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Abstract

This thesis examines questions related to game theory, and in particular cooperation and coordina-

tion among economic agents.

In the first chapter (joint with Noah Myung) we propose a decision making process meant to

mimic human behavior. This process is implemented with computational agents. We use these com-

putational agents to run simulations of two coordination games, the minimum-effort coordination

game and the Battle of the Sexes game. We find that the computational agents exhibit behavior

similar to human subjects from previous experimental work. We then use the computational testbed

to develop experimental hypotheses, which are then confirmed in the laboratory using human sub-

jects. In particular, we show that higher cost may actually lead to higher average payoffs in the

minimum-effort coordination game.

The second chapter examines a model of infinitely repeated games in which agents are boundedly

rational. I show that the number of equilibrium outcomes is smaller when agents are boundedly

rational. Importantly, cooperative outcomes are still possible in equilibrium, even when players

cannot use sophisticated strategies and are not able to perfectly monitor their opponents. The

strategy that leads to cooperation is called ”Win-Stay, Lose-Shift”. Using this strategy, I show that

cooperation is possible in equilibrium for a large class of 2 × 2 games. I also give necessary and

sufficient conditions on equilibrium structure for N × 2 games. These conditions suggest that in

equilibrium, players must be able to cooperate without getting caught in long periods of conflict.

The final chapter focuses on a class of minimum-effort coordination games. I show that the

symmetric quantal response equilibrium correspondence takes the shape of an s-shaped curve as long

as players are sufficiently rational (sufficiently high λ). Under certain assumptions, this s-shaped



v

correspondence leads to hysteresis. Based on these theoretical results, I develop experiments with

the minimum-effort coordination game, and test the hysteresis hypothesis in the laboratory. I find

evidence that this hysteresis does occur when human subjects play the minimum-effort coordination

game in the lab.
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Chapter 1

Introduction

This dissertation is divided into three chapters and focuses on questions related to game theory and

in particular repeated interactions between economic agents. The goal of game theory is to provide

predictions about how individuals act in different games. In certain situations, there are incentives

for one or more of the agents to cheat and gain an upper hand on their opponent. Other times,

there is no incentive to cheat, but the agents still must somehow coordinate their actions to attain

optimal outcomes. The goal of this dissertation is to better understand how these agents are able

to cooperate and coordinate in these situations.

A combination of theory, computation and experiments are used in this dissertation. Each of

these tools has unique benefits. Economic theory allows us to focus on a specific problem and prove

general theorems that hold in all situations that the assumptions allow. Experiments allow us to

examine human behavior in a controlled environment, allowing us to focus on the specific aspect

of the decision making process in which we are interested. Computation allows us to run cheap

simulations of models that are difficult to grasp analytically. The combination of the three areas

provides a solid framework for better understanding the human decision making process in these

repeated interactions.

The first chapter, “Learning to Coordinate Through Pattern Recognition” (joint with Noah

Myung), focuses on the computational aspect of learning in repeated games. Economists have

chosen two main techniques to study human interactions in repeated games. Economic theorists

have presented learning algorithms and examined the long term convergence properties of these
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algorithms. Experimental economists have used human subjects in a controlled environment to help

better understand these interactions. While much progress has been made in both of these areas,

there is somewhat of a disconnect between the two. The theoretical learning models which have

guaranteed long run convergence typically don’t match the human subjects in experiments who

typically converge to equilibria in games that are only repeated a relatively small number of periods.

In this chapter, we develop a computational learning algorithm that is used as an experimental

testbed. The computational agents make their choices in a boundedly rational manner. They

randomly sample other actions to determine what to play, they group similar payoffs together to

determine what is their best action, and they make choices from a distribution. A key component

to this chapter is that the agents use pattern recognition to make predictions about the actions of

their opponents. If their predictions are accurate, they make more accurate choices.

This computational learning algorithm is used to create a testbed that is used to run simulations

of games. The simulation data matches experimental data for both minimum-effort coordination

games and the Battle of the Sexes game. In particular, the computational agents are able to learn

to alternate between two equilibria in the Battle of the Sexes game, an outcome that has been

observed experimentally. One benefit of using this computational testbed is that it allows us to

run a large number of experimental trials over a multitude of parameter values at virtually no cost.

These simulations can then be used to develop experimental hypotheses which can be tested in the

lab. So, we run simulations of the minimum-effort coordination game over a wide range of cost

values. The simulations suggest that higher costs in minimum-effort coordination games lead to

faster rates of convergence. Therefore when players face higher costs, there are opposing effects.

On one hand, higher costs decrease payoffs for any fixed strategy profile and often lead to lower

effort levels. However, faster convergence means fewer round of inefficient non-convergence. The

simulations suggest that the increase in payoffs due to faster convergence actually outweighs the cost

due to lower effort levels. Using the simulations to design experiments, we test these hypotheses in

the laboratory, and find that the hypotheses are confirmed.

The second chapter, “Bounded Rationality in Repeated Games,” examines a model of infinitely
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repeated games in which agents are boundedly rational. When full rationality is assumed in repeated

interactions, a plethora of equilibrium outcomes emerge. This large set of outcomes makes it difficult

to predict how individuals will behave when faced with these situations. Ideally, a model would have

a small number of outcomes which are also verified by experimental data. Many of the strategies used

to construct the equilibria in the full rationality model require that players have a large memory and

don’t make mistakes. It is possible that individuals are boundedly rational, and therefore are not able

to implement some of these complicated strategies from the full rationality case. After all, models

that assume bounded rationality often lead to sharper predictions about real world outcomes than

their full rationality counterparts. Therefore, this chapter asks, does the introduction of boundedly

rational agents lead to a smaller set of outcomes in equilibrium?

I present a model of infinitely repeated games in which players have a bound on their memory, in

particular they use strategies that can be represented by finite automata. In addition, players are not

able to perfectly monitor the actions of their opponents. Using this model, I show that the number

of equilibrium outcomes is smaller when agents are boundedly rational. Importantly, cooperative

outcomes are still possible in equilibrium, even when players can’t use sophisticated strategies and

are not able to perfectly monitor their opponents. The strategy that leads to cooperation is called

“Win-Stay, Lose-Shift”. When players use this strategy, I show that cooperation is possible in

equilibrium for a large class of 2 × 2 games. I also use the intuition from WSLS to get necessary

and sufficient conditions on equilibrium structure for N × 2 games. These conditions suggest that

in equilibrium, players must be able to cooperate without getting caught in long periods of conflict.

The third chapter, “Hysteresis in Coordination Games,” examines equilibrium selection in coordi-

nation games. When games have multiple equilibria, it may be difficult to predict which equilibrium

the players are going to play. There has been much work focusing on refining the set of equilibria

to allow for sharper predictions when the game has multiple equilibrium. In this paper, we examine

the effect of hysteresis on equilibrium selection. A system exhibits hysteresis if the outcome of a

game depends on the history leading up to that game. For example, If the cost starts low then

increases to the middle, one equilibrium is selected, while if the cost start high and then decreases
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to the middle, another equilibrium is selected. I show that under certain conditions this hysteresis

is possible in coordination games.

This chapter focuses on a class of minimum-effort coordination games. I show that the symmetric

quantal response equilibrium correspondence takes the shape of an s-shaped curve as long as players

are sufficiently rational (sufficiently high λ). Under certain assumptions, this s-shaped correspon-

dence leads to hysteresis. Based on these results, I develop experiments with the minimum-effort

coordination game, and test the hysteresis hypothesis in the laboratory. The experiments provide

evidence that hysteresis does occur when human subjects play the minimum-effort coordination

game in the lab.

One important implication of this hysteresis is that small changes in the cost parameter can lead

to the selection of a different equilibrium. This result suggests that a temporary change in the payoff

could be used as a means of moving from a bad equilibrium to a better equilibrium. For example,

a city might offer a temporary subsidy for public transportation for one year, and then change the

price back to the original value. It is possible that once people have switched their behavior, they

will remain there even when the price is increased again.
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Chapter 2

Computational Testbeds for
Coordination Games

2.1 Introduction

Economists have chosen two avenues to understand human interactions in repeated games. The

theorists have focused on presenting learning algorithms and proving results on the convergence

properties of these algorithms. Experimentalists have used human subjects in laboratory environ-

ments to better understand behavior in these interactions. In this paper, we develop a third avenue,

computation, which complements both the theoretical and experimental literature. In particular,

we build computational agents which exhibit behavior consistent with the behavior of human sub-

jects in two repeated coordination games. Using this computational testbed, we run simulations of

experiments, develop testable hypotheses, and then verify these hypotheses with human subjects in

the experimental laboratory.

We focus on coordination games, because by definition they must have multiple equilibria. Be-

cause of this multiplicity of equilibria, many experiments have been run on these games to exam-

ine the equilibrium selection process. Based on these experiments, some common behaviors have

emerged which have been observed repeatedly in the experimental lab. In one game, the minimum-

effort coordination game, the players have identical interests. In experiments with minimum-effort

coordination games, Van Huyck, Battalio, and Beil (1990) and Goeree and Holt (2005) show that

subjects typically converge to a Nash equilibrium, but which Nash equilibrium depends on the num-
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ber of subjects and the risk involved. In the other game, the Battle of the Sexes game, the players

have opposing interests. Often in the Battle of the Sexes game, subjects learn to alternate between

the two equilibrium outcomes as exhibited in Rapoport, Guyer, and Gordon (1976) and McKelvey

and Palfrey (2001).

The computational agents’ decisions are made based on a learning algorithm. The major dif-

ference between this and previous learning algorithms is that we focus on “short” games that are

repeated 100 rounds or less. Rather than developing an algorithm that has guaranteed long run

convergence properties, we develop an algorithm that can generate data that resembles the data of

human subjects in the experimental lab for these “short” games.

The task of developing computational agents could shed new light onto the theory of learning

in games. The theory literature on learning in games has typically focused on learning algorithms

with guaranteed convergence to some set, or small superset, of the Nash equilibria. The task of

creating agents that mimic humans is different. By thinking of this new task, we may gain new

insight into the decision making process in repeated games. For example, the algorithm proposed

in this paper uses a pattern recognition scheme. Most of the theoretical models assume that players

do not recognize patterns, even though patterns have been observed in the experimental laboratory.

Focusing on this new task may help uncover aspects that were previously missing in the theory.

This computational model of learning can also complement experimental economics. We use

computational agents to run simulations for both of these coordination games for a variety of ex-

perimental parameters. From these simulations, we develop hypotheses on human behavior which

are then tested in the lab. We can run the simulations without any hypothesis in mind, and then

develop these testable hypotheses from the simulation data. This alternative approach provides new

insights into the human decision making process that have not been examined in the theoretical

literature.

The rest of the paper proceeds as follows. Section 2.2 discusses the related work in this area.

Section 2.3 lays out the model. This includes the setup of the games and equilibria, as well as a

detailed description of the learning algorithm. Section 2.4 compares previous experimental data to
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simulation data from our algorithm as well as other learning algorithms. It also includes simulation

results for the minimum-effort coordination game which are used to develop testable hypotheses for

experiments. In section 2.5 these testable hypotheses are tested in the experimental laboratory. This

section gives the experimental design as well as a comparison of the experimental and simulation

results. We provide concluding remarks in Section 2.6.

2.2 Related Work

The theoretical literature on learning in repeated games started with the introduction of fictitious

play by Brown (1951). In each round of fictitious play, each player best responds to the empirical

distribution of past plays. Fictitious play has been shown to converge to Nash equilibria beliefs for

two player zero-sum games (Brown 1951), 2 x 2 games (Miyasawa 1961), potential games (Monderer

and Shapley 1996), and many classes of supermodular games (Milgrom and Roberts 1991, Hahn

2008, Berger 2007). Fictitious play has garnered much interest from game theorists because of its

simplicity and its desirable convergence properties. However, fictitious play does not have desirable

equilibrium selection properties, because once the players reach an equilibrium, they remain in that

equilibrium forever.

Another common approach is to use evolutionary game theory and examine the evolutionary

stable strategies (ESS) as introduced by Smith and Price (1973). In these models, strategies with

random mutations compete against each other based on a fitness measure. Using an evolutionary

model, Friedman (1991) shows that ESS are a subset of Nash equilibria. Adding randomness to the

evolutionary model, Kandori, Mailath, and Rob (1993) and Young (1993) show convergence to risk

dominant equilibrium in 2 x 2 symmetric games. Hart (2002) introduces a model in which the unique

ESS leads to the subgame perfect Nash equilibrium. These evolutionary models provide stronger

equilibrium selection properties than fictitious play, but they typically take thousands of rounds to

attain these equilibria.

Most of the literature examining interaction in repeated games has focused on long run con-

vergence properties; a few papers develop computational agents which act like human subjects.



8

Arifovic and Ledyard (2005) build computational agents to be used as a testbed for experiments on

the Groves-Ledyard mechanism. In particular, the mechanism has one parameter which plays an

important role in the speed of converge. They make predictions about optimal values of this param-

eter with their computational testbed, and then confirm these predictions with experiments. Their

learning algorithm is a combination of a genetic algorithm with some behavioral intuition. Their

computational agents are able to converge quickly, on average 20 rounds. However, their algorithm

strongly favors convergence to a every agent playing the same action repeatedly. Our algorithm is

able to get quick convergence in some games, but in addition it also converges to more complex

strategies in other games.

One of the key features of our algorithm is a pattern recognition scheme. Pattern recognition is

an important aspect of human decision process. Sonsino and Sirota (2003) find that over half of the

human subjects converge to patterns of Nash equilibria (where different NE are played in subsequent

rounds) in a variation of the Battle of the Sexes game. The only way that these patterns of Nash

equilibria can be sustained is if players are recognizing patterns. However, with the exception of a

few papers, previous learning models have not allowed agents to recognize these patterns in repeated

interactions.

Sonsino (1997) proposes a theoretical model in which players recognize patterns, and play con-

verges to a sequence of Nash equilibria with probability one. This would include the alternations

observed experimentally in the Battle of the Sexes. However, he does not address how these patterns

arise, rather that the players are able to recognize them once they have been played. In another

theoretical paper, Lambson and Probst (2004) create a model where players find similar patterns in

the history, and best respond to these patterns. Their learning algorithm converges to the convex

hull of the set of Nash equilibria in games where fictitious play converges to the set of Nash equilib-

ria. This paper does not give a specific technique for determining the length of patterns that players

recognize. Rather, they assume that players only recognize patterns of a fixed length, and then

examine the convergence of these players. Unlike these theoretical pattern recognition models, we

actually implement computational agents which have a specific mechanism to recognize patterns of
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different lengths and select the optimal pattern lengths. Therefore, these agents are able to converge

to single Nash equilibria as well as more complex patterns of Nash equilibria.

2.3 Model

2.3.1 Game

Before introducing the algorithm, we introduce the general game. The algorithm works on any

variation of this general game. The game consists of n players, N = {1, 2, . . . , n}. The set of

strategy profiles is S = S1 × S2 × · · · × Sn, where player i’s action comes from the infinite strategy

space si ∈ Si = [0, 1]. A specific strategy profile is the set of all players’ actions, denoted by s. Let

s−i denote the actions of all players other than player i in strategy profile s. Each player has a

payoff function which maps strategy profiles to real numbers, πi : S → R.

The analysis in this paper focuses on two specific games from the general class of games described

above: the minimum-effort coordination game and the Battle of the Sexes game. Both of these games

are generalized to the continuous action space. The minimum-effort coordination game has n players,

N = {1, . . . , n}, each of which exerts a costly effort si ∈ Si = [0, 1]. The payoff for player i is a term

proportional to the minimum effort of all players, minus the cost of their own efforts. More formally,

πi (si, s−i) = min
j∈N

sj − csi,

for some cost parameter c. The continuous version of the Battle of the Sexes game has two players,

N = {1, 2}. Each player chooses a location on the unit interval, si ∈ [0, 1]. Based on the players’

locations, the payoff function is,

π1 (s1, s2) = (2s1 − 1− b) (2s2 − 1− b)

π2 (s1, s2) = (2s1 − 1 + b) (2s2 − 1 + b) ,

for some parameter b. To get a better understanding of the Battle of the Sexes payoff functions,
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Figure 2.1: Battle of the Sexes game for different values of b.

consider the 2-by-2 game where the payoffs are the same, but the actions space is now restricted to

two actions, Si = {0, 1}. The payoff matrices for different values of b are shown in Figure 2.1. There

are a few things to notice about variations in b. First, it is symmetric around 0, i.e. the game is the

same for b = 0.1 and b = −0.1 except that the players roles are switched. Without loss of generality,

we only consider b ≥ 0. When b is close to zero, the payoff difference between the equilibria at (0, 0)

and (1, 1) is small while the cost of not coordinating (playing (0, 1) or (1, 0)) is high. When b is close

to 1, then the payoff difference between the two equilibria is large, but the cost of not coordinating

is low. So this b parameter can be thought of as a symmetry parameter.

2.3.2 Equilibria

2.3.2.1 Minimum-Effort Coordination Game

The set of Nash equilibria of the minimum-effort coordination game depends on the parameter c.

If c > 1, then the cost of effort is greater than the benefit, so it is a dominant strategy for each

player to play the minimum effort, si = 0. If c < 0, the cost of effort is negative, so it is a dominant

strategy for each player to exert the maximum effort, si = 1. The case that is usually studied is

0 ≤ c ≤ 1. In this case, any strategy where all players exert the same effort is a Nash equilibrium.
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The set of Nash equilibria is therefore defined by,

NE = {s|si = sjfor all i, j ∈ N} .

Since the strategy space is infinite, there are an infinite number of Nash equilibria. These equilibria

are Pareto ranked. The equilibrium where all players exert the lowest effort is the Pareto-worst

equilibrium, as each player gets payoff πi (0, 0, . . . , 0) = 0. The Pareto-optimal equilibrium is the

equilibrium in which each player exerts the maximum effort and gets payoff πi (1, 1, . . . , 1) = 1− c.

A player can always guarantee a payoff 0 by playing 0, so the minmax payoff in this game is 0 for

all players. By the folk theorem for repeated games, this implies that any strategy that guarantees

the players at least 0 is an equilibrium in the infinitely repeated game.

2.3.2.2 Battle of the Sexes Game

In the continuous Battle of the Sexes game, when b > 1, each player has a strictly dominant strategy,

so there is a unique equilibrium. The more interesting case occurs when 0 ≤ b ≤ 1, in which there

are three equilibria. Given that player 2 is located at s2, then the best response function for player

1 is as follows,

BR1 (s2) =


0 s2 <

1+b
2

[0, 1] s2 = 1+b
2

1 s2 >
1+b

2

.

Given that player 1 is located at s1, then the best response function for player 2 is,

BR2 (s1) =


0 s1 ≤ 1−b

2

[0, 1] s1 = 1−b
2

1 s1 >
1−b

2

.

Therefore, the three Nash equilibria are (s1, s2) = (0, 0) ,
(

1−b
2 , 1+b

2

)
, (1, 1). The equilibrium (s1, s2) =(

1−b
2 , 1+b

2

)
is Pareto-dominated by the other two equilibria. However, the other two equilibria are
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not Pareto rankable. Player 1 prefers the equilibrium (s1, s2) = (0, 0) and player 2 prefers the

equilibrium (s1, s2) = (1, 1).

In this game, each player has a strategy which guarantees a payoff of 0, and this turns out to be

the minmax payoff. By playing s1 = 1−b
2 , player 1 will get a payoff of zero regardless of what player 2

plays. Similarly, player 2 can guarantee zero by playing s2 = 1+b
2 . By the folk theorem, this implies

that any strategy where the players are guaranteed a positive average payoff is an equilibrium of the

infinitely repeated game. This includes the strategy where the players alternate between the two

endpoints, which gives an average payoff of 1/2
[
(1− b)2 + (1 + b)2

]
= 1 + b2 per round.

2.3.3 Algorithm

In each period of a repeated game, the algorithm determines which action each agent plays. This

action depends on the history of play as well as the current state of the agent. After each agent has

made their choice, the actions and payoffs are revealed to all agents. The agents then update their

history and current state, and choose their action the following round.

Two main features of this algorithm are the pattern recognition scheme and the agent’s states.

The experiments of Sonsino and Sirota (2003) show that human subjects are able to sustain non-

trivial patterns of Nash equilibria. Even in 2-by-2 games, the probability of sustaining a pattern

of Nash equilibria for n rounds by random choice decreases exponentially as n increases, yet the

subjects are still able to sustain these patterns. The human subjects’ ability to sustain these patterns

of equilibria provide evidence that they are in fact recognizing these patterns. Therefore, pattern

recognition is a natural feature when modeling human behavior in repeated interactions. Our pattern

recognition scheme is a modification of the k-nearest neighbor classification algorithm from machine

learning (Dasarathy 1991). Patterns are recognized by first identifying the current play (the most

recent actions in the history) and then finding previous plays that are similar to the current play.

The prediction for the next round is a weighted average of the outcomes of these similar plays. In

each round, the agent makes a choice based on the current state, which is given by two parameters,

γ and σ. The γ parameter represents the current level of confidence for an agent. This is determined
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by how well that agent is predicting what the other agents will do. The σ parameter represents the

agent’s satisfaction of the current play of the game. If the agent is not satisfied, and wants to change

what is happening in the game, then σ is close to 1. If the agent is satisfied with how the game is

going then σ is close to 0. When all agents have high values of γ and low values of σ, then each

agent’s choice has low variance and each agent is satisfied with the predicted outcome of his choice,

so the algorithm has converged.

Another important aspect in the algorithm is that the agents are not able to calculate exact best-

responses to their predictions. Instead, the agents determine best responses by randomly sampling

from the strategy space, and keeping the strategy that gives the highest payoff. This is important

for two reasons. First, it allows for completely general payoff functions. Since the explicit best

response function is not required, the payoff functions need not be continuous or differentiable.

Also, it allows agents to have different levels of intelligence by changing the number of samples they

take. For example, an intelligent agent has a good grasp of the payoff function, and therefore is able

to find the best response. This can be modeled by an agent who takes a large number of random

samples to find the best response. Conversely, an unintelligent agent is not able to find the best

response. This can be modeled as an agent that takes a small number of samples to find the best

response.

The explanation of the algorithm is divided up into four parts: notation, preliminary initial-

ization, round k action, and preparation for round k + 1. For notational purposes, the superscript

typically denotes the agent and the subscript denotes the round.

2.3.3.1 Notation

Each agent has a database of information that is used to help make their choice in each round. At

the start of each round, each agent has two parameters in their database, the confidence parameter

γ and the satisfaction parameter σ. These parameters for agent i in round k are denoted by γik

and σik. The agents use these parameters to help make their choice. Agent i’s choice in round k

is represented by xk(i). The choice of all agents in round k is given by xk, which yields payoffs
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πi (xk) = πik for agent i.

After making a choice, the agent updates his database of information in preparation for the next

round. Each agent makes a prediction about what the other agents will play in the following round.

Let x̂ik(j) be agent i’s prediction for agent j’s play in round k. The full prediction vector, x̂ik, consists

of predictions for all of the other agents.

As the game progresses, each agent creates a quasi-best-response matrix. Agent i’s quasi-best

response matrix at round k is denoted by Qik. This matrix helps the agent determine which action

to choose based on his prediction. To do this, the agent groups similar strategy profiles together in

the quasi-best-response matrix. The agent then determines which play is best against these similar

strategy profiles by randomly sampling responses from the strategy space. In the future, when

a similar strategy profile arises, the agent uses this quasi-best-response matrix to help remember

what he did in the past. From this quasi-best-response matrix, the agent determines the quasi-

best-response for his prediction for round k, which is denoted by xik
∗. More details about the

quasi-best-response are given below in the description of the algorithm in the preparation for round

k + 1 section.

Each agent also keeps track of his best and worst outcomes. To do this, each agent randomly

chooses J strategy profiles from the uniform distribution on the joint strategy space S = [0, 1]N .

Next, the agent calculates the payoffs for each of these profiles, and saves the strategy profiles which

yield the highest and lowest payoffs, x̄ik and xik respectively. These are referred to as the highest

and lowest known choices for agent i in round k. The payoffs for these strategy profiles, π̄ik and πik,

are referred to as the highest and lowest known payoffs for agent i at round k.

All of this information is stored in a database, and is available when the agent is making his

choice in round k.

2.3.3.2 Initialization

Many learning algorithms contain multiple initialization periods, where the agents choose randomly

in the strategy space. Since the focus of this paper is not long run convergence, but rather short



15

run behavior, the initialization period has to be short. Before the first choice is made, the agents

randomly choose J strategy profiles to determine their initial highest and lowest known payoffs,

x̄i0 and xi0 respectively. Each agent then makes the initial predictions about the other agents by

randomly drawing a number from the uniform distribution on [0, 1], that is xi1(j) ∼ U [0, 1]. Finally,

each agent starts with the lowest possible confidence level, γi1 = 10. The agents also start with the

highest satisfaction parameter, σi1 = 0, because they have no reason to try to change the outcome

of the game yet. With these initial parameters, the algorithm is ready to run.

2.3.3.3 Round k

Entering round k, agent i has a database of information which is used to make a choice in round k.

The choice in round k is a random number drawn from a beta distribution with mean µ and variance

ν2. The mean of the distribution is a convex combination of the quasi-best-response, xi∗k, and the

strategy which yields highest known payoff for agent i at round k, x̄ik. The weight on each term is

determined by the current level of satisfaction. If the agent’s satisfaction level is high ( σik = 1) then

he plays the quasi-best-response for his prediction. If the agent is not satisfied ( σik < 1), then he

tries to move the outcome towards the point which yields his highest known payoff. That is,

µ = σki x
i∗
k + (1− σki )x̄ik.

The variance of the distribution is inversely proportional to the current level of confidence1. The

proportionality constant is ρ, so the variance is,

ν2 =
1
ργik

.

As the confidence level of the agent increases, the choice distribution has lower variance, and therefore

the choice is more accurate. When the agent is not confident about what the other agents will do,
1It is not possible to have a distribution over a closed region, if the variance is high, and the the mean is sufficiently

close to the endpoints. If this is the case, then it is corrected by using a modified beta distribution with mass point
on the endpoint.
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then the choice distribution has high variance, and the choice is not as accurate.

After all agents have made their choices as described above, the payoffs are calculated. The

agents then learn the choices of the other agents as well as the payoffs of all agents. At this point,

the agents begin their preparation for round k + 1 by updating their database of information.

2.3.3.4 Preparation for Round k + 1

The agents have a variety of tasks to perform in preparation for round k + 1.

Update extremes As the game progresses, the agents become more acquainted with the payoff

function. To model this, each round the agents update their highest and lowest known payoffs

by taking J random samples from the joint strategy space. For each random sample zj , the payoff

vector is calculated. If the payoff for agent i from the sample is higher than the highest known payoff

for agent i in round k, then the agent sets the highest known choice for round k + 1 to x̄ik+1 = zj

and the highest know payoff round k+ 1 to π̄ik+1 = πi (zj). If none of the payoffs from the J sample

points are higher than the highest known payoff for agent i at round k, then the highest known

choice and payoff from round k are carried over to round k+ 1, i.e. x̄ik+1 = x̄ik and π̄ik+1 = π̄ik. The

same update is performed for the lowest known play and payoff.

Prediction for round k + 1 In order to make a choice in round k + 1, the agents make some

prediction about what their opponents are going to do in round k+1. The prediction scheme used by

the agents is a modification of the nearest neighbor classification algorithm from machine learning.

The goal of the prediction scheme is to make a prediction for xk+1. Since there are N agents,

the agents choices at round k are given by the vector xk ∈ RN . A pattern is vector combining

one or more of these choice vectors. For example, a pattern of length 3 is [xk−2 xk−1 xk]. The

agents divide the history of choice into the current pattern, previous patterns, and outcomes. Each

previous pattern has a corresponding outcome. The algorithm makes a prediction for the outcome of

the current pattern. The agents determine which of the previous patterns are closest to the current

pattern. Then, the agents prediction is a weighted sum of the outcomes of the closest patterns. The
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agents repeat this process for patterns of different lengths, n. After this has been done for all values

of n, the agent compares them, and determines which pattern length provides the best prediction.

For example, consider a two player game with the history of play after eight rounds,

Round 1 2 3 4 5 6 7 8 9

Play (0, 0) (1, 1) (1, 1) (0, 0) (1, 1) (1, 1) (0, 0) (1, 1) ?

Consider the prediction by agent 1 of what agent 2 will play in the ninth round. First, agent 1

considers patterns of length 1. The current pattern is the most recent play, (1, 1). This has been

played four previous times in rounds 2,3,5 and 6. These are the closest patterns. When these closest

patterns have been played in the past, agent 2 has responded by playing 1,0,1, and 0 in the respective

following rounds. These are the outcomes for the four closest patterns. This is not good, because

agent 2 has played 0 half the time, and 1 half the time, so it is difficult to predict what agent 2 will

play in the next round based on patterns of length 1.

Next, agent 1 looks at patterns of length 2. The current pattern in this case is the play in the

previous 2 rounds, (0, 0) , (1, 1). This pattern has been played twice before in the past, in rounds 1-2

and 4-5. In response to this pattern, agent 2 has played 1 in both rounds 3 and 6. After patterns

of length 2, agent 2 always chose 1. Therefore, patterns of length 2 are better for prediction that

patterns of length 1.

More formally, at the end of the kth round, each agent considers patterns of different lengths n.

