and P have a local maximum of 1 at ξ0, so we see that

∫
|ξ−ξ0|<δ

|Q(ξ)|2dµ∗(ξ) ≤ sup
|ξ0−ξ|<δ

w∗(ξ)

w(ξ)

∫
|ξ0−ξ|<δ

|QM(ξ)|2dµ(ξ)

≤ sup
|ξ0−ξ|<δ

w∗(ξ)

w(ξ)
λM(ξ0, µ).

The measure µ∗ is pure point on R\eδ1 and the zeros of P coincide with the mass

points of µ∗, so integrating |FNP |2 over the set eδ1 is the same as the integrating over

R. We use (1.4.1) to show that the integral of |Q2| over |ξ − ξ0| ≥ δ is small for large

N :

∫
|ξ−ξ0|≥δ

|Q(ξ)|2dµ∗(ξ) ≤ CλM(ξ0)e
4εM

T

∫
|ξ−ξ0|≥δ,ξ∈eδ1

|F (ξ)NP (ξ)|2dµ∗(ξ)

≤CλM(ξ0)e
4εM

T

(∫
δ≤|ξ−ξ0|≤2

+

∫
|ξ−ξ0|>2

)
|F (ξ)|2NP 2(ξ)dµ∗(ξ).

We have split the integral into two pieces: one that is close to ξ0 and one that is

far. For the close piece, since 1 is a maximum of F on [ξ0 − 2, ξ0 + 2] there exists

γ < 1 such that F (ξ) < γ on {ξ : δ < |ξ − ξ0| ≤ 2}. Therefore,

∫
{ξ:|ξ−ξ0|≤2}\[ξ0−δ,ξ0+δ]

|F (ξ)|2NP 2(ξ)dµ∗(ξ) ≤ Cγ2N .

For the second piece,

∫
|ξ−ξ0|>2

|F (ξ)|2NP 2(ξ)dµ∗(ξ) ≤
∫
|ξ−ξ0|>2

Cξ2n+2ξ0
(ξ − ξ0)2N

dµ∗(ξ) ≤ Cξ02
−2N ,

for N > n+ 1. The last bound follows from Lemma 3.3.2.

Since ξ0 ∈ I ⊂ eint for a compact interval I and λM(ξ0) is continuous on I, we can
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choose C that is uniform in ξ0 on I in Lemma 3.3.3.

We now prove Theorem 1.4.2

Suppose dµ∗, dµ, I as in theorem and let ξ(L)→ ξ0 ∈ I.

Fix δ, ε. Let δ1 be small enough so that regularity bounds (1.4.1) hold for both

µ, µ∗ on Eδ1 and let n be the number of mass points of µ∗ outside of Eδ1 . Pick

N1, N2 > (n+ 1)/ε so that (1/2)N1 < e−4 and γN2 < e−4. Let N3 = max{N1, N2} and

N = 2N3Mε, so that Lemma 3.3.3 is applicable, and the sum of the second and third

terms in (3.3.3) is O(e−εM). Divide by λL(ξ0, µ) to get

λL(ξ0, µ
∗)

λL(ξ0, µ)
≤ sup
|ξ−ξ0|<δ

(
w∗(ξ)

w(ξ)

)
λM(ξ0, µ)

λL(ξ0, µ)
+O(e−2εM)SL(ξ0, ξ0, µ). (3.3.9)

From regularity bounds (1.4.1) on µ and for fixed N , the second term on the right

hand side tends to 0 as M →∞:

O(e−2εM)SL(ξ0, ξ0, µ) ≤ O(e−2εM)Ce
ε(M+ π

4ξ0
N)

= O(e−εM).

Then we take inf |ξ−ξ0|<δ on both sides of (3.3.9) and we adjust the sup accordingly

to get

inf
|ξ−ξ0|<δ

λL(ξ, µ∗)

λL(ξ, µ)
≤ sup
|ξ−ξ0|<2δ

(
w∗(ξ)

w(ξ)

)
inf

|ξ−ξ0|<δ

λM(ξ, µ)

λL(ξ, µ)
.

