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Chapter 1

Introduction

This thesis is comprised primarily of work from three independent papers, written

in collaboration with Sean Carroll, Tim Dulaney, and Heywood Tam. The original

motivation for the projects undertaken came from revisiting the standard assumption

of spatial isotropy during inflation. Each project relates to the spontaneous breaking

of Lorentz symmetry—in early Universe cosmology or in the context of effective field

theory, in general. Here I motivate and introduce the three projects, presented in

chapters 2, 3, and 4. At the end of this chapter I provide some more technical

background that helps to contextualize the subsequent chapters.

1.1 The Big Picture

I like the way that physics tries to answer big questions. For example particle physi-

cists answer “What are we made of?” by searching for the elementary constituents

of matter and for mathematical structure within which these constituents and their

interactions can be understood. Cosmologists approach “Where are we?” and “How

did we come to be?” by using modern physics theory, astrophysical observations,

logic, and intuition to construct a plausible and consistent picture of the Universe

and its evolution.1 The work in this thesis grew from thinking about what might

have occurred very early on in our Universe’s history.

1Recently, even the situation of our Universe within a hypothetical larger set of universes has
been a topic of research.
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Figure 1.1: Image taken with permission from [4]. History of the Universe, including
key events in the history of our Universe and some of the observable objects/features
that have or could in principle provide(d) us with information about its evolution.
Acronyms : BBN (Big Bang Nucleosynthesis), LSS (Large-Scale Structure), BAO
(Baryon Acoustic Oscillations), QSO (Quasi-Stellar Objects; Quasars), Lyα (Lyman-
alpha), CMB (Cosmic Microwave Background), Ia (Type Ia supernovae), 21 cm (hy-
drogen 21 cm-transition).
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We already have a remarkably consistent and detailed picture and history of our

Universe. A cartoon of this history is provided in Fig 1.1. In particular, it has been

established that the Universe has been expanding (at various rates, indicated by the

slope of the solid red line in Fig 1.1) for the entire traceable history of our Universe—

about 14 billion years. In particular, we are quite confident that the Universe began2

in a very hot, dense state. The name for this beginning is “the Big Bang”. We don’t

really know how the Big Bang occurred, or what happened in the primordial era just

after the Big Bang.

Returning to the cartoon history of our Universe, the vertical axis in Fig. 1.1 is the

scale factor, which characterizes the expansion of the Universe. The horizontal axis

is time—or equivalently decreasing temperature3 or decreasing redshift of light in the

Universe; the Universe cools and the wavelength of light gets stretched (i.e., light is

redshifted4) as it expands. The labeled arrows indicate signals from the past that we

might observe at earth today. For example, observations of light from distant type

Ia supernovae have provided an important measure of the local expansion rate of the

Universe.

For the purposes of motivating the work in this thesis, the important thing to

notice in Fig. 1.1 is that one of the longest arrows comes from the Cosmic Microwave

Background (CMB). CMB radiation is light that last scattered off of a plasma of

photons, electrons, and protons when the Universe was at a temperature of about

1 eV; at this temperature almost all free electrons and protons combined into neu-

tral hydrogen. This point in history is known as recombination (electrons and protons

recombined into neutral hydrogen), and the place from which the CMB photons reach-

2“Began” might be a controversial word to use here. It could be that the Universe collapsed into
a very hot, dense, state and then began expanding again, or the hot dense state may have been born
from a parent universe.

3Temperature (T ) is related to energy (E) by

T = E/kB , kB = 8.62× 10−5 eV
K
, (1.1)

where kB is Boltzmann’s constant, K is Kelvin and eV is electron-Volts.
4In the visual spectrum, red light has longer wavelength than green light, which has longer

wavelength than blue light. Thus the name “redshifting” for light with longer wavelength and
“blueshifting” for light with shorter wavelength.
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ing us today came is known as the surface of last scattering.5,6 Before recombination

the Universe was effectively opaque—filled with a plasma of electrons, protons, and

photons, all scattering off of each other frequently. When the collision rates slowed

down enough7 so that electrons and protons could combine into neutral hydrogen (“re-

combination”), the Universe became effectively transparent; light could free-stream

without colliding much with other particles. So the farthest back we can effectively

see is the distance that light has traveled from the time of recombination.

Arrows that reach farther back than the CMB arrow in Fig. 1.1 are from pri-

mordial gravitational waves or neutrinos; gravitons and neutrinos decoupled from the

primordial plasma earlier than photons and so have been free-streaming for longer.

We think that gravitational wave and neutrino backgrounds analogous to the CMB

exist and we hope to eventually observe them (or “observe” their nonexistence), but

we haven’t yet because our instruments are not sensitive enough. Thus the CMB

is currently our best window to the very early Universe.8 The Wilkinson Microwave

Anisotropy Probe (WMAP) is pictured at the end of the CMB arrow in Fig. 1.1. That

is because WMAP has served as our eyes looking on the CMB window. As will be

discussed in subsequent sections, WMAP has taken very high resolution pictures of

the CMB that have moved us into an age of precision (early) cosmology. The Planck

satellite is currently taking even higher resolution pictures of the CMB and should

advance early Universe cosmology even further.

The spectrum of CMB photons is thermal, and very nearly uniform across the

5Though the CMB radiation last scattered throughout 3-dimensional space at roughly the same
time, from our vantage point on earth we see a bubble of radiation—a 2-dimensional surface. The
photons at that surface formed another surface back when they last scattered long ago.

6Think about the sky on a cloudy day. The light reaching our eyes from the sky last scattered
off of water molecules forming the clouds in the atmosphere. We can’t see past the clouds because
even though much of the light we’re seeing made its way from the sun through a jagged path within
the clouds and out the other side, the light’s characteristics changed substantially during all of
the collisions it had within the cloud, and what we see is light with those characteristics—not the
characteristics of direct sunlight. The CMB light is analogous to light that last scattered off of the
clouds.

