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Chapter 2

Instabilities in the Æther

We investigate the stability of theories in which Lorentz invariance is spontaneously

broken by fixed-norm vector “æther” fields. Models with generic kinetic terms are

plagued either by ghosts or by tachyons, and are therefore physically unacceptable.

There are precisely three kinetic terms that are not manifestly unstable: a sigma

model (∂µAν)
2, the Maxwell Lagrangian FµνF

µν , and a scalar Lagrangian (∂µA
µ)2.

The timelike sigma-model case is well defined and stable when the vector norm is fixed

by a constraint; however, when it is determined by minimizing a potential there is

necessarily a tachyonic ghost, and therefore an instability. In the Maxwell and scalar

cases, the Hamiltonian is unbounded below, but at the level of perturbation theory

there are fewer degrees of freedom and the models are stable. However, in these two

theories there are obstacles to smooth evolution for certain choices of initial data.

The contents of this chapter were written in collaboration with Sean Carroll, Tim

Dulaney, and Heywood Tam and have been published in [1].

2.1 Introduction

The idea of spontaneous violation of Lorentz invariance through tensor fields with

non-vanishing expectation values has garnered substantial attention in recent years

[18, 19, 20, 21, 12, 22, 23, 24, 25, 26, 27, 28]. Hypothetical interactions between
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Standard Model fields and Lorentz-violating (LV) tensor fields are tightly constrained

by a wide variety of experimental probes, in some cases leading to limits at or above

the Planck scale [21, 29, 23, 30, 31, 32, 13].

If these constraints are to be taken seriously, it is necessary to have a sensible

theory of the dynamics of the LV tensor fields themselves, at least at the level of low-

energy effective field theory. The most straightforward way to construct such a theory

is to follow the successful paradigm of scalar field theories with spontaneous symme-

try breaking, by introducing a tensor potential that is minimized at some non-zero

expectation value, in addition to a kinetic term for the fields. (Alternatively, it can be

a derivative of the field that obtains an expectation value, as in ghost condensation

models [33, 34, 35].) As an additional simplification, we may consider models in which

the nonzero expectation value is enforced by a Lagrange multiplier constraint, rather

than by dynamically minimizing a potential; this removes the “longitudinal” mode of

the tensor from consideration, and may be thought of as a limit of the potential as

the mass near the minimum is taken to infinity. In that case, there will be a vacuum

manifold of zero-energy tensor configurations, specified by the constraint.

All such models must confront the tricky question of stability. Ultimately, stabil-

ity problems stem from the basic fact that the metric has an indefinite signature in a

Lorentzian spacetime. Unlike in the case of scalar fields, for tensors it is necessary to

use the spacetime metric to define both the kinetic and potential terms for the fields.

A generic choice of potential would have field directions in which the energy is un-

bounded from below, leading to tachyons, while a generic choice of kinetic term would

have modes with negative kinetic energies, leading to ghosts. Both phenomena repre-

sent instabilities; if the theory has tachyons, small perturbations grow exponentially

in time at the linearized level, while if the theory has ghosts, nonlinear interactions

create an unlimited number of positive- and negative-energy excitations [36]. There

is no simple argument that these unwanted features are necessarily present in any
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model of LV tensor fields, but the question clearly warrants careful study.

In this chapter we revisit the question of the stability of theories of dynamical

Lorentz violation, and argue that most such theories are unstable. In particular,

we examine in detail the case of a vector field Aµ with a nonvanishing expectation

value, known as the “æther” model or a “bumblebee” model. For generic choices of

kinetic term, it is straightforward to show that the Hamiltonian of such a model is

unbounded from below, and there exist solutions with bounded initial data that grow

exponentially in time.

There are three specific choices of kinetic term for which the analysis is more

subtle. These are the sigma-model kinetic term,

LK = −1

2
∂µAν∂

µAν , (2.1)

which amounts to a set of four scalar fields defined on a target space with a Minkowski

metric; the Maxwell kinetic term,

LK = −1

4
FµνF

µν , (2.2)

where Fµν = ∂µAν − ∂νAµ is familiar from electromagnetism; and what we call the

“scalar” kinetic term,

LK =
1

2
(∂µA

µ)2 , (2.3)

featuring a single scalar degree of freedom. Our findings may be summarized as

follows:

• The sigma-model Lagrangian with the vector field constrained by a Lagrange

multiplier to take on a timelike expectation value is the only æther theory for

which the Hamiltonian is bounded from below in every frame, ensuring stability.

In the next chapter, we examine the cosmological behavior and observational
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constraints on this model [2]. If the vector field is spacelike, the Hamiltonian is

unbounded and the model is unstable. However, if the constraint in the sigma-

model theory is replaced by a smooth potential, allowing the length-changing

mode to become a propagating degree of freedom, that mode is necessarily

ghostlike (negative kinetic energy) and tachyonic (correct sign mass term), and

the Hamiltonian is unbounded below, even in the timelike case. It is therefore

unclear whether models of this form can arise in any full theory.

• In the Maxwell case, the Hamiltonian is unbounded below; however, a perturba-

tive analysis does not reveal any explicit instabilities in the form of tachyons or

ghosts. The timelike mode of the vector acts as a Lagrange multiplier, and there

are fewer propagating degrees of freedom at the linear level (a “spin-1” mode

propagates, but not a “spin-0” mode). Nevertheless, singularities can arise in

evolution from generic initial data: for a spacelike vector, for example, the field

evolves to a configuration in which the fixed-norm constraint cannot be satisfied

(or perhaps just to a point where the effective field theory breaks down). In

the timelike case, a certain subset of initial data is well behaved, but, provided

the vector field couples only to conserved currents, the theory reduces precisely

to conventional electromagnetism, with no observable violations of Lorentz in-

variance. It is unclear whether there exists a subset of initial data that leads to

observable violations of Lorentz invariance while avoiding problems in smooth

time evolution.

• The scalar case is superficially similar to the Maxwell case, in that the Hamil-

tonian is unbounded below, but a perturbative analysis does not reveal any

instabilities. Again, there are fewer degrees of freedom at the linear level; in

this case, the spin-1 mode does not propagate. There is a scalar degree of free-

dom, but it does not correspond to a propagating mode at the level of pertur-
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bation theory (the dispersion relation is conventional, but the energy vanishes

to quadratic order in the perturbations). For the timelike æther field, obstacles

arise in the time evolution that are similar to those of a spacelike vector in the

Maxwell case; for a spacelike æther field with a scalar action, the behavior is

less clear.

• For any other choice of kinetic term, æther theories are always unstable.

Interestingly, these three choices of æther dynamics are precisely those for which there

is a unique propagation speed for all dynamical modes; this is the same condition re-

quired to ensure that the Generalized Second Law is respected by a Lorentz-violating

theory [37, 38].

One reason why our findings concerning stability seem more restrictive than those

of some previous analyses is that we insist on perturbative stability in all Lorentz

frames, which is necessary in theories where the form of the Hamiltonian is frame

dependent. In a Lorentz-invariant field theory, it suffices to pick a Lorentz frame and

examine the behavior of small fluctuations; if they grow exponentially, the model is

unstable, while if they oscillate, the model is stable. In Lorentz-violating theories, in

contrast, such an analysis might miss an instability in one frame that is manifest at

the linear level in some other frame [39, 31, 40]. This can be traced to the fact that a

perturbation that is “small” in one frame (the value of the perturbation is bounded

everywhere along some initial spacelike slice), but grows exponentially with time as

measured in that frame, will appear “large” (unbounded on every spacelike slice) in

some other frame.

As an explicit example, consider a model of a timelike vector with a background

configuration Āµ = (m, 0, 0, 0), and perturbations δaµ = εµe−iωtei
~k·~x, where εµ is some

constant polarization vector. In this frame, we will see that the dispersion relation
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takes the form

ω2 = v2~k2 . (2.4)

Clearly, the frequency ω will be real for every real wave vector ~k, and such modes

simply oscillate rather than growing in time. It is tempting to conclude that models

of this form are perturbatively stable for any value of v. However, we will see below

that when v > 1, there exist other frames (boosted with respect to the original) in

which ~k can be real but ω is necessarily complex, indicating an instability. These

correspond to wave vectors for which, evaluated in the original frame, both ω and

~k are complex. Modes with complex spatial wave vectors are not considered to be

“perturbations,” since the fields blow up at spatial infinity. However, in the presence

of Lorentz violation, a complex spatial wave vector in one frame may correspond

to a real spatial wave vector in a boosted frame. We will show that instabilities

can arise from initial data defined on a constant-time hypersurface (in a boosted

frame) constructed solely from modes with real spatial wave vectors. Such modes are

bounded at spatial infinity (in that frame), and could be superimposed to form wave

packets with compact support. Since the notion of stability is not frame dependent,

the existence of at least one such frame indicates that the theory is unstable, even if

there is no linear instability in the æther rest frame.

