
Gromov-Witten Invariants:
Crepant Resolutions and Simple Flops

Thesis by

Wan Keng Cheong

In Partial Fulfillment of the Requirements

for the Degree of

Doctor of Philosophy

California Institute of Technology

Pasadena, California

2010

(Defended April 29, 2010)



ii

c© 2010

Wan Keng Cheong

All Rights Reserved



iii

To the memory of my mom



iv

Acknowledgements

My deepest gratitude goes to my adviser Tom Graber for his guidance, patience, and support in

the past four years. His suggestions are extremely helpful during the preparation of this thesis.

Things I have learned from him are invaluable.

I am thankful to my previous adviser Hee Oh though I did not follow her to Brown. While

being my adviser, she was always available to help me. Her care for students was impressive.

I also thank Dongping Zhuang, who helped me learn algebraic topology in my first year at

Caltech when I basically knew nothing about the area. It is great to have such a nice study

partner and friend.

It is a privilege to acknowledge Caltech Mathematics Department for providing a nurturing

environment for graduate students. Moreover, I thank Michael Aschbacher, Dinakar Ramakr-

ishnan, and David Wales for serving on my thesis committee.

I am indebted to Kaen Koh and Chun-Kai Li for their encouragement and support, which

have played an important role in my academic life at Caltech. Many thanks are also due to my

lovely friends Baolian Huang, Chia-Yun Kang, Cheng-Yeaw Ku, Chern-Yang Lee, Kian-Yi Lee,

Chiu-Ju Lin, Yu-Ju Wei, Kathy Wu, Kai-Yee Tee, and Tzu-Yi Yang, just to name a few, for

filling my life with joy, love, and surprise.

This thesis is dedicated to my family. They are behind me all the way...



v

Abstract

Let S be any smooth toric surface. We establish a ring isomorphism between the equivariant

extended Chen-Ruan cohomology of the n-fold symmetric product stack [Symn(S)] of S and the

equivariant extremal quantum cohomology of the Hilbert scheme Hilbn(S) of n points in S. This

proves a generalization of Ruan’s Cohomological Crepant Resolution Conjecture for the case of

Symn(S).

We determine the operators of small quantum multiplication by divisor classes on the orbifold

quantum cohomology of [Symn(Ar)], where Ar is the minimal resolution of the cyclic quotient

singularity C2/Zr+1. Under the assumption of the nonderogatory conjecture, these operators

completely determine the quantum ring structure, which gives an affirmative answer to Bryan-

Graber’s Crepant Resolution Conjecture on [Symn(Ar)] and Hilbn(Ar). More strikingly, this

allows us to complete a tetrahedron of equivalences relating the Gromov-Witten theories of

[Symn(Ar)]/Hilbn(Ar) and the relative Gromov-Witten/Donaldson-Thomas theories of Ar×P1.

Finally, we prove a closed formula for an excess integral over the moduli space of degree d

stable maps from unmarked curves of genus one to the projective space Pr for positive integers

r and d. The result generalizes the multiple cover formula for P1 and reveals that any simple Pr

flop of smooth projective varieties preserves the theory of extremal Gromov-Witten invariants of

arbitrary genus. It also provides examples for which Ruan’s Minimal Model Conjecture holds.
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Chapter 1

Introduction

1.1 Main Results

1.1.1 The Crepant Resolution Conjecture

A principle in physics states that string theory on an orbifold is equivalent to string theory on

any crepant resolution of singularities. Over the years, it has been put into various mathematical

frameworks. Among them, we are particularly interested in the formulations pioneered by Ruan

in the context of Gromov-Witten theory (see, e.g., [R, BG, CoIT, CoR]).

Let n be a positive integer and T = (C×)2 a torus. The T-equivariant cohomology of a point

is simply Q[t1, t2]. Given a smooth toric surface S, which comes with a T-action, the symmetric

group Sn acts on the n-fold Cartesian product Sn by permuting coordinates. Thus, we obtain

a quotient scheme Symn(S) := Sn/Sn, the n-fold symmetric product of S, and a quotient stack

[Symn(S)], the n-fold symmetric product stack of S. The stack [Symn(S)] is a smooth orbifold,

whose coarse moduli space is none other than the symmetric product Symn(S). Further, it has

a unique crepant resolution given by the Hilbert scheme Hilbn(S) of n points in S.

The string theories of [Symn(S)] and Hilbn(S) are expected to be equivalent. In order to make

this precise in mathematics, Ruan [R] proposes the Cohomological Crepant Resolution Conjec-

ture (CCRC), which asserts that the Chen-Ruan cohomology ring of [Symn(S)] is isomorphic to

the so-called quantum corrected cohomology ring of the crepant resolution Hilbn(S).

The first goal of this thesis, which covers Chapters 2 and 3, is to justify CCRC for symmetric

products of smooth toric surfaces. In fact, we obtain a slightly stronger result, which says

that there is a SYM-HILB correspondence between the degree zero Gromov-Witten theory of

[Symn(S)] and the extremal Gromov-Witten theory of Hilbn(S):
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Theorem 1.1.1. After making an appropriate change of variables and extending scalars to a

suitable field F , there is a ring isomorphism

L : H∗T,orb([Symn(S)];F )→ H∗T(Hilbn(S);F ),

which preserves gradings and is also an isometry with respect to Poincaré pairings. Here the left

side is the equivariant extended Chen-Ruan cohomology whose structure constants are defined

by three-point extended invariants of degree zero while the right side is the equivariant extremal

quantum cohomology whose structure constants are defined by three-point extremal invariants.

The above result holds, in particular, for surfaces such as P2, P1 × P1, Hirzeburch surfaces,

and the total spaces of line bundles over P1.

The quantum corrected cohomology of the Hilbert scheme Hilbn(S), in the sense of [R],

is defined as the extremal quantum cohomology with the unique extremal quantum parameter

being specialized to −1. The following result, being an immediate consequence of Theorem 1.1.1,

justifies CCRC for [Symn(S)] and Hilbn(S).

Corollary 1.1.2. The equivariant Chen-Ruan cohomology of [Symn(S)] is isomorphic to the

equivariant quantum corrected cohomology of Hilbn(S).

We may encode three-point extended [Symn(S)]-invariants of degree zero in a three-point

function (cf. Section 3.4), which depends only on the equivariant parameters t1, t2 and the quan-

tum parameter u corresponding to the twisted divisor. Theorem 1.1.1 allows us to reconstruct

the cup product of the Hilbert scheme from the Gromov-Witten invariants of the symmetric

product stack as in the following statement, which is not covered by Ruan Conjecture, however.

Corollary 1.1.3. The equivariant ordinary cohomology of Hilbn(S) is isomorphic to a certain

correction to the equivariant extended Chen-Ruan cohomology of [Symn(S)]. Precisely, the cup

product of Hilbn(S) can be recovered from the three-point functions of [Symn(S)] by taking the

limit u→ i∞, where i is a square root of −1.

If we have closed-form formulas for these symmetric product orbifold invariants, the cup

product of the Hilbert scheme can be written down explicitly.

We also study a little bit about the relative Gromov-Witten theory of S×P1 as it seems quite

close to the orbifold theory and may yield an alternative way to compute the cup product of the

Hilbert scheme of points. Indeed, the degree (0, n) relative theory turns out to be equivalent to
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the extended Chen-Ruan cohomology of [Symn(S)], and thus it is also equivalent to the extremal

quantum cohomology of Hilbn(S) (see Section 5.1.1).

Given a positive integer r, we let Ar be the minimal resolution of the type Ar surface singu-

larity. The second goal of the thesis, covering Chapters 4 and 5, is to compare the equivariant

orbifold Gromov-Witten theories of the symmetric products of Ar with the equivariant Gromov-

Witten theories of the crepant resolutions in the spirit of Bryan-Graber’s Crepant Resolution

Conjecture [BG]. The correspondence we obtain is stronger than Theorem 1.1.1 for the case of

Ar.

To formulate explicitly the correspondence, we consider the three-point functions

〈〈α1, α2, α3〉〉[Symn(Ar)] ∈ Q(t1, t2)[[u, s1, . . . , sr]],

which encode three-point extended Gromov-Witten invariants of [Symn(Ar)] (see (4.3.1)). These

generating functions add a multiplicative structure to the equivariant Chen-Ruan cohomology

H∗T,orb([Symn(Ar)];Q). The multiplication so obtained is called the small orbifold quantum

product.

The T-equivariant quantum cohomology of Hilbn(Ar) has been explored by Maulik and

Oblomkov in [MO1], so we need only deal with the quantum ring of the orbifold [Symn(Ar)].

We fully cover two-point extended Gromov-Witten invariants of [Symn(Ar)] and find that the

calculation of these invariants is tantamount to the question of counting certain branched covers

of rational curves. Our discovery can be summarized in the following statement.

Theorem 1.1.4. Two-point extended equivariant Gromov-Witten invariants of [Symn(Ar)] are

expressible in terms of equivariant orbifold Poincaré pairings and one-part double Hurwitz num-

bers.

One-part double Hurwitz numbers, as shown by Goulden, Jackson, and Vakil [GJV], admit

explicit closed formulas (cf. (4.8.4)), and therefore Theorem 1.1.4 provides a complete solution

to the divisor operators, i.e., the operators of quantum multiplication by divisor classes. These

operators correspond naturally to the divisor operators on the Hilbert scheme Hilbn(Ar):

Theorem 1.1.5. Let L be as in Theorem 1.1.1. For any Chen-Ruan cohomology classes α1, α2

and divisor D, we have the following identity for three-point functions:

〈〈α1, D, α2〉〉[Symn(Ar)] = 〈L(α1), L(D), L(α2)〉Hilbn(Ar).
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Here 〈−,−,−〉Hilbn(Ar) are the three-point functions of Hilbn(Ar) in variables t1, t2, q, s1, . . . , sr

(see (5.2.1)), and we make the substitution q = −eiu, where i2 = −1.

In addition to the relation to the Hilbert schemes, the orbifold theory is in connection with

the relative Gromov-Witten theory of threefolds.

Theorem 1.1.6. Given cohomology-weighted partitions λ1(~η1), λ2(~η2) of n and α = 1(1)n, (2)

or Dk, k = 1, . . . , r (see Sections 3.2.1 and 5.1 for these classes), we have

〈〈λ1(~η1), α, λ2(~η2)〉〉[Symn(Ar)] = GW(Ar × P1)λ1(~η1),α,λ2(~η2),

where the right hand side is a shifted partition function (cf. (5.1.1)).

1.1.2 Tetrahedron of equivalences

The above theorems form a triangle of equivalences. We can include the Donaldson-Thomas

theory to make up a tetrahedron. In fact, Theorems 1.1.5 and 1.1.6, in conjunction with the

results of [M, MO1, MO2], establish the following equivalences for divisor operators.

�
�
�
�
�

@
@

@
@

@

XXXXXXXX
�

��

B
B
B
B
B
B
B

Orbifold quantum
cohomology of [Sym(Ar)]

Relative
Gromov-Witten

theory of Ar × P1

Quantum cohomology
of Hilb(Ar)

Relative
Donaldson-Thomas
theory of Ar × P1

Figure 1.1. A tetrahedron of equivalences.