7Due to expansion the plasma became less dense, hence less collisions per time.
8Figuring out what happened in the very early Universe is not only interesting as an answer to

the “Where did we come from?” question, but physics at very high energy scales played an important
role at this time, so we could also learn more about high energy physics by looking this far back in
cosmic history.
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entire sky. That CMB radiation is thermal is a profound fact; it seems to imply

that the region from which CMB photons came at recombination must have been in

thermal equilibrium; in particular the photons must have been in causal contact.9

The thermal spectrum and near uniformity of the CMB, along with its nearly scale-

invariant spectrum10 of deviations from uniformity have led many to believe that the

Universe must have undergone a period of rapid expansion during the first moments

after the Big Bang. Without such a period of rapid expansion or some other nonstan-

dard sequence of events, the uniformity of the CMB appears to be an extraordinary

accident. If we trace back the evolution of the Universe assuming that just the kind of

matter we observe today to dominate the energy density of the Universe determined

the dynamics of our Universe’s expansion, then the expansion of the Universe would

have always been decelerating and CMB photons separated by about a degree on

the sky or more couldn’t have been in causal contact before or after the time of last

scattering. So photons across the entire sky could not have reached thermal equilib-

rium, which means the uniform, thermal spectrum across the entire sky would be an

extremely unlikely coincidence. This is known as the Horizon Problem. A period of

accelerating expansion of the Universe could have allowed the CMB photons on our

sky to reach thermal equilibrium before the time of last scattering and, in this sense,

solves the Horizon Problem [5]. Such a period of accelerating expansion in the early

Universe is known as inflation.

I, like many (including the authors of Fig. 1.1), find inflation to be compelling.

As I’ll touch on later in this introduction, not only does inflation solve the Horizon

Problem, but it also provides an explanation of the small, nearly scale-invariant energy

density anisotropies that seeded structure formation in the Universe and can account

for the pattern of small temperature variation across the CMB sky. But until we

develop technology good enough to measure, for example, primordial gravitational

waves or neutrinos, the best evidence we have that inflation did or did not occur is

our measurement of the CMB. It’s indirect evidence.

9Photons come into equilibrium by interacting with each other. If they were never in causal
contact, then they couldn’t have interacted and thus couldn’t have reached equilibrium.

10I’ll discuss what’s meant by “scale-invariant spectrum” in §1.9.2.
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Cosmologists must often make do with indirect evidence due to the very nature

of cosmology. Unlike physicists who are trying to uncover the laws of nature in our

neighborhood, cosmologists cannot design and repeat experiments that in effect recre-

ate events that we expect to occur. For example, particle physicists have the luxury of

building big machines that smash particles together and then measuring what comes

out in order to test whether Higgs bosons exist. Cosmologists do not have the lux-

ury of recreating the Big Bang and then measuring what happens subsequently. On

the other hand, in some sense both particle physicists and cosmologists run into the

same basic problem; it’s technologically impossible (whether in principle or just given

practical constraints) to test certain theories directly. We must then get creative and

clever; we must come up with theories that subsume experimentally verified theories

and find ways to test such new theories indirectly, given our technological capabilities.

Speculation is inevitably part of the creative process by which advancements in such

cases are made.

Indeed, a problem that remains even if we’re right that inflation did occur is how it

occurred. By what mechanism did the Universe inflate?11 It’s productive to speculate

about the multitude of theoretical mechanisms of inflation and then try to figure out

ways to find astrophysical signatures (e.g., signatures on the CMB) that support or

rule out such mechanisms. It was out of this kind of creative process—speculating

about the primordial Universe and how we might see its features through the window

of the CMB—that this thesis emerged.

1.2 How This Thesis Emerged

The motivation for the work in this thesis came from the possibility that rotational

symmetry (i.e., isotropy) was broken during inflation. There are several reasons why

this possibility had not been seriously considered until recently:

• We observe isotropy to be a very nearly exact local symmetry today. (Local

11Remember: I mentioned above that ordinary matter (the kind of matter that we know is fueling
the expansion of the Universe today) cannot give rise to inflation.
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isotropy leads to conservation of angular momentum, for example, and allows

for the classification of particles by their spin.)

• The CMB, at least at a glance, appears to be very nearly statistically isotropic.

(More on this in §1.4.)

• Under straightforward assumptions about the nature of the fields involved dur-

ing an inflationary epoch, statistical isotropy of the CMB and of the Universe

on large scales is a consequence of inflation. (More on this in §1.6.)

But we should keep an open mind. Slightly anisotropic inflation is an interesting

possibility. A generic signature of slight anisotropy during inflation on the CMB was

postulated and studied in [6]. The work in this thesis emerged after thinking about

particular models of inflation that could yield an anisotropic inflationary scenario

leading to the generic signature put forth in [6].

1.3 Synopsis

Chapters 2 and 3 address stability issues in a popular class of models that give rise

to the breaking of Lorentz Symmetry: æther models. Here, “æther” refers to a

dynamical fixed-norm vector field. Spatial rotations being a subgroup of the Lorentz

group, in particular æther models can give rise to the breaking of rotational invariance.

