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Abstract

Traditional studies of animal-fluid interactions have led to the understanding of factors that affect

the distribution, ecology and energetics of swimming organisms. These interactions are commonly

investigated by using quantitative flow measurement techniques, which include digital particle image

velocimetry. Due to limitations in quantitative flow measurements in the natural environment,

animal measurements are conducted in laboratories. Laboratory measurement techniques have been

shown to have an altering impact on animal behavior and resulting flow fields. Hence, it is reasonable

to question conclusions made about the impact of background flows in the natural environment from

measurements conducted in the laboratory. Therefore, an apparatus that will enable the quantitative

measurement of flows surrounding a swimming animal in the field is needed to accurately address

the effect of background flows on animal swimming and fluid transport.

We describe the development of a self-contained underwater velocimetry apparatus that achieves

the goal of real-time, quantitative field measurements of aquatic animal-fluid interactions. Using

this apparatus, we obtain measurements of flow fields surrounding animals in the field and analyze

the effect of background flows on swimming animals. Using a dynamical systems technique called

Lagrangian coherent structures to quantitatively compare laboratory and field-generated flows, we

find that background flow structures alter fluid transport by swimming jellyfish. From these studies,

we define a biologically-relevant metric for animal feeding that is based entirely on the volume of

fluid that interacts with the swimming animal. The ability to quantify background flows and their

influence on animal-fluid interactions will allow us to broaden our concept of animal-fluid interactions

to include the effects swimming animals have on their surrounding environment. This represents a

paradigm shift in the analysis of animal-fluid interactions.
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Recent studies have provided heated debate about whether biologically-generated (or biogenic)

mixing can have an impact in the ocean. Arguments for biogenic mixing lacked an efficient mecha-

nism for fluid transport in viscous and stratified flow environments. We present an effective mech-

anism for biogenic mixing called drift, which is active during swimming, and results in permanent

displacement of fluid in the direction of the animal’s motion (in unstratified flow). We show that

unlike mechanisms that rely on turbulent mixing generated by wake structures, drift is enhanced as

viscous effects are increased. While drift has been observed in jellyfish and copepods, to understand

its relevance in the global ocean, the effects of stratification need to be considered. By conducting

simulations of moving bodies in stratified flow, we show that at buoyancy frequencies on the order of

the mean ocean, fluid transport due to drift remains a powerful mechanism through which swimming

animals may provide a significant contribution to mixing in the oceans.
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