Before the study of the Gromov-Witten theory of [Symn(Ar)], the case of the affine plane

C2 was the only known example for the above tetrahedron to hold for all operators (cf. [BG,

BP, OP1, OP2]). If the nonderogatory conjecture (Conjecture 5.3.1) of Maulik and Oblomkov

is assumed, these four theories will be equivalent in our case of Ar as well. The base triangle

of “equivalences” is the work of Maulik and Oblomkov. And the triangle facing the rightmost

corner is worked out in this thesis:

Proposition 1.1.7. Let L be as in Theorem 1.1.1 and λ1(~η1), λ2(~η2), λ3(~η3) any cohomology-
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weighted partitions of n. Assuming the nonderogatory conjecture, the identities

〈〈λ1(~η1), λ2(~η2), λ3(~η3)〉〉[Symn(Ar)] = 〈L(λ1(~η1)), L(λ2(~η2)), L(λ3(~η3))〉Hilbn(Ar)

= GW(Ar × P1)λ1(~η1),λ2(~η2),λ3(~η3)

hold under the substitution q = −eiu.

Once the WDVV equations are used, we can make a more general statement on [Symn(Ar)]

and Hilbn(Ar).

Proposition 1.1.8. Let q = −eiu. Assuming the nonderogatory conjecture, the map L, in The-

orem 1.1.1, equates the extended multipoint functions of [Symn(Ar)] to the multipoint functions

of Hilbn(Ar). Moreover, these functions are rational functions in t1, t2, q, s1, . . . , sr. (Multipoint

functions are those with at least three insertions).

This answers positively the Crepant Resolution Conjecture, proposed by Bryan and Graber,

on the symmetric product case. We will see that Propositions 1.1.7 and 1.1.8 are valid in the

case of n = 2, r = 1 even without presuming the nonderogatory conjecture (see Section 5.3.1).

1.1.3 Minimal Model Conjecture

The Hilbert scheme of points in a smooth surface S gives the unique crepant resolution of the

symmetric product of S. In general, a singular variety may admit no crepant resolutions or

more than one crepant resolution. The Minimal Model Conjecture, proposed by Ruan, is closely

related to the Crepant Resolution Conjecture. It asserts that if a variety X admits two different

crepant resolutions Y1 and Y2, the Gromov-Witten theories of Y1 and Y2 are equivalent.

A simple ordinary Pn flop is a K-equivalence with exceptional locus Z = Pn. In [LLW],

Lee, Lin, and Wang justify the genus zero Minimal Model Conjecture for the simple flop case.

We will consider extremal Gromov Witten theories for simple flops in all genera and obtain the

following result.

Theorem 1.1.9. Let f : X 99K X ′ be a simple ordinary Pn flop. There is a correspondence

which identifies extremal Gromov-Witten theories of X and X ′ for any genus.
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1.2 Setting for Chapters 2–5

1.2.1 Smooth toric surfaces

Throughout Chapters 2–5, we let S be a smooth toric surface, which is acted on by the torus

T = (C×)2.

The surface S is determined by a fan Σ that is a finite collection of strongly convex rational

polyhedral cones σ contained in N = Hom(M,Z), where M ∼= Z2. That is, S is obtained by

gluing together affine toric varieties Sσ and Sτ along Sσ∩τ for σ, τ ∈ Σ. Here, for example, Sσ

has coordinate ring C[σ∨ ∩M ], which is the C-algebra with generators χm for m ∈ σ∨ ∩M and

multiplication χmχm
′

= χm+m′ . Note that σ∨ ∩M is by definition the set of elements m ∈ M

satisfying v(m) ≥ 0 for all v ∈ σ.

In addition, S has finitely many T-invariant subvarieties, and so it has a finite number of

T-fixed points

x1, . . . , xs.

(We do not study smooth toric surfaces without T-fixed points as they are not interesting in

equivariant theory.)

For each i, xi is contained in

Ui := Sσi

for some σi ∈ Σ. As S is smooth and Ui possesses a unique T-fixed point xi, we see that Ui

must be isomorphic to the affine plane with xi corresponding to the origin. However, S is not

necessarily the union
⋃s
i=1 Ui.

We denote by

Li and Ri

the tangent weights at xi.

1.2.2 Notation and convention

The following notations will be used in Chapters 2–5 without further comment. Some other

notations will be introduced along the way.

1. To avoid doubling indices, we identify

Ai(X) = H2i(X;Q), Ai(X) = H2i(X;Q), and Ai(X;Z) = H2i(X;Z),
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just to name a few, for any complex variety X to appear in this article (note that we drop

Q but not Z). They will be referred to as cohomology or homology groups rather than

Chow groups.

2. An orbifold X is a smooth Deligne-Mumford stack of finite type over C. Denote by c :

X → X the canonical map to the coarse moduli space.

3. For every positive integer s, µs is the cyclic subgroup of C× of order s. For any finite

group G, BG is the classifying stack of G, i.e., [Spec C/G].

4. (a) T = (C×)2 is always a two-dimensional torus, and t1, t2 are the generators of the

T-equivariant cohomology A∗T(point) of a point, that is, A∗T(point) = Q[t1, t2].

(b) Vm = V ⊗Q[t1,t2] Q(t1, t2) for each Q[t1, t2]-module V .

5. Given any object O, On means that O repeats itself n times.

6. For i = 1, 2, εi is a function on the set of nonnegative integers such that

εi(m) =


0 if m < i;

1 if m ≥ i.

7. Let σ be a partition of a nonnegative integer.

(a) `(σ) is the length of σ.

(b) Unless otherwise stated, σ is presumed to be written as

σ = (σ1, . . . , σ`(σ)) with σ1 ≥ · · · ≥ σ`(σ).

To make a emphasis, if σk is another partition, it is simply (σk1, . . . , σk`(σk)).

(c) Let ~α := (α1, . . . , α`(σ)) be an `(σ)-tuple of cohomology classes associated to σ so

that we may form a cohomology-weighted partition σ(~α) := σ1(α1) · · ·σ`(σ)(α`(σ)).

The group Aut(σ(~α)) is defined to be the group of permutations on {1, 2, . . . , `(σ)}

fixing

( (σ1, α1), . . . , (σ`(σ), α`(σ)) ).

Let Aut(σ) be the group Aut(σ(~α)) when all entries of ~α are identical. Its order is

simply
∏n
i=1mi! if σ = (1m1 , . . . , nmn).
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(d) |σ| = n if σ1 + · · · + σ`(σ) = n, and o(σ) = lcm(|σ1|, . . . , |σ`(σ)|) is the order of any

permutation of cycle type σ.

(e) (2) := (1n−2, 2) and 1 := (1n) are partitions of length n−1 and length n respectively.
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Chapter 2

Hilbert scheme of points

The Hilbert scheme of n points in S, denote by Hilbn(S) or S[n], parametrizes zero-dimensional

closed subscheme Z of S satisfying

dimCH
0(Z,OZ) = n.

The Hilbert-Chow morphism

ρ : Hilbn(S)→ Symn(S)

is defined by sending [Z] to
∑
p∈S `(OZ,p)[p], where the length `(OZ,p) is simply the multiplicity

of p in Z. The map ρ is not only a resolution of singularities, but it is also crepant, i.e.,

KHilbn(S) = ρ∗KSymn(S). We remark that ρ actually gives a unique crepant resolution. (This is,

however, no longer true for higher-dimensional varieties).

The action of T on S lifts to Hilbn(S). Each element of the fixed locus Hilbn(S)T has support

in (Sn)T = {x1, . . . , xs}, and Hilbn(S)T is isolated.

2.1 Fixed-point basis and Nakajima basis

Fixed-point basis. As seen in [ES], there is a one-to-one correspondence between partitions

of n and T-fixed point of Hilbn(C2). Indeed, for every partition λ, the corresponding T-fixed

points λ(xi) ∈ Hilb|λ|(Ui) is defined as follows: let C[u, v] be the coordinate ring for Ui ∼= C2,

λ(xi) is then the subscheme of Ui with ideal Iλ(xi) being

(uλ1 , vuλ2 , . . . , v`(λ)−1uλ`(λ) , v`(λ)).
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The point λ(xi) is supported at xi and is mapped to |λ| · [xi] ∈ Sym|λ|(Ui) by the Hilbert-Chow

morphism.

Note that each T-fixed point of Hilbn(S) is the sum

λ1(x1) + · · ·+ λs(xs)

for some partitions λi’s satisfying
∑s
i=1 |λi| = n (by “the sum” we mean the disjoint union of

λi(xi)’s). For λ̃ := (λ1, . . . , λs), write

Iλ̃ = [λ1(x1) + · · ·+ λs(xs)],

which we call T-fixed point classes of Hilbn(S), and which form a basis for the localized coho-

mology A∗T(Hilbn(S))m.

Nakajima basis. Another important basis for A∗T(Hilbn(S)) is the Nakajima basis, which we

now describe. For further details, see [Gro, N1, N2, V, LQW].

Given a partition λ of n and an `(λ)-tuple ~η := (η1, . . . , η`(λ)) with entries in A∗T(S). Let

|0〉 = 1 ∈ A0
T(S[0]), we define

aλ(~η) =
1

|Aut(λ(~η))|

`(λ)∏
i=1

1

λi
p−λi(ηi)|0〉,

where p−λi(ηi) : A∗T(S[k])→ A
∗+λi−1+deg(γ)
T (S[k+λi]) are Heisenberg creation operators. (Some-

times we denote the class aλ(~η) by aλ1
(η1) · · · aλ`(λ)

(η`(λ))).

Choose a basis B for A∗T(S). The classes aλ(~η)’s, running through all partitions λ of n and

all ηi ∈ B, give a basis for A∗T(Hilbn(S)). They are referred to as the Nakajima basis associated

to B.

We may also work with the Nakajima basis associated to the T-fixed point classes

[x1], . . . , [xs].

For partitions λ1, . . . , λs of n1, . . . , ns respectively, we define `(λ̃) =
∑s
i=1 `(λi) and

aλ̃ := aλ11
([x1]) · · · aλ1`(λ1)

([x1]) · · · aλs1([xs]) · · · aλs`(λs)
([xs]).
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The Chow degree of aλ̃ is

s∑
i=1

(|λi| − `(λi)) + 2`(λ̃) = (n− `(λ̃)) + 2`(λ̃) = n+ `(λ̃).

In the case of Ui, we have exactly one T-fixed point xi. Hence,

aλ̃i ,

denoting the classes aλi1([xi]) · · · aλi`(λi)([xi])|0〉 (with |λi| = ni) on Hilbni(Ui), form a basis for

A∗T(Hilbni(Ui))m. The equivariant Poincaré pairing 〈•|•〉 of A∗T(Hilbni(Ui))m is determined by

the formula

〈aλ̃i |aµ̃i〉 = δλi,µi(−1)|λi|−`(λi)(LiRi)
`(λi)

1

zλi
, |λi| = |µi| = ni. (2.1.1)

2.2 Comparison to symmetric functions

Let pi(z) =
∑∞
k=1 z

i
k be the ith power sum. Given a partition µ, write

pµ(z) =
1

|Aut(µ)|

`(µ)∏
i=1

1

µi
pµi(z).

This family of symmetric functions forms a basis for the ring RSym of symmetric functions over

Q(t1, t2). Let αi = Ri/Li. We denote the integral Jack symmetric functions corresponding to

αi and the partitions µ by

Jαiµ (z),

which actually provide an orthogonal basis for RSym (cf. [S]).

The relationship between T-fixed point basis and Nakajima basis is indeed the relationship

between Jack symmetric functions and the power sums. More precisely, the Nakajima basis

element a(λ1,...,λs) is identified with

⊗si=1L
`(λi)
i pλi(z(i)),

while the T-fixed point class I(µ1,...,µs) is identified with

⊗si=1L
|µi|
i Jαiµi (z(i)).
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For more details, see [N1], [V] or [LQW].