The project out of which chapter 2 emerged transformed into one very different from

the project we originally set out to do. From a study of the evolution of æther fields

in an expanding Universe, we were eventually led to study more generally the effective

field theory of spontaneously broken Lorentz symmetry in flat space. In the course

of the original project, we found obstructions to the smooth evolution of initial data,

and later realized that this was a symptom of much more general problems in these

theories. Chapter 3 is a study of the one æther theory that we found to be well

behaved. Chapter 2 is also interesting from a perspective independent of cosmology;

it brings together three of the most powerful concepts in modern theoretical physics:

gauge symmetries, spontaneous symmetry breaking, and effective field theory. In a
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Figure 1.2: WMAP 7-year full-sky Mollweide projection map of the cosmic microwave
background. WMAP measures temperature differences across the sky. The colors
represent temperatures according to a linear scale, ranging from −200 µK to +200
µK. The root mean square variation is on the order of tens of µK. From independent
measurements, we know that the average temperature of the CMB is 2.725 K. That
means the temperature across the entire sky varies, roughly speaking, by only about
one part in 100,000. Credit: WMAP Science Team.

few words, usually we talk about internal symmetries being spontaneously broken;

but what happens in theories in which space-time symmetry is spontaneously broken?

Chapter 4 is a study of a model that can give rise to anisotropy during inflation

through a mechanism very different than that of æther theories. The model, first set

forth in the context of anisotropic inflation in [7], is built on standard single field

inflation, but includes a nonstandard coupling of the inflaton field to a U(1) gauge

field. We study the stability of the model and also (more importantly) the spectra of

cosmological perturbations in the theory.

In the remainder of this chapter I shall review more carefully some more technical

background needed to contextualize chapters 2, 3, and 4—especially chapter 4.

1.4 CMB Temperature Correlations

As mentioned in §1.1, the Cosmic Microwave Background (CMB) is light that has

been more-or-less free-streaming toward us since the time at which the Universe had

cooled (through expansion) to a temperature at which hydrogen ions and electrons
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Figure 1.3: Spectrum of CMB multipole coefficients from 7-year WMAP data. (The
Cls plotted here are multiplied by T̄ 2 as compared to the definition in (1.6), i.e., these
are the temperature difference multipole moments, not the fractional temperature
difference multipole moments.) Credit: WMAP Science Team.

recombined to form neutral hydrogen—about 370,000 years (about 10−5 times the age

of the Universe) after the Big Bang. The CMB radiation has a very nearly uniform

temperature across the sky, but there are small variations. See Fig. 1.2. A systematic

way to look for patterns of those variations is to compute correlations between various

points on the map of temperature differences that we’ve measured across the entire

sky.12

It’s convenient to decompose the fractional temperature difference as a function

of position on the sky, ê (where ê · ê = 1), into spherical harmonics:

T (ê)− T̄
T̄

=
∆T (ê)

T̄
=
∞∑
l=0

l∑
m=−l

almY
m
l (ê), (1.2)

where T̄ is the average temperature of the CMB, and the spherical harmonic functions

12I primarily consulted [8] and [9] while writing the following two sections.



10

are normalized such that

∫
dê Y m′

l′
∗
(ê)Y m

l (ê) =
4π

2l + 1
δll′δmm′ . (1.3)

In principle, the temperature difference depends not only on a direction in the

sky, but also on the vantage point from which the measurement is made (in our case,

the Earth). In other words, the alms are implicitly functions of vantage point, ~x. On

the other hand, based on the Copernican principle we’d expect a given correlation

function averaged across directions on the sky to be approximately equal to the same

function averaged over different vantage points, but for a fixed direction. An averaging

over vantage points is known as a cosmic mean. And the difference between a local

measurement and the cosmic mean is known as cosmic variance. We can make generic

predictions from inflation only for cosmic means. Thus, since our measurements are

necessarily local, we’re always limited by cosmic variance.

We expect the distribution of temperature perturbations to be random, but with a

certain distribution. For example, if the distribution is Gaussian, then the pattern of

fluctuations on the sky should be completely characterized by the two-point function,

〈
∆T (ê1)

T̄

∆T (ê2)

T̄

〉
, (1.4)

where 〈. . .〉 denotes the cosmic mean. If the distribution is non-Gaussian, then higher

order correlation functions are needed to completely characterize the pattern of fluc-

tuations.

The covariance of the two-point temperature correlation is defined as follows,

Cll′,mm′ ≡ 〈al′m′∗alm〉

=

(
2l + 1

4π

)(
2l′ + 1

4π

)∫
dêdê′Y m

l
∗(ê)Y m′

l′ (ê′)

〈
∆T (ê)

T̄

∆T (ê′)

T̄

〉
. (1.5)

In practice, we cannot measure the cosmic mean; the “covariance” we measure doesn’t
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have 〈. . .〉. However, for a statistically isotropic and homogeneous Universe,

Cll′,mm′ = δmm′δll′Cl (1.6)

where the Cl are known as multipole moments. If the temperature variation is gov-

erned by a Gaussian distribution, then an observed Cobs
l is the average over 2l + 1

independent alms, squared, and it can be shown that the cosmic variance for a given

Cobs
l is 〈(

Cobs
l − Cl
Cl

)2
〉

=
2

2l + 1
. (1.7)

The dipole moment, C1, for example, has a variance of 67%. This fact, and complica-

tions having to do with Earth’s motion around the sun make any predictions we might

have for the cosmic mean dipole moment practically incomparable with experiment.

The observed multipole moments (normalized by l(l + 1)/2π) as measured by

WMAP are plotted in Fig. 1.3. From the detailed shape of the spectrum of multipole

moments, cosmologists have been able to extract some of the most precise values for

cosmological parameters to date—such as the Hubble rate, the age of the Universe,

the curvature of space, the percent energy density in the Universe from dark matter,

baryons, and dark energy, etc. One can read how such parameters are extracted in

texts such as [9] or [8]. In the next section we’ll get a feel for how the spectrum of

energy density fluctuations before the surface of last scattering is ultimately related

to the CMB spectrum.