For each length, there are k−n previous patterns of length nN each. The agent forms the previous

patterns matrix X ∈ Rk−n×nN and the output matrix Y ∈ Rk−n×N ,

X =



x1 · · · xn

x2 · · · xn+1

...
...

xk−n · · · xk−1


=



X1

X2

...

X2


and Y =



xn+1

xn+2

...

xk


.
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Each row of the previous patterns matrix is a single pattern, and these are denoted by Xm for

m = 1, . . . , k − n. The current prediction is the vector,

c =
[

xk−n+1 · · · xk

]
∈ RnN .

Next, the agent finds the j rows of X which are closest to the current pattern c in terms of

Euclidean distance. To do this, the agent forms the distance vector by finding the length between

the current point and each of the previous points,

d =



‖X1 − c‖

‖X2 − c‖
...

‖Xk−n − c‖


.

Let L be the set of indices of the l smallest terms in the distance vector d. That is di ≤ dk for i ∈ L

and k 6∈ L. These indices correspond to the l rows of X which are closest to the current point c.

The agent now determines which pattern length gives the best prediction. As exhibited in the

above example, the agent wants to choose the pattern length with the most similar outcomes. To

determine the optimal pattern length for each n, the agent takes the outcome of the l closest points,

and calculates the average of these points,

Ȳ =
∑
l∈L Yl

L
.

Then the agent computes the variance of these l closest points,

Vn =
∑
l∈L

‖Yl − Ȳ ‖.

Now, the agent compares the variance for all considered pattern lengths and chooses the pattern

length with the smallest variance. If there is a tie, then the agent chooses the shorter pattern. Note
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that average variances are higher in higher dimensions. This is not corrected for, which gives an

additional benefit to the shorter patterns, because shorter patterns are easier to recognize.

Once the pattern length has been selected, the agent forms a weighted average of the closest

outcomes. The closer the pattern is to the current outcome, the higher the weight is. The patterns

are weighted using a logistic function. The prediction for the next period is thus,

x̂ik+1 =
∑
l∈L Yle

−d(l)∑
l∈L e

−d(l)
.

Therefore, if the distance to each of the l closest patterns is 0, then the prediction is just the average

outcome from those l closest patterns. The agent makes his choice for period k + 1 based on this

prediction.

Quasi-Best-Response The quasi-best-response helps the agent determine the best response for

his prediction for round k+1. To do this, the agent updates the quasi-best-response matrix from the

previous period, Qik. Each row of the quasi-best-response matrix consists of three items: prediction

about what the other agents will do, what agent i should do given that prediction, and the payoff

given that strategy profile. More formally row m has the terms,

Qik = [ qm−i qmi πi
(
qmi ,q

m
−i
) ].

Here, qm−i are the choices of the other agents, and qmi is the choice of agent i. Agent i updates Qik

as follows. First, agent i determines if the current prediction is similar to any of the entries already

in the quasi-best-response matrix. To do this, agent i chooses a set, R, of random strategies. For

each row of the quasi-best-response matrix, agent i calculates the payoff difference,

pdm =
∑
r∈R

∣∣πi (r,qm−i)− πi (r, x̂ik+1

)∣∣ .
Next, the agents find the minimum payoff distance, pd∗ = min pdm. If the distance is small, i.e.

pd∗ < δ, then the two strategies are similar, and therefore are combined in the quasi-best-response
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matrix. If pd∗ > δ, then the two strategies are not similar, so a new entry is created in the quasi-

best-response matrix. Let the threshold δ be a fraction of the difference between the highest and

lowest payoff,

δ =
π̄ki − πki

20
.

If pd∗ < δ, then the agent updates the row of the quasi-best-response matrix corresponding to

pd∗, call this row m∗. The agent takes the set of R strategies, and calculates the payoffs πi
(
r, x̂k+1

i

)
.

Let r∗ denote the strategy from R which maximizes πi
(
r, x̂k+1

i

)
. If this new strategy yields a higher

payoff than the current quasi-best-response, i.e. πi
(
r∗, x̂k+1

i

)
> πi

(
qmi ,q

m
−i
)
, then the row m∗ is

updated to qm
∗

−i = x̂k+1
i and qm

∗

i = r∗.

If pd∗ > δ, then the agent creates a new row for the quasi-best-response matrix, call this row

M + 1. Again, the agent calculates the payoffs πi
(
r, x̂k+1

i

)
for all r ∈ R, with r∗ being the strategy

which yields the maximum payoff. The agent then updates the quasi-best-response matrix by setting

qM+1
−i = x̂k+1

i and qM+1
i = r∗.

Update γ The parameter γ measures the current level of confidence of the agent. When accurate

predictions are made, the agent’s confidence increases. In preparation for round k + 1, the agent

compares the prediction for round k that was made in round k − 1, x̂ik, with the actual play from

round k, xk. Based on this prediction and outcome, the agent updates his confidence as follows,

γk+1 =
α1

‖x̂ik − xk‖+ α2
γk.

Therefore, if the Euclidean distance between the prediction and the actual outcome is less than

α1 − α2, then his confidence increases. The maximum possible increase in confidence is α1/α2.

Update σ The parameter σ represents the agent’s satisfaction at the current state of the game.

If not satisfied with the current outcome, the agent may try to induce the other agents to play

something else in order to change the current outcome. If this attempt to move is unsuccessful, the

agent will stop trying. For example, suppose two agents are coordinating at one of the equilibria
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repeatedly in the Battle of the Sexes game. Agent 1 is at her optimal equilibrium, and Agent 2 is

at his least favored equilibrium. Agent 2 realizes that he can receive a higher payoff at the other

equilibrium. Therefore he will try to induce Agent 1 to start playing the other equilibrium. However,

Agent 1 may not change the way she is playing, even when Agent 2 starts playing something else.

If Agent 2 has tried for a long time with no success, he will give up, and start playing the original

equilibrium. The entire process of trying to move and giving up is called a moving session.

Agent i starts with the highest satisfaction possible. The satisfaction remains at the highest

level until some event causes agent i to start a moving session. To become dissatisfied, the agent

has to have a good idea of what the other agents are going to play. Therefore, agent i must have

a confidence greater than γMS in order to start a moving session. Given that confidence is greater

than γMS , agent i starts a moving session in two situations. If agent i knows that all agents receive

higher payoffs at his highest known play, then he tries to move there because everyone will receive

a higher payoff. Also, if agent i’s highest known payoff increases his payoff by a large amount, and

decreases the other agents’ payoffs by only a small amount, then he tries to change the outcome.

There are also some situations in which agent i does not start a moving session when his confidence

is greater than γMS . If moving to agent i’s highest known play increases agent i’s payoff by a small

amount, but decreases all other agents payoffs by a large amount, then agent i does not try to change

the outcome. Also, if agent i has tried to move before unsuccessfully, then he will not try to move

again until he has found a better strategy.

Once the moving session has started, agent i tries to induce the other agents to play his optimal

strategy. If the play of the game is moving away from the play at the start of the moving session,

and towards the highest play for agent i, then agent i will continue the moving session. If the play

of the game does not move towards the highest play for agent i, then that round will be considered

a failure. If the total number of failures becomes to high, then i will stop the moving session.

To more formally define this event that triggers a moving session, consider the term,

Σik =
πi
(
x̄ik
)
− πi (xk)

1
N−1

∑
j 6=i πj

(
x̄ik
)
− πj (xk)

.



22

Σik is referred to as the relative gain for agent i in round k. Agent i’s payoff at the highest known

play is always greater than his payoff at the current play, because the agent takes the current play

into account when updating his highest known play. Therefore, switching from the current play xk

to agent i’s highest known play x̂ik will always increase agent i’s payoff. So the numerator of Σik is

always positive.

The agent also keeps track of the maximum relative gain for round k, Σ̄ik, and the minimum

relative gain for round k, Σik. At the beginning of the game, agent i starts with maximum relative

gain of Σ̄i0 = 0 and minimum relative gain of Σi0 = −1. The agent updates these extreme relative

gains with the current relative gain when the current relative gain is more extreme (higher than

maximum or lower than minimum) and confidence is greater than γMS . The role of the extreme

relative gains is to ensure that the agent does not continuously try to move to a point which the

other agents refuse to move to.

Based on the current relative gain, the extremes relative gains, and the confidence, agent i

determines whether or not to start a moving session. When the denominator of Σik is positive, and

hence Σik > 0, the other agents benefit on average when switching from xk to x̄ik. So, if Σik > Σ̄ik

and γik > γMS , then the agent starts a moving session because all agents will receive higher payoffs

at x̄ik. When the denominator of Σik is negative, the other agents get lower payoffs on average when

switching from xk to x̄ik. However, if Σik is very negative, then the average decrease of the other

agents payoff is small compared to the increase for agent i. So if Σik < Σik and γik > γMS then

the agent also starts a moving session. To summarize, agent i tries to move if Σik 6∈
[
Σik, Σ̄

i
k

]
and

γik > γMS .

In the first round of the moving session, agent i decreases from the full satisfaction level σ = 1

to the level σ = σ0 < 1. Agent i also sets the number of failures to 0, f = 0. Agent i should not

expect the other agents to respond to this move until they have seen the play in second round of the

moving session and had at chance to respond to it in the third round of the moving session. So the

agent remains with satisfaction σ = σ0 in the second round of the moving session, and this does not

count as a failure. Starting in the third round, agent i’s satisfaction and failures depend on whether
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the other agents are responding to agent i’s move. In particular, if the other agents are responding,

and play is moving toward the highest known payoff, i.e.,

‖xk − x̄ik‖ > ‖xk+1 − x̄ik+1‖,

then the satisfaction increases, σk+1 = ξ̄σk and the number of failures stays constant fk+1 = fk (for

some ξ̄ > 1). Alternatively, if the other agents are not responding, so play is not moving toward

agent i’s highest know payoff, i.e.

‖xk − x̄ik‖ < ‖xk+1 − x̄ik+1‖,

then the satisfaction decreases, σk+1 = ξσk and the number of failures increases by one, fk+1 = fk+1.

When the amount of failures reaches the threshold fk = f̄ , then the session ends because the

other agents are not responding to the move. After the session ends, the amount of failures is set

back to 0, and the satisfaction is set back to the highest level σ = 1.

2.4 Simulation Results

To test the algorithm, we first compare simulations to some experimental results reported in the

literature. We then compare the simulations of our algorithm to simulations using fictitious play

and the algorithm proposed in Arifovic and Ledyard (2005). From now, fictitious play will be

referred to as FP, Arifovic and Ledyard’s (2005) algorithm as AL, and our algorithm as PR (pattern

recognition).

2.4.1 Comparisons with Experiments

2.4.1.1 Minimum-Effort Coordination Game

There have been several papers that run experiments with minimum-effort coordination games with

continuous strategy spaces. Goeree and Holt (2005) (GH from now on) run experiments on the
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Figure 2.2: Experimental results of continuous minimum-effort coordination game from Goeree &
Holt (2005).

continuous minimum-effort coordination game with group size N = 2. Each of their six sessions

involved ten subjects who played a game for ten rounds. At the beginning of each round, each

subject was randomly paired with another subject. Subjects were then asked to pick an effort level

from the range [110, 170]. After all subjects had picked their effort, their payoffs and their partner’s

choice were revealed. They ran two treatments of three sessions apiece; one with low cost (c = 0.25),

and another with high cost (c = 0.75). Their results are displayed in Figure 2.2. These experiments

show that the effort levels of the subjects in the high cost treatments become progressively lower,

and the effort levels of the subjects in the low cost treatments become progressively higher. In

addition, the authors point out that late in the experiment, the choices in different treatments are

separated by the mean of the range (140). GH also run similar treatments for 20 rounds, and find

that the adjustment of choices tends to happen in the first 10 rounds, and the play levels out after

that. These are the characteristics that are desired in the simulations using the PR algorithm.

The minimum-effort coordination game experiments run in GH can be simulated with computa-

tional agents using PR to make their decision. One difference between the experiment and our setup

is that GH use different random matched pairs each round rather than fixed pairs throughout the

experiment. To correct for this, we set the satisfaction parameter σ = 0. The satisfaction parameter

allows the agents to induce the other agents to play some strategy. This parameter is set to zero
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Figure 2.3: Simulation of continuous minimum-effort coordination game experiments with agents
using PR.

because it is difficult for one agent to induce another agent to play something when they will both be

randomly matched with another agent in the following round. The results from the simulations are

presented in Figure 2.3. As in the actual experiment, there is separation between the high and the

low cost treatments. In addition, the separation of the two treatments occurs around the midpoint

as observed in the experiments. Finally, most of the adjustment happens in the first 10 rounds, and

play levels out after that. So the agents in the simulations exhibit similar dynamics and equilibrium

selection properties to the human subjects in the continuous minimum-effort coordination game.

There have also been several papers which examine the effect of group size on coordination

in the minimum-effort coordination game. Van Huyck, Battalio, and Beil (1990) (VHBB) run

experiments with minimum-effort coordination games while varying group size2. They find that for

large group sizes (N=14-16) with c = 0.5, subjects converge to the Pareto dominated equilibrium,

where all players exert the lowest effort. They also find that after failing to coordinate on the Pareto

superior equilibrium in large groups, these same subjects are able to converge to the Pareto superior

equilibrium 12 out of 14 times when matched in fixed groups of two. So even when the subjects are

used to playing the dominated equilibrium, they are still able to coordinate on the high effort when

matched in fixed pairs. This provides strong evidence that fixed groups of two should be able to

reach the Pareto superior equilibrium a large percentage of the time.
2Their subjects have 7 choices rather than a continuum of choices.
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Knez and Camerer (1994) (CK) extend the result from VHBB by running similar experiments

with more group sizes, and again using c = 0.5. They find that as the number of subjects increases,

coordination on high effort strategies becomes more difficult. They also find that the biggest dif-

ference occurs when increasing the number of subjects from two subjects to three subjects. They

provide two reasons for this. First, adding an additional player that chooses randomly leads to a

weakly lower minimum. Second, the belief structure becomes ambiguous when increasing from two

to three subjects, which causes players to be more cautious when choosing their effort level.

We run simulations of the minimum-effort coordination game with different group sizes using

FP, AL, and PR to see if they match the experimental results above. For each group size, we run

300 simulations of 100 rounds each with cost c = 1/2. We show that the simulations using PR are

more similar to the experimental data than the simulations using FP and AL. The details of these

simulations are left to the appendix.

To examine the outcomes of these simulations, we look at the average choice in the last 10 rounds.

By the last 10 rounds, every agent was playing within 0.05 of the other agents over 99% of the time

with FP, over 98% of the time with AL, and over 99% of the time with PR. So the average over the

last 10 periods is a reliable measure of the convergence of strategies3. This average choice in the

last 10 rounds is referred to as the convergence point of the simulation. The empirical cumulative

distribution functions of convergence points for each of these learning algorithms are displayed in

Figure 2.4. More coordination on the high effort outcomes is represented by ECDfs that are further

to the Southeast. The ECDF corresponding to perfect coordination on the high effort equilibrium

would be 0% everywhere except 1. If the agents always converge on the low effort equilibrium, then

the ECDF would be 100% everywhere except 0. The ECDFs show that the comparative statics on

N match the experimental data for all three sets of simulations: as the number of agents increases,

coordination on Pareto superior equilibria becomes more difficult.

The average convergence point for each group size is summarized in Figure 2.5. The average

convergence point is the expected outcome for a simulation, and corresponds to the mean of the
3The reason for using the average over the last 10 periods rather than the choice in the last period is to avoid

problems where all of the agents have played the same thing for 9 rounds in a row, but in the last round, one agent
changes actions.
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Figure 2.4: Empirical cumulative distribution functions of convergence points for FP, AL, and PR
for different group sizes.
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Figure 2.5: Average Convergence Points for FP, AL, and PR for different group sizes.

ECDF for that simulation. As shown in CK, the figure shows that in all three simulations, the

biggest difference in ability to attain the high effort outcome occurs when increasing group size from

two to three. The FP and AL simulations have relatively low convergence points for groups of size

two. The average convergence point for simulations with groups of two for FP is 0.51 and for AL is

0.49. This is in contrast to the experiments run in VHBB which show that fixed pairs of agents are

able to converge to the Pareto superior equilibrium about 85% of the time. The average convergence

point of the PR simulations is 0.94 which is more in line with the coordination behavior exhibited

in VHBB by human subjects in the laboratory. Based on Figure 2.5, the PR algorithm matches the

experimental data better than both AL and FP.

2.4.1.2 Battle of the Sexes Game

Next we run simulations of the Battle of the Sexes game using the three different algorithms. The

Battle of the Sexes game, like the minimum-effort coordination game, has multiple equilibria. But,

in the Battle of the Sexes game, the equilibria are not Pareto ranked. One desirable outcome that

has been observed in the experimental literature is when players are able to alternate between the

two equilibria. This maintains the maximum welfare, but also yields equal payoffs for both players.

While most of the literature has focused on more complex extensions of the Battle of the Sexes
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game, this outcome has been observed in the simple Battle of the Sexes game as in Rapoport,

Guyer, and Gordon (1976) and more recently in Sonsino and Sirota (2003). To test to see if the

learning algorithms can obtain this outcome, we run 300 simulations of 100 rounds each of the

Battle of the Sexes game for each learning algorithm. Each game consists of two players, and has

cost c = 0.5.

When agents use FP to make their choice, two outcomes occur. Either the players converge to

one of the equilibria, or they start a cycle of non-coordination. In the non-coordination cycle, the

players will always choose the opposite location, and therefore it is not a Nash equilibrium and the

payoff is the lowest possible. Out of the 300 simulations, they reach this non-coordination cycle 41

times. Every other time they converge to one of the two equilibria. When agents use AL to make

their choice, they have a tendency to converge to playing the same choice repeatedly. Therefore, it

difficult to converge to patterns of equilibria. In the simulations with AL, agents converge to one of

the two equilibria every time out of 300 trials. So neither FP or AL converge to the pattern of Nash

equilibria that has been observed experimentally.

Finally we run simulations where the agents use PR to make their choices. To determine if agents

converge to a pattern of equilibria, we develop two types of convergence. First, there is convergence

in strategies. Convergence in strategies occurs at the round when the difference between any agent’s

choice in two consecutive rounds is less than 0.05 for the remainder of the game. This means the

agents are playing the same thing repeatedly. The other type of convergence is convergence in γ,

which happens when γ > 5000 for all agents for the remainder of the game. This means that all

agents are making accurate predictions about what the other agents will do. Convergence to a

pattern of Nash equilibria will occur when the agents converge in γ but not in strategies. Out of

the 300 simulations when agents use PR to make their choice, they converge to a pattern of Nash

equilibria 15 times. Out of these 15 patterns 14 consist of players playing one equilibrium in even

rounds, and the other equilibrium in odd rounds. In the other pattern, agents repeatedly play one

of the equilibria twice and the other equilibrium once. So agents that use PR are able to converge

to patterns of Nash equilibria that have been observed by human subjects in experiments.



30

Our main focus was to develop a learning algorithm that could sustain these patterns of Nash

equilibria, which PR is able to do. While these alternations have appeared in the experimental

data, there are no experiments on the continuous version of the Battle of the Sexes game. Also the

experiments on the discrete version typically have other aspects such as communication. Therefore,

it is difficult to compare the results of these simulations with the current literature to any level

beyond the presence of these patterns.

2.4.2 Experimental Hypotheses

Next, we run simulations using the algorithm on the minimum-effort coordination game and develop

testable experimental hypotheses. The benefit of using computational agents is that simulations are

essentially costless, which allows us to run many trials for a wide range of parameter values.

Previous experiments on the minimum-effort coordination game have focused on differences in

cost and group size. The experiments have typically compared two different parameter values: a

low and high cost or a small and large group (Goeree and Holt 2005). Experiments examining a

large set of parameters are difficult due to constraints on the number of subjects in a given subject

pool, as well as monetary costs for running large experiments. Simulations using the algorithm

provide a testbed to simulate these experiments for many different parameter values. Unlike the

binary comparisons, examining a larger set of parameters will give us a better understanding of the

behavior which may have been overlooked in the past.

From the minimum-effort coordination game, we run simulations with groups of four agents with

9 different costs, varying from c = 0.1 to c = 0.9. At each parameter value, we run 300 simulations

lasting for 50 rounds.

Convergence Point: We find that higher costs lead to lower convergence points. Convergence

points are the average play over the last 10 periods of the repeated game. The convergence points of

these simulations are displayed in Figure 2.6(a). This is consistent with experimental results from

minimum-effort coordination games as shown in Goeree and Holt (2005).
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Figure 2.6: Convergence Points and Convergence Round as a Function of Cost.

Convergence Speed: We then examine the effect of different costs on speed of convergence.4

Based on the simulations, we find that the number of rounds required to converge decreases with

c, so convergence is faster when the cost is higher. A plot of convergence as a function of c is

displayed in Figure 2.6(b) (higher bars mean slower convergence). The intuition for increase in

speed of convergence for higher cost is simple; it is more expensive for agents to search for different

outcomes or experiment with different strategies.

Average Payoff: These convergence results have some interesting effects on the agents’ payoffs.

When agents do not all choose the same effort (i.e., best respond), the outcome is Pareto inefficient.

If all agents chose the minimum effort for a given strategy profile, then everyone’s payoff would be

weakly higher, with at least one receiving a strictly higher payoff. Since it is inefficient when all

agents are not choosing the same effort, slow convergence may lead to lower average payoffs. The

average payoff per agent for different costs is displayed in Figure 2.7. It is difficult to compare the

welfare between two experiments with different costs because they have different payoff functions.

Even though welfare is difficult to compare, the payoff for any given strategy profile is lower when the

cost of effort is higher. Intuition thus suggests that higher cost of effort should lead to lower average

payoffs in the repeated game. However, the simulations suggest that higher cost may actually lead

to higher payoffs.
4We use convergence in γ as a measure of convergence.
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On one hand, with higher costs the agents receive lower payoffs for similar strategy profiles. In

addition, the agents are converging to lower effort, which also leads to lower payoffs. However, the

simulations show that high costs yield faster convergence, which eliminates some of the inefficiency

caused by non-coordination, and increases the agents’ payoffs. In fact, the increase in payoffs due to

faster convergence outweighs the decrease in payoffs due to higher cost and lower convergence point.

Note that the difference in average payoff shrinks as number of rounds increases in Figure 2.7. This

result is due to the fact that the inefficiencies of non-convergence at the beginning of the repeated

interaction become less important as the number of rounds increases, since it is more likely that the

agents have converged.
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Figure 2.7: Average Payoffs for Different Costs in Minimum-Effort Coordination Game as a Function
of Number of Rounds.

Based on the simulations, we test the following three hypotheses in the experimental laboratory:

Hypothesis 1. Convergence Point: The game will converge to lower effort levels as the cost of

effort increases.

Hypothesis 2. Convergence Speed: The game will converge faster to an equilibrium as the cost

of effort increases.

Hypothesis 3. Average Payoff: The average payoff does not monotonically decrease as the cost
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of effort increases.

2.5 Experiments

In this section we describe the setup and results for the experiments that will test the hypotheses

formulated from the simulations.

2.5.1 Design

2.5.1.1 Overview

The experiments were conducted at the California Social Science Experimental Laboratory (CAS-

SEL) located in the University of California, Los Angeles (UCLA). A total of 60 subjects participated

in the experiments. The average performance-based payment was 20USD. All students were regis-

tered as subjects with CASSEL (signed a general consent form) and the experiment was approved

by the local research ethics committee at both universities. These labs consist of over 30 working

computers divided into a cubicles, which prevents students from viewing another student’s screen.

The experiment was programmed and conducted with the experiment software z-Tree (Fischbacher

2007). The instructions were available both in print as well as on screen for the participants, and

the experimenter explained the instruction in detail out-loud. Participants were also given a brief

quiz after instruction to insure proper understanding of the game and the software. A copy of the

instruction, as well as the payoff tables, are available in the Appendix.

The subjects were randomly assigned to their roles in the experiment. Furthermore, no one

participated in more than one experiment. The identity of the participants as well as their individual

decisions were kept as private information. However, each groups knew their own minimum effort.

Experiment used fictitious currency called francs. The participants were fully aware of the sequence,

payoff structure, and the length of the experiment. All participants filled out a survey immediately

after the experiment.



34

2.5.1.2 Details of the Experiment

A total of 20 subjects participated in each session. These 20 subjects were split into 5 groups of 4,

and each group used a different cost parameter. The entire session was divided into 5 blocks, and

each block was divided into 15 rounds. After each block, the subjects were randomly rematched

(with replacement) to another group of 4 and were randomly reassigned another payoff parameter

(with replacement). See Figure 2.8 for the time line.

Block 1 Block 2 Block 3 Block 4 Block 5

15 Rounds 15 Rounds 15 Rounds 15 Rounds 15 Rounds

Rematch Rematch Rematch Rematch

Figure 2.8: Timeline and Matching Structure for the Experiment.

Subjects played a minimum-effort coordination game each round. Their task was to choose an

effort level, si ∈ {1, ..., 7}, and their payments were determined by the following payoff function

pi = 1000
(

min
j∈N
{sj}

)
− c(si) + 5950

In each block, there were 5 groups each with a different payoff matrix based on c ∈ {50, 500, 900, 950, 990}.

The subjects were shown the payoff table displayed in Table 2.1, with the calculation already com-

pleted for the subjects. The group size, randomization, and the fact that everyone in the group was

using the same payoff table were common knowledge. However, the group’s own minimum effort

was private information to the group and was not available to the outside members.

2.5.2 Results

Figure 2.9 illustrates sample results from one of the block of sessions. Figure 2.9 (a) is an example

where the group coordinates on the high-effort equilibrium (converging to an effort level of 7) and

Figure 2.9 (b) is an example where the group coordinates on the low-effort equilibrium (converging

to an effort level of 1).
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Minimimum effort of all agents

i’s Effort 7 6 5 4 3 2 1

7 12950− 7c 11950− 7c 10950− 7c 9950− 7c 8950− 7c 7950− 7c 6950− 7c

6 − 11950− 6c 10950− 6c 9950− 6c 8950− 6c 7950− 6c 6950− 6c

5 − − 10950− 5c 9950− 5c 8950− 5c 7950− 5c 6950− 5c

4 − − − 9950− 4c 8950− 4c 7950− 4c 6950− 4c

3 − − − − 8950− 3c 7950− 3c 6950− 3c

2 − − − − − 7950− 2c 6950− 2c

1 − − − − − − 6950− c

Table 2.1: Sample Payoff Table that was used in the Experiment.

Calculations were already filled in for the subjects
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Figure 2.9: Sample Results From One of The Blocks for Illustration Purpose.
The thin lines represent individual choices and the thick line represents the group’s minimum choice
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2.5.2.1 Convergence Points

First, we test the hypothesis that higher costs lead to lower convergence points and provide the

results in Figure 2.10 (details in Table A.1 and Table A.2 in appendix). These results are taken

from the average choice of the last 5 rounds and it supports the hypothesis that the average choice

drops as the cost parameter increases. While the cost parameter c ∈ {50, 500} provides a high level

of average choice around 4.5 to 5, the average choice drops significantly lower to 1 to 1.2 for cost

parameter c ∈ {900, 950, 990}. Although there is not a significant difference between the means from

c = 900 and c = 950, the differences are significant in the right direction for the rest of the mean

comparisons.

p < 0.05 p < 0.01 p < 0.01
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Figure 2.10: Average Convergence Points for Different Cost Parameters (See Tables A.1 and A.2 for
numbers).

2.5.2.2 Convergence Speed

Comparing convergence speed is bit trickier than comparing convergence points. In the simulations,

the agents are computer programs, so it is easy to see why they are making certain choices. However,

with humans it is not as straightforward. Consider the following example in Figure 2.11. If one

were to use a rule that the convergence occurs when there are no deviations (i.e., everyone is best

responding), then there will not be any convergence until round 13 in the example. When studying
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experimental results with subjects from a laboratory, this may be too conservative of a criterion.

Noisy choice in human behavior is often expected in experiments. Whether these noises are rational

or not is another story. However, there are many different ways of modeling noisy choices, such

as the Quantal Response Equilibrium (McKelvey and Palfrey 1995), the Level-K Model, and the

Cognitive Hierarchy Model (Camerer, Ho, and Chong 2004), among others.
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Figure 2.11: An example of the difficulty of measuring convergence.
The thin lines represent individual choices and the thick line represents the group’s minimum choice

Here, we provide two means of measuring convergence. First, we use a more quantitative measure

of convergence called v-bounded condition. Then we introduce a more qualitative and intuitive

measure of convergence called the similarness condition.

Definition 2.5.1. The game has converged to a particular equilibrium at round t under v-bounded

condition if the variance of efforts chosen is always less than v for every round starting from t.

Specifically, vart+m(σ1, ..., σn) ≤ v, ∀m ≥ 0.

For example, if the strategy profile σ consists of [3, 3, 3, 4], this will require that a variance

parameter of v ≥ 0.25 will be needed to consider this strategy profile as converged under the v-

bounded condition. See Table 2.2 for other samples of strategy profile and its required variance

parameter for v-bounded condition.

