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Abstract

Synaptic signal transduction regulates synaptic plasticity, and, on a larger scale,

memory itself. The aim of this dissertation is to elucidate some of the mechanisms

that control synaptic plasticity in the short term by modulating synaptic morphology

and in the long term by controlling gene expression.

One modification associated with synaptic plasticity is the change in the size of

the spine, the micron-scale structure on the dendrite which supports the synapse.

The size and shape of the spine are controlled by the actin cytoskeleton. I studied

how stimulation of synaptic receptors drives changes in activation of proteins that

regulate actin polymerization. We identified neuron-specific aspects of a canonical

actin regulation pathway and characterized activity-regulated phosphatase activity.

Changes in spine size and other events associated with synaptic plasticity can

begin within seconds of synaptic stimuli, but persistent changes require gene expres-

sion. For example, Arc, an immediate early gene required for changes in synaptic

strength to persist, is the only transcript known to be both transcribed in response

to synaptic stimulation and translocated specifically to the site of the stimulation.

However, the role of Arc in promoting the plasticity of the synapse is still under inves-
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tigation. We studied its binding partners and found that an interaction demonstrated

in non-neuronal cells was not evident in neurons.

We also studied changes in transcription over longer time periods. In order to iden-

tify pathways involving the postsynaptic protein densin, we assessed global changes in

transcription with RNA-Seq, which uses ultra-high-throughput, short-read sequenc-

ing to measure transcript abundance. Compared to wild-type mice, densin knockout

mice exhibit increased abundance of CaMKIIα (a densin binding partner), increased

abundance of immediate early gene expression including Arc, and downregulated

GABAAR subunits.

In summary, we investigated posttranslational modifications that take place within

seconds of stimulation, binding interactions occurring in steady-state conditions in

wild-type mice, and homeostatic adaptations to the chronic absence of a gene. These

investigations into synaptic signaling illustrate not only the complexity of synapse-

related regulatory networks but also the range of time scales they span.
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Chapter 1

Introduction

Synaptic plasticity, the ability of synapses to adjust their capacity for transmitting

information, is a prominent cellular mechanism by which the brain stores information.

In the postsynaptic cell, these adjustments involve receptor insertion, cytoskeletal

remodeling, and changes in gene expression. The signal transduction that underlies

some of these processes is initiated in the postsynaptic density (PSD), a tightly bound

group of receptors, scaffolds, and signaling molecules. This thesis describes studies of

these signal transduction cascades and the responses they trigger.

My doctoral work involved three main projects, covered in chapters 2 through 4.

Chapter 2 describes changes in transcript abundance in a mouse line in which a

prominent postsynaptic protein, densin-180, has been genetically knocked out. Chap-

ter 3 discusses the regulation of the cytoskeleton by N-methyl-D-aspartate (NMDA)

receptor-dependent signaling cascades. Chapter 4 describes the protein-protein inter-

actions of Arc, the product of an immediate early gene that is transcribed in response

to memory-generating events and whose transcript is targeted to activated regions of

the dendrite. These studies add to our body of knowledge of the cellular processes

that support learning and memory.
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1.1 Densin and its effect on transcription

Densin is an abundant PSD protein whose function has been less studied than many

other PSD proteins. It is the focus of Chapter 2, in which I describe our study of

transcription in the densin knockout mouse. To provide context for that chapter, I

survey results of previous densin experiments and introduce RNA-Seq, a new RNA-

sequencing method we used to measure transcription.

1.1.1 Densin, a postsynaptic protein

The PSD is central to synaptic structure and function, and many PSD components

have been extensively investigated. These include the α-amino-3-hydroxyl-5-methyl-

4-isoxazole-propionate (AMPA) and NMDA-type glutamate receptors, the scaffold

protein PSD-95, and signaling molecules Calcium/Calmodulin-Dependent Protein Ki-

nase II (CaMKII) and SynGAP. These core PSD proteins are tightly associated and

are not solubilized by the relatively harsh detergent N-lauroyl sarcosinate (sarcosyl).

Another core PSD protein is densin-180, the product of the lrrc7 gene (Apperson

et al., 1996; Wang et al., 2003). Much of the predicted function of densin is inferred

from its structural motifs and binding partners. Densin is a large protein (180 kiloDal-

tons) and the founding protein in the LAP (leucine rich repeat and PDZ-containing)

family of proteins (PDZ domains are binding domains, often found in multi-domain

scaffold proteins, named for the proteins PSD-95, discs large, and zona occludens 1.).

Densin has 16 leucine rich repeats (LRRs) and a C-terminal PDZ domain. It also

contains a mucin-like domain that is glycosylated with large sialic acid residues, which
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are only found on extracellular protein domains (Apperson et al., 1996). Like other

PSD proteins, densin is not solubilized by sarcosyl. However, a solution containing

1 M NaCl and 2 percent of either of the detergents Triton or CHAP solubilizes ap-

proximately half the densin in the PSD fraction, suggesting that it is bound by a

combination of lipid and hydrophilic interactions (Apperson et al., 1996).

LRR 

domains

PDZ

domain

MAGUIN-1, !-catenin, "-actinin binding domain

site phosphorylated by CaMKII" 

domain binding CaMKII"

*

Figure 1.1: Densin contains 16 leucine rich repeat (LRR) domains and a C-terminal
PDZ domain.

Densin binds PSD proteins such as CaMKII (a major regulator of synaptic plastic-

ity), MAGUIN-1 (a direct binding partner of PSD-95), α-actinin (a calcium-regulated,

actin-binding protein that also binds the NMDA receptor) and shank (a postsynaptic

scaffold) (Nakagawa et al., 2004; Ohtakara et al., 2002; Quitsch et al., 2005; Walikonis

et al., 2001; Wyszynski et al., 1997). A yeast two-hybrid approach (Izawa et al., 2002)

revealed that densin binds δ-catenin/NPRAP (neural plakophilin-related armadillo

repeat protein). This association was also seen in Triton extracts from synaptoso-
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mal fractions where δ-catenin and N-cadherin were immunoprecipitated with densin

(Izawa et al., 2002).

Densin may anchor CaMKII to the PSD, acting as a link between α-actinin and

CaMKII. α-actinin is a calcium-regulated, actin-binding protein that regulates spine

density and has been implicated in anchoring NMDA receptors in the PSD (Wyszyn-

ski et al., 1997, Nakagawa et al., 2004 but see also Wyszynski et al., 1998). Distinct

regions of densin (the PDZ domain and the membrane proximal region respectively)

mediate the direct binary interactions between densin and α-actinin or CaMKII. Cur-

rent experimental evidence indicates that densin can bind to α-actinin and CaMKII

at the same time, thus supporting our hypothesis that densin can act as a link be-

tween these two proteins. In particular, CaMKII is unable to out-compete the α-

actinin–densin interaction and, conversely, α-actinin is unable to out-compete the

CaMKII–densin interaction (Walikonis et al., 2001)

Densin may also have a role in synaptic plasticity. CaMKII is central to synaptic

plasticity. For example, it triggers signal cascades that regulate numerous aspects of

synaptic potentiation, including receptor insertion, changes in spine shape and gene

expression. The affinity of densin for CaMKIIα increases dramatically when CaMKII

is autophosphorylated (Strack et al., 2000; Walikonis et al., 2001). This observation

suggests that densin may be important for normal synaptic plasticity because au-

tophosphorylation of CaMKII increases dramatically after LTP. The increased affinity

under these conditions may be a mechanism by which activated CaMKII is localized

to the PSD.
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Densin may play different roles in developing and mature neurons. Developmentally-

regulated splice variants of densin have been identified (Jiao et al., 2008; Strack et al.,

2000). In rat, 3 major variants are expressed at embryonic day 15 (E15, the earli-

est time point measured), and these are no longer expressed by postnatal day 14

(P14). The canonical adult densin transcript, densin-180, is not detectable at E15

or E18, is weakly expressed at P1 and is strongly expressed at P7 and later (Strack

et al., 2000). Additionally, proteins produced from splice variants are differentially

distributed by centrifugal fractionation, suggesting that these variants are targeted

to different cellular locations. Protein products of the densin-180 transcript and the

two splice variants are enriched in the cytoskeletal, detergent-insoluble fraction. The

product of another variant is enriched in the cytoskeletal, detergent-soluble fraction.

Products of three other splice variants are found in the cytosolic fraction (Jiao et al.,

2008).

Because the potential roles described above are inferred from binding-study data,

a densin knockout mouse was created (Medina-Marino, 2009). These mice are viable

and breed normally, but display clasping and runting phenotypes. Clasping behavior

is characterized by suspending the mouse from its tail and observing whether the limbs

splay apart (which is normal wild-type behavior) or are tucked into its body (which

is common in many different types of neuropathy). Runted densin knockout mice

achieve normal weight by adulthood (Medina-Marino, 2009). The cause of the runt

period is unknown, but deficiencies seen in adults could be, in part, the result of these

developmental defects. It was also observed that approximately fifty percent of densin
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knockout mice injected with the general anesthetic Nembutal (a γ-aminobutyric acid

receptor agonist), display tonic clonic seizures before development of full anesthesia;

the other half display an abnormal jittery behavior (personal communication, T.

Luong). Under the same regimen, no wild-type animals display seizures.

The densin knockout mice have altered steady-state levels of phosphorylated

CaMKII (H. Carlisle, T. Luong, personal communication) as measured in cultured

hippocampal neurons from these knockout mice. The proportion of CaMKII that

is autophosphorylated in knockout neurons is approximately 25 percent lower than

that found in wild-type neurons. Autophosphorylated CaMKII was also measured in

glutamate receptor-stimulating conditions (treatment with bicuculline and glycine).

In wild-type neurons, these conditions cause an increase in CaMKII autophospho-

rylation. In densin knockout neurons, the increase in CaMKII autophosphorylation

was twice that in the wild-type neurons. If densin is a docking site for CaMKII in

the PSD, this dysregulation could be due to the absence of densin and a perturbation

of CaMKII localization and exposure to ionic currents through receptor channels in

the PSD. The difference in activation of CaMKII is unlikely to be due to changes

in AMPA or NMDA receptor function; the currents mediated by these receptors in

hippocampal slices from the knockout mice do not differ from wild-type (H. Carlisle,

T. Luong, personal communication).

Immunoblot results from the knockout mice suggest a small decrease in numerous

postsynaptic proteins. The expression levels of many synaptic proteins measured
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in forebrain homogenate are consistently lower in the densin knockout samples (H.

Carlisle, T. Luong, personal communication).

Densin is implicated in regulation of the cytoskeleton, not only by its association

with actin-regulating binding partners, but also by two studies of neuronal morphol-

ogy. Overexpression of densin induces extensive neuronal branching in cultured hip-

pocampal rat neurons (Quitsch et al., 2005). In sections from hippocampi of densin

knockout mice, the necks of dendritic spines are elongated. Quantification of spine

morphology shows that spines on the neurons of knockout mice are longer than than

those from wild-type mice. Probably as a consequence of the greater length, more of

the spines are classified as mushroom spines (H. Carlisle, personal communication).

Taken together, these studies show that densin is a core protein in the PSD that

is very likely a docking site for CaMKII and that is required for normal neuronal

morphology. Its binding partners are prominently involved in synaptic plasticity,

membrane adhesion, PSD scaffolding, and cytoskeletal regulation. To learn more

about these relationships, and to identify others in an unbiased manner, we looked

for changes in transcription resulting from the loss of densin, using RNA-Seq, an

ultra-high-throughput technique.

1.1.2 Measuring transcription by sequencing

We sought a global, precise measurement of transcription in the densin knockout

mouse to identify any extra-synaptic roles for densin and to determine whether the

overall expression of synaptic proteins is caused by a decrease in their transcription
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in the knockout mouse. First, since synaptic function can regulate gene expression,

we reasoned that impaired synaptic function resulting from the loss of densin might

perturb gene expression. Analysis of a pattern of changes in gene expression could

illuminate the function of densin. Second, perturbations in pathways not known to

be regulated by densin could indicate a role for densin outside the synapse. This pos-

sibility is supported by the presence of extrasynaptic densin, as well as its expression

in kidney and pancreas (Rinta-Valkama et al., 2007). Finally, immunoblot results

suggest decrease in numerous synaptic proteins in the densin knockout mice. Know-

ing the abundance of transcripts corresponding to depleted proteins would allow us

to test whether such depletion might be the result of decreased transcription.

We measured transcript abundance by sequencing millions of transcripts on an

ultra-high-throughput sequencer, a technique called RNA-Seq (for RNA-Sequencing).

In Chapter 2, we discuss our results. Because RNA-Seq is a new technology, the re-

mainder of this section describes the RNA-Seq technique, compares it with microar-

rays, and evaluates its advantages and limitations.

The RNA-Seq method

RNA-Seq is a technique for measuring transcript abundance by sequencing a sample,

and then inferring the number of transcripts from the number of matching sequences.

The most comparable method is the microarray, but RNA-Seq represents a paradigm

shift: whereas microarrays measure a continuous fluorescent signal that is dependent

on probe hybridization, RNA-Seq produces digital data from the count of sequences.
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For RNA-Seq, a cDNA library is prepared by purifying RNA followed by reverse

transcription. The resulting cDNA is fragmented and ligated to adapters (Ansorge,

2009; Harismendy et al., 2009; Simon et al., 2009). Fragments are hybridized to a

surface coated with complementary adapters, and are locally amplified, generating

dense clusters of identical sequences. The next steps depend on the technology of

the sequencer. Both the Gene Analyzer from Illumina (Bennett et al., 2005) and

the Genome Sequencer from Roche (Margulies et al., 2005) sequence the fragments

by synthesis: a newly added base is identified either by its fluorescence signature

(Illumina) or by the light emitted by a luciferase reaction triggered by polymerase

activity (pyrosequencing, Roche; one type of base is added at a time). The SOLiD

(Supported Oligonucleotide Ligation and Detection) system from Applied Biosystems

sequences by repeatedly ligating labelled oligos to the fragment (Shendure et al.,

2005). The different systems are further compared in Table 1.1.

Table 1.1: Comparison of currently available sequencers in side-by-side experiments (Haris-
mendy et al., 2009; Wall et al., 2009).

Device Illumina Roche Applied
Genome Genome Biosystems
Analyzer Sequencer SOLiD

Developed by Solexa 454 Life Sciences Agencourt
Sequencing method synthesis synthesis ligation
Detection method fluorescence emitted light fluorescence

(pyrosequencing)
Sequencing accuracy (percent) 99.99 99.99 99.99
Length of each sequence 36 245 30
Reads per sample 5,900,000 50,000 20,000,000
Usable reads per sample ( percent) 43 95 34
Usable bases per sample 91,332,000 11,637,500 204,000,000
Cost per plate ($) 4000 6000 9000
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Evaluation of RNA-Seq

Until recently, microarrays have been the only way to measure transcript abundance

on a large scale. Microarrays use oligonucleotide probes that are designed to hybridize

with the transcripts to be measured. This strategy requires advance knowledge of the

sequence. The probes are systematically arrayed on a solid support. The experi-

menter fluorescently labels the cDNA to be measured and incubates them on the

microarray. Transcripts that are complementary to probe sequences hybridize, and

the resulting fluorescent signal is imaged. The position of the signal on the array

is used to determine the oligo sequence, and the intensity of the signal is used to

determine the amount of corresponding transcript present.

Because they depend on probe hybridization, microarrays require advance knowl-

edge of the sequence to be measured. RNA-Seq does not; it can identify unexpected

transcripts, transcript lengths, splice variants, or the presence of viral transcripts.

RNA-Seq also has greater sensitivity than microarrays. The linear dynamic range

of expression measured by microarrays is less than 4 orders of magnitude (Wilhelm

and Landry, 2009). The demonstrated linear dynamic range for RNA-Seq is greater

than five orders of magnitude (Mortazavi et al., 2008).

The abundance of different transcripts cannot be directly compared within a sam-

ple using microarrays, because different probes have different hybridization proper-

ties; a higher value could indicate either greater abundance of transcript or a more

favorable hybridization. This is not a limitation of RNA-Seq.
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In spite of extensive improvements, microarrays remain subject to background

hybridization, further limiting the linear dynamic range and reducing the signal to

noise ratio. Microarrays are a mature technology with many major improvements

already implemented. Compared to microarrays, RNA-Seq is highly accurate and

eliminates target bias. Many improvements in RNA-Seq are in progress.

Direct comparison of RNA-Seq and microarrays

The relative accuracy of RNA-Seq and microarrays has been directly tested by ap-

plying the two techniques to the same samples. These few head-to-head comparisons

find that RNA-Seq is at least as accurate as microarrays, probably more so.

One study compared measurements of human liver and kidney samples using

RNA-Seq and microarrays. The transcript abundance measurements made by the

two methods were positively correlated, but RNA-Seq identified more differentially

expressed genes with higher accuracy (Marioni et al., 2008). In the liver samples,

the fluorescence signal from the microarray and the read count from the RNA-Seq

experiment had a Spearman correlation (a rank-based measure) of 0.73. In the kidney

sample, the Spearman correlation was 0.75. When the sets of differentially expressed

genes were compared, these sets overlap, but many genes were only identified by one

of the methods. RNA-Seq identified 11,493 genes that were differentially expressed

between human liver and kidney, while microarray analysis of the same samples identi-

fied 8,113 differentially expressed genes, with 6,534 genes identified by both methods.

A similar study compared RNA-Seq and microarray measurements of transcript

abundance from HEK and B cell lines (Sultan et al., 2008). The measurements were
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highly correlated, with a Pearson (linear) correlation coefficient of 0.88. As in the

Marioni study, the sets of differentially expressed genes overlapped, but many genes

were only identified by one of the methods. RNA-Seq identified 4,376 genes and the

microarray identified 3,421. Of those, 2,685 genes were identified by both methods.

Both Sultan et al. (2008) and Marioni et al. (2008) identify similar proportions of

differentially expressed genes on each platform. For example, in Marioni’s data, of all

the genes identified as differentially expressed by either platform, 12 percent were only

identified by microarray, 50 percent were identified by both, and 38 percent were only

identified by sequencing. The equivalent numbers for Sultan are 14, 53 and 33. The

congruence in the two experiments increases the strength of the results. If this trend

is persistent, it is reasonable to expect to be able to identify the underlying cause and

thus better understand the relationship of the data to the underlying biology.

RNA-Seq and microarrays have different underlying mechanisms, and thus some

disparity may be inevitable. Specifically, many parameters cannot be entirely stan-

dardized between the two. These include probe design, handling of intragenic regions,

signal quality thresholds, data processing methods, and methods of identifying dif-

ferentially expressed genes.

Quantitative polymerase chain reaction (qPCR) can be used as a third measure of

transcript abundance. Marioni et al. (2008) used qPCR to measure transcripts that

were identified as differentially expressed by either RNA-Seq or microarray, but not

both. Five genes identified by RNA-Seq were measured by qPCR; four (80 percent)

were confirmed to be differentially expressed. Six genes identified by microarray were
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measured by qPCR; two (33 percent) were confirmed to be differentially expressed.

These qPCR results indicate that, while RNA-Seq generates some false positives and

false negatives, it may be more accurate than microarray. The results are, however,

limited in scope: very few discrepancies were tested. Thousands of transcripts were

identified as differentially expressed by either RNA-Seq or microarray, but only eleven

of these were subsequently measured by PCR. More testing is required for a conclusive

assessment of the relative accuracy of the microarray method and RNA-Seq.

Precision of RNA-Seq

Like every measurement technique, RNA-Seq requires repetition for precision. Rep-

etition in sequencing-based experiments is measured by depth of sequencing: the

number of bases produced by the sequencer. In RNA-Seq experiments, deeper se-

quencing results in more precise measurements of transcript abundance. However,

no commonly-accepted standard exists for determining whether a sample has been

sequenced sufficiently.

A method used to compare the depth of sequencing in DNA sequencing experi-

ments is fold-coverage: the amount of sequence generated divided by the length of

the target. For example, recent sequencing of the cucumber genome achieved 68-fold

coverage using short read sequencing to obtain 25 billion bases of sequence informa-

tion for a 350 million base genome (Huang et al., 2009). Fold-coverage has been used

to communicate the depth of sequencing of RNA-Seq experiments (Wilhelm et al.,

2008), but is of value only in comparing experiments on the same tissue and species

in similar conditions.
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Precision can be assessed by calculating the fraction of transcripts that have been

precisely measured. This approach to assessing the precision of RNA-Seq measure-

ments was carried out by Mortazavi et al. (2008). Transcript abundance measure-

ments (in reads per kilobase per million (RPKM)) are repeatedly calculated, using

more of the total sequencing results with each iteration. Ongoing changes in the

values suggest insufficient depth of sequencing. If the abundance of a transcript is

constant as it is repeatedly calculated with increasing numbers of reads, the depth

of sequencing is adequate for that transcript. A percentage of allowed variability is

chosen; Mortazavi et al. (2008) calculated the fraction of transcript measurements

that were within 5 percent of the value resulting from using all available reads.

This method can only be used with a transcript abundance measurement unit that

includes normalization by the total number of mapped reads available, like RPKM,

which divides the number of reads for a specific transcript by the total number of

reads for all transcripts. As more sequencing results are included in the calculations,

the number of reads corresponding to the transcript in question increases, but the

total number of mapped reads does as well.

This approach is illustrated in Figure 1.2. Transcript abundance is measured

for each transcript using increasing numbers of total mapped reads: 0.82 million, 2

million, etc., to the maximum total number of mapped reads generated: 41 million.

The transcript abundance measurement for each transcript is compared to the final

value measured for the transcript (for those transcripts with a final value above 3

RPKM). The fraction of transcripts within 5 percent of their final value is calculated.
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Fifty percent of the values calculated with 8.2 million reads are within 5 percent of

the same value they have after all 41 million reads are analyzed. As additional reads

are included in the calculation, more and more transcripts reach a value within 5

percent of their final value.
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Figure 1.2: Deeper sequencing improves the precision of measurements of transcript
abundance. Precision (on the y-axis) is represented by the fraction of genes with
transcript abundance measurements within 5 percent of the final measured value,
where the final measured value is the value calculated with the maximum available
reads, in this case, 41 million. Precision is calculated at various sequencing depths,
shown on the x-axis as mapped reads for all transcripts. Only transcripts with a
final value above 3 RPKM are shown here. The abundance of each transcript was
calculated for the first 0.82 million reads, and then for the first 2.05 million reads,
and so on. Over half of the transcripts are within 5 percent of their final value at a
sequencing depth of 8.2 million reads, above which precision increases more slowly.
Graph after Mortazavi et al. (2008).

The relationship between deeper sequencing and increased precision is true for

transcripts of any abundance. However, precision increases much faster for highly-

abundant transcripts than for rarer ones, as shown in Figure 1.3. As in Figure 1.2,
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precision (shown on the y-axis) is represented by the fraction of genes with transcript

abundance measurements within 5 percent of the final measured value; the total

number of mapped reads for all transcripts is shown on the x-axis; and all data

is from Mortazavi et al. (2008). Transcripts were divided into four groups based

on their final abundance measurement. Transcripts with abundance values greater

than 3,000 RPKM reached 99 percent precision with less than a million reads, while

transcripts with abundance values between 300 and 2,999 RPKM reached 99 percent

precision only after 16.4 million reads are considered. Transcripts with abundance

values between 30 and 299 RPKM reached a maximum of 94 percent precision.

Precision increases faster for highly-abundant transcripts because they comprise

the majority of a transcript library and are thus favored by random sampling. The

predominance of highly expressed transcripts is illustrated in the RNA-Seq results

reported in Chapter 2, in which 50 percent of the transcript library is comprised of

products from only seven percent of genes (Figure 2.2 on page 48).

This method of assessing the precision of RNA-Seq measurements is superior to

fold-coverage assessments and will probably undergo improvements as RNA-Seq is

more widely implemented. It only measures precision, not accuracy, but the increas-

ing stability of abundance measurements further validate the quality of RNA-Seq

measurements and provides quantitative information about imprecision in different

categories of transcripts.

In summary, RNA-Seq is a sequencing-based technique that measures transcript

abundance, identifies novel transcripts and provides linear measurements over a range
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Figure 1.3: Less abundant transcripts require deeper sequencing for precise mea-
surement. As in Figure 1.2, the fraction of transcripts with a measured abundance
within 5 percent of their final value is shown on the Y axis, and the number of
mapped reads for all transcripts is on the x-axis. Transcripts are grouped by final
RPKM value. Transcripts of greater than 3,000 RPKM require fewer than a million
reads for high precision: more than 99 percent of the transcripts are within 5 per-
cent of their final value. However, of transcripts with final abundance measurements
between 3 and 29 RPKM, 10 percent of them change more than 5 percent between
33 million and 41 million reads, adding uncertainty to the interpretation of the data.
Graph after Mortazavi et al. (2008).

of five orders of magnitude. Although imperfect, the best information available sug-

gests that RNA-Seq is more accurate than microarrays. Consequently, we chose to

use RNA-Seq to identify differential expression in the densin knockout mouse.
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1.2 Cofilin and the regulation of the dendritic spine

cytoskeleton in synaptic potentiation

Dendritic spines exist in a variety of different shapes and sizes, corresponding to

different functional characteristics. Spines on mature neurons fall into three morpho-

logical classes: mushroom-shaped, stubby, and thin. Shape impacts spine function:

Mushroom-shaped spines have large heads and very thin necks that restrict Ca2+

transients from spreading to the dendritic shaft, and stubby spines have heads that

lie close to the dendritic shaft and as such are less chemically isolated from the rest

of the dendrite (Harris and Stevens, 1989; Hayashi and Majewska, 2005).

The strength of the synapse is proportional to the volume of the spine head,

as demonstrated by electron microscopic (EM) reconstruction of dendrites from rat

hippocampi. Head volume correlates with both the area of the PSD and the number

of vesicles in the presynaptic compartment (Harris and Stevens, 1989).

Like synapses, spines are plastic. Spines emerge, retract, and change shape even in

the adult brain. In long-term imaging of the cortex of adult mice in vivo, only about

50 percent of the spine population remains stable over the period of a month, while

the rest grow and retract on the order of minutes to days (Trachtenberg et al., 2002).

Changes in spine size can be elicited by synaptic stimulation, such as repeatedly

uncaging glutamate in a way similar to high-frequency stimulation. This stimulation

also causes an increase in synaptic strength as measured by AMPA current elicited by

uncaging glutamate. This increase in AMPA current is proportional to the increase
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in spine size (Matsuzaki et al., 2004), suggesting coordinated regulation of spine size

and synaptic strength.

Together, these data show that spine size is variable, that it is proportional to the

strength of the synapse, and that the two change in parallel in response to synaptic

activity. We next consider mechanisms by which synaptic stimulation can regulate

spine morphology.