Several prior investigations have considered the question of stability in theories

with LV vector fields. Lim [25] calculated the Hamiltonian for small perturbations

around a constant timelike vector field in the rest frame, and derived restrictions on

the coefficients of the kinetic terms. Bluhm et al. [41] also examined the timelike case

with a Lagrange multiplier constraint, and showed that the Maxwell kinetic term led

to stable dynamics on a certain branch of the solution space if the vector was coupled

to a conserved current. It was also found, in [41], that most LV vector field theories

have Hamiltonians that are unbounded below. Boundedness of the Hamiltonian was

also considered in [42]. In the context of effective field theory, Gripaios [43] analyzed
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small fluctuations of LV vector fields about a flat background. Dulaney, Gresham and

Wise [27] showed that only the Maxwell choice was stable to small perturbations in

the spacelike case assuming the energy of the linearized modes was non-zero.1 Elliot,

Moore, and Stoica [30] showed that the sigma-model kinetic term is stable in the

presence of a constraint, but not with a potential.

In the next section, we define notation and fully specify the models we are con-

sidering. We then turn to an analysis of the Hamiltonians for such models, and show

that they are always unbounded below unless the kinetic term takes on the sigma-

model form and the vector field is timelike. This result does not by itself indicate

an instability, as there may not be any dynamical degree of freedom that actually

evolves along the unstable direction. Therefore, in the following section we look care-

fully at linear stability around constant configurations, and isolate modes that grow

exponentially with time. In the section after that we show that the models that are

not already unstable at the linear level end up having ghosts, with the exception of

the Maxwell and scalar cases. We then examine some features of those two theories

in particular.

2.2 Models

We will consider a dynamical vector field Aµ propagating in Minkowski spacetime

with signature (−+ ++). The action takes the form

SA =

∫
d4x (LK + LV ) , (2.5)

1This effectively eliminates the scalar case.
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where LK is the kinetic Lagrange density and LV is (minus) the potential. A general

kinetic term that is quadratic in derivatives of the field can be written2

LK = −β1(∂µAν)(∂
µAν)− β2(∂µA

µ)2 − β3(∂µAν)(∂
νAµ)− β4

AµAν

m2
(∂µAρ)(∂νA

ρ) .

(2.7)

In flat space-time, setting the fields to constant values at infinity, we can integrate by

parts to write an equivalent Lagrange density as

LK = −1

2
β1FµνF

µν − β∗(∂µAµ)2 − β4
AµAν

m2
(∂µAρ)(∂νA

ρ) , (2.8)

where Fµν = ∂µAν − ∂νAµ and we have defined

β∗ = β1 + β2 + β3 . (2.9)

In terms of these variables, the models specified above with no linear instabilities or

negative-energy ghosts are

• Sigma model: β1 = β∗,

• Maxwell: β∗ = 0, and

• Scalar: β1 = 0,

in all cases with β4 = 0.

The vector field will obtain a nonvanishing vacuum expectation value from the po-

tential. For most of the chapter we will take the potential to be a Lagrange multipler

2In terms of the coefficients, ci, defined in [24] and used in many other publications on æther
theories,

βi =
ci

16πGm2
(2.6)

where G is the gravitational constant.
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constraint that strictly fixes the norm of the vector:

LV = λ(AµAµ ±m2) , (2.10)

where λ is a Lagrange multiplier whose variation enforces the constraint

AµAµ = ∓m2 . (2.11)

If the upper sign is chosen, the vector will be timelike, and it will be spacelike for the

lower sign. Later we will examine how things change when the constraint is replaced

by a smooth potential of the form LV = −V (Aµ) ∝ ξ(AµA
µ ±m2)2. It will turn out

that the theory defined with a smooth potential is only stable in the limit as ξ →∞.

In any case, unless we specify otherwise, we assume that the norm of the vector is

determined by the constraint (2.11).

We are left with an action

SA =

∫
d4x

[
−1

2
β1FµνF

µν − β∗(∂µAµ)2 − β4
AµAν

m2
(∂µAρ)(∂νA

ρ) + λ(AµAµ ±m2)

]
.

(2.12)

The Euler-Lagrange equation obtained by varying with respect to Aµ is

β1∂µF
µν + β∗∂

ν∂µA
µ + β4G

ν = −λAν , (2.13)

where we have defined

Gν =
1

m2

[
Aλ(∂λA

σ)Fσ
ν + Aσ(∂λA

λ∂σA
ν + Aλ∂λ∂σA

ν)
]
. (2.14)

Since the fixed-norm condition (2.11) is a constraint, we can consistently plug it back

into the equations of motion. Multiplying (2.13) by Aν and using the constraint, we
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can solve for the Lagrange multiplier,

λ = ± 1

m2
(β1∂µF

µν + β∗∂
ν∂µA

µ + β4G
ν)Aν . (2.15)

Inserting this back into (2.13), we can write the equation of motion as a system of

three independent equations:

Qρ ≡
(
ηρν ±

AρAν
m2

)
(β1∂µF

µν + β∗∂
ν∂µA

µ + β4G
ν) = 0. (2.16)

The tensor ηρν ± m−2AρAν acts to take what would be the equation of motion in

the absence of the constraint, and project it into the hyperplane orthogonal to Aµ.

There are only three independent equations because AρQρ vanishes identically, given

the fixed norm constraint.

2.2.1 Validity of Effective Field Theory

As in this chapter we will restrict our attention to classical field theory, it is important

to check that any purported instabilities are found in a regime where a low-energy

effective field theory should be valid. The low-energy degrees of freedom in our models

are Goldstone bosons resulting from the breaking of Lorentz invariance. The effective

Lagrangian will consist of an infinite series of terms of progressively higher order in

derivatives of the fields, suppressed by appropriate powers of some ultraviolet mass

scale M . If we were dealing with the theory of a scalar field Φ, the low-energy effective

theory would be valid when the canonical kinetic term (∂Φ)2 was large compared to

a higher-derivative term such as

1

M2
(∂2Φ)2 . (2.17)
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For fluctuations with wavevector kµ = (ω,~k), we have ∂Φ ∼ kΦ, and the lowest-

order terms accurately describe the dynamics whenever |~k| < M . A fluctuation that

has a low momentum in one frame can, of course, have a high momentum in some

other frame, but the converse is also true; the set of perturbations that can be safely

considered “low-energy” looks the same in any frame.

With a Lorentz-violating vector field, the situation is altered. In addition to

higher-derivative terms of the form M−2(∂2A)2, the possibility of extra factors of the

vector expectation value leads us to consider terms such as

L4 =
1

M8
A6(∂2A)2 . (2.18)

The number of such higher dimension operators in the effective field theory is greatly

reduced because AµA
µ = −m2 and, therefore, Aµ∂νA

µ = 0. It can be shown that an

independent operator with n derivatives includes at most 2n vector fields, so that the

term highlighted here has the largest number of A’s with four derivatives. We expect

that the ultraviolet cutoff M is of order the vector norm, M ≈ m. Hence, when we

consider a background timelike vector field in its rest frame,

Āµ = (m, 0, 0, 0) , (2.19)

the L4 term reduces to m−2(∂2A)2, and the effective field theory is valid for modes

with k < m, just as in the scalar case.

But now consider a highly boosted frame, with

Āµ = (m cosh η,m sinh η, 0, 0) . (2.20)

At large η, individual components of A will scale as e|η|, and the higher-derivative
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term schematically becomes

L4 ∼
1

m2
e6|η|(∂2A)2 . (2.21)

For modes with spatial wave vector k = |~k| (as measured in this boosted frame),

we are therefore comparing m−2e6|η|k4 with the canonical term k2. The lowest-order

terms therefore only dominate for wave vectors with

k < e−3|η|m. (2.22)

In the presence of Lorentz violation, therefore, the realm of validity of the effective

field theory may be considerably diminished in highly boosted frames. We will be

careful in what follows to restrict our conclusions to those that can be reached by

only considering perturbations that are accurately described by the two-derivative

terms. The instabilities we uncover are infrared phenomena, which cannot be cured

by changing the behavior of the theory in the ultraviolet. We have been careful to

include all of the lowest-order terms in the effective field theory expansion—the terms

in (2.8).