Using the v-bounded condition criterion for the notion of convergence, Figure 2.12 illustrates
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σ Minimum v

[3, 3, 3, 4] .25
[3, 3, 4, 4] .33
[2, 3, 3, 4] .66
[3, 3, 4, 4] .92
[3, 3, 3, 5] 1

Table 2.2: Samples of Strategy Profile and its Required v Parameter for v-bounded Condition.

the average rounds it took for the game to converge.5 Although convergence speed seems to be

increasing as the cost parameter increases, differences are not statistically significant. To illustrate

why the v-bounded condition may not be a good criterion, consider the following example from

Figure 2.11: the condition requires v ≥ 9 in order to allow this particular example to be considered

converged due to a large jump in choice of effort by one of the players in round 12. This does not

take into account that the deviation is by one person for only one period. However, intuitively, one

may think that this game has converged at round 4.
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Figure 2.12: Number of Rounds Needed for Convergence for v ≤ 0.5.

Therefore, we use a more intuitive and qualitative measure of convergence. For a given round,

look at the number of different effort levels in the strategy profile. Then, the game has converged

to a particular equilibrium if a high proportion of people use the same strategy. We call this the

similarness condition. The added benefit of the similarness condition is that it does not unreasonably
5We drop the last round deviation because there may be end game effects.



39

penalize cases where one person may deviate significantly away from the best response for just one

period. By the same token, it also means that this measure treats the following two strategy profiles

as equally converged: [2, 2, 2, 3] and [1, 1, 1, 7].

Figure 2.13 shows the frequency of different strategies played for various costs of effort. If the

game is indeed converging faster under the similarness condition, we expect to see a higher frequency

of all same effort (lightest) and two different efforts (light), which indicates everyone playing the same

strategy and three people playing the same strategy, respectively. As the cost of effort increases,

we observe an increase in frequency of all playing the same effort and only 2 different effort levels.

This increase in frequency holds true for any given round. Furthermore, the frequency of one or

two different effort levels also increases as the experiment proceeds (number of rounds increases). In

other words, there are many different strategies being played in the initial round but subjects learn

to best respond.

This similarness condition as a convergence criterion provides support that the game converges

faster to a particular equilibrium as the cost of effort increases.

2.5.2.3 Average Payoff

Finally, we analyze the behavior of the average payoff as the cost increases. Refer to Figure 2.14

(exact numbers in Table A.3 and A.4 in appendix) to see the average payoff and their mean com-

parisons up to 4 rounds for each of the cost parameters from the experiment. We find a statistically

significant decrease in average payoff from µ50 = 9088 at c = 50 to µ950 = 4846 at c = 950 (p ≈ 0).

However, as the simulation has predicted, the average payoff at c = 990 of µ990 = 5136 is signifi-

cantly higher than the average payoff at c = 950 of µ950 = 4846 (p < 0.05). This suggests that early

in the interaction the average payoffs are not monotonically decreasing as the costs increase.

Given that we observe a non-monotonicity in average payoff as a function of cost of effort in the

first 4 rounds, we test the significance after the entire block of the experiment (15 rounds). The

result is displayed in Figure 2.15 (see Tables A.5 and A.6 for exact numbers). Again, we observe a

similar pattern to the results from the first 4 rounds. The average payoff of µ990 = 5650 at c = 990
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Figure 2.13: Frequency of Different Strategies Played for Various Costs.
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is significantly greater than the average payoff of µ950 = 5560 at c = 950 (p < 0.1). Furthermore,

the average payoff in this setting is the lowest at c = 950, which is also lower than the average payoff

of µ900 = 5652 at c = 900 (p < 0.1).

While the p-values for the non-monotonicity hypothesis are weaker after 15 rounds than after 4

rounds, which is what the simulations predicted. The difference between the average payoff when

c = 990 and c = 950 diminishes as more rounds are played. This confirms the prediction made

by the simulation in Figure 2.7. As more rounds are played, the positive welfare from the lower

cost averages out the negative welfare from the wasted effort. For example, after 4 rounds, the

difference in average payoff is µ990− µ950 = 288.9583. But, after 15 rounds, the difference decreases

to µ990 − µ950 = 90.1889. In other words, the non-monotonicity of average payoff is most salient at

the initial phase of the game.
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Figure 2.14: Average Payoff After 4 Rounds (See Tables A.3 and A.4 for numbers).

2.6 Conclusion

We have developed a learning algorithm which can be implemented with computational agents. We

have also shown that simulations with these computational agents are able to generate data which

shares many features with experimental data for both the minimum-effort coordination game and the

Battle of the Sexes game. In particular, agents using our algorithm are able to sustain alternations
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Figure 2.15: Average Payoff After 15 Rounds (See Tables A.3 and A.4 for numbers).

between Nash equilibria in the Battle of the Sexes game: a result which previous learning models

have had a difficult time sustaining. We have used these agents to run simulations for a wide class

of parameters in the minimum-effort coordination game, and developed testable hypotheses about

human behavior in this game. We have designed an experiment based on these simulations and

confirmed the testable hypotheses developed from the simulations.

The validity of our algorithm has been tested with experimental evidence from two coordination

games. Ideally, this algorithm will provide results consistent with a much wider class of games.

The wider the class of games that this type of algorithm is consistent with, the more reliable the

results will be for simulations of new games. As these agents become a more reliable predictor of

human behavior, they can become very valuable asset to experimental economists. In the beginning

we can replace costly pilot experiments by running simulations of experiments with these agents to

determine optimal parameter values for experiments. As these agents become more reliable, we may

be able to use these agents to interact with human subjects during experiments, providing larger

subject pools. Eventually, entire experiments could be run with these computational agents, and

when a useful result is found, it can be confirmed experimentally with human subjects.
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Chapter 3

Bounded Rationality in Repeated
Games

3.1 Introduction

Models of bounded rationality assume that agents have limited ability to process information and

solve complex problems (Simon 1957). These models are often able to make sharper predictions than

their fully rational counterparts (Conlisk 1996). When players are fully rational and they interact

repeatedly, a plethora of equilibrium outcomes are possible. In particular, these games suffer from

folk theorems; namely any individually rational and feasible payoff1 is attainable in equilibrium.

This multitude of equilibria suggests further analysis of the equilibrium selection problem is needed.

This paper focuses on the question: Does a model of repeated interactions with boundedly rational

agents lead to a smaller set of outcomes in equilibrium? A smaller set of outcomes is required to make

better predictions about what type of behavior we should expect to see in repeated interactions.

In this paper, players are limited in two ways. First, as in many repeated interactions, players

are not able to see the actions of their opponents. Rather, they get an imperfect signal from which

the action must be inferred. An example is the “secret price cutting” game (Stigler 1964), in which

two competing firms give unobservable price cuts to their customers, which can only be inferred

through sales figures. In this paper, each player receives a private signal that correctly conveys the

action of their opponent with probability (accuracy) less than one. This builds on the literature
1A payoff is feasible if there is some infinite sequence of actions which leads to this payoff. A payoff is individually

rational if each player is receiving at least their minmax payoff. The minmax payoff is the payoff that minimizes that
maximum possible loss. See Mailath and Samuelson (2006) for more information.
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that examines imperfect private monitoring in repeated games (Kandori 2002).

The second limitation involves memory constraints. Typical repeated game strategies require that

players have perfect memory, and can differentiate between every possible infinitely repeated game

history2. Due to memory constraints, it is inconceivable that any economic agent could differentiate

between every history in this infinite set. Here, I assume that players are able to classify this infinite

set of histories into a finite number of groups (referred to as states). This leads to an intuitive class

of strategies that capture the simple heuristics used during the infinitely repeated game.

By limiting recall to finite states, I can represent players’ strategies by finite automata. Intu-

itively, a finite automaton can be thought of as a set of mental states. Each state represents a

different mood (for example good and bad), and therefore may lead to a different behavior (nice

and mean). Based on the actions of the other player, the mood might change, in which case the

automaton moves (transitions) to a different state. A more sophisticated player may have many

states which represent a complex strategy, while a simple player may have only a handful of states.

Representing strategies with finite automata was first suggested by Aumann (1981) and has been

widely studied since (Mailath and Samuelson 2006).

Using agents that are limited in the ways described above, I examine a model of repeated games,

where it is possible for players to attain cooperative relationships without using contracts. The main

insight from this paper is that in equilibrium players must play strategies that attain cooperation,

and are forgiving enough to avoid long conflicts if cooperation breaks down. Conflicts between

players are suboptimal, so the time spent in these conflicts has to be short in relation to the time

spent in cooperation. I show that if players spend long periods of time in conflict, then it is possible

for them to switch their strategy to something that avoids conflict.

I first consider the case where players select automata with no more than two states. In this case,

the set of equilibrium strategies is small. For a class of infinitely repeated prisoner’s dilemma games,

there are at most two types of equilibria when signal accuracy is less than one (Theorem 3.4.3). In

the first type of equilibrium strategy, a fixed sequence of actions is played regardless of the action
2A history refers to a sequence of previously played actions.
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of the opponent. The other type of equilibrium strategy follows the simple heuristic: if the other

player cooperates, continue playing the same action; if the other player defects, switch actions. This

simple strategy, introduced in the theoretical biology literature, has been coined “win-stay, lose-shift”

(WSLS) (Nowak and Sigmund 1993). If both players play WSLS, then high levels of cooperation

are attained. WSLS is special because it is forgiving, and allows for quick recoordination after

cooperation breaks down. I also give sufficient conditions on stage-game payoffs which guarantee

that both players playing WSLS is an equilibrium when signal accuracy is sufficiently close to one

(Theorem 3.4.4). These sufficient conditions hold for a large class of 2 × 2 games, suggesting that

WSLS is a useful strategy in a wide variety of settings. Finally, experiments run by Wedekind and

Milinski (1996) using human subjects suggest that WSLS is played in repeated prisoner’s dilemma

games. When players are limited to two-state automata, the number of outcomes is small, and the

predictions are supported by experimental evidence.

Next, I examine a more general model in which players’ strategies may be any finite-state automa-

ton. In this case, I give necessary and sufficient conditions for the structure of equilibrium strategies

when signal accuracy is close to one (Theorems 3.5.6 and 3.5.8). These conditions formalize the

insight that players must spend almost all the time cooperating. To prove these conditions, I show

that if players are not cooperating most of the time, then there exist better strategies which allow

players to avoid long periods of conflict and spend almost all the time cooperating. These results

show that the benefits of WSLS (cooperation and recoordination) are still required in equilibrium

in a more general model.

The analysis presented here is most similar to Compte and Postlewaite (2009). They examine

an infinitely repeated prisoner’s dilemma game where players have imperfect private monitoring and

choose among two-state automata. They show that cooperation is possible for a large region of

accuracy and payoff combinations. They focus on a specific class of strategies: two-state automata

with fixed transitions. Players choose only the action to be played in each state. In addition they

allow for a common knowledge public signal (generalized to almost public signal) which allows the

players to coordinate their actions.
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The results considered in this paper extend those in Compte and Postlewaite (2009) in several

ways. First, the two-state results consider the entire set of two-state automata. This means players

select their transition functions as well as an action to be played in each state. I find that WSLS is

able to attain high levels of cooperation even when there is no public signal to aid recoordination.

I also show that WSLS remains an equilibrium over a large class of 2 × 2 games. In addition, I

examine a more general model which allows for any finite-state automata.

This paper proceeds as follows. In Section 3.2, I give a motivating example, which highlights the

problems of imperfect monitoring. Then, in Section 3.3, I present the model of boundedly rational

agents and define the equilibrium concept. Next I give the results of the paper. First, in Section 3.4,

I consider the restricted case where players only choose among two-state automata. Then in Section

3.5, I consider the case where players can choose among any finite-state automata. In Section 3.6.1,

I provide a brief review of some related literature. Finally, I conclude and provide extensions in

Section 3.7.

3.2 Motivating Example

In 1980, Robert Axelrod invited a number of top scholars to submit programs to compete in an

iterated Prisoner’s Dilemma tournament. The strategy that fared best was tit-for-tat, which simply

repeats the play of the opponent in the previous round (Axelrod 1980a, Axelrod 1980b). In later

work, Axelrod suggested that players may not perfectly perceive their opponents actions. To further

examine the effect of misperceptions, he ran simulations where players had a 1 percent chance of

seeing the incorrect action of their opponent. Not surprisingly, he found that these misperceptions led

to lower levels of cooperation. However, tit-for-tat was still the dominant strategy in the tournament.

Axelrod notes,

“[TIT FOR TAT] got into a lot of trouble when a single misunderstanding led to a long
echo of alternating retaliations, it could often end the echo with another misperception.
Many other rules were less forgiving, so that once they got into trouble, they less often
got out of it. TIT FOR TAT did well in the face of misperception of the past because it
could readily forgive and thereby have a chance to reestablish mutual cooperation.”

-Axelrod (2006)
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Figure 3.1: Game PD.

This excerpt captures one of the main insights of this paper: Players do not want to play strategies

which get stuck in suboptimal periods. Axelrod states that tit-for-tat was successful because it was

forgiving enough to be able to avoid these suboptimal periods more than most strategies. However,

the following example shows that these suboptimal periods can be detrimental to payoffs, even when

both players play tit-for-tat.

Consider two players playing the infinitely repeated prisoner’s dilemma game displayed in Figure

3.1. Each player plays the tit-for-tat strategy. Each player starts by cooperating, and then repeats

their opponents play from the previous round. If players’ signals are perfect, they continue to play C

throughout the remainder of the repeated game. Based on the payoff table, this leads to an average

payoff of 1 per round.

Now, suppose that players receive an imperfect signal about their opponents action. The players

start by cooperating. They continue to cooperate as long as the signals are correct. Suppose that

in round r, both players play C, but player 1 gets an incorrect signal that player 2 played D. In

round r + 1 player 1 plays D because of the incorrect signal, and player 2 continues to play C. If

both players receive correct signals in round r+ 2, then player 1 plays C and player 2 plays D. The

players continue to “echo” each other’s action until another incorrect signal is received. While stuck

in the period of alternations, the average payoff for each player is 1/2, lower than the payoff when

cooperating.
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If during this period of alternations, one player receives a signal that C was played when actually

D was played, then both players perceive the actions as C, and hence both cooperate in the following

round. This cooperation continues until another incorrect signal is received. However, if one of the

players receives a signal that D was played when actually C was played, both players perceive action

D, and both will defect in the following round. This mutual defection continues until at least one

player receives an incorrect signal. The average payoff per round when both players are defecting is

0.

When both players play tit-for-tat, there are three periods the system can get stuck in: always

play C, echo alternations, or always play D. The only way to get out of one of these periods is if one

of the players receives an erroneous signal. Suppose the signal is correct with probability 1−ε and in-

correct with probability ε. Over the course of the infinitely repeated game, for all ε > 0, the frequency

of time spent in the cooperate and defect periods is 1/4 and the alternating period is 1/2. Therefore,

the frequency of each of the four possible action combinations is equal in the infinitely repeated

game. So each player gets an average payoff of 1/4 [ui (C,C) + ui (C,D) , ui (D,C) + ui (D,D)] =

1+(1+L)−L
4 = 1

2 in every round. Both players would receive higher payoffs if they played cooperate

all the time.

In Section 3.4 , I show that in contrast to tit-for-tat, when both players play “win-stay, lose-shift”,

the system does not get caught in these suboptimal periods. When an incorrect signal is received,

the strategies are able to recoordinate quickly without incurring large losses. Then, in Section 3.5, I

show that in a more general model, players still do not play strategies that get stuck in suboptimal

periods in equilibrium. Before the results, I first introduce the formal model and some notation.

3.3 Model

Two players, I = {1, 2}, play the supergame G. In every round, the players play the stage game

g = {S1, S2, u1, u2}. In the stage game, each player has |Si| pure strategies. The stage-game payoff

function is ui : S1 × S2 → R. The stage-game payoffs for player i can be represented by a payoff

matrix Pi ∈ R|S1|×|S2|. In the supergame G, the agents play stage game g for an infinite number of



49

rounds t = 1, 2, 3, . . ..

3.3.1 Imperfect Monitoring

After both players have their chosen actions in round t of the supergame, each player receives a

private signal which conveys the true action of their opponent with probability less than one. More

formally, with probability ri (s1, s2, ε) player i receives a signal that the other player played action

s2 when the other player actually played s1. The signals functions have a common rate of error,

ε ∈ [0, .5]. For example, if S1 = S2 = {C,D}, one possible signal function is

ri (C,C, ε) = ri (D,D, ε) = 1− ε

ri (C,D, ε) = ri (D,C, ε) = ε.

(3.1)

In words, the signal is correct with probability 1 − ε and incorrect with probability ε. This signal

function is referred to as the simple signal function, rSi , and is used for many examples and results

in this paper.

3.3.2 Imperfect Memory

Players have bounds on their ability to differentiate between infinitely repeated game histories.

Players are only able to classify this infinite set of histories into a finite number of states. This

restriction yields a simple set of strategies which can be represented with finite-state automata.

A finite automaton is defined as a quadruple, M =
(
Qi, q

0
i , fi, τi

)
. Here, Qi is the finite set

of states for player i and q0
i is the initial state. In each state, the automaton prescribes a pure

action, which is determined by the output function fi : Qi → Si. Finally, the transition function

determines which state to transition to based on the current state and the action of the other player,

τi : Qi×S−i → Qi. Since the output function depends on Si and the transition function depends on

S−i, if players have different action sets, then each player selects from a different set of automata.

The set of all finite automata for player i is denoted by Mi.

At the beginning of the supergame, each player chooses a finite-state automaton. After each
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Figure 3.2: Examples of Automata.

history, this automaton is in a certain state, and plays the action corresponding to that state. So a

finite automaton prescribes a stage-game action for every possible history.

Examples of Automata

Some example automata are displayed in Figure 3.2. The first automaton represents the tit-for-tat

strategy. There are two states; the automaton cooperates in the first state, and defects in the second

state. When the other player plays C, this automata goes to the first state, and hence this player

cooperates. When the other player plays D, this automata leads to the second state, so this player

defects. The second automaton represents a punish twice strategy. The first state of this automaton

is a cooperative state. The automaton remains in this state as long as the other automaton is playing

C. When the other automaton defects, this automaton goes into a two-state punishment phase. In

the first state of the punishment phase, the automaton plays D and regardless of the other play goes

to the third state. In the third state, the automaton plays D, and returns to the cooperative state

only if the other automaton plays C. More complex strategies, such as N -period action sampling

(Selten and Chmura 2008), can also be represented with a finite automaton.

3.3.3 Payoffs and Equilibria

When choosing automata, the players try to maximize the non-discounted limit of means. For a

given pair of signal functions, the payoff is determined by the choice of automata from each player,

and the level of error in signal function ε, Ui : M1 ×M2 × [0, .5] → R. Given the signal function,

error level, and automata, there is some infinite sequence of realized joint actions, x0, x1, . . .. The
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players payoff is the average payoff per round over this infinite sequence of joint actions.

Ui (M1,M2, ε) = lim
T→∞

1
T

T∑
t=0

ui
(
xt
)
,

where ui (xt) is the payoff for player i when joint action xt is played.

In this paper I assume non-discounted payoffs.3 This allows me to focus on long run equilib-

rium rules-of-thumb rather than strategies where players deviate in the beginning because they are

impatient.

Definition 3.3.1 (Best Response). Player i’s best response function BRi :M−i × [0, .5]→Mi

Ui (BRi(M, ε),M, ε) ≥ Ui (M ′,M, ε) for all M ′ ∈Mi.

Definition 3.3.2 (Nash Equilibrium). For fixed signal functions ri and error level ε, a pair of

automata, (M1,M2), is an equilibrium of the supergame G if and only if Mi = BRi (M−i, ε) for

i = 1, 2.

A Nash equilibrium pair of automata is referred to as an equilibrium.

3.4 Two-State Automata

In this section, I analyze the set of equilibria when players strategies are restricted to two-state

automata. First, I introduce some important automata. I then show that for a class of infinitely

repeated prisoner’s dilemma games, there are at most two types of equilibria for any parameter pair.

I then give sufficient conditions on stage-game strategies that ensure that WSLS is an equilibrium

for all small error levels. Finally, I discuss some previous work done on WSLS, including some ex-

periments from Wedekind and Milinski (1996) which show that human subjects play these strategies

in the laboratory.
3Here I assume that players payoff is determined by the limit of means. Limit of means can sometime be problematic

because the limit may cease to exist in some cases, leading to an incomplete preference order. This however is not a
problem here as displayed in Lemma 3.5.3.
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3.4.1 Important Two-State Automata

The restricted set of automata, M2, consists of only two-state automata. For notational simplicity,

automata are represented by a tuple with the starting points omitted,

M = ({f (q1) , . . . , f (qn)} , {τ (q1, C) , . . . , τ (qn, C)} , {τ (q2, D) , . . . , τ (qn, D)}).

The starting points are mentioned when relevant. Before giving a characterization of the two-state

equilibria, I first need to introduce some automata.

• Always play C - MC = ({C} , {q1} , {q1})

• Always play D - MD = ({D} , {q1} , {q1})

• Alternating - MCD = ({C,D} , {q2, q1} , {q2, q1})

• Win-Stay, Lose-Shift - MWSLS = ({C,D} , {q1, q2} {q2, q1})

Automata “always play C” and “always play D” play the same action regardless of the signal. The

alternating automaton always alternates between C and D regardless of the signal. The “win-stay,

lose-shift” automaton follows the simple rule: if I get a signal that you cooperated, then I play the

same action; if I get a signal that you defected, I switch actions. These automata are displayed in

Figure 3.3.

It is important to point out the differences between MWSLS , and the well-studied tit-for-tat

automaton, MTFT = ({C,D} , {q1, q1} , {q2, q2}). Both automata yield output C in state q1 and D

in state q2. The transitions from the first state of these two automata are the same as well. Both

remain in the state if the signal is C, and change if the signal is D. The difference occurs in the

second state transitions. The second state of MTFT returns with a D and changes with a C while

the second state of MWSLS returns with a C and switches with a D.
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Figure 3.3: Important Two-State Automata.

3.4.2 Characterization of Equilibria

I give a characterization of the equilibria when players face stage-game payoffs presented in Figure

3.1. This game is a prisoner’s dilemma when L > 0 with unique Nash equilibrium (D,D). When

L < 0, the unique Nash equilibrium is (C,C), and it is no longer a prisoner’s dilemma game.

I am interested in equilibria which are not heavily tied to the parameters of the game. I focus

on robust equilibria. Say that G (P1, P2) is the supergame where player i is subject to payoff matrix

Pi ∈ R|S1|×|S2|.

Definition 3.4.1 (Robust Equilibrium). Suppose two players play supergame G (P1, P2) and have

fixed signal functions ri and error level ε. A pair of automata, (M1,M2), is a robust equilibrium of

the supergame G (P1, P2) if and only if there exists some µ > 0 such that (M1,M2) is an equilibrium

of all supergames G (P ′1, P
′
2) such that maxsi∈Si,s−i∈S−i |P ′i (si, s−i)− Pi (si, s−i)| < µ.

This equilibrium concept is a refinement of the Nash equilibrium concept defined in Definition

3.3.2. So every robust equilibrium is also a Nash equilibrium. The types of Nash equilibria that

are not robust are only equilibria for a set of measure zero in the payoff space, and are therefore

heavily tied to the parameters of the game. Robust equilibria are more universal than non-robust

equilibria because they hold for a larger class of games. Therefore, they remain equilibria under

small changes in the parameters. In the infinitely repeated PD game, there are at most two types
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of robust equilibria at any parameter pair.

Definition 3.4.2 (Payoff Equivalent Automata). Automata M1 and M2 are said to be payoff equiv-

alent over set M if and only if,

Ui (M1, A, ε) = Ui (M2, A, ε) for all A ∈M, and all ε ∈ (0, .5].

Automata M1 and M2 are said to be payoff equivalent only if they yield the same payoff against

any other automata.

Theorem 3.4.3. In the infinitely repeated PD game, when players have the simple signal function rSi

and choose among the set of two-state automata, M2, there are only three types of robust equilibria:

1. L < 0 and Mi is payoff equivalent to MC for i = 1, 2,

2. L > 0 and Mi is payoff equivalent to MD for i = 1, 2, and

3. − (1− 2ε)3
< L < (1− 2ε)3 and Mi = MWSLS for i = 1, 2.

The proof of this result is left to the appendix. Based on these regions, notice that there are

at most two types of equilibria at any pair of payoff parameter and error level. The equilibrium

regions are displayed in Figure 3.4. When both players play MWSLS , high levels of cooperation

occur in equilibrium. The dark shaded region in Figure 3.4 represents the area where both players

playing MWSLS is an equilibrium. Whenever the payoff parameter and error level is in this region,

then both players playing MWSLS is an equilibrium, and therefore high levels of cooperation are

attainable in equilibrium.

When players play MC or MD, their strategies are unresponsive to the signals they receive. The

only robust equilibrium where players’ strategies are responsive to their signals is when both players

play MWSLS . What makes MWSLS so special? When players are trying to cooperate, they must

punish their opponents to deter deviations. When an incorrect signal is received, they may start to

punish each other repeatedly. In order to sustain cooperation, they must somehow recoordinate their

actions to start cooperating again after an incorrect signal has been received. Since recoordination
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Figure 3.4: Equilibrium Regions from Theorem 3.4.3.

is typically inefficient, players want to recoordinate as quickly as possible after an incorrect signal

is received. If both players play MWSLS , this recoordination is efficient. Consider the following

example which describes how this recoordination occurs. Suppose both players are playing MWSLS ,

the sequence of states and signals is displayed in Table 3.1.

• First Round - Both players start in state q1, both play C, both receive correct signals, and

both transition back to state q1 in round 2.

• Second Round - Both players again play C. Now, player 1 receives an incorrect signal that

player 2 played D (error denoted with box around signal). Player 1 thinks player 2 played D

and therefore moves to q2. Player 1 received a correct signal, and therefore returns to state q1.

• Third Round - Player 1 plays D and Player 2 plays C. Both receive correct signals. Player

1 sees that player 2 played C, so player 1 remains in q2. Player 2 sees that player 1 played D,

so player 2 switches to q2.

• Fourth Round - Both players are in state q2, both play D, both receive correct signals, and
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both switch states, and transition back to state q1.

• Fifth Round - Both players are back in q1, and continue to cooperate until another incorrect

signal is received.

Round 1 2 3 4 5

Current State of M1 q1 q1 q2 q2 q1

Signal from M2 C D C D C

Signal from M1 C C D D C

Current State of M2 q1 q1 q1 q2 q1

Table 3.1: Recoordination of MWSLS .

So in this example, the players start by cooperating in round one. The incorrect signal was received

in round two. Player 2 plays D to confirm that an incorrect signal was received in round three.

Both players play D in round four. In round five, both players are cooperating again. So after the

incorrect signal is received, it only takes two rounds to recoordinate if no other incorrect signals are

received. This efficient recoordination is one of the reasons why MWSLS is an equilibrium strategy.

Another reason why MWSLS is special is because it is not dominated by MC or MD for large

regions of the parameter space. When players play
(
MWSLS ,MWSLS

)
, the action pair (C,C)

is played most of the time, so the players receive close to the cooperative payoff. In the system(
MWSLS ,MC

)
, the action pairs (C,C) and (D,C) are each played half the time. This is bad for

player 2, because u2 (D,C) = −L < u2 (C,C) = 1 when L > −1. Playing MC is only good for

player 2 when L is sufficiently negative. In the system
(
MWSLS ,MD

)
, action pairs (C,D) and

(D,D) are each played half the time. Again this is not good for player 2 because u2(C,D)+u2(D,D)
2 =

1+L
2 ≤ u2 (C,C) when L < 1. Playing MD is only profitable for player 2 if L is sufficiently high.

For medium ranges of L, MWSLS is the best response to itself, because it receives the cooperative

payoff most of the time.

This result does not depend on the prisoner’s dilemma game. Similar results hold for a class of

Battle of the Sexes games as well as a class of minimum-effort coordination games. In both of these

cases, the only types of equilibria either are unresponsive to the signal of the other players action,
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or similar to MWSLS . These results (Theorems B.2.18 and B.2.19) are left to the appendix.

3.4.3 General 2× 2 Games

In the previous section, I showed that both players playing MWSLS is an equilibrium for a large

region of the parameter space when players play an infinitely repeated prisoner’s dilemma game. In

this section, I give conditions on stage-game payoffs, which ensure that
(
MWSLS ,MWSLS

)
is an

equilibrium.

Theorem 3.4.4. Suppose both players have simple signal functions rSi . If for i = 1, 2,

1. ui (C,C) > ui (C,D), and

2. ui (C,C) > ui(D,C)+ui(D,D)
2 ;

then there exists some ε̄ > 0 such that
(
MWSLS ,MWSLS

)
is an equilibrium for all ε ∈ (0, ε̄).

This result suggests that when errors are small
(
MWSLS ,MWSLS

)
is an equilibrium for a wide

range of games. Figure 3.5 displays four 2× 2 games that satisfy the desired properties.

• Figure 3.5(a) is a stag-hunt game with Pareto ranked pure strategy Nash equilibria (C,C) and

(D,D). Both players playing MWSLS leads to high levels of the Pareto superior equilibrium.

• Figure 3.5(b) is a chicken game with two pure strategy Nash equilibria (C,D) and (D,C),

one preferred by each player. If both play MWSLS , then the cooperative outcome (C,C) is

possible, even though it is not one of the pure strategy Nash equilibria.

• Figure 3.5(c) is a Battle of the Sexes game with two pure strategy Nash equilibria (C,C) and

(D,D). If both players play MWSLS then the outcome (C,C) is frequently attained. Also

consider, MLSWS = ({C,D} , {2, 1} , {1, 2}). This strategy is the opposite of MWSLS in that

it stays in the same state when the other player plays D, and switches when the other player

plays C. The theorem also confirms that both players playing MLSWS is also an equilibrium

in this case.
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Figure 3.5: 2× 2 Games.