For i = 1, . . . , s, let λi be a partition of ni. As the fixed-point classes [µi(xi)]’s (with |µi| = ni)

span A∗T(Hilbni(Ui))m, we can write aλ̃i =
∑
|µi|=ni cλi,µi [µi(xi)] for some cλi,µi ∈ Q(t1, t2). By

the above identifications,

a(λ1,...,λs) =
∑

|µi|=ni;i=1,...,s

cλ1,µ1
· · · cλs,µsI(µ1,...,µs). (2.2.1)

2.3 Three-point functions

Extremal Gromov-Witten invariants. The kernel of the morphism

ρ∗ : A1(Hilbn(S);Z)→ A1(Symn(S);Z)

is one-dimensional and is generated by an effective rational curve class βn that is dual to

−a2(1)a1(1)n−2. For every positive integer k, we let

M0,k(Hilbn(S), d)

be the moduli space parametrizing stable maps from genus zero, k-pointed, nodal curves to

Hilbn(S) of degree dβn.

Let ei : M0,k(Hilbn(S), d) → Hilbn(S) be the evaluation map at the ith marked point.

Although Hilbn(S) is not necessarily compact, the k-point, T-equivariant, extremal Gromov-

Witten invariant

〈α1, . . . , αk〉Hilbn(S)
d :=

∫
[M0,k(Hilbn(S),d)]vir

T

e∗1(α1) · · · e∗k(αk) (2.3.1)

is well-defined when all αi’s are T-fixed point classes because the space of stable maps meeting

these classes is compact. Since T-fixed point basis spans the cohomology A∗T(Hilbn(S))m, the

invariant 〈α1, . . . , αk〉Hilbn(S)
d with insertions being any classes on Hilbn(S) can be defined by

writing each αi in terms of fixed-point classes and by linearity. Another interpretation of (2.3.1)

is to treat the integral as a sum of residue integrals over T-fixed connected components of

M0,k(Hilbn(S), d) via virtual localization formula. The invariants in both treatments take values

in Q(t1, t2).
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Extremal quantum product. We will explore the following three-point function of Hilbn(S):

〈α1, α2, α3〉Hilbn(S)
(q) :=

∞∑
d=0

〈α1, α2, α3〉Hilbn(S)
d qd.

Let {ε} be a basis for A∗T(Hilbn(S))m and {ε∨} its dual basis. Define the extremal quantum

product ∪crep for A∗T(Hilbn(S))m as follows: Given any classes a, b ∈ A∗T(Hilbn(S))m,

a ∪crep b :=
∑
ε

〈a, b, ε〉Hilbn(S)
(q) ε∨.

Equivalently, a ∪crep b is defined to be the unique element satisfying

〈a ∪crep b|c〉 = 〈a, b, c〉Hilbn(S)
(q), ∀c ∈ A∗T(Hilbn(S))m.

By extending scalars, the vector space A∗T(Hilbn(S))⊗Q[t1,t2] Q(t1, t2)((q)) endowed with the

multiplication ∪crep is referred to as the extremal quantum cohomology ring of Hilbn(S).

2.4 The product formula

For each T-fixed connected component Γ, we denote by γ : Γ → M0,3(Hilbn(S), d) the natural

inclusion and by Nvir
Γ the virtual normal bundle to Γ.

In this section, we are going to express our three-point invariant in aλ̃, aµ̃, aν̃ in terms of

Gromov-Witten invariants of Hilbert schemes of points in the affine plane. First of all, let us see

a vanishing statement.

Proposition 2.4.1.
〈
aλ̃, aµ̃, aν̃

〉Hilbn(S)

d
does not vanish only if

|λi| = |µi| = |νi| for each i = 1, . . . , s. (2.4.1)

Proof. Suppose (2.4.1) fails, we would like to show

γ∗(e∗1(aλ̃) · e∗2(aµ̃) · e∗3(aν̃)) = 0

for every connected component Γ. By (2.2.1), we merely have to verify

γ∗(e∗1(Iσ̃) · e∗2(Iτ̃ ) · e∗3(Iθ̃)) = 0 (2.4.2)
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for |σi| = |λi|, |τi| = |µi|, |θi| = |νi|, ∀i = 1, 2, 3. We note that the images of all T-fixed stable

maps in Γ go to the same point after composition with the Hilbert-Chow morphism. That

is, ρ ◦ ei(Γ)’s are the same for each i, which means that at least one of e−1
1 (σ1(x1) + · · · +

σs(xs)), e
−1
2 (τ1(x1) + · · · + τs(xs)), e

−1
3 (θ1(x1) + · · · + θs(xs)) does not meet Γ. Thus, (2.4.2)

follows.

It remains to study the three-point invariants

〈
aλ̃, aµ̃, aν̃

〉Hilbn(S)

d

under condition (2.4.1): ni := |λi| = |µi| = |νi| for each i = 1, . . . , s and
∑s
i=1 ni = n. We fix

such ni and partitions λi, µi, νi of ni throughout the remainder of this section. Let

U = Hilbn1(U1)× · · · ×Hilbns(Us), P = ρ−1(n1[x1] + · · ·+ ns[xs]).

In fact, P ∼= ρ−1
1 (n1[x1]) × · · · × ρ−1

s (ns[xs]) ⊆ U , where ρi : Hilbni(S) → Symni(S) is the

Hilbert-Chow morphism, ∀i. (In case ni = 0, ρ−1
i (ni[xi]) will be missing from the product).

Let N = {i = 1, . . . , s : ni ≥ 1}. As each ρ−1
i (ni[xi]) is irreducible and has complex dimension

ni − 1 for i ∈ N , P is then irreducible and has dimension n− |N |.

Let ξ = µ1(x1) + · · · + µs(xs) ∈ S[n] and ξµ̃ = µ1(x1) × · · · × µs(xs) ∈ U . We have

Tξµ̃U = TξS
[n]. Indeed,

Tξµ̃U =
⊕
i∈N

HomOUi (Iµi(xi),Oµi(xi)) =
⊕
i∈N

HomOS,xi (Iξ,xi ,Oξ,xi)

= HomOS (Iξ,Oξ) = TξS
[n].

Denote by ιP , P the inclusion of P into Hilbn(S) and U respectively. We have a simple

lemma.

Lemma 2.4.2. ι∗P (aλ̃) = ∗P (a
λ̃1
⊗ · · · ⊗ a

λ̃s
).

Proof. By (2.2.1), it suffices to show that

ι∗P I(µ1,...,µs) = ∗P ([µ1(x1)]⊗ · · · ⊗ [µs(xs)]). (2.4.3)

Let ξ and ξµ̃ be the points as in the discussion preceding the lemma. We can see that the left
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side of (2.4.3) is given by

∑
η∈P T

iη∗(
(ιP ◦ iη)∗I(µ1,...,µs)

eT(Nη/P )
) = iξ∗(

eT(TξS
[n])

eT(Nξ/P )
),

where iη : {η} → P is the natural inclusion. Similarly, the right side of (2.4.3) coincides with

iξµ̃∗(eT(Tξµ̃U)/eT(Nξµ̃/P )). Thus, the equality (2.4.3) follows from Tξµ̃U = TξS
[n].

To determine the three-point invariant
〈
aλ̃, aµ̃, aν̃

〉Hilbn(S)

d
, we only need to consider those

connected components of M0,3(Hilbn(S), d)T whose images under the map ρ ◦ ei are the point

n1[x1] + · · ·+ ns[xs], ∀i = 1, 2, 3.

Observe that any T-fixed stable map f , representing an element in these components, factors

through P . Hence, we may calculate
〈
aλ̃, aµ̃, aν̃

〉
d

over connected components lying in

∐
d1+···+ds=d

M0,3(P, (d1, . . . , ds))
T.

Write Γd1,...,ds for Γ whenever Γ is contained in the moduli space M0,3(P, (d1, . . . , ds)). On the

other hand, we also note that Γd1,...,ds ’s form a complete set of T-fixed connected components

of M0,3(U, (d1, . . . , ds)). The following diagram summarizes their relationships:

Γd1,...,ds

γU

ttjjjjjjjjjjjjjjjj
γP

��

γ

**VVVVVVVVVVVVVVVVVVV

M0,3(U, (d1, . . . , ds)) M0,3(P, (d1, . . . , ds))? _oo � � // M0,3(Hilbn(S), d1 + · · ·+ ds)

Here γU , γP are the natural inclusion γ with the target replaced with M0,3(U, (d1, . . . , ds))

and M0,3(P, (d1, . . . , ds)) respectively.

Proposition 2.4.3. The extremal invariants of Hilb(S) can be expressed in terms of the invari-

ants of Hilb(Ui)’s. Precisely,

〈
aλ̃, aµ̃, aν̃

〉Hilbn(S)

d
=

∑
d1+···+ds=d

s∏
i=1

〈
aλ̃i , aµ̃i , aν̃i

〉Hilbni (Ui)

di
.
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Proof. First of all, we would like to show that

〈
aλ̃, aµ̃, aν̃

〉Hilbn(S)

d
=

∑
d1+···+ds=d

〈⊗si=1aλ̃i ,⊗
s
i=1aµ̃i ,⊗

s
i=1aν̃i〉U(d1,...,ds)

. (2.4.4)

Denote by ēi : M0,3(P, (d1, . . . , ds)) → P the evaluation map at the ith marked point. With

notation as in the above discussion, the invariant
〈
aλ̃, aµ̃, aν̃

〉Hilbn(S)

d
is

∑
d1+···+ds=d

∑
Γd1,...,ds

∫
Γd1,...,ds

γ∗P (ē∗1ι
∗
P (aλ̃) · ē∗2ι∗P (aµ̃) · ē∗3ι∗P (aν̃))

eT(Nvir
Γd1,...,ds

)
.

On the other hand, we find that 〈⊗si=1aλ̃i ,⊗
s
i=1aµ̃i ,⊗si=1aν̃i〉U(d1,...,ds)

is

∑
Γd1,...,ds

∫
Γd1,...,ds

γ∗P (ē∗1
∗
P (⊗si=1aλ̃i) · ē

∗
2
∗
P (⊗si=1aµ̃i) · ē∗3∗P (⊗si=1aν̃i))

eT(Nvir
Γd1,...,ds

,U )
,

where Nvir
Γd1,...,ds

,U is the virtual normal bundle to Γd1,...,ds in M0,3(U, (d1, . . . , ds)). By Lemma

2.4.2, it is given by

∑
Γd1,...,ds

∫
Γd1,...,ds

γ∗P (ē∗1ι
∗
P (aλ̃) · ē∗2ι∗P (aµ̃) · ē∗3ι∗P (aν̃))

eT(Nvir
Γd1,...,ds

,U )
.