2.3 Boundedness of the Hamiltonian

We would like to establish whether there are any values of the parameters β1, β∗ and

β4 for which the æther model described above is physically reasonable. In practice, we

take this to mean that there exist background configurations that are stable under

small perturbations. It seems hard to justify taking an unstable background as a

starting point for phenomenological investigations of experimental constraints, as we

would expect the field to evolve on microscopic timescales away from its starting

point.
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“Stability” of a background solution X0 to a set of classical equations of motion

means that, for any small neighborhood U0 of X0 in the phase space, there is another

neighborhood U1 of X0 such that the time evolution of any point in U0 remains in

U1 for all times. More informally, small perturbations oscillate around the original

background, rather than growing with time. A standard way of demonstrating sta-

bility is to show that the Hamiltonian is a local minimum at the background under

consideration. Since the Hamiltonian is conserved under time evolution, the allowed

evolution of a small perturbation will be bounded to a small neighborhood of that

minimum, ensuring stability. Note that the converse does not necessarily hold; the

presence of other conserved quantities can be enough to ensure stability even if the

Hamiltonian is not bounded from below.

One might worry about invoking the Hamiltonian in a theory where Lorentz in-

variance has been spontaneously violated. Indeed, as we shall see, the form of the

Hamiltonian for small perturbations will depend on the Lorentz frame in which they

are expressed. To search for possible linear instabilities, it is necessary to consider

the behavior of small perturbations in every Lorentz frame.

The Hamiltonian density, derived from the action (2.12) via a Legendre transfor-

mation, is

H =
∂LA

∂(∂0Aµ)
∂0Aµ − LA (2.23)

=
β1

2
F 2
ij + β1(∂0Ai)

2 − β1(∂iA0)2 + β∗(∂iAi)
2 − β∗(∂0A0)2

+ β4
AjAk

m2
(∂jAρ)(∂kA

ρ)− β4
A0A0

m2
(∂0Aρ)(∂0A

ρ), (2.24)

where Latin indices i, j run over {1, 2, 3}. The total Hamiltonian corresponding to
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this density is

H =

∫
d3xH

=

∫
d3x
(
β1(∂µAi∂µAi − ∂µA0∂µA0) + (β1 − β∗)[(∂0A0)2 − (∂iAi)

2]

+ β4
AjAk
m2

(∂jAρ)(∂kA
ρ)− β4

A0A0

m2
(∂0Aρ)(∂0A

ρ)
)
. (2.25)

We have integrated by parts and assumed that ∂iAj vanishes at spatial infinity; re-

peated lowered indices are summed (without any factors of the metric). Note that

this Hamiltonian is identical to that of a theory with a smooth (positive semidefinite)

potential instead of a Lagrange multiplier term, evaluated at field configurations for

which the potential is minimized. Therefore, if the Hamiltonian is unbounded when

the fixed-norm constraint is enforced by a Lagrange multiplier, it will also be un-

bounded in the case of a smooth potential.

There are only three dynamical degrees of freedom, so we may reparameterize

Aµ such that the fixed-norm constraint is automatically enforced and the allowed 3-

dimensional subspace is manifest. We define a boost variable φ and angular variables

θ and ψ, so that we can write

A0 ≡ m coshφ (2.26)

Ai ≡ m sinhφfi(θ, ψ) (2.27)

in the timelike case with AµA
µ = −m2, and

A0 ≡ m sinhφ (2.28)

Ai ≡ m coshφfi(θ, ψ) (2.29)
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in the spacelike case with AµA
µ = +m2. In these expressions,

f1 ≡ cos θ cosψ (2.30)

f2 ≡ cos θ sinψ (2.31)

f3 ≡ sin θ , (2.32)

so that fifi = 1. In terms of this parameterization, the Hamiltonian density for a

timelike æther field becomes

H(t)

m2
= β1 sinh2 φ∂µfi∂µfi + β1∂µφ∂µφ

+ (β1 − β∗)
[
(∂0φ)2 sinh2 φ− (coshφfi∂iφ+ sinhφ∂ifi)

2
]

+β4 sinh2 φ
[
(fi∂iφ)2 + sinh2 φ(fi∂ifl)(fj∂jfl)

]
−β4 cosh2 φ

[
(∂0φ)2 + sinh2 φ(∂0fi)

2
]
,

(2.33)

while for the spacelike case we have

H(s)

m2
= β1 cosh2 φ∂µfi∂µfi − β1∂µφ∂µφ

+ (β1 − β∗)
[
(∂0φ)2 cosh2 φ− (sinhφfi∂iφ+ coshφ∂ifi)

2
]

−β4 cosh2 φ
[
(fi∂iφ)2 − cosh2 φ(fi∂ifl)(fj∂jfl)

]
+β4 sinh2 φ

[
(∂0φ)2 − cosh2 φ(∂0fi)

2
]
.

(2.34)

Expressed in terms of the variables φ, θ, ψ, the Hamiltonian is a function of initial

data that automatically respects the fixed-norm constraint. We assume that the

derivatives ∂µAν(t0, ~x) vanish at spatial infinity.
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2.3.1 Timelike Vector Field

We can now determine which values of the parameters {β1, β∗, β4} lead to Hamilto-

nians that are bounded below, starting with the case of a timelike æther field. We

can examine the various possible cases in turn.

• Case One: β1 = β∗ and β4 = 0.

This is the sigma-model kinetic term (2.1). In this case the Hamiltonian density

simplifies to

H(t) = m2β1(sinh2 φ∂µfi∂µfi + ∂µφ∂µφ) . (2.35)

It is manifestly non-negative when β1 > 0, and non-positive when β1 < 0. The

sigma-model choice β1 = β∗ > 0 therefore results in a theory that is stable. (See

also §6.2 of [26].)

• Case Two: β1 < 0 and β4 = 0.

In this case, consider configurations with (∂0fi) 6= 0, (∂ifj) = 0, ∂µφ = 0,

sinh2 φ� 1. Then we have

H(t) ∼ m2β1 sinh2 φ(∂0fi)
2. (2.36)

For β1 < 0, the Hamiltonian can be arbitrarily negative for any value of β∗.

• Case Three: β1 ≥ 0, β∗ < β1, and β4 = 0.

We consider configurations with ∂µfi = 0, fi∂iφ 6= 0, ∂0φ = 0, cosh2 φ � 1,

which gives

H(t) ∼ m2(β∗ − β1) cosh2 φ(fi∂iφ)2. (2.37)

Again, this can be arbitrarily negative.

• Case Four: β1 ≥ 0, β∗ > β1, and β4 = 0.
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∂xφ

∂tφ

H

∂xφ

∂tφ

φ = 0 φ = 0.8 φcrit

H

∂xφ

∂tφ

H

∂xφ

∂tφ

φ = φcrit φ = 1.2 φcrit

Figure 2.1: Hamiltonian density (vertical axis) when β1 = 1, β∗ = 1.1, and θ =
ψ = ∂yφ = ∂zφ = 0 as a function of ∂tφ (axis pointing into page) and ∂xφ (axis

pointing out of page) for various φ ranging from zero to φcrit = tanh−1
√
β1/β∗, the

value of φ for which the Hamiltonian is flat at ∂xφ = 0, and beyond. Notice that
the Hamiltonian density turns over and becomes negative in the ∂tφ direction when
φ > φcrit.

Now we consider configurations with ∂µfi = 0, fi∂iφ = 0, ∂0φ 6= 0, sinh2 φ� 1.

Then,

H(t) ∼ m2(β1 − β∗) sinh2 φ(∂0φ)2, (2.38)

which can be arbitrarily negative.

• Case Five: β4 6= 0.

Now we consider configurations with ∂µfi 6= 0, ∂µφ = 0 and sinh2 φ� 1. Then,

H(t) ∼ m2β4

[
sinh4 φ(fi∂ifl)(fk∂kfl)− sinh2 φ cosh2 φ(∂0fi)

2
]
, (2.39)

which can be arbitrarily negative for any non-zero β4 and for any values of β1

and β∗.

For any case other than the sigma-model choice β1 = β∗, it is therefore straightforward

to find configurations with arbitrarily negative values of the Hamiltonian.



46

Nevertheless, a perturbative analysis of the Hamiltonian would not necessarily

discover that it was unbounded. The reason for this is shown in Fig. 2.1, which shows

the Hamiltonian density for the theory with β1 = 1, β∗ = 1.1, in a restricted subspace

where ∂yφ = ∂zφ = 0 and θ = φ = 0, leaving only φ, ∂tφ, and ∂xφ as independent

variables. We have plotted H as a function of ∂tφ and ∂xφ for four different values of

φ. When φ is sufficiently small, so that the vector is close to being purely timelike,

the point ∂tφ = ∂xφ = 0 is a local minimum. Consequently, perturbations about

constant configurations with small φ would appear stable. But for large values of

φ, the unboundedness of the Hamiltonian becomes apparent. This phenomenon will

arise again when we consider the evolution of small perturbations in the next section.