We then let δ → 0, then M → ∞, and then ε → 0. We get by continuity and

positivity of w that

lim inf
L→∞

λL(ξ(L), µ∗)

λL(ξ(L), µ)
≤ w∗(ξ0)

w(ξ0)
.

To get the opposite inequality, we can interchange µ and µ∗ in (3.3.3), use the

corresponding N given by the same formula, and divide by λL(ξ0, µ
∗).

All arguments given are uniform in ξ0 ∈ I.
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3.4 Calculation of the reproducing kernel in the

case of a periodic potential

As in Gesztesy–Zinchenko ((2.8) of [GZ06]), for z ∈ C\R let ψ(z,−) ∈ L2, with

ψ(z, 0) = 1. Then the m-function is given by

ψ(z, x) = y(z, x)−m(z)u(z, x). (3.4.1)

Similarly let ψ̃ be the L2 solution with ψ̃′(z, 0) = 1. Then the corresponding m-

function is given by

ψ̃(z, x) = u(z, x) + m̃y(z, x). (3.4.2)

Theorem 3.4.1. Let A# = − d2

dx2 + p be a Schrödinger operator with continuous

periodic potential p and either the Neumann or the Dirichlet boundary condition, and

let ρ(ξ)dξ be its density of states. Let ξ0 ∈ I ⊂ σess(A
#)int, where I is a closed and

bounded interval. Then for a, b ∈ R uniformly in I

(1)

lim
L→∞

SL(ξ0, ξ0)

πL
=
ρ(ξ0)

w(ξ0)
(3.4.3)

and

(2)
SL(ξ0 + a

L
, ξ0 + b

L
)

SL(ξ0, ξ0)
=

sin(πρ(ξ0)(b− a))

πρ(ξ0)(b− a)
. (3.4.4)

(3) Furthermore, (1.4.4) is satisfied.

Proof. The methods used here are similar to [Sim08b].

(1) We first show convergence then uniformity. We use the well known formula

relating the ρ(ξ) and =G, where G is the Green’s function. Gesztesy–Zinchenko
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((2.18) of [GZ06]) gives the Green’s function explicitly, so we compute:

ρ(ξ) = lim
L→∞

1

L
lim
ε↓0

∫ L

0

=(G(x, x, ξ + iε))dx

= lim
L→∞

1

L
lim
ε↓0

∫ L

0

=(u(ξ + iε, x)ψ(ξ + iε, x))dx

= lim
L→∞

1

L
lim
ε↓0
=m(ξ + iε)

∫ L

0

u(ξ, x)2dx

= lim
L→∞

w(ξ)

πL

∫ L

0

u(ξ, x)2dx.

Now, limε↓0=m(ξ + iε) = w(ξ) a.e., so the equality holds a.e..

We use continuity to show equality everywhere and uniformity of convergence.

We let ξ ∈ I ⊂ eint and f(ξ, x) = eiθ(ξ)xφ(ξ, x) be the Floquet solution normalized so

that f ′(ξ, 0) = 1. Here φ is periodic in x as in [MW66]. Then f(ξ, 0) /∈ R, and we

claim that

u(ξ, x) =
f(ξ, x)− f(ξ, x)

f(ξ, 0)− f(ξ, 0)
. (3.4.5)

Since f , f are solutions of the eigenvalue equation, so is the right hand side of (3.4.5).

Therefore it suffices to check that the right hand side satisfies the Neumann boundary

conditions, and it does.

Let

g(ξ, x) =
φ(ξ, x)

f(ξ, 0)− f(ξ, 0)
. (3.4.6)

Then

u(ξ, x) = eiθ(ξ)xg(ξ, x) + e−iθ(ξ)xg(ξ, x). (3.4.7)

The Wronskian of eiθ(ξ)xg(ξ, x) and e−iθ(ξ)xg(ξ, x) is

W (ξ) = −2ig(ξ, x)g(ξ, x)θ(ξ)− g(ξ, x)g′(ξ, x) + g(ξ, x)g′(ξ, x).