Hence (2.4.4) is a consequence of the equality

1

eT(Nvir
Γd1,...,ds

)
=

1

eT(Nvir
Γd1,...,ds

,U )
for each Γd1,...,ds . (2.4.5)

Now we prove (2.4.5). Given any T-fixed stable map [f : (Σ, p1, p2, p3) → P ] in the T-fixed

connected component Γd1,...,ds . For

X = S[n] or X = U,

in order to verify (2.4.5), we need only examine the infinitesimal deformations of f with the

source curves fixed. In fact, it suffices to check two things:

eT(H0(Σv, f
∗TX)mov)

eT(H1(Σv, f∗TX)mov)
and

eT(H0(Σe, f
∗TX)mov)

eT(H1(Σe, f∗TX)mov)

are independent of X for every connected contracted component Σv and noncontracted irre-

ducible component Σe. The first independence holds due to the fact that Σv is of genus 0 and



17

Tf(Σv)S
[n] = Tf(Σv)U . Thus, it remains to justify the second independence. Since Σe ∼= P1,

f∗TX is a direct sum of line bundles over Σe, i.e., f∗TX =
⊕2n

i=1OΣe(`
X
i ) for some integers

`Xi ’s, and we also have

eT(H0(Σe, f
∗TX)mov)

eT(H1(Σe, f∗TX)mov)
=

2n∏
i=1

eT(H0(Σe,OΣe(`
X
i ))mov)

eT(H1(Σe,OΣe(`
X
i ))mov)

. (2.4.6)

Note that the T-action on f(Σe) (independent of X) induces a natural action on Σe and hence

actions on OΣe(`
X
i )’s. Suppose that T acts on OΣe(1)|p0 with weight w, then the T-weight of

OΣe(`)|p0
is `w. This means that Tf(p0)X comes with weights `X1 w, . . . , `

X
2nw. But Tf(p0)S

[n] =

Tf(p0)U , so the numbers `S
[n]

1 , . . . , `S
[n]

2n are exactly `U1 , . . . , `
U
2n after a suitable reordering. By

(2.4.6), this shows the independence and ends the proof of (2.4.5).

Further, the equality

〈⊗si=1aλ̃i ,⊗
s
i=1aµ̃i ,⊗

s
i=1aν̃i〉U(d1,...,ds)

=

s∏
i=1

〈
aλ̃i , aµ̃i , aν̃i

〉Hilbni (Ui)

di

holds. This is clear for (d1, . . . , ds) = (0, . . . , 0); in general, the result follows from the Product

formula [Be] in equivariant context. Combining it with (2.4.4), we obtain the proposition.

Proposition 2.4.4. The three-point function
〈
aλ̃, aµ̃, aν̃

〉Hilbn(S)
(q) is an element of Q(t1, t2, q)

and is given by
s∏
i=1

〈
aλ̃i , aµ̃i , aν̃i

〉Hilbni (Ui)

(q).

Proof. Each term 〈aλ̃i , aµ̃i , aν̃i〉
Hilbni (Ui)(q) is a rational function in t1, t2, q (cf. [OP1]). By

Propositions 2.4.1 and 2.4.3,

〈
aλ̃, aµ̃, aν̃

〉Hilbn(S)
(q) =

∞∑
d=0

(
∑

d1+...+ds=d

s∏
i=1

〈
aλ̃i , aµ̃i , aν̃i

〉Hilbni (Ui)

di
)qd

=

s∏
i=1

∞∑
di=0

〈
aλ̃i , aµ̃i , aν̃i

〉Hilbni (Ui)

di
qdi

=

s∏
i=1

〈
aλ̃i , aµ̃i , aν̃i

〉Hilbni (Ui)

(q),

as desired.

Together with (2.1.1), we have the following result on Poincaré pairings.

Proposition 2.4.5. The equivariant Poincaré pairing on Hilbn(S) can be written in terms of
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the pairings on the Hilbert schemes of points in the affine plane. More precisely,

〈aµ̃|aν̃〉 =

s∏
i=1

δµi,νi(−1)|µk|−`(µk)(LiRi)
`(µi)

1

zµi
.

In other words, aµ̃’s give an orthogonal basis for A∗T(Hilbn(S))m.
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Chapter 3

Symmetric Product Stack

Let X be a smooth complex variety. Given any finite set N , let SN be the symmetric group on

N and

XN = {(xi)i∈N : xi’s are elements of X},

a set of |N |-tuples of elements of X. We denote by Sn the group S{1,...,n} and by Xn the set

X{1,...,n}.

The symmetric group Sn acts on the n-fold product Xn by permutation of coordinates. The

quotient scheme Symn(X) := Xn/Sn is referred to as the n-fold symmetric product of X and

is the coarse moduli space of the quotient stack [Symn(X)] defined as follows:

• An object over U is a pair (p : P → U, f : P → Xn) where p is a principal Sn-bundle, and

f is a Sn-equivariant morphism.

• Suppose that (p′ : P ′ → U ′, f ′ : P ′ → Xn) is another object, a morphism from (p′, f ′) to

(p, f) is a Cartesian diagram

P ′
α−−−−→ Pyp′ yp

U ′
β−−−−→ U

such that f ′ = α ◦ f .

Note that the stack [Symn(X)] is an orbifold with atlas Xn → [Xn/Sn].
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3.1 Inertia stack

There is a natural stack associated to the symmetric product, i.e., the inertia stack

I[Symn(X)] :=
∐
s∈N

HomRep(Bµs, [Symn(X)]),

where HomRep(Bµs, [Symn(X)]) is the stack of representable morphisms from the classifying

stack Bµs to [Symn(X)]. Moreover, I[Symn(X)] is isomorphic to the disjoint union of orbifolds

∐
[g]∈C

[Xn
g /C(g)], (3.1.1)

where C is the set of conjugacy classes, Xn
g is the g-fixed locus of Xn, and C(g) is the centralizer

of g. The component [Xn/Sn] is called the untwisted sector while all other components are

called twisted sectors. As there is a one-to-one correspondence between the conjugacy classes of

Sn and the partitions of n, these sectors can be labeled with the partitions of n. If [g] is the

conjugacy class corresponds to the partition λ and C(g) := C(g)/〈g〉, we may write

X(λ) := Xn
g /C(g), and X(λ) := Xn

g /C(g) (see below).

The Chen-Ruan cohomology

A∗orb([Symn(X)])

is by definition the cohomology A∗(I[Symn(X)]) of the inertia stack ([ChR1]). By (3.1.1), it is

⊕
[g]∈C

A∗(Xn
g /C(g)) =

⊕
[g]∈C

A∗(Xn
g )C(g).

(For any orbifold Y with coarse moduli space Y , we identify A∗(Y) = A∗(Y ) by the pushforward

c∗ : A∗(Y)→ A∗(Y ) defined by c∗([V]) = 1
s [c(V)], where V is a closed integral substack and s is

the order of the stabilizer of a generic geometric point of V).

The age (or the degree shifting number) of the sector [X(λ)] is given by

age(λ) := n− `(λ).

Additionally, the Chen-Ruan cohomology is graded by ages. If α ∈ Ai(X(λ)), the orbifold
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(Chow) degree of α is defined to be i+ age(λ). In other words,

A∗orb([Symn(X)]) =
⊕
|λ|=n

A∗−age(λ)(X(λ)).

We may rigidify the inertia stack to remove the actions of µs’s. Each Bµs acts on the stack

HomRep(Bµs, [Symn(X)]), and the quotient by this action is a stack of gerbes banded by µs to

[Symn(X)]. The stack

I[Symn(X)] :=
∐
s∈N

HomRep(Bµs, [Symn(X)])/Bµs,

is called the rigidified inertia stack of [Symn(X)]. One of the reasons why we mention this is

that the rigidified stack is where the evaluation maps land (see (3.3.1)).

For more details on the rigidification procedure, consult [ACV, AGV1, AGV2]. In fact, the

procedure amounts to removing the action of the permutation g from (3.1.1) (note that g acts

trivially on Xn
g ). Concretely, the stack I[Symn(X)] is the disjoint union

∐
[g]∈C

[Xn
g /C(g)] (or

∐
|λ|=n

[X(λ)]).

However, its coarse moduli space
∐

[g]∈C X
n
g /C(g) is identical to that of the inertia stack.

3.2 Bases

3.2.1 A description

Assume that X admits a T-action. We can see easily that there are induced T-actions on the

spaces Xn
g /C(g) (∀g ∈ Sn) and I[Symn(X)]. So we may put the above cohomologies into an

equivariant context by considering T-equivariant cohomologies.

Now we would like to understand the module structure of the equivariant Chen-Ruan coho-

mology A∗T,orb([Symn(X)]); particularly, we need a precise description of bases.

Given a partition λ of n, we would like to give a basis for the cohomology A∗T(Xn
g )C(g), where

g ∈ Sn has cycle type λ. The permutation g has a cycle decomposition, i.e., a product of disjoint

cycles (including 1-cycles),

g = g1 . . . g`(λ),
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with gi being a λi-cycle. For each i, let Ni be the minimal subset of {1, . . . , n} such that

gi ∈ SNi . Thus |Ni| = λi and
∐`(λ)
i=1 Ni = {1, . . . , n}. It is clear that

Xn
g =

`(λ)∏
i=1

XNi
gi , and XNi

gi
∼= X.

To the partition λ, we associate an `(λ)-tuple ~η = (η1 . . . η`(λ)) with entries in A∗T(X). Let

us put

g(~η) = (|Aut(λ(~η))|
`(λ)∏
i=1

λi)
−1

∑
h∈C(g)

`(λ)⊗
i=1

ghi (ηi) ∈ A∗T(Xn
g )C(g). (3.2.1)

This requires some explanations:

• ghi := h−1gih.

• Let N be a subset of {1, . . . , n}. For each |N |-cycle α ∈ SN and η a class on X, let α(η)

be the pullback of η by the obvious isomorphism XN
α
∼= X.

• Two classes
⊗`(λ)

i=1 g
h1
i (ηi) and

⊗`(λ)
i=1 g

h2
i (ηi) on Xn

g coincide for some h1, h2 ∈ C(g),

and a straightforward verification shows that each term
⊗`(λ)

i=1 g
h
i (ηi) repeats precisely

|Aut(λ(~η))|
∏`(λ)
i=1 λi times. Hence, (|Aut(λ(~η))|

∏`(λ)
i=1 λi)

−1 is a normalization factor to

ensure that no repetition occurs in (3.2.1).

• If g = k1 · · · k`(λ) is another cycle decomposition with λi-cycles ki’s, then there exists

h ∈ C(g) such that
`(λ)⊗
i=1

ki(ηi) =

`(λ)⊗
i=1

ghi (ηi).

Thus, the expression (3.2.1) is independent of the cycle decomposition.

Let B be a basis for A∗T(X). The classes g(~η)’s, with ηi’s elements of B, form a basis for

A∗T(Xn
g )C(g).

Suppose that ĝ is another permutation of cycle type λ, i.e., ĝ = gα for some α ∈ Sn.

The classes g(~η) and ĝ(~η) are identical in A∗T,orb([Symn(X)]) though they are related by ring

isomorphism α∗ : A∗T(Xn
g )C(g) → A∗T(Xn

ĝ )C(ĝ) induced by α. In fact, α∗ sends g(~η) to ĝ(~η) and

is independent of the choice of α due to the fact that ϑ∗ : A∗T(Xn
g )C(g) → A∗T(Xn

g )C(g) is the

identity for every ϑ ∈ C(g).

We use the cohomology-weighted partition

λ1(η1) · · ·λ`(λ)(η`(λ)) or simply λ(~η)
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to denote the class g(~η) (and hence ĝ(~η)).

Now the classes λ(~η)’s, running over all partitions λ of n and all ηi ∈ B, serve as a basis

for the Chen-Ruan cohomology A∗T,orb([Symn(X)]). For classes λ(~η) ∈ A∗T,orb([Symn(X)]) and

ρ(~ξ) ∈ A∗T,orb([Symm(X)]), keep in mind that the class

λ1(η1) · · ·λ`(λ)(η`(λ))ρ1(ξ1) · · · ρ`(ρ)(ξ`(ρ)) ∈ A∗T,orb([Symn+m(X)])

is denoted by

λ(~η)ρ(~ξ).

We use the shorthand

(2)

for the divisor class 2(1)1(1)n−2. Also, we define the age of λ(~η), denoted by

age(λ(~η)),

to be the age of the sector [X(λ)], i.e., n− `(λ).