At the end of this section, we will explain why such regions of large φ are still in the

regime of validity of the effective field theory expansion.

2.3.2 Spacelike Vector Field

We now perform an equivalent analysis for an æther field with a spacelike expecta-

tion value. In this case all of the possibilities lead to Hamiltonians (2.34) that are

unbounded below, and the case β1 = β∗ > 0 is not picked out.

• Case One: β1 < 0 and β4 = 0.

Taking (∂µφ) = 0, ∂jfi = 0, ∂0fi 6= 0, we find

H(s) ∼ m2β1 cosh2 φ(∂0fi)
2. (2.40)

• Case Two: β1 > 0, β∗ ≤ β1, and β4 = 0.

Now we consider ∂µfi = 0, ∂iφ 6= 0, ∂0φ = 0, giving

H(s) ∼ m2
[
−β1∂iφ∂iφ+ (β∗ − β1) sinh2 φ(fi∂iφ)2

]
. (2.41)
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• Case Three: β1 ≥ 0, β∗ > β1, and β4 = 0.

In this case we examine (∂0φ) 6= 0, ∂µfi = 0, ∂iφ = 0, which leads to

H(s) ∼ m2(β1 − β∗) cosh2 φ(∂0φ)2. (2.42)

• Case Four: β4 6= 0.

Now we consider configurations with ∂µfi 6= 0, ∂µφ = 0 and sinh2 φ� 1. Then,

H(s) ∼ m2β4

(
cosh4 φ(fi∂ifl)(fk∂kfl)− cosh2 φ sinh2 φ(∂0fi)

2
)
. (2.43)

In every case, it is clear that we can find initial data for a spacelike vector field that

makes the Hamiltonian as negative as we please, for all possible β1, β4 and β∗.

2.3.3 Smooth Potential

The usual interpretation of a Lagrange multiplier constraint is that it is the low-

energy limit of smooth potentials when the massive degrees of freedom associated

with excitations away from the minimum cannot be excited. We now investigate

whether these degrees of freedom can destabilize the theory. Consider the most

general, dimension four, positive semi-definite smooth potential that has a minimum

when the vector field takes a timelike vacuum expectation value,

V =
ξ

4
(AµA

µ +m2)2, (2.44)

where ξ is a positive dimensionless parameter. The precise form of the potential

should not affect the results as long as the potential is non-negative and has the

global minimum at AµA
µ = −m2.

We have seen that the Hamiltonian is unbounded from below unless the kinetic
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term takes the sigma-model form, (∂µAν)(∂
µAν). Thus we take the Lagrangian to be

L = −1

2
(∂µAν)(∂

µAν)− ξ

4
(AµA

µ +m2)2. (2.45)

Consider some fixed timelike vacuum Āµ satisfying ĀµĀ
µ = −m2. We may de-

compose the æther field into a scaling of the norm, represented by a scalar Φ, and

an orthogonal displacement, represented by vector Bµ satisfying ĀµB
µ = 0. We thus

have

Aµ = Āµ −
ĀµΦ

m
+Bµ , (2.46)

where

Bµ =

(
ηµν +

ĀµĀν
m2

)
Aν and Φ =

ĀµA
µ

m
+m. (2.47)

With this parameterization, the Lagrangian is

L =
1

2
(∂µΦ)(∂µΦ)− 1

2
(∂µBν)(∂

µBν)− ξ

4
(2mΦ +BµB

µ − Φ2)2. (2.48)

The field Φ automatically has a wrong-sign kinetic term, and, at the linear level,

propagates with a dispersion relation of the form

ω2
Φ = ~k2 − 2ξm2. (2.49)

We see that in the case of a smooth potential, there exists a ghostlike mode (wrong-

sign kinetic term) that is also tachyonic with spacelike wave vector and a group

velocity that generically exceeds the speed of light. It is easy to see that sufficiently

long-wavelength perturbations will exhibit exponential growth. The existence of a

ghost when the norm of the vector field is not strictly fixed was shown in [30].

In the limit as ξ goes to infinity, the equations of motion enforce a fixed-norm

constraint and the ghostlike and tachyonic degree of freedom freezes. The theory is
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equivalent to one of a Lagrange multiplier if the limit is taken appropriately.

2.3.4 Discussion

To summarize, we have found that the action in (2.12) leads to a Hamiltonian that is

globally bounded from below only in the case of a timelike sigma-model Lagrangian,

corresponding to β1 = β∗ > 0 and β4 = 0. Furthermore, we have verified (as was

shown in [30]) that if the Lagrange multiplier term is replaced by a smooth, positive

semi-definite potential, then a tachyonic ghost propagates and the theory is destabi-

lized.

If the Hamiltonian is bounded below, the theory is stable, but the converse is

not necessarily true. The sigma-model theory is the only one for which this criterion

suffices to guarantee stability. In the next section, we will examine the linear stability

of these models by considering the growth of perturbations. Although some models

are stable at the linear level, we will see in the following section that most of these

have negative-energy ghosts, and are therefore unstable once interactions are included.

The only exceptions, both ghost-free and linearly stable, are the Maxwell (2.2) and

scalar (2.3) models.

We showed in the previous section that, unless β∗ − β1 and β4 are exactly zero,

the Hamiltonian is unbounded from below. However, the effective field theory breaks

down before arbitrarily negative values of the Hamiltonian can be reached; when

β∗ 6= β1 and/or β4 6= 0, in regions of phase space in which H < 0 (schematically),

H ∼ −m2e4|φ|(∂Θ)2 where Θ ∈ {φ, θ, ψ}. (2.50)

The effective field theory breaks down when kinetic terms with four derivatives (the

terms of next highest order in the effective field theory expansion) are on the order
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of terms with two derivatives, or, in the angle parameterization, when

m2e4|φ|(∂Θ)2 ∼ e8|φ|(∂Θ)4. (2.51)

In other words, the effective field theory is only valid when

e2|φ||∂Θ| < m. (2.52)

In principle, terms in the effective action with four or more derivatives could add

positive contributions to the Hamiltonian to make it bounded from below. However,

our analysis shows that the Hamiltonian (in models other than the timelike sigma

model with fixed norm) is necessarily concave down around the set of configura-

tions with constant æther fields. If higher-derivative terms intervene to stabilize the

Hamiltonian, the true vacuum would not have H = 0. Theories could also be deemed

stable if there are additional symmetries that lead to conserved currents (other than

energy-momentum density) or to a reduced number of physical degrees of freedom.

Regardless of the presence of terms beyond leading order in the effective field

theory expansion, due to the presence of the ghostlike and tachyonic mode (found in

the previous section), there is an unavoidable problem with perturbations when the

field moves in a smooth, positive semi-definite potential. This exponential instability

will be present regardless of higher order terms in the effective field theory expan-

sion because it occurs for very long-wavelength modes (at least around constant-field

backgrounds).

2.4 Linear Instabilities

We have found that the Hamiltonian of a generic æther model is unbounded below.

In this section, we investigate whether there exist actual physical instabilities at the
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linear level—i.e., whether small perturbations grow exponentially with time. It will

be necessary to consider the behavior of small fluctuations in every Lorentz frame,3

not only in the æther rest frame [39, 31, 40]. We find a range of parameters βi for

which the theories are tachyon free; these correspond (unsurprisingly) to dispersion

relations for which the phase velocity satisfies 0 ≤ v2 ≤ 1. In §2.5 we consider the

existence of ghosts.