• Figure 3.5(d) is a game with no pure strategy equilibrium. However, both players playing

MWSLS leads to high levels of (C,C) in equilibrium.

So the simple strategy MWSLS is an equilibrium for a variety of 2 × 2 games when errors are

small.

3.4.4 Other Support

The strategy represented by automaton MWSLS has been studied before. The majority of work done

on this strategy focuses on biological applications. Nowak and Sigmund (1993) run evolutionary

simulations on probabilistic memory one strategies. Memory one strategies are those which only

respond to the previous period of play, similar to the two-state case. Their simulations are more
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general than my two-state result because they allow for probabilistic transitions. Nevertheless, the

prevailing strategy in their simulation is the deterministic MWSLS strategy.

More recently, Imhof, Fudenberg, and Nowak (2007) use stochastic evolutionary game dynamics

to study the evolution of four strategies, MC ,MD,MTFT ,MWSLS . When only MC ,MD, and

MWSLS are considered, they find some payoff threshold which determines which strategy is selected.

Below this threshold MD is selected while above this threshold MWSLS is selected. When MTFT

is added to the three other strategies, they again find a threshold, but this time it is lower, meaning

that MTFT strengthens MWSLS .

The prediction from my two-state model is that the only equilibria in the infinitely repeated

prisoners dilemma game (L > 0) are MD or MWSLS . Experiments with human subjects playing

repeated prisoners dilemma games have often tried to identify subjects playing tit-for-tat (Dal Bó

and Fréchette 2008). Tit-for-tat typically fits the data well. One of the reasons why tit-for-tat fits

the data well is that human subjects tend to always play C or always play D, both of which are

supported by tit-for-tat. The predictions of my model also support this behavior. However, there is

one key difference between MTFT and MWSLS or MD that allows us to identify which strategies

the subjects are playing.

To identify a strategy, look at the play of both players in round t, and then see the responses in

t+ 1. If player 1 is playing MTFT and both players play C in round t, then player 1 should play C

in round t + 1. MWSLS provides the same prediction, that both players playing C leads to player

1 playing C. MTFT and MWSLS again share a prediction if player 1 plays C and player 2 plays D

in round t. Both predict that D will be played in round t + 1. If both players play D in round t,

then MTFT and MD both predict that D is played in the following round. So far the predictions of

MTFT have matched the prediction of MWSLS or MD. The final combination is where they differ.

If player 1 plays D and player 2 plays C in round t, then MTFT predicts that player 1 will play C

in the next round. Conversely, both MD and MWSLS predict that player 1 continues to play D in

the next round. This provides a testable prediction: if player 1 plays D and player 2 plays C, then

player 1 will play C in the next round if he is using MTFT , and will play D in the next round if he
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is using MWSLS or MD.

Wedekind and Milinski (1996) run experiments that examine whether players play MTFT or

MWSLS . They find that 70% of players can be classified a playing MWSLS in a variety of treatments

of repeated prisoner’s dilemma game. Their experiments use psuedoplayers which use predetermined

strategies. This allows them to focus on the situation of interest. To classify the strategies of players,

they focus on the situation where player 1 plays D and player 2 plays C in round t. If player 1 plays

C more in round t + 1, then he is classified as playing MTFT . If player 1 plays D more in round

t + 1, then he is classified as playing MWSLS . These experimental results suggest that players are

playing MWSLS .

3.5 Unrestricted Automata

In this section, I examine the case where players can select any automata with any finite number

of states to represent their strategies. I first introduce absorbing classes and communicating classes

which are necessary to understand the equilibrium characterization. Then, I reanalyze the motivating

example which shows the importance of absorbing and communicating classes. Finally, I give the

necessary and sufficient conditions on equilibrium structure for small error levels.

3.5.1 Absorbing Classes

An absorbing class of an automaton M is a region that the automaton can get stuck in when the

opponent plays a sequence of actions repeatedly. If player 1 plays automaton M1, then player 2

wants to play a strategy which ensures that M1 gets stuck in a high payoff absorbing class rather

than a low payoff absorbing class. Formally,

Definition 3.5.1 (Absorbing Class). Given automaton M = (Q, q0, f, τ), an absorbing class, de-

noted by a(M) = {q, s}, where q = q1, . . . , qn is a sequence of states, and s = s1, . . . , sn is a sequence
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of signals, such that

τ (qk, sk) =


qk+1 k < n

q1 k = n.

So when automaton M is in state q1, and the opponent plays sequence s repeatedly, then M

will loop through the sequence of states q repeatedly. The length of an absorbing class is the length

of the sequences of actions and states, |a| = n. When automaton M is looping through states q

and the opponent is playing actions s, then the players are playing a fixed sequence of joint actions

repeatedly. The payoff for an absorbing class is the average payoff per round while in this absorbing

class,

UACi (a) =
1
|a|

|a|∑
k=1

ui (f (qk) , sk) .

The set of all possible absorbing classes for automaton M =
(
Q, q0, f, τ

)
is infinite. However

there exists a payoff-maximal absorbing class for player i, denoted by a∗i (M), with |a∗i (M)| ≤ |Q|.

This result, presented in Lemmas B.2.2 and B.2.3, is left to the appendix. The idea for the proof

is that if a payoff-optimal absorbing class travels through the same state twice, then there must be

a smaller payoff-optimal absorbing class. Therefore, given any payoff-optimal absorbing class, the

length can be reduced by eliminating states that appear more than once, until it has length less

than or equal to |Q|. This finite length optimal absorbing class is used to construct a best response

automaton. In equilibrium, each player must spend almost all of the repeated game in the optimal

absorbing class of their opponents automaton.

3.5.2 Communicating Class

Once both players have selected automata M1 =
(
Q1, q

0
1 , f1, τ1

)
and M2 =

(
Q2, q

0
2 , f2, τ2

)
, the

pair of automata (M1,M2) forms a system which can be represented with a finite Markov chain

X (M1,M2, ε). Each state of the Markov chain corresponds to a pair of automaton-states, one

from each automaton. For example, the situation where M1 is in state q1 and M2 is in state q2 is

represented by one state of the Markov chain. The starting state of the Markov chain represents
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the situation where both automata are in their initial states, M1 in q0
1 and M2 in q0

2 . Based on the

signal functions ri, the Markov chain has n ≤ |Q1| |Q2| states, one corresponding to each pair of

automaton states that are reachable from the initial states with positive probability for any ε > 0.

These states are denoted by x1, . . . , xn.

Let qi(x) be the current state of automaton Mi when the Markov chain is in state x. Automaton

Mi moves from state qi (xa) to qi (xb) with probability,

P (Mi, qi (xa) , qi (xb) , ε) =
∑

si|τ(qi(xa),si)=qi(xb)

ri (si, f−i (q−i (xa)) , ε) .

In words, the term inside the sum is the probability that player i receives a signal that the other

player played action si when the other player actually played action f−i (q−i(xa)). This term is

then summed over all actions si which take automaton Mi from state qi (xa) to qi (xb). The Markov

chain is therefore defined by the probability that M1 moves from q1 (xa) to q1 (xb) and M2 moves

from q2 (xa) to q2 (xb),

X (M1,M2, ε) (xa, xb) = P (M1, q1 (xa) , q1 (xb) , ε) P (M2, q2 (xa) , q2 (xb) , ε) . (3.2)

The starting point of this Markov chain is state x0 such that q1

(
x0
)

= q0
1 and q2

(
x0
)

= q0
2 .

When the signals are perfect, the Markov chain X (M1,M2, 0) is deterministic. Each state leads to

another state with probability 1. When the signals are imperfect, the Markov chain X (M1,M2, ε)

is not necessarily deterministic and any state may lead to multiple different states with varying

probabilities.The realizations of the Markov chain are denoted by x1, x2, . . ..

Definition 3.5.2 (Communicating Class). A communicating class of the system X (M1,M2, ε) is

a set of states A ⊆ X (M1,M2, ε) that satisfies,

• (X (M1,M2, 0) (x, y))n = 0 for all x ∈ A, y 6∈ A,n > 0.

• (X (M1,M2, 0) (x, y))n > 0 for all x, y ∈ A and for some n > 0.

A communicating class is a set of absorbing states. Once the Markov chain enters a communi-
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cating class, it can only leave if a player receives an incorrect signal. When no erroneous signals are

received, the Markov chain deterministically loops through the states in the communicating class.

The payoff of a communicating class is defined to be the average payoff over this loop,

UCCi (Ak) =
1
|Ak|

∑
x∈Ak

ui(x), (3.3)

where ui (x) = ui (f1 (q1 (x)) , f2 (q2 (x))) is the payoff for player i in state x. This definition gives

the average payoff in the communicating class when signals are correct, and is used when giving

necessary and sufficient conditions in the finite-state case.

3.5.3 Calculating Payoffs

Representing the system as a Markov chain allows me to calculate the payoffs for a given pair of

automata using only the stationary distribution of the Markov chain. By Lemma B.2.1, the Markov

chain X (M1,M2, ε) is irreducible for all ε > 0, and hence has a unique stationary distribution,

π (M1,M2, ε).

Lemma 3.5.3. Suppose players play automata M1 and M2. The average payoff for the infinitely

repeated game is equal to

Ui (M1,M2, ε) =
∑

xk∈X(M1,M2,ε)

π (M1,M2, ε) (xk)ui (xk) ,

where π (M1,M2, ε) (xk) is the term of the stationary distribution corresponding to state xk, and

ui (xk) is the payoff for player i state xk.

Lemma 3.5.3 implies that only the stationary distribution of the system and vector of utilities

for the corresponding states are needed to find the limit of means for a pair of automata. The idea

behind the proof is that the frequency of time the Markov chain spends in a state converges to the

stationary distribution by the law of large numbers. The proof of this lemma is left to the appendix.



64

C DStart
q1

1 q1
1

D

C

C C

C DStart
q1

2 q2
2

D

C

C C

(a) Player 1 plays MTFT (b) Player 2 plays MTFT
2

Figure 3.6: Automata for absorbing class example.

3.5.4 Tit-For-Tat Absorbing Class Example

To better understand the absorbing classes, communicating classes, and where the analysis is headed,

it helps to give an example. Assume the players are playing the PD-game presented in Figure 3.1.

As the motivating example shows, tit-for-tat can get into trouble by getting caught in a suboptimal

region when signals are imperfect. Here, I elaborate on the motivating example using the notation

introduced above. This example helps to show why these suboptimal regions are a problem, and

how to make automata more robust to these imperfect signals.

Suppose player 1 plays automaton MTFT displayed in Figure 3.6(a). This is a two-state automa-

ton with states q1 and q2 which represents the tit-for-tat strategy. The optimal absorbing class of

MTFT for player 2 is,

a∗2
(
MTFT

)
= {{q1} , {C}} .

In this absorbing class, MTFT is in state q1, player 2 plays C, and M1 returns to q1. Therefore, the

average payoff in this absorbing class for player 2 is UAC2 (a∗2(MTFT )) = 1.

Consider two other absorbing classes,

aCD(MTFT ) = {{q1, q2} , {D,C}} and aD(MTFT ) = {{q2} , {D}} .

The respective payoffs are UAC2 (aCD) = 1/2 and UAC2

(
aD
)

= 0.

Ideally, player 2 would like to play an automaton which spends most of the supergame in absorb-

ing class a∗2(MTFT ), and does not get stuck in aCD(MTFT ) or aD(MTFT ). When an incorrect signal
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is received, the best response automaton should be able to find its way back to the payoff-optimal

absorbing class without getting stuck in a suboptimal absorbing class.

Now, suppose that player 2 also plays MTFT with states q1 and q2 as displayed in Figure 3.6(b).

Suppose each player has the simple signal function rSi from (3.1). The Markov chain for the system,

X
(
MTFT ,MTFT , ε

)
, has states

{
xCC , xCD, xDC , xDD

}
= {q1q1, q1q2, q2q1, q2q2},

X
(
MTFT ,MTFT , ε

)
=

xCC

xCD

xDC

xDD



(1− ε)2
ε (1− ε) ε (1− ε) ε2

ε (1− ε) ε2 (1− ε)2
ε (1− ε)

ε (1− ε) (1− ε)2
ε2 ε (1− ε)

ε2 ε (1− ε) ε (1− ε) (1− ε)2


.

When ε is small, and the system is in state xCC , then it returns to xCC with probability (1− ε)2

(only leaves with an incorrect signal). When the system is in state xCD, then it goes to state xDC and

vice-versa, unless an incorrect signal is received. When in xDD, the system remains in xDD, unless an

incorrect signal is received. So this system has three communicating classes: AC =
{
xCC

}
, ACD ={

xCD, xDC
}
, and AD =

{
xDD

}
. Once the system has entered a communicating class, it remains

in that class until an incorrect signal is received. Note that UCC2

(
AC
)

= UAC2 (a∗2 (M1)), so when

the system is in communicating class AC , automaton M1 is in player 2’s optimal absorbing class.

So player 2 wants the system to spend as much time in communicating class AC as possible.

Since automaton MTFT starts in state q1, the system starts in state xCC . When ε = 0, the

starting point of the system matters, and the stationary distribution is π
(
MTFT ,MTFT , 0

)
=[

1 0 0 0
]
. This means the system always stays in xCC , and both players receive payoffs equal

to their optimal absorbing class. Since neither player can do better, this is an equilibrium when

ε = 0. For any ε > 0, the starting point no longer matters, and the unique stationary distribution

is π
(
MTFT ,MTFT , ε

)
=
[

1/4 1/4 1/4 1/4
]
. This means for any positive error level, the system
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Figure 3.7: Automata for absorbing class example.

spends one-quarter of the time in AC and AD, and one-half the time in ACD, which yields payoff

U2

(
MTFT ,MTFT , ε

)
=

1
4
UCC2

(
AC
)

+
1
2
UCC2

(
ACD

)
+

1
4
UCC2

(
AD
)

=
1
2
< UAC2

(
a∗2
(
MTFT

))
.

Since the system is in suboptimal absorbing classes ACD or AD three-quarters of the time, the

payoff is less than the payoff of the optimal absorbing class. Player 2 spends significant time in a

suboptimal absorbing class, even in the limit as the errors go to zero. Player 2 gets higher payoff

playing an automaton that does not get caught in these suboptimal absorbing classes.

There is a discontinuity in the stationary distribution at ε = 0.

π
(
MTFT ,MTFT , 0

)
=
[

1 0 0 0
]
6= 1

4
[

1 1 1 1
]

= lim
ε→0

π
(
MTFT ,MTFT , ε

)
.

Since the payoffs for a pair of automata depend on the stationary distribution, a discontinuity like

this in the stationary distribution, also leads to a discontinuity in the payoffs,

Ui
(
MTFT ,MTFT , 0

)
= 1 6= 1

2
= lim
ε→0

Ui
(
MTFT ,MTFT , ε

)
.

Because of this discontinuity, some of the equilibria under perfect monitoring may fail to be equilibria

when monitoring becomes imperfect. If the stationary distribution does not have this discontinuity,

then neither do payoffs.

Next, suppose that player 1 still plays the tit-for-tat automaton MTFT . Player 2 now plays the

“always play C” automaton MC , with state q′, as displayed in Figure 3.7(b). Since MC only has
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one state, the system only has two states
{
xCC , xDC

}
= {q1q

′, q2q
′}. The corresponding Markov

chain is,

X (M1,M2, ε) =
xCC

xDC

[
1− ε ε
1− ε ε

]
.

When this system is in xCC , it returns to xCC unless an incorrect signal is received. State xDC

also leads to xCC unless an incorrect signal is received. So now there is only one communicating

class in this system, AC =
{
xCC

}
. There is also a transient class, TC =

{
xDC

}
, which leads to

communicating class AC . As before, the payoff of this communicating class is equal to the payoff

for player 2’s optimal absorbing class, UCC2

(
AC
)

= UAC2 (a∗2 (M1)). However, now there are no

suboptimal absorbing classes.

When the signals are perfect, the stationary distribution of the system is π (M1,M2, 0) =[
1 0

]
. This means that the system spends all of the time in xCC , and yields payoff U2

(
MTFT ,MC , 0

)
=

1. It turns out that MC is a best response to MTFT when the signals are perfect. When ε > 0, the

stationary distribution becomes π (M1,M2, ε) =
[

1− ε ε
]
, which yields payoff

U2

(
MTFT ,MC , ε

)
= (1− ε)U2

(
AC
)

+ ε (−L) = 1− ε (1 + L) .

Now player 2 spends (1− ε) in the optimal absorbing class and only ε in the transient class. Player

2 never gets caught in some suboptimal absorbing class. As ε approaches zero, player 2 is almost

always in the optimal absorbing class, and cannot do better.

Unlike the previous case, there is no longer a discontinuity in the stationary distributions 4,

π
(
MTFT ,MC , 0

)
=
[

1 0
]

=
[

1 0
]

= lim
ε→0

π
(
MTFT ,MC , ε

)
.

4In the literature on perturbed Markov chains, there are two types of perturbations: regular perturbations and
singular perturbations. In a regular perturbation, the stationary distribution is continuous as the error increases from
zero. A singular perturbation is defined as a perturbation which changes the ergodic structure of the matrix, meaning
that multiple communicating classes may be combined. Singular perturbations typically do not have continuous
stationary distributions when moving the errors away from zero. X

`
MTFT ,MTFT , ε

´
is a singular perturbation

while X
`
MTFT ,MC , ε

´
is a regular perturbation (different than regular perturbation defined in this paper).
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Again, since the payoffs are just a linear function of the stationary distribution, continuous stationary

distributions lead to continuous payoffs,

U2

(
MTFT ,MC , 0

)
= 1 = 1 = lim

ε→0
U2

(
MTFT ,MC , ε

)
.

Since MC was a best response with perfect signals, and the payoffs are continuous, it remains a best

response in the limit as the probability of getting an incorrect signal goes to zero.

To summarize, if player 1 plays M1, then player 2 wants to play an automaton such that au-

tomaton M1 spends most of the time in player 2’s optimal absorbing class a∗2(M1) and does not get

caught in suboptimal absorbing classes. Suboptimal absorbing classes can be detrimental to payoffs,

even in the limit as the probability of an incorrect signal goes to zero.

3.5.5 Necessary and Sufficient Conditions

In this section, I provide the necessary and sufficient conditions for equilibria in the finite-state case.

As the above example shows, in equilibrium, players cannot spend significant amounts of time in

communicating classes that do not yield the optimal absorbing class payoff. If all communicating

classes yield the same payoff as the optimal absorbing class for each player, then it is an equilibrium.

However, it is possible to have communicating classes which do not yield the optimal absorbing class

payoff in equilibrium as long as the time spent in these communicating classes is significantly less

than time spent in other communicating classes.

To formalize these conditions, we must understand how some communicating classes are more

robust to incorrect signals than others. The system may exit some communicating classes with only

one incorrect signal, while others may require many more incorrect signals. The system visits those

communicating classes that are most robust to incorrect signals almost all the time as the probability

of error goes to zero.

Definition 3.5.4 (Prevalent Communicating Class). A communicating class A of the matrix X (M1,M2, ε)
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is a prevalent communicating class if

lim
ε→0

π (M1,M2, ε) (x) > 0 for some x ∈ A.

A prevalent communicating class is a set of states that the Markov Chain X (M1,M2, ε) visits

with positive probability in the limit as the error goes to zero. When ε is small, the system spends

almost all the time in the prevalent communicating classes.

Next, these results hold for a wider class of signal functions, as defined below,

Definition 3.5.5 (Regular Signal Function). A signal function ri : S−i × S−i × [0, .5] → [0, 1] is

said to be regular if the following conditions hold.

1. lim
ε→0

ri (si, sj , ε) =
{

1 si = sj
0 si 6= sj

,

2. r (si, sj , ε) > 0 for all ε ∈ (0, .5] and all si, sj ∈ S−i,

3. ∃n ≥ 0 such that 0 < lim
ε→0

ε−nr (si, sj , ε) <∞ for all si, sj ∈ S−i.

It is clear that the simple signal function, rSi from (3.1), is a regular signal function. There are

also more complex signal functions that satisfy this as well.

For the finite-state results, I restrict the set of finite automata to those which are finite, strongly

connected, and reduced. This set is denoted by MR
i . All equilibria over this set are also equilibria

over the set of all finite automata. For more details see Appendix B.1. With this notation, I

introduce the main results for the finite-state case.

Theorem 3.5.6 (Necessity). Suppose players play supergame G with regular signal function ri, and

play automata Mi ∈ MR
i represented by Markov chain X (M1,M2, ε). If there exists some ε̄ > 0

such that (M1,M2) is an equilibrium for all ε ∈ (0, ε̄), then for all prevalent communicating classes

Ak, UCCi (Ak) = UACi (a∗ (M−i)).

These conditions say that, for small error levels, each prevalent communicating class must yield

the optimal absorbing class payoff for each player. Since almost all time is spent in the prevalent
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communicating classes when the errors are small, the system must spend almost all the time in good

regions and not get caught in bad regions in equilibrium.

To prove the necessary conditions, I show that if the necessary conditions are not satisfied, then

it is always possible to construct an automaton M ′2 such that for some ε̄ > 0,

U2 (M1,M2, ε) < U2 (M1,M
′
2, ε) for all ε ∈ (0, ε̄).

So M ′2 is a better response than M2 to automaton M1. This means that (M1,M2) is not an

equilibrium if the desired properties are not satisfied. I show that such an automaton M ′2 exists in

the following lemma.

Lemma 3.5.7. Given automaton M1 ∈ MR with n states, and any absorbing class a (M1), there

exists automaton M2 such that for all communicating classes, Ak, of the system X (M1,M2, ε),

UCC2 (Ak) = UAC2 (a (M1)) .

The proof of the Lemma is left to the appendix. To prove this I construct automaton M2 with

the desired properties. Automaton M2 contains three regions. The first region is called the absorbing

region. As long as no incorrect signals are received, M2 remains in this region when M1 is in the

desired absorbing class a (M1). When an incorrect signal is received by either player, there is a

chance that automaton M1 will leave the states of a (M1). When this happens, player 2 becomes

confused about the current state of M1, and must try to make inferences about current state. Player

2 wants to get back to the states of a (M1) without getting caught in another suboptimal absorbing

class. To do this, player 2 plays what is called a homing sequence. This homing sequence is a

fixed sequence of actions, which based on the output, determines the current state of M1. Once

the current state of M1 has been identified, the automaton enters the resynchronization region.

When entering this region, M2 knows the current state of M1. M2 then plays a sequence of actions

which resynchronizes the automata after which automaton M1 returns to the states of the desired

absorbing class, and automaton M2 returns to the absorbing region. Automaton M1 remains in the
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states of the desired absorbing class until an incorrect signal is received. To better understand the

construction, I provide an example in Appendix B.3.2.

Next, I give the sufficient conditions for the structure of equilibrium automata. LetMSPM (Mi)

be the set of all automataM−i ∈MR
−i such that all prevalent communicating classes ofX (Mi,M−i, ε),

Ak, yield the optimal absorbing class payoff, UCCi (Ak) = UACi (a∗i (M−i)) for i = 1, 2. This is the

set of all automata that when paired with Mi yield the optimal absorbing class payoff in all prevalent

communicating classes.

Theorem 3.5.8 (Sufficiency). Suppose players play supergame G with regular signal function ri,

and play automata Mi ∈MR
i represented by Markov chain X (M1,M2, ε). If

1. for all prevalent communicating classes Ak, UCCi (Ak) = UACi (a∗ (M−i)), and

2. ∂Ui(M1,M2,0)
∂ε = supM∈MSPM (M−i)

∂Ui(Mi,M,0)
∂ε ;

then there exists some ε̄ > 0 such that (M1,M2) is an equilibrium for all ε ∈ (0, ε̄).

This theorem provides sufficient conditions for equilibrium automata in the finite-state case

when errors are sufficiently small. The first condition requires that all prevalent communicating

classes yield the optimal absorbing class for both players. Since the system spends almost all the

time in prevalent communicating classes and almost no time in the other states, this formalizes the

intuition that the system cannot get stuck in suboptimal regions for long periods of time. The second

condition requires that out of all M ∈ MSPM (Mi), the player must select the one that yields the

highest marginal utility at zero. The two conditions together are then necessary and sufficient for

equilibrium for sufficiently small errors. The proof of the sufficient conditions is left to the appendix.

3.6 Discussion

3.6.1 Literature Review

There has been a lot of work done examining imperfect monitoring in repeated games. The different

models of imperfect monitoring all share the common theme that the players must recoordinate
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after an error is made. When there is some common knowledge among players, recoordination is

relatively easy. Models involving imperfect public monitoring (Fudenberg, Levine, and Maskin 1994)

as well as models of imperfect private monitoring with communication (Compte 1998, Kandori and

Matsushima 1998, Obara 2009) are able to obtain the folk theorem. This common knowledge allows

for relatively easy recoordination.

When there is no common knowledge, as in the imperfect private monitoring case, coordination

becomes more difficult because players are not able to condition their strategies on a common

knowledge signal and therefore must make inferences about the actions of their opponents. There

are two main approaches to the study of equilibria under imperfect private monitoring: the belief-

based approach and the belief-free approach. In the belief based approach players must make

statistical inferences about the history of actions. The inferences quickly become difficult, and

therefore results here typically require signals to be highly correlated (i.e. almost public) in order to

obtain meaningful results (Bhaskar and Obara 2002, Mailath and Morris 2002). In the belief-free

approach, strategies are constructed to ensure that beliefs are irrelevant. The prevailing equilibrium

strategies are complex, and require that players are indifferent over a set of actions (Piccione 2002,

Ely, Horner, and Olszewski 2005, Yamamoto 2009). If the payoffs are perturbed slightly, then

these strategies fail to remain equilibria (Bhaskar 2000). So previous models of imperfect private

monitoring are heavily dependent on either payoffs or signal structure. In this paper, the players

use strategies represented by finite automata to represent their strategies which allows for a simpler

representation of the beliefs.

There has also been work examining repeated games when players have bounds on memory.

Lehrer (1988) and Sabourian (1998) look at models where players have bounded recall and per-

fect monitoring, while Cole and Kocherlakota (2005) examine a model of bounded recall with

imperfect public monitoring. These results typically examine the effect of memory length on

possible outcomes. Others have examined models where players select finite automata as their

strategies. Using finite automata to represent strategies was first suggested by Aumann (1981).

Since then, applications have included looking at finitely repeated games (Neyman 1985), assum-
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ing players have some exogenous cost of complexity (more states more costly) on their strategies

(Rubinstein 1986, Abreu and Rubinstein 1988), or examining the evolutionary stability of such

strategies (Miller 1996, Ioannou 2009). It is important to note that not every finite automaton

strategy can be represented with a bounded memory strategy, but every bounded memory strategy

can be represented as an automaton (Cole and Kocherlakota 2005).

3.7 Conclusion

The paper started with the question: Does a model of repeated interactions with boundedly rational

agents lead to a smaller set of outcomes in equilibrium? When player’s are limited to two-state

automata, the number of outcomes in equilibrium is small (Theorem 3.4.3). Importantly, in an in-

finitely repeated prisoner’s dilemma game, high levels of cooperation are still possible in equilibrium,

even when agents cannot perfectly monitor their opponents and have no common knowledge public

signal with which to recoordinate. The important strategy used is called “Win-Stay, Lose-Shift”.

If both players play this strategy, when cooperation breaks down, the players are able to quickly

recoordinate and get back to cooperation without getting stuck in conflict for long periods. I show

that WSLS holds for a variety of 2×2 games as well (Theorem 3.4.4). So when restricted to two-state

automata, the number of equilibrium outcomes is small, and the predictions match the behavior of

human subjects in the laboratory.

When I remove the restriction of two-state automata, the analysis becomes more difficult. In

this case, I am able to provide necessary and sufficient conditions on equilibrium structure for small

error levels (Theorems 3.5.6 and 3.5.8). The results show that in equilibrium players must play

strategies which are able to cooperate without getting stuck in long periods of conflict. However,

the implications of these conditions on the set of equilibrium outcomes remains an open question.

There are many extensions for this work. First, a better understanding of the effect of the

necessary and sufficient conditions on outcomes. It is possible that for even small errors and finite-

state strategies, the set of outcomes could still be small compared to the folk theorem. Also there

is more work to be done examining what happens for larger errors when players can use finite-state
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automata as their strategies. In addition, more experiments with human subjects to further verify

that these strategies are actually played in the lab.

There are also some more broad extensions. Assuming that players use finite automata as their

strategies is assuming that they are classifying the infinite set of repeated game histories into a finite

set of groups. It would be interesting to examine more general classification systems that would

allow players to have more general groupings of their histories, rather than just those that can be

represented with a finite automaton. Also, this paper only focuses on the equilibria, but there may

be some learning that takes place to get to these equilibria. If we assume that players use automata

to represent their strategies, there are a number of interesting learning dynamics that the players

could use to learn to play certain strategies.
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Chapter 4

Hysteresis in Coordination Games

4.1 Introduction

The goal of game theory is to predict how individuals behave when faced with strategic interactions.

When these strategic interactions have multiple equilibria, it may become difficult to predict which

equilibrium the players are going to play. There has been much work focusing on refining the

set of equilibria to allow for sharper predictions when the game has multiple equilibria. This paper

examines the effect of hysteresis on equilibrium selection. A system exhibits hysteresis if the outcome

of a game depends on the history leading up to that game. I show that under certain conditions

this hysteresis is possible in coordination games. In addition, laboratory experiments confirm the

hysteresis hypothesis.