1.5 From Primordial Perturbations to CMB Tem-

perature Correlations

Inflation not only explains how our current horizon volume might have been in causal

contact in our past, but it can also provide an explanation for the pattern of tem-

perature fluctuations that we observe in the CMB. The key is that energy density

fluctuations generated during inflation give rise to temperature fluctuations on the
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CMB today because of effects such as, for instance, what’s known as the Sachs-Wolfe

effect: the relative redshifting of photons that emerge from regions with higher en-

ergy density compared to their neighbors. To trace the evolution of photons from the

primordial era—the end of inflation for our purposes—given just the energy density

perturbation spectrum at that time to the surface of last scattering, and then through

time and space until they’re reaching us today is a somewhat complicated task, but

suffice it to say that given a spectrum of energy density perturbations at the end of

inflation a pattern of temperature variations on the CMB sky can be predicted given

established nuclear physics, thermodynamics, scattering theory, and general relativ-

ity. The remarkable thing is that a particular form of the energy density spectrum

is predicted at the end of inflation, and this form of the energy density spectrum

indeed leads to a CMB temperature power spectrum that matches well with the one

we measure!

More specifically, the fractional deviation from the mean temperature of the CMB

in a particular direction, ê, on the sky is given by

T (ê)− T̄
T̄

=
∆T (ê)

T̄
=

∫
d~k
∑
l

(
2l + 1

4π

)
(−i)lδε(~k)Pl(k̂ · ê)Θl(k), (1.8)

where δε(~k) is the Fourier transform of the primordial energy density perturbation,

(ε(~x)−ε0)/ε0, Pl is a Legendre polynomial, k ≡
√
~k · ~k, and Θl is a function assumed

to be governed by statistically isotropic physics that characterizes the evolution of

photons from the primordial era until today. For example, the part of Θl due to

the Sachs-Wolfe effect is proportional to the spherical Bessel function, jl(krL), where

rL is the radial coordinate of the surface of last scattering. It turns out that for

small l the Sachs-Wolfe effect is the dominant effect. For larger l, the important

parts of Θl are more complicated and, for example, account for the dynamics of the

photon-nucleon-electron plasma before recombination.
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The covariance given this form of ∆T/T̄ can be seen to be

Cll′,mm′ =
(2l′ + 1)(2l + 1)

(4π)2

∫
d~kd~k′

∑
l1

∑
l2

(2l1 + 1)(2l2 + 1)

(4π)2
(−i)l1+l2Θl1(k)Θl2(k

′)

× 〈δε(~k)δε(~k
′)〉
∫
dêdê′Y m

l
∗(ê)Y m′

l′ (ê′)Pl1(k̂ · ê)Pl2(k̂′ · ê′)

=

∫
d~kd~k′(−i)l+l′Θl(k)Θl′(k

′)〈δε(~k)δε(~k
′)〉Y m

l
∗(k̂)Y m′

l′ (k̂′), (1.9)

where we’ve used the identities,

Pl(ê1 · ê2) =
4π

2l + 1

l∑
m=−l

Y m
l (ê1)Y m

l
∗(ê2), (1.10)

and (1.3) in the last line. Again, here 〈. . .〉 denotes the cosmic mean. In concert with

the ergodic theorem,13 inflation gives us a prediction for 〈δε(~k)δε(~k
′)〉. In inflation,

we calculate 〈δε(~x)δε(~y)〉 interpreting 〈. . .〉 as a quantum average—an average over

histories. Then the ergodic theorem says that averaging over histories should give the

same result as a cosmic average—an average over vantage points.

Now if 〈δε(~x)δε(~y)〉 is translationally invariant it must depend only on ~x − ~y. In

that case

〈δε(~k)δε(~k
′)〉 =

∫
d~x

∫
d~yf(~x− ~y)ei(~x·

~k+~y·~k′)

=

∫
d~x+e

i~x+·(~k+~k′)

∫
d~x−f(~x−)ei~x−·(

~k−~k′)

= (2π)3δ(3)(~k + ~k′)

∫
d~x−f(~x−)ei~x−·(

~k−~k′)

≡ (2π)3δ(3)(~k + ~k′)P (~k). (1.11)

Here we’ve defined the power spectrum, P (~k). Plugging (1.11) back into (1.9) we find

Cll′,mm′ =

∫
d~k(−i)l−l′Θl(k)Θl′(k)(2π)3P (~k)Y m

l
∗(k̂)Y m′

l′ (k̂), (1.12)

13See, e.g., Appendix D in [9].
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where we’ve used the fact that Y m
l (−ê) = (−1)lY m

l (ê). If the power spectrum is

rotationally invariant, then P (~k) = P (k) and we recover (1.6):

Cll′,mm′ =

∫
dk(−i)l−l′Θl(k)Θl′(k)(2π)3P (k)

∫
dk̂Y m

l
∗(k̂)Y m′

l′ (k̂)

= δll′δmm′

(
4π

2l + 1

∫
dk (Θl(k))2 (2π)3P (k)

)
. (1.13)

If the power spectrum is not rotationally invariant, then the covariance matrix

does not simplify to the above diagonal form. The form of the covariance given a

primordial power spectrum that slightly deviates from isotropic due to a preferred

direction, n̂, during the primordial era,

P (~k) = P0(k)
(

1 + g(k)(n̂ · k̂)2 + . . .
)

(1.14)

was worked out in [6]. The absence of odd powers of n̂ · k̂ follows from the identity

〈δε(~k)δε(~q)〉 = 〈δε(~q)δε(~k)〉.14 It is also assumed that the effect of the preferred direc-

tion must be small (else we’d be able to see a signature by eye on the CMB), thus

terms of higher order in the “small” vector n̂ should be negligible. In other words,

they worked out the effect of a small primordial power quadrupole on the CMB co-

variance. They found that in addition to diagonal elements (m = m′, l = l′) there are

in general nonzero off-diagonal elements when l = l′±2 and/or m′±2 and/or m′±1,

depending on the direction of n̂.