2.4.1 Timelike Vector Field

Suppose Lorentz invariance is spontaneously broken so that there is a preferred rest

frame, and imagine that perturbations of some field in that frame have the following

dispersion relation:

v−2ω2 = ~k · ~k. (2.53)

This can be written in frame-invariant notation as

(v−2 − 1)(tµkµ)2 = kµk
µ, (2.54)

where tµ is a timelike Lorentz vector that characterizes the 4-velocity of the preferred

rest frame. So, in the rest frame, tµ = {1, 0, 0, 0}. Indeed, in the appendix, we find

dispersion relations for the æther modes of exactly the form in (3.12) with tµ = Āµ/m

and (2.140)

v2 =
β1

β1 − β4

(2.55)

and (2.141)

v2 =
β∗

β1 − β4

. (2.56)

Now consider the dispersion relation for perturbations of the field in another

3The theory of perturbations about a constant background is equivalent to a theory with explicit
Lorentz violation because the first order Lagrange density includes the term, λĀµδAµ, where Āµ is
effectively some constant coefficient.
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(“primed”) frame. Let’s solve for k′0 = ω′, the frequency of perturbations in the new

frame. Expanded out, the dispersion relation reads

ω′2(1 + (v−2 − 1)(t′0)2) + 2ω′(v−2 − 1)t′0t′ik′i − ~k′ · ~k′ + (v−2 − 1)(t′ik′i)
2 = 0, (2.57)

where i ∈ {1, 2, 3}. The solution for ω′ is

ω′ =
−(v−2 − 1)t′0t′ik′i ±

√
D(t)

1 + (v−2 − 1)(t′0)2
, (2.58)

where

D(t) = ~k′ · ~k′ + (v−2 − 1)
(

(t′0)2~k′ · ~k′ − (t′ik′i)
2
)
. (2.59)

In general, t′0 = cosh η and t′i = sinh η n̂i, where n̂in̂
i = 1 and η = cosh−1 γ is a boost

parameter. We therefore have

D(t) = ~k′ · ~k′
{

1 + (v−2 − 1)
[
cosh2 η − sinh2 η (n̂ · k̂′)2

]}
, (2.60)

where k̂′ = ~k′/|~k′|. Thus D(t) is clearly greater than zero if v ≤ 1. However, if

v > 1 then D(t) can be negative for very large boosts if ~k′ is not parallel to the boost

direction.

The sign of the discriminant D(t) determines whether the frequency ω′ is real

or complex valued. We have shown that when the phase velocity v of some field

excitation is greater than the speed of light in a preferred rest frame, then there is a

(highly boosted) frame in which the excitation looks unstable—that is, the frequency

of the field excitation can be imaginary. More specifically, plane waves traveling

along the boost direction with boost parameter γ = cosh η have a growing amplitude

if γ2 > 1/(1− v−2) > 0.

In appendix 2.A, we find dispersion relations of the form in (3.12) for the various

massless excitations about a constant timelike background (tµ = Āµ/m). Requiring
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stability and thus 0 ≤ v2 ≤ 1 leads to the inequalities,

0 ≤ β1

β1 − β4

≤ 1 (2.61)

and

0 ≤ β∗
β1 − β4

≤ 1 . (2.62)

Models satisfying these relations are stable with respect to linear perturbations in

any Lorentz frame.

2.4.2 Spacelike Vector Field

We show in appendix 2.A that fluctuations about a spacelike, fixed-norm, vector field

background have dispersion relations of the form

(v2 − 1)(sµkµ)2 = −kµkµ, (2.63)

with sµ = Āµ/m and (2.140)

v2 =
β1 + β4

β1

(2.64)

and (2.141)

v2 =
β1 + β4

β∗
. (2.65)

In frames where sµ = {0, ŝ}, v is the phase velocity in the ŝ direction.

Consider solving for k′0 = ω′ in an arbitrary (“primed”) frame. The solution is as

in (2.58), but with v−2 → 2− v2 and t′µ → s′µ. Thus,

ω′ =
(v2 − 1)s′0s′ik′i ±

√
D(s)

1 + (1− v2)(s′0)2
, (2.66)
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where

D(s) = ~k′ · ~k′ − (v2 − 1)
[
(s′0)2~k′ · ~k′ − (s′ik′i)

2
]
. (2.67)

In general, s′0 = sinh η and s′i = cosh η n̂i where n̂in̂
i = 1 and η = cosh−1 γ is a boost

parameter. So,

D(s) = ~k′ · ~k′
{

1− (v2 − 1)
[
sinh2 η − cosh2 η (n̂ · k̂′)2

]}
. (2.68)

which can be rewritten,

D(s) = ~k′ · ~k′
{
v2 + (1− v2) cosh2 η

[
1− (n̂ · k̂′)2

]}
. (2.69)

It is clear that D(s) is non-negative for all values of η if and only if 0 ≤ v2 ≤ 1. The

theory will be unstable unless 0 ≤ v2 ≤ 1.

The dispersion relations of the form (2.63) for the massless excitations about the

spacelike background are given in appendix 2.A. The requirement that 0 ≤ v2 ≤ 1

implies

0 ≤ β1 + β4

β1

≤ 1 (2.70)

and

0 ≤ β1 + β4

β∗
≤ 1 . (2.71)

Models of spacelike æther fields will only be stable with respect to linear perturbations

if these relations are statisfied.

The requirements (2.62) or (2.71) do not apply in the Maxwell case (when β∗ = 0 =

β4), and those of (2.61) or (2.70) do not apply in the scalar case (when β1 = 0 = β4),

since the corresponding degrees of freedom in each case do not propagate.
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2.4.3 Stability is Not Frame Dependent

The excitations about a constant background are massless (i.e., the frequency is pro-

portional to the magnitude of the spatial wave vector), but they generally do not

propagate along the light cone. In fact, when v > 1, the wave vector is timelike even

though the cone along which excitations propagate is strictly outside the light cone.

We have shown that such excitations blow up in some frame. The exponential instabil-

ity occurs for observers in boosted frames. In these frames, portions of constant-time

hypersurfaces are actually inside the cone along which excitations propagate.

Why do we see the instability in only some frames when performing a linear stabil-

ity analysis? Consider boosting the wave 4-vectors of such excitations with complex-

valued frequencies and real-valued spatial wave vectors back to the rest frame. Then,

in the rest frame, both the frequency and the spatial wave vector will have non-zero

imaginary parts. Such solutions with complex-valued ~k require initial data that grow

at spatial infinity and are therefore not really “perturbations” of the background.

But even though the æther field defines a rest frame, there is no restriction against

considering small perturbations defined on a constant-time hypersurface in any frame.

Well-behaved initial data can be decomposed into modes with real spatial wave vec-

tors; if any such modes lead to runaway growth, the theory is unstable.

2.5 Negative Energy Modes

We found above that manifest perturbative stability in all frames requires 0 ≤ v2 ≤ 1.

In the appendix, we show that there are two kinds of propagating modes, except when

β∗ = β4 = 0 or when β1 = β4 = 0. Based on the dispersion relations for these modes,

the 0 ≤ v2 ≤ 1 stability requirements translated into the inequalities for β∗, β1, and

β4 in (2.61)-(2.62) for timelike æther and (2.70)-(2.71) for spacelike æther. We shall

henceforth assume that these inequalities hold and, therefore, that ω and ~k for each
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mode are real in every frame. We will now show that, even when these requirements

are satisfied and the theories are linearly stable, there will be negative-energy ghosts

that imply instabilities at the nonlinear level (except for the sigma model, Maxwell,

and scalar cases).

For timelike vector fields, with respect to the æther rest frame, the various modes

correspond to two spin-1 degrees of freedom and one spin-0 degree of freedom. Based

on their similarity in form to the timelike æther rest frame modes, we will label these

modes once and for all as “spin-1” or “spin-0,” even though these classifications are

only technically correct for timelike fields in the æther rest frame.

The solutions to the first order equations of motion for perturbations δAµ about an

arbitrary, constant, background Āµ satisfying ĀµĀµ±m2 = 0 are (see appendix 2.A)

δAµ =

∫
d4k qµ(k)eikµx

µ

, qµ(k) = q∗µ(−k), (2.72)

where either

qµ(k) = iανkρ
Āσ

m
εµνρσ and β1kµk

µ + β4
(Āµk

µ)2

m2
= 0 and ανĀν = 0 (spin-1)

(2.73)

where αν are real-valued constants, or

qµ = iα

(
ηµν ±

ĀµĀν
m2

)
kν

and

(
β∗ηµν + (β4 ± (β∗ − β1))

ĀµĀν
m2

)
kµkν = 0 (spin-0) (2.74)

where α is a real-valued constant.

Note that when β1 = β4 = 0, corresponding to the scalar form of (2.3), the spin-1

dispersion relation is satisfied trivially, because the spin-1 mode does not propagate

in this case. Similarly, when β∗ = β4 = 0, the kinetic term takes on the Maxwell form
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in (2.2) and the spin-0 dispersion relation becomes Āµk
µ = 0; the spin-0 mode does

not propagate in that case.