Spine morphology is dictated by the underlying actin cytoskeleton (Carlisle and

Kennedy, 2005). Like the well-studied leading edge of migrating cells, spines are actin-

rich structures, and the changes to the cytoskeleton require changes in actin poly-

merization. Induced synaptic plasticity leads to increased spine size and an increased

ratio of filamentous actin (F-actin) to globular actin (G-actin), demonstrated using

fluorescence resonance energy transfer (FRET) between actin monomers (Okamoto

et al., 2004). F-actin is a polar, continually treadmilling polymer, with one end favor-

ing addition of monomers and the other removal. The rates of addition and removal

of subunits are highly regulated by a number of actin-binding proteins, which are

themselves highly regulated. For example, ADF/cofilin binds F-actin and promotes

severing of filaments and dissociation of subunits at the dissociation-favoring end

(Rosenblatt et al., 1997). ADF/cofilin activity is regulated by LIM kinase; when

ADF/cofilin is phosphorylated, it becomes less active (Arber et al., 1998). This phos-

phorylation thus reduces depolymerization and supports stability or growth of the

actin filaments and cytoskeleton (Carlisle and Kennedy, 2005).



20

Many actin-binding proteins are regulated by the Rho family of GTPases in an

NMDA receptor-dependent manner (Carlisle and Kennedy, 2005). p21-activated ki-

nase (PAK) is an important mediator for this signaling. PAK in turn activates LIMK.

LIMK reduces actin depolymerization by phosphorylating cofilin and reducing its ac-

tivity (Edwards et al., 1999). However, NMDA treatment leads to dephosphorylation

of cofilin, indicating the involvement of an activity-regulated phosphatase (Carlisle

et al., 2008). Chapter 3 discusses work on identifying the NMDA-regulated phos-

phatase that regulates activity-dependent changes in the spine and cytoskeleton.

1.3 Arc protein binding

Changes in synaptic strength can occur within minutes of stimulation. For these

changes to represent memory, they must persist for days and months. A unique

combination of properties suggests that Arc, an immediate early gene (IEG) named for

its Activity Regulated and Cytoskeleton-associating properties, serves an important

role in the transition to long-lasting forms of potentiation, which require transcription

and protein synthesis. Arc can be linked to a synaptic event in two ways: temporally

(it is transcribed in response to synaptic stimulation) and spatially (unique among

IEG transcripts, Arc transcripts are localized to the activated portion of the dendrite)

(Lyford et al., 1995; Steward et al., 1998). Arc is required for maintenance of synaptic

plasticity and memory; both are impaired in the absence of Arc (Guzowski et al.,

2000; Messaoudi et al., 2007; Plath et al., 2006). These compelling characteristics
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have led several groups to investigate the mechanism by which Arc supports memory

and synaptic plasticity.

A survey of the deficits that result from the absence of Arc indicates that it

is involved in both hippocampal- and amygdala-dependent learning. Arc knockout

mice have impaired memory, long term potentiation (LTP) and long term depression

(LTD) (Plath et al., 2006). In the Morris water maze, the mice are deficient in both

acquisition and reversal. Their performance in conditioned and cued fear tests is

significantly poorer than that of the wild-type mice. The same is true for conditioned

taste-aversion trials (Plath et al., 2006).

To identify the underlying cause of these memory deficits, LTP and LTD were

studied in Arc knockout mice. In vivo induction of LTP at perforant path/granule cell

synapses in anesthetized knockout mice results in enhanced early LTP and an early

return to baseline compared to wild-type mice (Plath et al., 2006). The same trend

is found when LTP is induced at the Schaffer collateral/CA1 pyramidal cell synapses

in slice preparations. The results of LTD induction at the Schaffer collateral/CA1

pyramidal cell synapses are complementary to the LTP findings: initial depression is

reduced in the knockout, and responses return to baseline earlier than in the wild-type

mice (Plath et al., 2006). These changes in synaptic potentiation were not limited to

mice: Rats that have decreased levels of Arc protein due to hippocampal infusions

of Arc antisense oligodeoxynucleotides have impaired maintenance of LTP beyond 4

hours (Guzowski et al., 2000).
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These data demonstrate the requirement for Arc in memory and synaptic poten-

tiation, but do not indicate the mechanism by which it supports them. Two possible

mechanisms are suggested by the nature of the proteins that bind Arc: regulation of

AMPA receptor endocytosis through dynamin and endophilin and cytoskeletal regu-

lation through actin-binding partners.

Arc’s ability to promote AMPA receptor endocytosis through dynamin and en-

dophilin has been demonstrated (Chowdhury et al., 2006). Furthermore, loss of Arc

results in increased surface AMPA receptors and decreased endocytosis rates. This

phenotype can be rescued by Arc overexpression, but not by expression of a mutant

version of Arc lacking the endophilin-binding domain (Chowdhury et al., 2006).

Arc-induced endocytosis of AMPA receptors is undisputed, and no other synaptic

role for Arc is supported by as much data. However, LTP studies in Arc knockout

mice indicate that Arc is involved in maintaining increases in synaptic strength, and it

is unclear how AMPA receptor endocytosis, which decreases synaptic strength, could

underlie Arc’s role in LTP. A homeostatic role has been hypothesized. Alternately,

Arc’s role in LTP may be due to a different activity.

Arc may support maintenance of memory and changes in synaptic strength via

actin regulation. Maintenance of LTP requires remodeling of the actin cytoskeleton,

and several lines of evidence indicate an association between Arc and actin: (1) Arc

co-sediments with purified filamentous actin in cell extracts, but not with purified

filamentous actin, suggesting that an intermediate protein binds Arc to actin (Lyford

et al., 1995); (2) Arc binds MAP2, which also binds F-actin (Fujimoto et al., 2004;
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Roger et al., 2004); (3) Arc binds dynamin, which co-localizes with actin and directly

binds several actin-binding proteins (Chowdhury et al., 2006; Schafer, 2004); (4) Arc

binds CaMKII (Donai et al., 2003), the β subunit of which binds actin (Sanabria

et al., 2009). A role for Arc in cytoskeletal regulation is further suggested by the

similarities between electrophysiological studies of Arc knockout mice and mice in

which cytoskeletal reorganization has been prevented. Compounds that block reor-

ganization specifically affect the maintenance but not the induction of LTP (Krucker

et al., 2000).

To clarify the mechanism by which Arc regulates synaptic strength, we further

investigated Arc binding proteins. Chapter 4 focuses on identifying Arc binding

proteins in the forebrains of mice and identifying the Arc binding domains involved.

These studies were inconclusive, but negative results are presented.

1.4 Conclusion

Synaptic potentiation is supported by signaling machinery in the postsynaptic density,

activity-dependent regulation of the size of dendritic spines and synaptically-regulated

gene expression. I will describe studies into each in the following chapters.
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Chapter 2

Differential transcription in the
densin knockout mouse as
measured by RNA-Seq

Holly Beale, Andrew Medina-Marino, Ali Mortazavi, Barbara Wold, Mary Kennedy

2.1 Introduction

The postsynaptic density (PSD) is a dense mesh of neurotransmitter receptors, signal

transduction molecules, and scaffold proteins localized to the postsynaptic portion

of a synapse. Specificity of binding within the PSD has important consequences,

enabling selective activation of proteins by positioning particular calcium-activated

molecules near calcium influx. The microdomain of the initial calcium event governs

the downstream signaling events, causing alterations not only in nearby cytoskeleton

by also in gene expression.

Densin is a large, abundant postsynaptic protein that is tightly bound in the

PSD. It is a LRR And PDZ domain-containing (LAP) protein with 16 leucine rich

repeat (LRR) domains, a C-terminal PDZ domain, and a mucin-like domain that is
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glycosylated with large sialic acid residues, which are only found on extracellular pro-

tein domains (Walikonis et al., 2001). Densin binds MAGUIN-1, α-actinin, δ-catenin

and shank (Izawa et al., 2002; Nakagawa et al., 2004; Ohtakara et al., 2002; Quitsch

et al., 2005; Wyszynski et al., 1997). It also binds CaMKII in an activity-dependent

manner: The affinity increases dramatically when CaMKII is autophosphorylated,

as it is after LTP (Strack et al., 2000; Walikonis et al., 2001). The densin knockout

mouse displays behaviors that suggest neuropathy. It clasps (tucks its limbs into

its body) when suspended by its tail, a behavior that is common in many types of

neuropathy. It also has seizures when injected with pentobarbital, a γ-aminobutyric

acidA receptor (GABAAR) agonist that is used as a general anesthetic, also called

Nembutal (personal communication, T. Luong). Neuronal cultures from the knock-

out mouse have 25 percent less autophosphorylated CaMKII than found in wild-type

neuronal cultures. Furthermore, the CaMKII autophosphorylation is more responsive

to glutamate receptor stimulating conditions; it increases twice as much as it does in

wild-type cultures (H. Carlisle, personal communication). Densin could affect a num-

ber of cellular processes through its validated binding partners, and the phenotype

of the knockout suggests the importance of the protein to synaptic biochemistry and

neuronal function.

Three factors motivated us to analyze the transcriptome of the densin knockout

mouse. First, synaptic regulation of transcription is well established (Flavell and

Greenberg, 2008), and the loss of densin could disrupt synaptic activity. Second,

an analysis of pathways affected by the loss of densin could identify other cellular
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roles for densin. Third, the densin knockout mouse displays seizures in response to

pentobarbital, which could indicate disruption of GABAergic transmission. We hoped

to narrow the potential causes of the densin knockout phenotypes by taking a broad

view and analyzing all transcripts.

We measured transcription levels using RNA-Seq, a technique in which transcript

levels are measured by short-read sequencing. RNA-Seq produces millions of short

sequences, called reads. The number of reads corresponding to a given transcript are

used as a measurement of the abundance of that transcript, after normalization for

the length of the transcript and the total number of reads generated for all sequences.

Transcription has been studied in other mice with postsynaptic proteins deleted

using microarray techniques. When microarray and RNA-Seq are used to detect

differentially expressed (DE) genes in the same samples in the same laboratory, they

only agree on approximately fifty percent of the genes identified by either method.

Moreover, early studies suggest that RNA-Seq is the more accurate method (Marioni

et al., 2008; Sultan et al., 2008). Microarray results therefore provide only a tenuous

prediction of RNA-Seq results, particularly when comparing work from different labs

on different genotypes.

With these caveats in mind, microarray studies of PSD protein knockout mice have

produced some interesting findings. Ras-GRF1 is a ras guanine nucleotide exchange

factor that is enriched at the PSD and phosphorylated by CaMKII (Sturani et al.,

1997). Gene expression was analyzed in hippocampal tissue laser-dissected from 10

µm transverse brain sections of Ras-GRF1 knockout mice (Fernández-Medarde et al.,
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2007). Thirty-six DE transcripts were identified, none of them other ras or guanine

nucleotide exchange factor (GEF) genes. Of the DE transcripts, most (27) were

decreased. Two were PSD proteins as categorized by Cheng et al. (2006): 14-3-3

zeta and CSNK1D (casein kinase 1 delta). Many of the DE genes are known to

participate in signal transduction pathways downstream of Ras-GFR1, particularly

Ras/G protein signaling and microtubule organization pathways.

Hippocampal samples from mice heterozygous for a CaMKIIα null mutation have

also been analyzed by microarray methods (Yamasaki et al., 2008). Two thousand

transcripts were reported to be DE, nine of which were specifically named by the

authors. None of the nine were PSD proteins as categorized by Cheng et al. (2006).

Further analysis indicated a 30 percent decrease in NMDA receptors as measured

by radiolabeled receptor agonist. Analysis of expression patterns of these genes in

wild-type animals, along with behavioral and electrophysiological experiments, led

the researchers to conclude that the effects were strongly localized to the dentate

gyrus (Yamasaki et al., 2008).

Although microarray results are not a strong predictor of RNA-Seq results, an

extrapolation of these microarray results to our RNA-Seq experiment would suggest

that we might find DE genes that are downstream in signal transduction pathways,

and that do not necessarily directly bind densin. A much greater number of DE genes

were identified in the CaMKIIα heterozygous mice than in RAS-GRF knockout mice.

While this might be due to different methods of analysis, two other possibilities are of

interest. First, the number of DE genes could be a function of the size of downstream
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signal transduction pathways. Second, the number of DE genes could be a function

of the magnitude of the downstream signal transduction effects.

In the present study, we report the transcriptional effects of the loss of the protein

densin. We find changes in the densin binding partner CaMKIIα, in immediate early

genes (IEGs) known to be regulated by synaptic activity, and in GABAAR subunits.

These findings are the outcome of a new application of this technology; we are aware

of no published reports using RNA-Seq analysis to compare gene expression in the

brains of knockout and wild-type mice.
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2.2 Materials and Methods

Generating densin knockout mice

Densin knockout mice were generated as previously described (Medina-Marino, 2009).

Briefly, a 9.9 kb sequence containing densin (lrrc7) exon 3, which includes the trans-

lation start codon, was cloned from strain 129S1/SvImJ. The sequence was modified

to add a hygromycin selection cassette and loxP sequences to enable Cre-catalyzed

recombination. After the construct was electroporated into CJ7 ES cells and recom-

bination confirmed, clones with normal karyotypes were expanded and injected into

129B6 blastocysts, which were implanted into pseudo-pregnant mothers. Chimeric

offspring were bred to C57BL/6 EIIa-cre+/+ expressing female mice, generating either

knockout or conditional knockout offspring. All experiments discussed here compare

non-conditional knockout mice and their wild-type siblings.

The densin knockout mouse line is maintained in the heterozygous state. Geno-

type is determined by polymerase chain reaction (PCR) amplification with primers

5′- GAGATGCTCTCAAGATAGACATG-3′, 5′-CTCAATTCTGAAGCCAGTAG-3′

and 5′-ACAGAACTGGCTTCTGTCCAC-3′ followed by gel electrophoresis. The

product of the deletion allele is 257 bases; the product of the wild-type allele is

187 bases.

RNA Sequencing

Ten adult male mice were used for RNA-Seq analysis. Forebrain samples were har-

vested from two pairs of mice, with each pair consisting of one wild-type and one
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densin knockout mouse from the same litter, 11-12 weeks old. Forebrain samples

include olfactory bulb, cerebral cortex, hippocampal formation, striatum, palladium,

thalamus, hypothalamus and midbrain, while excluding pons, medulla and cerebel-

lum. Hippocampal samples were harvested from six littermates, three knockout and

three wild-type, 16 weeks old. The densin knockout mice described above were out-

crossed twice with C57BL/6 strain. All litters used for RNA-Seq were the product of

this outcross.

Total RNA was prepared from tissue that was flash frozen in liquid nitrogen,

weighed, minced in mirVana lysis buffer (from mirVana miRNA Isolation Kit, Cata-

log No. AM1560, Ambion, Foster City, CA) and sheared using 20g and 25g needles

successively. miRNA Homogenate Additive from the mirVana miRNA Isolation Kit

was added to a concentration of 10 percent, mixed and the solution was incubated

on ice for ten minutes. Total RNA was extracted with phenol/chloroform, Script-

Guard RNase Inhibitor was added, and concentration was measured with the Nan-

odrop quantification system (Thermo Scientific, Waltham, MA). Genomic DNA was

digested with Baseline Zero DNase (Epicentre Biotechnologies). Phenol/chloroform

extraction was repeated and RNA was precipitated overnight with ethanol at 4◦ Cel-

sius. ScriptGuard was then added and RNA concentration measured as before.

A cDNA fragment library was prepared as previously described (Mortazavi et al.,

2008). Briefly, mRNA was purified from total RNA by two cycles of hybridization to

oligo(dT) beads (Dynal). These transcripts were fragmented by metal ion-catalysis.

First-strand cDNAs were synthesized with random hexamer primers (Invitrogen cat.
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no. 48190-011) using the SuperScript Double-Stranded cDNA Synthesis Kit (Invit-

rogen cat. no. 11917-010) according to manufacturer’s instructions. The second

strand was synthesized by nick-translation in custom buffer (Illumina). Different 5′

and 3′ adapters were ligated to the double stranded cDNA, and then amplified with

primers complementary to the adapters to enrich the sample for successfully ligated

fragments. The fragment library was size selected from an agarose gel for fragments

of between 175 and 225 bases in length.

The cDNA fragment library was diluted to 3, 4 or 8pM and loaded on the flow

cell at the cluster station (Illumina). The following steps were carried out within the

flow cell, the surface of which contains covalently bound primers. These primers are

complementary to the adapter sequences previously ligated to the cDNA fragments.

The combined fragment-adapter oligonucleotides were flowed over the surface and

hybridized to the primer. Taq polymerase was added to extend the primer, creating

a covalently-bound oligonucleotide complementary to the original fragment. The two

strands were denatured and the original fragment washed away.

The free ends of the newly extended oligonucleotide were hybridized to a primer

covalently bound to the surface of the flow cell, forming a bridge. The second primer

was extended, the two strands denatured, and each could hybridize with another

nearby complementary primer. Subsequent rounds of extension and denaturation

generated numerous adjacent copies of the original fragment. After the final extension,

all fragments were denatured and one of the primers was cleaved by restriction digest,

resulting in a cluster of numerous single-stranded copies of the original fragment. Free
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3′ ends were blocked to prevent further priming. In preparation for sequencing, the

sequencing primer was added.

The flow cell was transferred to the sequencer (Illumina’s Genome Analyzer).

Primers were extended one base at a time with fluorescently-labeled, reversibly-

terminated nucleotides; the fluorophore is cleavable and termination was accomplished

by addition of an azide group to the 3’ oxygen of the 2’ deoxyribose sugar that pre-

vents further synthesis until is it cleaved (Metzker, 2009). After each extension, the

flow cell was imaged, and the identity of the newly added base was determined from

its fluorescence signal. The sequence of a single fragment was generated from the

series of bases identified at a single location. Each extension was followed by cleavage

of the fluorescent label and terminator, after which another round of extension was

begun. The number of sequencer runs and resultant reads for each of our samples are

shown in Table 2.1.

Table 2.1: Libraries prepared from the forebrain and hippocampus of wild-type and densin
knockout mice were sequenced. The number of unique reads for each sequence run is shown,
in millions. Forebrain tissue was obtained from four mice: wild-type 1 (WT1) and knockout
1 (KO1), which were littermates; and WT2 and KO2, which were littermates from a different
litter than WT1 and KO1. Hippocampal tissue was obtained from six mice from a single
litter: wild-type animals 3–5 (WT3–5) and knockout animals 3–5 (KO3–5).

Forebrain Hippocampus

WT1 KO1 WT2 KO2 WT3 KO3 WT4 KO4 WT5 KO5

5.9 7.6 9.5 6.1 7.7 6.2 10.6 6.9 8.6 8.2
7.6 6.8 9.1 9.4 4.3 3.5

5.2 7.8
Total reads 13.5 14.4 23.8 23.3 12.0 9.7 10.6 6.9 8.6 8.2
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Data Analysis

The computer program Bowtie (Langmead et al., 2009) was used to align sequences

to the mouse genome (mm9, US National Center for Biotechnology Information build

37). ERANGE (Mortazavi et al., 2008) was used to derive measurements of the abun-

dance of each transcript. Transcripts were identified in the University of California

Santa Cruz (UCSC) Known Genes database (Hsu et al., 2006).

ERANGE counts the number of sequences (reads) within each gene. To improve

the accuracy of comparisons of abundance among transcripts, the length of a tran-

script is taken into account. Longer transcripts have more corresponding reads than

similarly expressed shorter transcripts. Consequently, ERANGE divides the num-

ber of reads attributed to a gene by the length of the corresponding transcript in

kilobases.

To improve the accuracy of comparisons across flow cells, the total number of reads

in a run is considered. Factors not related to transcript abundance in the original

sample can alter the efficiency of the sequencing process, as shown by variability in

the number of total reads generated in each lane of each run of the Solexa sequencer.

This variability can be caused by errors in measurement of concentration of input

and by the density of the oligos coating the flow cell. The total number of reads

produced by a run of the sequencer is used as a normalization factor to account

for variability both in the sample and in the preparation and sequencing processes.

ERANGE implements this normalization by dividing the number of reads assigned

to each gene by the total number of reads produced by that run of the sequencer
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in millions of reads. The final unit is “Reads per Kilobase (of the total transcript

length) per Million (total reads reported by the sequencer),” abbreviated RPKM.

Reads can match one or more positions in the reference sequence (in this case,

the mouse genome). ERANGE can assign fractions of reads to multiple genes in a

probabilistic manner when genes match at multiple positions. However, in order to

avoid false positive changes in similar transcripts, our analysis excludes reads that

match at multiple positions.

We used the following programs in this analysis: R (http://www.R-project.org) for

calculations and visualization (R Development Core Team, 2008), Ingenuity Pathway

Analysis (http://www.ingenuity.com) for pathway analysis, and Princeton Slim GO

Mapper (http://go.princeton.edu) for identifying patterns in gene ontology classifica-

tions. We obtained correlations between brain structures and transcript expression

from the Allen Brain Atlas (Lein et al., 2007).

Because the precision of RNA-Seq increases with the abundance of the transcript,

the standard deviation is dependent on the abundance of the transcript as well. In

order to identify significant changes, we calculated a smoothed moving average and

standard deviation.

The transcript abundance measurements (in RPKM) were transformed using a

base 2 logarithmic scale. We subtracted the transcript abundance in the experimental

condition from the transcript abundance in the control condition and plotted the

change against the control condition in a Tukey mean-difference (Bland-Altman) plot,

similar to the MA (microarray) plot. For each transcript, the mean and standard
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deviation of the change in abundance was calculated based on the 500 transcripts

with the most similar abundance in the control condition. Due to the large number of

transcripts that are similarly expressed, this averaged mean was still highly variable

as shown in Figure 2.1. We applied a local regression to the mean and standard

deviation using the LOWESS (locally weighted scatterplot smoothing) method with

a span of 66 percent of the data points (f=.66). We identified significant changes in

transcript abundance as those changes with a z-score above two (i.e. more than two

standard deviations from the smoothed local mean) (Quackenbush, 2002).

Three comparisons of gene expression were performed: knockout forebrain was

compared to wild-type forebrain, knockout hippocampus was compared to wild-type

hippocampus, and wild-type forebrain was compared to wild-type hippocampus.

The lists of DE genes were analyzed with Ingenuity Pathway Analysis (IPA,

http://www.ingenuity.com), a proprietary service that identifies relationships be-

tween groups of genes based on a curated global interaction network. Each list of

DE genes contains the gene symbol and the number of standard deviations between

the change in expression for that specific gene and the mean change of similarly

expressed transcripts. The lists were uploaded to IPA. Genes for which IPA had

interaction information were mapped to their counterparts in IPA’s global network

model. Genes that were not mapped often corresponded to loci for which an offi-

cial symbol had not been designated (e.g. 1110059M19Rik, LOC100042459). The

relationships between mapped genes in the IPA global network model were assessed

and weighted by the number of standard deviations. Groups of connected genes were
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Figure 2.1: Smoothed mean and standard deviation lines permit more consistent
identification of differentially expressed genes. The change in transcript abundance
in log2 RPKM units is plotted against the transcript abundance in the control
sample; these points are shown in grey. The mean change in transcript abundance
is calculated for each transcript from the five hundred transcripts most similarly
expressed in the control sample. This method was applied to each comparison of
RPKM values; the samples shown here are wild-type forebrain (control) and densin
knockout forebrain (experimental).

returned as networks with a score based on a P value; a higher score indicates a lower

probability that the network is included by chance. The analysis was performed with

settings specifying that direct and indirect relationships (those which do not require

physical contact) be considered. Relationships identified in human, rat and mouse,

as well as all tissues and cell lines were included.
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We investigated whether DE genes were most highly expressed in particular brain

structures. The Allen Mouse Brain Atlas project has generated anatomical expression

data for many genes using automated in situ hybridization. From this data, they

quantified the intensity and density of expression in different brain structures (Lein

et al., 2007), normalizing by expression of a ubiquitously expressing gene in each

structure. Quantitation of intensity is intended to correlate with microarray-type

measurements; it is the average expression per cell normalized by the number of cells

in the region that express a ubiquitously expressed gene. Density measures the percent

of cells in a region that express the transcript. Density is the number of expressing

cells in a region divided by the number of cells in the region that express a ubiquitously

expressing gene (Allen Institute for Brain Science, 2006). We downloaded the data

in XML format, parsed the files and organized the information in a relational format.

We compared the intensity and density for five brain structures

Gene ontology annotations describe the function, localization or cellular compo-

nent of a gene product. We used the Princeton web implementation of GOTermFinder

(Boyle et al., 2004) to evaluate the annotations of DE genes. GOTermFinder uses

high-level terms to identify commonalities in a list of genes. The scientific support

for an annotation is assigned an evidence code, such as “Inferred from Direct Assay”

and “Inferred from Electronic Annotation.” No evidence codes were excluded from

our analysis.
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2.3 Results

RNA transcript abundance was measured in densin knockout and wild-type mice us-

ing ultra-high-throughput sequencing of RNA (RNA-Seq). Five pairs of mice were

used, each consisting of a densin knockout mouse and a wild-type littermate. Tran-

script levels were measured in libraries prepared from the forebrain of two pairs.

Hippocampal transcripts levels were measured in libraries prepared from three pairs,

all of which came from the same litter. The data generated by RNA-Seq were ana-

lyzed to identify genes which were DE between wild-type and knockout animals; these

lists were further analyzed to identify patterns of co-regulation.

2.3.1 Processing sequence data

As described in Materials and Methods, RNA-Seq produces a list of sequences, called

reads, present in the pool of transcripts. Table 2.1 summarizes the number of reads

obtained from each sample, including forebrains of wild-type (WT) and knockout

(KO) littermates from litters 1 and 2 (WT1, KO1, WT2, KO2) and hippocampi from

one litter including three wild-type and three knockout littermates: (WT3, KO3,

WT4, KO4, WT5, KO5). Each read was aligned to the genome with a sequence

alignment program called Bowtie, which is specialized for aligning millions of short

reads to a genome (Langmead et al., 2009). Transcript abundance was calculated

using ERANGE, which counts reads falling within gene models (the portion of a gene

that codes for the transcript) (Mortazavi et al., 2008). This value was normalized by

the length of the gene model as well as the total number of reads for all transcripts,
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as described in Materials and Methods. The unit of transcript abundance is RPKM

(Reads per Kilobase of transcript per Million bases sequenced).

2.3.2 Measuring gene expression

Precision of measurements

Precision of RNA-Seq results is affected by the number of times a library is measured

(reflected in the reads produced) and by the abundance of each transcript. In order

to measure the precision of the RNA-Seq results, we categorized transcript reads by

abundance: not expressed, expressed below threshold (0.25 RPKM, discussed in the

next section), and between the intervals of 0.25, 3, 30 and 300.