The fundamental tool used to make predictions about behavior in these games is the Nash

equilibrium. When there is only one Nash equilibrium, the theory provides a solid prediction about

how the individuals will play a certain game. However, in many games, there are multiple Nash

equilibria, which make it difficult to make predictions because it is not apparent which equilibrium

the players will select. Therefore, a lot of work has been done on better understanding which

equilibrium will be selected in these games with multiple equilibria.

Harsanyi and Selten (1988) suggest two different methods for selecting equilibria in games with

multiple equilibria: “payoff dominance” and “risk dominance”. In certain situations, these two

selection criteria may conflict, meaning the payoff dominant equilibrium is not the risk dominant
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equilibrium. When there is conflict, Harsanyi and Selten (1988) suggest that payoff dominance

should be used instead of risk dominance. Since this however, a growing amount of support for

the risk dominant equilibrium has emerged. Kandori, Mailath, and Rob (1993) and Young (1993)

examine evolutionary stability of strategies that are subject to small mutations. They find that

the equilibria that survive this evolutionary process are the risk dominant equilibria. Carlsson and

Damme (1993) look at a model of incomplete information where the game is randomly chosen from

a class of games, and find that the risk dominant equilibrium is selected. This paper shows that

there is hysteresis, which means that different equilibria can be selected in the same game if there

is different history leading to each of these games.

Hysteresis has been shown to hold in a wide variety of physical settings including magnetism

and elasticity, but has also been observed in economics. Blanchard and Summers (1986) present

a model in which the natural unemployment rate exhibits hysteresis in the presence of shocks.

Employers make employment decisions in advance with the goal of maintaining steady employment

in expectation. Employment shocks change these expectations and lead to more permanent changes

in the natural unemployment rate. Baldwin (1988) shows that overvaluation of the dollar lead to

hysteresis in United States import prices. Dixit (1989) examines entry of Japanese firms into the

US market based on exchange rate fluctuations and finds that due to sunk costs, firm may remain

in US even after the favorable exchange rate fluctuation has subsided. Nyberg (1997) examines an

evolutionary model of honesty, and finds that once a society loses its honesty, hysteresis makes it

difficult to reestablish. This paper focuses on coordination games, and finds that hysteresis occurs

in these settings as well.

Coordination games have been a common area of study in the game theory literature. These are

games in which individuals benefit from coordinating together, but are unable to communicate or

enforce contracts, which can make coordination difficult, even if it is in both players best interest. By

definition, all coordination games have multiple equilibria, so the question of equilibrium selection

has been the main focus of the research for these coordination games.

Cooper, DeJong, Forsythe, and Ross (1990) show that Pareto dominant Nash equilibria are not
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always chosen in two player coordination games. They also find that payoffs of strictly dominated

strategies play a large role in equilibrium selection. Van Huyck, Battalio, and Beil (1990) perform

similar experiments as Cooper, DeJong, Forsythe, and Ross (1990), but consider up to 16 subjects

per round, rather than just two. They find a large effect of group size on the final outcome of the

coordination game, and also that Pareto dominant outcomes are very difficult to obtain when there

is risk involved with large groups (16 subjects). The above papers consider equilibrium selection in

coordination games. However, they only look at a small group of games. This paper examines the

dynamics on an entire class of games. These games will have two Pareto rankable equilibria, but no

dominant strategies.

There has also been some work which examines a larger class of games. Rankin, Van Huyck,

and Battalio (2000) run experiments with 75 periods of stag-hunt games where they vary the payoff

value, x ∈ (0, 1), uniformly with an error term of εt each period. They find that the payoff dominant

equilibrium is usually selected even with high values of x which make it a risky decision. Stahl and

Van Huyck (2002) perform similar experiments but consider two different classes of games. They

induce coordination by showing subjects games in which coordination is easy, and this carries over

to games where coordination is difficult. They analyze the effect of the previous state on the current

decision. Both of these papers are considering a wide class of games. However, they perform random

dynamics over the class of games. This makes it more difficult to identify certain bifurcations that

may exist in the equilibrium correspondence. In this paper, the dynamics are organized by slightly

changing one parameter at a time in an organized manner which allows easier identification of the

bifurcations and hence the hysteresis.

There have also been some experimental papers which provide evidence of this type of hysteresis

in coordination games. Weber (2006) examines the effect of changing group sizes on the group’s

ability to coordinate in a minimum-effort coordination game. He finds that coordination in large

groups is possible if the group starts with a small number of subjects, and gradually increases to a

size of 12 subjects per group. This is in contrast to groups that start with 12 subjects per group,

which are never able to coordinate on high-effort levels. This suggests that there is hysteresis based
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on the group size, because the selected equilibrium for group size 12 depends on the history leading

up to that game. Brandts and Cooper (2006) examine the effect of using payoff bonuses as means

of inducing cooperation in the minimum-effort coordination game. They find that adding bonuses

helps bring groups from low effort levels to higher effort levels. In addition, they find that when the

effort levels are decreased back to initial levels after the temporary bonuses, effort levels are higher

than before the bonuses. This dependence on the history of the game is the type of behavior that I

study in this paper.

Another example of a coordination game is a platform competition game, such as which operating

system an individual should use. If all of your collaborators use operating system A, then it makes

sense for you to use operating system A, because this allows for easier collaboration. Similarly, if all

of your collaborators use operating system B, it is beneficial for you to also use B. In this situation,

it is beneficial for people to coordinate with each other on the same platform. An example of

this is the QWERTY keyboard. David (1985) suggests that the QWERTY-keyboard is suboptimal

when compared to the DVORAK arrangement. However, due to the headstart by QWERTY, it has

prevailed as the main type of keyboard used today.

Why should we expect to see hysteresis in a coordination game like this? Continuing with the

keyboard example, suppose that people can choose either the QWERTY or the DVORAK keyboard.

At time t = 0, QWERTY (100WPM) is determined to be better than DVORAK (50WPM), and so all

people start to use this keyboard. At some later time, t = 1, suppose the language has changed, and

now QWERTY (70WPM) is no longer better than DVORAK (80WPM). Even though QWERTY

is no longer optimal, people have become accustomed to this arrangement, and therefore continue

to use it. At time t = 2, the language has changed more so QWERTY (50WPM) is even more

suboptimal than DVORAK (100WPM). The convenience of using QWERTY is now outweighed by

the cost of using a suboptimal keyboard, so people start to switch to the DVORAK layout. At time

t = 3, the language has changed back, so that QWERTY (70WPM) is almost as good as DVORAK

(80WPM) again. Now, people are accustomed to the DVORAK layout and since it is optimal they

continue using DVORAK. So even though the situation was the same at t = 1 and t = 3 (QWERTY
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70WPM vs. DVORAK 80WPM), a different keyboard is selected at t = 1 than t = 3. This hysteresis

is caused by the fact once the players coordinate on a certain outcome, it may be difficult to change

because players do not want to incur the switching costs. I find that the same type of hysteresis

occurs in coordination games, and this intuition is formalized in this paper.

4.1.1 Bifurcations

Whenever there are multiple equilibria, it is likely that there exist bifurcations of equilibrium points

into multiple equilibria as a parameter is varied. Understanding these bifurcations may help de-

termine which equilibrium outcome is more likely for any given situation. Even though deriving

analytical solutions for these bifurcation points is often difficult, equilibrium correspondences based

on certain parameters of the system can be plotted using numerical methods. In many systems,

as the parameter is varied, the correspondence may bifurcate, meaning solutions can appear and

disappear at critical points. Before getting in to the model, it is important to introduce several

types of bifurcations.

Transcritical - A transcritical bifurcation is one such that two solutions cross each other. This

can be seen in Figure 4.1(a). When the two solution cross, they change stability. That is, if

the lower one is stable before the intersection, after they cross, this solution is now the higher

solution, and unstable.

Saddle-Node A saddle-node bifurcation is a one such that there are zero solutions to one side of

the critical point, two solutions on the other side, and exactly one at the critical bifurcation

point. A saddle-node bifurcation with critical point x = 0 is displayed in Figure 4.1(b).

Pitchfork A pitchfork bifurcation has one solution to one side of the critical point and three on

the other side of the critical point. A pitchfork bifurcation at x = 0 is shown in Figure 4.1(c).

Any combination of these bifurcations can be present in the bifurcation diagram for a given

model. One important combination is the double saddle-node bifurcation. A double saddle-node is

a bifurcation such that there is a unique solution in the limit of each direction, but three solutions
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(a) Transcritical (b) Saddle-Node

(c) Pitchfork (d) Double Saddle-Node

Figure 4.1: Types of Bifurcations.
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inside some region in the middle. The double saddle-node bifurcation takes the form of an s-shaped

curve, and is shown in Figure 4.1(d). For very low values of x, there is one solution, but then the

saddle-node bifurcation at x = −0.4 increases the number of solutions from one to three. Further,

the saddle-node bifurcation at x = 0.4 decreases the number of solution back from three to one.

This type of bifurcation is the main focus of this paper.

If solutions tend to stay on the solution path (they do not jump between the equilibrium solu-

tions), then the double saddle-node bifurcations leads to hysteresis. For example, consider Figure

4.2. This shows a double saddle-node bifurcation. In this example, suppose that the parameter γ

varies first from 0.2 to 0.8 (denoted by the red line), then it decreases from 0.8 back to 0.2 (denoted

by the blue line). In this case, the system starts at γ = 0.2, where there is a unique equilibrium. As γ

increases, the system remains on the top part of the s-shaped curve, until it reaches the saddle-node

bifurcation at γ = 0.58 at which point the high equilibrium ceases to exist. For γ > 0.58, there is a

unique equilibrium so the system will jump from the high equilibrium down to the low equilibrium

(jump denoted by dotted line). The system remains in the low equilibrium as γ increases from 0.58

to 0.8. When γ decreases from 0.8, it remains on the low solution until γ = 0.42, at which point the

low equilibrium ceases to exist, and again there is a unique equilibrium. This causes the system to

jump back up from the low equilibrium to the high equilibrium. Therefore, for intermediate values,

γ ∈ (0.42, 0.58), the outcome depends on the starting position. When starting with γ = 0.2, the

system goes to the equilibrium σ = 0.94 at γ = 0.5. When starting with γ = 0.8, the system goes

to the equilibrium σ = 0.058 at γ = 0.5. This hysteresis is caused by the s-shaped equilibrium

correspondence, and the assumption that the system traces along the equilibrium correspondence

as the parameter changes.

The next section introduces the model, and then examines situations where hysteresis occurs.

4.2 Model

Let g (γ) be a game consisting of n players, I = {1, 2, . . . , n}. Each player has m pure actions, Si ={
s1
i , s

2
i , . . . , s

m
i

}
. A joint-action profile is denoted by s = {s1, . . . , sn}. Each player faces a payoff
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Figure 4.2: Example of how double saddle-node bifurcation leads to hysteresis.

function ui (s, γ) which depends on the parameter γ from parameter space Γ. Let G = {g(γ)|γ ∈ Γ}

be the set of all games over parameter space Γ.

The set of mixed strategies is denoted by Σi = ∆i, which is the set of probability distributions

over Si. A mixed strategy is denoted by σi ∈ Σi, which is a mapping from Si to Σi, where σi (sj) is

the probability that player i plays pure-action sj , and Σ = Σ1 × · · ·Σn is the set of mixed strategy

profiles. A joint mixed-strategy profile is denoted σ = {σ1, . . . , σn}. Player i’s expected payoff for

mixed-strategy profile σ is ui (σ, γ) =
∑
s∈S1×···×Sn p(s)ui(s, γ), where p(s) = Πi∈Iσi (si) is the

probability of the pure-strategy profile s give mixed strategy profile σ.

A joint strategy profile σ is an equilibrium of the game g(γ) if the equilibrium function f :

Σ × Γ × Λ → R, dependent on parameter λ ∈ Λ satisfies f (σ, γ, λ) = 0. For example, f could be

the logit quantal response equilibrium function,

f (σ, γ, λ) =
m∑
i=1

∣∣∣∣∣∣ eλul(si,σ−i,γ)∑m
j=1 e

λul(sj ,σ−i,γ)
− σL (si)

∣∣∣∣∣∣ = 0 (4.1)

Given γ and λ, any joint mixed-strategy profile σ is an equilibrium if (4.1) is satisfied. The game
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γ γ̄

σ1

σ2

σ̄

Figure 4.3: Example of continuous variation of a correspondence between two parameter values.

g(γ) has multiple equilibria if f (σ, γ, λ) = 0 for more than one joint mixed-strategy profile σ. Let

Σ∗ (γ, λ) = {σ|f (σ, γ, λ) = 0} be the set of equilibria of game g(γ) according to equilibrium function

f with parameter λ.

Definition 4.2.1. The equilibrium correspondence Σ∗ (γ, λ) varies continuously from γ and γ̄ start-

ing at σ ∈ Σ∗
(
γ, λ

)
if and only if for all ε > 0, there exists some N ∈ N such that for all

k = 0, . . . , N − 1,

γk+1 − γk =
γ̄ − γ
N

⇒ ‖σk+1 − σk‖ < ε

where γ = γ0, γN = γ̄ and σk ∈ Σ∗ (γk, λ). The endpoint of this continuous path is σ̄ ∈ Σ∗ (γ̄, λ).

The equilibrium correspondence varies continuously if you can trace the correspondence between

the two parameter values while always moving in the direction from the first parameter value to

the second parameter value. For example, in Figure 4.3, the equilibrium correspondence varies

continuously from γ to γ̄ starting at σ1. However, the equilibrium correspondence does not vary

continuously from γ to γ̄ starting at σ2.

Assumption #1: When faced with g(γ), players will play one of the equilibria, call this

σ (g(γ)) ∈ Σ∗ (γ, λ).

Assumption #2: If game g(γ) is played, and players play equilibrium σ (g(γ)), then when

game g (γ′) is played, if the equilibrium correspondence Σ∗ (γ, λ) varies continuously from γ to γ′

starting at σ (g(γ)) with endpoint σ′. Then when g (γ′) is played, players will play σ′, that is
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σ (g (γ′)) = σ′ ∈ Σ∗ (γ′, λ).

Definition 4.2.2 (Hysteresis). The equilibrium correspondence Σ∗ (γ, λ) exhibits hysteresis for equi-

librium function f with parameter λ if there exists points γ1, γ2, γ3 such that,

1. the correspondence varies continuously from γ1 to γ2 with starting point σ1 ∈ Σ∗ (γ1, λ) and

endpoint σ2 ∈ Σ∗ (γ2, λ),

2. the correspondence varies continuously from γ3 to γ2 with starting point σ3 ∈ Σ∗ (γ3, λ) and

endpoint σ′2 ∈ Σ∗ (γ2, λ), and

3. σ2 6= σ′2.

What types of games have this hysteresis property? The next section examines the minimum-

effort coordination game, and shows that it exhibits hysteresis.

4.2.1 Minimum-Effort Coordination Game

A minimum-effort coordination game consists of n players, I = {1, . . . , n}. Each player has two

actions, they can either choose to exert high effort or low effort, Si = {xL, xH} for xL, xH ∈ R and

xL < xH . The joint pure-action profile is denoted by s ∈ {xL, xH}n. Performing the high effort is

more costly than performing the low effort. The benefit of the high effort is only received if every

player plays the high effort action. If any player chooses the low effort action, then all players only

receive the benefit from the low action. This yields payoffs,

ui (s) = min
j=1,...,n

sj − csi.

The normal form of the minimum-effort coordination game is displayed in Figure 4.4. For a given

value of cost, c ∈ R, the minimum-effort coordination game is denoted by cg(c). The set of all

minimum-effort coordination games is CG = {cg(c)|c ∈ R}.
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sj = xh
for all j 6= i

sj = xL
for some j 6= i

xL

xH

P
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xH (1− c) xL − cxH

xL (1− c) xL (1− c)

Figure 4.4: Minimum-Effort Coordination Game.

4.2.2 Nash Equilibria

If c > 1, then the cost of exerting high effort outweighs the benefit, so action xL strictly dominates

xH for all players. Therefore all players playing xL is the pure-strategy Nash equilibrium when

c > 1. Similarly, if c < 0, then the cost is negative, so the action xH strictly dominates xL. So,

all players playing xH is the unique Nash equilibrium. This game is most interesting when there

are multiple equilibria, which occurs when c ∈ [0, 1]. For these intermediate cost values, the game

has two pure strategy Nash Equilibria: one where everyone plays the high effort xH , and one where

everyone plays the low effort xL. There is also one symmetric mixed strategy equilibrium where all

players play xH with probability c
1

N−1 , which is clearly increasing in N for c ∈ (0, 1).

For all values of c ∈ (0, 1), the equilibrium where all players play xH with probability 1 is

the payoff dominant equilibrium. For levels of c close to 1, the difference between the high effort

equilibrium payoff and the low effort equilibrium payoff becomes small. However, there is a large loss

possible if the high effort action is played, while there is no loss possible if the low effort is played.

Therefore, when c is close to 1, the high effort action is risky. In fact, when c < 1/2N−1, everyone

playing the high effort is the risk dominant equilibrium. When c > 1/2N−1, everyone playing the low

effort is the risk dominant equilibrium.
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4.2.3 Symmetric Quantal-Response Equilibria

This section studies properties of the symmetric quantal-response equilibria. Suppose that σ∗H is

the probability that a player plays the high effort action xH , and σ∗L = 1 − σ∗H is the probability

that a player plays the low effort equilibrium. Using the logit quantal response function, a SQRE

must satisfy the equation,

σ∗H =
eλui(H,σ

∗
−i)

eλui(L,σ
∗
−i) + eλui(H,σ

∗
−i)

=
1

1 + eλ[ui(H,σ
∗
−i)−ui(L,σ∗−i)]

=
1

1 + eλ[(xh−xL)(σ∗HN−1−c)]
. (4.2)

This nonlinear equation has two parameters to vary: c and N . There are a couple of important

points to consider. When λ = 0, there is always a unique SQRE, σ∗H = 0.5. The intuition for

this, is that when one player is playing randomly (λ = 0), then it is the best response for the other

players to play randomly as well. Secondly, in the limit as λ→∞, there are always three solutions

because the set of SQRE approaches the set of Nash equilibria as λ → ∞, and there are always

three symmetric Nash Equilibrium for games with c ∈ (0, 1). Therefore, since there is one SQRE at

λ = 0 and three at λ = ∞, there must be a bifurcation at at least one value of λ ∈ (0,∞). Due

to the non-linearity of (4.2), an analytical solution is not feasible and therefore it must be solved

numerically. Finding these solutions requires using Newton’s method, as well as being careful not

to overlook extra solutions. Most of these solutions were obtained by doing multiple swipes of the

parameter space to ensure that all solutions were found.

4.2.3.1 Varying λ

First, I examine the effect of changes in the λ parameter on the SQRE correspondence. As mentioned

above, for low values of λ there is a unique solution, and for high values of λ there are three

equilibrium values of σ∗H , so the correspondence is likely be a pitchfork bifurcation or something
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similar.

Proposition 4.2.3. Using the symmetric quantal response equilibrium function f with parameter

λ, the equilibrium correspondence Σ∗ (c, λ) as λ varies has the following properties:

1. 1/2 ∈ Σ∗
(

1
2N−1 , λ

)
for all λ.

2. The correspondence varies continuously from λ = 0 to λ = ∞ with endpoint σH = 1 if

c < 1
2N−1 and endpoint σH = 0 if c > 1

2N−1 .

The SQRE correspondences for different values of N are displayed in Figure 4.5. These are all

graphed for the cost c = 1/2N−1, because that cost ensures that σ∗H = 0.5 is a solution for all values

of λ. These are all similar looking to a pitchfork bifurcation because the choice of cost. However, the

only pitchfork bifurcation is N = 2. The others are a combination of first a saddle-node bifurcation,

and then a transcritical bifurcation. For example, in the N = 10 case, there is one solution at λ = 0,

then there is a saddle-node bifurcation at about λ = 1, where the number of solutions changes from

one to three. Finally at λ = 40 there is a transcritical bifurcation where two of the solutions cross

paths.

The intuition for these graphs is quite straightforward. If λ = 0 then there is no response to the

payoffs, so the players are playing randomly. Since this is a coordination game, if the other players

are playing randomly, then the best response is to play randomly as well. As N gets larger, the

graph becomes compressed away from the λ-axis, meaning that xL, the low-effort action is played

with lower probability in equilibrium. When there are a lot of players, playing the high-effort action

is risky, and therefore in equilibrium player i only plays xH with high probability if the other players

are also playing xH with high probability, even for low values of λ. As N increases this risk becomes

greater, meaning that the the equilibrium probability of playing xH , must be increasing in N .

The second part of Proposition 4.2.3 shows that c = 1
2N−1 is a critical value for the SQRE

correspondences. When c < 1
2N−1 , the correspondence varies continuously from λ = 0 to λ = ∞

with endpoint σ∗H = 1. An example of this is shown in Figure 4.6. The first panel in the figure

shows the correspondence for c = 0.495. The pitchfork bifurcation breaks into two parts: one part
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Figure 4.5: QRE correspondences as λ is varied for different value of N and c = 1/2N−1.
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Figure 4.6: Example of how pitchfork bifurcation breaks apart.

increasing continuous from λ = 0 to λ = ∞ and another turning point around λ = 1.5. Similarly

when c > 1
2N−1 , the pitchfork also breaks into two parts. The first part is again a continuous from

λ = 0 to λ = ∞, however it is now decreasing. There is also a turning point around λ = 1.5. The

value c∗ = 1
2N−1 is important because that is the critical value for risk dominance. When c > c∗,

the risk dominant equilibrium is for all players to choose xL, and when c < c∗, the risk dominant

equilibrium is for all players to play xH . So the risk dominant equilibrium can be determined by

following the correspondence path from λ = 0 to λ = ∞. However, the other equilibria appear for

higher values of λ. In the next section, I examine the equilibrium correspondence for variations in

the cost parameter c.

4.2.3.2 Varying c

If an equilibrium correspondence has a pitchfork bifurcation at parameter value λ∗, then it is often the

case that for fixed λ > λ∗, variation of another parameter leads to a double saddle-node bifurcation.

To better understand why this is true, it helps to look at a three-dimensional representation of the

parameter space when there is a pitchfork bifurcation as displayed in Figure 4.7.

The previous section shows that when N = 2 and c = 0.5, the equilibrium correspondence has

a pitchfork bifurcation at λ = 1.35. Therefore, for fixed λ > 1.35, a double saddle-node bifurcation

is likely to occur when another parameter is varied. This turns out to be the case in the symmetric

quantal-response equilibrium correspondence of the minimum-effort coordination game as seen in

the following proposition,
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Figure 4.7: Example showing the relationship between a pitchfork bifurcation and a double saddle-
node bifurcation.

Proposition 4.2.4. For every coordination game, g (c) ∈ CG:

1. There exists a λ∗ such that the logit SQRE correspondence, Σ∗(c, λ), exhibits hysteresis for all

λ > λ∗, where,

λ∗ =
(

N

N − 1

)N 1
xh − xl

.

2. The critical value λ∗ is decreasing in N .

3. For N = 2, the saddle-node bifurcation points are given by,

σH =
1
2
± 1

2

√
1− 4

λ (xh − xL)
.

4. For N > 2, the saddle-node bifurcation points will not be symmetric around σH = 1
2 .

This proposition states that for any coordination game of the given form, if the players have

a high enough payoff responsiveness (sufficiently high λ), then the game should exhibit hysteresis.

This means that given a game and an equilibrium, it is possible to vary one parameter slightly and

then change it back, and the system could be at a completely different equilibrium. This can be

very important if one of the equilibria is more desirable then the other and all that is required is a

small perturbation of the system to go from the less desired to the more desired equilibrium. The
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Figure 4.8: QRE correspondences as c is varied for different value of N and λ = 4.
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second point in the proposition says that this critical value is decreasing as the size of the group gets

larger. Assuming that the values of λ for the individuals are not dependent on group size, then this

means that hystersis is more likely as the group size increases. The third part gives the analytical

solution for the values of the saddle-node bifurcations for the N = 2 case. It is not possible to find

the analytical solution for the N > 2 case, but with numerical analysis, it is clear that the c value

of both saddle-nodes is decreasing as the group size gets larger (as shown in Figure 4.8). Also, for

group size larger than two, the double saddle-node bifurcation is not be symmetric, meaning that the

bifurcation points are not equidistant from 0.5. However, in the N = 2 case, the double saddle-node

bifurcation is symmetric.

The proof of this is given in the appendix. The proof of this proposition involves analyzing certain

properties of the equilibrium correspondence. The double saddle-node bifurcation is not a function,

so it is difficult to analyze. However, it is possible to solve for the equilibrium value of c as a function

of σH , c∗(σH), which is a function and therefore easier to work with. The equilibrium correspondence

Σ∗(c, λ) has a double saddle-node bifurcation if c∗(σH)→∞ as σH → 1, c∗(σH)→ −∞ as σH → 0,

and c∗′ (σH) < 0 for some value of σH ∈ (0, 1). This process ensures existence of a double saddle-

node bifurcation for sufficiently large values of λ. The rest of the proposition is obtained from

comparative statics which are detailed in the appendix.

This setup yields some testable implications, the most important being that the equilibrium

correspondence of the minimum-effort coordination game exhibits hysteresis. To test this, it is

necessary to run an experiment with multiple games, where the games are varied in an organized

manner to determine whether the experimental outcomes exhibit hysteresis or not. In the next

section I detail the experimental methods and results.
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4.3 Experiments

4.3.1 Experimental Design

There were five sessions for this experiment, each consisting of between 26-34 rounds. The subjects

were drawn from a pool of both graduate and undergraduate students from the California Institute

of Technology that have signed up for the Social Sciences Experimental Laboratory.

The subjects were seated at computers, and read instructions as they were displayed in a slide

show. All questions were answered in front of everybody, to ensure that all the information was

common knowledge. Each subject played the simple game described above with two actions. Each

round the subjects were randomly divided up into a group, and these groups changed every round

(except for the fifth treatment in which case there was only one group). Each round they choose

between two actions, X and Y, and for any given round, every player in the group faced the same

decision.

Over the course of the experiment the cost parameter was changed in an ordered matter. Some

treatments it was changed from low to high to low (LHL), in others it was changed from high to low

to high (HLH), and in the first treatment the experiment started at the c = 0.5 game (MLHL) as

a baseline to see how subjects acted initially. One nice feature about this experiment is that if the

cost is very low (c < 0), then playing the high-effort action strictly dominates playing the low-effort

action. Also if the cost is very high (c > 1), then playing the low-effort action strictly dominates

playing the high-effort action. Therefore, if the cost is varied from a cost below zero to a cost above

one, and if the players are not playing strictly dominated strategies, then they should pick each

action at least once.

The payoff in each round was determined by both the individual’s action, and the actions of

the other members of the individual’s group (which ranged from 2-12 in the different treatments).

The subjects’ overall payoff was the sum of each individual round payoff. The exchange rate ranged

from 30 to 40 cents per point. The players received one point if some player in their group chose

the low-effort action, and received four if all players in their group chose the high-effort action. In
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Session 1 Session 2 Session 3 Session 4 Session 5

Group Size 2 2 5 10 12

Number of Groups 6 8 3 2 1

Number of Rounds 26 28 30 33 34

Order MLHL HLH HLH HLH LHL

Cost Range .1− .9 0− 1 0− 1 −0.05− 1.05 −0.05− 1.05

Matching Random Random Random Random Only 1 Group

Actions X-Low/Y-High Random Random Random Random

Exchange Rate $0.40 $0.30 $0.30 $0.30 $0.40

Table 4.1: A summary of the experimental sessions.

addition, the players incurred a cost of c if they played the low-effort action, and a cost of 4c if the

played the high-effort action.

The subjects were given information on the actions of the other group members through both

their own payoffs and the payoffs of the other members of the group. Based on this information

they could infer the actions of all other members of their group. In addition the history for each of

the previous rounds was available over the course of the entire experiment. This history contained

their action, their payoff, and the payoffs of all other group members. A summary of the different

sessions is given in Table 4.1. The subjects were asked to record the outcome of the previous round

before moving on to the next round, in order to make sure that they were paying attention. The

record sheet consisted of the round number, their action, their group’s action, and their payoff for

that round.

We decided not to do a practice round before the experiment for two reasons. First the game is

quite simple, and not much could be learned from an example. To make sure that the subjects were

comfortable with the game, the instructions contained two detailed examples, and gave an overview

of the experimental interface. The second reason for having no practice round is that it could have a



95

large effect on the groups ability to coordinate. In practice rounds, since the subjects are not getting

paid, they will sometimes just choose randomly, or choose the wrong action on purpose. This could

give subjects a false impression of other members of their group. In addition the subjects could also

use it to their advantage in order to get a head start on organizing coordination. For these reasons,

no practice round was given. Even though there was no practice round, all of the sessions, with

the exception of the first session, started with a game that had either a strictly or weakly dominant

strategy.

4.3.2 Experimental Results

In the first session, there were 12 subjects total, divided into groups of 2. The subjects first played

three rounds with c = 0.5. These three rounds served as a proxy for how the subjects played without

any prior experience. However, these preliminary rounds were dropped in the later sessions, because

they could be used as a coordination device, or inhibit the group’s ability to coordinate. The first

session proved that Caltech students are able to coordinate well, especially when the experiment

starts at a parameter value that promotes coordination. In fact, the subjects only chose the low-

effort action 6 out of 312 choices. Even though the game started at a medium risk level of c = 0.5,

they were immediately able to coordinate, which was surprising based on the previous literature.