Substituting (3.4.7) for u in the continuous analogue of the Christoffel-Darboux
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formula (3.2.6), we get that

SL(ξ, ξ) = 2θ′(ξ)iLW (ξ) +O(1), (3.4.8)

where O(1) is bounded uniformly in ξ ∈ I and L. Both 2θ′(ξ)iW (ξ) and πρ(ξ)
w(ξ)

are

continuous in ξ and equal a.e., meaning that

lim
L→∞

SL(ξ, ξ)

L
= 2θ′(ξ)iW (ξ) =

πρ(ξ)

w(ξ)
(3.4.9)

for all ξ ∈ I. The convergence in (3.4.3) is uniform.

A similar argument yields the result for SL corresponding to the Dirichlet bound-

ary condition.

(2) For the Floquet solution f normalized so that f ′(ξ, 0) = 1 we have

f(ξ, Pk + s) = f(ξ, s)eikθ(ξ).

By analytic perturbation theory (e. g. Theorems XII.13 and XII.3 of [RS78]), f is

real analytic in θ for θ ∈ (0, π) ∪ (π, 2π) and at closed gaps i.e. θ = π and ∆′(θ) = 0.

By Theorem XIII.89 of [RS78], ξ(θ) is analytic and ξ′(θ) 6= 0, which implies that θ(ξ)

is analytic on the interiors of the bands. The function θ(ξ) is also analytic at ξ0 if

ξ0 is a closed gap. To see this we take the derivative of the discriminant equation

∆(ξ) = 2 cos(θ):
d

dξ
(∆(ξ))) =

d

dξ
D(ξ)

d

dθ
ξ(θ) = −2 sin(θ).

At a closed gap ξ0, the right hand side has a single zero and d
dξ
D(ξ) also has a single

zero. This implies that d
dθ
ξ(θ) 6= 0 at a closed gap so that θ(ξ) is analytic at ξ0.

We can therefore take the Taylor series of θ(ξ), f(ξ, s), and f ′(ξ, s) to get

f(ξ0 +
a

L
, x) = (f(ξ0, s) +O(

1

L
))eik(θ(ξ0)+

aθ′(ξ0)
L

+O( 1
L2 )), (3.4.10)

d

dx
f(ξ0 +

a

L
, x) = (

d

ds
f(ξ0, s) +O(

1

L
))eik(θ(ξ0)+

aθ′(ξ0)
L

+O( 1
L2 )). (3.4.11)
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Letting L = Pk + s, we substitute this into (3.4.5) to get

2u(ξ0 +
a

L
, L)=f(ξ0 +

a

L
, 0) =

(f(ξ0, s) +O(
1

L
))eik(θ(ξ0)+

aθ′(ξ0)
L

+O( 1
L2 )) − (f(ξ0, s) +O(

1

L
))e−ik(θ(ξ0)+

aθ′(ξ0)
L

+O( 1
L2 )).

We then compute:

4=(f(ξ0 +
a

L
, 0)=(f(ξ0 +

b

L
, 0))u(ξ0 +

a

L
, L)u′(ξ0 + b/L, L)− u(ξ0 + b/L, L)u′(ξ + a/L, L)

= ((f(ξ0, s) +O(
1

L
))ein(θ(ξ0)+

aθ′(ξ0)
L

+O(L−2)) − (f(ξ0, s) +O(
1

L
))e−in(θ(ξ0)+

aθ′(ξ0)
L

+O(L−2)))

× ((f ′(ξ0, s) +O(
1

L
))ein(θ(ξ0)+

bθ′(ξ0)
L

+O(L−2)) − (f ′(ξ0, s) +O(
1

L
))e−in(θ(ξ0)+

bθ′(ξ0)
L

+O(L−2)))

− ((f(ξ0, s) +O(
1

L
))ein(θ(ξ0)+

bθ′(ξ0)
L

+O(L−2)) − (f(ξ0, s) +O(
1

L
))e−in(θ(ξ0)+

bθ′(ξ0)
L

+O(L−2)))

