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ABSTRACT 

DYNAMICS OF MULTICELLULAR AGGREGATION AND DISAGGREGATION:  

IMPLICATIONS FOR TISSUE ENGINEERING AND CANCER METASTASIS 

 

May 2010 

 

Melissa Davis Pope 

B.S., Chemical Engineering, University of California, Irvine 

Ph.D., Bioengineering, California Institute of Technology 

 

Epithelial tissues play an important physiological role.  Tightly cohesive epithelial 

sheets form protective barriers that line organs, and in addition, fold into a wide variety 

of complex 3D architectures with specialized functions.  A key facet of tissue 

morphogenesis involves the aggregation of similar cells into cohesive groups.  Here, we 

have analyzed the dynamics of aggregation using quantitative imaging techniques 

(Chapter II).  We show that multicellular aggregation dynamics adhere to a transport-

reaction model that is broadly appreciated for physicochemical systems.  This model of 

aggregation dynamics differs from the classical equilibrium paradigm of cell aggregation 

based on differential adhesivity of cells to neighboring cells versus the underlying 

substratum.  Our findings reveal a previously unrecognized role for cell motility during 

developmental aggregation processes and provide design principles for promoting cell 

aggregation dynamics in contexts such as tissue engineering that are distinct from the 

currently accepted paradigm.   
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Multicellular aggregation is reversible.  In fact, the break-up of multicellular 

clusters (“cell scatter”) is not only important for developmental processes, but also 

contributes to metastasis.  However, current molecular genetics studies of cell scatter are 

predominantly qualitative and do not provide a quantitative assessment of the relative 

strengths of molecular signals in inducing cell scatter.  By developing and implementing 

an automated image processing algorithm, we quantify two aspects of cell scatter – the 

breakdown of cell-cell adhesions and the dispersion of detached cells – in mammary 

epithelial cells treated with different combinations of biochemical cues (Chapter III).  We 

demonstrate that our metrics of cell scatter identify the effects of individual cues and 

detect synergies between them.  We envision that this approach will be useful for 

mapping the relative potencies of regulators of cell scatter and may guide therapeutic 

strategies.   

 

Multicellular processes such as aggregation and scatter involve molecular-level 

changes within cell-cell adhesions.  To complement imaging-based strategies at the 

cellular and multicellular levels, we developed a quantitative microtiter assay for 

examining the expression of cell-cell adhesion proteins and associations between them 

(Chapter IV).   Using two case studies related to cancer biology, we demonstrate that our 

assay provides a more detailed quantitative picture of molecular changes within epithelial 

adhesive structures, which can provide added insight into the regulation of 

morphogenetic events. 
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Chapter I.   INTRODUCTION 

 

1.    Introduction 

The assembly of migratory cells into a cohesive group is a key facet of embryonic 

tissue development.  Multicellular condensation occurs in the initial stages of 

chondrogenesis (cartilage formation), for example, and is believed to be a prerequisite for 

chondrogenic differentiation.1  In addition, migrating neural crest cells are observed to 

condense into sub-populations en route to distant embryonic sites.  This is thought to 

facilitate the immobilization of these cells to form solid tissues.2   

 

In addition to multicellular aggregation, the dissociation of single cells from 

condensed tissue can also play a key role in tissue development.  Kidney development, 

for example, is characterized by repeated cycles of condensation and dissociation.3-5  In 

addition, delamination of endothelial cells from the embryonic atrioventricular canal 

gives rise to a cell population that eventually forms the heart valves.6  Cellular 

dissociation also plays a role in tumorigenesis.  In this context, metastatic cells 

delaminate from the tumor mass and migrate to secondary sites, thereby initiating the 

lethal phase of cancer progression.7  

 

At the molecular level, condensation and dissociation events are often associated 

with a mesenchymal-epithelial transition or an epithelial-mesenchymal transition (EMT), 

respectively.8   These transitions are triggered by extracellular activators and 
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characterized by the gain (MET) or loss (EMT) of epithelial characteristics such as the 

expression of cell-cell adhesion receptors.  Condensation and dissociation also involve 

cellular processes, such as cell-cell adhesion, cell-matrix adhesion and cell migration on 

the extracellular matrix.   

 

2.    Adherens junctions mediate strong cell-cell adhesion 

In epithelial tissues, E-cadherin-containing adherens junctions are important 

mediators of cell-cell adhesion.9  E-cadherin is a transmembrane protein, the extracellular 

domain of which homotypically binds E-cadherin molecules on adjacent cells.10  The 

intracellular tail connects to the actin cytoskeleton via protein:protein interactions 

involving α-catenin, β-catenin, vinculin and many other proteins.  In this manner, 

adherens junctions link the actin cytoskeleton of contacting cells, creating an “actin belt” 

that imparts structural strength to a multicellular aggregate (Figure I-1).  

 

 

Figure I-1.  Generalized structure of adherens junctions.   
E-cadherin molecules span the plasma membrane to bind E-cadherin molecules on 
neighboring cells.  E-cadherin’s cytoplasmic tail interacts with β-catenin and α-catenin, 
forming a connection to the actin cytoskeleton. 
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3.    Focal adhesions assemble at sites of cell-matrix adhesion 

Cells use many adhesion receptors to attach to the extracellular matrix, the most 

prominent being the integrin family of transmembrane receptors.  Integrin extracellular 

domains recognize a protein component of the extracellular matrix, while the intracellular 

domain interacts with numerous anchor proteins to form signaling-rich complexes called 

focal adhesions.11  These anchor proteins, which include talin, α-actinin and vinculin, 

tether integrins to the actin cytoskeleton and enable cell-generated contractile forces to be 

transmitted onto the underlying substratum, generating the driving force needed for cell 

migration (Figure I-2).12  

 

Figure I-2.  Generalized structure of focal adhesions.   
Integrin transmembrane receptors bind to extracellular matrix ligands.  Integrin 
cytoplasmic tails bind to multiple anchor proteins, which tether integrins to the actin 
cytoskeleton to mediate strong cell-substratum adhesion. 