Figure 2.2 shows the large difference between the numbers of reads coming from

the most abundant transcripts and those from moderately abundant transcripts. In

a cDNA library prepared for RNA-Seq analysis of the densin knockout mouse, half

of the library is composed of copies of just 7 percent of transcripts. Consequently,

a random sample of transcripts will contain many examples of the most abundant

transcripts, which are thus sequenced more frequently. More abundant transcripts

will therefore be measured with greater precision than less abundant ones.

In order to understand the effects of the predominance of abundant transcripts

on the precision of the experiment, we assessed the precision of this data set by

combining reads from three sequencing runs of a single library in random order. We

then calculated transcript abundance from the first four million reads, from the first

eight million reads, and so on for each increment shown in Table 2.2. For each
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Figure 2.2: Seven percent of transcripts account for over half of all reads. Tran-
scripts were categorized by abundance: Not expressed (0 RPKM), expressed below
threshold (0<x<0.25), and expressed between the intervals of 0.25, 3, 30 and 300,
intervals chosen for comparison with Mortazavi et al. (2008). Plot (a) illustrates the
fraction of the sequencer reads from wild-type mouse forebrain by each abundance
category. Plot (b) illustrates the fraction of mRNA-producing genes corresponding
to each abundance categories. The orange segment in (a) shows fifty-one percent of
all reads are derived from transcripts with an abundance measurement between 30
and 300 RPKM. However, those transcripts comprise only seven percent of mRNA-
producing genes.

increment, we noted the number of measurements that were within 5 percent of the

final value: the measurement calculated with all the reads available for that sample.

Table 2.2 shows an example of the measurements for a single gene, Gabra2, which

codes for the GABAAR subunit α2. The abundance of the Gabra2 transcript is

within 5 percent of its final value (6.39 RPKM) when 8, 28, 32 or 36 million reads

are included in calculations. Many genes show a trend like this, increasing precision

as the measurement is based on more reads.

The fraction of all transcripts within 5 percent of their final value is plotted

against the number of reads used to calculate the abundance in Figure 2.3. More

highly abundant transcripts are precisely measured with fewer reads, as indicated by

the blue and purple lines. Of all transcripts expressed above 3 RPKM, 99 percent are
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Table 2.2: The abundance measurements of the γ-aminobutyric acidA receptor subunit α2
transcript are increasingly precise as more reads are included in the calculation.

Million reads
use in calculations 4 8 12 16 20 24 28 32 36 40

Transcript abundance
(RPKM) 6.89 6.61 5.74 5.75 5.89 6.07 6.09 6.1 6.28 6.39

Percent final value 107.8 103.4 89.8 90.0 92.2 95 95.3 95.5 98.3 100.0

within 5 percent of their final abundance measurement (indicated by the green, blue

and purple lines). Thus we conclude that by pooling our samples we have sufficient

depth of sequencing to analyze genes that are expressed at greater than 3 RPKM.

Measurements of known quantities of transcripts

In order to determine the number of transcripts represented by one RPKM, we added

reference transcripts to our samples and compared the resulting transcript abundance

measurements to the known concentrations. The seven reference transcripts, derived

from Arabidopsis and phage lambda, ranged in length from 325 to 11,936 bases and

in concentration from 50,000 to 500 × 108 transcripts per 100ng of experimental

transcripts. The measured abundance is highly correlated with the number of tran-

scripts. One RPKM corresponds, on average, to 150,000 transcripts (Figure 2.4). The

high correlation and small error indicates that RPKM is a consistent measure of the

number of samples in a transcript and that measurements are linear across different

transcripts.
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Figure 2.3: Transcripts more abundant than 3 RPKM are precisely measured. The
abundance of each transcript was calculated with increasing numbers of sequencer
reads. Precise measurement was defined as a measurement within 5 percent of
the final value, and transcripts were grouped by abundance category. For each
increment of reads, the fraction of precise measurements for an abundance category
was plotted against the number of reads used in the calculation. Ninety-nine percent
of transcripts more abundant than 3 RPKM are precisely measured to within 5
percent of their final value.

To estimate the noise in the measurements, we considered the transcript levels that

are reported not to be expressed in brain: Hnf4a, Myf5, Myf6, Myod1, and Myog.

The average transcript level for these five genes was 0.025 RPKM. We used a ten-

fold increase of that threshold, 0.25, as a conservative threshold of expression when

evaluating patterns of expression in the entire transcriptome. Because of the results
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Figure 2.4: Validation of RPKM as a consistent unit of measure. The measured transcript
abundance, in RPKM, is plotted against the number of known Arabidopsis and phage
lambda reference transcripts. Seven different reference transcripts were added to mouse
brain samples and sequenced together with the mouse brain transcripts. The measured
transcript abundance of these transcripts is highly linearly correlated with the number of
reference transcripts spiked in to the sample (R2=0.991). The red line indicates where
1 RPKM consists of 150,000 transcripts. Error bars indicate standard error of the mean.
The high correlation and small error indicates that RPKM is a consistent measure of
the number of samples in a transcript. Reference transcripts were measured in the four
forebrain samples.

of our precision analysis, we limited analysis of transcript abundance of individual

genes to those expressed over 3 RPKM in either of the compared samples.

Range of gene expression levels within a single animal

The RNA-Seq measures the abundance of each transcript in a sample. We measured

the abundance of 33,114 transcripts in samples from 10 mice. In the forebrain samples
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from the wild-type mice, 10,625 of the 33,114 transcripts considered are not expressed

(zero RPKM). Another 5,749 are expressed below threshold (0.25), calculated as

described in section 2.3.2. There are 16,737 transcripts above threshold.

Figure 2.5 presents an overview of the distribution of the transcript abundance in

the forebrain of wild-type mice. Transcript measurements were binned, and the log of

the number of genes in each bin is indicated on the ordinate. For clarity, 5 genes with

RPKM above 1000 were omitted. The histogram shows that majority of transcript

levels are less than 50 RPKM (31,822 transcripts). The distribution of RPKM values

is heavily skewed toward lower values. As expression levels increase, the number of

genes expressed at that level drops.

Figure 2.6 shows the data depicted in 2.5 at higher resolution, focussing on the

distribution of transcripts expressed between the lower threshold, 0.25, and twenty

RPKM. The transcript measurements are binned, and the number of genes in each bin

is indicated on the ordinate. Transcript levels represented in this plot were measured

in the forebrains of wild-type mice. Together, Figures 2.5 and 2.6 show that most

genes that are expressed in forebrain are expressed at less than 20 RPKM.

2.3.3 Differential gene expression

Most genes are similarly expressed

Although some genes are DE, expression is quite similar between individuals of the

same or different genotypes. Figure 2.7 depicts the relationship of transcript levels

in the forebrain of a densin knockout mouse and a wild-type littermate. For each
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Figure 2.5: Most genes expressed in the brain exhibit low transcript abundance. The
transcript levels measured for each gene were binned, and the number of genes in
each bin is indicated on the ordinate. This plot shows the transcript level measured
in the forebrains of wild-type mice. The majority of transcript levels are less than
50 RPKM; the higher the expression level, the fewer genes expressed at that level

transcript, the amount of transcript in the knockout is plotted on the y-axis against

the amount in the wild-type on the x-axis. The plot is divided into hexagons, and the

number of transcripts falling within each hexagon is represented by a shade of gray.

Darker gray indicates a greater density of transcripts. The legend indicates the range

of the number of transcripts represented by each shade. The diagonal trend indicates

that many transcripts are similarly abundant in each animal. The correlation between

the two samples is 0.998. The clustering of the darkest hexagons in the lower left of

the graph indicates that transcripts expressed at low levels are prevalent. The region
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Figure 2.6: Most genes expressed in forebrain are expressed at levels near the de-
tection threshold. The transcript levels between a conservative detection threshold,
0.25 RPKM, and 20 RPKM are binned, and the number of genes in each bin is
plotted. Transcript levels represented in this plot were measured in the forebrains
of wild-type mice; values below 0.25 and above twenty were excluded. The cutoff
of 0.25 was used to decrease the likelihood of false positives.

of Figure 2.7a with the highest concentration of genes is shown at higher resolution

in Figure 2.7b.

The largest changes in transcript abundance are observed between brain areas

(Figure 2.8). Each square contains a scatterplot of transcript levels for two samples.

Points are binned as in Figure 2.7. In forebrain samples, littermates share an id

number; for example, wild-type (WT) 1 and knockout (KO) 1 are littermates. All

hippocampal samples come from the same litter. The side of each square represents

1000 RPKM. Boxes with a yellow background contain comparisons between forebrain

samples. Consistent with the highly correlated forebrain measurements in Figure
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(b) Higher resolution view of the correlation
of low abundance transcripts

Figure 2.7: The majority of transcripts are expressed at similar levels across in wild-
type and densin knockout forebrain. Transcript abundance in the forebrain of densin
knockout mice is plotted against the equivalent value in wild-type mice. Nearby
points are binned. The number of points in a hexagon are indicated by the intensity
of gray; darker areas contain more points. (a) All genes expressed under 700 RPKM
are plotted. The R squared value is 0.998, indicating a high correlation of gene
expression across genotype. (b) Transcript abundance measurements between 0.25
and 10 RPKM are also highly correlated between the densin knockout and wild-type
mice. As in previous figures, low transcript levels are prevalent. At higher resolution,
changes in expression in the knockout are more visible.

2.7, the correlation between each individual sample is extremely high. Boxes with

a blue background contain comparisons between hippocampal samples. Boxes with

a green background contain comparisons between the hippocampal and forebrain

samples, where the most variability is apparent. The list of genes DE between the

hippocampus and forebrain in wild-type animals is discussed in Chapter 7, Appendix

B. The most highly correlated group is the forebrain samples (R2 between 0.991 and

0.998), followed by the hippocampal samples (R2 between 0.941 and 0.995). The

correlation between hippocampus and forebrain samples ranges from 0.853 to 0.956.
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Figure 2.8: The largest changes in transcript levels were observed between brain
regions. Each square contains a scatterplot showing transcript levels for two sam-
ples. The points are binned as in Figure 2.7. The side of each square represents
1000 RPKM. The background color of the plot indicates the samples being com-
pared: yellow for two forebrain samples, blue for two hippocampal samples, and
green for one forebrain and one hippocampal sample. The lowest correlation is be-
tween the forebrain and hippocampus; thus, the difference in expression between
the hippocampus and forebrain is greater than the difference caused by the loss of
densin.

Identification of differentially expressed genes

We investigated the effects of the absence of densin on gene expression by analyzing

transcript abundance in densin knockout and wild-type mice. We investigated these
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effects in the forebrain and in the hippocampus. The densin mice are maintained as

heterozygotes, and litters can include wild-type mice as well as mice heterozygous

and homozygous for the null densin allele. We were therefore able to use wild-type

littermates as controls for the densin knockout mice. The results of each comparison

are presented below; individual genes are discussed in subsequent sections.

Results from each brain region and genotype were pooled to maximize precision of

measurement and thus accurately identify DE genes. For each pooled sample (wild-

type forebrain, knockout forebrain, wild-type hippocampus, knockout hippocampus),

differences in expression were visualized by plotting the change in expression against

the expression in the control condition, as in an MA (microarray) plot. The mean

and the standard deviation of the changes were smoothed and used to identify DE

genes as described in Materials and Methods.

The changes in expression in the forebrain of densin knockout mice are compared

to expression wild-type mice in Figure 2.9. The smoothed mean change is adjacent to

zero, indicating that the same proportion of genes increased or decreased between the

two conditions. The most highly DE genes were selected from those that changed by

at least 4 standard deviations. This subset was selected by an index consisting of the

product of the magnitude of the expression and distance from the mean in standard

deviations. The metallothioneins (MTs) are the most highly ranked outliers.

Changes of expression in the hippocampus are depicted in Figure 2.10 on page 60.

Transcript abundance measurements in the hippocampus are the pooled results from

three mice for each genotype. All six mice were littermates. The mean change is very
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Figure 2.9: Metallothioneins are differentially expressed in the forebrain of densin
knockout versus wild-type mice. The change of expression observed in transcript
abundance in the forebrain of densin knockout mice is plotted against the abun-
dance of the same transcript in the forebrain of wild-type mice. The smoothed local
mean and local standard deviation are indicated by green and dotted black lines,
respectively. Changes in gene expression greater than two standard deviations from
the mean differential expression are shown in blue, more than three standard devia-
tions in red; four in black. The ten most DE genes are plotted as indicated. Key to
named genes: Mt2 (metallothionein 2), Mt1 (metallothionein 1), Hspa5 (heat shock
protein 5), Rmrp (RNA component of mitochondrial RNAase P), Cryab (crystallin,
alpha B), Doc2g (double C2, gamma).
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close to zero; there was no general trend of increase or decrease. The distribution

is similar to that seen in the forebrain.The increased expression of MT3 in the hip-

pocampus is particularly notable in light of the increases in MT1 and MT2 expression

in the forebrain. Having identified DE genes, we next characterized commonalities

among them.

2.3.4 Patterns of differential expression

We analyzed gene expression data from the densin knockout mouse using two general

approaches. For the first, we used pattern identification methods to generate unbiased

hypotheses about the inter-relation of the DE genes. These methods included iden-

tification of brain structures enriched for DE transcripts, known interactions among

DE gene products, and common characteristics of DE genes, which we identified

using gene ontology annotations. The second approach consisted of analyzing the

expression levels of genes that could be affected by the loss of densin by a known

characteristic, such as co-localization of gene products, interaction of a gene product

with densin, a gene product which has been implicated in the phenotypic behaviors

of the densin knockout mouse, or proximity of the genes on the chromosome. This

approach is discussed in section 2.3.5.

Brain structures

Because of the variety of structures in the forebrain, we sought to identify those

affected by the altered gene expression identified in the forebrain. We used data from

the Allen Mouse Brain Atlas (ABA) to identify brain regions likely to exhibit the
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Figure 2.10: Metallothionein (MT) 3 is upregulated in the hippocampus of densin
knockout relative to wild-type mice. The hippocampus displays a similar pattern
of DE genes as in the forebrain, although the variability is generally greater in the
hippocampus. MT3 expression is increased in the hippocampus of densin mice
relative to wild-type mice. In the forebrain, MT1 and MT2 are among the most
highly DE genes, and like MT3 in the hippocampus, MT1 and MT2 are increased
in the forebrain in densin knockout mice relative to the wild-type mice. Key: Mt3
(metallothionein 3), Igh-1b (immunoglobulin heavy chain 1b (serum IgG2c)), Rps3a
(ribosomal protein S3A), Cryab (crystallin, alpha B), Hddc3 (HD domain containing
3).
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DE genes. We reasoned that if expression of the DE genes was concentrated in a

particular region, this might indicate a locus of change in the densin knockout mouse.

The ABA contains the results of large-scale in situ hybridization studies of thou-

sands of transcripts (Lein et al., 2007). They also quantify the intensity and density

of expression in different brain structures (Allen Institute for Brain Science, 2006).

Because the information was not available in the form required for our analysis, we

generated scripts that parsed the XML-formatted data and aggregated it into a for-

mat that could be queried. Consequently, we could compare relative expression in

different brain structures for 3,225 genes.

In the densin knockout mice, 418 transcripts were DE in the forebrain with a

z-score of more than two. Of these, we have ABA data for 283 of them. For each,

we compared the reported in situ hybridization intensity in five mutually exclusive

structures: hippocampus, striatum, thalamus, hypothalamus and midbrain. These

comparisons are represented in Figure 2.11. Each row represents the intensity of one

transcript in the five structures. The region with the lowest expression is represented

by a thin red bar; the one with the highest with a green bar, and other structures by

intermediate colors. The rows are then sorted to group common expression patterns

together. As indicated by the prevalence of green in the hippocampal column, genes

affected by the loss of densin are more highly expressed in the hippocampus than in

the other structures analyzed.

We quantified the difference in expression between brain structures. The ABA

intensity values reported for the hippocampus are significantly different from those
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reported in any of the other structures; the greatest p value of t tests between values

reported for the hippocampus and any other structure is less than 0.01. The same

tests performed on density values indicate a trend, but not a significant difference, in

density of expression; the greatest p value in those comparisons is less than 0.07. The

analysis of the intensity values indicates that the genes we identified as DE in the

forebrain are significantly more expressed in the hippocampus than in the hypothala-

mus, thalamus, striatum or midbrain. Repeating the analysis with randomly chosen

groups of expressed genes produces the same result, reflecting the high frequency of

DE gene expression in the hippocampus. This suggests that the hippocampus is a

promising region to look for the effects of the loss of densin.

Networks

Having identified the hippocampus as a structure of high abundance of DE genes in

that structure, we sought to identify interactions between the DE genes. We queried

a curated interaction network (Ingenuity Pathway Analysis) and identified networks

of highly interconnected genes in that structure (Figure 2.12 on page 64). The net-

work is centered around Iκb which is significantly upregulated in both forebrain and

hippocampus of densin knockout mice. Networks are ranked by the fraction of DE

genes involved in the network compared to the fraction expected by chance as well as

by the magnitude of the difference in transcription level. Although Iκb is the most

highly ranked network, it includes few of the most DE genes.
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Figure 2.11: Genes differentially expressed in the forebrains of densin knockout
mice are highly expressed in the wild-type hippocampus. We used data from the
ABA to identify structures enriched for genes identified as DE in the forebrain
of densin knockout versus wild-type mice. One brain region is represented in each
column (Hipp=hippocampus, Str=striatum, thal=Thalamus, Hypo=hypothalamus,
Mid=midbrain). Each row corresponds to a DE gene (z>2). The ABA intensity
values are separately color coded for each gene. Higher expression is represented by
green, and lower expression by red. The trend of bright green in the hippocampus
indicates that many of the genes are more highly expressed there than in other
structures. The intensity values measured in the hippocampus differ from all other
structures (p<0.01). No other columns significantly differed.
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Figure 2.12: The NFκB pathway is a central hub connecting many genes differen-
tially expressed in the densin knockout mouse. Networks among genes DE in the
forebrain of the densin knockout versus wild-type mice were identified by querying a
curated interaction network (Ingenuity Pathway Analysis). The shapes of the genes
correspond to the function of the genes. Green shapes indicate upregulated genes;
red, downregulated. Brighter colors indicate a greater difference in transcription
level between densin knockout and wild-type mice. White shapes are genes included
to demonstrate possible indirect connections. For example, the inclusion of NFκB
allows a connection between ALDH7A1 and GOS2. The network shown here is
centered around Iκb, which is DE in both forebrain and hippocampus of densin
knockout mice. This network includes many genes implicated in neurological and
cardiovascular disease.

2.3.5 Differential expression in densin-related genes

We next considered genes that are associated with densin by the binding of their

product, by their presence in the PSD, by implication of the phenotypic behavior, or

by proximity on the chromosome.
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Densin binding partners

Out of the 33,000 transcripts measured, we first analyzed transcript levels of known

binding partners of densin. These measurements are reported in Table 2.3. In the

hippocampus, CaMKIIα, Shank1, and Shank3 are all upregulated with z-scores of

more than 2. In the forebrain sample, no significant change is seen in expression.

Table 2.3: Hippocampal gene expression is upregulated in the densin knockout mouse for
three protein binding partners of densin. Compared to the gene expression in the hip-
pocampus wild-type mice, CaMKIIα, Shank1 and Shank3 each increase in expression with
a z-score of greater than two.

Gene expression of densin binding partners

Forebrain Hippocampus

Wt Ko Wt Ko
Gene (RPKM) z>2 z (RPKM) z>2 z
Actn1 21.5 20.0 -1.3 20.0 22.7 1.2
Actn2 7.9 8.7 1.0 3.9 4.2 0.3
Actn4 41.3 42.1 0.0 29.9 32.3 0.7
Camk2a 483.7 533.2 1.7 612.2 726.9 * 2.1
Camk2b 235.9 253.9 1.1 261.4 267.9 -0.1
Ctnnd1 10.4 10.6 0.1 11.8 11.6 -0.3
Ctnnd2 40.2 40.0 -0.4 35.8 35.4 -0.3
Shank1 32.6 35.1 0.9 46.5 56.5 * 2.0
Shank2 15.2 14.2 -1.2 19.8 22.7 1.3
Shank3 36.8 36.0 -0.6 23.6 29.3 * 2.1

Key: Wt (wild-type), Ko (knockout), z (z-score), Actn1 (actinin, alpha 1), Actn2 (actinin alpha 2),
Actn3 (actinin alpha 3), Actn4 (actinin alpha 4), Camk2a (calcium/calmodulin-dependent protein
kinase II alpha), Camk2b (calcium/calmodulin-dependent protein kinase II, beta), Cnksr3 (Cnksr
family member 3), Ctnnd1 (catenin (cadherin associated protein), delta 1), Ctnnd2 (catenin (cad-
herin associated protein), delta 2), Shank1 (SH3/ankyrin domain gene 1), Shank2 (SH3/ankyrin
domain gene 2), Shank3 (SH3/ankyrin domain gene 3)
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Proteins present in the PSD

We tested whether the loss of densin disproportionately affected the expression of

other PSD proteins using a list of genes identified by analysis of proteins in the PSD

fraction (Cheng et al., 2006). This PSD-fraction set of genes may differ from the true

set of PSD protein-coding genes because PSD fractions can contain contaminants,

and transient or low-abundance components can be absent from the fraction (Sheng

and Hoogenraad, 2007). Of the 271 PSD-fraction genes, 13 were DE in the densin

knockout; 9 in the hippocampus and 4 in the forebrain (Table 2.4 on the next page).

Most of the PSD-fraction genes are expressed above 3 RPKM, and so most were

tested for differential expression. The PSD-fraction genes comprise two percent all

genes expressed above 3 RPKM and two percent of DE genes. Thus, PSD-fraction

genes are not more likely to be DE in the densin knockout than other genes.

GABAA receptors

Densin knockout mice commonly have seizures when injected with pentobarbital, a

GABAAR agonist that is used as a general anesthetic (personal communication, T.

Luong, H. Carlisle). Therefore, we are particularly interested in the abundance of

transcripts coding for GABAAR subunits. Surprisingly, transcript levels of three

GABAAR subunits (α2, α5 and β1) are significantly lower in densin knockout mice

relative to wild-type mice (Table 2.5).
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Table 2.4: PSD genes are differentially expressed in densin knockout mice. When compared
to wild-type mice, densin knockout mice express 13 transcripts differentially (z>2): nine in
the hippocampus and four in the forebrain.

Gene expression of PSD proteins

Forebrain Hippocampus

Wt Ko Wt Ko
Gene (RPKM) z>2 z (RPKM) z>2 z
Apoe 1550.7 1865.1 * 3.9 826.5 943.0 1.5
Camk2a 483.7 533.2 1.7 612.2 726.9 * 2.1
Camk4 16.4 18.2 1.2 11.7 14.7 * 2.1
Dgkz 110.7 107.5 -0.9 74.5 92.2 * 2.3
Fxyd5 7.7 10.1 * 2.8 5.9 5.8 -0.3
Gda 20.3 17.7 * -2.2 45.7 41.7 -1.3
Gpsm1 19.0 22.4 * 2.1 8.1 8.8 0.6
Hapln4 39.1 41.8 0.8 24.7 32.7 * 2.8
Mapk1 80.4 74.1 -1.8 117.3 99.3 * -2.5
Opcml 20.3 18.6 -1.5 44.4 37.7 * -2.1
Shank1 32.6 35.1 0.9 46.5 56.5 * 2.0
Shank3 36.8 36.0 -0.6 23.6 29.3 * 2.1
Sparc 199.0 210.8 0.8 128.3 157.9 * 2.3

Key: Wt (wild-type), Ko (knockout), z (z-score), * (z-score > 2), Apoe (apolipoprotein E), Camk2a
(calcium/calmodulin-dependent protein kinase II alpha), Camk4 (calcium/calmodulin-dependent
protein kinase IV), Dgkz (diacylglycerol kinase zeta), Fxyd5 (FXYD domain-containing ion transport
regulator 5), Gda (guanine deaminase), Gpsm1 (G-protein signalling modulator 1 (AGS3-like, C.
elegans)), Hapln4 (hyaluronan and proteoglycan link protein 4), Mapk1 (mitogen-activated protein
kinase 1), Opcml (opioid binding protein/cell adhesion molecule-like), Shank1 (SH3/ankyrin domain
gene 1), Shank3 (SH3/ankyrin domain gene 3), Sparc (secreted acidic cysteine rich glycoprotein).

Immediate Early Genes

Transcription of several IEGs, including Arc, Egr1 (Zif268), Fos, Junb and Nptx2, are

upregulated in the hippocampus of densin knockout mice relative to the hippocampus

of wild-type mice. As shown in Table 2.6, all of the IEGs genes DE in the hippocam-

pus of densin knockout mice are increased, suggesting a persistently activated state.

Jund1 is upregulated in the forebrain but not the hippocampus, and Npas4 is down-
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Table 2.5: Three γ-aminobutyric acidA receptor (GABAAR) subunits are significantly de-
creased in densin knockout mice. Transcript levels are decreased in both forebrain and
hippocampal samples, but the decrease only reach significance (z-score>2) for GABAAR
subunits α2 (Gabra2) and β1 (Gabrb1) in the hippocampus and GABAAR subunit α5
(Gabra5) in the forebrain.

Gene expression of γ-aminobutyric acidA receptor subunits

Forebrain Hippocampus

Wt Ko Wt Ko
Gene (RPKM) z>2 z (RPKM) z>2 z
Gabra2 11.7 10.6 -1.4 56.5 40.9 * -4.1
Gabra5 31.5 27.5 * -2.4 63.3 59.8 -0.9
Gabrb1 8.4 8.1 -0.6 26.9 21.8 * -2.4

Key: Wt (wild-type), Ko (knockout), z (z-score), * (z-score > 2)

regulated in the forebrain. Although none of the genes are DE in both forebrain and

hippocampus, it is notable that Arc, Egr1, Fos and Npas4 all change in the opposite

directions in the two regions. Arc, Egr1, Fos are significantly upregulated in the

hippocampus and downregulated in the forebrain; the reverse is true for Npas4.