The Hamiltonian (2.25) for either of these modes is

H =

∫
d3k

{[
β1(ω2 + ~k · ~k) + β4(−(ā0ω)2 + (āiki)

2)
]
qµq∗µ

+ (β1 − β∗)(ω2q∗0q0 + kiq
∗
i kjqj)

}
, (2.75)

where k0 = ω = ω(~k) is given by the solution to a dispersion relation and where

āµ ≡ Āµ/m. One can show that, as long as β1 and β4 satisfy the conditions (2.61)

or (2.70) that guarantee real frequencies ω in all frames, we will have

q∗µq
µ ≥ 0 (2.76)

for all timelike and spacelike vector perturbations. We will now proceed to evaluate

the Hamiltonian for each mode in different theories.

2.5.1 Spin-1 Energies

In this section we consider nonvanishing β4, and show that the spin-1 mode can carry

negative energy even when the conditions for linear stability are satisfied.

Timelike vector field. Without loss of generality, set

Āµ = m(cosh η, sinh η n̂), (2.77)

where n̂ · n̂ = 1. The energy of the spin-1 mode in the timelike case is given by

H =

∫
d3k(~k · ~k)q∗µq

µ

[
2X ∓ β4 sinh(2η)(n̂ · k̂)

√
X

β1 − β4 cosh2 η

]
, (2.78)
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where

X = β1

{
β1 + β4

[
(n̂ · k̂)2 sinh2 η − cosh2 η

]}
. (2.79)

Looking specifically at modes for which n̂ · k̂ = +1, we find

H =

∫
d3k(~k · ~k)q∗µq

µ

[
2β1(β1 − β4)∓ β4 sinh(2η)

√
β1(β1 − β4)

β1 − β4 cosh2 η

]
. (2.80)

The energy of such a spin-1 perturbation can be negative when |β4 sinh(2η)| >

2
√
β1(β1 − β4). Thus it is possible to have negative energy perturbations whenever

β4 6= 0. Perturbations with wave numbers perpendicular to the boost direction have

positive semi-definite energies.

Spacelike vector field. Without loss of generality, for the spacelike case we set

Āµ = m(sinh η, cosh η n̂) , (2.81)

where n̂ · n̂ = 1. The energy of the spin-1 mode in this case is given by

H =

∫
d3k(~k · ~k)q∗µq

µ

[
2X ∓ β4 sinh(2η)(n̂ · k̂)

√
X

β1 − β4 sinh2 η

]
, (2.82)

where

X = β1

{
β1 + β4

[
(n̂ · k̂)2 cosh2 η − sinh2 η

]}
. (2.83)

Looking at modes for which n̂ · k̂ = +1, we find

H =

∫
d3k(~k · ~k)q∗µq

µ

[
2β1(β1 + β4)∓ β4 sinh(2η)

√
β1(β1 + β4)

β1 − β4 sinh2 η

]
. (2.84)

Thus, the energy of perturbations can be negative when |β4 sinh(2η)| > 2
√
β1(β1 + β4).

Thus it is possible to have negative energy perturbations whenever β4 6= 0. Pertur-

bations with wave numbers perpendicular to the boost direction have positive semi-
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definite energies. In either the timelike or spacelike case, models with β4 6= 0 feature

spin-1 modes that can be ghostlike.

We note that the effective field theory is valid when k < e−3|η|m, as detailed in

§2.2.1. But even if η is very large, the effective field theory is still valid for very long

wavelength perturbations, and therefore such long wavelength modes with negative

energies lead to genuine instabilities.

2.5.2 Spin-0 Energies

We now assume the inequalities required for linear stability, (2.62) or (2.71), and

also that β4 = 0. We showed above that, otherwise, there are growing modes in some

frame or there are propagating spin-1 modes that have negative energy in some frame.

When β∗ 6= 0, the energy of the spin-0 mode in (2.74) is given by

H = 2β1α
2

∫
d3k (āρk

ρ)2
(
ω2(~k)

[
±1− (1− β1/β∗)ā

2
0

]
+ ω(~k) ā0(1− β1/β∗)āiki

)
(2.85)

for ĀµĀ
µ ±m2 = 0 and āµ ≡ Āµ/m.

Timelike vector field. We will now show that the quadratic order Hamiltonian

can be negative when the background is timelike and the kinetic term does not take

one of the special forms (sigma model, Maxwell, or scalar). Without loss of generality

we set ā0 = cosh η and āi = sinh η n̂i, where n̂ · n̂ = 1. Then plugging the freqency

ω(~k), as defined by the spin-0 dispersion relation, into the Hamiltonian (2.85) gives

H = β1α
2

∫
d3k (āρk

ρ)2

[
2X ± (1− β1/β∗) sinh 2η(n̂ · k̂)

√
X

1 + (β1/β∗ − 1) cosh2 η

]
, (2.86)

where

X = 1 + (β1/β∗ − 1)[cosh2 η − (n̂ · k̂)2 sinh2 η]. (2.87)
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If n̂ · k̂ 6= 0, the energy can be negative. In particular, if n̂ · k̂ = 1 we have

H = β1α
2

∫
d3k (āρk

ρ)2

[
2β1/β∗ ± (1− β1/β∗) sinh 2η

√
β1/β∗

1 + (β1/β∗ − 1) cosh2 η

]
. (2.88)

Given that β1/β∗− 1 ≥ 0, H can be negative when | sinh 2η| > 2
√
β1/β∗/(β1/β∗− 1).

We have thus shown that, for timelike backgrounds, there are modes that in some

frame have negative energies and/or growing amplitudes as long as β1 6= β∗, β1 6= 0,

and β∗ 6= 0. Therefore, the only possibly stable theories of timelike æther fields are

the special cases mentioned earlier: the sigma-model (β1 = β∗), Maxwell (β∗ = 0),

and scalar (β1 = 0) kinetic terms.

Spacelike vector field. For the spacelike case, without loss of generality we set

ā0 = sinh η and āi = cosh η n̂i, where n̂ · n̂ = 1. Once again, plugging the frequency

ω(k) into the Hamiltonian (2.85) gives

H = β1α
2

∫
d3k (āρk

ρ)2

[
−2X ± (1− β1/β∗) sinh 2η(n̂ · k̂)

√
X

1 + (1− β1/β∗) sinh2 η

]
, (2.89)

where

X = 1 + (1− β1/β∗)
[
sinh2 η − (n̂ · k̂)2 cosh2 η

]
. (2.90)

Upon inspection, one can see that there are values of n̂·k̂ and η that make H negative,

except when β∗ = 0 (Maxwell) or β1 = 0 (scalar). Again, the Hamiltonian density

is less than zero for modes with wavelengths sufficiently long (k < e−3|η|m), so the

effective theory is valid.

2.6 Maxwell and Scalar Theories

We have shown that the only version of the æther theory (2.12) for which the Hamilto-

nian is bounded below is the timelike sigma-model theory LK = −(1/2)(∂µAν)(∂
µAν),
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corresponding to the choices β1 = β∗, β4 = 0, with the fixed-norm condition imposed

by a Lagrange multiplier constraint. (Here and below, we rescale the field to canoni-

cally normalize the kinetic terms.) However, when we looked for explicit instabilities

in the form of tachyons or ghosts in the last two sections, we found two other models

for which such pathologies are absent: the Maxwell Lagrangian

LK = −1

4
FµνF

µν , (2.91)

corresponding to β∗ = 0 = β4, and the scalar Lagrangian

LK =
1

2
(∂µA

µ)2 , (2.92)

corresponding to β1 = 0 = β4. In both of these cases, we found that the Hamiltonian

is unbounded below,4 but a configuration with a small positive energy does not appear

to run away into an unbounded region of phase space characterized by large negative

and positive balancing contributions to the total energy.

These two models are also distinguished in another way: there are fewer than

three propagating degrees of freedom at first order in perturbations in the Maxwell

and scalar Lagrangian cases, while there are three in all others. This is closely tied to

the absence of perturbative instabilities; the ultimate cause of those instabilities can

be traced to the difficulty in making all of the degrees of freedom simultaneously well

behaved. The drop in number of degrees of freedom stems from the fact that A0 lacks

time derivatives in the Maxwell Lagrangian and that the Ai lack time derivatives in

the scalar Lagrangian. In other words, some of the vector components are themselves

Lagrange multipliers in these special cases.

Only two perturbative degrees of freedom—the spin-1 modes—propagate in the

Maxwell case (cf. (2.73)-(2.74) when β∗ = 0 = β4). The “mode” in (2.74) is a gauge

4Boundedness of the Hamiltonian was considered in [44].
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degree of freedom; at first order in perturbations the Lagrangian has a gaugelike sym-

metry under δAµ → δAµ + ∂µφ(x) where Āµ∂µφ = 0. As expected of a gauge degree

of freedom, the spin-0 mode has zero energy and does not propagate. Meanwhile, the

spin-1 perturbations propagate as well-behaved plane waves and have positive energy.