As mentioned earlier, the work presented in subsequent chapters of this thesis

ultimately grew from thinking about models that could give rise to such a slightly

statistically anisotropic spectrum. Indeed, a model of inflation that successfully re-

produces a spectrum of the slightly anisotropic form in [6] is presented in chapter

4. Our main work was to calculate g(k) in the model. Chapters 2 and 3 came from

thinking about another class of models that could, on the face, lead to a small amount

of anisotropy during inflation: æther models. I give a very brief introduction to æther

models in §1.7 below.

14From the identity and the definition of the power spectrum, P (~k), it follows that P (~k) = P (−~k).
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But before moving on to æther models, I’ll provide evidence that it is actually

rather difficult to construct a consistent model with enough15 anisotropic inflation.

1.6 The Cosmic No-Hair Theorem

Under some reasonable conditions, it can be shown that a large class of inflationary

scenarios tend to wash out anisotropy. More precisely, Bob Wald proved the following

theorem, known now as the cosmic no-hair theorem [10]:

If a space-time

• is initially expanding,

• can be foliated by homogeneous hypersurfaces,16

• evolves according to Einstein’s equations with a positive cosmological constant,

Gµ
ν = −Λδµν + 8πGT µν , Λ > 0, (1.15)

• contains matter with stress-energy, T µν , that satisfies the dominant and strong
energy conditions,

Tµνt
µtν ≥ 0, Tµνt

νT µλtλ ≤ 0, and Tµνt
µtν ≥ 1

2
T λλ t

σtσ, (1.16)

for all timelike tµ (i.e. for all tµ such that tµt
µ < 0),

then

the space-time evolves exponentially (on a timescale of
√

3/Λ) toward one with de

Sitter geometry. De Sitter space can be parametrized as follows,

ds2 = −dt2 + e2Htd~x · d~x where H is constant, (1.17)

15The point will be that most models with enough inflation to solve the Horizon problem predict
that any initial anisotropy will be completely wiped out early on during the inflationary era.

16All such space-times, which are homogeneous but perhaps anisotropic, fall into a Bianchi classi-
fication [11]. There’s a slight caveat here: All Bianchi models except Bianchi type IX fall under the
purview of the cosmic no-hair theorem.
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and in particular is isotropic, flat, and has no distinguishing feature (no hair) other

than the rate of expansion, H. In other words, any energy density besides that of the

cosmological constant becomes totally negligible on a timescale set by
√

3/Λ.

In the course of his proof, Wald shows in particular that the shear, σµν , which

characterizes the anisotropy of the space-time, satisfies the following equation,

σµνσ
µν ≤ 2Λ

sinh2(t/
√

3/Λ)
, (1.18)

where t is proper time.

Now in order to solve the horizon problem, there must have been at least sixty

e-folds of inflation.17 That is, the scale factor must have increased by a factor of e60

during an initial phase when the scale factor was accelerating. If the matter that

drives inflation acts like a cosmological constant during inflation, then the Hubble

parameter during inflation is approximately
√

Λ/3, and t/
√

3/Λ is about equal to

the number of e-foldings. Within just about 5 e-foldings of inflation, the denominator

on the right-hand side of (1.18) is 1000s, and after 60 e-foldings, it’s about 1051;

anisotropy becomes very small (in units of
√

Λ ∼ H) within just a few e-foldings of

inflation, and it’s minuscule after 60 e-folds.

This means that in order for anisotropy to persist even in small amounts during

inflation, at least one of the premises in the cosmic no-hair theorem must not apply.

1.7 Æther

An obvious way to avoid Wald’s theorem is to source a small anisotropy with matter

that does not satisfy the dominant or strong energy conditions. This is how Einstein-

æther theories (æther theories, for short), popularized by Jacobson and Mattingly

in [12], can avoid the no-hair theorem. Usually “æther theory” refers to a theory

17See, e.g., [9].
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with normal Einstein gravity, plus a dynamical fixed-norm timelike vector field that

breaks boost invariance of the vacuum and effectively leads to a universal preferred

rest frame. Einstein gravity plus a cosmological constant and a dynamical fixed-norm

spacelike vector field that breaks rotational invariance was considered as a toy model

of anisotropic inflation in [6]. It was in this context that I first became interested

in æther theories. But æther theories are independently interesting as effective field

theories of the spontaneous breaking of Lorentz invariance. They are effective models

that include preferred frame effects while leaving diffeomorphism invariance intact.

For more on reasons that theorists are interested in æther theories, see, e.g., [13].

The toy æther model in [6] was later shown to be classically unstable [14]. Chapter

2 revisits the stability of æther theories more generally.

1.8 Hairy Inflation

Another way to avoid the cosmic no-hair theorem is to couple matter that could source

anisotropy to the matter field that sources inflation (the inflaton field). That’s the

idea of the model we study in chapter 4, which was originally named “hairy inflation”

by the authors of [7]. The model is built on top of standard single field inflation,

but unlike in standard single field inflation, there’s a coupling between the inflaton

field and a U(1) gauge field that retards the dissipation of the energy density in the

U(1) gauge field enough to allow for a small persistent anisotropy during inflation.