IEGs are transcribed shortly after a stimulus and those that are transcribed in

response to synaptic activity (e.g. Arc and Fos) can be triggered by an animal’s expo-

sure to a novel environment (Guzowski et al., 1999). When we identified the pattern

of increased expression of IEGs in the knockout mice, we evaluated the possibility

that the densin knockout mice were exposed to a novel environment for longer than

were the wild-type mice. However, wild-type and knockout mice were raised in the

same facility and sacrificed in random order in the dissection room.
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Table 2.6: Immediate early genes expression is increased in the hippocampus of densin
knockout mice. Arc, Egr1 (Zif268), Fos, Junb and Ntpx2 (Narp) have significantly higher
transcript levels in the hippocampus of densin knockout mice than in the hippocampus of
wild-type mice (z>2). Other changes include an increase of Jund1 in the densin knockout
forebrain (z=2.6) and a decrease in Npas4 in the forebrain (z=-3.5). Several immediate
early genes are DE in the opposite direction in the forebrain and hippocampus. Npas4 is
decreased in the forebrain (z= -3.5) and increased in the hippocampus (z=1.8); Arc levels
are increased in the hippocampus (z=5.3) and decreased in the forebrain (z=-1.8). Other
immediate early genes are not DE: Pcdh8, Ptgs2 (Cox-2) and Homer1 (Loebrich and Nedivi,
2009).

Gene expression of some immediate early genes

Forebrain Hippocampus

Gene Wt Ko z>2 z Wt Ko z>2 z
(RPKM) (RPKM) (RPKM) (RPKM)

Arc 86.8 79.9 -1.8 25.7 42.6 * 5.3
Egr1 83.1 79.3 -1.1 33.9 42.0 * 2.2
Fos 25.0 24.6 -0.5 4.3 7.9 * 4.1
Homer1 16.8 15.6 -1.2 18.4 17.8 -0.5
Junb 59.9 64.6 1.0 16.1 20.9 * 2.5
Jund1 116.1 136.1 * 2.6 49.4 54.6 0.9
Npas4 9.1 6.8 * -3.5 2.2 3.1 1.8
Nptx2 36.8 41.7 1.7 12.2 16.9 * 3.0
Nrn1 118.0 118.3 -0.3 111.8 115.8 0.1
Pcdh8 11.4 12.2 0.7 10.8 12.3 1.1
Ptgs2 2.8 3.1 0.8 5.2 5.2 -0.2

Key: Wt (wild-type), Ko (knockout), z (z-score), * (z-score> 2), Arc (activity regulated cytoskeletal-
associated protein), Bdnf (brain derived neurotrophic factor), Egr1 (early growth response 1), Fos
(FBJ osteosarcoma oncogene), Homer1 (homer homolog 1 (Drosophila)), Junb (Jun-B oncogene),
Pcdh8 (protocadherin 8), Nptx2 (neuronal pentraxin 2), Nrn1 (neuritin 1), Ptgs2 (prostaglandin-
endoperoxide synthase 2)

Genes with reduced protein levels

Preliminary data from immunoblots indicates that the densin knockout mouse has

decreased levels of several PSD proteins in the forebrain homogenate. However, none

of the corresponding transcripts are are significantly decreased in either the forebrain
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or the hippocampus of densin knockout mice. Thus, the changes observed in these

protein levels may not be the result of changes in transcription.

Effect of homologous recombination

The process of making the knockout animal did not change the expression of genes

near the site of genomic manipulation. The transcript levels of genes near densin are

plotted in Figure 2.13. In each case the difference between the expression of knockout

and wild-type genes is less than two standard deviations from the mean. Thus, we

observe no perturbation of local transcription due to the homologous recombination

used to make the densin knockout.
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Figure 2.13: No significant differences in transcript levels between densin knockout
and wild-type mice are observed in genes proximal to the densin locus.. The aver-
age transcript level measured for the genes listed on the abscissa are plotted. The
average transcript level for each sample is shown: wild-type and knockout forebrain,
and wild-type and knockout hippocampus. In each case the difference between the
expression of the knockout and wild-type genes is less than two standard devia-
tions from the mean. We observe no perturbation of local transcription due to the
homologous recombination used to make the densin knockout.
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2.4 Discussion

In order to understand more about the postsynaptic protein densin, we used RNA-Seq,

a recently developed method of global transcriptional analysis, to analyze changes in

gene expression in mice missing the gene that codes for densin (Lrrc7 ). Differences

in gene expression between the brains of densin knockout mice and their wild-type

littermates indicate that the loss of densin results in upregulation of its binding part-

ner CaMKIIα and several IEGs, including Arc and Jund1, and downregulation of

GABAAR subunit α2. These results, together with supporting observations of the

behavioral phenotype of the knockout mouse, extend previous knowledge of densin

function and implicate it in homeostatic regulation of excitatory and inhibitory cur-

rents. In addition, the interaction network analysis highlights a central role for the

NFκB signaling pathway in coordinating the DE genes in the densin knockout.

2.4.1 Implementation of RNA-Seq

RNA-Seq is a recently-developed method of measuring transcript abundance by se-

quencing. No consensus exists for optimal depth of sequencing, data normalization

methods or methods of identifying DE genes, nor have the options been extensively

compared.

The depth of sequencing in an RNA-Seq experiment determines the precision of

measurement. We were able to precisely measure transcripts of above 3 RPKM with

approximately 40 million reads. We used 0.25 RPKM as a conservative lower thresh-

old of measurement. Of transcripts above 0.25 RPKM, we precisely measured 63
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percent of them, accounting for 97 percent of all reads. The domination of mRNA

samples by highly abundant transcripts is a crucial consideration both for experimen-

tal design and biological models.

We normalized raw reads by the length of the transcript and by the number of

reads produced by a run of the sequencer. Two further normalizations were consid-

ered. The first normalization is a log2 conversion, commonly used in microarray anal-

ysis to normalize gene expression measurements along the dimension of abundance (a

skewed distribution; most genes are expressed at low levels) as well as normalizing the

distribution of difference in gene expression (also a skewed distribution: changes in

genes with low expression have greater variation than more highly expressed genes).

Both of these distributions are reduced but not eradicated by the log2 transformation.

Further transformations have been developed which change values in a locally

weighted manner, which further improves the normalization of variance (notably Hu-

ber et al. (2003)). Because microarray data are usually not compared between tran-

scripts, the data loss resulting from this type of variable transformation is insignificant

for microarray analysis. However, inter-transcript comparisons are an advantage of

the RNA-Seq technique, and the locally-weighted transformations lose that advan-

tage. Therefore we used only the log2 transformation, and selected a method for

identifying DE genes that accounts for abundance-dependent changes in distribution.

These data analysis methods allowed us to capitalize on the precision available

to us without losing relationships among the data. Measuring the fraction of values

that approached their final value allowed us to confidently use 97 percent of the
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reads that unambiguously matched a transcript region in the genome. In lieu of local

data transformation, which changes the relationships between transcripts, we used a

method of identifying DE genes that was sensitive to local changes in distribution.

2.4.2 Effects of the loss of densin on brain transcription

Using RNA-Seq, we investigated changes in brain transcription in mice missing the

postsynaptic protein densin. We compared transcript expression in the forebrain

and hippocampus of densin knockout mice to that in wild-type mice. We found

dysregulation of a number of genes.

The DE genes had a number of other commonalities. When the expression pat-

tern of the genes was analyzed using localization data from the ABA, they were

significantly more likely to be more highly expressed in the hippocampus than in the

striatum, thalamus, hypothalamus or midbrain (p<0.01). If, as this suggests, the

loss of densin has a larger effect on the hippocampus than on other brain regions,

densin may be more important to the function of the hippocampus than to other

brain regions. This implication is consistent with preliminary results of behavioral

test suggesting a memory deficit in the densin knockout mice.

Three GABA receptor subunits are significantly decreased: α2 and β1 in the

hippocampus and α5 in the forebrain. If this corresponds to a decrease in surface

GABA receptors, densin knockout mice may have decreased inhibitory tone compared

to wild-type mice.
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A number of IEGs are upregulated in the hippocampus of the knockout mice: Arc,

Egr1 (Zif268), Fos, Junb and Nptx2 (Narp). The overexpression in the hippocampus

does not occur in the forebrain: The levels of Arc, Egr1 and Fos all decrease in the

forebrain, although not to a significant extent. The increase in IEG expression and

the decrease in GABAR subunit expression suggest that the hippocampi of densin

knockout mice are in a persistent state of overstimulation.

Another pattern also suggests stimulation: Several genes coding for proteins in the

heat shock family are also dysregulated. Heat shock proteins (HSPs) are molecular

chaperones that respond to stress, reducing the harmful effects of misfolded proteins.

Many are induced in response to stressful conditions, but high expression of HSPs

can be detrimental (Feder and Hofmann, 1999). Cryab, a member of the small HSP

family, is among the most DE in both the forebrain and the hippocampus of the

densin knockout, but it changes in opposite directions in the two regions. Like Arc,

Egr1 and Fos, Cryab is upregulated in the hippocampus and downregulated in the

forebrain. It is widely expressed, but expression is also heat-inducible. Another of

the most DE genes is HSP 5 (Hspa5, also called BiP or GRP78). Like Cryab, it

is downregulated in the knockout forebrain. Hspa5 is a glucose-regulated protein

and a member of the HSP70 family. It is induced in response to heat and other

stresses. Hspa5 is also called “immunoglobulin heavy chain-binding protein”; Igh-1b

(immunoglobulin heavy chain 1b (serum IgG2c) is another DE gene in the knockout.

In the hippocampus of wild-type mice, Igh-1b is not expressed (0 RPKM) while

in the knockout it is expressed at 4 RPKM. This may be part of an inflammatory
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response, as NFKBIA (Iκb) is upregulated in both the forebrain and hippocampus

of densin knockout mice. The analysis of interactions among differentially regulated

genes places Iκb at the center of the resulting network. The NFκB pathway is a

key regulator of transcription responses to extracellular stimuli such as cytokines and

growth factors. Importantly, this pathway in neurons is also stimulated by NMDA,

calcium influx, and seizures (Boersma and Meffert, 2008).

In the forebrain, Mt1 and Mt2 were both significantly upregulated in the densin

knockout. Co-regulation of these genes has been previously observed: both are up-

regulated after 3,4-methylenedioxymethamphetamine (MDMA) treatment (Xie et al.,

2004). Moreover, intravitreous NMDA injection upregulates Mt2. Thus, the Mt2 up-

regulation in the densin knockout could be the result of the hyperexcitability indicated

by the increased CaMKII transcripts and tendency toward seizure (Suemori et al.,

2006).

Amid this set of indicators of over-activated excitatory mechanisms are two ap-

parently incompatible observations. Transcripts of three GABAAR subunits are de-

creased, and densin knockout mice are likely to have seizures in response to adminis-

tration of the GABA agonist pentobarbital. A decrease in GABA receptor expression

is compatible with decreased inhibition and the general shift toward excitability sug-

gested by the DE genes discussed above, but increased sensitivity to a GABAAR

agonist does not predict decreased GABAAR subunit expression or enhanced excita-

tion.
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Although induction of seizure by pentobarbital is not commonly reported, several

GABAA-regulating drugs are biphasic in effect. They either cause initial procon-

vulsive effects and subsequent anticonvulsive effects, or the dosage response curve

includes both proconvulsive and anticonvulsive ranges (Garant et al., 1995; Stuchĺık,

2001). Seizures induced by the withdrawal of pentobarbital are extensively used as

an experimental paradigm. It is not implausible that alterations in general excitatory

tone could alter the effect of pentobarbital treatment in densin knockout mice.

On the other hand, the same caveats apply to interpreting the differential expres-

sion in the GABAAR genes as other genes: the change in transcript level may not

correspond to a change in protein level. Although there is a positive overall correla-

tion, reports of correlation vary, by gene ontology category, with R2 values from 0.2 to

0.8 (Greenbaum et al., 2003; Kadota et al., 2003). Furthermore, proteins and mRNA

have different degradation mechanisms and half-lives, both of which affect abundance.

Finally, the loss of even major regulatory proteins can have silent phenotypes (Marder

and Goaillard, 2006; Piedras-Renteŕıa et al., 2004).

Densin may be involved in the regulation of dendritic structure. Shank transcrip-

tion is upregulated in the hippocampus of the densin knockout mouse. Shank is a

densin binding partner and core PSD scaffold that is involved in PSD organization.

Densin overexpression causes excessive dendritic branching, an effect rescued by co-

expression of Shank (Quitsch et al., 2005). Shank also interacts with δ-catenin, which

is also a binding partner of densin (Izawa et al., 2002). These results suggest a model

in which densin regulates dendritic branching via δ-catenin in a Shank-dependent
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manner (Quitsch et al., 2005). Studies of neuronal branching in the densin knockout

mouse are ongoing.

2.4.3 Implications for densin

We have identified a striking and pervasive trend of upregulation of activity- and

stress-regulated genes in the hippocampus of the densin knockout mouse. This may be

the result of changes in phospho-CaMKIIα localization. Since densin is hypothesized

to be a CaMKIIα docking site in the PSD, the loss of densin may disrupt CaMKIIα

localization.

The suggestion that densin is a docking site for CaMKIIα in the PSD comes from

the following evidence: densin binds to alpha-actinin, suggesting it could be localized

independently of CaMKII, and densin can bind α-actinin and CaMKIIα simultane-

ously. Furthermore, the affinity of CaMKIIα for densin increases when CaMKIIα is

autophosphorylated, as it is after LTP induction (Strack et al., 2000; Walikonis et al.,

2001). Thus, densin binds CaMKIIα differentially, depending on the phosphorylation

state of CaMKIIα, and could thus effect downstream signal transduction.

The brains of densin knockout mice have a lower steady state level of phospho-

CaMKIIα protein than wild-types, but phospho-CaMKIIα levels increase more after

stimulation in the knockout. Specifically, under steady-state conditions, neuronal

cell cultures derived from densin knockout mice have lower phospho-CaMKIIα levels

than wild-type cultures. However, the increase in phospho-CaMKII levels induced
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by glutamate receptor-stimulation conditions is twice as great in densin knockout

cultures as it is in wild-type cultures (H. Carlisle, personal communication).

Taken together, the foregoing observations suggest a model in which a substantial

fraction of autophosphorylated CaMKIIα binds to densin. In the absence of densin,

less autophosphorylated CaMKIIα is bound to the PSD, causing more CaMKIIα to

be exposed to phosphatases, which lower the steady state levels of phospho-CaMKII.

Under glutamate receptor stimulating conditions, however, more unphosphorylated

CaMKIIα is available to be autophosphorylated, and phospho-CaMKIIα levels in-

crease. This increase triggers signal transduction pathways, generating an excitatory

state. This persistent excitatory state leads to increased expression of some genes

that are induced by synaptic stimulation and stress, such as the IEGs, HSPs and

NFκB signaling pathway identified in our DE gene network analysis.

We have combined RNA-Seq data with wet-lab experiments to shape our hypothe-

ses of densin function. The seizure response to pentobarbital led to the search for a

possible mechanism in the transcript data; the discovery of GABA downregulation

and IEG upregulation in the transcript data will lead to a further set of wet lab

experiments.
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Chapter 3

Cofilin regulation by NMDA
receptor activation

Holly Beale, Holly Carlisle, Mary Kennedy

3.1 Introduction

The majority of excitatory synapses in the brain are located on dendritic spines.

Larger synapses are located on larger spines and are stronger. These properties–

synapse size and strength, and spine size–are coordinately regulated in part by salient

patterns of synaptic activity. Some of the proteins that regulate actin polymerization

and thus determine spine morphology are known. Moreover, abnormalities in spine

morphology are linked to mental retardation and cognitive disorders (Carlisle and

Kennedy, 2005). Fragile X syndrome (FXS), which is an inherited form of mental

retardation and autism, is associated with increased dendritic spines, a greater pro-

portion of which are long and immature (O’Donnell and Warren, 2002). Inactivation

of the fragile X mental retardation 1 (Fmr1) gene in mice recapitulates the spine phe-

notype seen in humans with FXS. These mice also display hyperactivity, stereotypy,
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and hypoanxiety phenotypes that may be analogous to behaviors in FXS patients

(Dutch-Belgian Fragile, 1994). The converse phenotype of spine morphology is seen

in mice that express a dominant negative form of p21-activated kinase (PAK), a reg-

ulator of spine morphology (Hayashi et al., 2007): These mice have decreased spine

density, fewer long spines, and fewer immature spines than do wild-type mice. By

crossing the PAK strain with the Fmr1 knockout, investigators partially rescued the

spine density, hyperactivity, stereotypy and hypoanxiety phenotypes, and completely

rescued the impaired cortical long term potentiation (LTP) (Hayashi et al., 2007).

This demonstrates the therapeutic insight that can be gained by basic research into

the regulation of dendritic spine morphology.

Our research into the regulation of spine morphology focused on the actin-severing

protein cofilin, a strong modulator of actin dynamics, whose activity has been impli-

cated in LTP and long term depression (LTD) (Fukazawa et al., 2003; Zhou et al.,

2004). Treatment of primary hippocampal cultures with the drug N-methyl-D-aspartate

(NMDA), which stimulates NMDA receptors, activates upstream actin regulators Rac

(a small GTPase) and PAK (Carlisle et al., 2008). In other systems, an increase in

phospho-PAK leads to an inactivation of cofilin by phosphorylation (Aleksic et al.,

2009). In primary mouse hippocampal cultures, however, NMDA treatment increases

phospho-PAK and decreases phospho-cofilin. Cofilin is dephosphorylated within 15

seconds of NMDA receptor activation (Carlisle et al., 2008). This result suggests that

there is an activity-dependent phosphatase regulating cofilin activity. Thus, it was of

interest to identify that phosphatase.
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In selecting candidate phosphatases, we considered the broadly active phosphatases,

protein phosphatase 1 (PP1), protein phosphatase 2A (PP2A) and calcineurin, as

well as the cofilin-specific phosphatases, slingshot and chronophin (Figure 3.1). PP1

and PP2A are responsible for much of the phosphatase activity in mammalian cells.

Calcineurin is regulated by calcium and is thus a good candidate for a process trig-

gered by the opening of the calcium-permeable NMDA receptor channel. These three

phosphatases have well-characterized small-molecule inhibitors: PP1 and PP2A are

inhibited by okadaic acid, and calcineurin is inhibited by FK506 and Cyclosporin A

(CsA).

NMDAR (Ca2+)

calcineurin PP1 PP2A slingshot chronophin

cofilin-specific phosphatasesmulti-substrate phosphatases

dephosphorylation of cofilin

demonstrated hypothetical

Figure 3.1: Candidate cofilin phosphatases are illustrated. We considered both
broadly-active and specific phosphatases. Slingshot and chronophin specifically de-
phosphorylate cofilin (Gohla et al., 2005; Huang et al., 2008; Nagata-Ohashi et al.,
2004; Nishita et al., 2004; Niwa et al., 2002; Wang et al., 2005)

Although two cofilin-specific phosphatases, slingshot and chronophin, are both

known to directly dephosphorylate cofilin, they have yet to be extensively character-
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ized in neurons. Slingshot dephosphorylates cofilin in HeLa, COS-7, and 293T cells,

as well as in cell-free conditions (Nagata-Ohashi et al., 2004; Nishita et al., 2004;

Niwa et al., 2002; Wang et al., 2005). Chronophin dephosphorylates cofilin in bovine

brain cytosol, Hela cells, and cell-free conditions (Gohla et al., 2005; Huang et al.,

2008). To test the role of these phosphatases in cultured neurons, we investigated

using RNA interference (RNAi) to decrease protein levels.

3.2 Materials and Methods

3.2.1 Cell culture and treatment

Cell cultures were generated and treated as described in Carlisle et al. (2008). Briefly,

primary mouse hippocampal neurons were prepared from embryonic day 16 or day 17

mice, and grown for 13-14 days in vitro (DIV). Cells for immunocytochemistry studies

were plated on glass coverslips. Cultures were pretreated with phosphatase inhibitor

for 30 minutes; FK506 (50 nM) or CsA (50 nM) were used to inhibit the phosphatase

calcineurin, and okadaic acid (1 µM) was used to inhibit the phosphatases PP1 and

PP2A. Cultures were washed, allowed to recover for two minutes on a plate warmer,

and then treated with 25 µM NMDA (Tocris; Ellisville, MO) for 15 seconds, or one,

three, or five minutes. Cells were then lysed with in a solution with 3 percent SDS.
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3.2.2 Fluorescence immunocytochemistry

After 14 DIV, cells were fixed with paraformaldehyde and methanol as described

in (Vazquez et al., 2004) with blocking buffer from Li-Cor buffer used in place of

buffer with normal goat serum. Slingshot-1L (ECM Biosciences)antibody signal was

visualized with a Zeiss Axiovert 200 microscope with a Plan-Apochromat 63x/1.4 (oil)

objective lens. Images were captured with a high-resolution CCD camera (Axiocam

MRm, Zeiss, Jena, Germany), controlled by Zeiss AxioVision 3.1 software.

3.2.3 Immunoblot

Samples were heated to 95◦C for three minutes in 3 percent SDS and 40 mM β-

glycerophosphate and fractionated via SDS-PAGE. Proteins were transferred to ni-

trocellulose membranes in 25 mM Tris, 190 mM glycine, and 20 percent methanol;

blocked in Odyssey Blocking Buffer; and probed with antibodies against one of the

following: phospho-cofilin (Cell Signaling), actin (Sigma), cofilin (BD Transduction

Labs), synGAP (developed in our laboratory; Oh et al., 2004), phospho-Thr423 PAK

(Cell Signaling), PAK1 (Cell Signaling), GAPDH (Sigma), PSD-95 (Affinity Biore-

agents), Synaptophysin (Abcam), Chronophin (Cell Signaling), Slingshot-1L (ECM

Biosciences), PAK2 (Cell Signaling), or LIMK1 (Cell Signaling). The secondary an-

tibody used was IRDye (Rockland). Antibodies were diluted in Odyssey Blocking

Buffer; and membranes were scanned with an Odyssey scanner (Li-Cor).
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3.2.4 Mouse PSD preparation with sucrose gradient

We prepared the crude mouse-brain postsynaptic density fraction from 10 mice in the

manner described in Carlin et al. (1980), with modifications described in Cho et al.

(1992). In brief, mouse brain tissue was homogenized in buffered isotonic sucrose with

protease inhibitors and then centrifuged at 1400 X g for 10 minutes. Homogenate

samples were taken from the supernatant. The remaining supernatant was applied to

sucrose density gradients and centrifuged. Synaptosome samples were taken from the

band between 1.0 and 1.2M sucrose; the remainder of the band was incubated with 0.5

percent Triton X-100 (Pierce), stirred for 15 minutes at 4◦ Celsius, and centrifuged at

36,800 X g for 45 minutes. The resulting pellet was the postsynaptic density (PSD).

3.3 Results

3.3.1 Analysis of synaptic localization

To determine which phosphatases are located in the PSD, we performed a crude

synaptosome and PSD fractionation from mouse forebrain (Figure 3.2). To analyze

the purity of the preparation, we measured the relative enrichment of PSD-95 and

synaptophysin in the PSD fraction. Analysis by immunoblot showed that the protein

PSD-95 is enriched in the synaptosome fraction and significantly enriched in the PSD

fraction to a similar extent found in preparations from rat forebrain (Apperson et al.,

1996). Conversely, the pre-synaptic protein synaptophysin is nearly undetectable in
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the PSD fraction, demonstrating that the fraction is relatively free of presynaptic

contaminants.

PSD-95

synaptophysin

chronophin

PAK1

PAK2

Homog Synap PSD

cofilin

slingshot-1L

Figure 3.2: Slingshot and chronophin are present in the crude synaptosomal fraction.
Immunoblots from a PSD preparation are shown. Brain homogenate was run in the
first lane, the synaptosomal fraction in the second, and the PSD fraction in the third.
Chronophin and slingshot are present in the synaptosome, and thus are potential
mediators of NMDA-induced cofilin dephosphorylation. Both are also present at low
levels in the PSD fraction. The large PSD95 band in the PSD fraction indicates
successful enrichment of the postsynaptic density. The decrease in synaptophysin
between the synaptosome and PSD fractions indicates the extensive depletion of
presynaptic proteins.

Two candidate phosphatases, chronophin and slingshot, are both present in the

synaptosome fraction. Because equal amounts of total protein were loaded in each

lane, enrichment can be determined by the relative size of the bands in the differ-

ent fractions. These results showed that chronophin protein levels are similar in the
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homogenate and synaptosome fractions, while slingshot is slightly decreased in the

synaptosome fraction. Both phosphatases are also present in the PSD fraction, al-

though at lower levels. Thus, chronophin and slingshot are potential mediators of

NMDA-induced cofilin dephosphorylation.

PAK and cofilin are also present in the synaptosome fraction. PAK1 and PAK2

show little change between the homogenate and synaptosome fraction, while cofilin

is enriched in the synaptosome fraction. All of the proteins are depleted in the PSD

relative to the synaptosome fraction. This does not exclude interactions with PSD

proteins; proteins that are present in the postsynaptic compartment but are loosely

bound to core PSD proteins can be easily stripped from the PSD during the triton

solubilization step.

To further characterize the subcellular localization of slingshot, we used immuno-

cytochemistry to visualize its distribution in hippocampal cultures. Slingshot staining

is punctate in dendrites and close to the cell membrane in the cell body (Figure 3.3).

Since cofilin regulates actin structures, which are also located close to the cell mem-

brane, these findings are consistent with a role for slingshot in the regulation of cofilin

and thus actin.

3.3.2 Small molecule phosphatase inhibitors

To identify the activity-dependent phosphatases that mediate NMDA-induced de-

phosphorylation of cofilin, we applied phosphatase inhibitors to primary hippocampal

cell cultures. Since bath application of NMDA causes a decrease in cofilin phospho-
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Figure 3.3: SSH antibody showed punctate staining pattern at the in dendrites and
close to the cell membrane in the cell body

rylation, we reasoned that inhibition of involved phosphatases would perturb that

response. Therefore, the NMDA-induced dephosphorylation of cofilin was determined

in both the presence and absence of phosphatase inhibitors. We inhibited PP1 and

PP2A with okadaic acid, and calcineurin with FK506 or CsA. Inhibitors were applied

to the cell cultures 30 minutes before the NMDA treatment.

We measured phospho-protein levels in the absence of NMDA to assess the role of

the phosphatases in steady-state conditions, and measured them again at 15 seconds,

and at one, three, and five minutes after NMDA treatment. Phospho-protein levels

are expressed as a percent of those in the control cultures that were treated with

neither phosphatase inhibitor nor NMDA. Although these experiments depend on

measuring phospho-cofilin, we also measured phosphorylation of PAK isoforms 1–3

to confirm the activation of the actin-regulatory pathways observed in Carlisle et al.

(2008) and to assess the specificity of the effects of phosphatases.
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Inhibition of calcineurin

While calcineurin inhibitors increase phospho-cofilin by 12 percent before the ad-

dition of NMDA (Figure 3.4), calcineurin inhibition does not change the trend of

cofilin dephosphorylation after NMDA treatment. The proportion of dephosphoryla-

tion is similar in the presence and absence of calcineurin inhibition. Thus, although

calcineurin regulates steady-state phosphorylation of cofilin, it does not appear to

be the activity-dependent phosphatase that activates cofilin in response to NMDA

treatment.