We note that the Dirac method for counting degrees of freedom in constrained dy-

namical systems implies that there are three degrees of freedom [41].5 The additional

degree of freedom, not apparent at the linear level, could conceivably cause an insta-

bility; this mode does not propagate because it is gaugelike at the linear level, but

there is no gauge symmetry in the full theory.

In the scalar case, there are no propagating spin-1 degrees of freedom. The spin-0

degree of freedom has a nontrivial dispersion relation but no energy density (cf. (2.73)-

(2.74), (2.86), and (2.89) when β1 = 0 = β4) at leading order in the perturbations.

Essentially, the fixed-norm constraint is incompatible with what would be a single

propagating scalar mode in this model; the theory is still dynamical, but perturbation

theory fails to capture its dynamical content.

Each of these models displays some idiosyncratic features, which we now consider

in turn.

2.6.1 Maxwell Action

The equation of motion for the Maxwell Lagrangian with a fixed-norm constraint is

∂µF
µν = −2λAν . (2.93)

Setting AµA
µ = ∓m2, the Lagrange multiplier is given by

λ = ± 1

2m2
Aν∂µF

µν . (2.94)

5For a discussion of constrained dynamical systems see [45].
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For timelike æther fields, the sign of λ is preserved along timelike trajectories since,

when the kinetic term takes the special Maxwell form, there is a conserved current

(in addition to energy-momentum density) due to the Bianchi identity6:

0 = ∂ν(∂µF
µν) = −2∂ν(λA

ν). (2.95)

In particular, the condition that λ = 0 is conserved along timelike Aν [12, 41]. In

the presence of interactions, this will continue to be true only if the coupling to

external sources takes the form of an interaction with a conserved current, AµJ
µ with

∂µJ
µ = 0.

If we take the timelike Maxwell theory coupled to a conserved current and restrict

to initial data satisfying λ = 0 at every point in space, the theory reduces precisely

to Maxwell electrodynamics—not only in the equation of motion, but also in the

energy-momentum tensor. We can therefore be confident that this theory, restricted

to this subset of initial data, is perfectly well behaved, simply because it is identical

to conventional electromagnetism in a nonlinear gauge [46, 42, 47].

In the case of a spacelike vector expectation value, there is an explicit obstruction

to finding smooth time evolution for generic initial data. In this case, the constraint

equations are

− A2
0 + AiAi = m2 and ∂i∂

iA0 − ∂0∂iA
i = −2λA0. (2.96)

Suppose spatially homogeneous initial conditions for the Ai are given. Without loss

of generality, we can align axes such that

Aµ(t0) = (A0(t0), 0, 0, A3(t0)), (2.97)

6If λ > 0 initially, then it must pass through λ = 0 to reach λ < 0—but λ = 0 is conserved along
timelike trajectories, so λ can at best stop at λ = 0.
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where −A2
0 + A2

3 = m2. If AiAi 6= m2, the equations of motion are

∂µF
µ
ν = 0. (2.98)

The ν = 3 equation reads

∂µF
µ

3 = −∂
2A3

∂t2
= 0, (2.99)

whose solutions are given by

A3(t) = A3(t0) + C(t− t0), (2.100)

where C is determined by initial conditions. A0 is determined by the fixed-norm

constraint A0 = ±
√
A2

3 −m2. If C 6= 0, A0 will eventually evolve to zero. Beyond

this point, A3 keeps decreasing, and the fixed-norm condition requires that A0 be

imaginary, which is unacceptable since Aµ is a real-valued vector field. Note that

this never happens in the timelike case, as there always exists some real A0 that

satisfies the constraint for any value of A3. The problem is that A3 evolves into the

ball A2
i < m2, which is catastrophic for the spacelike, but not the timelike, case. An

analogous problem arises even when the Lagrange multiplier constraint is replaced by

a smooth potential.

It is possible that this obstruction to a well-defined evolution will be regulated by

terms of higher order in the effective field theory. Using the fixed-norm constraint

and solving for A0, the derivative is

∂µA0 =
Ai√

AjAj −m2
∂µAi. (2.101)

As AjAj approaches m2, with finite derivatives of the spatial components, the deriva-

tive of the A0 component becomes unbounded. If higher-order terms in the effective

action have time derivatives of the component A0, these terms could become relevant
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to the vector field’s dynamical evolution, indicating that we have left the realm of

validity of the low-energy effective field theory we are considering.

We are left with the question of how to interpret the timelike Maxwell theory with

intial data for which λ 6= 0. If we restrict our attention to initial data for which λ < 0

everywhere, then the evolution of the Ai would be determined and the Hamiltonian

would be positive. We have

H =
1

2

∫
d3x

(
1

2
F 2
ij + (∂0Ai)

2 − (∂iA0)2

)
(2.102)

=
1

2

∫
d3x

(
1

2
F 2
ij + F0iF0i − 2(∂iA0)Fi0

)
(2.103)

=
1

2

∫
d3x

(
1

2
F 2
ij + F0iF0i + 2A0∂iFi0

)
(2.104)

=
1

2

∫
d3x

(
1

2
F 2
ij + F0iF0i − 4λA2

0

)
, (2.105)

which is manifestly positive when λ < 0. However, it is not clear why we should be

restricted to this form of initial data, nor whether even this restriction is enough to

ensure stability beyond perturbation theory.

The status of this model in both the spacelike and timelike cases remains unclear.

However, there are indications of further problems. For the spacelike case, Peloso

et. al. find a linear instability for perturbations with wave numbers on the order of

the Hubble parameter in an exponentially expanding cosmology [48, 14]. For the

timelike case, Seifert found a gravitational instability in the presence of a spherically

symmetric source [49].

2.6.2 Scalar Action

The equation of motion for the scalar Lagrangian with a fixed-norm constraint is

∂ν∂µA
µ = 2λAν . (2.106)
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Using the fixed-norm constraint (AµA
µ = ∓m2), we can solve for the Lagrange mul-

tiplier field,

λ = ∓ 1

2m2
Aν∂

ν∂µA
µ. (2.107)

In contrast with the Maxwell theory, in the scalar theory it is the timelike case for

which we can demonstrate obstacles to smooth evolution, while the spacelike case

is less clear. (The Hamiltonian is bounded below, but there are no perturbative

instabilities or known obstacles to smooth evolution.)

When the vector field is timelike, we have four constraint equations in the scalar

case,

A2
0 − AiAi = m2 and ∂i(∂µA

µ) = 2λAi. (2.108)

Suppose we give homogeneous initial conditions such that A0(t0) > m. Align axes

such that,

Aµ(t0) = (A0(t0), 0, 0, A3(t0)) , (2.109)

where A3(t0)2 = A0(t0)2 −m2. Note that, since A3(t0) 6= 0, we have that λ = 0 from

the ν = 3 equation of motion. The ν = 0 equation of motion therefore gives,

d2A0

dt2
= 0. (2.110)

We see that the timelike component of the vector field has the time evolution,

A0(t) = A0(t0) + C(t− t0). (2.111)

For generic homogeneous initial conditions, C 6= 0. In this case, A0 will not

have a smooth time evolution since A0 will saturate the fixed-norm constraint, and

beyond this point A0 will continue to decrease in magnitude. To satisfy the fixed-norm

constraint, the spatial components of the vector field Ai would need to be imaginary,
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which is unacceptable since Aµ is a real-valued vector field. This problem never

occurs for the spacelike case since there always exist real values of Ai that satisfy the

constraint for any A0.

Again, it is possible that this obstruction to a well-defined evolution will be regu-

lated by terms of higher order in the effective field theory. The time derivative of A3

is

∂µA3 =
A0√

A0A0 −m2
∂µA0. (2.112)

As A0A0 approaches m2, with finite derivatives of A0, the derivative of the spatial

component A3 becomes unbounded. If higher-order terms in the effective action have

time derivatives of the components Ai, these terms could become relevant to the

vector field’s dynamical evolution, indicating that we have left the realm of validity

of the low-energy effective field theory we are considering.

Whether or not a theory with a scalar kinetic term and fixed expectation value is

viable remains uncertain.

2.7 Conclusions

In this chapter, we addressed the issue of stability in theories in which Lorentz invari-

ance is spontaneously broken by a dynamical fixed-norm vector field with an action

S =

∫
d4x

(
−1

2
β1FµνF

µν − β∗(∂µAµ)2 − β4
AµAν

m2
(∂µAρ)(∂νA

ρ) + λ(AµAµ ±m2)

)
,

(2.113)

where λ is a Lagrange multiplier that strictly enforces the fixed-norm constraint. In

the spirit of effective field theory, we limited our attention to only kinetic terms that

are quadratic in derivatives, and took care to ensure that our discussion applies to

regimes in which an effective field theory expansion is valid.