× ((f ′(ξ0, s) +O(
1

L
))ein(θ(ξ0)+

aθ′(ξ0)
L

+O(L−2)) − (f ′(ξ0, s) +O(
1

L
))e−in(θ(ξ0)+

aθ′(ξ0)
L

+O(L−2)))

= −eik(
b−a
L
θ′(ξ0)+O(L−2))(f ′(ξ0, s)f(ξ0, s) +O(

1

L
))O(

1

L
)− eik(

a−b
L
θ′(ξ0)+O(L−2))(f(ξ0)f ′(ξ0) +O(

1

L
))

+ eik(
b−a
L
θ′(ξ0)+O(L−2))(f(ξ0, s)f ′(ξ0) +O(

1

L
)) + eik(

a−b
L
θ′(ξ0)+O(L−2))(f ′(ξ0)f(ξ0) +O(

1

L
))

= (f ′(ξ0, s)f(ξ0, s)− f ′(ξ0, s)f(ξ0, s))(e
ik(a−b

L
θ′(ξ0)+O(L−2)) − eik(

b−a
L
θ′(ξ0)+O(L−2)))

= W (f, f)2i sin(i(
a− b
P

θ′(ξ0) +O(L−1)))

where W is the Wronskian of f , f . The Wronskian is constant in x, so it suffice to

compute it at 0:

W (f, f) = f ′(ξ0, 0)f(ξ0, 0)− f ′(ξ0, 0)f(ξ0, 0) = 2=f(ξ0, 0)

Thus we have obtained by direct calculation that

2=f(ξ0 +
a

L
, 0)=f(ξ0 +

b

L
, 0)(u(ξ0 +

a

L
, L)u′(ξ0 +

b

L
, L)− u(ξ0 +

b

L
, L)u′(ξ +

a

L
, L))

= W (f, f)i sin(
a− b
P

θ′(ξ0) +O(L−1)).
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Then substituting into the left hand side of (3.4.4), we get

SL(ξ0 + a
L
, ξ0 + b

L
)

SL(ξ0, ξ0)
=

= lim
L→∞

w(ξ0)=(f(ξ0, 0))(u(L, ξ0 + a
L

)u′(L, ξ0 + b
L

)− u(L, ξ0 + b
L

)u′(L, ξ + a
L

))

=(f(ξ0 + a
L
, 0))=(f(ξ0 + b

L
, 0))ρ(ξ0)(b− a)

=
sin(πρ(ξ0)(b− a))

πρ(ξ0)(b− a)
.

Here we have used that

w(ξ) = =f(ξ, 0), (3.4.12)

which we get by substituting

W (ξ) =
f(0)f ′(0)− f ′(0)f(0)

(2i=f(ξ, 0))2
= (2i=f(ξ, 0))−1, (3.4.13)

in (3.4.9).

An identical calculation yields the result for the Dirichlet boundary condition.

To show (1.4.4), let ε(L)→ 0 as L→∞. Since u is real analytic in ξ,

u2(ξ + ε(L), x) = u2(ξ, x) +
d

dξ
(u2(ξ, x))ε(L) + o(ε(L)),

and since I is compact, d
dξ

(u2(ξ, x)) achieves a maximum, so that u2(ξ + ε(L), x) =

u2(ξ, x) +O(ε(L)) uniformly on I. Thus,

lim
L→∞

w(ξ)

πL

∫ L

0

u(ξ + ε(L), x)2dx =

= lim
L→∞

w(ξ)

πL

∫ L

0

u(ξ, x)2dx+O(ε(L)).
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3.5 Off-Diagonal Kernel and Clock Behavior

The main goal of this section is to prove our main result Theorem 1.3.1. We start by

proving Lubinsky’s inequality, which is similar to the discrete case:

Lemma 3.5.1. Let two measures dµ(ξ), dµ∗(ξ) with dµ(ξ) ≤ dµ∗(ξ) be unnormalized

spectral measures of Schrödinger operators. Then for any ξ, β ∈ R,

|SL(ξ, β, µ)− SL(ξ, β, µ∗)|
SL(ξ, ξ, µ)

≤
(
SL(β, β, µ)