3.2.2 Fixed-point classes

We can work with λ(~η)’s with ηk’s in the localized cohomology A∗T(X)m to give a basis for

A∗T,orb([Symn(X)])m.

Assume that X has exactly p T-fixed points z1, . . . , zp. For partitions σ1, . . . , σp, we denote

the class

σ11([z1]) · · ·σ1`(σ1)([z1]) · · ·σp1([zp]) · · ·σp`(σp)([zp])

by

σ̃ := (σ1, . . . , σp).

The classes σ̃’s form a basis for A∗T,orb([Symn(X)])m. Note also that each σ̃ corresponds to a

T-fixed point, which we denote by

[σ̃],

in the sector indexed by the partition (σ11, . . . , σ1`(σ1), . . . , σp1, . . . , σp`(σp)). So we refer to σ̃’s

as T-fixed point classes.
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Moreover, given δ̃ ∈ A∗T,orb([Symn(X)])m and σ̃ ∈ A∗T,orb([Symm(X)])m (m ≤ n), we say that

δ̃ ⊃ σ̃

if σk is a subpartition of δk, ∀k = 1, . . . , p; in this case, we let

δ̃ − σ̃ := (δ1 − σ1, . . . , δp − σp) ∈ A∗T,orb([Symn−m(X)])m.

(e.g., the difference (1, 1, 2, 2, 3)− (1, 2, 3) of two partitions is the partition (1, 2).)

T-weights. Given any fixed-point class σ̃, let

t(σ̃) = eT(T[σ̃]Ī[Symm(X)]).

A simple analysis shows that

t(σ̃) =

p∏
k=1

eT(TzkX)
`(σk)

. (3.2.2)

Thus, for each δ̃ ⊃ σ̃, t(δ̃) = t(σ̃)t(δ̃ − σ̃).

Coefficients with respect to fixed-point basis. For θ(~ξ) ∈ A∗T,orb([Symm(X)])m, we have

θ(~ξ) =
∑
σ̃

〈θ(~ξ)|σ̃〉
〈σ̃|σ̃〉

σ̃,

where 〈•|•〉 are T-equivariant orbifold pairings on A∗T,orb([Symm(X)])m. Now let

αθ(~ξ)(σ̃) :=
〈θ(~ξ)|σ̃〉
〈σ̃|σ̃〉

be the components of θ(~ξ) relative to σ̃’s. We have two properties by direct verification:

(1) Suppose λ(~η), ρ(~ε) ∈ A∗T,orb([Symn(X)])m have explicit forms

n∏
i=1

mi∏
j=1

i(ηij) and

n∏
i=1

`i∏
j=1

i(εij)
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respectively, we have

〈λ(~η)|ρ(~ε)〉 =


0 if mi 6= `i for some i;∏n
i=1〈

∏mi
j=1 i(ηij) ·

∏mi
j=1 i(εij)〉 if mi = `i for each i.

(2) Given η1, . . . , ηn ∈ A∗T(X)m and T-fixed points y1, . . . , yn of X. For m ≤ n, the coefficient

αi(η1)···i(ηn)(i([y1]) · · · i([yn])) equals

∑
αi(ξ1)···i(ξm)(i([y1]) · · · i([ym]))αi(ξm+1)···i(ξn)(i([ym+1]) · · · i([yn])),

where the sum is over all possible i(ξ1) · · · i(ξm) and i(ξm+1) · · · i(ξn) such that

i(ξ1) · · · i(ξn) = i(η1) · · · i(ηn).

We may combine (1) with (2) to get a general statement, which presents an algorithm to calculate

the coefficient αλ(~η)(δ̃).

Proposition 3.2.1. Given λ(~η), δ̃ ∈ A∗T,orb([Symn(X)])m and σ̃ ∈ A∗T,orb([Symm(X)])m with

δ̃ ⊃ σ̃,

αλ(~η)(δ̃) =
∑
P

αθ(~ξ)(σ̃)αµ(~γ)(δ̃ − σ̃), (3.2.3)

where the index P under the summation symbol means that the sum is taken over all possible

θ(~ξ) ∈ A∗T,orb([Symm(X)])m and µ(~γ) ∈ A∗T,orb([Symn−m(X)])m satisfying λ(~η) = θ(~ξ)µ(~γ).

In the proposition, δ̃ is separated into two parts σ̃ and δ̃ − σ̃. In general, we can break it as

many parts as possible. The form (3.2.3) is, however, convenient for later use.

3.3 Extended Gromov-Witten theory of orbifolds

To make our exposition as self-contained as possible, we review some relevant background

on orbifold Gromov-Witten theory. We take the algebro-geometric approach in the sense of

Abramovich, Graber and Vistoli’s works [AGV1, AGV2]. The reader may also want to consult

the original work [ChR2] of Chen and Ruan in symplectic category.

In what follows, we utilize the isomorphism

A1(Symn(X);Z) ∼= A1(Xn;Z)Sn ∼= A1(X;Z).
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3.3.1 The space of twisted stable maps

For any curve class β ∈ A1(X;Z), the moduli space

M0,k([Symn(X)], β)1

parametrizes genus zero, k-pointed, twisted stable map (or orbifold stable map in [ChR2])

f : (C,P1, . . . ,Pk)→ [Symn(X)]

with the following conditions:

• (C,P1, . . . ,Pk) is an twisted nodal k-pointed curve. The marking Pi is an étale gerbe

banded by µri , where ri is the order of the stabilizer of the twisted point. Moreover, over

a node, C has a chart isomorphic to Spec C[u, v]/(uv)/µs where µs acts on Spec C[u, v] by

ξ · (u, v) = (ξu, ξ−1v), and the canonical map c : C → C is given by x = us, y = vs in this

chart.

• f is a representable morphism and gives rise to a genus zero, k-pointed, stable map fc :

(C, c(P1), . . . , c(Pk)) → Symn(X) of degree β by passing to coarse moduli spaces. Note

that the canonical map c : C → C is an isomorphism away from the nodes and marked

gerbes and that whenever we say that f is of degree β, we actually mean fc is.

There are evaluation maps on the moduli space M0,k([Symn(X)], β), which take values in

the rigidified inertia stack. At the level of Spec(C)-points, the ith evaluation map

evi : M0,k([Symn(X)], β)→ I[Symn(X)] (3.3.1)

is defined by [f : (C,P1, . . . ,Pk)→ [Symn(X)]] 7−→ [f |Pi : Pi → [Symn(X)]].

The moduli space M0,k([Symn(X)], β) can be decomposed into open and closed substacks:

M0,k([Symn(X)], β) =
∐

σ1,...,σk

M([Symn(X)], σ1, . . . , σk;β).

Here M([Symn(X)], σ1, . . . , σk;β) = ev−1
1 ([X(σ1)])∩· · ·∩ev−1

k ([X(σk)]), which can be empty for

monodromy reason (e.g., the component M([Sym3(X)], (2), (2), (2);β) is empty), and the union

1 [AGV1] and [AGV2] adopt the notation K instead of M . Also, we just describe the Spec(C)-points of the
moduli stack in this article. This is enough because our main purpose is the calculation of Gromov-Witten
invariants.
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is taken over all partitions σ1, . . . , σk of n. Keep in mind that the substack carries a virtual class

[M([Symn(X)], σ1, . . . , σk;β)]vir of dimension

−K[Symn(X)] · β + n · dim(X) + k − 3−
k∑
i=1

age(σi).

The twisted map f that represents an element of M([Symn(X)], σ1, . . . , σk;β) amounts to

the following commutative diagram

PC
f ′−−−−→ Xny yπ

C f−−−−→ [Symn(X)]

c

y yc
C

fc−−−−→ Symn(X)

(3.3.2)

where π is the natural map, PC := C ×[Symn(X)] X
n is a scheme by representability of f , and f ′

is Sn-equivariant. Away from the marked points and nodes, PC is a principal Sn-bundle of C.

It is branched over the markings with ramification types σ1, . . . , σk.

Additionally, there is such a diagram

C̃
f̃−−−−→ X

p

y
(C, c(P1), . . . , c(Pk))

(3.3.3)

associated to f that p : C̃ → C is an admissible cover branched over c(P1), . . . , c(Pk) with

monodromy given by σ1, . . . , σk, and f̃ : C̃ → X is a degree β morphism such that if Σ ⊂ C is a

rational curve possessing less than 3 special points, then there is a component of p−1(Σ) which

is not f̃ -contracted. In fact, (3.3.3) is induced by the diagram (3.3.2) by taking f ′ mod Sn−1

and composing with the nth projection.

The diagram (3.3.3) will be particularly helpful later in the descriptions of T-fixed loci for

the space of twisted stable maps to [Symn(Ar)]. The reader should look closely at the above

notation. We will use (3.3.2) and (3.3.3) and the symbols there mostly without further comment.
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3.3.2 Gromov-Witten invariants

For any cohomology classes αi ∈ A∗T,orb([Symn(S)]) (i = 1, . . . , k), the k-point equivariant

Gromov-Witten invariant is defined by

〈α1, . . . , αk〉[Symn(S)]
β :=

∫
[M([Symn(S)],β)]vir

T

ev∗1(α1) · · · ev∗k(αk), (3.3.4)

where the symbol [ ]vir
T stands for the T-equivariant virtual class. The underlying moduli space

is not necessarily compact, but the above definition makes sense because of a similar treatment

given in Section 2.3. Moreover, it is convenient to express the integral in (3.3.4) as a sum of in-

tegrals against the virtual fundamental classes of the components M([Symn(S)], σ1, . . . , σk;β)’s.

In the context of orbifolds, it is in reality more natural to study the Gromov-Witten theory

in twisted degrees, i.e., in curve classes of

Aorb,1([Symn(S)];Z) = A0([S((2))];Z)⊕A1([Symn(S)]);Z).

This makes a lot of sense because the direct sum matches A1(Hilbn(S);Z) (cf. Section 5.2.1).

Let us identify A0([S((2))];Z) with Z. To define the k-point extended Gromov-Witten invari-

ant 〈α1, . . . , αk〉[Symn(S)]
(a,β) of twisted degree (a, β) ∈ Z⊕A1(S;Z) with a ≥ 0, we include additional

a unordered markings in the twisted stable map of degree β above such that these markings go

to the age one sector under the corresponding evaluation maps. To make this precise, we present

a formula:

〈α1, . . . , αk〉[Symn(S)]
(a,β) =

1

a!
〈α1, . . . , αk, (2)a〉[Symn(S)]

β . (3.3.5)

Note that in the expression, the last a insertions are all (2) and the invariant is defined to be

zero in case a < 0. For later convenience of explanation, we refer to the markings associated to

α1, . . . , αk as distinguished marked points and to the other a markings as simple marked points.

Also the markings corresponding to the twisted sectors are called twisted and are otherwise

called untwisted.

The expression (3.3.5) is almost identical to the nonextended version except for the appear-

ance of the factor 1
a! due to the fact that we do not order simple markings. Additionally, we say

that 〈α1, . . . , αk〉[Symn(S)]
(a,β) is of nonzero (resp. zero) degree if it is a Gromov-Witten invariant

(up to a multiple) of nonzero (resp. zero) degree and that 〈α1, . . . , αk〉[Symn(S)]
(a,β) is multipoint if

k ≥ 3.
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Like ordinary Gromov-Witten theory, if β 6= 0 or k ≥ 3, we have a forgetful morphism

ftk+1 : M([Symn(S)], σ1, . . . , σk, 1;β)→M([Symn(S)], σ1, . . . , σk;β)

defined by forgetting the last untwisted marked points. The (untwisted) divisor equation holds

as well in the orbifold case. Unfortunately, we are not allowed to forget twisted markings in

general.