Inhibiting calcineurin has little effect on phospho-PAK1-3 levels. Pretreatment

with calcineurin inhibitors FK506 or CsA does not change the steady-state phospho-

rylation of PAK1 (Figure 3.5). Nor does pretreatment with FK506 or CsA change

the phosphorylation of PAK1 in response to 25 µM NMDA treatment. Consequently,

we conclude that calcineurin does not regulate the phosphorylation of PAK1 under

these conditions.

Inhibition of PP1/PP2A

We performed similar studies with the PP1/PP2A inhibitor okadaic acid. Steady-

state levels of phospho-cofilin doubles in response to the phosphatase inhibitor. How-

ever, the addition of NMDA still decreases phospho-cofilin, which indicates that nei-

ther PP1 nor PP2A mediate NMDA-induced dephosphorylation of cofilin.
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Duration of NMDA treatment (minutes)

C/0 1 2 3 4 5

0%

20%

40%

60%

80%

100%

120%

p-cofilin 
 (% no-
inhibitor
control)

No inhibitor

Calcineurin
inhibitor 
FK506

Figure 3.4: Calcineurin regulates steady-state phosphorylation of cofilin but not
NMDA-induced dephosphorylation of cofilin. Phospho-cofilin levels are plotted on
the ordinate as a percent of the phospho-cofilin levels in the control sample (indicated
by the gray box; the control cultures were treated with neither phosphatase inhibitor
nor NMDA). Duration of NMDA treatment is plotted on the abscissa. Thirty-
minute pretreatment with FK506, a calcineurin inhibitor, caused an increase of 12
percent in steady-state phospho-cofilin. When NMDA was added in addition to
FK506, phospho-cofilin levels decreased, indicating that calcineurin is not mediating
NMDA-induced dephosphorylation of cofilin. Representative western blots of FK506
and control (no inhibitor treatment) are shown for each NMDA treatment condition.
Statistics include results of CsA treatment (not shown), which were indistinguishable
from the FK506 results. Error bars indicate standard error of the mean.

The effect of inhibiting PP1/PP2A on PAK1-3 is dramatic: Steady-state PAK1-

3 phosphorylation increases a hundred-fold. The further addition of NMDA in the

presence of okadaic acid does not further increase phospho-PAK1-3 (Figure 3.7).
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Duration of NMDA treatment (minutes)

C/0 1 2 3 4 5
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Calcineurin
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Figure 3.5: Calcineurin does not regulate steady-state levels of phosphorylation of
PAK1-3. Phospho-PAK1-3, as a percent of control (indicated by the gray box), is
plotted against the duration of the NMDA treatment. Calcineurin inhibitor FK506
does not change steady-state phospho-PAK1-3 levels (time point 0), and phospho-
PAK1-3 levels increase in response to NMDA treatments in the presence and absence
of the calcineurin inhibitor. Representative western blots of FK506 and control (no
inhibitor applied) are shown for each NMDA treatment condition. Statistics include
results of CsA treatment (not shown), which were indistinguishable from FK506
results. Error bars indicate standard error of the mean.

These findings indicate that PP1 and/or PP2A actively suppress steady-state

phosphorylation of PAK1-3 under these experimental conditions. It also reveals that

a kinase is constitutively phosphorylating PAK1-3, maintaining the phosphorylation

of PAK1-3 in a state of dynamic equilibrium.
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Duration of NMDA treatment (minutes)
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Figure 3.6: PP1 and/or PP2A regulates steady-state phosphorylation of cofilin but
not NMDA-induced dephosphorylation of cofilin. Phospho-cofilin, as a percent of
control (indicated by the gray box), is plotted against the duration of the NMDA
treatment. Okadaic acid increases steady-state phospho-cofilin levels (time point
0), but phospho-cofilin is still dephosphorylated in response to a bath application
of NMDA. Okadaic acid does not mediate NMDA-induced dephosphorylation of
cofilin. Representative western blots of each condition are shown. Error bars indicate
standard error of the mean.

3.3.3 Knockdown of slingshot

No small molecule inhibitors are available for chronophin and slingshot. Therefore,

to reduce the levels of these proteins, we investigated different methods of RNAi. We

utilized membrane-permeable short interfering RNA (siRNA) oligonucleotides that

do not require a separate transfection reagent (Accell, Dharmacon). Transfection
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Figure 3.7: PP1 or PP2A strongly suppresses the steady-state phosphorylation of
p-PAK(1-3). p-PAK(1-3), as a percent of control (indicated by the gray box),
is plotted against the duration of the NMDA treatment. Okadaic acid increases
steady state pPAK1-3 levels by a factor of 100. Representative western blots of
each condition are shown. Error bars indicate standard error of the mean.

reagents are often toxic and inappropriate for cultures intended for signal transduction

experiments experiments that require mature, healthy neurons.

The positive control siRNA oligonucleotide, targeted against GAPDH, decreases

the protein level in the neurons. Neurons were grown for 11 DIV and the GAPDH

siRNA applied for 48 or 72 hours. At 72 hours, GAPDH protein levels are decreased

by 60 percent compared to cultures treated with a non-targeting siRNA (Figure
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3.8). Although the method decreases protein levels, a 60 percent reduction may

be insufficient for some purposes.

GADPH

Actin

SynGAP

Vehicle GAPDH
siRNA

Non-target
siRNA

Control Vehicle GAPDH
siRNA

Non-target
siRNA

Control

48 hr treatment 72 hr treatment

13% reduction
(siRNA/non-target)

61% reduction
(siRNA/non-target)

Figure 3.8: GAPDH protein was reduced by 60 percent after 72 hour treatment with
siRNA. Western blots of treated and untreated samples are shown. GAPDH was
targeted for knockdown with Accel siRNA. To assess the effect of the siRNA system
for effects on important regulators of our experimental system, we also measured
actin and SynGAP, a regulator of synaptic signaling. In the left group, vehicle or
siRNA was applied to cultures for 48 hours; in the right, for 72 hours. In the GAPDH
siRNA lane, the GAPDH band is visible low in both the 48- and 72-hour conditions.
The total reduction of GAPDH was 61 percent after 72 hours of treatment, when
normalized to the non-targeting siRNA treatment.

Unfortunately, the siRNA oligonucleotides targeting slingshot are ineffective at

reducing slingshot protein levels (Figure 3.9).
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SSH

SSH siRNANon-target siRNA

GADPH

Figure 3.9: Slingshot siRNA did not decrease slingshot protein levels. Cultures
were incubated with slingshot (SSH) or non-targeted siRNA oligonucleotides for 72
hours. Western blots of treated and untreated samples are shown. GAPDH was
used as a loading control. Slingshot levels are not consistently reduced. This blot
is representative of those from other experiments in which oligonucleotides were
applied for longer and shorter times, as well as to neuronal cultures of different
ages.
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3.4 Discussion

Synaptic plasticity is accompanied by extensive cytoskeletal modification. NMDA

receptors mediate several forms of synaptic plasticity, and signal transduction leading

to cytoskeletal modification can be studied by applying the NMDA receptor agonist,

NMDA, to neuronal cultures. This treatment decreases phosphorylation of cofilin,

a protein that depolymerizes actin filaments when it is dephosphorylated (Carlisle

et al., 2008). This NMDA-mediated decrease in phospho-cofilin led us to hypothesize

that an activity-regulated phosphatase dephosphorylates cofilin. Activation of PAK,

a kinase, leads to phosphorylation of cofilin in non-neuronal systems (Edwards et al.,

1999). However, we demonstrated that applying NMDA to hippocampal cultures

activates PAK while decreasing phospho-cofilin levels. These results suggest that the

canonical PAK-LIMK-Cofilin signaling pathway described in other systems might not

be present in spines.

We hypothesized that stimulation of neuronal NMDA receptors activates a cofilin-

phosphatase that mediates the observed dephosphorylation of cofilin. When PP1/2A

or calcineurin are inhibited, the amount of phosphorylated cofilin is still decreased

in response to NMDA application. Thus, neither PP1/2A nor calcineurin is likely to

mediate the decrease in phospho-cofilin (Table 3.1). We found that two cofilin-specific

phosphatases, slingshot and chronophin, are localized at the synapse, suggesting they

are candidates for mediating the decrease in cofilin phosphorylation observed after

NMDA stimulation.
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Table 3.1: Effect of phosphatase inhibitors on phosphorylation of PAK and cofilin.

Calcineurin Inhibitors PP1/PP2A Inhibitors

Protein steady-state NMDA steady-state NMDA

phospho-cofilin increased no change highly increased no change
phospho-PAK1-3 increased no change highly increased ?

To confirm the activation of actin-regulatory pathways by NMDA, we measured

phosphorylation of PAK isoforms 1–3 and phospho-cofilin. We observed a hundred-

fold increase in basal phospho-PAK1-3 when PP1 and PP2A are inhibited with

okadaic acid. This observation is consistent with prior demonstrations of increases in

phospho-PAK in neutrophils in response to okadaic acid (Westphal et al. 1999; Zhan

et al. 2003, but see Chan et al. 2008). The present findings also further support the

hypothesis that PAK1-3 does not phosphorylate cofilin in spines.

Due to the increased phosphorylation of PAK1-3 when PP1 and PP2A are in-

hibited, we were unable to definitively assess the effect of adding NMDA. Measure-

ments of the increased phosphorylation signal have an error margin larger than the

magnitude of the NMDA-dependent increase observed when PP1 and PP2A are not

inhibited. Thus, it is difficult to observe an NMDA-dependent increase in the signal.

An alternate consideration concerns the total amount of PAK that can be phospho-

rylated. If PAK is maximally phosphorylated when PP1 and PP2A are inhibited,

there may be no further response to NMDA.

Although we did not identify the phosphatase involved in the NMDA-dependent

dephosphorylation of cofilin, this evidence indicates that the most promiscuous phos-
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phatases are not likely candidates. We also confirmed the presence of two cofilin-

specific phosphatases in the system.

As discussed in the introduction, a dominant negative form of PAK can rescue

cytoskeletal and behavioral deficits in a mouse model of Fragile X syndrome. However,

our work shows that the PAK signaling observed in most other systems is altered in

neurons, as a hundred-fold increase in phospho-PAK does not increase phospho-cofilin

levels in neurons. Understanding neuron-specific regulation of PAK and cofilin is

critical for implementation of treatments that will target PAK and cofilin regulation.
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Chapter 4

Arc protein interactions

Holly Beale, Mary Kennedy

4.1 Introduction to Arc

Brain function depends on synaptic plasticity, which is the ability of synapses to

increase or decrease the amplitude of the signals they relay. Maintaining changes

in synaptic strength over hours requires gene expression (Alberini, 2009). A gene

with characteristics that are particularly suggestive for playing a role in maintain-

ing changes in synaptic strength is Arc (also known as Arg3.1), an immediate early

gene (IEG) named for its activity regulated and cytoskeleton-associating properties.

Within minutes of stimuli that trigger changes in synaptic strength, Arc is transcribed

and this transcript is transported to the stimulated portion of the dendrite (Steward

et al., 1998). When Arc is not present, as in the Arc knockout mouse, both memory

and long term potentiation (LTP), a form of induced change in synaptic strength, are

impaired. (Guzowski et al., 2000). To better understand the role of the Arc protein
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in changes in synaptic strength, we studied its binding to other proteins involved in

LTP.

Several known binding partners of Arc have been described in the literature,

including endophilin, dynamin, MAP2, and CaMKII (which phosphorylates Arc)

(Chowdhury et al., 2006; Donai et al., 2003; Fujimoto et al., 2004). An interaction

with an actin-binding protein is suggested by the co-sedimentation observed with

crude, but not purified, filamentous actin (Lyford et al., 1995). An interaction with

14-3-3ζ is also suggested by the results of a yeast-two hybrid assay (Lyford, 1998).

14-3-3ζ regulates cofilin, which depolymerizes actin, a process that is required for

the cytoskeletal remodeling associated with synaptic potentiation. Thus, Arc could

support synaptic potentiation by binding to 14-3-3ζ. 14-3-3 proteins often regulate

signal transduction pathways by binding serine/threonine phosphorylated proteins,

thus preventing dephosphorylation. Because 14-3-3ζ binds phosphorylated cofilin, it

prevents dephosphorylation and activation of cofilin (Gohla and Bokoch, 2002). If

Arc does, in fact, bind 14-3-3ζ, this may change the binding affinity between 14-3-3ζ

and phospho-cofilin, thus altering the amount of cofilin that can depolymerize actin

filaments.

I used pull-down experiments and generated an Arc fragment cDNA library to

investigate possible Arc binding interactions. Candidate binding partners included:

1) proteins that had been identified by a yeast two-hybrid screen, 2) proteins that

play a large role in the regulation of synaptic plasticity, and 3) CaMKII, which has

been reported to bind Arc (Donai et al., 2003).
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4.2 Materials and Methods

4.2.1 Protein expression

The pGEX-Arc construct was the gift of Paul Worley. On sequencing the plasmid,

we found that our results did not agree with the sequence submitted by the same

source to PubMed. Specifically, the resulting protein sequence contained the changes

P17L (base 50), L209V (base 625), E318G (base 953) (Figure 4.1). The plasmid

was mutated back to the reported consensus sequence with the QuikChange Multi

Site-Directed Mutagenesis Kit (Stratagene). Frozen glycerol glutathione-S-transferase

(GST) and GST-Arc stocks in BL21 E. coli cells were prepared and stored at -80◦

Celsius. For expression, thawed culture was diluted at 1:200 in Luria broth with 100

µg/ml carbenicillin and incubated with shaking (250 rpm) at 37◦ Celsius overnight.

The overnight preculture was diluted at 1:40 into Luria broth and grown to OD600

=0.7. Temperature was reduced to 37◦ Celsius, and IPTG was added to 125 µM.

Cultures were grown for six more hours. Pellets were stored at -80◦ Celsius.

4.2.2 Protein purification

A bacterial pellet overexpressing GST-Arc or GST (control) was resuspended in 10

ml lysis buffer (phosphate-buffered saline (PBS: 137 mM NaCl, 2.7 mM KCl, 4.3 mM

Na2HPO4, 1.47 mM KH2PO4), 1mM EDTA, Complete protease inhibitor (Roche)).

The bacterial cells were sonicated on ice for 3 minutes at 30% intensity. Two-second

bursts of sonication were followed by 2-second rest periods. The total duration of
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Arc 91-100
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Arc binding to

endophilin
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at 318

Figure 4.1: Amino acid locations of Arc mutations, displayed with binding sites for
endophilin and dynamin identified by Chowdhury et al. (2006).

sonication and rest intervals was six minutes. All subsequent steps took place at 4◦

Celsius. Triton X-100 (Triton; Pierce) was added to to a concentration of 1%, and

phenylmethylsulphonyl fluoride (PMSF) was added to a final concentration of 10 mM.

The sample was stirred for 10 minutes after which it was centrifuged at 15,000 X g

for 15 minutes. The supernatant was filtered with a 45 µm filter and then a .45 µm

filter. GST and GST-fusion proteins were purified from the solubilized bacterial-cell

lysate with affinity chromatography:10 ml of supernatant was incubated with 2 ml

bed volume of glutathione bead slurry (Sigma G4510) for 1 hour, rotating end-over-

end. The protein-bead mixture was spun down in a clinical centrifuge for 30 seconds.

GST and GST-Arc beads were washed 4 times in 10 ml PBST (PBS and 1% Triton),

rotating 5 min end-over-end. The last wash was removed, reducing the volume to 4

ml (50% slurry). Beads were triturated and 1 ml 50% slurry was aliquoted into four

tubes (500 µl bed volume each). Each tube was spun down, and the supernatant
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removed and discarded. Protein was batch eluted with 500 µl elution buffer (510 mM

reduced glutathione (GSH; Sigma G4251) in 50 mM Tris-HCl, pH 9.5) incubated

for 5 minutes with end-over-end rotation. The beads were spun down briefly, the

supernatant removed and saved. The elution was repeated 4 times with fresh buffer.

The five eluates were combined and injected into three 12-ml 10 K MWCO Slide-A-

Lyzer Dialysis Cassettes (Pierce). The sample was dialyzed in 2 L of dialysis buffer

(50 mM Tris pH 7.5, 1 mM EDTA) overnight with stirring. Each experiment was

performed with freshly purified protein.

To increase the proportion of full-length GST-Arc to GST-Arc fragment, some

purified protein samples were subjected to size exclusion chromatography instead

of dialysis. The sample was applied to a Superdex 200 10/300 GL column (GE

Healthcare Life Sciences) and eluted with 50 mM Tris pH 7.5, 1 mM EDTA and 0.15

M NaCl.

In an alternate method employed to increase the proportion of full-length GST-

Arc to GST-Arc fragment, GSH-agarose beads were used to deplete the GST-Arc

fragment. After dialysis, GST-Arc solution was twice incubated with GSH-agarose

beads for five minutes. The beads were discarded and the supernatant retained.

4.2.3 Pull-down experiments

Glutathione (GSH)-agarose beads were incubated with either GST or GST-Arc with

GSH-agarose beads (Sigma G4510) for one hour at 4◦ Celsius with rotation. Beads

were analyzed by SDS-PAGE gels which were stained for total protein (GelCode Blue
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Stain, Pierce), revealing that GSH has a much lower affinity for GST-Arc than for

GST. Incubating beads with more concentrated GST-Arc solution resulted in more

GST-Arc binding to beads. Consequently, we used the maximum concentration of

GST-Arc available. Each experiment was performed with freshly purified protein, so

the concentration of GST-Arc varied, and thus the amount of GST-Arc that coupled

to the GSH-agarose beads varied.

Detecting whether interactors bound to GST-Arc more than they bound to GST

required comparison between equimolar amounts of GST bait. To increase the likeli-

hood of equimolar conditions, we serially diluted agarose beads after incubating them

with bait. Beads incubated with with GST were were labeled “100% loaded beads.”

An aliquot of these beads was diluted 1:1 with fresh GSH-agarose beads (those that

had never been incubated with bait protein) and labeled “50% loaded beads.” These

were in turn diluted 1:1 and labeled “25% loaded beads.”

The input for the experiment was deoxycholate (DOC)-solubilized brain-membrane

fraction prepared from mice that had been sacrificed via cervical dislocation. The

forebrain was isolated, the olfactory bulbs and cerebellum were removed, and the re-

maining tissue tissue added to 2.4 ml of homogenization buffer (4 mM HEPES-NaOH

pH 7.4, 0.32 M sucrose, Complete protease inhibitors, adjusted to pH 7.4 with 1 N

NaOH). The tissue was homogenized with ten strokes of the tissue grinder at 1,000

RPM and centrifuged for ten minutes at 1,000 g. The resulting supernatant was

centrifuged at 100,000 x g for one hour to isolate the membrane fraction, which was

then resuspended in 50 mM pH 9 Tris-HCl with Complete protease inhibitor and 1
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mM EDTA. DOC was added to 1% and the membrane fraction was solubilized at

37◦ Celsius for 45 minutes in a rotating bath incubator. The fast spin (100,000 x g

for one hour) was repeated and the supernatant was retained. Triton was added to

1%. The pH of the solution was brought up to pH 7.5 by addition of 50 mM pH

7 Tris-HCl with Complete protease inhibitor and 1 mM EDTA. NaCl was added to

150 mM. The solution incubated with glutathione-agarose beads loaded with GST

or GST-Arc. The beads and solubilized brain-membrane fraction were incubated

at 4◦ Celsius for two hours with end-over-end rotation, after which the beads were

washed 4 times. Proteins were eluted with sample loading buffer (3% SDS, 10% glyc-

erol, 5% beta-mercaptoethanol, 0.002% bromophenol blue, 0.125 M pH 7.5 Tris HCl)

and loaded into an SDS-acrylamide gel. Immunoblots were probed with antibodies

against CaMKIIα (Affinity Bioreagents), GluR1 (Chemicon), synGAP (developed in

our laboratory; Oh et al., 2004) and PSD-95 (Affinity Bioreagents).

4.2.4 Yeast two-hybrid Arc mini-library

The pGEX-Arc plasmid was diluted to 0.2 mg/ml. The solution was sonicated on

ice for 0.2 second bursts at 20% intensity on followed by 1.5-seconds rests; total

duration of sonication and rest intervals was five minutes. The output was concen-

trated (Zymo Clean & Concentrator), and subjected to agarose gel electrophoresis.

Bands of 0.3-0.5 kilobases were excised and purified (Zymoclean Gel DNA Recovery

Kit). Fragments were blunted and ligated into the pUC19 and then subcloned into
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the pGADT7 (activating domain) plasmid (Clontech). A subset was sequenced to

determine coverage.

4.3 Results

4.3.1 Protein purification

We purified the fusion protein GST-Arc for use as bait in pull-down experiments. On

sequencing the plasmid, we found that it did not agree with the sequence submitted by

the source lab to PubMed. Specifically, it contained the mutations L209V (base 605),

E318G (base 953), E377G (base 1153). Multisite-directed mutagenesis was employed

to change the bases back to the PubMed sequence.

Expression of GST-Arc produced the full-length (75 kDa) protein and a 30 kDa

fragment composed of GST (26 kDa) and a small piece of Arc. Initially, the insoluble

fraction of the bacterial lysate contained a greater proportion of full-length product

than did the soluble fraction. To enrich the full-length protein, we optimized the

expression of GST-Arc for solubility, yield and reduced proteolysis. Solubility and

yield increased but the fragment remained, constituting on average 55% of the sample

by mass.

We assessed two other methods of reducing the amount of GST-Arc fragment in

the sample: size-exclusion chromatography, and depletion with GSH-agarose beads.

Size-exclusion chromatography resulted in an increase of 10% in the fraction of the
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sample comprised by full-length GST-Arc; however, this method also reduced the

total amount of protein by 50%.

Depletion with GSH-agarose beads was more successful. The GST-Arc fragment

has a much higher affinity for GSH-agarose than does the full-length protein, and

longer incubations increase the amount of full-length protein on the bead. To take

advantage of this, we depleted the GST-Arc fragment by incubating the protein so-

lution with GSH-agarose beads for five minutes, and then retaining the supernatant.

On average, two rounds of depletion increased the percent of total protein comprised

by GST-Arc by 10-15% at the cost of a loss of 30% of the GST-Arc protein (Figure

4.2).

For subsequent pull-down experiments, we incubated GSH-agarose beads in the

protein solution that had been bead-depleted of the Arc fragment. Because GSH-

agarose has a greater affinity for the GST-Arc fragment than for full-length GST-Arc,

the maximum enrichment of full-length GST-Arc was not maintained. Nevertheless,

the proportion of full-length GST-Arc in the pull-down experiments was improved by

depleting the GST-Arc fragment.

4.3.2 Interactions in brain lysate

To test for binding between Arc and candidate interactors, we performed GST pull-

down experiments. GST-Arc was immobilized on glutathione-agarose beads which

were then incubated with DOC-solubilized brain-membrane fraction. The presence

of candidate interactors was measured by immunoblot. To assess whether binding
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Figure 4.2: Brief incubation with glutathione (GSH) agarose beads depletes the
GST-Arc fragment. GST-Arc expressed in E. coli is purified by GSH-agarose in-
cubation and elution and analyzed by SDS-PAGE stained for total protein. The
two most prominent species in the solution are full-length GST-Arc and a GST-Arc
fragment of approximately 30 kiloDaltons (lane one). The fragment is depleted
by an additional five-minute incubation with GSH-agarose beads; the supernatant
is retained (lane 2). An additional incubation results in a further depletion of the
fragment (lane 3). The depletion is the result of the affinity of GSH-agarose beads
for the GST-Arc fragment, which is higher than the affinity of the beads for the
full-length GST-Arc protein.

was specific to Arc, we compared the amount of protein pulled down by GST-Arc to

that pulled down by GST alone.

To compare equimolar amounts of our bait proteins, GST and GST-Arc, we gener-

ated multiple samples by serially diluting our immobilized bait, measured the amount

of bait protein in each sample, and selected equimolar samples for comparison. Specif-

ically, we diluted bait-incubated GSH-agarose beads with non-incubated GSH-agarose

beads (described in Materials and Methods section 4.2.3, shown in Figure 4.3). We

analyzed the amount of bait protein in each sample using SDS-PAGE and total pro-

tein stain, measuring the relative mass of each bait species via densitometry. This
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number was converted to a molar intensity by dividing the mass by the molecular

weight of the species in kilodaltons (kDa).

Table 4.1 contains the densitometry measurements for the bead samples shown

in Figure 4.3. In this example, the relative number of moles of GST in an aliquot

composed only of beads incubated with GST is 26 (shown in the first column of

the table, the GST sample), and a comparable molar amount of GST-fusion species

is present in an aliquot composed only of beads incubated with GST-Arc (28; the

sum of the molar intensity value listed for columns 4 and 6, full-length GST-Arc and

GST-Arc fragment).

Table 4.1: Quantification of the mass and molar amounts of bait protein species in a pull-
down experiment.

full-length GST-Arc
GST GST-Arc fragment

Percentage of beads
incubated with bait 100 50 25 100 50 100 50

Integrated intensity 684 374 162 314 195 713 447
Molar intensity 26 14 6 4 2 24 15

Figure 4.4 shows results from a pull-down experiment. SDS-PAGE lanes were

loaded with the same samples described in Figure 4.3. The first lane contains the

input, DOC-solubilized brain-membrane fraction, which contains the candidate inter-

actors. Lanes 2–4 contain decreasing concentrations of GST immobilized on agarose

and incubated with the input. Lanes 5–6 contain decreasing concentrations of GST-

Arc immobilized on agarose and incubated with the input. Lanes 2 and 5 can be

nearly directly compared; as indicated in Table 4.1, the relative number of moles of
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Bait ProteinBait ProteinBait ProteinBait ProteinBait Protein

input GSTGSTGST GST-ArcGST-Arc

% loaded beads% loaded beads 100 50 25 100 50

GST

Full length GST-Arc

GST-Arc fragment

Figure 4.3: Total protein as visualized by SDS-PAGE allows selection of equimolar
conditions. Samples from a GST-Arc pull-down experiment were analyzed: 1) DOC-
solubilized brain-membrane fraction (input), which contains the potential interac-
tors; 2-4) GST immobilized on glutathione-agarose beads, diluted to the percent
indicated with fresh glutathione-agarose beads, incubated with input; 5-6) GST-Arc
immobilized on glutathione-agarose beads, diluted to the percent indicated with
fresh glutathione-agarose beads, incubated with input. Full-length GST-Arc (solid
black arrowhead) is approximately 80 kDa; a prominent GST-Arc fragment (empty
arrowhead) is approximately 30 kDa.