SL(ξ, ξ, µ)

)1/2(
1− SL(ξ, ξ, µ∗)

SL(ξ, ξ, µ)

)1/2

. (3.5.1)

Proof. The proof carries over from [Lub09]. Expanding,

∫
(SL(ξ, ζ, µ)− SL(ξ, ζ, µ∗))2dµ(ζ) =

=

∫
SL(ξ, ζ, µ)2dµ(ζ)− 2

∫
SL(ξ, ζ, µ)SL(ξ, ζ, µ∗)dµ(ζ) +

∫
S2
L(ξ, ζ, µ∗)dµ(ζ)

= SL(ξ, ξ, µ)− 2SL(ξ, ξ, µ∗) +

∫
SL(ξ, ζ, µ∗)dµ(ζ).

Since dµ ≤ dµ∗,

∫
SL(ξ, ζ, µ∗)dµ(ζ) ≤

∫
S2(ξ, ζ, µ∗)dµ∗(ζ) = S∗L(ξ, ξ). (3.5.2)

Therefore,

∫
(SL(ξ, ζ, µ)− SL(ξ, ζ, µ∗))2dµ(ζ) ≤ SL(ξ, ξ, µ)− SL(ξ, ξ, µ∗).

Using the variational principle for the Christoffel–Darboux symbol e.g. the mini-

mizing property, for any π(ζ) ∈ HL and any β ∈ R

SL(β, β, µ)−1 ≤
∫

π(ζ)2

π(β)2
dµ(ζ).

Using π(ζ) = SL(ξ, ζ, µ)− SL(ξ, ζ, µ∗) we get that

|SL(ξ, β, µ)− SL(ξ, β, µ∗)| ≤ SL(β, β, µ)1/2(SL(ξ, ξ, µ∗)− SL(ξ, ξ, µ∗)).
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We then show

Lemma 3.5.2. Let dµ, dµ∗ be unnormalized spectral measures with σess(dµ) = σess(dµ
∗).

If dµ(ξ) obeys regularity bounds and dµ(ξ) ≤ dµ∗(ξ) then dµ∗(ξ) also obeys regularity

bounds.

Proof. Since dµ ≤ dµ∗, ‖Q‖dµ ≤ ‖Q‖dµ∗ for all Q ∈ L2(dµ) ∩ L2(dµ∗), so

inf{‖Q‖dµ : Q(ξ0) = 1, Q(ξ) =

∫ L

0

f(x) cos(
√
ξx)dx}

≤ inf{‖Q‖dµ∗ : Q(ξ0) = 1, Q(ξ) =

∫ L

0

f(x) cos(
√
ξx)dx}.

By the variational principle, this implies that λL(ξ, µ) ≤ λL(ξ, µ∗). If u, u∗ are the

solutions of the eigenvalue equations corresponding to dµ, dµ∗ respectively, then

CeεL ≥
∫ L

0

u(ξ, x)2dx ≥
∫ L

0

u∗(ξ, x)2dx.

We now prove Theorem 1.3.1.

Proof. Let A = − d2

dx2 + p(x) + q(x) and A# = − d2

dx2 + p(x) be Schrödinger opera-

tors with periodic continuous p and non-destructive zero-average q (Definition 1.2.2).

Suppose the corresponding spectral measures dµ, dµ# satisfy regularity bounds. Sup-

pose there exists a closed and bounded interval I ⊂ σess(A)int such that ξ0 ∈ I, w is

absolutely continuous and positive on I, and (σess(dµs) ∪ σess(dµ
#
s )) ∩ I = ∅.

Let s > 0 such that sw#(ξ0) = w(ξ0). From µ, µ# we construct a new unnor-

malized spectral measure µ∗ which dominates µ, sµ# and is absolutely continuous

on I with w∗(ξ0) = w(ξ0). Let dµ∗(ξ) = sup{sdµ#(ξ), dµ(ξ)}, for ξ < R, and

dµ∗(ξ) = sdµ#(ξ) + dµ(ξ), for ξ ≥ R, where R ∈ R with I ⊂ (−∞, R). We claim

that µ∗ is an unnormalized spectral measure.
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A measure dν is a spectral measure for a boundary value problem (Theorem 2.3.1

of [Mar86]) if and only if

(1) The functional on HL given by the inner product 〈−, π(ξ)〉dν is non-trivial for

all non-trivial π.