3.4 Extended Chen-Ruan product and the product for-

mula

In the remainder of this chapter, we will be primarily interested in three-point extended degree

zero invariants. Let us simplify our notation a little. For partitions σ1, . . . , σm of n, let

M([Symn(S)], σ1, . . . , σm; a) =

m⋂
i=1

ev−1
i ([S(σi)]) ∩

a⋂
j=1

ev−1
m+j([S((2))])

be an open and closed substack of the moduli space Mm+a([Symn(S)], 0). Given any αi ∈

A∗T([Symn(S)]) for i = 1, . . . ,m, we put

〈α1, . . . , αm〉[Symn(S)]
a := 〈α1, . . . , αm〉[Symn(S)]

(a,0) .

We encode the invariants in a three-point function:

〈α1, α2, α3〉[Symn(S)]
(u) =

∑
a

〈α1, α2, α3〉[Symn(S)]
a ua.

Now let {γ} be a basis for A∗T,orb([Symn(S)]) and {γ∨} its dual basis. Define the extended

Chen-Ruan product ∪orb for A∗T,orb([Symn(S)]) in this way:

α1 ∪orb α2 =
∑
γ

〈α1, α2, γ〉[Symn(S)]
(u) γ∨.

We call the vector space A∗T,orb([Symn(S)]) ⊗Q[t1,t2] Q(t1, t2)((u)) with the multiplication ∪orb

the extended Chen-Ruan cohomology ring of [Symn(S)]. (Note that the associativity of ∪orb

follows from the WDVV equation.)
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We use the notation

~g = (g1, . . . , gs) (3.4.1)

to represent an s-tuple of partitions or an s-tuple of nonnegative integers. In the case of integers,

we say that

|~g| = `

if the entries of ~g add up to `.

Fixed loci. Given s-tuples σ1, . . . , σm of partitions and an s-tuple ~a of nonnegative integers

with |~a| = d. Let

M(~σ1, . . . , ~σm;~a)

be the union of T-fixed components of M([Symn(S)], σ′1, . . . , σ
′
m; d) (here σ′i admits a decompo-

sition (σi1, . . . , σis)) with the following configuration:

Let [f : C → [Symn(S)]] be any element. As discussed earlier, it comes naturally with

diagram (3.3.2). In addition, the twisted stable map f has the following properties:

• The associated admissible cover C̃ of C is ramified with monodromy σ1, . . . , σm, (2)d and

has components C̃k, k = 1, . . . , s. Each C̃k, if nonempty, is contracted by f̃ to xk. (C̃k

is possibly empty or disconnected. Empty sets are included just for the simplicity of

notation.)

• The cover C̃k → C is ramified with monodromy σ1k, . . . , σmk, (2)ak , 1d−ak for every k.

Suppose that |σik| = nk for some nk, ∀i = 1, . . . ,m, we have a natural morphism

φ :M(~σ1, . . . , ~σm;~a)→
s∏

k=1

M([SymnkUk], σ1k, . . . , σmk; ak)T

defined as follows: Let [f : C → [Symn(S)]] be an element of M(~σ1, . . . , ~σm;~a). For each k, we

stabilize the target of the covering C̃k → C and the domain accordingly (by forgetting those

simple markings of C over which the points of C̃k are unramified). The output is the following

setting
C̃stk
k −−−−→ {xi}y

Cstk

(3.4.2)
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with the vertical map being an admissible covering. It gives rise to a T-fixed twisted stable map

fk : Ck → [Symnk(Uk)], which represents a T-fixed point of M([SymnkUk], σ1k, . . . , σmk; ak). We

then take φ([f ]) := ([f1], . . . , [fs]).

Now we focus on m = 3, in which case the morphism φ is surjective, and both its source and

target have dimension d. Given any T-fixed connected component F (~a) ⊆ M(~σ1, ~σ2, ~σ3;~a) and

denote by πk the kth projection, we let

Fk(~a) = πk ◦ φ(F (~a)).

The collection
∏s
k=1 Fk(~a)’s form a complete set of T-fixed connected components of the product

space
∏s
k=1M([SymnkUk], ~σ1k, ~σ2k, ~σ3k; ak).

Determination. We want to investigate the invariant 〈λ̃, µ̃, ν̃〉[Symn(S)]
d . It is clearly zero if

the condition

|λk| = |µk| = |νk| = nk for each k = 1, . . . , s (3.4.3)

fails. In general, we have the following product formula.

Proposition 3.4.1. Given any T-fixed point classes λ̃, µ̃, ν̃,

〈λ̃, µ̃, ν̃〉[Symn(S)]
d =

∑
a1+···+as=d

s∏
k=1

〈λ̃k, µ̃k, ν̃k〉[Symnk (Uk)]
ak

.

Proof. The statement is obvious when (3.4.3) does not hold. So let us assume (3.4.3). The only

fixed loci that can make contribution to the three-point extended invariant

〈λ̃, µ̃, ν̃〉[Symn(S)]
d (3.4.4)

are M(~λ, ~µ, ~ν;~a)’s with |~a| = d. Precisely, (3.4.4) is given by

1

d!

∑
|~a|=d

∑
F (~a)

∫
F (~a)

ι∗F (~a)(ev∗1(λ̃) · ev∗2(µ̃) · ev∗3(ν̃))

eT(Nvir
F (~a))

,

where F (~a) ⊂ M(~λ, ~µ, ~ν;~a) runs over all T-fixed connected components. Given any T-fixed

component F (~a) ⊂M(~λ, ~µ, ~ν;~a) and [f ] ∈ F (~a), we have

eT(Hi(C, f∗T [Symn(S)])) = φ∗
s⊗

k=1

eT(Hi(Ck, f∗kT [SymnkUk]))
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for i = 0, 1, and so

eT(Nvir
F (~a)) = φ∗

s⊗
k=1

eT(Nvir
Fk(~a)).

Moreover, by (3.2.2), we check immediately that

ι∗F (~a)(ev∗1(λ̃) · ev∗2(µ̃) · ev∗3(ν̃)) =

s∏
k=1

ι∗Fk(~a)(ev∗1(λ̃k) · ev∗2(µ̃k) · ev∗3(ν̃k)).

Hence the contribution of M(~λ, ~µ, ~ν;~a) to (3.4.4) equals

1

a1! · · · as!
∑
F (~a)

s∏
k=1

∫
Fk(~a)

ι∗Fk(~a)(ev∗1(λ̃k) · ev∗2(µ̃k) · ev∗3(ν̃k))

eT(Nvir
Fk(~a))

,

where the prefactor accounts for the distribution of simple marked points. The sum is nothing

but

s∏
k=1

1

ak!

∑
Fk(~a)

∫
Fk(~a)

ι∗Fk(~a)(ev∗1(λ̃k) · ev∗2(µ̃k) · ev∗3(ν̃k))

eT(Nvir
Fk(~a))

.

Since Fk(~a)’s run through all connected components of M([SymnkUk], ~λ1k, ~λ2k, ~λ3k; ak)T, (3.4.4)

and
∑
|~a|=d

∏s
k=1〈λ̃k, µ̃k, ν̃k〉

[Symnk (Uk)]
ak coincide.

Put another way, we have the following.

Corollary 3.4.2. For any T-fixed point classes λ̃, µ̃, ν̃,

〈λ̃, µ̃, ν̃〉[Symn(S)](u) =
s∏

k=1

〈λ̃k, µ̃k, ν̃k〉[Symnk (Uk)](u).

Moreover, any extended three-point function is a rational function in t1, t2, e
iu, where i2 = −1.

Proof. The first statement is immediate from Proposition 3.4.1. The second statement is due to

the fact that each 〈λ̃k, µ̃k, ν̃k〉[Symnk (Uk)](u) is an element of Q(t1, t2, e
iu).

The orbifold Poincaré pairing 〈•|•〉 on A∗T,orb([Symnk(Uk)])m is determined by

〈λ̃k|µ̃k〉 = δλk,µk(LkRk)`(λk) 1

zλk
, |λk| = |µk| = nk. (3.4.5)

The argument of Proposition 3.4.1 may be applied to show that the orbifold pairing on [Symn(S)]

is expressible in terms of those on [Symnk(Uk)]’s.



33

Proposition 3.4.3. The equivariant orbifold Poincaré pairing on [Symn(S)] is determined by

the formula:

〈λ̃|µ̃〉 =

s∏
k=1

δλk,µk(LkRk)`(λk) 1

zλk
.

Thus, λ̃’s provide an orthogonal basis for A∗T,orb([Symn(S)])m.

3.5 Ruan conjecture

3.5.1 SYM-HILB correspondence

In this section, we give a SYM-HILB correspondence that relates the Gromov-Witten theories

of Hilbert scheme of points and symmetric products.

Let q = −eiu, where i2 = −1, and F = Q(i, t1, t2, q). Define

L : A∗T,orb([Symn(S)])→ A∗T(Hilbn(S))

by

L(λ̃) = (−i)age(λ̃)aλ̃.

As we have a bijection between the bases on both sides, L extends to a Q(i, t1, t2)((u))-linear

isomorphism. However, extended three-point functions of [Symn(S)] and three-point functions

of Hilbn(S) are elements of F . So we may view L as an F -linear isomorphism.

Note that λ̃ has orbifold Chow degree

2`(λ̃) + age(λ̃) = n+ `(λ̃),

which matches the Chow degree of aλ̃. Further, L is an isometry:

Proposition 3.5.1. For every fixed-point class λ̃,

〈λ̃|λ̃〉 = 〈L(λ̃)|L(λ̃)〉.

Proof. Propositions 3.4.3 and 2.4.5 say that 〈λ̃|λ̃〉 = (−1)age(λ̃)〈aλ̃|aλ̃〉.
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Theorem 3.5.2. The map

L : A∗T,orb([Symn(S)])⊗Q[t1,t2] F → A∗T(Hilbn(S))⊗Q[t1,t2] F

is an F -algebra isomorphism. In particular, equivariant Ruan conjecture holds for Symn(S).

Proof. The proof relies on the affine plane case. Indeed, Okounkov-Pandharipande and Bryan-

Graber determine the structures of T-equivariant quantum cohomology rings of Hilbn(C2) and

[Symn(C2)] respectively. Also, these rings are related by the correspondence

LC2 : A∗T,orb([Symn(C2)])⊗Q[t1,t2] F → A∗T(Hilbn(C2))⊗Q[t1,t2] F,

which sends µ1([0]) · · ·µ`(µ)([0]) to (−i)age(µ)aµ1
([0]) · · · aµ`(µ)

([0]). Bryan and Graber show that

LC2 preserves three-point functions. That is, for any Chen-Ruan classes δ1, δ2, δ3 on the orbifold

[Symn(C2)], we have

〈δ1, δ2, δ3〉[Symn(C2)](u) = 〈LC2(δ1), LC2(δ2), LC2(δ3)〉Hilbn(C2)
(q). (3.5.1)

As Uk ∼= C2, we denote the associated correspondence by

LUk : A∗T,orb([Symn(Uk)])⊗Q[t1,t2] F → A∗T(Hilbn(Uk))⊗Q[t1,t2] F.

Given any equivariant Chen-Ruan classes α1, α2, α3 on [Symn(S)], let us show the identity

〈α1, α2, α3〉[Symn(S)](u) = 〈L(α1), L(α2), L(α3)〉Hilbn(S)(q).