GST species is 26 in the GST-only conditions and 28 in the GST-Arc “100% loaded

beads” conditions, with GST-Arc fragment comprising 26 of the 28 relative moles.

Thus the bands of each interactor can be compared between the “100% loaded beads”

lanes in this experiment, at least within an error range of 10% (a generous estimate

of the difference in binding, possibly resulting from a 26:28 molar ratio).
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The greater intensity of the CaMKIIα band in the GST-Arc 100 lane compared to

the GST-100 lane indicates that more CaMKII bound GST-Arc than GST. Because

the GST-Arc beads are only 1/7th as long as full-length GST-Arc (4/28; Table 4.1),

the difference we see may be only 1/7th of the difference of CaMKII binding to GST-

Arc and GST alone. This assumes CaMKII does not bind a region of Arc contained

in the GST-Arc fragment, which contains approximately the first 40 amino acids of

Arc.

Although we probed for CaMKIIα, the signal does not exclusively represent an in-

teraction between CaMKIIα and Arc. First, because this pull-down was performed in

brain-membrane fraction, an interaction between CaMKII and Arc could be mediated

by an adapter protein. Secondly, the typical composition of a CaMKII holoenzyme

in the forebrain is approximately three α subunits to one β subunit. An interaction

with with either could be detected with the anti-CaMKIIα antibody.

Comparison of the GluR1 and SynGAP bands in this experiment shows that

both of them bound more to GST-Arc than GST in this experiment. Since PSD-95

bands were not observed, the GST-Arc beads did not pull down large portions of the

postsynaptic density (PSD).

Repeating this optimized experiment several times indicated an interaction be-

tween Arc and CaMKII at p<.05, and a trend indicating that Arc bound SynGAP

and GluR1. However, the immunoblot bands were faint, and background was high,

which added uncertainty to the quantification. Changes to the number and duration

of bead wash steps decreased background, but also decreased signal. When exper-
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iments implementing these changes were included, no interactions were statistically

significant.

CaMKII!

GluR1

SynGAP

PSD-95

Bait ProteinBait ProteinBait ProteinBait ProteinBait Protein

input GSTGSTGST GST-ArcGST-Arc

% loaded beads% loaded beads 100 50 25 100 50

Figure 4.4: Immunoblot GST-Arc pull-down from brain-membrane fraction; not
representative. Glutathione-agarose beads were incubated with GST or GST-Arc as
described and subsequently incubated with deoxycholate (DOC)-solubilized brain-
membrane fraction. After incubation, the beads were washed and loaded on to an
SDS-PAGE gel, where the proteins were eluted with sample loading buffer. Input
was also loaded on the gel. Immunoblots were probed for CaMKII, GluR1, SynGAP
and PSD-95. GST-coated beads incubated with input were loaded in lanes 2 through
4; GST-Arc coated beads incubated with input were loaded in lanes 5 and 6. The
percent loaded beads indicates whether the loaded beads were diluted with newly
swollen glutathione beads. Relative enrichment was calculated as described in the
text. This blot shows binding between Arc and CaMKII, and a small increase over
background binding with GluR1 and SynGAP. However the results were inconsistent
and were not present when we made changes to the post-incubation bead wash to
reduce background.
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4.3.3 Creation of Arc mini library

In preparation for identifying regions of Arc bound by other proteins, we generated

an Arc fragment library to use in a modified yeast two hybrid technique as described

in Kornau et al. (1995). Typically, a yeast two hybrid experiment identifies binding

partners of a protein (the bait) by screening for interactions with proteins (the prey)

expressed by a cDNA library from a tissue such as brain. Instead of identifying

binding partners from an entire tissue, we planned to use the technique to identify

fragments of Arc (the prey) that bind to a known interaction partner. For example,

because CaMKII has been reported to interact with Arc, we planned to screen the

Arc fragment library to see which fragments interact with CaMKII, to identify the

region of the full-length Arc that binds CaMKII.

We generated the library by sonicating a plasmid that expresses Arc, thereby

generating DNA fragments. These fragments were size-separated by agarose gel elec-

trophoresis and isolated by excising the portion of gel corresponding to fragments of

300-500 bases. These fragments were purified from the gel, blunted, and ligated into

a plasmid designed for yeast two hybrid experiments. To determine the length and

coverage of the fragments, a subset of the plasmids were sequenced. Figure 4.5 shows

the distribution of one set of fragments generated by this method. The fragments are

distributed across the plasmid, including the Arc protein coding region.
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Figure 4.5: Distribution of preliminary fragment library

4.4 Discussion

Our assessment of the interactions between purified GST-Arc and several candidate

regulators of synaptic potentiation and maintenance yielded inconclusive results. We

tried to increase the signal to noise by making systematic changes to the protocol

including modifications to protein expression, purification and pull-down experiment

parameters. If interactions exist between Arc and any of CaMKII, SynGAP or GluR1;

this system is not sensitive enough to detect them. The Arc fragment cDNA library,

which was constructed for yeast-two-hybrid identification of binding regions, has been

archived for later use.

Although Arc has been reported to bind with CaMKII (Donai et al., 2003), these

two proteins did not bind under our conditions. The most parsimonious explanations

for the difference between our results and those of Donai et al. are that: 1) Arc may

not bind CaMKII in neurons and/or 2) Arc may bind weakly with CaMKII in all
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conditions tested. Although both of these could be true, there is a great deal of

evidence for a weak interaction.

Donai et al. reported binding between Arc and CaMKII under two different condi-

tions: In one, purified GST-Arc and purified CaMKII holoenzymes co-immunoprecipitated;

in the other, the Arc and CaMKIIα co-expressed in Nb2A cells (a mouse-derived neu-

roblastoma cell line) were co-immunoprecipitated. We tested for interactions between

GST-Arc and CaMKII by incubating GST-Arc immobilized on GSH-agarose beads

in mouse brain-membrane fraction.

It is possible that the interaction is weak in all conditions tested. The bands pub-

lished in Donai et al. (2003) are extremely faint, and the number of tests represented

by the depicted blots is not indicated. The bands in our immunoblots are faint as

well. We consistently saw a faint interaction, although the difference in amounts of

CaMKII interacting with GST and GST-Arc was inconsistent. Further confound-

ing the assessment of the interaction is a potential interaction between GST and

CaMKII predicted from their X-ray crystal structures (personal communication, T.

Kinzer-Ursem, January 2010)

Finally, our difficulty in replicating the interaction represent the experience of

others; this paper is now infrequently cited. The absence of the citation is most

notable in the four papers published in a single issue of Neuron in 2006, characterizing

the Arc knockout mouse and describing the first direct protein-protein interactions of

Arc reported since the Donai paper was published in 2003 (Chowdhury et al., 2006;

Plath et al., 2006; Shepherd et al., 2006; Verde et al., 2006).
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How does Arc contribute to the maintenance of synaptic plasticity? This question,

which motivated the work described in this chapter, remains unanswered: Although

knockdown of Arc after inducing synaptic plasticity impairs the maintenance of LTP

(Messaoudi et al., 2007), increasing Arc protein levels reduces the number of sur-

face GluR1 receptors (Verde et al., 2006). The first implicates Arc in maintaining

increases in synaptic transmission; the second implicates it in decreases in synaptic

transmission.

One hypothesis resolves this apparent contradiction: Arc may act to reduce the

strength of synapses adjacent to potentiated synapses, thus supporting homeosta-

sis and preventing reversal of potentiation (Okuno et al., 2007; Verde et al., 2006).

Preliminary data demonstrate 1) an interaction between Arc and CaMKIIβ that in-

creases in affinity when calcium levels are decreased; and 2) CaMKIIβ-dependent

translocation of Arc into spines and reduced surface GluR1 levels. The translocation

occurs in neurons after they are stimulated and then silenced, conditions were chosen

to replicate the approximate conditions of spines adjacent to potentiated synapses. It

is suggested that Arc is targeted to non-potentiated synapses by minimally autophos-

phorylated CaMKIIβ and subsequently reduces synaptic strength through endocyto-

sis of AMPA receptors (Okuno et al., 2007).

There are major caveats to this explanation: The preliminary data has not been

extended and published. Additionally, the reported interaction with CaMKIIβ is

not in agreement with the probable low affinity of the interaction between Arc and

CaMKII described above. Although we probed for CaMKIIα in our pull-down exper-
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iments from brain-membrane fraction, a high-affinity interaction between CaMKIIβ

and Arc would also result in a positive signal for the α subunit, because the typical

composition of a CaMKII holoenzyme in the forebrain is approximately three α sub-

units to one β subunit. Furthermore, in exploratory experiments, we used CaMKIIβ

antibody to probe the results of pull-down experiments with GST-Arc and CaMKII

holoenzymes purified from rat brain. We did not see an interaction between GST-Arc

and CaMKIIβ in those experiments.

In spite of these caveats, the story is an excellent model of the elements required to

reconcile Arc’s biochemical and network features. It posits a mechanism by which Arc

could be selectively localized to non-potentiated synapses, thus explaining, at least in

part, the apparent contradiction between Arc’s roles in decreasing synaptic strength

and maintaining synaptic potentiation. It also demonstrates the components of the

mechanism in a model system. While it may not be the ultimate explanation of Arc’s

contribution to the maintenance of synaptic plasticity, it certainly demonstrates the

elements any such explanation must include.
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Chapter 5

Discussion

This thesis describes the outcomes of biological processes that range in duration

from seconds to months, including posttranslational modifications that occur within

seconds of receptor stimulation, protein binding reactions that are allowed to reach

completion over the course of hours, and gene expression in a knockout mouse several

months old. The variety of biologically relevant time frames in these studies under-

scores the cumulative nature of experimental perturbations. This issue is particularly

relevant with knockout mice.

The densin knockout mice used in our RNA-Seq experiments were adult mice. We

aim to learn about densin by studying the effects of its absence, but we are studying

an adult densin knockout mouse in which perturbations we observe occur over a

lifetime without densin. By surveying cumulative changes we are less likely to miss

the consequences a disruption in development than if we surveyed only at an earlier

stage. However, we cannot easily examine the developmental defects in the adult.

Ideally, we could analyze the knockout mice at different developmental time points.

Alternatively, we could analyze gene expression in conditional densin knockout mice,

in which the loss of densin occurs after post-natal development is complete.
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An ideal system would allow repeated measurements of the same sample after

acute knockdown. For other purposes, gene silencing has been achieved in vivo within

hours using oligodeoxynucleotides (Guzowski et al., 2000). The method of RNAi ex-

amined in Chapter 3, which was optimized for non-toxic transfection of post-mitotic

cell cultures, required 72 hours for only 60 percent knockdown of GAPDH, the rec-

ommended positive control. An acute knockdown would make the loss of densin more

synchronized, which would, in turn, make identification of changes in gene expression

more robust than in the Cre-mediated systems described above. However, the exist-

ing acute knockdown systems are problematic in implementation, entirely apart from

any issues of unintended gene regulation (Olejniczak et al., 2009).

The value of making repeated measurements of the same biological entity is sub-

stantial (see Arrasate et al., 2004). Typically the main barrier is destruction of the

remaining sample in the process of making the measurement.

In summary, a range of genetic manipulations could be employed to extend the

results presented in Chapter 2. Given the significant amounts of time and resources

required for even the least involved of these options, the implementation will be based

on the outcome of ongoing behavioral and biochemical experiments.
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Chapter 6

Appendix A

Differentially expressed genes
Forebrain Hippocampus

Wt Ko z>2 z Wt Ko z>2 z
Gene (RPKM) (RPKM) (RPKM) (RPKM)
0610007P22Rik 11.6 14.4 * 2.5 5.7 7.1 1.5
0610012D17Rik 7.3 9.6 * 2.7 6.0 5.8 -0.4
0910001L09Rik 73.4 81.6 1.5 29.5 41.3 * 3.5
1100001I22Rik 30.6 32.8 0.8 19.6 5.7 * -13.1
1110006G06Rik17.9 18.4 0.2 7.6 9.8 * 2.0
1110019N10Rik26.2 26.5 -0.1 13.5 17.4 * 2.4
1110034A24Rik 6.6 8.3 * 2.2 3.5 4.1 0.9
1110059M19Rik 0.8 1.0 4.5 3.3 * -2.4
1190002H23Rik20.6 20.9 -0.0 11.8 16.0 * 2.8
1190002J23Rik 8.9 11.6 * 2.9 7.3 6.1 -1.6
1190003M12Rik 3.4 2.1 * -3.7 2.3 3.9 * 2.9
1190007F08Rik 7.4 9.5 * 2.5 3.9 4.0 -0.0
1500005I02Rik 15.9 19.3 * 2.4 4.8 6.3 1.8
1500011K16Rik153.2 168.5 1.5 40.5 63.9 * 5.0
1700003M07Rik 6.9 5.4 * -2.6 4.8 5.0 0.0
1700009P17Rik 2.0 1.8 3.7 2.6 * -2.4
1700019N12Rik 6.7 6.1 -1.1 2.0 3.1 * 2.1
1700084C01Rik 11.6 10.0 * -2.0 8.3 8.3 -0.2
1700094D03Rik 5.1 3.7 * -3.0 5.9 7.2 1.4
1810006K21Rik32.0 37.4 * 2.2 23.3 24.7 0.4
1810030N24Rik 9.9 10.0 -0.1 11.9 9.5 * -2.3
1810037I17Rik 23.8 28.3 * 2.4 11.2 12.5 0.8
1810059G22Rik 5.9 4.8 * -2.0 5.4 5.3 -0.4
1810063B05Rik 22.5 27.2 * 2.5 13.3 12.7 -0.6
1810073G14Rik10.4 8.8 * -2.1 11.6 13.0 0.9
2010007H12Rik10.1 12.3 * 2.2 4.8 6.0 1.4
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Differentially expressed genes
Forebrain Hippocampus

Wt Ko z>2 z Wt Ko z>2 z
Gene (RPKM) (RPKM) (RPKM) (RPKM)
2010100O12Rik83.2 88.1 0.7 37.6 48.1 * 2.6
2010107E04Rik216.5 236.9 1.4 158.3 133.9 * -2.6
2010204K13Rik16.4 17.7 0.9 12.8 18.0 * 3.2
2210015D19Rik 6.1 5.8 -0.6 7.4 4.4 * -4.4
2210415I11Rik 4.4 5.7 * 2.1 2.6 3.7 2.0
2310009B15Rik 3.2 5.5 * 4.0 4.7 5.2 0.7
2310036O22Rik63.5 63.9 -0.2 42.2 53.9 * 2.6
2310047M15Rik14.7 15.2 0.3 8.6 12.7 * 3.3
2310061F22Rik 9.2 9.4 0.1 3.9 5.8 * 2.5
2610005M20Rik 4.9 6.5 * 2.4 2.6 2.8
2610204M08Rik44.0 44.1 -0.2 20.1 24.8 * 2.0
2610524H06Rik 8.9 10.2 1.4 7.6 5.2 * -3.3
2610529C04Rik 3.8 2.9 * -2.4 5.5 5.0 -0.9
2810428I15Rik 71.8 79.2 1.4 22.2 30.1 * 3.0
2810432D09Rik17.3 18.2 0.5 8.8 11.3 * 2.1
2900042B11Rik 8.3 7.6 -1.1 8.2 6.5 * -2.1
2900052N01Rik15.9 17.9 1.4 26.2 17.9 * -4.3
2900075B16Rik 18.9 19.2 0.0 22.0 17.6 * -2.5
2900097C17Rik 14.6 19.0 * 3.3 22.6 20.3 -1.3
3110040N11Rik 5.2 5.7 0.7 5.2 3.8 * -2.5
3110056K07Rik 3.7 2.9 * -2.2 4.2 3.9 -0.8
4632415L05Rik 8.2 11.4 * 3.4 4.9 5.0 -0.1
4833420G17Rik10.3 9.0 -1.7 7.6 11.3 * 3.2
4930404N11Rik14.2 17.1 * 2.2 9.8 12.3 1.9
4930413G21Rik 4.1 5.4 * 2.2 1.5 1.4
4930568B11Rik 4.9 7.3 * 3.4 1.7 2.3
5033425G24Rik 8.5 10.7 * 2.4 1.3 1.9
5330410G16Rik165.6 162.7 -0.7 117.9 103.1 * -2.1
5530601H04Rik 6.4 4.6 * -3.3 4.8 4.5 -0.7
5730437N04Rik40.1 46.1 * 2.0 24.3 27.3 1.1
5730442P18Rik 2.5 3.4 * 2.1 1.0 0.8
5730449L18Rik 4.9 6.3 * 2.1 4.0 4.5 0.6
6230427J02Rik 3.6 2.2 * -3.9 3.4 3.5 0.0
6330514A18Rik10.3 10.0 -0.5 5.0 7.5 * 2.7
6720456H20Rik 2.7 2.5 4.9 3.2 * -3.3
9030607L17Rik 10.0 12.1 * 2.0 9.3 11.2 1.5
9130221H12Rik22.5 24.2 0.8 20.2 15.6 * -2.9
9130404D14Rik13.0 13.6 0.4 8.2 10.8 * 2.2
A130090K04Rik6.1 4.5 * -3.0 2.2 2.8
A330104H05Rik16.9 14.4 * -2.4 16.1 16.8 0.3
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A630047E20Rik 1.3 1.4 4.3 3.2 * -2.3
A730008L03Rik23.2 20.3 * -2.2 17.3 17.0 -0.3
A830018L16Rik 7.7 6.8 -1.4 7.2 5.5 * -2.4
A830036E02Rik 6.5 9.4 * 3.6 1.9 2.1
A930028N01Rik6.4 5.5 -1.7 11.8 7.6 * -4.3
A930034L06Rik78.6 67.8 * -2.9 146.8 139.9 -1.0
Abcg2 5.0 3.7 * -2.8 6.2 6.0 -0.4
Abhd8 190.0 205.7 1.2 71.5 87.3 * 2.1
Abi2 19.1 17.8 -1.2 40.0 33.8 * -2.1
Acaa1a 20.5 20.6 -0.1 9.0 11.8 * 2.2
Acn9 12.6 13.2 0.5 7.8 6.3 * -2.1
Acp1 2.8 3.6 1.8 4.4 2.5 * -4.1
Acta2 10.2 8.4 * -2.6 8.6 12.5 * 3.2
Adi1 17.7 13.9 * -3.5 15.8 22.2 * 3.3
Agpat4 15.9 15.3 -0.7 18.7 25.4 * 3.0
Agxt2l1 8.0 7.8 -0.3 7.6 4.6 * -4.5
AI314180 13.3 11.5 * -2.0 16.6 16.2 -0.4
Akap11 24.5 23.3 -0.9 44.9 38.0 * -2.2
Akt1s1 24.7 28.9 * 2.1 14.2 16.9 1.6
Aldh1a2 3.7 4.9 * 2.1 4.7 4.8 -0.1
Aldh7a1 23.9 17.4 * -5.0 20.9 16.4 * -2.7
Amn 3.1 5.5 * 4.2 1.8 2.3
Amotl1 8.8 8.6 -0.3 3.8 5.4 * 2.2
Amy1 8.9 7.3 * -2.4 9.6 8.1 -1.7
Ankrd13b 25.0 25.3 -0.0 15.8 20.4 * 2.4
Anxa3 4.7 4.8 0.0 3.7 5.6 * 2.6
Anxa5 42.5 51.7 * 2.9 24.0 30.2 * 2.3
Apoe 1550.7 1865.1 * 3.9 826.5 943.0 1.5
Appbp1 13.7 13.9 0.0 13.1 10.8 * -2.1
Arbp 48.6 45.2 -1.5 26.4 34.0 * 2.6
Arc 86.8 79.9 -1.8 25.7 42.6 * 5.3
Arhgap27 4.9 6.4 * 2.2 3.6 3.8 0.1
Arl15 7.2 6.5 -1.2 13.0 10.5 * -2.2
Arl4d 18.2 20.7 1.6 10.1 13.5 * 2.5
As3mt 6.3 8.1 * 2.3 4.9 5.3 0.3
Astn1 40.9 36.6 * -2.1 46.2 42.0 -1.4
Atf5 16.1 19.4 * 2.3 10.0 10.2 0.0
Atp5c1 116.8 117.9 -0.1 99.2 86.3 * -2.1
Atp5d 298.2 323.8 1.3 132.5 162.8 * 2.3
Avp 25.7 38.0 * 5.6 0.3 0.8 2.4
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Avpi1 21.9 22.9 0.4 7.7 10.3 * 2.4
B3galt2 10.8 11.1 0.1 12.3 9.8 * -2.3
Bai1 86.0 91.7 0.8 47.0 57.5 * 2.1
Basp1 263.5 304.9 * 2.6 110.3 126.4 1.4
BB146404 3.0 2.2 * -2.4 4.4 4.5 -0.0
BC002163 9.1 12.0 * 3.0 5.3 3.1 * -4.3
BC003324 9.0 11.9 * 2.9 7.2 8.3 1.0
BC004044 23.5 27.9 * 2.3 9.6 11.1 1.2
BC010787 27.4 25.6 -1.3 13.8 17.3 * 2.1
BC025575 41.2 44.7 1.1 18.6 23.4 * 2.2
BC028663 14.4 17.2 * 2.2 5.9 7.4 1.5
BC030500 6.1 7.9 * 2.4 5.5 5.4 -0.2
BC038167 3.4 2.8 -1.6 3.4 1.8 * -4.0
BC055107 71.7 88.8 * 3.5 137.2 133.1 -0.8
BC072620 20.3 21.2 0.4 13.1 16.4 * 2.0
Bcas1 54.3 52.4 -0.9 47.1 61.0 * 2.8
Bfsp2 3.7 2.3 * -3.8 1.5 1.2
Bid 4.6 6.5 * 2.9 4.4 4.1 -0.5
Blvrb 12.0 15.7 * 3.3 4.5 6.2 2.0
Bmyc 63.1 72.6 * 2.1 35.7 38.4 0.6
Bnip3 12.3 11.5 -1.0 8.1 6.3 * -2.4
Bola1 17.3 21.5 * 2.8 9.3 7.8 -1.7
Brp44l 21.2 27.3 * 3.4 5.1 5.7 0.6
C030002E08Rik 1.6 3.3 * 4.4 2.1 2.3
C1qb 51.9 52.3 -0.1 24.1 30.8 * 2.4
C1qc 43.6 46.7 0.8 18.9 23.4 * 2.1
C1qtnf4 195.4 231.8 * 3.0 56.0 62.9 1.1
Cacng3 45.1 40.0 * -2.3 27.8 28.3 0.0
Cacng4 15.2 15.6 0.1 5.3 7.8 * 2.7
Calb2 46.7 57.7 * 3.3 24.0 22.5 -0.8
Calml4 3.1 3.2 0.3 10.9 8.5 * -2.5
Calr 226.1 199.1 * -2.9 205.7 227.5 1.0
Camk2a 483.7 533.2 1.7 612.2 726.9 * 2.1
Camk4 16.4 18.2 1.2 11.7 14.7 * 2.1
Cap2 65.6 58.8 * -2.2 60.1 62.0 0.1
Capza2 86.6 80.2 -1.7 123.1 103.9 * -2.5
Car14 8.2 6.6 * -2.5 9.9 11.6 1.3
Car7 7.0 8.7 * 2.1 5.1 5.3 0.1
Cartpt 15.3 18.3 * 2.2 2.3 2.7
Casp2 3.5 2.6 * -2.3 3.3 3.2 -0.3
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Casp6 3.0 2.0 * -3.3 2.4 2.0
Cbln2 15.6 16.2 0.3 4.9 3.7 * -2.2
Cbr4 8.1 8.8 0.7 8.8 6.7 * -2.6
Cbx5 14.5 14.3 -0.4 30.5 25.6 * -2.1
Ccbe1 1.0 0.8 4.6 3.1 * -2.9
Ccdc12 12.9 13.0 -0.1 8.2 6.5 * -2.2
Ccdc23 6.9 8.6 * 2.2 5.7 6.0 0.2
Ccdc28b 16.5 17.9 0.9 12.9 16.1 * 2.0
Ccdc5 3.6 3.8 0.5 3.7 2.7 * -2.3
Ccdc56 101.6 112.6 1.6 53.6 65.2 * 2.1
Ccdc72 9.3 6.9 * -3.6 7.6 7.7 -0.1
Ccdc73 1.2 1.4 4.2 2.9 * -2.8
Ccdc85b 87.3 96.4 1.5 44.7 54.9 * 2.1
Ccdc90a 4.8 4.4 -0.7 5.8 4.2 * -2.7
Ccdc94 4.9 6.3 * 2.3 2.9 3.2 0.4
Cck 495.3 517.1 0.5 291.0 351.7 * 2.2
Ccl27 13.3 15.9 * 2.2 6.2 9.1 * 2.8
Ccna2 2.6 2.2 3.9 2.8 * -2.5
Ccnd1 15.1 12.9 * -2.4 10.4 13.8 * 2.5
Cd53 4.3 3.2 * -2.7 3.6 3.7 0.1
Cd59a 2.8 5.5 * 4.8 6.8 5.6 -1.7
Cd63 17.9 21.4 * 2.2 17.1 20.3 1.6
Cd74 5.7 4.9 -1.5 3.6 5.9 * 3.0
Cdk2ap2 19.4 16.0 * -2.9 8.9 10.5 1.3
Cdk5r2 201.8 219.0 1.3 68.9 88.7 * 2.8
Cdk5rap1 5.5 4.0 * -3.0 4.4 5.0 0.7
Cdkn1a 13.3 16.8 * 2.8 6.7 9.7 * 2.8
Cdkn1c 6.4 8.5 * 2.7 6.7 6.5 -0.4
Chchd7 21.3 24.9 * 2.0 11.6 11.8 0.0
Chchd8 4.5 6.3 * 2.9 3.2 4.2 1.4
Chga 96.1 109.7 * 2.1 47.5 54.0 1.2
Chl1 15.3 14.9 -0.5 30.6 24.6 * -2.6
Cirbp 30.7 36.8 * 2.6 29.5 23.3 * -2.8
Cldn5 41.6 48.0 * 2.1 12.4 16.1 * 2.4
Clec3b 1.6 4.3 * 6.1 2.0 3.0 * 2.1
Cmbl 9.9 10.6 0.6 10.2 7.9 * -2.5
Cmtm5 43.5 44.2 -0.0 30.7 37.6 * 2.0
Cnksr2 22.7 22.5 -0.3 51.8 43.5 * -2.3
Cno 12.0 14.4 * 2.1 8.3 7.3 -1.3
Cnp1 179.3 173.7 -1.0 94.1 117.1 * 2.4