Another problem with this experiment was that the subjects had two actions, X always corre-

sponded to the low-effort action, and Y always corresponded to the high-effort action. In the middle

of the experiment, it was noted that some of the subjects had already filled out their choice for all

of the remaining rounds of the experiment. This means that they were not taking the changing

costs into consideration. In order to fix this problem, the action labels were randomized before the

experiment using a random number generator in MATLAB.

The second session had 16 subjects that were paired into groups of two, and played 28 rounds.

In the first 5 rounds, the subjects faced the game where c = 1. In this game, they had a choice

between a guaranteed payment of 0 or, a chance between 0 and -3 depending on what their partner

played. In this game, the high action was a weakly dominated strategy and the prediction was that
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the weakly dominated strategy would never be played. However, in the experiment, they choose the

weakly dominated strategy 15% of the time (12 out of 80, but nobody picked it more than twice).

By the fifth round of c = 1 the subjects all played the low-effort action, as predicted.

In the sixth round, the cost was decreased to c = 0.9 at which point 2 out of the 16 subjects

played the low-effort action, while all the others played the high-effort action. This was surprising,

because the c = 0.9 game is quite risky. The subjects could either guarantee 0.1 by playing the

low-effort action, or take a chance between 0.4 and −2.6 by playing the high-effort action. These

two subjects out of 16 were not enough to get more subjects to play the low-effort action. Therefore

for the next 22 rounds, every single subject played the high-effort action without a single deviation.

Again, this level of coordination was unprecedented based on the previous literature.

Based on the success of the subjects in the first session, the next sessions were run with a larger

group size, in which the subjects would not be able to coordinate as easily. Based on the second

point of Proposition 4.2.4, this hysteresis is more likely with larger groups. Session three was the

first large group session with 15 subjects that were grouped into 3 groups of 5 subjects each. The

subjects started with three rounds of the c = 1 game, where playing the low-effort action is weakly

dominated. Surprisingly, after changing to the c = 0.9 game in the third round, only 3 out of 15

played the low-effort action. Quite quickly, the subjects were all able to coordinate on the high-effort

action, even when they started by coordinating on the low-effort action. Then after the initial few

who played the low-effort action, they were able to coordinate almost perfectly for the remainder

of the session. The experimental data is shown in Figure 4.9(b). One subject played the low-effort

action from the beginning until the cost reached c = 0.5, but then played the high-effort action on

the way back. This individual played differently in the first c = 0.5 game than in the second c = 0.5

game. This is the type of hysteresis that was predicted to happen at the group level. With the

exception of this subject, the group was able to coordinate too well to show the hysteresis that was

hypothesized.

The first three sessions all gave surprising results. Typically subjects have trouble coordinating

in minimum-effort games, especially with group sizes larger than two. However even in the third
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session with group size five, the Caltech subjects were able to coordinate almost perfectly. The

reason for this could be that Caltech students participate in a lot of experiments together, and this

helps them to coordinate better than most subjects.

In order to show the desired result of hysteresis, the group size was increased even more than the

first three sessions. The fourth session contained 20 subjects with two groups of 10. This session

started with the high cost c = 1, in which playing the low-effort action is a strictly dominant strategy.

Subjects were able to play the strictly dominant strategy 39 out of 40 times in the first two rounds.

In the third round, five of the subjects tried to get the group to coordinate by playing the high-effort

action, but this did not work, so most of the group went with the low-effort, secure action. As

the cost decreased, the subjects remained playing the low-effort action except for one subject. One

subject continued to play the high-effort action throughout the first half of the experiment. By the

time the experiment got to the c = 0 game, this subject was at -$10, at which point he decided

to “spite” the rest of the group.1 So in the c = 0 game, this subject was the only one to play the

weakly dominated strategy, and in the c = −0.05 game this subject was the only one to play the

strictly dominated strategy. The other subjects in the groups noted this irrational behavior, and

therefore were not able to coordinate as c increased. The experimental data for session 4 is given in

Figure 4.9(c). This individuals behavior had a large impact on the group’s decisions, and therefore

made group coordination very difficult.

One hypothesis for this may be that this hysteresis is very fragile, and one tremble can have an

immediate impact on the ability to coordinate. But this was more than just one tremble, it was

back-to-back rounds where an individual played a dominant strategy. Even under the QRE model,

which allows for trembles, the probability of a tremble at the c = −.05 for λ = 4 is 3.3732 × 10−6.

So even one individual playing the strictly dominated strategy in this game can hinder the rest of

the group’s confidence about coordination in the future rounds.

Session 5 consisted of 12 subjects and only one group. In this experiment, the cost was varied

from c = −0.05 to c = 1.05 and back down to c = 0. In the first half of the experiment, the subjects
1This information was obtained in a questionnaire that was given after the experiment.
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Figure 4.9: Experimental Results.
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were able to coordinate perfectly on the high-effort action until the c = 1 game, at which point all

but one subject switched to the low-effort action. Then as the cost started to decrease, the majority

of the subjects remained playing the low-effort action, including 4 rounds where all 12 of the subjects

played the low-effort action. As the cost started to decrease more, the subjects gradually started

switching back to the high-effort action, and finally reached consensus on the high-effort action at

the c = 0 game. The experimental results for session 5 are displayed in Figure 4.9(d).

This session showed the hysteresis that was hypothesized can happen in coordination games.

For example, in the 13th round, at a cost of c = 0.92, 12 out of 12 subjects played the high-effort

action. However, 10 rounds later, 11 out of 12 subjects played the low-effort action at the same cost.

These two rounds had the exact same game, payoffs, and group, and were played within a couple

minutes of each other; yet the equilibrium in these two games were completely opposite. The shock

occurred when the system reached the c = 1 game at which point almost everyone switched from the

high-effort action to the low-effort action. Then as the cost parameter decreased, the equilibrium

outcome took time to adjust back to the original solution, which is exactly the hysteresis that was

hypothesized.

The round-by-round outcomes of session 5 are displayed in Figure 4.10. The solid circles denote

the outcome for the first 15 rounds and the empty circles are the outcomes for the last 19 rounds.

For the first 13 rounds, the only outcome is the high-effort outcome. In the 14th round the cost

reaches c = 1, and the low-effort outcome ensues for the next 17 rounds. Finally in the last round

when the cost gets back down to c = 0, the group outcome changes back to the high-effort outcome.

In terms of maximum likelihood, the data does not match the predicted curves very well. How-

ever, this is from a small data set, and therefore may fit better if more data is collected. Whether

this data fits the predicted estimates well or not, it still exhibits hysteresis which was the main goal

of the experiment. Even if the theory is not able to perfectly explain this type of behavior, it is

good enough to give us insight that can help us discover unintuitive behavior like that found in the

experiment.
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Figure 4.10: Minimum Effort from Session #5.

4.4 Conclusion

This paper started with a fundamental concept from a physical system, and then uncovered the same

behavior in an economic system. The similarities in the economic system and the physical system

lead to the hypothesis that the economic system would likely exhibit the hysteresis that was present

in the physical system. Experiments were used to confirm this hypothesis. The experiment did not

match the theory perfectly, but it did confirm that there is hysteresis in the economic system.

It is nice to compare an economic system to a physical system, but what are the substantive

implications of this behavior? Consider a multi-period public good model, where people can either

contribute or not contribute to the public good in every period. This is a classical coordination game

with two equilibria, one where everyone contributes and one where no one contributes. Given certain

levels of costs and benefits, it is likely that the socially optimal outcome will be the equilibrium where

everyone contributes. However, it is also likely that the actual outcome is the equilibrium where

no one contributes, because it is a collective action problem. Given that this system has the same
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double saddle-node bifurcation that the above coordination game does, varying the cost could induce

the group to switch from the lower equilibrium to the higher equilibrium while still maintaining a

balanced budget. To do this, a one period cost subsidy would be given to the group, making the

cost of the public good less than normal. If this subsidy was large enough, then the group would

reach the socially optimal equilibrium because individuals would start to contribute if they received

this subsidy. Then in the next period, increase the price above the original price in order to regain

the lost money from the subsidy. Since the system exhibits hysteresis, the equilibrium would stay

at the high outcome, even when the cost is increased higher than the original value. Then once the

subsidy has been gained back, the cost could be set back to the original point, and the group would

be at the socially optimal equilibrium, and the government’s budget would be balanced.

Examples like the above show the importance of understanding the behavior of bifurcation cor-

respondences in equilibrium models. Even though session 5 showed the desired result, the other

treatments were not successful. As seen by the experimental results, it seems that more than two

subjects are needed for this to work, especially with Caltech subjects. This is consistent with the

finding that this double saddle-node bifurcation is more likely the larger the group size. In the con-

text of the above example, this is good, because larger groups have worse collective action problems.

Another important implication of this result is that in general, the order of experiments is very

important. In session 5, the subjects played the exact same game, with the same group twice within

2 minutes of each other. However, the second time, the subjects played completely opposite than

they did the first time. This suggests that when running multiple rounds in one treatment for an

experiment, the order of the experiment is incredibly important.

After examining the theory, formulating hypotheses, and confirming these experimentally, there

are still many extensions. First, it would be helpful to collect more data, and gain a better un-

derstanding of these coordination games. It would be useful to run some experiments away from

Caltech, where the subject pool is more heterogeneous. Also, the experimental data did not fit the

theoretical predictions well. If after further experimentation, the data still does not fit the theory

well, then the theory may need modifications to help explain this type of behavior.
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Appendix A

Computational Testbeds for
Coordination Games

A.1 Simulation Parameters

A.1.1 FP Simulations

The initial choice in the fictitious play simulations is chosen from U [0, 1]. After this players best

respond to empirical distribution of the history of play. In the continuous minimum-effort coordi-

nation game, the best response to any history of choices will be either 0, 1 or one of the previous

choices. To calculate this best response, the players cycle through all possibilities and keep the one

that gives the highest payoff.

A.1.2 AL Simulations

In the simulations from Arifovic and Ledyard’s (2005) algorithm, each agent keeps a collection of

choices. The size of the collection is J = 50. The collection is initialized by drawing J numbers

from U [0, 1]. At each round, the agent’s action is chosen randomly from the collection based on

a probability distribution weighted by the forgone utility1 of each action. The agents then update

their choice set by experimentation and replication of the good strategies. The experimentation

parameter is ρ = 0.03. After the choice set is updated, the probability distribution is updated for

the following round, and then the agent is ready to make his choice for the next round. A further
1What the payoff would have been if the agent had chosen this instead of what they chose the last round.
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explanation of the AL algorithm is available in their paper.

A.1.3 PR Simulations

The PR simulations are described in detail in the body of the paper. All of the simulations used the

following parameters. Agents take J = 10 random samples when updating their quasi-best-response

and their highest and lowest known payoffs. The boundaries for the confidence parameter are

γ ∈ [10, 10000]. The parameter relating variance and confidence is set to ρ = 12. When updating

the confidence, the agents have α1 = 1/3 and α2 = 1/6. This means that the agents’ confidence

increases when their prediction is within 1/6 of the actual outcome. When the agents are recognizing

patterns, they look for the j = 3 most similar plays from the past to make their prediction. Finally,

the agents won’t start a moving session unless their confidence parameter is at least γMS = 50. Once

the agents are in a moving session, they are allowed f̄ = 4 failures before they become discouraged

and stop the moving session.
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A.2 Experimental Instructions

Experiment Overview 
 

You are about to participate in an experiment in the economics of decision making. If you listen carefully 

and make good decisions, you could earn a considerable amount of money that will be paid to you in cash 

at the end of the experiment.  

 

Please do not talk or communicate with other participants. Feel free to ask questions by raising your hand 

or signaling to the experimenter. 

 

You will be working with a fictitious currency called Francs. The exchange rate will be specified in the 

instructions. You will be paid in cash at the end of the experiment. 

 

The experiment consists of a sequence of periods and blocks. There will be total of 5 blocks. For each 

block, there will be total of 15 periods. 

 

Specific Instructions for Each Period 
 

Exchange rate: ______ Francs = _____ USD. 

 

Your group will consist of you and 3 other individuals (total of 4 people in your group). Your job is to 

choose one of the following numbers: {1, 2, 3, 4, 5, 6, 7}. The number you choose will remain 

anonymous. Your individual payoff is determined by your choice and the choice of others in your group. 

The following is a sample payoff table for illustration purposes only. Your actual payoff table will be 

using different numbers from this table. The overall ideal will be the same, however. 

 

Table 1: Your payoff in francs 

 

 Lowest choice of number from your group (including you)          

Your choice of number 7 6 5 4 3 2 1 

7 25 21 17 13 9 5 1 

6 - 23 19 15 11 7 3 

5 - - 21 17 13 9 5 

4 - - - 19 15 11 7 

3 - - - - 17 13 9 

2 - - - - - 15 11 

1 - - - - - - 13 

 

Examples 

- You chose 5 and the lowest choice of number from your group is 5. Then you win 21 francs. 

- You chose 4 and the lowest choice of number from your group is 2. Then you win 11 francs. 

- You chose 3 and the lowest choice of number from your group is 2. Then you win 13 francs. 

 

Quiz 

You chose 2 and the lowest choice of number from all the participants is 1. Then you win _____ francs. 

 

 

 

 

Procedural Summary 
 

There are five papers folded in half on each of your desk. They are labeled “Table 1”, “Table 2”, Table 3”, 

“Table 4” and “Table 5”. Each of these papers will present a different payoff table. The payoff from your 

paper labeled “Table 1” will be identical to everyone else’s paper labeled “Table 1”, the payoff from your 

“Table 2” will be identical to everyone else’s “Table 2” and so on. Please do not open any of these papers 

until you are instructed to do so. 

 

The experiment consists of 5 blocks and each block will consist of 15 periods. You will be placed in a 

group with 3 others who are randomly chosen for each block. This means that at the beginning of each 

block, you will be randomly matched with 3 others individuals to be placed in a group size of 4. 

 

Your payoff from each period will be determined by one of the 5 folded papers. You will be using one 

payoff table for the entire block. Everyone in your group will be using the exact same payoff table as you. 

Your group members are randomly chosen (via random number generator) and your payoff tables for 

each block are also randomly chosen (via random number generator). Your payment will be sum of your 

entire earnings from all 5 blocks. 

 

Q: How do you know what period you are in? What Payoff table to use? Which block you are in? 

A: Refer to Figure 1. Number of periods is denoted in the upper left corner. The first line of the 

computer’s instruction tells you what table your payoff is determined from.  

 

Periods 1-15 is block one. Periods 16-30 is block two. Periods 31-45 is block three. Periods 46-60 is block 

four. Periods 61-75 is block five. 

 

Note: There will be no sign that tells you that you are starting a new block. So pay attention to the period 

numbers. 

 

Q: Is it possible to have the same table number from one block to another? 

A: Yes, this is because you are randomly assigned a payoff table for each block. 

 

Timeline and Summary 
 

Block 1 begins. You’re randomly matched with 3 other people and everyone in your group is randomly 

assigned a same payoff table to use for this block. You may open the payoff table at this time. The period 

will begin and all the participants will make their choices privately through the computer. Press “okay” 

after you have made your decision. After all the participants have inputted their choices, the lowest 

number chosen from your group as well as your payoff will be displayed. Press continue to move on to 

the next period. You and your group will do this for 15 periods and block 1 will come to an end. 

 

Block 2 begins. You’re randomly matched with 3 other people and everyone in your group is randomly 

assigned a same payoff table to use for this block. You may open the payoff table at this time. The period 

will begin and all the participants will make their choices privately through the computer. Press “okay” 

after you have made your decision. After all the participants have inputted their choices, the lowest 

number chosen from your group as well as your payoff will be displayed. Press continue to move on to 

the next period. You and your group will do this for 15 periods and block 2 will come to an end. 

 

This continues until all 5 blocks are played. Your payment will be the sum of your payoff from each 

period in all 5 blocks. 

Instructions - Page 1
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Experiment Overview 
 

You are about to participate in an experiment in the economics of decision making. If you listen carefully 

and make good decisions, you could earn a considerable amount of money that will be paid to you in cash 

at the end of the experiment.  

 

Please do not talk or communicate with other participants. Feel free to ask questions by raising your hand 

or signaling to the experimenter. 

 

You will be working with a fictitious currency called Francs. The exchange rate will be specified in the 

instructions. You will be paid in cash at the end of the experiment. 

 

The experiment consists of a sequence of periods and blocks. There will be total of 5 blocks. For each 

block, there will be total of 15 periods. 

 

Specific Instructions for Each Period 
 

Exchange rate: ______ Francs = _____ USD. 

 

Your group will consist of you and 3 other individuals (total of 4 people in your group). Your job is to 

choose one of the following numbers: {1, 2, 3, 4, 5, 6, 7}. The number you choose will remain 

anonymous. Your individual payoff is determined by your choice and the choice of others in your group. 

The following is a sample payoff table for illustration purposes only. Your actual payoff table will be 

using different numbers from this table. The overall ideal will be the same, however. 

 

Table 1: Your payoff in francs 

 

 Lowest choice of number from your group (including you)          

Your choice of number 7 6 5 4 3 2 1 

7 25 21 17 13 9 5 1 

6 - 23 19 15 11 7 3 

5 - - 21 17 13 9 5 

4 - - - 19 15 11 7 

3 - - - - 17 13 9 

2 - - - - - 15 11 

1 - - - - - - 13 

 

Examples 

- You chose 5 and the lowest choice of number from your group is 5. Then you win 21 francs. 

- You chose 4 and the lowest choice of number from your group is 2. Then you win 11 francs. 

- You chose 3 and the lowest choice of number from your group is 2. Then you win 13 francs. 

 

Quiz 

You chose 2 and the lowest choice of number from all the participants is 1. Then you win _____ francs. 

 

 

 

 

Procedural Summary 
 

There are five papers folded in half on each of your desk. They are labeled “Table 1”, “Table 2”, Table 3”, 

“Table 4” and “Table 5”. Each of these papers will present a different payoff table. The payoff from your 

paper labeled “Table 1” will be identical to everyone else’s paper labeled “Table 1”, the payoff from your 

“Table 2” will be identical to everyone else’s “Table 2” and so on. Please do not open any of these papers 

until you are instructed to do so. 

 

The experiment consists of 5 blocks and each block will consist of 15 periods. You will be placed in a 

group with 3 others who are randomly chosen for each block. This means that at the beginning of each 

block, you will be randomly matched with 3 others individuals to be placed in a group size of 4. 

 

Your payoff from each period will be determined by one of the 5 folded papers. You will be using one 

payoff table for the entire block. Everyone in your group will be using the exact same payoff table as you. 

Your group members are randomly chosen (via random number generator) and your payoff tables for 

each block are also randomly chosen (via random number generator). Your payment will be sum of your 

entire earnings from all 5 blocks. 

 

Q: How do you know what period you are in? What Payoff table to use? Which block you are in? 

A: Refer to Figure 1. Number of periods is denoted in the upper left corner. The first line of the 

computer’s instruction tells you what table your payoff is determined from.  

 

Periods 1-15 is block one. Periods 16-30 is block two. Periods 31-45 is block three. Periods 46-60 is block 

four. Periods 61-75 is block five. 

 

Note: There will be no sign that tells you that you are starting a new block. So pay attention to the period 

numbers. 

 

Q: Is it possible to have the same table number from one block to another? 

A: Yes, this is because you are randomly assigned a payoff table for each block. 

 

Timeline and Summary 
 

Block 1 begins. You’re randomly matched with 3 other people and everyone in your group is randomly 

assigned a same payoff table to use for this block. You may open the payoff table at this time. The period 

will begin and all the participants will make their choices privately through the computer. Press “okay” 

after you have made your decision. After all the participants have inputted their choices, the lowest 

number chosen from your group as well as your payoff will be displayed. Press continue to move on to 

the next period. You and your group will do this for 15 periods and block 1 will come to an end. 

 

Block 2 begins. You’re randomly matched with 3 other people and everyone in your group is randomly 

assigned a same payoff table to use for this block. You may open the payoff table at this time. The period 

will begin and all the participants will make their choices privately through the computer. Press “okay” 

after you have made your decision. After all the participants have inputted their choices, the lowest 

number chosen from your group as well as your payoff will be displayed. Press continue to move on to 

the next period. You and your group will do this for 15 periods and block 2 will come to an end. 

 

This continues until all 5 blocks are played. Your payment will be the sum of your payoff from each 

period in all 5 blocks. 

Instructions - Page 2
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Any questions?  

 

 
Figure 1: Sample Screenshot 

 

 

Instructions - Page 3
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A.3 Tables

c = 50 c = 500 c = 900 c = 950 c = 990
Choice 4.8485 4.5000 1.2864 1.2606 1.1242

SE 0.0932 0.0975 0.0363 0.0391 0.0244

Table A.1: Average Choice for Different Cost Parameters (Data for Figure 2.10).

µ50 > µ500 µ500 > µ900 µ900 > µ950 µ950 > µ990

p-value 0.0126 0 0.1677 0.0023
t-value 2.2428 21.2006 −0.9642 2.8422

Table A.2: Average Choice Comparison (Data for Figure 2.10).

c = 50 c = 500 c = 900 c = 950 c = 990
µ 9088 6527 4968 4846 5136

SEµ 118.05 103.36 115.42 124.51 106.56

Table A.3: Average Payoffs for Different Cost Parameters After 4 Rounds (Data for Figure 2.14).

µ50 > µ500 µ500 > µ900 µ900 > µ950 µ950 < µ990

p-value 0 0 0.2366 0.0393
t-value 16.3234 10.05 0.7178 1.7632

Table A.4: Average Payoffs Comparison After 4 Rounds (Data for Figure 2.14).

c = 50 c = 500 c = 900 c = 950 c = 990
µ 9791 7489 5652 5560 5650

SEµ 76.23 53.75 38.61 43.66 35.02

Table A.5: Average Payoffs for Different Cost Parameters After 15 Rounds (Data for Figure 2.15).

µ50 > µ500 µ500 > µ900 µ900 > µ950 µ950 < µ990

p-value 0 0 0.0557 0.0536
t-value 24.6797 27.75 1.5928 1.6114

Table A.6: Average Payoffs Comparison After 15 Rounds (Data for Figure 2.15).
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Appendix B

Bounded Rationality in Repeated
Games

B.1 Structure of Automata

The set of finite automata contains many automata which are redundant. It simplifies the analysis

to eliminate some of these redundant automata, allowing me to focus on a smaller set of automata.

Much of the notation from this section is from Kohavi (1978).

B.1.1 Payoff Equivalent Automata

Definition B.1.1 (Payoff Equivalent Automata). Automata M1 and M2 are said to be payoff

equivalent over set M if and only if,

Ui (M1, A, ε) = Ui (M2, A, ε) for all A ∈M, and all ε ∈ (0, .5].

Two automata are considered payoff equivalent over a setM if they yield the same payoff when

matched against any automaton from M. For any set of payoff equivalent automata MPE , I only

need to consider one automaton M1 ∈ MPE when calculating equilibria. When M1 is not part

of an equilibrium, none of the automata in MPE are part of an equilibrium. When M1 forms

an equilibrium with M2, then any automaton from MPE forms an equilibrium with M2. When

computing equilibria in my model, I can without loss of generality search over a smaller set of
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automata where any set of payoff equivalent automata is represented by a single automaton.

B.1.2 Reduced Automata

Next, I introduce the concept of a reduced automaton. Any non-reduced automaton is payoff

equivalent to some reduced automaton. Therefore, I am able to only focus on the set of reduced

automata without loss of generality.

Definition B.1.2 (Equivalent States). States si and sj are said to be equivalent if and only if, for

every possible input sequence, the same output sequence is produced, regardless of whether si or sj

is the initial state.

Definition B.1.3 (Equivalent Automata). Two automata, M1 and M2, are said to be equivalent if

and only if, for every state in M1, there is a corresponding equivalent state in M2, and vice versa.

If two automata are equal, then they must be equivalent. However, if two automata are equivalent

they need not be equal. Each of the automata in Figure B.1 represent the tit-for-tat strategy.

Figure B.1(a) is a two-state automaton which represents tit-for-tat, while Figure B.1(b) is three-

state automaton which represents tit-for-tat. Both q1 and q3 from B.1(b) are equivalent to q1 from

B.1(a), and state q2 in B.1(b) is equivalent to q2 in B.1(a), so these automata are equivalent but not

equal.

Definition B.1.4 (Reduced Automaton). An automaton M is reduced if and only if it contains no

equivalent states.

Every non-reduced automaton has a corresponding reduced automaton, where equivalent states

are combined into a single state. The non-reduced automata and the corresponding reduced au-

tomata are payoff equivalent over the set of finite automata, because they produce the same output

for all sequences of input. I am therefore able to restrict the set of automata from all finite automata

to reduced automata without loss of generality.
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(a) 2-state Tit-for-Tat (b) 3-state Tit-for-Tat

Figure B.1: Example of equivalent but not equal automata.

B.1.3 Strongly Connected Automata

Next, I introduce the notion of a strongly connected component, an absorbing region of the automa-

ton.

Definition B.1.5 (Reachable State). Given automaton M = (Q, q0, f, τ), state qm ∈ Q is reachable

from q1 ∈ Q if there exists some sequence of signals, r = {r1, . . . , rm} such that,

τ (qk, rk) = qk+1 for all 1 ≤ k ≤ m− 1 ,

where states q2, . . . , qm−1 are defined recursively.

Definition B.1.6 (Strongly Connected Subset). Given automaton M = (Q, q0, f, τ), a subset of

states QSCS ⊆ Q is said to be strongly connected if for every pair of states qi, qj ∈ QSCS, qi is

reachable from qj.

Definition B.1.7 (Strongly Connected Component). Given automaton M = (Q, q0, f, τ), a subset

of states QSCC ⊆ Q is said to be strongly connected component (SCC) if QSCC is strongly connected

and there is no state q ∈ Q\QSCC such that QSCC ∪ q is strongly connected.

A strongly connected component is a region of the automaton that cannot be left once it has

been reached regardless of the future signal sequence. All states in a strongly connected component

are reachable from all other states in the SCC. Therefore, once the automaton enters one of these

SCCs, all other states of the automaton become irrelevant.
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Figure B.2: Non-strongly-connected automaton.

Definition B.1.8 (Strongly Connected Automaton). Automaton M = (Q, q0, f, τ) is strongly con-

nected if Q is a strongly connected component.

An example of an automaton that is not strongly connected is displayed in Figure B.2. This

automaton has three states, Q = {q1, q2, q3}. It is clear by definition that this automaton has two

strongly connected components; QSCC1 = {q2} and QSCC2 = {q3}, and therefore is not a strongly

connected automaton. The automaton starts in state q1. If it receives a C signal in the first round,

then it enters q2 and always plays C. If it receives a D signal in the first round, then it enters q3

and always plays D. So with certain probability this automata always plays C, otherwise it always

plays D.

Every automaton has at least one strongly connected component. When signal are imperfect,

the automaton reaches a SCC with probability one, and remains in that SCC for the remainder of

the supergame. Since I am focusing on the long run behavior of the automata, I restrict the set

of automata to only strongly connected automata. It is important to note that if player 1 plays

a strongly connected automaton M1, then player 2 is at least weakly better playing a strongly

connected automaton as well.

Lemma B.1.9. For M1 ∈ MSCC and M2 ∈ M\MSCC and any ε ∈ (0, .5], there exists M ′2 ∈

MSCC such that U2 (M1,M
′
2, ε) ≥ U2 (M1,M2, ε).

Therefore, any equilibrium over the set of strongly connected automata is also an equilibrium

over the set of all finite automata. However, there may be equilibria that contain one or more
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automata which are not strongly connected.

The idea for this proof is as follows. Suppose player 1 plays a strongly connected automaton.

If player 2 plays an automaton with more than one strongly connected component, then depending

on the starting state, the system may enter any one of the strongly connected components with

positive probability. If different strongly connected components yield different payoffs, player 2 is

better playing the automaton with only the strongly connected component with the highest payoff.

To summarize, for the N -state analysis, I restrict the set of finite automata to those which are

finite, strongly connected, and reduced. This set is denoted by MR
i . All equilibria over this set

are also equilibria over the set of all finite automata. However, there may be additional equilibrium

consisting of one or more non-strongly connected automata.

Proof of Lemma B.1.9

Since M2 =
(
Q2, q

0
2 , fi, τi

)
is not a strongly connected automaton, then the states can be divided

up into strongly connected components and transient classes. Let QSCC1 , . . . , QSCCn ⊂ Q2 be the

strongly connected components of automaton M2.

First, consider the trivial case that automaton starts in a strongly connected component, q0 ∈

QSCCk . Then let automaton M ′2 have the states QSCCk and the corresponding output function,

transition function, and starting points from M2. Since QSCCk is strongly connected component this

automaton is well defined. It is clear by the definition of strongly connected components that M2

and M ′2 yield the same payoff against M1.

