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Appendix — Principal Components
Analysis

The data initially taken from the experimental setup in this thesis are a long stream of

resistances read from each sensor over time. From this data, for each exposure to an analyte

from each sensor, we extract a single descriptor:

∆Rmax

Rb
(5.1)

where Rb is the baseline resistance of the sensor prior to exposure, and ∆Rmax is the max-

imum change in steady-state resistance (Figure 5.1). This ∆Rmax/Rb value is the partial

differential resistance response of one sensor to one exposure of an analyte.

This yields R = {rij}, an m × n matrix of sensor values, where n is the number of

sensors, m is the number of exposures, and rij represents the response of the jth sensor to

the ith exposure of analyte, as shown in Equation 5.1. This leaves the problem of having

data in n-space, which is difficult to interpret and visualize. Principal components analysis

(PCA) is a multivariate statistical technique employed to reduce the dimensionality of the

data, and make it more amenable to interpretation.1 This is a common method used in

pattern analysis, and has been extensively used and reviewed in the sensor array literature.2

This is the primary method for analyte discrimination used in this thesis.
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Figure 5.1: Response of a poly(ethylene oxide)/carbon black composite sensor to a 200
second exposure to 2 ppth of chloroform vapor, at an overall flow rate of 2.5 L min−1.

The matrix R is first preprocessed such that each column in the matrix is normalized

and autoscaled (i.e., centered about the mean and defined to have unit standard deviation,

resulting in a final matrix D = {dij}. First the rij values are normalized, creating the

matrix Q = {qij} which helps correct for differences in solvent vapor pressure.

qij =
rij∑

j

rij

(5.2)

These normalized values are then autoscaled, such that they are both mean-centered

and set to have a standard deviation of unity.

dij =
qij − qj

σj

(5.3)



113

Here, qj and σj represent the mean and standard deviation of each sensor j to all an-

alytes presented to it. This matrix D = {dij} is then diagonalized (i.e., multiplied by its

transpose) to obtain a correlation matrix M.

M = DT ·D (5.4)

The eigenvalues and eigenvector matrix of M are then obtained. The n eigenvectors of

the eigenvector matrix V are mutually orthogonal. We multiply this n×n matrix V by the

data matrix D to obtain our matrix of principal components, P, an m× n matrix, in which

each row is still associated with a particular analyte exposure, and each column is now

a principal component of the data, in which the maximal variance between the members

of the original data set is found in the first principal component, the maximal remaining

variance found in the second component, and so on. The corresponding eigenvalues of M

tell us how much of the total variance is to be found in each principal component.

P = DV (5.5)

The maximal amount of variance is now front loaded into the first few principal com-

ponents, allowing us to much more easily visualize the information in the data in just two

or three dimensions, rather than the full n-dimensionality of the original sensor set.
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