139

Differentially expressed genes
Forebrain Hippocampus

Wt Ko z>2 z Wt Ko z>2 z
Gene (RPKM) (RPKM) (RPKM) (RPKM)
Cobl 19.7 16.2 * -3.0 7.6 7.3 -0.5
Cox18 8.4 7.4 -1.5 7.7 6.0 * -2.3
Cox7a1 4.6 3.5 * -2.3 3.4 3.9 0.7
Cox7c 33.3 40.7 * 2.9 13.9 12.2 -1.5
Crabp2 3.3 4.0 1.4 2.0 3.3 * 2.4
Crh 4.8 7.4 * 3.8 1.5 1.8
Crhbp 12.2 12.9 0.5 10.8 14.1 * 2.3
Crip1 10.2 10.2 -0.2 7.0 9.7 * 2.6
Cryab 86.8 67.7 * -4.8 47.3 74.5 * 5.0
Crybb1 5.1 6.0 1.4 2.2 3.6 * 2.6
Cul4b 6.6 6.5 -0.2 13.8 10.8 * -2.5
Cyb5r1 7.9 8.1 0.1 11.5 8.9 * -2.6
Cyb5r4 8.2 6.7 * -2.4 4.6 6.0 1.7
Cyba 8.1 9.8 * 2.0 4.3 4.2 -0.3
Cyfip2 146.8 134.1 * -2.1 163.1 158.7 -0.7
D0H4S114 31.8 34.3 1.0 33.2 27.5 * -2.3
D10Ertd322e 27.0 32.1 * 2.4 26.5 24.9 -0.9
D19Ertd737e 5.0 7.1 * 3.1 5.0 4.2 -1.4
D630014A15Rik3.7 4.0 0.5 10.3 8.1 * -2.3
D8Ertd738e 95.3 101.1 0.8 45.9 56.2 * 2.1
D8Ertd82e 7.1 7.7 0.7 6.6 9.3 * 2.7
Dapk3 39.2 45.5 * 2.2 16.3 19.1 1.5
Dbi 111.8 126.9 * 2.0 123.8 123.1 -0.4
Dbndd2 37.5 37.5 -0.3 26.0 32.1 * 2.1
Dcn 10.9 10.8 -0.2 37.2 29.8 * -2.7
Dctn5 40.8 36.1 * -2.3 36.0 36.6 -0.0
Ddit4 32.9 38.7 * 2.3 34.5 43.3 * 2.3
Ddit4l 7.3 6.9 -0.6 3.6 2.6 * -2.2
Deadc1 3.9 5.6 * 3.0 4.6 5.1 0.7
Dear1 14.4 13.9 -0.6 14.8 11.9 * -2.3
Dgat1 7.4 9.1 * 2.1 6.7 6.8 -0.0
Dgkz 110.7 107.5 -0.9 74.5 92.2 * 2.3
Diras1 61.7 67.5 1.3 33.1 40.5 * 2.0
Dlgap3 86.1 91.5 0.8 45.0 55.7 * 2.2
Dlk1 8.4 10.8 * 2.6 3.8 3.3 -1.2
Dlx2 3.3 4.4 * 2.0 1.4 1.3
Dnajb5 52.1 53.6 0.2 43.6 54.3 * 2.3
Doc2g 22.9 36.0 * 6.5 1.7 1.9
Dpm3 45.3 50.0 1.4 18.7 26.5 * 3.5
Dtx1 29.4 32.3 1.2 17.1 21.6 * 2.2
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Dtymk 24.9 26.6 0.8 15.3 12.5 * -2.2
Dus3l 26.4 30.7 * 2.1 16.7 20.1 1.7
Dusp1 36.4 35.2 -0.8 10.2 14.0 * 2.8
Dusp12 6.6 8.4 * 2.2 7.9 7.4 -0.8
Dusp14 29.9 30.3 -0.0 11.2 14.7 * 2.4
Dusp15 4.8 7.0 * 3.2 3.8 3.0 -1.7
E030003E18Rik 4.9 6.3 * 2.1 6.3 6.7 0.3
E330009J07Rik 7.1 5.8 * -2.2 5.8 6.5 0.7
E530011F12Rik 1.6 3.6 * 5.1 0.0 0.0
Ecm1 2.8 3.8 * 2.1 2.3 3.8 * 2.7
Edf1 102.8 123.0 * 3.0 47.4 56.0 1.7
Eef1a1-ps1 3.6 2.6 * -2.5 4.2 4.4 0.1
Eef1d 18.5 18.6 -0.1 11.5 14.6 * 2.1
Efcab1 3.2 3.6 0.8 5.3 3.9 * -2.5
EG382844 3.6 1.4 * -7.7 1.3 0.9
EG384885 4.2 6.9 * 4.1 2.0 1.8
EG433273 3.0 2.2 * -2.5 1.7 1.8
EG434402 6.9 8.8 * 2.5 3.3 3.2 -0.3
EG434860 4.3 3.2 * -2.6 3.2 4.6 * 2.1
EG435996 5.5 3.2 * -5.2 1.6 3.2 * 3.4
EG545989 4.0 3.7 -0.7 5.5 3.9 * -2.8
EG546663 28.2 38.6 * 4.6 9.8 9.9 -0.1
EG622178 6.4 3.9 * -5.0 2.2 4.3 * 3.7
EG624124 6.0 4.4 * -3.2 2.6 5.1 * 3.7
EG625054 3.8 2.7 * -2.9 4.5 4.1 -0.9
EG627415 5.8 7.2 * 2.0 0.6 0.4
EG629383 2.3 3.5 * 3.0 1.0 1.0
EG629389 3.3 2.6 * -2.0 1.2 1.0
EG629397 8.3 11.0 * 2.9 5.2 6.5 1.5
EG631990 12.6 9.9 * -3.2 23.7 23.1 -0.5
EG633736 0.8 1.1 1.4 4.4 * 5.6
EG638833 3.1 2.3 * -2.3 1.4 1.2
EG664868 2.8 3.7 1.8 2.3 4.1 * 3.1
EG665733 1.3 1.0 3.6 0.8 * -9.7
EG666071 16.3 19.0 1.8 7.5 10.5 * 2.7
EG666856 10.8 14.1 * 3.0 6.7 7.8 1.0
EG667587 3.0 1.6 * -4.9 1.6 1.9
EG668144 0.9 16.3 * 15.3 5.9 12.4 * 5.5
Egr1 83.1 79.3 -1.1 33.9 42.0 * 2.2
Eif2b2 29.3 29.9 0.1 14.3 17.9 * 2.0
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Eif4ebp3 4.2 3.4 -2.0 3.2 4.6 * 2.2
Eme1 4.1 4.0 -0.4 2.2 3.2 * 2.1
Enc1 169.1 154.3 * -2.1 241.8 243.2 -0.3
Enpp2 142.0 128.9 * -2.2 415.1 391.6 -1.3
Entpd4 31.0 39.2 * 3.4 28.7 24.2 * -2.1
Eomes 1.9 3.1 * 3.2 0.6 0.4
Epm2a 9.6 8.9 -1.0 9.9 8.0 * -2.2
Eppb9 15.7 13.4 * -2.3 13.2 10.0 * -2.8
Esd 13.0 15.5 * 2.1 14.1 11.0 * -2.6
Esrra 28.6 31.4 1.2 13.1 17.1 * 2.5
Evi2a 14.0 11.6 * -2.6 11.4 11.9 0.2
Exosc9 12.8 10.7 * -2.4 17.1 12.3 * -3.5
F630110N24Rik13.4 16.0 * 2.1 9.4 10.8 1.0
Fabp5 10.7 9.8 -1.2 13.8 8.9 * -4.4
Fabp7 61.4 79.1 * 4.1 20.2 22.1 0.8
Fads6 7.1 8.8 * 2.1 3.8 4.6 1.0
Fcf1 7.6 6.2 * -2.3 8.3 7.9 -0.6
Fcho1 25.7 25.8 -0.1 10.2 13.4 * 2.3
Fdx1 10.8 13.8 * 2.8 8.8 7.6 -1.5
Fhit 4.2 3.1 * -2.7 2.0 2.7
Filip1 3.9 4.8 1.6 4.2 2.6 * -3.6
Fjx1 33.4 38.8 * 2.1 14.3 16.3 1.2
Fos 25.0 24.6 -0.5 4.3 7.9 * 4.1
Fosb 5.2 6.7 * 2.2 3.3 4.5 1.7
Foxj1 4.6 6.0 * 2.2 4.3 4.8 0.6
Foxo6 7.2 8.1 1.0 6.4 8.5 * 2.1
Ftl1 34.0 33.5 -0.5 20.0 25.1 * 2.2
Fundc2 12.5 13.2 0.5 13.7 11.3 * -2.1
Fvt1 10.3 8.4 * -2.7 11.2 10.6 -0.6
Fxyd2 6.8 9.4 * 3.2 4.1 3.8 -0.7
Fxyd5 7.7 10.1 * 2.8 5.9 5.8 -0.3
G0s2 7.4 10.4 * 3.5 4.9 5.7 0.9
Gabpb1 4.2 3.3 * -2.1 4.4 4.1 -0.7
Gabra2 11.7 10.6 -1.4 56.5 40.9 * -4.1
Gabra5 31.5 27.5 * -2.4 63.3 59.8 -0.9
Gabrb1 8.4 8.1 -0.6 26.9 21.8 * -2.4
Gadd45b 12.8 13.9 0.9 6.0 8.2 * 2.2
Gadd45g 17.8 20.1 1.5 10.2 13.1 * 2.2
Galk1 9.0 10.9 * 2.0 4.4 5.4 1.2
Galk2 7.6 8.9 1.6 7.4 5.7 * -2.4
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Gda 20.3 17.7 * -2.2 45.7 41.7 -1.3
Gdpd3 0.5 3.3 * 8.7 1.6 3.2 * 3.4
Gemin5 4.8 3.8 * -2.1 4.9 5.1 0.2
Gfap 62.9 74.5 * 2.6 96.2 109.9 1.4
Gfra2 11.9 14.2 * 2.0 9.9 9.1 -0.9
Glo1 27.7 29.5 0.7 23.2 29.5 * 2.4
Glra2 4.2 3.6 -1.5 3.3 2.5 * -2.1
Glt8d2 4.7 4.0 -1.6 5.6 4.3 * -2.3
Gm1673 54.3 66.0 * 3.0 16.5 20.1 1.8
Gm1693 2.8 2.7 2.2 3.3 * 2.2
Gm323 37.1 39.5 0.7 28.9 36.0 * 2.2
Gm71 9.2 11.4 * 2.4 6.9 6.5 -0.7
Gm88 26.4 31.1 * 2.3 14.4 16.8 1.3
Gna12 40.7 40.5 -0.4 27.2 34.3 * 2.3
Gng10 36.1 32.2 * -2.1 33.1 31.6 -0.7
Gng2 28.9 28.2 -0.6 61.9 52.9 * -2.1
Gng4 27.3 32.9 * 2.6 9.9 10.2 0.1
Gpr22 9.4 8.8 -0.9 24.6 18.8 * -3.1
Gpsm1 19.0 22.4 * 2.1 8.1 8.8 0.6
Gramd3 7.1 5.7 * -2.5 5.4 4.8 -1.1
Gsg1l 30.2 26.5 * -2.3 9.8 10.5 0.5
Gsk3a 70.5 81.8 * 2.3 51.5 37.9 * -3.9
Gstt2 2.1 3.3 * 3.0 2.2 2.2
Gtdc1 10.4 10.0 -0.7 13.3 11.0 * -2.0
Gtf2h2 6.7 6.4 -0.5 7.0 5.5 * -2.1
Gtpbp6 29.1 31.2 0.8 11.4 14.9 * 2.4
Gtrgeo22 62.1 73.6 * 2.6 22.5 25.6 1.2
H1f0 46.3 54.6 * 2.5 38.6 38.7 -0.2
H2-K1 12.6 15.1 * 2.1 8.0 10.5 * 2.1
H2afj 27.3 36.7 * 4.3 13.6 12.1 -1.2
H3f3a 6.0 7.9 * 2.5 3.5 3.8 0.3
H3f3b 51.9 59.6 * 2.1 36.3 37.2 0.1
Hapln4 39.1 41.8 0.8 24.7 32.7 * 2.8
Hba-a1 47.0 41.3 * -2.5 5.7 6.3 0.7
Hbb-b1 49.3 45.7 -1.6 10.3 7.0 * -3.7
Hddc3 13.1 23.6 * 7.4 15.4 7.8 * -7.0
Hdhd2 21.6 18.2 * -2.7 17.2 17.3 -0.1
Hdhd3 4.3 5.5 * 2.0 3.7 4.0 0.4
Hes5 8.7 10.8 * 2.3 3.7 3.4 -0.7
Hhatl 8.2 7.6 -1.0 3.2 4.7 * 2.3
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Hint3 4.9 6.8 * 2.8 10.4 7.7 * -2.9
Hipk4 24.1 21.4 * -2.0 14.0 15.3 0.7
Hist1h1c 14.8 18.1 * 2.5 10.1 9.0 -1.2
Hist1h4h 2.3 4.1 * 3.9 0.9 1.5
Hist1h4i 1.8 3.4 * 4.1 1.7 1.6
Hmox1 2.8 2.7 2.1 3.2 * 2.0
Hnrpa0 57.5 67.8 * 2.5 44.1 42.5 -0.7
Hr 9.4 9.7 0.2 2.3 3.4 * 2.1
Hsd11b1 8.1 6.7 * -2.2 11.3 11.7 0.2
Hsf4 9.0 11.0 * 2.1 3.6 3.7 -0.1
Hspa5 148.3 118.9 * -4.5 119.6 132.5 1.0
Hspa8 132.3 141.2 0.9 54.7 75.1 * 3.5
Htr3a 2.9 2.8 3.7 5.2 * 2.1
Id2 82.7 83.5 -0.1 43.0 36.4 * -2.2
Idh2 20.1 24.8 * 2.8 20.3 20.9 0.1
Ier3ip1 21.6 25.3 * 2.0 21.2 21.7 0.1
Ifitm3 17.1 17.6 0.2 12.2 17.5 * 3.3
Ift52 13.6 12.6 -1.2 13.0 10.6 * -2.1
Igf2 18.2 20.5 1.5 42.0 52.8 * 2.4
Igfbp2 52.5 63.5 * 2.9 38.5 47.1 * 2.1
Igfbp7 23.0 26.8 * 2.0 13.4 15.4 1.2
Igh-1b 1.6 1.3 0.1 4.2 * 10.5
Igk-C 1.0 2.5 0.8 18.0 * 13.4
Il17d 14.2 16.8 * 2.1 4.4 4.8 0.4
Iqcb1 6.0 5.8 -0.5 8.6 7.0 * -2.0
Irf1 3.5 2.5 * -2.5 2.4 2.0
Islr 13.4 15.9 * 2.1 8.2 10.2 1.8
Itfg3 7.6 7.8 0.1 5.8 7.8 * 2.0
Itpa 10.4 9.7 -0.9 9.8 6.8 * -3.4
Iws1 5.5 5.6 -0.0 5.9 7.8 * 2.0
Josd2 43.6 41.9 -0.9 18.8 24.0 * 2.4
Jtv1 28.1 28.3 -0.2 17.0 21.7 * 2.3
Junb 59.9 64.6 1.0 16.1 20.9 * 2.5
Jund1 116.1 136.1 * 2.6 49.4 54.6 0.9
Jundm2 22.7 23.9 0.5 10.1 12.8 * 2.0
Kcnab3 29.1 33.8 * 2.1 9.6 10.1 0.4
Kcne1l 4.4 5.7 * 2.1 2.4 2.6
Kcnj10 48.3 41.6 * -2.8 39.5 47.1 1.8
Kcnj12 6.0 7.5 * 2.0 2.6 3.3 1.3
Kctd1 20.0 17.4 * -2.2 15.1 15.2 -0.1
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Wt Ko z>2 z Wt Ko z>2 z
Gene (RPKM) (RPKM) (RPKM) (RPKM)
Khdrbs2 3.4 5.0 * 2.9 2.9 2.8
Klf13 21.5 24.8 1.8 19.1 23.9 * 2.2
Kptn 11.7 14.5 * 2.5 7.1 6.7 -0.6
Larp7 5.8 4.5 * -2.6 5.7 4.8 -1.5
Lars2 150.4 126.3 * -3.7 72.3 64.6 -1.7
Leng4 40.7 36.5 * -2.1 29.6 29.6 -0.2
Lfng 10.5 12.3 1.7 6.9 9.1 * 2.0
Lnpep 2.3 2.4 7.2 5.6 * -2.3
LOC100038822 9.0 7.6 * -2.1 7.2 6.4 -1.2
LOC100038842 18.4 20.9 1.5 10.4 13.2 * 2.1
LOC100038852 69.2 84.5 * 3.2 22.4 28.7 * 2.5
LOC100038945 3.1 4.2 * 2.1 3.5 3.6 -0.0
LOC100038991 6.5 6.7 0.1 3.0 5.4 * 3.4
LOC100039316 18.6 22.6 * 2.5 7.2 9.3 1.9
LOC100039317 2.5 4.0 * 3.2 1.2 1.4
LOC100039341 96.8 94.8 -0.7 18.2 24.7 * 3.0
LOC100039636 3.0 16.3 * 12.6 9.6 9.2 -0.6
LOC100039759 15.8 13.4 * -2.4 29.1 28.5 -0.4
LOC100039826 5.4 2.2 * -8.4 5.3 3.7 * -2.9
LOC100039831 16.2 28.0 * 7.2 2.8 3.0
LOC100039888 14.5 10.5 * -4.5 3.5 3.5 -0.3
LOC100039915 20.4 17.9 * -2.1 21.4 19.6 -1.1
LOC100039928 3.5 2.5 * -2.7 0.9 1.4
LOC100040066 7.5 4.1 * -6.5 1.8 2.1
LOC100040068 21.4 27.6 * 3.5 5.8 6.4 0.6
LOC100040128 20.3 21.4 0.5 43.1 36.5 * -2.1
LOC100040207 6.1 8.3 * 2.8 3.0 3.1 0.0
LOC100040294 2.5 4.5 * 4.1 1.0 1.9
LOC100040305 2.9 4.8 * 3.6 3.4 3.3 -0.3
LOC100040310 3.9 5.7 * 2.9 2.5 1.9
LOC100040331 4.1 3.1 * -2.5 2.4 1.8
LOC100040332 3.3 1.6 * -5.8 1.2 1.4
LOC100040532 3.2 2.4 * -2.3 2.2 1.3
LOC100040551 7.0 5.9 -1.9 7.3 2.4 * -9.3
LOC100040561 1.0 0.9 3.2 2.0 * -3.2
LOC100040577 30.9 27.3 * -2.2 61.7 60.0 -0.6
LOC100040724 7.9 9.1 1.4 5.7 7.7 * 2.1
LOC100040728 10.3 13.3 * 2.9 3.0 3.1 -0.1
LOC100040931 5.2 5.6 0.5 3.8 2.0 * -4.2
LOC100041192 3.5 2.7 * -2.1 3.5 2.5 * -2.3
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Wt Ko z>2 z Wt Ko z>2 z
Gene (RPKM) (RPKM) (RPKM) (RPKM)
LOC100041277 41.9 50.8 * 2.9 7.3 8.8 1.5
LOC100041503 15.1 19.6 * 3.3 5.0 8.3 * 3.6
LOC100041581 8.8 8.6 -0.4 15.3 11.7 * -2.8
LOC100041613 6.4 9.1 * 3.4 3.0 3.6 0.9
LOC100041707 0.8 1.1 2.2 3.9 * 2.9
LOC100041788 5.3 5.6 0.4 3.7 2.1 * -4.0
LOC100041799 2.6 2.6 1.7 3.8 * 4.0
LOC100041901 4.6 3.6 * -2.4 3.5 1.9 * -4.3
LOC100042028 8.4 7.8 -0.9 6.6 11.0 * 4.0
LOC100042194 3.3 3.1 -0.7 1.5 3.1 * 3.5
LOC100042364 3.9 5.3 * 2.5 1.4 1.9
LOC100042378 5.9 8.3 * 3.1 2.6 4.5 * 3.1
LOC100042459 0.6 0.7 3.2 1.4 * -5.4
LOC100042496 14.1 12.3 -1.9 22.2 18.4 * -2.2
LOC100042553 7.9 9.4 1.8 2.5 3.7 * 2.2
LOC100042616 6.5 6.5 -0.1 5.5 7.4 * 2.1
LOC100042638 3.5 5.0 * 2.7 0.7 1.6
LOC100042884 4.1 2.7 * -3.5 2.0 2.2
LOC100042972 11.7 9.9 * -2.3 11.3 10.3 -1.0
LOC100042978 22.7 26.0 1.8 10.4 13.4 * 2.2
LOC100043003 20.1 24.5 * 2.6 11.1 12.9 1.3
LOC100043036 56.7 70.2 * 3.4 8.9 8.4 -0.7
LOC100043062 2.4 3.5 * 2.5 5.3 4.7 -1.0
LOC100043072 7.0 6.5 -0.9 8.2 6.2 * -2.5
LOC100043141 2.2 2.3 3.0 2.1 * -2.5
LOC100043157 3.3 2.4 * -2.3 2.8 1.8
LOC100043179 15.9 17.0 0.7 8.8 12.0 * 2.5
LOC100043272 9.5 11.7 * 2.3 4.0 4.3 0.3
LOC100043357 85.0 90.6 0.8 47.5 58.9 * 2.2
LOC100043392 7.9 6.0 * -3.1 6.0 5.7 -0.5
LOC100043425 7.3 8.5 1.5 10.9 8.8 * -2.2
LOC100043496 11.0 13.2 * 2.1 12.7 12.5 -0.3
LOC100043601 4.6 4.4 -0.5 10.9 8.7 * -2.3
LOC100043612 4.2 5.6 * 2.2 3.4 3.6 0.0
LOC100043621 11.1 13.4 * 2.1 6.1 6.2 -0.0
LOC100043651 13.2 16.5 * 2.6 20.3 16.9 * -2.1
LOC100043681 10.2 13.0 * 2.7 1.9 1.6
LOC100043703 2.7 3.6 * 2.0 3.6 2.2 * -3.3
LOC100043715 17.1 24.9 * 4.9 29.4 31.2 0.4
LOC100043912 6.9 5.4 * -2.6 1.1 2.5
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Wt Ko z>2 z Wt Ko z>2 z
Gene (RPKM) (RPKM) (RPKM) (RPKM)
LOC100043950 4.5 6.3 * 2.9 2.6 3.0
LOC194197 3.5 3.7 0.3 6.6 1.9 * -10.4
LOC238091 3.3 2.4 * -2.5 1.6 2.5
LOC240160 6.4 4.7 * -3.2 4.1 4.6 0.5
LOC384091 2.8 5.7 * 5.1 0.6 0.4
LOC384379 11.1 7.8 * -4.5 0.6 0.8
LOC434047 4.4 2.9 * -3.7 4.6 4.4 -0.4
LOC435145 6.4 9.6 * 3.9 0.5 0.7
LOC545267 1.1 1.1 4.4 1.1 * -9.6
LOC545536 3.3 2.1 * -3.4 0.5 1.6
LOC620695 28.7 35.0 * 2.8 13.0 14.9 1.2
LOC620787 12.1 10.6 -1.8 15.7 11.4 * -3.3
LOC623094 4.0 2.9 * -2.9 4.4 3.4 -2.0
LOC625174 8.8 11.1 * 2.5 7.9 6.0 * -2.5
LOC626061 1.8 1.5 3.1 2.1 * -2.5
LOC627110 3.0 2.2 * -2.3 2.0 2.2
LOC627695 472.3 511.5 1.3 159.0 209.1 * 3.3
LOC632000 5.5 3.7 * -3.9 11.4 11.0 -0.5
LOC636070 4.2 3.2 * -2.4 2.4 3.0 1.0
LOC665181 4.2 4.8 1.0 2.1 3.7 * 2.9
LOC665231 2.8 4.2 * 2.8 1.4 1.9
LOC665298 38.0 64.0 * 8.2 41.5 2.2 * -34.1
LOC665532 8.2 10.6 * 2.6 5.0 6.4 1.7
LOC665672 3.9 2.8 * -2.7 3.0 3.2 0.1
LOC665931 4.1 5.3 * 2.2 3.5 4.5 1.6
LOC666244 4.1 4.5 0.6 3.3 2.1 * -3.1
LOC666508 3.4 2.0 * -4.2 2.3 2.5
LOC666793 19.7 19.9 -0.0 7.1 11.0 * 3.4
LOC666835 7.8 4.8 * -5.3 3.6 3.1 -1.1
LOC666841 7.4 9.3 * 2.2 8.8 9.2 0.2
LOC667107 4.0 3.0 * -2.5 1.0 0.9
LOC667296 2.6 4.1 * 3.2 0.8 1.5
LOC667755 6.0 3.7 * -4.7 2.6 3.2 1.0
LOC668010 3.3 2.4 * -2.5 1.3 1.2
LOC668406 4.5 5.7 * 2.1 1.8 2.1
LOC669429 10.7 13.3 * 2.4 5.8 5.7 -0.4
LOC672857 1173.6 1042.7 * -3.2 256.1 275.8 0.6
LOC675514 4.7 3.5 * -2.7 1.3 2.1
LOC677375 3.7 5.1 * 2.5 3.8 3.2 -1.4
LOC727711 24.7 15.0 * -7.6 19.9 20.8 0.3
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Wt Ko z>2 z Wt Ko z>2 z
Gene (RPKM) (RPKM) (RPKM) (RPKM)
Lpl 1.8 2.1 8.6 12.2 * 2.9
Lrfn1 17.9 21.1 * 2.1 12.1 12.8 0.4
Lrrc24 28.4 33.4 * 2.2 9.0 10.2 1.0
Lrrn3 20.2 19.5 -0.7 28.5 23.8 * -2.1
Lsm2 8.3 5.5 * -4.7 4.5 5.2 0.8
Lsm3 21.9 18.8 * -2.4 16.0 17.6 0.8
Ly6g6e 3.0 4.5 * 3.1 2.2 2.3
Ly86 8.8 6.8 * -3.0 3.7 4.3 0.8
Lyar 4.5 5.8 * 2.2 5.3 4.6 -1.2
Lyplal1 5.1 4.3 -1.6 6.6 5.1 * -2.3
Lzts2 17.9 18.2 0.1 10.8 14.1 * 2.3
M6prbp1 9.7 10.6 0.9 7.7 10.0 * 2.1
Manba 3.1 3.0 -0.3 3.5 2.4 * -2.5
Mapk1 80.4 74.1 -1.8 117.3 99.3 * -2.5
March7 10.1 9.8 -0.6 13.9 11.0 * -2.4
Mbp 395.9 359.2 * -2.4 241.0 279.6 1.6
Mcts2 11.4 9.6 * -2.2 9.2 7.4 * -2.0
Me3 8.1 11.6 * 3.8 9.2 7.9 -1.4
Megf9 23.6 23.1 -0.5 34.3 28.3 * -2.4
Mettl1 5.5 8.3 * 3.6 4.8 4.5 -0.6
Mettl8 5.3 3.9 * -2.9 3.9 4.4 0.7
Mgp 32.2 46.8 * 5.6 43.3 53.6 * 2.2
Mgst1 10.4 8.8 * -2.1 6.8 7.9 1.1
Mobkl1a 1.4 1.5 4.3 3.3 * -2.0
Mobp 61.2 57.8 -1.3 45.3 58.0 * 2.6
Mrpl12 49.9 53.4 0.9 23.6 31.0 * 2.7
Mrpl53 46.5 52.7 1.8 27.1 35.6 * 2.8
Msr2 9.8 6.9 * -4.3 5.7 5.2 -0.9
Mt1 750.7 949.3 * 4.8 563.4 611.1 0.7
Mt2 141.9 203.0 * 6.5 205.6 204.2 -0.5
Mt3 888.2 951.2 1.1 543.8 737.1 * 4.1
Myg1 16.2 19.9 * 2.6 10.6 11.3 0.4
Myh11 1.6 1.6 2.4 3.6 * 2.1
Myl4 9.8 14.3 * 4.3 0.7 1.5
Myl6 24.2 21.1 * -2.3 15.5 17.9 1.3
Myo5b 7.2 7.1 -0.3 16.5 13.7 * -2.0
Myoc 4.9 8.6 * 5.0 6.7 7.2 0.5
Nab2 13.1 15.6 * 2.1 10.0 12.8 * 2.2
Naglu 4.4 5.8 * 2.2 3.1 3.1 -0.1
Nat12 5.7 5.8 0.0 8.6 6.9 * -2.1
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Wt Ko z>2 z Wt Ko z>2 z
Gene (RPKM) (RPKM) (RPKM) (RPKM)
Nat5 22.0 23.9 1.0 13.5 10.1 * -3.0
Nat9 9.1 11.1 * 2.1 5.9 6.0 -0.1
Nde1 11.0 9.3 * -2.2 11.4 12.4 0.7
Ndg2 173.0 189.6 1.4 71.5 86.4 * 2.0
Ndufa13 127.2 134.7 0.7 55.9 68.1 * 2.1
Ndufa2 214.9 226.1 0.6 83.9 105.7 * 2.6
Ndufb6 134.1 154.1 * 2.3 64.9 74.0 1.3
Ndufc1 93.0 107.3 * 2.3 64.6 67.5 0.3
Ndufs5 10.2 9.7 -0.7 6.6 11.5 * 4.4
Ndufs7 155.8 174.5 1.8 55.7 71.3 * 2.7
Neo1 15.1 15.6 0.3 19.9 16.0 * -2.4
Neurl2 5.0 6.5 * 2.3 2.3 3.3 2.0
Neurod2 17.1 18.3 0.7 35.1 43.6 * 2.2
Nexn 3.1 2.4 * -2.0 0.4 0.6
Nfkbia 14.8 17.8 * 2.2 16.8 21.4 * 2.3
Nkx6-2 18.1 18.9 0.4 5.2 7.3 * 2.3
Nlgn1 11.7 11.6 -0.4 17.4 14.2 * -2.2
Nmb 6.5 8.9 * 3.0 2.6 3.1 0.8
Nme2 23.7 24.0 -0.0 11.1 15.2 * 2.8
Nmral1 15.2 12.2 * -3.0 8.4 9.7 1.1
Nov 40.8 42.6 0.4 53.7 45.5 * -2.2
Npas4 9.1 6.8 * -3.5 2.2 3.1 1.8
Nptx2 36.8 41.7 1.7 12.2 16.9 * 3.0
Npy2r 4.2 4.0 -0.3 16.1 12.9 * -2.4
Nr2f6 22.6 26.4 * 2.0 9.4 10.7 1.0
Nr4a1 48.4 52.6 1.1 18.4 23.1 * 2.2
Nrbp2 22.9 20.0 * -2.1 32.1 33.4 0.2
Nrp 17.0 22.1 * 3.4 8.4 11.0 * 2.3
Nrtn 4.9 7.6 * 3.7 1.2 1.3
Nsmce1 13.7 11.2 * -2.8 7.0 6.4 -0.8
Nts 8.7 8.2 -0.8 6.9 5.3 * -2.2
Ntsr2 100.1 97.9 -0.7 58.3 73.6 * 2.5
Nudt16 8.8 10.6 * 2.0 6.6 6.4 -0.4
Nudt8 7.0 9.1 * 2.5 3.5 4.0 0.7
Nupl1 12.6 13.0 0.3 15.0 12.3 * -2.1
Nupr1 8.7 8.9 0.2 4.1 5.7 * 2.2
Nxt1 6.0 7.7 * 2.3 5.1 5.4 0.2
Nxt2 13.3 11.2 * -2.3 12.3 11.8 -0.5
Ocel1 3.1 5.3 * 4.0 1.9 4.6 * 4.6
Ogn 3.1 3.1 -0.1 7.6 6.1 * -2.0
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Wt Ko z>2 z Wt Ko z>2 z
Gene (RPKM) (RPKM) (RPKM) (RPKM)
Olfml3 13.8 10.7 * -3.4 9.9 9.9 -0.1
Omg 80.2 76.2 -1.2 63.4 53.8 * -2.3
Omp 4.8 6.9 * 3.1 0.1 0.1
Opcml 20.3 18.6 -1.5 44.4 37.7 * -2.1
Orc5l 8.0 8.8 0.9 9.7 7.9 * -2.0
ORF5 4.7 4.8 0.1 5.0 3.9 * -2.1
Ormdl3 22.9 23.0 -0.1 15.7 19.8 * 2.2
Osgepl1 5.2 5.2 -0.1 4.3 3.1 * -2.5
OTTMUSG000000044617.1 6.0 -1.9 7.0 5.1 * -2.8
Pafah1b3 14.2 17.4 * 2.5 5.2 6.0 0.8
Paqr9 9.1 11.5 * 2.6 13.5 13.0 -0.5
Pcdh21 11.4 14.4 * 2.7 2.6 2.7
Pcdhb7 2.1 2.7 2.2 3.6 * 2.7
Pcdhb9 3.9 3.9 -0.1 4.5 2.5 * -4.2
Pcna 12.7 15.0 * 2.0 7.8 7.1 -0.9
Pcnp 8.8 7.1 * -2.4 10.7 9.6 -1.1
Pcsk1n 772.1 933.6 * 3.8 259.8 337.9 * 3.2
Pde10a 38.9 34.3 * -2.3 11.3 10.9 -0.5
Pde11a 0.7 0.8 3.2 2.4 * -2.0
Pde1a 33.4 29.9 * -2.0 59.0 53.8 -1.4
Pde1b 114.0 104.0 * -2.0 30.4 30.8 -0.0
Pdia4 16.5 13.6 * -2.9 20.6 21.8 0.4
Pdia6 56.2 48.9 * -2.7 41.1 47.1 1.3
Pdk4 2.5 2.4 3.2 5.2 * 2.9
Penk1 185.3 195.5 0.7 14.5 18.9 * 2.5
Pex6 25.4 28.7 1.6 14.3 18.5 * 2.4
Pfdn2 111.1 131.0 * 2.7 75.6 86.2 1.3
Pglyrp1 8.8 6.7 * -3.2 7.8 9.8 1.7
Pgrmc1 164.7 171.0 0.4 156.9 138.4 * -2.0
Phka1 3.6 3.5 -0.5 5.6 4.4 * -2.0
Phlda3 24.4 27.3 1.4 7.4 9.8 * 2.2
Phldb1 23.1 23.6 0.1 14.1 18.1 * 2.3
Pib5pa 27.7 33.1 * 2.4 18.9 21.9 1.3
Pja2 134.1 120.8 * -2.3 172.4 153.6 -1.9
Pkig 34.6 37.3 0.9 19.5 24.5 * 2.2
Pkm2 250.8 249.8 -0.4 140.3 174.7 * 2.5
Plvap 5.3 6.9 * 2.3 3.0 4.9 * 2.7
Pmvk 30.8 28.2 -1.7 15.9 21.5 * 2.9
Pnck 45.1 44.8 -0.4 41.9 32.3 * -3.2
Pofut2 13.0 15.7 * 2.2 7.9 9.2 1.2
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Wt Ko z>2 z Wt Ko z>2 z
Gene (RPKM) (RPKM) (RPKM) (RPKM)
Pold2 13.8 17.3 * 2.8 5.7 6.9 1.3
Pold4 11.2 10.0 -1.5 4.6 6.3 * 2.1
Pole3 15.1 18.8 * 2.7 14.4 14.3 -0.2
Polr2i 34.3 40.4 * 2.3 18.8 19.8 0.4
Polr3gl 7.5 7.5 -0.2 7.9 10.4 * 2.2
Pon3 1.0 1.1 3.1 2.2 * -2.2
Pop4 14.2 11.8 * -2.6 16.2 16.2 -0.1
Pou6f1 21.6 25.7 * 2.3 18.1 18.6 0.1
Ppcs 3.8 3.0 * -2.1 1.6 1.8
Ppm1k 6.8 6.5 -0.6 11.7 9.5 * -2.1
Ppp1r14a 31.1 34.3 1.3 12.8 16.6 * 2.4
Ppp1r1a 51.4 52.5 0.1 30.9 37.8 * 2.0
Ppp1r1b 209.1 192.0 * -2.0 27.8 29.3 0.4
Ppp3r1 234.0 217.0 -1.9 332.4 289.1 * -2.5
Prkcb1 98.4 88.7 * -2.2 132.1 126.7 -0.9
Prkcd 31.2 34.6 1.3 8.9 13.5 * 3.6
Psma4 26.5 23.0 * -2.4 26.2 24.5 -0.9
Psmb5 27.5 24.7 -1.9 19.1 14.8 * -2.8
Pstk 9.7 12.0 * 2.4 7.9 8.4 0.4
Ptgds 871.8 981.2 * 2.3 741.0 904.9 * 2.6
Ptgs1 5.6 4.6 * -2.0 3.8 3.6 -0.4
Ptk2 27.3 24.1 * -2.1 25.1 24.6 -0.4
Ptma 4.5 6.7 * 3.3 4.8 6.2 1.6
Pttg1 14.1 8.4 * -6.9 6.9 6.6 -0.6
Pus3 5.3 4.8 -1.0 6.4 4.9 * -2.2
Rab7-ps1 3.4 4.6 * 2.4 1.9 2.5
Ramp3 19.7 19.6 -0.3 2.8 4.7 * 3.0
Rasd1 9.5 10.1 0.6 21.7 26.7 * 2.0
Rbm22 11.6 10.8 -1.0 14.6 11.9 * -2.2
Rcn3 4.6 5.9 * 2.0 4.2 6.1 * 2.4
Rdh13 7.8 9.9 * 2.4 6.6 6.9 0.2
Rem2 7.1 7.5 0.6 6.7 9.2 * 2.4
Rgs16 10.6 11.9 1.3 3.1 4.8 * 2.6
Rims3 37.1 42.6 1.9 7.4 11.3 * 3.4
Rit2 46.0 40.7 * -2.3 38.6 37.4 -0.6
Rmnd1 3.1 2.4 * -2.0 2.2 2.7
Rmrp 23.5 14.9 * -6.9 4.3 3.5 -1.6
Rnf141 14.5 12.4 * -2.2 16.6 14.8 -1.3
Rnf144 6.2 5.0 * -2.3 4.5 4.7 0.1
Rnu15-b 7.5 4.8 * -4.8 1.6 1.8
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Differentially expressed genes
Forebrain Hippocampus