Next, consider the situation where M2 does not start in a strongly connected component, q0
2 6∈

QSCCk for any k = 1, . . . , n. Given the starting point x0 corresponding to q0
1 and q0

2 , the system

X (M1,M2, ε) has a unique stationary distribution π (M1,M2, ε)
(
x0
)
. This stationary distribution

is the convex combination of stationary distributions,

π (M1,M2, ε)
(
x0
)

=
n∑
k=1

βkπk,

where βk is the probability that starting at x0 the system gets absorbed to QSCCk , and πk is the
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stationary distribution of the system when M2 starts in QSCCk . The payoff is therefore written as

U2 (M1,M2, ε) =
n∑
k=1

βkU2

(
M1,M

SCC
k , ε

)
,

where MSCC
k is the automaton composed of the states QSCCk . Let M ′2 be the automaton MSCC

k

which yields the highest payoff against M1 and has positive probability of being reached, βk > 0.

Then this automaton yields at least weakly higher payoffs against M1 than M2. �

B.2 Proofs

I present the finite-state results first, as some of these are used in the two-state results.

B.2.1 Finite-State Results

Lemma B.2.1. Given M1 ∈MR
1 and M2 ∈MR

2 and regular signal functions ri (si, sj , ε), then the

Markov chain X (M1,M2, ε) is irreducible for all ε > 0.

Proof of Lemma B.2.1

The Markov chain starts in state x0, the state corresponding to the situation where both automata

are in their initial state, q1

(
x0
)

= q0
1 and q2

(
x0
)

= q0
2 . By definition, the Markov chain has one

state for each automata-state pair that is reachable from x0 with positive probability. Therefore,

[
X (M1,M2, ε)

(
x0, x

)]N
> 0 for all x ∈ X (M1,M2, ε), all ε > 0, some N ≥ 0.

So every state is reachable from x0. Next, I show that x0 is reachable from every state x ∈

X (M1,M2, ε). By definition, an automaton Mi =
(
Qi, q

0
i , fi, τi

)
is strongly connected if Qi is a

strongly connected component. This means that every state in Qi is reachable from every other

state. Therefore, there is some sequence of actions, si (q1, q2), which takes Mi from state q1 ∈ Qi to

state q2 ∈ Qi. By the second condition of regular signal function, for all ε > 0, the probability that
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player i sees sequence of signals si (q1, q2) is greater than 0.

I want to show that it is possible to get from any state x ∈ X (M1,M2, ε) to state x0. Let

qi (x) be the state of Mi when X (M1,M2, ε) is in state x. Then there exists sequences of ac-

tions s1

(
q1(x0), q1(x)

)
, s1

(
q1(x), q1(x0)

)
, s2

(
q2(x0), q2(x)

)
, and s2

(
q2(x), q2(x0)

)
. Since x is reach-

able from x0, then there exists sequences s1

(
q1(x0), q1(x)

)
and s2

(
q2(x0), q2(x)

)
of equal length,∣∣s1

(
q1(x0), q1(x)

)∣∣ =
∣∣s2

(
q2(x0), q2(x)

)∣∣. The length of the other sequences may not be equal.

If player 2 plays sequences s1

(
q1(x), q1(x0)

)
and s1

(
q1(x0), q1(x)

)
repeatedly

∣∣s2

(
q2(x), q2(x0)

)∣∣+∣∣s2

(
q2(x), q2(x0)

)∣∣−1 times, and then s1

(
q1(x), q1(x0)

)
is played one more time, then M1 goes from

q1(x) to q1(x0) in

(∣∣s1

(
q1(x), q1(x0)

)∣∣+
∣∣s1

(
q1(x0), q1(x)

)∣∣) (∣∣s2

(
q2(x), q2(x0)

)∣∣+
∣∣s2

(
q2(x0), q2(x)

)∣∣)−∣∣s1

(
q1(x0)− q1(x)

)∣∣
moves. Similarly, if player 1 plays sequences s2

(
q2(x), q2(x0)

)
and s2

(
q2(x0), q2(x)

)
repeatedly∣∣s2

(
q2(x), q2(x0)

)∣∣ +
∣∣s2

(
q2(x), q2(x0)

)∣∣ − 1 times, and then s2

(
q2(x), q2(x0)

)
is played one more

time, then M2 goes from q2(x) to q2(x0) in

(∣∣s1

(
q1(x), q1(x0)

)∣∣+
∣∣s1

(
q1(x0), q1(x)

)∣∣) (∣∣s2

(
q2(x), q2(x0)

)∣∣+
∣∣s2

(
q2(x0), q2(x)

)∣∣)−∣∣s2

(
q2(x0)− q2(x)

)∣∣
moves. The length of these sequences are the same. So each automaton goes from qi(x) to qi(x0),

meaning the system goes from x to x0 with positive probability. So the Markov chain is irreducible.�

Lemma 3.5.3. Suppose players play automata M1 and M2. The average payoff for the infinitely

repeated game is equal to

Ui (M1,M2, ε) =
∑

xk∈X(M1,M2,ε)

π (M1,M2, ε) (xk)ui (xk) ,

where π (M1,M2, ε) (xk) is the term of the stationary distribution corresponding to state xk, and

ui (xk) is the payoff for player i state xk.
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Proof of Lemma 3.5.3

By Lemma B.2.1, X (M1,M2, ε) is irreducible and hence has a unique stationary distribution

π (M1,M2, ε) for all ε > 0. Let H (xi, T ) = 1
T

∑T
t=0 I {xt = xi} be the number of times that

X (M1,M2, ε) has visited state xi in T rounds. By the law of large numbers for irreducible Markov

chains (Theorem 11.12 p.439 (Grinstead and Snell 1997)), for all starting states,

lim
T→∞

H (xk, T ) = π (M1,M2, ε) (xk) ,

where π (M1,M2, ε) (xk) is the term of π (M1,M2, ε) corresponding to state xk. The payoff for the

first T rounds can be rewritten as,

UTi (M1,M2, ε) =
∑

xk∈X(M1,M2,ε)

H (xk, T )ui (xk) .

Therefore,

Ui (M1,M2, ε) = lim
T→∞

∑
xk∈X(M1,M2,ε)

H (xk, T )ui (xk) =
∑

xk∈X(M1,M2,ε)

π (M1,M2, ε) (xk)ui (xk) .

�

The infinite set of all possible absorbing classes of automaton M is denoted by AC(M). The set

of payoff-maximal absorbing states for player i is,

AC∗i (M) = {a|Ui(a) ≥ Ui(b) for all b ∈ AC(M)} .

Lemma B.2.2. If a = {q, s} ∈ AC∗i (M) and qj , qk ∈ q such that qj = qk, then there exists

a′ ∈ AC∗i (M) such that |a′| < |a|.
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Proof of Lemma B.2.2

Consider absorbing classes a = {q, s} ∈ AC∗i (M) with qj , qk ∈ q such that qj = qk. Then consider

the two absorbing classes:

a1 = ({q1, . . . , qj−1, qj , qk+1, qn} , {s1, . . . , sj−1, sk, sk+1, . . . , sn})

and

a2 = ({qj+1, . . . , qk} , {sj+1, . . . , sk−1, sj}) .

Both of these satisfy the conditions for an absorbing class, because,

τ (qj , sk) = τ (qk, sk) = qk+1

and

τ (qk, sj) = τ (qj , sj) = qj+1.

The payoff of absorbing class a is,

UACi (a) =
1
n

n∑
l=1

ui (f (ql) , sl)

=
1
n

(n− k + j)

 1
n− k + j

j,n∑
l=1,k+1

ui (f (ql) , sl)

+ (k − j)

 1
k − j

k∑
l=j+1

ui (f (ql) , sl)


=
(
n− k + j

n

)
UACi (a1) +

(
k − j
n

)
UACi (a2) .

Since a ∈ AC∗i (M), it must be that UACi (a) = UACi (a1) = UACi (a2), or else either a1 or a2 would

have higher payoff than a. Since 0 < j < k < n, |a1| = n−k+j < n = |a| and |a2| = k−j < n = |a|.

So for all payoff-maximal absorbing classes with multiple visits to one state, there exists a smaller

payoff-maximal absorbing class. �
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The set of absorbing classes which contain all unique states for player i is denoted by,

ACUi (M) = {a|qi 6= qj for all qi, qj ∈ a} .

Lemma B.2.3. At least one of the unique state absorbing classes is payoff-maximal, i.e.

AC∗i (M) ∩ACUi (M) 6= ∅.

Proof of Lemma B.2.3

Select any absorbing class a ∈ AC∗i (M). By Lemma B.2.2, for each payoff-maximal absorbing class

that visits state qj more than once, there exists another payoff-maximal absorbing class that visits

qi strictly less. This process can be repeated until the new absorbing class visits state qj only once.

This can be done for each state in a. Then end result is a payoff-maximal absorbing class in the set

of unique state absorbing classes. �

Lemma B.2.3 suggests that there is a payoff-maximal absorbing class with weakly fewer states

than automaton M , which means that there is a finite optimal absorbing class. Player i’s payoff-

maximal absorbing class is denoted by a∗i (M).

Lemma B.2.4. Ui (M1,M2, ε) ≤ UACi (a∗i (M−i)) for all ε ∈ [0, .5] and all Mi ∈M.

Proof

Suppose by means of contradiction that for some ε ∈ [0, .5], U2 (M1,M2, ε) > UAC2 (a∗2 (M1)). The

Markov chain X (M1,M2, ε) yields a sequence of automaton-state pairs x0, x1, x2, . . .. By definition,

U2 (M1,M2, ε) = lim
T→∞

1
T

T∑
t=0

u2

(
xt
)
,
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where u2 (xt) is the payoff to player 2 for the automaton-state profile xt. For every finite integer K,

there must be some sequence of length K of automaton-state pairs y1, . . . , yK such that,

1
K

K∑
k=1

u2

(
yk
)
≥ U2 (M1,M2, ε) . (B.1)

Let |Q1| be the number of states in M1, and let u2 be the lowest possible stage-game payoff for

player 2. Set K̄ to be a sufficiently high integer such that

U2 (M1,M2, ε)− U2 (a∗2 (M1)) >
j (U2 (M1,M2, ε)− u2)

K̄ + j
(B.2)

holds for all j = 1, . . . , |Q1|. From (B.2), we get,

U2 (a∗2 (M1)) < U2 (M1,M2, ε)−
j (U2 (M1,M2, ε)− u2)

K̄ + j

=
K̄U2 (M1,M2, ε)− ju2

K̄ + j
. (B.3)

Fix sequence of automaton-state pairs y1, . . . , yK̄+1 such that,

1
K̄

K̄∑
k=1

u2

(
yk
)
≥ U2 (M1,M2, ε) .

Let q1
i , q

2
i , . . . , q

K̄+1
i be the sequence of states for automaton i from the sequence of automaton-

state pairs y1, . . . , yK̄+1. Automaton M1 starts in state q1
i and ends in state qK̄+1

i . Because M1 is

strongly connected, there exists some sequence of actions s1
2, s

2
2, . . . , s

j
2 ∈ S2, that moves automaton

M1 from state qK̄+1
i to state q1

i . Let p1
1 = qK̄+1

1 and pl1 = τ2
(
pl−1

1 , sl−1
2

)
for l = 2, . . . j. By

construction it must be that, τ2
(
pj1, s

j
2

)
= q1

1 . Since M1 has |Q1| states, then
∣∣∣{s1

2, s
2
2, . . . , s

j
2

}∣∣∣ ≤
|Q1|. Define the absorbing class

a′2 (M1) =
({
q1
1 , q

1
1 , . . . , q

K̄
1 , p

1
1, p

2
1, . . . , p

j
1

}
,
{
f2

(
q1
2

)
, f2

(
q2
2

)
, . . . , f2

(
qK̄2

)
, s1

2, s
2
2, . . . , s

j
2

})
.
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This is a well defined absorbing class. Note that u2

(
f1

(
pk1
)
, sk1
)
≥ u2 for k = 1, . . . , j. Therefore,

UAC2 (a′2 (M1)) =
1

K̄ + j

 K̄∑
k=1

u2

(
yk
)

+
j∑

k=1

u2

(
f1

(
pk1
)
, sk2
)

≥ 1
K̄ + j

 K̄∑
k=1

u2

(
yk
)

+ ju2

 (By minimality of u2.)

≥
[
K̄U2 (M1,M2, r1(ε), r2(ε)) + ju2

]
K̄ + j

(From (B.1))

> U2 (a∗2 (M1)) (From (B.3))

This contradicts the maximality of a∗2 (M1). �

Lemma B.2.5. Given regular signal functions ri, if X (M1,M2, ε) has communicating classes

A1, . . . , Am, then,

lim
ε→0

Ui (M1,M2, ε) =
∑

Ak|γ(Ak)=γ∗

β(Ak)UCCi (Ak) ,

with
∑
Ak|γ(Ak)=γ∗ β(Ak) = 1 and β (Ak) > 0 for all Ak such that γ (Ak) = γ∗

Proof

By Lemma B.2.1, the Markov chain X (M1,M2, ε) is irreducible and has a unique stationary dis-

tribution π (M1,M2, ε). Let π (M1,M2, ε) (x) denote the term of the stationary distribution corre-

sponding to state x ∈ X (M1,M2, ε). By Theorem B.2.13, if a communicating class doesn’t minimize

stochastic potential, γ (A) > γ∗, then,

lim
ε→0

π (M1,M2, ε) (x) = 0 for all x ∈ A. (B.4)

If a communicating class A does minimize stochastic potential, γ(A) = γ∗, then,

lim
ε→0

π (M1,M2, ε) (y) > 0 for all y ∈ A. (B.5)
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For each communicating class Ak, there exists some constant, α (Ak) such that,

lim
ε→0

∑
x∈Ak

π (M1,M2, ε) (x)ui(x) = α (Ak)
∑
x∈Ak

ui(x), (B.6)

Then,

lim
ε→0

Ui (M1,M2, ε) = lim
ε→0

∑
x∈X(M1,M2,ε)

π (M1,M2, ε) (x)ui (x) (by Lemma 3.5.3)

= lim
ε→0

∑
Ak|γ(Ak)=γ∗

∑
x∈Ak

π (M1,M2, ε) (x)ui(x) (by (B.4))

=
∑

Ak|γ(Ak)=γ∗

α(Ak)
∑
x∈Ak

ui(x) (by (B.6))

=
∑

Ak|γ(Ak)=γ∗

α(Ak) |Ak|UCCi (Ak) . (by def. of UCCi )

Set β (Ak) = α (Ak) |Ak|, then
∑
Ak|γ(Ak)=γ∗ β (Ak) =

∑
x∈X(M1,M2,ε)

π (M1,M2, ε) (x) = 1 and

β (Ak) > 0 for all Ak such that γ (Ak) = γ∗ by (B.5). �

Definition B.2.6 (Homing Sequence). Given automaton M = (Q, q0, f, τ), the action sequence

h ∈ Sn is a homing sequence if and only if,

∀q1, q2 ∈ Q and q1〈h〉 = q2〈h〉 ⇒ q1h = q2h,

where q〈h〉 ∈ f
(
Sn+1

)
is the output of M starting at state q when the sequence h is played, and qh

is the end state of M when h is played.

This means that when h is played, the output of M allows us to determine the current state of

M .

Theorem B.2.7 (Kohavi (1978)). A preset homing sequence, whose length is at most (n− 1)2,

exists for every reduced, strongly connected n-state machine M .
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Lemma 3.5.7. Given automaton M1 ∈ MR with n states, and any absorbing class a (M1), there

exists automaton M2 such that for all communicating classes, Ak, of the system X (M1,M2, ε),

UCC2 (Ak) = UAC2 (a (M1)) .

Proof of Lemma 3.5.7

I construct automaton M2 = (Q2, q
0
2 , f2, τ2) which yields the desired properties. Consider automaton

M1 with n states and absorbing class

a = ({q1, . . . , qm} , {s1, . . . , sm})

with m ≤ n states.

The automaton will be made up of three main parts. The first part is the absorbing class. This

section of the automaton will keep the system in the desired absorbing state when reached. Then

second part of the automaton is the homing region. In this region, the automaton plays the homing

sequence. Based on the response from M1, the current state of M1 is determined. The goal of the

homing region is to determine the current state of automaton M1 after an error has been made. Once

the state of automaton M1 is known, it will be possible to move it back into the absorbing class.

The third part allows the two automata to resynchronize, transitioning from the homing region back

to the absorbing class.

Start constructing M2 by creating states and transitions such that the absorbing class is main-

tained. That is for each state qj in the absorbing class a of M1, create corresponding state pj in

automaton M2 that satisfies,

f2 (pj) = sj and τ (pj , f1 (qj)) =


pj+1 j < m

p1 j = m

.
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Also, let all incorrect plays in the absorbing class states lead to state pm+1,

τ (pj , s 6= f1 (qj)) = pm+1.

The second region of the automaton is the homing region. By Theorem B.2.7, there exists a

homing sequence for automaton M1, call this h (M1) = {h1, . . . , hl}. There is a set of sequences

imposed by this homing sequence when started at different states,

S(h) = {q〈h〉|q ∈ Q} =



(
s1

1, . . . , s
1
l

)
(
s2

1, . . . , s
2
l

)
...

(
sk1 , . . . , s

k
l

)


.

There is also a set of states that this homing sequence will lead to,

Q(h) = {q|q′h = q for some q′ ∈ Q} .

Let S (h, j) for 0 < j ≤ l be the first j terms of these sequences,

S (h, j) =



(
s1

1, . . . , s
1
j

)
(
s2

1, . . . , s
2
j

)
...

(
sk1 , . . . , s

k
j

)


=



s1(j)

s2(j)

...

sk(j)


.
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Let SU (h, j) be the set of unique sequences of length j imposed by h,

SU (h, j) =



(
s1

1, . . . , s
1
j

)
(
s2

1, . . . , s
2
j

)
...

(
su1 , . . . , s

u
j

)


=



s1(j)

s2(j)

...

su(j)


,

where
∣∣SU (h, j)

∣∣ = u(j) is the number of unique sequences in S (h, j).

The homing region consists of l + 1 classes, Pm+1, . . . , Pm+l+1. Class Pm+1+j consists of u(j)

states, pm+1+j

(
s1(j)

)
, . . . , pm+1+j

(
su(j)(j)

)
, one corresponding to each sequence in SU (h, j). De-

fine SU (h, 0) = {∅} and u(0) = 1. Automaton M2 will play the same action in all states of a given

class,

f2(p) = hi for all p ∈ Pm+i for i ∈ {1, . . . , l} .

This choice will correspond to the matching term in the homing sequence.

The transition function for 0 < i ≤ l is defined as follows.

τ2 (pm+i (s) , C) =


pm+i+1 ({s, C}) if {s, C} ∈ SU (h, i)

pm+i+1 ({s, D}) if {s, C} 6∈ SU (h, i)

τ2 (pm+i (s) , D) =


pm+i+1 ({s, D}) if {s, D} ∈ SU (h, i)

pm+i+1 ({s, C}) if {s, D} 6∈ SU (h, i)

.

Finally, the last region of M2 will resynchronize play, and get the system back to the absorbing

class a. There will be k states in class Pm+l+1. By definition of the homing sequence, for each state

pm+l+1(q) ∈ Pm+l+1 there is a corresponding state q ∈M1 such that when M2 is in state pm+l+1(q),

M1 is in state q. Define the resynchronizing sequence t (q) =
{
t1(q), t2(q), . . . , tr(q)(q)

}
to be the

sequence of plays necessary to get from state q to state q1 where r(q) = |t(q)|. This sequence exists
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for each state because M1 is strongly connected. Then for each state p1(q) = pm+l+1(q) ∈ Pm+l+1,

for 0 < i < r(q).

τ2
(
pi(q),C or D

)
= pi+1(q)

and

τ2

(
pr(q)(q),C or D

)
= p1.

The output function for 0 < i ≤ r(q) is,

f2

(
pi(q)

)
= ti(q).

So the system will always end up in state (q1, p1) regardless of the starting position. Once the

system is in (q1, p1), it has entered the communicating class, and will not leave without errors. �

Definition B.2.8 (Regular Perturbation). Given Markov chain X, a perturbation Xε is called a

regular perturbation if the following three conditions hold,

1. Xε is irreducible for all ε ∈ (0, .5].

2. lim
ε→0

Xε (x, y) = X (x, y)

3. Xε (x, y) > 0 for some ε implies ∃n ≥ 0 such that 0 < lim
ε→0

ε−nXε (x, y) <∞

Let A1, . . . , Am be the communicating classes of X (M1,M2, ε). To leave a communicating class,

there must be at least one incorrect signal.

Definition B.2.9 (Resistance). The resistance ρij is the order of the probability that the system

goes from communicating class Ai to Aj, i.e.

ρij = min
x∈Ai,y∈Aj ,n∈N

O (X (M1,M2, ε) (x, y)n) ,

where O(·) is the order of the function. If the probability is 0, then the resistance is defined to be ∞.
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Define the graph G, which has one vertex, vk, for every communicating class Ak. For every vertex

pair, vi, vj ∈ G, there is an edge with resistance ρij .

Definition B.2.10 (i-tree). An i-tree in G is a spanning tree such that from every vertex j 6= i,

there is a unique path directed from j to i.

For each vertex, Ti is the set of all i-trees on G. The resistance on an i-tree is,

ρ (τ) =
∑

(i,j)∈τ

ρij .

Definition B.2.11 (Stochastic Potential). The stochastic potential of the communicating class Ai

is the least resistance among all i-trees:

γi = min
τ∈Ti

ρ(τ).

The stochastic potential measures the likelihood of the system visiting a certain communicating

class. Communicating classes that don’t have the minimum stochastic potential are at least an order

ε less likely to be visited by the system. As the errors approach zero, the system spends non-trivial

amounts of the supergame in only the communication classes with minimum stochastic potential.

Finally, define the minimum stochastic potential of the system to be,

γ∗ = min
i=1,...m

γi.

Lemma B.2.12. Given automata M1 and M2 subject to regular signal functions r1 and r2, the

perturbed system X (M1,M2, ε) is a regular perturbation.

Proof

To show that this is true, I must show that the three criteria are satisfied. The system formed

by automata M1 and M2 and regular signal functions r1 and r2 is represented by Markov chain

X (M1,M2, ε). By Lemma B.2.1, X (M1,M2, ε) is always irreducible, so the first criterion is satisfied.
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By the first part of the definition of regular signal function and (3.2), the second criterion is satisfied.

Finally, it is clear that the third condition of the regular signal function remains under addition and

multiplication, so the third criterion also holds by (3.2). �

Theorem B.2.13 (Theorem 4 from Young (1993)). Let X0 be a stationary Markov process on

a finite state space with communicating communication classes A1, . . . , Am. Let Xε be a regular

perturbation of X0, and let πε be its unique stationary distribution for every small positive ε. Then:

1. as ε→ 0, πε converges to a stationary distribution π0 of X0, and

2. x is stochastically stable (π0
x > 0) if and only if x is contained in a communicating class Aj

that minimizes γj.

The second part of this theorem implies that a communicating class is prevalent if and only if it

minimizes stochastic potential.

Theorem 3.5.6. Suppose players play supergame G with regular signal function ri, and play au-

tomata Mi ∈ MR
i represented by Markov chain X (M1,M2, ε). If there exists some ε̄ > 0 such

that (M1,M2) is an equilibrium for all ε ∈ (0, ε̄), then for all prevalent communicating classes Ak,

UCCi (Ak) = UACi (a∗ (M−i)).

Proof of Theorem 3.5.6

Suppose that (M1,M2) is an equilibrium for all ε ∈ (0, ε̄). Suppose by means of contradiction that

there exists a communicating class Ak such that γ (Ak) = γ∗ and

UCC2 (Ak) < UAC2 (a∗2 (M1)) . (B.7)

Using (B.7), Lemma B.2.5 and that fact that a communicating class can never get payoff higher

than the optimal absorbing class gives,

U2 (M1,M2, ε) < UAC2 (a∗2 (M1)) . (B.8)
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By Lemma 3.5.7, there exists an automaton M ′2 such that for all communicating classes A of

X (M1,M2, ε), UCC2 (A) = UAC2 (a∗2 (M1)). Therefore, by Lemma B.2.5,

lim
ε→0

U2 (M1,M
′
2, ε) = UCC2 (A) = UAC2 (a∗2 (M1)) . (B.9)

By Lemma 1 from Young (1993), the stationary distribution of X (M1,M
′
2, ε) is continuous at ε = 0.

Therefore the payoff must also be continuous at ε = 0. So, for all ε ∈ (0, ε̄), there exists some δ > 0

such that, ∣∣∣ lim
ε→0

U2 (M1,M
′
2, ε)− U2 (M1,M

′
2, ε)

∣∣∣ < δ. (B.10)

Set ε̄ sufficiently small so that,

∣∣∣ lim
ε→0

U2 (M1,M
′
2, ε)− U2 (M1,M

′
2, ε)

∣∣∣ < ∣∣UAC2 (a∗2 (M1))− U2 (M1,M2, ε)
∣∣ . (B.11)

By (B.8), (B.9), and (B.11) for all ε ∈ (0, ε̄),

U2 (M1,M2, ε) < U2 (M1,M
′
2, ε) .

So (M1,M2) is not an equilibrium for any ε ∈ (0, ε̄), which is a contradiction. �

Fix automaton M1. This automaton has some optimal absorbing class a∗2 (M1). LetMSPM (M1)

be the set of all automata M2 ∈MR such that all communicating classes Ak of X (M1,M2, ε) that

minimize stochastic potential (γ (Ak) = γ∗) yield the optimal absorbing class payoff, UCC2 (Ak) =

UAC2 (a∗2 (M1)).

Theorem 3.5.8. Suppose players play supergame G with regular signal function ri, and play au-

tomata Mi ∈MR
i represented by Markov chain X (M1,M2, ε). If

1. for all prevalent communicating classes Ak, UCCi (Ak) = UACi (a∗ (M−i)), and

2. ∂Ui(M1,M2,0)
∂ε = supM∈MSPM (M−i)

∂Ui(Mi,M,0)
∂ε ;

then there exists some ε̄ > 0 such that (M1,M2) is an equilibrium for all ε ∈ (0, ε̄).
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Proof of Theorem 3.5.8

Fix (M1,M2) represented by X (M1,M2, ε) such that for all stochastic potential minimizing com-

municating classes γ (Ak) = γ∗,

UCCi (Ak) = UACi (a∗ (M−i)) (B.12)

and

∂Ui (M1,M2, ε)
∂ε

= sup
M∈MSPM (M−i)

∂Ui (M1,M, ε)
∂ε

.

Without loss of generality, I will show that when these conditions are satisfied, M2 is a best

response to M1. For all M2 6∈ MSPM (M1), there exists a stochastic potential minimizing com-

municating class such that UCC2 (Ak) < UAC2 (a∗ (M1)). By Lemma B.2.5 and that fact that a

communicating class can never get payoff higher than the optimal absorbing class,

U2 (M1,M2, ε) < UAC2 (a∗2 (M1)) for all M2 6∈ MSPM (M1). (B.13)

For all M2 ∈MSPM (M1),

lim
ε→0

U2 (M1,M2, ε) = UAC2 (a∗2 (M1))

By continuity of U2, this means that for all ε ∈ (0, ε̄) for ε̄ sufficiently small,

U2 (M1,M, ε) < U2 (M1,M
′, ε) for all M 6∈ MSPM ,M ′ ∈MSPM .

So the best response to M1 for ε ∈ (0, ε̄) must come from the setMSPM . For all M ∈MSPM (M1),

lim
ε→0

U2 (M1,M, ε) = UAC2 (a∗ (M1)) .
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By definition of the derivative, for some ε̄ > 0,

∂U2 (M1,M, ε)
∂ε

∣∣∣∣
ε=0

≤ ∂U2 (M1,M
′, ε)

∂ε

∣∣∣∣
ε=0

⇒ U2 (M1,M, ε) ≤ U2 (M1,M
′, ε) for all ε ∈ (0, ε̄) .

Therefore, if M2 satisfies,

∂Ui (M1,M2, ε)
∂ε

= sup
M∈MSPM (M−i)

∂Ui (M1,M, ε)
∂ε

.

Then it must be that for all ε ∈ (0, ε̄),

U2 (M1,M, ε) ≤ U2 (M1,M2, ε) for all M ∈MSPM .

Therefore, M2 is a best response to M1. �

B.2.2 Two-State Results

Proposition B.2.14. Players play supergame G, where each action in stage game g has a unique

best response. For any error ε ∈ (0, 1/2], both players playing automata equivalent to open-loop finite

automata is an equilibrium of the supergame G if and only if they play a Nash equilibrium of the

stage game in every round of the supergame.

If player 1 is playing a open-loop automaton, then it plays a fixed sequence of actions. The best

response to this is simply to best respond in every round. If player 2’s automaton is not equivalent

to an open loop strategy and the chance of misperception is positive, then it is possible that a

misperception could lead to a situation where player 2 doesn’t best respond to player 1 in a given

round.

If players play automata which always play the same action, and this action pair is a Nash

equilibrium of the stage game, then this pair of automata always has to be a Nash equilibrium of
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the supergame. In addition, if the stage game has multiple Nash equilibrium, then any payoff in the

convex hull of the Nash equilibrium payoffs is possible in equilibrium.

Proof of Proposition B.2.14

⇒First suppose that both players play automata equivalent to open loop automata M1 and M2.

These form the Markov chain Xε
M1,M2

with n states and all entries either 0 or 1. Depending on x0,

the Markov chain loops through m ≤ n states, x1, . . . , xm. This yields payoff,

Ui (M1,M2, ε) =
1
m

m∑
k=1

ui
(
xk
)
.