(2) The function

Φ(x, ν) =

∫
1− cos(

√
ξx)

ξ
dν(ξ) (3.5.3)

is thrice continuously differentiable in x and Φ′(0+, ν) = 1.

Condition (1) is true for dµ∗, since it is true for both µ and µ#. To show condition

(2), let ΦR(x, ν) =
∫ R
−∞

1−cos(
√
ξx)

ξ
dν, for any locally finite measure dν. Then ΦR(x, µ),

ΦR(x, µ#), ΦR(x, µ∗) are in C∞ by Dominated Convergence Theorem and

∫ ∞
R

1− cos(
√
ξx)

ξ
dµ∗ = Φ(x, µ)− ΦR(x, µ) + Φ(x, µ#)− ΦR(x, µ#)

is in C3 as a sum of C3 functions, making Φ(x, µ∗) ∈ C3. By continuity of Φ′R(x)

and the Dominated Convergence Theorem

Φ′R(0+, µ∗) = Φ′R(0, µ∗) =

∫ R

0

sin(0)√
ξ
dµ∗(ξ) = 0,

so

Φ′(0+, µ∗) = Φ′(0+, µ) + Φ′(0+, µ#) = 1 + s.

Thus, dividing dµ∗ by 1 + s will yield a spectral measure. Additionally, the boundary

condition of dµ∗ is the same as that for dµ, dµ#(Theorem 2.4.2 of Marchenko [Mar86]).

By Lemma 3.5.2 above, µ∗ obeys the regularity bound. Thus, by (1.4.2)

SL(ξ0 + a/L, ξ0 + a/L, µ)

SL(ξ0 + b/L, ξ0 + b/L, µ∗)
→ 1

and
SL(ξ0 + a/L, ξ0 + a/L, sµ#)

SL(ξ0 + b/L, ξ0 + b/L, µ∗)
→ 1.
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Dividing by SL(ξ0, ξ0) and applying Lubinsky’s inequality, we get that

|SL(ξ0 + a
L
, ξ0 + b

L
, µ)− SL(ξ0 + a

L
, ξ0 + b

L
, µ∗)|2

SL(ξ0 + b
L
, ξ0 + b

L
, µ∗)

≤ SL(ξ0 +
a

L
, ξ0 +

a

L
, µ)− SL(ξ0 +

a

L
, ξ0 +

a

L
, µ∗),

and

|SL(ξ0 + a
L
, ξ0 + b

L
, sµ#)− SL(ξ0 + a

L
, ξ0 + b

L
, µ∗)|2

SL(ξ0 + b
L
, ξ0 + b

L
, µ∗)

≤ SL(ξ0 +
a

L
, ξ0 +

a

L
, sµ#)− SL(ξ0 +

a

L
, ξ0 +

a

L
, µ∗)

which gives that
SL(ξ0 + a

L
, ξ0 + b

L
, µ)

SL(ξ0 + a
L
, ξ0 + b

L
, sµ#)

→ 1.

Since
SL(ξ0, ξ0, µ)

SL(ξ0, ξ0, sµ#)
→ 1,

we get that

lim
L→∞

SL(ξ0 + a
L
, ξ0 + b

L
, µ)

SL(ξ0, ξ0, µ)
= lim

L→∞

SL(ξ0 + a
L
, ξ0 + b

L
, sµ#)

SL(ξ0, ξ0, sµ#)
.

The limit on the right is equal to (1.3.1) and all limits are uniform on I and

|a|, |b| < B.

Like [Sim08b], [LL08], we can now deduce clock spacing of the zeros for a perturbed

periodic potential. Here we prove Corollary 1.3.3.