Wt Ko z>2 z Wt Ko z>2 z
Gene (RPKM) (RPKM) (RPKM) (RPKM)
Rnu32 29.9 18.0 * -8.1 2.9 0.6
Rnu33 8.2 5.8 * -4.0 1.6 2.2
Rnu35a 7.7 5.4 * -3.9 1.8 0.3
Rnu35b 6.7 5.3 * -2.5 3.7 2.8 * -2.0
RP23-
25C1.8

12.6 15.7 * 2.6 8.1 9.0 0.7

Rpl13 14.2 12.2 * -2.2 18.7 16.9 -1.2
Rpl15 16.7 16.1 -0.7 20.2 16.8 * -2.1
Rpl18 16.0 17.6 1.1 10.7 7.8 * -3.0
Rpl26 84.1 76.1 * -2.1 46.4 57.5 * 2.3
Rpl3 9.1 8.9 -0.4 0.7 3.1 * 6.1
Rpl30 29.5 27.0 -1.7 4.5 8.5 * 4.2
Rpl35a 13.1 9.1 * -5.0 29.7 27.7 -1.0
Rpl39 49.3 60.3 * 3.1 58.2 53.4 -1.3
Rpl41 12.3 15.2 * 2.5 6.2 9.4 * 3.0
Rpl7 23.8 22.6 -1.0 20.8 16.6 * -2.5
Rplp1 350.4 418.2 * 3.3 115.0 158.4 * 3.8
Rpp21 23.8 25.6 0.8 11.9 14.9 * 2.0
Rpp25 14.5 14.5 -0.2 5.2 7.8 * 2.8
Rpph1 10.9 6.7 * -6.1 1.3 1.4
Rps14 184.3 182.4 -0.5 130.7 114.9 * -2.0
Rps15a 10.0 8.3 * -2.4 10.7 9.6 -1.1
Rps16 32.6 33.8 0.3 12.7 16.4 * 2.3
Rps2 22.0 21.2 -0.7 15.7 20.5 * 2.6
Rps21 201.5 241.1 * 3.2 104.7 137.4 * 3.1
Rps24 4.2 5.7 * 2.4 3.6 3.7 -0.1
Rps3a 16.2 10.8 * -5.6 17.2 8.8 * -7.1
Rps4x 21.9 19.0 * -2.2 17.3 14.8 -1.8
Rrs1 7.6 10.0 * 2.8 5.3 7.1 2.0
Rtn4rl2 21.9 26.8 * 2.7 21.1 22.5 0.5
S100a1 84.9 90.7 0.9 54.6 67.7 * 2.3
S100a16 55.0 55.1 -0.3 26.5 32.6 * 2.1
S100a8 1.3 4.1 * 6.7 0.9 0.2
S100a9 2.0 5.5 * 6.6 0.9 0.5
Sacm1l 21.7 18.2 * -2.7 22.7 22.8 -0.1
Safb2 13.7 14.6 0.7 12.2 15.9 * 2.4
Sat2 5.7 4.5 * -2.3 5.4 4.7 -1.2
Scfd1 10.4 10.4 -0.1 13.1 10.8 * -2.0
Scp2-ps2 3.9 2.5 * -3.6 1.9 2.4
Scrt1 44.6 50.5 1.8 19.3 26.1 * 3.0
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Differentially expressed genes
Forebrain Hippocampus

Wt Ko z>2 z Wt Ko z>2 z
Gene (RPKM) (RPKM) (RPKM) (RPKM)
Scx 2.3 3.4 * 2.7 0.8 0.5
Sdf2l1 18.0 15.3 * -2.5 7.9 10.4 * 2.3
Sdsl 2.2 3.6 * 3.3 1.6 1.9
Sec61b 14.8 12.1 * -2.8 7.1 6.9 -0.5
Sec61g 2.6 3.8 * 2.7 0.8 1.9
Selm 81.9 96.5 * 2.6 34.5 40.4 1.5
Sfmbt1 4.8 3.8 * -2.2 5.8 6.2 0.3
Sgk 22.9 31.3 * 4.4 52.9 57.6 0.7
Sh3bgrl 11.7 10.1 * -2.0 31.3 26.4 * -2.1
Shank1 32.6 35.1 0.9 46.5 56.5 * 2.0
Shank3 36.8 36.0 -0.6 23.6 29.3 * 2.1
Shd 14.2 17.7 * 2.8 5.9 6.6 0.7
Shfm1 112.1 114.7 0.1 78.4 103.8 * 3.2
Skp1a 157.7 166.4 0.7 171.0 149.8 * -2.1
Slc25a18 36.4 37.8 0.3 18.5 22.8 * 2.0
Slc25a29 9.0 9.0 -0.1 6.2 8.2 * 2.1
Slc27a1 27.4 31.8 * 2.0 20.9 23.4 1.0
Slc2a1 44.7 46.4 0.4 43.5 53.9 * 2.2
Slc39a10 40.0 34.7 * -2.6 28.7 27.8 -0.6
Slc5a5 6.0 5.8 -0.4 4.7 3.3 * -2.7
Slc6a15 11.9 12.4 0.4 19.5 16.2 * -2.1
Slc8a1 9.4 8.9 -0.7 22.6 18.6 * -2.3
Slc9a3r1 24.7 28.0 1.6 14.7 19.0 * 2.4
Slc9a3r2 19.8 23.4 * 2.2 12.0 13.7 1.1
Slco1a4 8.8 8.6 -0.5 11.8 9.4 * -2.4
Slitrk2 5.5 5.1 -0.8 7.9 6.4 * -2.0
Slitrk4 5.4 5.2 -0.5 9.6 7.7 * -2.1
Snora64 3.0 3.6 1.4 2.5 4.6 * 3.4
Snord61 2.0 3.0 * 2.7 0.0 0.0
Snrpa1 15.4 18.9 * 2.5 11.9 14.3 1.6
Snrpd2 29.7 32.7 1.2 13.5 20.3 * 3.8
Snx10 29.7 30.4 0.1 37.9 32.2 * -2.1
Snx12 16.0 14.0 * -2.0 17.9 16.9 -0.7
Sostdc1 2.8 2.8 12.8 10.2 * -2.3
Sox21 2.4 3.2 * 2.1 1.9 2.1
Sp9 7.1 9.2 * 2.6 1.9 2.2
Spa17 3.1 2.6 -1.4 3.9 2.8 * -2.5
Sparc 199.0 210.8 0.8 128.3 157.9 * 2.3
Spink8 5.2 4.1 * -2.2 22.8 21.5 -0.8
Ssbp4 62.8 71.8 * 2.0 29.1 35.6 * 2.0
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Differentially expressed genes
Forebrain Hippocampus

Wt Ko z>2 z Wt Ko z>2 z
Gene (RPKM) (RPKM) (RPKM) (RPKM)
Ssr4 44.1 51.4 * 2.3 25.4 28.4 1.0
Sssca1 30.5 37.7 * 3.1 16.7 17.2 0.2
Sst 421.3 461.5 1.5 214.9 264.5 * 2.4
Sstr4 11.5 9.8 * -2.2 15.4 16.4 0.5
Stac2 26.7 32.3 * 2.6 18.8 21.0 1.0
Stard10 60.4 74.1 * 3.2 12.0 14.5 1.7
Stxbp5l 5.6 4.8 -1.7 12.8 9.9 * -2.6
Supt3h 5.9 6.0 -0.0 6.3 4.6 * -2.6
Surb7 25.6 22.6 * -2.1 19.9 20.5 0.1
Sv2b 85.8 77.1 * -2.2 101.7 90.3 -1.8
Syce2 1.5 2.0 4.2 2.1 * -4.9
Syngr2 6.0 7.6 * 2.2 4.6 4.9 0.3
Taf10 15.1 18.7 * 2.7 8.3 7.9 -0.6
Tagap1 3.6 2.8 * -2.0 2.3 2.3
Tagln 6.9 6.2 -1.2 6.8 8.8 * 2.0
Tbca 25.3 29.7 * 2.2 24.9 25.7 0.1
Tbrg4 12.1 14.4 * 2.1 8.8 10.0 1.0
Tceb1 37.5 37.6 -0.2 43.5 37.0 * -2.1
Tcfe2a 7.9 8.1 0.2 4.1 5.7 * 2.0
Tesc 54.8 47.3 * -2.8 29.6 31.5 0.5
Tfrc 19.8 21.1 0.7 22.1 17.6 * -2.6
Tgfb2 2.5 2.6 13.2 10.7 * -2.2
Th 11.9 17.4 * 4.6 0.3 0.2
Thap7 17.6 19.4 1.2 8.9 11.4 * 2.1
Thrb 5.5 4.4 * -2.2 5.3 5.0 -0.6
Tipin 7.9 7.4 -1.0 7.3 5.6 * -2.4
Tjap1 5.1 4.8 -0.7 4.2 6.1 * 2.4
Tlk1 19.8 19.1 -0.7 21.1 17.5 * -2.2
Tmem11 25.0 28.2 1.6 13.7 17.6 * 2.3
Tmem149 2.7 3.0 2.9 4.6 * 2.6
Tmem160 47.3 57.0 * 2.8 20.5 21.4 0.3
Tmem74 3.9 3.0 * -2.3 8.6 7.3 -1.6
Tmub1 15.7 18.8 * 2.2 8.3 8.2 -0.2
Tnfrsf25 1.0 1.1 3.0 4.7 * 2.6
Tnnt1 6.0 3.8 * -4.5 0.8 2.3
Tomm7 115.5 136.8 * 2.8 81.9 91.2 1.0
Top1mt 6.6 8.3 * 2.2 6.3 5.8 -0.8
Tpsg1 1.7 1.6 3.0 4.4 * 2.3
Tpt1 69.2 84.5 * 3.2 22.4 28.7 * 2.5
Trappc6a 8.1 11.0 * 3.2 4.2 4.6 0.4
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Differentially expressed genes
Forebrain Hippocampus

Wt Ko z>2 z Wt Ko z>2 z
Gene (RPKM) (RPKM) (RPKM) (RPKM)
Trh 9.8 12.1 * 2.4 1.3 1.4 -1.3
Trip6 2.6 2.6 2.0 3.2 * 2.2
Tspo 7.3 9.1 * 2.2 4.4 5.7 1.7
Tuba8 11.3 14.6 * 2.9 5.5 5.4 -0.3
Tubg1 23.3 23.0 -0.4 11.7 15.6 * 2.6
Tyrobp 15.9 15.2 -0.8 8.7 11.4 * 2.2
Uap1l1 10.2 12.8 * 2.6 6.3 6.7 0.3
Uba52 5.0 5.6 0.9 4.0 2.8 * -2.5
Ubc 44.2 35.1 * -4.1 29.3 37.1 * 2.4
Ugt8a 16.2 12.7 * -3.5 12.2 13.7 1.0
Usmg5 81.1 94.6 * 2.4 34.2 31.8 -1.0
Usp53 3.3 2.5 * -2.4 5.0 4.9 -0.4
Utp18 6.6 6.4 -0.4 7.6 5.9 * -2.2
Vgf 174.0 193.4 1.7 79.8 107.5 * 3.4
Vps37b 16.3 19.4 * 2.1 10.4 10.9 0.2
Vps72 15.6 18.4 * 2.1 9.5 9.7 0.0
Vwf 3.6 3.7 0.1 3.6 5.5 * 2.5
Wdfy1 6.3 7.6 1.8 1.9 3.8 * 3.6
Wdr17 6.3 6.5 0.2 6.0 4.6 * -2.1
Wwox 10.6 17.6 * 6.0 6.8 8.3 1.4
Xbp1 46.6 39.0 * -3.3 31.0 30.9 -0.2
Xpa 6.6 8.4 * 2.2 6.2 6.6 0.3
Xrn2 10.2 10.4 0.2 15.0 12.4 * -2.0
Xtrp3s1 5.7 9.0 * 4.2 8.5 7.1 -1.7
Yipf4 13.7 13.4 -0.5 15.9 13.2 * -2.0
Zc3h6 4.1 3.8 -0.6 5.5 4.1 * -2.4
Zcchc9 3.0 3.1 0.2 4.1 5.7 * 2.1
Zcd2 13.6 14.1 0.3 15.7 12.1 * -2.8
Zdhhc2 12.2 12.5 0.1 14.7 11.5 * -2.5
Zdhhc24 7.4 6.5 -1.4 5.5 7.4 * 2.1
Zfp180 15.3 12.8 * -2.6 14.6 16.1 0.8
Zfp236 4.8 3.5 * -2.9 5.0 4.3 -1.3
Zfp291 6.5 6.1 -0.7 8.3 6.5 * -2.3
Zfp367 5.2 5.1 -0.4 5.1 3.7 * -2.6
Zfp511 13.2 12.8 -0.6 9.0 7.3 * -2.1
Zfp593 5.7 5.7 -0.1 2.1 3.2 * 2.0
Zfp810 4.6 4.3 -0.8 6.1 4.8 * -2.0
Zfpm1 11.4 11.4 -0.1 6.6 8.7 * 2.0
Znhit1 42.8 45.3 0.7 17.6 21.8 * 2.0
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Chapter 7

Appendix B

7.1 Comparison of expression in the wild-type fore-

brain and hippocampus

We compared transcription in the hippocampus of wild-type mice to that in the cor-

tex (Figure 7.1). Of all genes measured, seventy percent are expressed at lower levels

in the hippocampus than in the forebrain. This trend persists in genes differentially

expressed between forebrain and hippocampus; sixty percent are lower in the hip-

pocampus. Although genes are typically highly expressed in the hippocampus, it

is a simpler structure than the forebrain as a whole, and many gene products are

unnecessary for its function.

Nine genes identified as PSD proteins in a proteomic study by (Cheng et al.,

2006) were differentially expressed in the densin knockout mouse: cofilin 1, CHCHD3

(coiled-coil-helix-coiled-coil-helix domain containing 3), citron (rho-interacting, ser-

ine/threonine kinase 21), FXYD5 (FXYD domain containing ion transport regulator

5), PPP1CC (protein phosphatase 1, catalytic subunit, gamma isoform), PTPRZ1
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Figure 7.1: Measurements from wild-type mice indicate that many genes are ex-
pressed at lower levels in the hippocampus than in the forebrain. Differences in
hippocampal gene expression were plotted against the control condition: expression
in the forebrain. Unlike the two previous comparisons which examine the effect of
genotype on gene expression, here we see larger changes (note the changed scale
of the ordinate) and a clear trend toward lower expression. Key to named genes:
Adora2a (adenosine A2a receptor), Avp (arginine vasopressin), Drd2 (dopamine
receptor 2), Gpr88 (G-protein coupled receptor 88), Hcrt (hypocretin), Penk1 (pre-
proenkephalin 1), Pmch (pro-melanin-concentrating hormone), Ppp1r1b (protein
phosphatase 1, regulatory (inhibitor) subunit 1B), Scn4b (sodium channel, type IV,
beta), Ttr (transthyretin).
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(protein tyrosine phosphatase, receptor-type, Z polypeptide 1) RPL23 (ribosomal

protein L23), SynGAP (synaptic Ras GTPase activating protein), and TUFM (Tu

translation elongation factor, mitochondrial).
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