In chapter 4 we give a pedagogical explanation of model. The main work of chapter

4 was in calculating the spectrum of cosmological perturbations in the anisotropic

background of the model. Since the model is built on top of standard single field

inflation and since the results we found for cosmological perturbations in the model

ought to be compared to the results from more “standard” models, below we finish

this introductory chapter with a brief review of standard single-field slow-roll inflation.
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1.9 Standard Slow-Roll Inflation

1.9.1 Background Equations

Assuming that over large distances (over cosmological scales) the Universe is homo-

geneous and isotropic,18 the space-time metric in the Universe is well parametrized

by,

ds2 = −dt2 + a2(t)

(
dr2

1−Kr2
+ r2(sin2 θdφ2 + dθ2)

)
. (1.19)

Here, K is equal to −1, 0, or +1, corresponding to whether the geometry of the

Universe is open, flat, or closed (respectively). Matter that supports this geometry

must also be homogeneous and isotropic. In that case its stress-energy tensor should

take the form

T µν =



−ρ(t)

p(t)

p(t)

p(t)


. (1.20)

Einstein’s field equations, Gµ
ν = Rµ

ν − 1
2
Rδµν = 8πGT µν yield the following two

independent differential equations:19

3
K

a2
+ 3H2 = 8πGρ (1.21)

and

− 6
ä

a
= −6(Ḣ +H2) = 8πG(ρ+ 3p), (1.22)

where ˙ denotes a derivative with respect to time and H ≡ ȧ
a

is the Hubble parameter.

18Indeed, from our vantage point the density of galaxies and other astrophysical objects on average
over a variety of very large scales appears to be about the same in every direction. This observation
along with the copernican principle (roughly speaking, that our neighborhood is a typical one)
provides evidence that the assumption of homogeneity and isotropy of the Universe is a good one.
The CMB provides even better evidence.

19The following two equations correspond to (−Gtt = −8πGT tt ) and
(
Gµµ − 2Gtt = 8πG(Tµµ − 2T tt )

)
,

respectively.
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Another equation that’s useful, and related to the above two equations through the

identity ∇µG
µ
ν = 0 is the continuity equation:

ρ̇ = −3H(ρ+ p). (1.23)

The horizon problem can be solved if the Universe underwent accelerated expan-

sion before recombination. From (1.22) we can see that accelerated expansion requires

matter that satisfies ρ+ 3p < 0. A homogeneous, canonical scalar field, φ, which has

ρ =
1

2
φ̇2 + V (φ), p =

1

2
φ̇2 − V (φ) (1.24)

can clearly satisfy the condition ρ+ 3p < 0 if φ̇2 < V (φ). The accelerated expansion

is rapid if Ḣ � H2. Such rapid expansion occurs if φ̇2 � V (φ). And expansion

is nearly exponential (a(t) ≈ eHt where H is constant) if all derivatives of H are

small. Slow-roll inflation is just the realization of this scenario—of nearly exponential

expansion. The field φ is called an “inflaton” in this case. The slow-roll conditions

relate derivatives of H to functions of the scalar field and its derivatives, thus giving

the conditions that the inflaton field and its potential must satisfy in order for (rapid)

inflation to occur. Let’s quickly derive these relations. We’ll set K = 0 for simplicity.

Define

ε ≡ − Ḣ

H2
and δ ≡ Ḧ

2HḢ
, (1.25)

and note the identity,

ε̇ = 2Hε(ε+ δ). (1.26)

Rearranging (1.21) and (1.22) we get

− Ḣ

H2
= ε = 4πG

ρ+ p

H2
= 4πG

(
φ̇

H

)2

. (1.27)
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Differentiating this equation we get

4πG
d

dt
φ̇2 = 2H3εδ. (1.28)

From the above two equations we can see why “slow-roll” is an appropriate name:

the velocity and acceleration of the inflaton field, φ, must be small compared to the

Hubble rate in order for inflation to occur.

We can also derive consistency relations for the form of the inflaton potential.

The continuity equation (1.23) implies,

V ′(φ)φ̇ = −3Hφ̇2 − 1

2

d

dt
φ̇2 = − H3

4πG
ε(3 + δ), (1.29)

and plugging (1.27) into (1.21) we get

V (φ) =
H2

8πG
(3− ε). (1.30)

Combining these two equations and (1.27) we see

(
V ′(φ)

V (φ)

)2

= 4ε2
H2

φ̇2

(
3 + δ

3− ε

)2

= 16πG ε

(
3 + δ

3− ε

)2

≈ 16πG ε. (1.31)

Differentiating this equation we get

2
V ′(φ)

V (φ)
φ̇

(
V ′′(φ)

V (φ)
−
(
V ′(φ)

V (φ)

)2
)
≈ 16πG ε̇, (1.32)

and using (1.29) and (1.30) to sub in for V ′(φ)
V (φ)

φ̇ this leads to

(
V ′′(φ)

V (φ)

)
≈ −8πG

ε̇

2Hε
+

(
V ′(φ)

V (φ)

)2

≈ 8πG(ε− δ). (1.33)

Insisting that the magnitudes of ε and δ are much much less than one, equations
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(1.31) and (1.33) lead to flatness conditions on the inflaton potential.

Inflation ends when the inflaton reaches the minimum of its potential. Once the

inflaton nears the minimum of its potential, it begins oscillating about its minimum

and decaying into other matter fields. This is called “reheating”.