 

 

4.    Cell migration on the extracellular matrix 

Cell migration is a cyclic process.  A cell first extends membrane protrusions – 

spike-like filopodia and broad lamellopodia – in the direction of movement.  These 
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protrusions are driven by actin polymerization and stabilized by the assembly of focal 

adhesions beneath them.  Focal adhesions provide the traction necessary to translocate 

the cell body forward, and are subsequently disassembled at the cell rear to allow the 

trailing edge to detach from the substratum (Figure I-3).12  Because migrating cells must 

be able to exert traction yet readily detach, cell speed exhibits a biphasic dependence on 

substratum adhesivity – a weakly adhesive substratum facilitates little traction while a 

strongly adhesive substratum inhibits detachment.13 

 

 

Figure I-3.  Steps in cell migration.   
(A) Actin polymerization drives membrane protrusions at the leading end of the cell, 
where new cell-substratum adhesions are formed.  (B)  These newly-formed adhesions 
provide the traction necessary to translocate the cell body forward.  (C)  Adhesions are 
disassembled at the trailing end of the cell to allow cell detachment from the substratum.  
Adapted from Ridley et al.  Science (2003). 

 

 

5.    Current results 

To better understand the roles of cell-cell interactions, cell-matrix adhesions and 

cell migration in condensation and dissociation, we utilize in vitro aggregation and scatter 

assays that mimic these in vivo phenomena.  Epithelial cells cultured on adhesive 

substrata self-assemble into 2D multicellular clusters (“aggregation”).  In response to 
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extracellular cues, these cell clusters dissociate and individual cells disperse (“scatter”).  

Aggregation and scatter are widely used model systems in which to study condensation 

and dissociation events.  In fact, the current understanding of the complex biochemical 

network regulating EMT comes largely from studies of cell scatter.8   

 

The classical paradigm describing multicellular aggregation asserts that the 

equilibrium state of aggregation is determined by differential cell adhesivity to 

neighboring cells versus the underlying substratum.14-16  Because organ formation is a 

multi-step process, in vivo aggregation events must occur within specific time constraints.  

Therefore, aggregation dynamics are likely to be important.  We assert that because cells 

must first “find” a neighbor (a transport step) before forming cell-cell contacts, 

aggregation dynamics may follow a transport-reaction model ascribed widely to 

physiochemical systems.17, 18  In Chapter II, we present quantitative studies of 

aggregation dynamics that probe this possibility.  Using timelapse microscopy, we 

tracked collisions between migrating cell pairs and quantified the lifetimes of cell-cell 

interactions (tadhesion).  Based on the initial density of seeded cells and quantitative 

measurements of cell speed, we also determined the mean time between cell-cell 

collisions (tmotility).  We find that tmotility is greater than tadhesion across a range of adhesive 

substrata, suggesting aggregate assembly to be transport-limited.  Quantitative 

measurements of aggregate size confirm this to be the case:  aggregate size exhibits a 

biphasic dependence on substratum adhesivity, which mimics the biphasic trend observed 

for cell speed.   These results are consistent with a two-step physiochemical model for 

multicellular aggregation dynamics and highlight a previously unrecognized role for 
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cellular motility in aggregation dynamics.  Our study provides insight into a 

developmental phenomenon and design principles useful for facilitating multicellular 

aggregation in tissue engineering contexts.   

 

Because of the physiological and clinical significance of dissociation events, 

much effort has been made to identify the molecular signals that control cell scatter.  

Advancements are being made in cataloging the signaling pathways involved; however 

because current studies of cell scatter are largely qualitative, an emerging challenge is to 

understand the quantitative contributions of these signals and any coupling between them.  

In Chapter III, we have therefore developed novel quantitative metrics to systematically 

characterize cell scatter.  Our metrics capture two aspects of scatter – the break-down of 

cell-cell contacts and cellular dispersion.  In mammary epithelial cells treated with 

stimulatory cocktails containing epidermal growth factor (EGF), we demonstrate that our 

metrics delineate the effects of individual molecular signals and detect synergies between 

them.  To facilitate the rapid extraction of our metrics from fluorescence images of 

scattering cells, we have also developed automated image processing techniques using 

MATLAB.  We envision that these metrics coupled with our automated image processing 

techniques will facilitate quantitative mapping of the biochemical cues governing scatter 

as well as high throughput screening of cancer therapeutics. 

 

Multicellular processes such as aggregation and scatter involve changes to the 

expression levels of and interactions between cell-cell adhesion proteins.  The association 

of E-cadherin with intracellular binding partner β-catenin, for example, is essential for 
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the proper function of epithelial adherens junctions and is an attractive molecular readout 

of their integrity.  To complement our imaging-based studies at the cellular and 

multicellular levels, we have developed a quantitative microtiter assay for determining 

the amount β-catenin bound to E-cadherin in cultured cells (Chapter IV).  In two case 

studies closely related to cancer cell biology, we demonstrate that our assay can provide a 

more detailed picture of molecular dynamics within adherens junctions, which will 

provide added insight into aggregation and scatter.   

 

Taken together, these studies provide novel insights into the regulation of 

aggregation and scatter as well as methodologies useful for both future studies and 

biomedical applications. 
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