We examined the boundedness of the Hamiltonian of the theory and showed that,
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for generic choices of kinetic term, the Hamiltonian is unbounded from below. Thus

for a generic kinetic term, we have shown that a constant fixed-norm background is

not the true vacuum of the theory. The only exception is the timelike sigma-model

Lagrangian (β1 = β∗, β4 = 0 and AµAµ = −m2), in which case the Hamiltonian is

positive-definite, ensuring stability. However, if the vector field instead acquires its

vacuum expectation value by minimizing a smooth potential, we demonstrated (as

was done previously in [30]) that the theory is plagued by the existence of a tachy-

onic ghost, and the Hamiltonian is unbounded from below. The timelike fixed-norm

sigma-model theory nevertheless serves as a viable starting point for phenomenolog-

ical investigations of Lorentz invariance; we explore some of this phenomenology in

the next chapter.

We next examined the dispersion relations and energies of first-order perturbations

about constant background configurations. We showed that, in addition to the sigma-

model case, there are only two other choices of kinetic term for which perturbations

have non-negative energies and do not grow exponentially in any frame: the Maxwell

(β∗ = β4 = 0) and scalar (β1 = β4 = 0) Lagrangians. In either case, the theory has

fewer than three propagating degrees of freedom at the linear level, as some of the

vector components in the action lack time derivatives and act as additional Lagrange

multipliers. A subset of the phase space for the Maxwell theory with a timelike æther

field is well defined and stable, but is identical to ordinary electromagnetism. For

the Maxwell theory with a spacelike æther field, or the scalar theory with a timelike

field, we can find explicit obstructions to smooth time evolution. It remains unclear

whether the timelike Maxwell theory or the spacelike scalar theory can exhibit true

violation of Lorentz invariance while remaining well behaved.
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2.A Appendix: Solutions to the Linearized Equa-

tions of Motion

We start by finding the solution to the equations of motion, linearized about a time-

like, fixed-norm background, Aµ. Then, showing fewer details, we find the solutions

to the equations of motion linearized about a spacelike background. Finally, we put

the solutions in both cases into the compact form of (2.139)-(2.141). Our results

agree with the solutions for Goldstone modes found in [43].

The equations of motion for a timelike (+) or spacelike (−) vector field are (2.16),

Qµ ≡
(
ηµν ±

AµAν
m2

)
(β1∂ρ∂

ρAν + (β∗ − β1)∂ν∂ρA
ρ + β4G

ν) = 0, (2.114)

where Gν is defined in (2.14) and AµQµ = 0 identically.

Timelike background. Consider perturbations about an arbitrary, constant (in

space and time) timelike background Aµ = Āµ that satisfies the constraint: ĀµĀ
µ =

−m2. Define perturbations by Aµ = Āµ + δAµ. Then, to first order in these pertur-

bations, ĀµQµ = 0 identically, and ηµνĀµδAν = 0 by the constraint. We can define a

basis set of four Lorentz 4-vectors nα, with components

n0
µ = Āµ/m , niµ ; i ∈ {1, 2, 3} , (2.115)

such that

ηµνnαµn
β
ν = ηαβ. (2.116)

The independent perturbations are δaα ≡ ηµνnαµδAν for α = 1, 2, 3. (δa0 is zero

at first order in perturbations due to the constraint.) It is then clear that there are

three independent equations of motion at first order in pertubations (assuming the
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constraint) for the three independent perturbations,

δQi ≡ niν
(
β1∂ρ∂

ρδAν + (β∗ − β1)∂ν∂ρδA
ρ + β4n

0
µn

0
ρ∂

µ∂ρδAν
)

= 0, (2.117)

where i ∈ {1, 2, 3}. We look for plane wave solutions for the δA:

δAµ =

∫
d4k qµ(k)eikνx

ν

. (2.118)

Since ηµνn0
µδAν = 0, at first order,

qµ = cjn
j
µ where j ∈ {1, 2, 3}. (2.119)

The equations of motion become the algebraic equations:

0 =
(
β1kρk

ρniνn
jν + (β∗ − β1)niνk

νnjµk
µ + β4n

0
µn

0
ρk

µkρniνn
jν
)
cj (2.120)

=
(
β1kρk

ρδij + (β∗ − β1)niνk
νnjµk

µ + β4n
0
µn

0
ρk

µkρδij
)
cj (2.121)

≡M ijcj. (2.122)

The three independent solutions to these equations are given by setting an eigen-

value of the matrix M to zero and setting ci to the corresponding eigenvector. Setting

an eigenvalue of M equal to zero gives a dispersion relation,

β1kρk
ρ + β4(n0

µk
µ)2 = 0, (2.123)

with two linearly independent eigenvectors,

(e2)i = ε2ijn
j
µk

µ ; (e3)i = ε3ijn
j
µk

µ. (2.124)
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The second eigenvalue of M gives the dispersion relation,

β∗kρk
ρ + (β∗ − β1 + β4)(n0

µk
µ)2 = 0, (2.125)

with corresponding eigenvector,

ci = niµk
µ. (2.126)

Spacelike background. The first-order linearized equations of motion about a

spacelike background are

δQa ≡ naν
(
β1∂ρ∂

ρδAν + (β∗ − β1)∂ν∂ρδA
ρ + β4n

3
µn

3
ρ∂

µ∂ρδAν
)

= 0 (2.127)

where a ∈ {0, 1, 2} and where, similarly to the timelike case, we have defined the set

of four Lorentz 4-vectors, nαµ, to be

n3
µ = Āµ/m and naµ; a ∈ {0, 1, 2} (2.128)

such that

ηµνnαµn
β
ν = ηαβ. (2.129)

The independent perturbations are δaα ≡ ηµνnαµδAν for α = 0, 1, 2. (δa3 is zero at

first order in perturbations due to the constraint.)

Again we look for plane wave solutions of the form in (2.118). But now, since

ηµνn3
µδAν = 0, at first order,

qµ = can
a
µ where a ∈ {0, 1, 2}. (2.130)
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The equations of motion become the algebraic equations:

=
(
β1kρk

ρnaνn
bν + (β∗ − β1)naνk

νnbµk
µ + β4n

3
µn

3
ρk

µkρnaνn
bν
)
cb (2.131)

=
(
β1kρk

ρηab + (β∗ − β1)naνk
νnbµk

µ + β4n
3
µn

3
ρk

µkρηab
)
cb (2.132)

≡Mabcb a, b ∈ {0, 1, 2}. (2.133)

Two independent solutions correspond to the dispersion relation (a ∈ {0, 1, 2})

β1kρk
ρ + β4(n3

µk
µ)2 = 0 , (2.134)

with corresponding eigenmodes

(e1)a = εa1b3n
b
µk

µ ; (e2)a = εab23n
b
µk

µ. (2.135)

The third solution corresponds to the dispersion relation

β∗kρk
ρ − (β∗ − β1 − β4)(n3

µk
µ)2 = 0 , (2.136)

with corresponding eigenmode

ca = ηabn
b
µk

µ. (2.137)

General expression. We can express the solutions in the timelike and space-

like cases in a compact form by using the orthonormality of the nαµ, (2.116), along

with (2.115), (2.128), and the fact that7

εαβρσn
α
µn

β
ν = εµναβn

α
ρn

β
σ. (2.138)

7This follows from the invariance of the Levi-Civita tensor,

εαβγδn
α
µn

β
νn

γ
ρn

δ
σ = εµνρσ

plus orthonormality, (2.116).
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Then plugging (2.119) and (2.130) into (2.118) yields the solutions

δAµ =

∫
d4k qµ(k)eikνx

ν

, (2.139)

where either

qµ(k) = iανkρ
Āσ

m
εµνρσ and β1kρk

ρ + β4

(
Āµk

µ

m

)2

= 0 and ανĀν = 0, (2.140)

where αν are real-valued constants, or

qµ = iα

(
ηµν ±

ĀµĀν
m2

)
kν and β∗kρk

ρ±(β∗−β1±β4)

(
Āµk

µ

m

)2

= 0, (2.141)

where α is a real-valued constant. The reality of the α’s follows from the condition,

qµ(k) = q∗µ(−k), that holds if and only if δAµ in (2.118) is real. In (2.141), the

“+” sign corresponds to the timelike background and the “−” sign to a spacelike

background.