1.9.2 Perturbations from Single-Field Slow-Roll Inflation

So how does slow-roll inflation give rise to primordial density perturbations? Let’s

consider the evolution of the quantum-mechanical degrees of freedom in a slow-roll

inflation model, with the dynamical inflaton field, φ, and the gravitational field,

gµν . The quantum-mechanical degrees of freedom are the small space-time dependent

fluctuations of these fields about the homogeneous background values in a slow-roll

inflation scenario as described above. So

φ = φ̄(t) + δφ(t, ~x) and gµν = ḡµν(t) + δgµν(t, ~x), (1.34)

where the background fields are barred. Given a homogeneous background, it’s stan-

dard to Fourier transpose the perturbations:

δf(t, ~x) ≡
∫

d~k

(2π)3
δf(t,~k)ei

~k·~x. (1.35)

The perturbation δf is promoted to a quantum-mechanical operator, so

δf(t,~k) = χ(k, t)â~k + χ∗(k, t)â†
−~k
,

where [â~k, â
†
~k′

] = (2π)3δ(3)(~k − ~k′), [â~k, â~k′ ] = 0 = [â†~k, â
†
~k′

] (1.36)

where here ˆ denotes a quantum operator, χ is an appropriately normalized mode

function, k = |~k| is the wavelength of the mode, and kphys = |~k|/a is the physical

wavelength of the mode.
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Energy density perturbations during inflation are thought to arise in the following

way. The Universe is inflating due to an inflaton rolling down its (flat) potential

and is in its quantum-mechanical ground state, so, e.g., 〈δφ〉 = 0. But there are

necessarily vacuum fluctuations with nonzero dispersion, 〈δφ δφ〉 6= 0. By the equiva-

lence principle, when curvature is unimportant (for modes with physical wavelength

much less than the Hubble radius), the normalization of quantum-mechanical modes

is canonical.20 As curvature becomes important for a given mode (i.e., as the physical

wavelength of a given mode becomes greater than the Hubble radius) the quantum-

mechanical correlations are frozen into classical density perturbations that form the

seeds of structure formation and lead to statistical temperature correlations on the

CMB sky.

Canonically normalizing the modes takes a bit of work. It’s done by expanding

the action

S =

∫ √
−gd4x

(
R

16πG
− 1

2
∇µφ∇µφ− V (φ)

)
(1.37)

to quadratic order in the perturbations δφ and δgµν , eliminating non-dynamical de-

grees of freedom, and combining the dynamical fields into combinations so that the

kinetic term in the action is canonically normalized. It’s the field variables with

canonically normalized kinetic terms that get canonically quantized.

It is convenient to use conformal time,

dη = a(t)dt. (1.38)

In Newtonian gauge, the metric fluctuation may be decomposed as follows,

ds2 = a(η)2
[
−(1 + 2Φ)dη2 + (δij(η)(1− 2Ψ) + ∂iEj + ∂jEi + 2Eij)dx

idxj
]
, (1.39)

20There are ambiguities having to do with renormalization that I’m glossing over here.
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where Ej is transverse (δij∂iEj = 0) and Eij is symmetric, transverse and traceless.

After solving several constraint equations derived from the quadratic action and

substituting those solutions back into the action, using the background equations of

motion, and integrating by parts several times, the quadratic action can be expressed

S(2) =

∫
dη

∫
d~k

(2π)3

(
1

2
r′(η,−~k) r′(η,~k)− 1

2

(
~k · ~k − z′′

z

)
r(η,−~k) r(η,~k)

+
1

2

∑
s=+,×

[
h̃′s(η,−~k) h̃′s(η,

~k)−
(
~k · ~k − a′′

a

)
h̃s(η,−~k) h̃s(η,~k)

])
, (1.40)

where ′ denotes derivatives with respect to conformal time,

z ≡ a
φ̇

H
, (1.41)

and where

r(η,~k) ≡ a

(
δφ(η,~k) +

φ̇

H
Ψ(η,~k)

)
, (1.42)

and

h̃+(η,~k) =
a√
8πG

(
(ei1e

j
1 − ei2e

j
2)√

2
Eij(η,~k)

)
, (1.43)

h̃×(η,~k) =
a√
8πG

(
(ei1e

j
2 + ei2e

j
1)√

2
Eij(η,~k)

)
, (1.44)

where ~e1 and ~e2 are two unit 3-vectors satisfying ~ea · ~eb = δab and ~ea · ~k = 0. The

fields 2
√

8πGh̃+,×/a(η) are the two gravitational wave amplitudes. When |~k| � aH,

the quantity −r(η,~k)H/aφ̇ is equal to the so-called curvature perturbation, ζ(~k, η).21

21There is a gauge where the spatial part of the metric perturbation takes the form δgij =
a2e2ζ [exp γ]ij , γii = 0, ∂iγij = 0. See e.g., [15] pg. 4.
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The equations of motion for r and h̃s are

r′′ = −
(
~k · ~k − z′′

z

)
r and h̃′′s = −

(
~k · ~k − a′′

a

)
h̃s. (1.45)

To quantize, we promote r and h̃s to operators as in (1.36). The mode functions χr

and χh̃s must solve the above equations of motion. First notice that

a′′

a
=

d

dt
a2H = a2H2(2− ε) (1.46)

and

z′′

z
=

1√
ε

d

dt
a2
√
εH(1 +

ε̇

2Hε
) =

1√
ε

d

dt
a2
√
εH(1 + ε+ δ)

= a2H2
(

(2 + δ)(1 + ε+ δ) + (ε̇/H + δ̇/H)
)
. (1.47)

During slow-roll inflation, |ε̇/H|, |δ̇/H| � |ε|, |δ| � 1 and so H ≈ constant. That

means a ≈ − 1
Hη

where η → −∞ in the past and so

a′′

a
≈ (2− ε)/η2,

z′′

z
≈ (2 + 2ε+ 3δ)/η2. (1.48)

Using these expressions for a′′/a and z′′/z and treating ε and δ as constants, the

solutions to (1.45) are Hermite polynomials. Setting ε and δ to zero, the solutions

become even simpler. The solution to

f ′′ = −(k2 − 2/η2)f (1.49)

is

f = c1(k)

(
1− i

kη

)
e−ikη + c2(k)