Suppose without loss of generality that the actions in state xj are not a Nash equilibrium of the

stage game, because player 2 receives higher payoff from playing sj2 than f2

(
q2(xj)

)
when player 1

plays f1

(
q1(xj)

)
,

u2

(
xj
)
< u2

(
f1

(
q1(xj)

)
, sj2

)
.

Then player 2 is better playing automaton M ′ which is the same as M2 except f2

(
q2(xj)

)
= sj2,

U2 (M1,M2, ε) =
∑
k 6=j

u2(xk) + ui(xj) <
∑
k 6=j

u2(xk) + u2(f1

(
q1(xj)

)
, sj2) = U2 (M1,M

′, ε) .

So both players playing automata equivalent to open loop automata M1 and M2 is an equilibrium

only if a Nash equilibrium is played in every round.

⇐ Assume that automata M1 and M2 generate a sequence of actions which yield a Nash equi-

librium in every stage game. Suppose that M1 is not equivalent to an open loop automaton. For

some state q1,

f1 (τ1 (q1, C)) 6= f1 (τ1 (q1, D)) .

So when M1 is in q1, the play in the next round can be either f1 (τ1 (q1, C)) or f1 (τ1 (q1, D)). Since

ε > 0, either signal is possible with positive probability. Automaton M2 will play s2, which has

a unique best response. So, with positive probability the system of automata M1 and M2 will
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not play a Nash equilibrium of the stage game. This contradicts the assumption that M1 is not

equivalent to an open loop automaton. A similar argument holds for M2. Therefore, if M1 and M2

generate a sequence of action which yield a Nash equilibrium in every stage game that has unique

best responses, the automata must be equivalent to open-loop automata. �

Definition B.2.15 (Eventually Always Plays). An automaton Mi = (Qi, q0
i , fi, τi) eventually always

plays action si ∈ Si if for all strongly connected components QSCCk ⊆ Qi,

fi (q) = si for all q ∈ QSCCk

Lemma B.2.16. When ε > 0, and automaton M which eventually always plays C is payoff equiv-

alent to MC over the set of automata with only one SCC.

Proof of Lemma B.2.16

Assume that player 1 plays M1 = M . Assume that player 2 plays M2 =
(
Q2, q

0
2 , f2, τ2

)
which has

one strongly connected component. Let Ti be the round for which automata Mi reaches a strongly

connected component. Since ε > 0, any sequence of signals occurs with positive probability, so

P (Ti <∞) = 1. Let uti be the payoff for player i in round t. Let T ∗ = max(T1, T2). Then,

Ui (M1,M2, ε) = lim
T→∞

1
T

[
T∗∑
k=0

uki +
T∑

k=T∗+1

uki

]

= lim
T→∞

1
T

[
T∑

k=T∗+1

uki

]

= Ui (M ′,M2, ε) .

So any automaton M with only one SCC is payoff equivalent to the automaton M ′ consisting only

of the states of the SCC over the set of automata with only one strongly connected component. �

Lemma B.2.17. The set of two-state automata, M2, can be reduced to a smaller set of automata,

M̄2, such that,
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1. for all M ∈ M2, there exists some M ′ ∈ M̄2 such that M and M ′ are payoff equivalent over

M2, and

2. for all M,M ′ ∈ M̄2, M and M ′ are not payoff equivalent over M2.

Proof of Lemma B.2.17

There are |Si|N
(
NN

)|S−i| total N -state automata when the starting states are omitted. So when

both players have two actions, there are 64 two-state automata. Many of these automata are

redundant.

First, divide the 64 into four categories, each containing 16 automata:

M2
1 =

{
M ∈M2|f (q1) = C, f (q2) = C

}
M2

2 =
{
M ∈M2|f (q1) = C, f (q2) = D

}
M2

3 =
{
M ∈M2|f (q1) = D, f (q2) = C

}
M2

4 =
{
M ∈M2|f (q1) = D, f (q2) = D

}
.

The automata in M2
1 play C regardless of the play of the other automaton. Therefore, these

automata are equivalent to MC , and hence payoff equivalent to MC over the setM2. Similarly, the

automata in M2
4 all play D regardless of the play of the other, so they are all payoff equivalent to

MD over M2.

For every M2 ∈ M2
2, there exists an equivalent M3 ∈ M2

3 (the only difference is that the states

are switched). For example, M2 = ({C,D} , {q1, q1} , {q2, q2}) and M3 = ({D,C} , {q2, q2} , {q1, q1}).

Both of these automata implement tit-for-tat, so they produce the same output regardless of the

input, and hence are payoff equivalent. Without loss of generality, I only consider those automata

in M2
2.

If automaton ME = ({C,D} , {q1, q2} , {q1, q2}) starts in q1, then regardless of the signals it

plays C in every round of the supergame, and hence is equivalent to MC . If ME starts in q2, then
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regardless of the signals, it plays D in every round, and hence is equivalent to MD. So depending

on the starting point, ME is equivalent to either MC or MD. After equivalent automata have been

eliminated, there are 17 remaining automata: MC ,MD, and the set M2
2\ME .

Note that all two-state automata have only one reachable SCC. For a two-state automaton to have

multiple strongly connected components, each state needs to be a strongly connected component.

The only two-state automaton which satisfies this is ME = ({C,D} , {q1, q2} , {q1, q2}). If ME starts

in qk, then only qk can be reached, so it only has one reachable SCC, regardless of the starting point.

Therefore, by Lemma B.2.16, any automaton which eventually always plays C is payoff equivalent

to MC over the set M2.

Out of the 17 remaining automata, three eventually always play C, and three eventually always

play D ,

Eventually Always Play C Eventually Always Play D

({C,D} , {1, 1} , {1, 2}) ({C,D} , {1, 2} , {2, 2})

({C,D} , {1, 1} , {1, 2}) ({C,D} , {2, 2} , {1, 2})

({C,D} , {1, 1} , {1, 1}) ({C,D} , {2, 2} , {2, 2})

So by Lemma B.2.16, these automata are payoff equivalent to MC and MD over M2. The

remaining 11 automata for the minimal set M̄2.

1. MC 5. ({C,D} , {1, 1} , {2, 1}) 9. ({C,D} , {2, 1} , {2, 2})

2. MD 6. ({C,D} , {1, 1} , {2, 2}) 10. ({C,D} , {2, 2} , {1, 1})

3. MCD 7. ({C,D} , {2, 1} , {1, 1}) 11. ({C,D} , {2, 2} , {2, 1})

4. MWSLS 8. ({C,D} , {2, 1} , {1, 2}).

�

Theorem 3.4.3. In the infinitely repeated PD game, when players have the simple signal func-

tion rSi and choose among the set of two-state automata, M2, there are only three types of robust
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equilibria:

1. L < 0 and Mi is payoff equivalent to MC for i = 1, 2,

2. L > 0 and Mi is payoff equivalent to MD for i = 1, 2, and

3. − (1− 2ε)3
< L < (1− 2ε)3 and Mi = MWSLS for i = 1, 2.

Proof of Theorem 3.4.3

If M2 is the best response to M1, then any automaton which is payoff equivalent to M2 is also a best

response to M1. Therefore, I only need to consider the automata in the reduced payoff equivalent

set M̄(2) from Lemma B.2.17 when finding equilibria. However, if one of the automata in M̄(2) is

an equilibrium, then all payoff equivalent automata are also equilibria.

Three of the automata in M̄(2) are open loop automata: MD,MC ,MCD. When L 6= 0, both

players have unique best responses for all strategies in PD, so by Proposition B.2.14 these are

equilibria if and only a Nash equilibrium is played in every stage game. Therefore, when L > 0,

the unique Nash equilibrium of the stage game PD is for both players to play D. So MD is an

equilibrium when L > 0.

There are 8 remaining automata in M̄2. For each of these automata M , I find the stationary

distributions and payoffs when matched with each of the other automata in M̄2. Using the payoffs,

I calculate the best response function for each of the remaining 8 automata over almost all of the

parameter space (all but set of measure zero). I find that the only regions which M1 = BR1 (M2)

and M2 = BR2 (M1) are those stated in the theorem. For conciseness, these stationary distributions

are not included here, but are available on my website.

The only equilibrium that is supported by a set of positive measure from these remaining 8

automata is MWSLS on the region − (1− 2ε) < L < (1− 2ε). So the three equilibria from M̄2 are

MC ,MD, and MWSLS .

There are also automata which are payoff equivalent to some of these three automata. By Lemma

B.2.16, every automaton which eventually always plays C is payoff equivalent to MC . Therefore,
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any combination of automata which eventually always play C is an equilibrium in the region L < 0.

Similarly, any pair of automata which eventually play D is an equilibrium in the region L > 0.

Finally, there are no other two-state automata which are payoff equivalent to MWSLS . Therefore,

the set of two-state equilibria that are supported by a region of positive measure is:

1. Both automata eventually always play C is a symmetric equilibrium if and only if L > 0.

2. Both automata eventually always play D is a symmetric equilibrium if and only if L < 0.

3. MWSLS if and only if − (1− 2ε)3 ≤ L ≤ (1− 2ε)3.

�

C D

C

D

1+L,1

0,0

0,0

1,1+L

C D

C

D

1+L,1+L

0,-L

-L,0

0,0

(a) BOS Game (b) MECG Game

Theorem B.2.18. In the infinitely repeated BOS game, when players have the simple signal function

rSi and choose among the set of two-state automata, M2, the only non-open-loop robust equilibria

are:

1. − (1−2ε)2

2ε(2−5ε+4ε2) < L < (1−2ε)2

1−4ε+10ε2−8ε3 and Mi = MWSLS.

Proof

The proof for this Theorem follows the argument of the proof of Theorem 3.4.3. Details available

upon request. �

Theorem B.2.19. In the infinitely repeated MECG game, when players have the simple signal
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function rSi and choose among the set of two-state automata, M2, the only non-open-loop robust

equilibria are:

1. L > 1−4ε+10ε2−8ε3

2ε(1−2ε)2 and Mi = MLSWS, and

2. L > − 1−8ε+14ε2−8ε3

2(1−ε)(1−2ε)2 and Mi = MWSLS.

Proof

The proof for this Theorem follows the argument of the proof of Theorem 3.4.3. Details available

upon request. �

Theorem 3.4.4. Suppose both players have simple signal functions rSi . If for i = 1, 2,

1. ui (C,C) > ui (C,D), and

2. ui (C,C) > ui(D,C)+ui(D,D)
2 ;

then there exists some ε̄ > 0 such that
(
MWSLS ,MWSLS

)
is an equilibrium for all ε ∈ (0, ε̄).

Proof of Theorem 3.4.4

To prove this theorem, I use the sufficient conditions for equilibria provided in Theorem 3.5.8. This

says that to be an equilibrium for all ε ∈ (0, ε̄),

1. For all communicating classes such that γ (Ak) = γ∗, UCCi (Ak) = UACi (a∗ (M−i)), and

2.

∂Ui (M1,M2, ε)
∂ε

= sup
M∈MSPM (M−i)

∂Ui (M1,M, ε)
∂ε

.

First assume that

ui (C,C) > ui (C,D) (B.14)

and

ui (C,C) >
ui (D,C) + ui (D,D)

2
(B.15)
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hold. I then show that the two sufficient conditions are satisfied, meaning
(
MWSLS ,MWSLS

)
is an

equilibrium for all ε ∈ (0, ε̄).

When both players play MWSLS , the Markov chain for the system is,

X
(
MWSLS ,MWSLS , ε

)
=



(1− ε)2
ε (1− ε) ε (1− ε) ε2

ε2 ε (1− ε) ε (1− ε) (1− ε)2

ε2 ε (1− ε) ε (1− ε) (1− ε)2

(1− ε)2
ε (1− ε) ε (1− ε) ε2


.

This system has one communicating class, A, consisting of the first state of the Markov chain.

Since there is only one communicating class, it trivially minimizes stochastic potential. Therefore,

it must be the case that the payoff in this communicating class is equal to the optimal absorbing

class payoff. The payoff for the communicating class is,

UCCi (A) = ui (C,C) ,

which is the stage-game payoff associated with joint action pair (C,C).

Next, I must calculate the optimal absorbing class payoff for MWSLS . There are three extreme

absorbing classes, such that any other absorbing class can be written as a convex combination of

these extreme absorbing classes. So one of these has to be the optimal absorbing class.

1. a1(MWSLS) = ({q1} , {C}) with payoff ui
(
a1(MWSLS)

)
= ui (C,C)

2. a2(MWSLS) = ({q1, q2} , {D,D}) with payoff ui
(
a2(MWSLS)

)
= ui(D,C)+ui(D,D)

2

3. a3(MWSLS) = ({q2} , {D}) with payoff ui
(
a3(MWSLS)

)
= ui (C,D)

By (B.14) and (B.15), it is clear that a1

(
MWSLS

)
is the optimal absorbing class. Therefore

UCCi (A) = UACi
(
a∗i
(
MWSLS

))
, so the first condition is satisfied.

Next, I need to show that the marginal utility condition is satisfied. By Lemma B.2.17, the set of

automata can be reduced some minimal payoff equivalent set. There are 11 remaining automata, call
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this set M̄2. It can easily be verified that when MWSLS is matched with any automaton M ∈ M̄2,

then all communicating classes minimize stochastic potential.

There are only two automata, such that when paired with MWSLS , all communicating classes

yield the optimal absorbing class payoff. These are MWSLS and M5 = ({C,D} , {1, 1} , {2, 1}).

When both play MWSLS , then the stationary distribution is,

π
(
MWSLS ,MWSLS , ε

)
=



1− 4ε+ 7ε2 − 4ε3

ε (1− ε)

ε (1− ε)

ε
(
2− 5ε+ 4ε2

)



′

.

By Lemma 3.5.3, the payoff is the stationary distribution dotted with the vector of payoffs,

Ui
(
MWSLS ,MWSLS , ε

)
= π

(
MWSLS ,MWSLS , ε

)
· u,

where u is the vector of payoffs. Therefore the marginal utility at ε = 0 is,

∂Ui
(
MWSLS ,MWSLS , 0

)
∂ε

= −4ui (C,C) + ui (C,D) + ui (D,C) + 2ui (D,D)

When player 1 plays MWSLS and player 2 plays M5, then the stationary distribution is,

π
(
MWSLS ,M5, ε

)
=

1
1 + 2ε− 6ε2 + 10ε3 − 4ε4



1− 3ε+ 5ε2 − 2ε3

ε
(
1− 2ε+ 3ε2 − 2ε3

)
ε
(
2− 3ε+ 2ε2

)
ε
(
2− 6ε+ 7ε2 − 2ε3

)


.
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Again by Lemma 3.5.3, the payoff is the dot product,

Ui
(
MWSLS ,M5, ε

)
= π

(
MWSLS ,M5, ε

)
· u,

This means the marginal utility at ε = 0 is,

∂Ui
(
MWSLS ,M5, 0

)
∂ε

= −5ui (C,C) + ui (C,D) + 2ui (D,C) + 2ui (D,D) .

So

∂Ui
(
MWSLS ,MWSLS , 0

)
∂ε

≥
∂Ui

(
MWSLS ,M5, 0

)
∂ε

⇐⇒ ui (C,C) > ui (D,C) .

This clearly holds by the assumption (B.14), and therefore both conditions are satisfied. So
(
MWSLS ,MWSLS

)
is an equilibrium for all ε ∈ (0, ε̄) if the two conditions are satisfied. �

B.3 Examples

B.3.1 Stochastic Potential Example

To better understand the definitions used for the theorem, I provide a corollary which shows that

both players playing tit-for-tat can never be an equilibrium in the finite-state case. Let MTFT

be the two-state tit-for-tat automaton from Figure 3.6(a). Suppose players use the simple signal

function rSi from (3.1). Finally suppose that players play supergame G with the prisoner’s dilemma

stage-game payoffs displayed in Figure 3.1.

Corollary B.3.1. Suppose players play super game G with stage game PD and signal functions rSi ,

there is no ε̄ > 0 such that the pair of automata
(
MTFT ,MTFT

)
is an equilibrium for all ε ∈ (0, ε̄).
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Proof

To prove this, I need to show that the necessary conditions from Theorem 3.5.6 are not satisfied.

The Markov chain of this system is,

X (M1,M2, ε) =

xCC

xCD

xDC

xDD



(1− ε)2
ε (1− ε) ε (1− ε) ε2

ε (1− ε) ε2 (1− ε)2
ε (1− ε)

ε (1− ε) (1− ε)2
ε2 ε (1− ε)

ε2 ε (1− ε) ε (1− ε) (1− ε)2


.

There are three communicating classes: AC =
{
xCC

}
, ACD =

{
xCD, xDC

}
, AD =

{
xDD

}
. The

resistance matrix R which tells the resistance between each communicating class is,

R =

AC

ACD

AD


0 1 2

1 0 1

2 1 0

 .

The entry in the first row, third column means that to probability of getting from AC to AD is

order ε2. The graph G with a vertex for each communicating class, and edge weights equal to the

resistance between classes is displayed in Figure B.3.1(a). The optimal i-tree for each communicating

class is displayed by the bold lines in Figure B.3.1(b)-(d). These graphs show that each communi-

cating class has stochastic potential γi = 2. Therefore, the minimum stochastic potential for this

system is γ∗ = 2. By Theorem B.2.13, all communicating classes are prevalent. By Theorem 3.5.6,

all prevalent communicating classes must yield the same payoff as the optimal absorbing class. The

optimal absorbing class for each player yields payoff 1. Both players playing MTFT only satisfies

the necessary conditions if all communicating classes yield the same payoff, 1. Since U2

(
AC
)

= 1

and U2

(
AD
)

= 0, it is never possible for
(
MTFT ,MTFT

)
to be an equilibrium for all ε ∈ (0, ε̄). �
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AC

ACD

AD

11

2

2

1 1

(a) Resistance graph

AC

ACD

AD

11

2

2

1 1

AC

ACD

AD

11

2

2

1 1

AC

ACD

AD

11

2

2

1 1

(b) Optimal i-tree for AC (c) Optimal i-tree for ACD (d) Optimal i-tree for AD

Figure B.3: Resistance graph and optimal i-trees if both players play MTFT .

B.3.2 Constructed Automaton Example

Suppose that player 1 plays the three state automaton displayed in Figure B.4. First, player 2 wants

to determine the desired absorbing class. For automaton M1, the optimal absorbing class based on

the prisoner’s dilemma game from 3.1 is a∗ (M1) = {{q1} , {C}}. Assume that player 2 wants to

create an automaton M2 which only gets stuck in this absorbing class. This automaton has three

regions as described above, and is displayed in Figure B.5. First the absorbing region is simple, it

Start C D D
q1 q2 q3

D

C

C C D

D

Figure B.4: Homing sequence example: automaton M1.
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Absorbing Region

Homing Region Resync Region

C
q1

C
q2

D
q3

D
q4

C
q5

D
q6

C

M1 in state q3

M1 in state q2

D

CD

C
CD

D CD

D

C

Figure B.5: Homing sequence example: constructed automaton M2.

consists of one state, q1, which plays C and returns when M1 plays C. It is clear that when M2 is

in q1, and M1 is in q1, player 2 is in his optimal absorbing class. If there is an incorrect signal while

in the absorbing region, player 2 loses track of the current state of M2, and therefore moves to the

homing region to determine the current state.

The homing sequence for this automaton is h = C,D. To see why this is a homing sequence,

suppose automaton M1 starts in state q1. Player 2 is trying to determine the current state by

playing the homing sequence. In the first period, M1 plays C and player 2 plays C. Automaton

M1 returns to state q1. In the second period M1 plays C again and player 2 play D. So the output

from automaton M1 from the homing sequence is C,C. The other sequences of plays for the other

starting states is displayed in the following table:
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Starting State First Play Second Play Final State

q1 C C q2

q2 D D q3

q3 D C q2

When player 2 plays the homing sequence and sees output C,C or D,C, M1 must be in state q2.

When the output is D,D, M1 must be in q3. So based on this output, player 2 knows the current

state of M1. The second region of M2 is the homing region. In the homing region, M2 always plays

the homing sequence, and leaves the homing sequence after it has played this sequence. The homing

region in Figure B.5 consists of states q2, q3, and q4. In state q2 the first term of the homing sequence

is played, then depending on the output, M2 moves to either state q3 or q4 where the second term

of the homing sequence is played. The response from automaton M1 after the homing region allows

player 2 to know the current state of M1. In this example, M1 is either in state q2 or q3 after the

homing region.

Finally, once the state has been determined, the automaton M2 simply has to resynchronize the

two automata back to the desired absorbing class a∗2 (M1). The resynchronization region consists of

states q5 and q6. If M1 is in state q2, then automaton M2 goes to state q6. If automaton M1 is in

state q3, then automaton M2 goes to state q5. After the resynchronization region, both automata

are in state q1, and they remain here until an incorrect signal is received.
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Appendix C

Hysteresis in Coordination Games

C.1 Proofs

Lemma C.1.1. In the game cg(c) with c ∈ (0, 1), there are no asymmetric equilibria.

Proof

Let σi be the probability that player i plays xH . Let σ ∈ [0, 1]n be the vector of probabilities for all

players. Suppose by means of contradiction that σk 6= σj . The payoffs for player i given that the

other players play according to σ are

ui (xH ,σ−i) = xH
∏
l 6=i

σl + xL

1−
∏
l 6=i

σl

− cxH , and

ui
(
xL,p−i

)
= xL (1− c) .

In order for σ to be a Nash equilibrium, both players must be indifferent between both of their

actions, given the other players probabilities. So to be an equilibrium σ must satisfy,

xH
∏
l 6=i

σl + xL

1−
∏
l 6=i

σl

− cxH = xL (1− c) for all i.
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Since xL (1− c) is independent of σ, then

xH
∏
l 6=i

σl + xL

1−
∏
l 6=i

σl

− cxH = xH
∏
l 6=j

σl + xL

1−
∏
l 6=j

σl

− cxH for all i, j ∈ I

which can be simplified to,

xH
∏
l 6=i

σl + xL

1−
∏
l 6=i

σl

− xH∏
l 6=j

σl − xL

1−
∏
l 6=j

σl

 = 0 for all i, j ∈ I

(xH − xL) (σj − σi)
∏
l 6=i,j

σl = 0 for all i, j ∈ I.

The only way this equation can be satisfied for all i, j ∈ I is if σi = σj for all i, j.

�

Proposition 4.2.3. Using the symmetric quantal response equilibrium function f with parameter

λ, the equilibrium correspondence Σ∗ (c, λ) as λ varies has the following properties:

1. 1/2 ∈ Σ∗
(

1
2N−1 , λ

)
for all λ.

2. The correspondence varies continuously from λ = 0 to λ = ∞ with endpoint σH = 1 if

c < 1
2N−1 and σH = 0 if c > 1

2N−1 .

Proof

The first part follows from the functional form of (4.2). For the second part, rearrange (4.2) to get,

λ(σ∗H) =
ln
(

1−σ∗H
σ∗H

)
(xH − xL)

(
σ∗H

N−1 − c
) . (C.1)

This is a well defined and continuous function for all σ∗H 6= c
1

N−1 . The numerator of Equation

(C.1) is a decreasing function of σ∗H , and is negative for σ∗H > 1/2 and positive for σ∗H < 1/2. The

denominator is increasing in σ∗H and changes signs when σ∗H = c. Therefore, the function λ (σ∗H) is

increasing for c < σ∗H
N−1 and decreasing for c > σ∗H

N−1.

It is clear that λ
(

1
2

)
= 0 for all values of c. Therefore if dλ

dσ∗H

(
1
2

)
> 0 then the correspondence
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varies continuously from λ = 0 to λ =∞ with endpoint σH = 0. Alternatively, if dλ
dσ∗H

(
1
2

)
< 0 then

the correspondence varies continuously from λ = 0 to λ =∞ with endpoint σH = 1.

dλ

dσ∗H
(σ∗H) =

− (xH−xL)(σ∗HN−1−c)
σ∗H(1−σ∗H) − ln

(
1−σ∗H
σ∗H

)
(N − 1) (xH − xL)

(
σ∗H

N−2
)

(xH − xL)2 (
σ∗H

N−1 − c
)2

dλ

dσ∗H

(
1
2

)
=

−4

(xH − xL)
(

(1/2)N−1 − c
) (C.2)

Since xH > xL, Equation (C.2) will be positive when c > 1
2N−1 , and negative when c < 1

2N−1 . �

Proposition 4.2.4. For every coordination game, g (c) ∈ CG,

1. There exists a λ∗ such that the logit SQRE correspondence, Σ∗(c, λ∗), exhibits hysteresis for

all λ > λ∗, where,

λ∗ =
(

N

N − 1

)N 1
xH − xl

.

2. The critical value λ∗ is decreasing in N .

3. For N = 2, the saddle-node bifurcation points are given by,

σH =
1
2
± 1

2

√
1− 4

λ (xH − xL)
.

4. For N > 2, the saddle-node bifurcation points will not be symmetric around σH = 1
2 .

Proof: First, calculate the symmetric quantal response equilibrium of the game. Suppose that

all players play xH with probability σH and xL with probability σL. So the probabilities are,

P (All others play H) = σN−1
H , and

P (At least one other L) = 1− σN−1
H .
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The payoffs are as follows,

ui (xL, σ−i) = (1− c)xL

ui (xH , σ−i) = xL(1− σN−1
H ) + xHσ

N−1
H − cxH

= xL − cxH + σN−1
H (xH − xL) .

Therefore, the symmetric logit quantal response equilibrium must satisfy the following equations,

σH =
eλui(xH ,σ−i)

eλui(xL,σ−i) + eλui(xH ,σ−i)

=
1

1 + eλ[ui(xL,σ−i)−ui(xH ,σ−i)]

=
1

1 + eλ(xH−xL)(c−σN−1
H )

. (C.3)

The symmetric QRE will be the σ∗H that solves Equation (C.3). In order to show that hysteresis is

possible, it is necessary to show that the bifurcation correspondence, Σ∗(c, λ), has the double saddle-

node bifurcation. To do this, we find c∗ (σH), which is a function. Next, show that limσH→0 c
∗(σH)→

−∞, limσH→1 c
∗(σH) → ∞, and c∗′(σH) < 0 for some σH ∈ (0, 1). If these conditions hold then,

the bifurcation correspondence, σ∗H(c), will have a double saddle-node bifurcation and look like an

s-shaped curve. Rearrange Equation (C.3) to get,

c∗(σH) = σN−1
H +

ln 1−σH
σH

λ (xH − xL)
. (C.4)

Which has a unique value for c∗ for each value of σH . From this, notice that,

lim
σH→0

c∗(σH)→ ln∞
λ (xH − xL)

=∞

and,

lim
σH→1

c∗(σH)→ 1 +
ln 0

λ (xH − xL)
=∞.
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Finally,

∂c∗

∂σH
(σH) = (N − 1)σN−2

H − 1
λ (xH − xL)

(
1

σH (1− σH)

)
. (C.5)

Therefore,

∂c∗

∂σH
(σH) > 0 ⇐⇒ λ >

1

(N − 1) p (1− p)N−1 (xH − xL)
.

In order to get the s-shaped curve, this needs to hold for some σH ∈ (0, 1). Since the right side of

the above equation is minimized when σH = 1/N, so see that,

1

(N − 1)σH (1− σH)N−1 (xH − xL)
≥ 1

(N − 1) 1/N (1− 1/N)N−1 (xH − xL)

≥ 1
N−1
N

N
(xH − xL)

=
(

N

N − 1

)N 1
xH − xL

.

Therefore, if

λ∗ =
(

N

N − 1

)N 1
xH − xL

,

then for all λ ≥ λ∗, the bifurcation correspondence Σ∗ (c, λ) (c) has the desired s-shaped form. Also,

note that, (
N

N − 1

)N
≥
(
N + 1
N

)N+1

for all N ≥ 2.

This holds by the Bernoulli Inequality1. Therefore, λ∗ is decreasing in N . This means that as the
1The Bernoulli Inequality says that for 1 ≥ α > 0 and δ ≥ −1,

(1 + δ)α ≤ 1 + αδ.

Set α = N/N+1 and δ = − 1
N

, then the inequality tells us that,„
1−

1

N

«N/N+1

≤ 1−
N

N + 1
×

1

N
=

N

N + 1
.

Taking the reciprocal, „
N

N − 1

«N/N+1

≥
N + 1

N
.

Or equivalently, „
N

N − 1

«N
≥

„
N + 1

N

«N+1

.
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group size increases, holding everything else constant, the s-shaped curve is more likely.

Finally for any fixed value of λ, the saddle-node bifurcation points of the s-shaped curve are at

the two points where,

∂c

∂σH
(σH) = 0.

Then set (C.5) to zero, and rearrange to get,

(1− σH)σN−1
H − 1

λ (xH − xL) (N − 1)
= 0. (C.6)

An explicit solution for this equation in not tractable unless N = 2. In the N = 2 case, solving this

gives the solution

σH =
λ (xH − xL)±

√
λ2 (xH − xL)2 − 4λ (xH − xL)

2λ (xH − xL)

=
1
2
± 1

2

√
1− 4

λ (xH − xL)
.

Also see that if λ ≥ λ∗ = 4
xH−xL , then

1 ≥ 4
λ (xH − xL)

.

So if λ ≥ λ∗, then the two roots are always real, and if λ < λ∗, then there are no real roots,

which is what we would expect. These two saddle-node bifurcation points are symmetric around

σH = 1
2 for the N = 2 case. However, for the N > 2 case, we would not expect to see this symmetry

due to the form of (C.6).
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