It is, however, enough to establish that for all λ̃, µ̃, ν̃ satisfying (3.4.3),

〈λ̃, µ̃, ν̃〉[Symn(S)](u) = 〈L(λ̃), L(µ̃), L(ν̃)〉Hilbn(S)(q). (3.5.2)

In fact, by (3.5.1) and Corollary 3.4.2, the invariant 〈λ̃, µ̃, ν̃〉[Symn(S)](u) is given by

s∏
k=1

〈λ̃k, µ̃k, ν̃k〉[Symnk (Uk)](u) =

s∏
k=1

〈LUk(λ̃k), LUk(µ̃k), LUk(ν̃k)〉Hilbnk (Uk)(q).

Clearly, age(σ̃) =
∑s
k=1 age(σk) for any fixed-point class σ̃. By applying Proposition 2.4.4, we
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obtain (3.5.2).

In addition, according to Proposition 3.5.1, L preserves Poincaré pairings, and so we have an

equality:

〈L(α1 ∪orb α2)|L(α3)〉 = 〈L(α1) ∪crep L(α2)|L(α3)〉.

This yields L(α1 ∪orb α2) = L(α1) ∪crep L(α2) and proves the isomorphism of algebras.

3.5.2 The cup product structure on the Hilbert scheme

An upshot of Theorem 3.5.2 is that three-point degree zero invariants of Hilbert schemes is

expressible in terms of degree zero invariants of symmetric product stacks.

Corollary 3.5.3. Given cohomology-weighted partitions λ1(~η1), λ2(~η2), λ3(~η3), the degree zero

invariant
〈
aλ1( ~η1), aλ2( ~η2), aλ3( ~η3)

〉Hilbn(S)

0
is given by

i
∑3
k=1 age(λk) lim

u→+i∞
〈λ1(~η1), λ2(~η2), λ3(~η3)〉[Symn(S)](u). (3.5.3)

Proof. It follows immediately from Theorem 3.5.2 by taking q → 0.

This is the precise statement of Corollary 1.1.3. Since the ordinary cup product of Hilbn(S)

is defined by three-point degree zero invariants, the corollary says that the three-point extended

[Symn(S)]-invariants of degree zero completely determine the cup product of Hilbn(S). This

may shed new light on the explicit calculation of the ordinary cohomology ring of the Hilbert

scheme of points.
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Chapter 4

Orbifold quantum cohomology of
the symmetric product of Ar

In Chapters 4 and 5,1we basically restrict our attention to the case where S is the minimal

resolution of type Ar surface singularity.

4.1 Resolutions of cyclic quotient surface singularities

We fix a positive integer r once and for all. Let the cyclic group µr+1 act on C2 by the diagonal

matrices ζ 0

0 ζ−1

 ,

where ζ ∈ µr+1. The quotient C2/µr+1 is a surface singularity. We denote by

π : Ar → C2/µr+1

its minimal resolution. It is actually well-known that π can be obtained via a sequence of b r+1
2 c

blow-ups at the unique singularity. The exceptional locus Ex(π) of π is a chain of (−2)-curves,

r⋃
i=1

Ei,

1 Some results in these two chapters have also appeared in [CG] but the materials presented here are due
solely to myself.
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with Ei−1 and Ei intersect transversally. The intersection numbers of the exceptional curves are

given by

Ei · Ej =


−2 if i = j;

1 if |i− j| = 1;

0 otherwise.

In particular, the intersection matrix is negative definite (as expected from the general theory

of complex surfaces). Additionally, E1, . . . , Er give a basis for A1(Ar;Z). We also have two

noncompact curves E0 and Er+1 attached to E1 and Er respectively. The curve E0 (resp. Er+1)

can be arranged to map to the µr+1-orbit of x-axis (resp. y-axis).

The natural action of T on C2 comes with tangent weights t1 and t2 at the origin. It commutes

with the µr+1-action, so we have an induced T-action on the quotient C2/µr+1 and thus on the

resolved surface Ar. We fix these actions of T throughout Chapters 4 and 5.

The T-invariant curves on Ar are E1, . . . , Er, and there are r+ 1 T-fixed points x1, . . . , xr+1,

which are the nodes of the chain ∪r+1
i=0Ei of curves. We may assume that

{xi} = Ei−1 ∩ Ei.

Let Li and Ri be respectively the weights of the T-action on the tangent spaces to Ei−1 and Ei

at xi. We have

L1 = (r + 1)t1, Rr+1 = (r + 1)t2,

and the following equalities

Li +Ri = t1 + t2, Ri = −Li+1,

for each i = 1, . . . r.

E0

Z
Z

Z
Z
Z

�
�
��

ZZ}(r + 1)t1 = L1 ��>R1•
x1

Z�

L2��=
•
x2

�
�
��

Z
Z
ZZ

�Z

· · ·
Z

Z
ZZ

�
�
��

Z�

•
xr
ZZ~
Rr

Z
Z

ZZ

ZZ}Lr+1 ��>Rr+1 = (r + 1)t2•
xr+1

Z�
�
�
�
�
�
Er+1

Figure 4.1. The middle chain is the exceptional locus Ex(π). The labeled vectors stand for

the tangent weights at the fixed points.

The above information will be sufficient for our calculation of Gromov-Witten invariants.
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One can also compute explicitly to obtain

(Li, Ri) = ((r − i+ 2)t1 + (1− i)t2, (−r + i− 1)t1 + it2).

Obviously, LkRk ≡ −(r + 1)2t21 mod (t1 + t2) for k = 1, . . . , r + 1. It is convenient to take

τ = −(r + 1)2t21.

In this manner,

t(δ̃) ≡ τ `(δ̃) mod (t1 + t2). (4.1.1)

Here `(δ̃) is the sum
∑r+1
k=1 `(δk).

4.2 Connected invariants

Let

M
◦
0,k([Symn(Ar)], β)

be the component of M0,k([Symn(Ar)], β) parametrizing connected covers (i.e., each cover C̃

associated to [f : C → [Symn(Ar)]] ∈M
◦
0,k([Symn(Ar)], β) is connected).

We define k-point connected Gromov-Witten invariant as the contribution of the component

M
◦
0,k([Symn(Ar)], β) to the extended Gromov-Witten invariant. That is,

〈α1, . . . , αk〉[Symn(Ar)],conn
β =

∫
[M
◦
0,k([Symn(Ar)],β)]vir

T

ev∗1(α1) · · · ev∗k(αk).

Note that M
◦
0,k([Symn(Ar)], β) is compact whenever β 6= 0, in which case the corresponding

connected invariant is an element of Q[t1, t2].

Similarly, the connected invariant has an extended version. We define k-point extended

connected invariant by

〈α1, . . . , αk〉[Symn(Ar)],conn
(a,β) =

1

a!
〈α1, . . . , αk, (2)a〉[Symn(Ar)],conn

β .
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4.3 Orbifold quantum product and divisor operators

We may view curve classes E1, . . . , Er as a basis for A1(Symn(Ar);Z). Let {ω1, . . . , ωr} be the

dual basis of {E1, . . . , Er} with respect to the Poincaré pairing. For any classes α1, . . . , αk ∈

A∗T,orb([Symn(Ar)]), we define the extended k-point function of [Symn(Ar)] by

〈〈α1, . . . , αk〉〉[Symn(Ar)] =

∞∑
a=0

∑
β∈A1(Ar;Z)

〈α1, . . . , αk〉[Symn(Ar)]
(a,β) uasβ·ω1

1 · · · sβ·ωrr , (4.3.1)

and denote by

〈α1, . . . , αk〉[Symn(Ar)]

the usual k-point function 〈〈α1, . . . , αk〉〉[Symn(Ar)]|u=0.

Now let {γ} be a basis for the Chen-Ruan cohomology A∗T,orb([Symn(Ar)]) and {γ∨} its dual

basis. Define the small orbifold quantum product on A∗T,orb([Symn(Ar)]) in this way:

α1 ∗orb α2 =
∑
γ

〈〈α1, α2, γ〉〉[Symn(Ar)]γ∨.

By extending scalars, we work with

QA∗T,orb([Symn(Ar)]),

which is defined as the vector space A∗T,orb([Symn(Ar)])⊗Q[t1,t2]Q(t1, t2)((u, s1, . . . , sr)) endowed

with quantum multiplication ∗orb.

The extended k-point functions were first studied by Bryan and Graber [BG] in the case

of [Symn(C2)] so as to link the Gromov-Witten theory of [Symn(C2)] to that of Hilbn(C2).

When it comes to the whole group of multipoint functions, it is clear that the extended and the

usual versions share the same information. However, extended three-point functions are a wider

group than the usual three-point functions, and the quantum product defined above retains more

information than the usual small quantum product.

We are going to study the operators

D ∗orb −

on the (small) quantum cohomology of the orbifold [Symn(Ar)] for divisor classes D. We refer
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to them as divisor operators. We let

Dk = 1(1)n−11(ωk), k = 1, . . . , r.

These classes, along with (2), form a basis for divisors on [Symn(Ar)]. Thus, the divisor operators

are determined by

(2) ∗orb −, D1 ∗orb −, . . . , Dr ∗orb −,

which are governed by two-point extended invariants to be calculated in this chapter.

4.4 Fixed loci

Fix a nonnegative integer a throughout the rest of this section. We shorten our notation by

declaring

M([Symn(Ar)], σ1, . . . , σk; (a, β)) = M([Symn(Ar)], σ1, . . . , σk, (2)a;β).

Also, as in (3.4.1), we use

~g = (g1, . . . , gr+1)

to denote an (r + 1)-tuple, whose entries are either all partitions or all nonnegative integers.

Moreover, given a partition σ0 and a multi-partition ~σ, we put

σ̂ := (σ0, ~σ) = (σ0, . . . , σr+1),

which we also realize as a partition of
∑r+1
k=0 |σk|.

Let us now describe the fixed loci that will play an important role in our virtual localization

calculation.

Given nonnegative integers i, j, s with 1 ≤ i ≤ j ≤ r and s ≤ a. We consider effective curve

classes

Eij = Ei + · · ·+ Ej .

(Note that Eii = Ei). For each bL0 ∈ {0, . . . , s} and uL0 ∈ {0, . . . , a − s}, put bR0 = s − bL0 and
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uR0 = a− s− uL0 . We let

{M bL0 ,σ0,u
L
0

0 (1)} (resp. {M bL0 ,σ0,u
L
0

0 (2)}) (4.4.1)

be the set consisting of all T-fixed connected components of the moduli space

M
◦
([Sym|λ0|(Ar)], λ0, ρ0, (2)s, 1a−s; dEij)

such that each point [f0 : C → [Sym|λ0|(Ar)]] ∈ M
bL0 ,σ0,u

L
0

0 (1) (resp. M
bL0 ,σ0,u

L
0

0 (2)) has the

following properties:

(i) f0 has its source curve decomposed as

C = CL0 ∪ D0 ∪ CR0.

Here Ck0’s are disjoint f0-contracted components, D0 is a chain of noncontracted compo-

nents with f0∗([D0]) = dEij , and Ck0 ∩ D0 = {Pk} is a twisted point, k = L,R.

Let D0, C, Pk be coarse moduli spaces of D0, C,Pk respectively (k = L,R) and C̃0 the admissible

cover associated to C.

(ii) C̃0 := C̃L0 ∪ D̃0 ∪ C̃R0 is connected with admissible covers D̃0 → D0 and C̃k0 → Ck0

(k = L,R). Moreover,

• each irreducible component of the cover D̃0 → D0 is totally branched over two points

(either nodes or markings) and branched nowhere else.