(
1 +

i

kη

)
eikη. (1.50)
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Notice that in the long wavelength limit, when kη � 1,22 the equations of motion

for r and h̃s are just harmonic oscillator equations. Invoking the equivalence principle,

we use this fact to normalize the mode functions. The mode function should satisfy,

χk∂ηχ
∗
k − χ∗k∂ηχk = i (long wavelength limit). (1.51)

In the approximation where ε = δ = 0, it’s clear that the correctly normalized mode

functions are

χrk = χh̃sk =
1√
2k

(
1− i

kη

)
e−ikη. (1.52)

We can now calculate the two-point function for r and for h̃. In general for a field

f with mode expansion f(η, ~x) =
∫

d~k
(2π)3

(
χk(η)ei

~k·~xâ~k + χ∗k(η)e−i
~k·~xâ†~k

)
, it’s not hard

to show that

〈f(η, ~x)f(η, ~y)〉 =

∫
d~k

(2π)3

∫
d~q

(2π)3
χk(η)χ∗q(η)ei(

~k·~x−~q·~y)[a~k, a
†
~q]

=

∫
d~k

(2π)3
χk(η)χ∗k(η)ei

~k·(~x−~y) (1.53)

≡
∫

d~k

(2π)3
Pf (k; η)ei

~k·(~x−~y), (1.54)

where Pf (k; η) is the power spectrum at time η. It’s also not hard to show for the

Fourier-transformed functions that

〈f(η,~k)f(η, ~q)〉 = χk(η)χ∗q(η)[a~k, a
†
−~q]

= χk(η)χ∗k(η)(2π)3δ(3)(~k + ~q) (1.55)

= Pf (k; η)(2π)3δ(3)(~k + ~q). (1.56)

As mentioned above, the δ(3)(~k + ~q) dependence can be independently derived from

22Note that z′′

z ≈
a′′

a ≈ (aH)2 during slow-roll.
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the fact that the position space two-point function is invariant under translations.

Let’s think for a moment about the short wavelength limit (when k � aH). The

equations then take the form

f ′′ =
γ′′

γ
f, (1.57)

the solution to which is

f = c1γ + c2γ

∫
dη

γ2
. (1.58)

For γ = z or a during slow-roll inflation,
∫

dη
γ2 ∼ a−3. Thus the exact solution for

χrk/z and for χh̃sk/a when k � aH is a constant plus a decaying part. In other words

r(η,~k)/z and h̃s(η,~k)/a are conserved outside the Hubble horizon. In particular, for

modes that cross the Hubble horizon well before the end of inflation (when ε and δ are

much much less than one), the solution (1.52) should be a very good approximation

just after Horizon crossing (− 1
η
≈ aH > k). Then we know that much after horizon

crossing the amplitudes of r/z and h̃/a should be conserved. That means

Pr/z(k; η > η×,k) ≈
1

z2

1

2k

(
1− i

kη

)(
1 +

i

kη

)
≈ 1

z2

1

2k

(
1

kη

)2

≈ constant, (1.59)

where η×,k is η at horizon crossing for wavelength k. Recalling that z = aφ̇/H we

can see that

Pr/z(k; η � η×,k) ≈
H2

2k3

(
H

φ̇

)2 ∣∣∣
Horzion crossing

=
H2

2k3

( ε

4πG

)−1 ∣∣∣
Horzion crossing

. (1.60)

Similarly,

Ph̃/a(k; η � η×,k) ≈
H2

2k3

∣∣∣
Horzion crossing

. (1.61)

We see that P (k) ∝ k−3 for both r and h̃. This means that the position space
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two-point correlation function,

P (~x− ~y) =

∫
d~k

(2π)3
P (k)ei

~k·(~x−~y), (1.62)

is invariant under scale transformations, ~k → λ−1~k, ~x→ λ~x. For this reason, a power

spectrum proportional to k−3 is called scale invariant. Actually, if we’d used the

more precise expressions (1.48) for a′′/a and z′′/z and used the corresponding more

precise Hermite polynomials as our mode functions, we would have found a very

slightly scale-noninvariant power spectrum (with the deviation from scale invariance

controlled by ε and δ). Measurements of the CMB (and the distribution of structures

in the Universe) do indeed indicate that the primordial power spectrum is nearly scale

invariant. And measurements are now getting sensitive enough to probe very slight

deviations from scale invariance. So, given that the slow-roll parameters are related

to the shape of the inflaton potential, in a sense we’re on the brink of being able to

probe the form of the inflaton potential.

I mentioned earlier that the two gravitational wave amplitudes are

hs = 2
√

8πGh̃s/a(η), where s = + or ×, (1.63)

and that the curvature perturbation ζ is equal to −r(η,~k)H/aφ̇ outside the horizon.

Thus for modes outside the horizon the ratio of power in gravitational waves and the

curvature power is

Ph+ + Ph×
Pζ

≈ 2(2
√

8πG)2
( ε

4πG

)
= 16ε, (1.64)

where ε is evaluated near horizon crossing. This is known as the tensor-to-scalar

ratio. It turns out that the gravitational wave power spectrum and the curvature

perturbation power spectrum are expected to be conserved outside the horizon in very
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generic circumstances, even after inflation ends and the evolution of the background

space-time changes substantially [16],[17]. I mentioned above that deviations of the

power spectrum from scale invariance are controlled by the slow-roll parameters.

Comparing these deviations to the size of the tensor-to-scalar ratio is an important

cross-check of slow-roll models. There are other such cross-checks that can be made,

such as comparing the sizes of non-Gaussianities to the tensor-to-scalar ratio and

to deviations from scale invariance. The theoretical predictions for ratios of such

observable quantities (which should be numbers, independent of slow-roll parameters)

are known as consistency conditions. We will derive a consistency condition for hairy

inflation models in chapter 4.