Proof. Fix an interval I ⊂ eint and ξ∗ ∈ I. We want to show uniform clock behavior

at ξ∗ of zeros of u′ and y in ξ as L gets large. More precisely, if ξn is a successive

numbering of zeros with ...ξ−1 < ξ∗ ≤ ξ0 < ξ1 < ..., then

lim
L
L|(ξn − ξn+1)|ρ(ξ∗) = 1.
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By the Christoffel–Darboux formula (3.2.4),

u(ξ∗, L)

u′(ξ∗, L)
=
u(ξ∗ + a/L, L)

u′(ξ∗ + a/L, L)
(3.5.4)

for a 6= 0 if and only if SL(ξ∗, ξ∗ + a/L) = 0. From (1.4.5) and (3.4.3) we see that

SL(ξ∗, ξ∗) = O(L). Now, by (1.3.1) and since SL(ξ∗, ξ∗) = O(L), SL(ξ∗, ξ∗ + a/L) =

o(1/L) if and only if a = k
ρ(ξ∗)

+ o(1/L). The convergence in L is uniform on I, since

(1.3.1) is uniform on I. The argument is the same for y.

3.6 Example: the Free Schrödinger Operator

The arguments in Section 3.1 apply also to non-destructive zero-average perturbations

of the free Schrödinger operator, thus giving us the regularity bounds condition. We

know the spectral measure for the free Schrödinger operator [Tes09], and it is indeed

continuous and non-negative on [0,∞). The solution of the eigenvalue equation for

the free Schrödinger operator

− d2

dx2
u(x, ξ) = ξu(x, ξ)

with the Neumann boundary condition is cos(
√
ξx) < eεx on [0,∞). We compute

SL(ξ, β) and SL(ξ, ξ) directly:

SL(ξ, β) =

∫ L

0

cos(
√
ξx) cos(

√
βx)dx =

sin((
√
ξ −
√
β)L)

2(
√
ξ −
√
β)

+
sin((
√
ξ +
√
β)L)

2(
√
ξ +
√
β)

,

and

SL(ξ, ξ) =
L

2
+

sin(2
√
ξL)

4
√
ξ

.

Then model property (3) is clear and we check property (4):

lim sup
ε→0

lim sup
L→∞

L+εL
2

+ sin(2
√
ξ(L+εL)

4
√
ξ

L
2

+ sin(2
√
ξL)

4
√
ξ

= 1.
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Locally at ξ0 we get

lim
L→∞

SL(ξ0 + a/L, ξ0 + b/L)

SL(ξ0, ξ0)
=

2
√
ξ0 sin( a−b

2
√
ξ0

)

a− b
.

This coincides with (3.4.3), since the density of states for the free Schrödinger

operator is

ρ(ξ) = (2π)−1ξ−1/2 (3.6.1)

for ξ ∈ [0,∞) (Example 8.1 of [BS91]).
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[CL55] Earl A. Coddington and Norman Levinson. Theory of ordinary differential

equations. McGraw-Hill Book Company, Inc., New York-Toronto-London,

1955.

[CS77] K. Chadan and P. C. Sabatier. Inverse problems in quantum scattering

theory. Springer-Verlag, New York, 1977. With a foreword by R. G. Newton,

Texts and Monographs in Physics.

[ET55] P. Erdös and P. Turán. On the role of the Lebesgue functions in the theory

of the Lagrange interpolation. Acta Math. Acad. Sci. Hungar., 6:47–66,

1955.

[Fre71] G. Freud. Orthogonal Polynomials. Pergamon Press, Oxford, New York,

1971.

[GL55] I. M. Gel′fand and B. M. Levitan. On the determination of a differential

equation from its spectral function. Amer. Math. Soc. Transl. (2), 1:253–

304, 1955.



53

[GS00] Fritz Gesztesy and Barry Simon. A new approach to inverse spectral theory.

II. General real potentials and the connection to the spectral measure. Ann.

of Math. (2), 152(2):593–643, 2000.

[GZ06] Fritz Gesztesy and Maxim Zinchenko. On spectral theory for Schrödinger

operators with strongly singular potentials. Math. Nachr., 279(9-10):1041–

1082, 2006.
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