• the covering C̃L0 → CL0 is branched with monodromy

λ0, (2)b
L
0 , 1u

L
0 , σ0 (resp. λ0, ρ0, (2)b

L
0 , 1u

L
0 , σ0),

around markings and PL while the covering C̃R0 → CR0 is branched with monodromy

ρ0, (2)b
R
0 , 1u

R
0 , σ0 (resp. (2)b

R
0 , 1u

R
0 , σ0),

around markings and PR.

(iii) In the cover D̃0, there exists a unique chain ε formed by rational curves not contracted by

f̃0. Additionally,
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• ε possesses j− i+ 1 irreducible components which are mapped to Ei, . . . , Ej with the

same degree d under the map f̃0.

• the contracted components attached to the two ends of ε collapse to xi and xj+1

respectively.

Now we turn our attention to the fixed locus on the moduli space

M([Symn(Ar)],Λ, ℘, (a, dEij)).

We fix ~bL and ~bR, tuples of nonnegative integers, with |~bL| = uL0 and |~bR| = uR0 . We define

F~σλ0,σ0,ρ0;bL0 ,u
L
0

(~λ,~bL | ~bR, ~ρ)[i, j, s] = {M bL0 ,σ0,u
L
0 (1)}

to be the set of T-fixed loci of M([Symn(Ar)],Λ, ℘, (a, dEij)) (so Λ = λ̂ and ℘ = ρ̂ as partitions)

such that any element [f : C → [Symn(Ar)]] ∈ M
bL0 ,σ0,u

L
0 (1) of these fixed loci satisfies the

following properties:

(a) The domain curve C of f decomposes into three pieces

C = CL ∪ D ∪ CR, (4.4.2)

where Ck’s are disjoint f -contracted components; D is a chain of noncontracted compo-

nents, which maps to [Symn(Ar)] with degree dEij ; and the intersection Ck ∩ D := {Qk}

is a twisted point, k = L,R.

As in (3.3.3), there is an associated morphism f̃ : C̃ → Ar. Let D,C,Ck, Qk be coarse

moduli spaces of D, C, Ck,Qk respectively (k = L,R).

(b) CL carries bL0 +uL0 +1 marked points, and CR carries the other bR0 +uR0 +1 = a−bL0 −uL0 +1

marked points.

(c) The covering C̃ → C has components

C̃k := C̃Lk ∪ D̃k ∪ C̃Rk, k = 0, . . . , r + 1. (4.4.3)

For k 6= 0, C̃k, if nonempty, is contracted to xk in Ar. (Note that, as in Chapter 3, C̃k is

possibly empty or disconnected for k 6= 0, and we include empty sets just for the simplicity
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of notation).

(d) For k = 0, . . . , r + 1,

• the covering
∐r+1
k=0 C̃Lk → CL (resp.

∐r+1
k=0 C̃Rk → CR) is ramified with monodromy

λ̂, (2)b
L
0 +uL0 , σ̂ (resp. ρ̂, (2)b

R
0 +uR0 , σ̂),

around markings and QL (resp. QR);

• each irreducible component of the cover D̃k → D is totally branched over two points

and branched nowhere else;

• each C̃Lk → CL (resp. C̃Rk → CR) is a covering ramified with monodromy

λk, (2)b
L
k , 1b

L
0 +uL0−b

L
k , σk (resp. ρk, (2)b

R
k , 1b

R
0 +uR0 −b

R
k , σk),

around markings and QL (resp. QR).

(e) The diagram of maps

C̃0

f̃ |C̃0−−−−→ Ary
C

(4.4.4)

corresponds to [f0] ∈M bL0 ,σ0,u
L
0

0 (1) above.

Note that F~σ
λ0,σ0,ρ0;bL0 ,u

L
0

(~λ,~bL | ~bR, ~ρ)[i, j, s] does not exist for certain parameters. If it does,

it is indexed by M
bL0 ,σ0,u

L
0

0 (1)’s. Each fixed locus M
bL0 ,σ0,u

L
0 (1) is, however, a union of T-fixed

connected components in general.

CL

��
��

�
��

�
�

HH
HH

H
HH

H
H

H �

•λ̂ •
(2) · · ·

(2)
•

•
σ̂

•
σ̂

D

• ρ̂•
(2)

· · ·•
(2)

CR

Figure 4.2. This is the configuration of a typical domain curve C for M
bL0 ,σ0,u

L
0 (1). Each

straight line represents a chain of curves. All markings and Qk’s are labeled with their

monodromy and there are bk0 + uk0 copies of (2) on Ck, k = L,R. In case bk0 + uk0 = 0, Ck is

simply a twisted point. Details on the covering C̃ associated to C are included in the above

properties.
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Define

F~σλ0,ρ0,σ0;bL0 ,u
L
0

(~λ, ~ρ,~bL | ~bR)[i, j, s] := {M bL0 ,σ0,u
L
0 (2)}

in an analogous manner. The differences occur in properties (b), (d), and (e). Precisely, (b) the

curve CL carries bL0 +uL0 + 2 marked points while the curve CR carries the other bR0 +uR0 marked

points; (d) the covering
∐r+1
k=0 C̃Lk → CL (resp.

∐r+1
k=0 C̃Rk → CR) is ramified with monodromy

λ̂, ρ̂, (2)b
L
0 +uL0 , σ̂ (resp. (2)b

R
0 +uR0 , σ̂) around markings and QL (resp. QR), and the monodromy

associated to the cover C̃Lk → CL(resp. C̃Rk → CR) is now λk, ρk, (2)b
L
k , 1b

L
0 +uL0−b

L
k , σk (resp.

(2)b
R
k , 1b

R
0 +uR0 −b

R
k , σk); (e) the diagram (4.4.4) corresponds to [f0] ∈M bL0 ,σ0,u

L
0

0 (2).

CL

�
��

�
��

�
��

�
�

HH
H

HH
HH

HH
H
H

H �

•
λ̂ •

ρ̂ •(2) · · · •(2)
•
σ̂

•
σ̂

D

•
(2)

·
·

·•(2)

CR

Figure 4.3. This is the configuration of a typical domain curve C for M
bL0 ,σ0,u

L
0 (2). There

are bk0 + uk0 copies of (2) on Ck, k = L,R. CL is always a twisted curve. CR is of dimension

ε2(bR0 + uR0 ); in particular, it is a twisted point when bR0 + uR0 ≤ 1.

4.5 Valuations

Given moduli space M([Symn(Ar)],Λ, ℘, (a, dEij)) as above. For each T-fixed connected com-

ponent F , the virtual normal bundle to F is denoted by

Nvir
F .

Let [f : C → [Symn(Ar)] ∈ F and
∐
v Cv the union of one-dimensional, contracted, connected

components of C. We have a natural morphism

φF : F → F c :=
∏
v

M0,val(v),

defined by φF ([f ]) = ([c(Cv)])v. That is, all noncontracted components, zero-dimensional con-

tracted components, stack structures at special points and the map f are forgotten. Also, val(v)

denotes the number of special points on Cv.

Let

F~σλ0,ρ0,σ0;bL0 ,u
L
0

(~λ, ~ρ;~bL,~bR)[i, j, s]
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be the union F~σ
λ0,σ0,ρ0;bL0 ,u

L
0

(~λ,~bL | ~bR, ~ρ)[i, j, s] ∪ F~σ
λ0,ρ0,σ0;bL0 ,u

L
0

(~λ, ~ρ,~bL | ~bR)[i, j, s].

The indices bL0 , σ0, u
L
0 , (k) (k = L,R) from M

bL0 ,σ0,u
L
0 (k) and M

bL0 ,σ0,u
L
0

0 (k) are going to be

suppressed. We simply write M , M0. For each M ∈ F~σ
λ0,ρ0,σ0;bL0 ,u

L
0

(~λ, ~ρ;~bL,~bR)[i, j, s], we let

MT

be the collection of all T-fixed connected components of M .

There are other T-fixed loci on the moduli space M([Symn(Ar)],Λ, ℘, (a, dEij)). The reason

why F~σ
λ0,ρ0,σ0;bL0 ,u

L
0

(~λ, ~ρ;~bL,~bR)[i, j, s]’s are singled out will be discussed later. It will turn out

that these fixed loci are enough for our study of two-point extended invariants as a consequence

of (t1 + t2)-valuation below.

Proposition 4.5.1. If

M ∈
⋃
F~σλ0,ρ0,σ0;bL0 ,u

L
0

(~λ, ~ρ;~bL,~bR)[i, j, s] and F ∈MT, (4.5.1)

where the union ranges over all possible parameters, the inverse Euler class 1
eT(Nvir

F )
has valuation

1 with respect to (t1 + t2). Otherwise, it has valuation at least 2.

Proof. Consider any T-fixed connected component F of M([Symn(Ar)],Λ, ℘; (a, β)). We let

f : C → [Symn(Ar)] be a twisted stable map representing a point of F . As discussed earlier,

there are a morphism f̃ : C̃ → Ar and an ordinary stable map fc : C → Symn(Ar) associated to

f . Recall that τ = −(r + 1)2t21. To establish the assertion, we need to analyze the contribution

of following situations (cf. [GP]) to the inverse Euler class 1
eT(Nvir

F )
.

1. Infinitesimal deformations and obstructions of f with C held fixed:

(a) Any contracted component contributes zero (t1 + t2)-valuation. Let C′ ⊂ C be a

contracted component and pick any connected component Z of the cover associated

to C′. We see that Z contributes

eT(H1(Z, f̃∗TAr))
eT(H0(Z, f̃∗TAr))

(4.5.2)

and is collapsed by f̃ to xk for some k. So the numerator is, by Mumford’s relation,

congruent modulo t1 + t2 to

Λ∨(Lk)Λ∨(Rk) ≡ τg,
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where g = rank(H0(Z, ωZ)) and Λ∨(t) =
∑g
i=0 ci(H

0(Z, ωZ)∨)tg−i. The denominator

of (4.5.2) is eT(TxkAr). Thus, the contribution of Z is simply

τg−1 mod (t1 + t2).

In other words, the contribution of C′, being the product of the contributions of such

Z’s, is not divisible by t1 + t2.

(b) The nodes joining contracted curves to noncontracted curves have zero (t1 + t2)-

valuation because each of them gives some positive power of τ modulo (t1 + t2).

(c) Noncontracted curves: Suppose D is a noncontracted component with D̃ its associated

(possibly disconnected) covering. Its contribution is

eT(H1(D, f∗T [Symn(Ar)]))mov

eT(H0(D, f∗T [Symn(Ar)]))mov
=
eT(H1(D̃, f̃∗TAr))mov

eT(H0(D̃, f̃∗TAr))mov
.

Here ( )mov stands for the moving part. It is clear from (a) that each f̃ -contracted

component of D̃ has zero (t1 + t2)-valuation. However, any irreducible component Σ

of D̃ that is not f̃ -contracted contributes

t1 + t2
τ

mod (t1 + t2)2. (4.5.3)

This can be seen as follows.

Assume that f̃ maps Σ to E := f̃(Σ) with degree ` > 0. Let S1 = {0, . . . , 2` − 2} −

{`− 1} and S2 = {0, . . . , 2`} − {`}.

The moving part of eT(H1(Σ, f̃∗TAr))) arises from

H1(Σ, f̃∗NE/Ar ) = H0(Σ, ωΣ ⊗ f̃∗N∨E/Ar )
∨.

The curve E having self-intersection −2 implies NE/Ar
∼= OP1(−2), and so the in-

vertible sheaf ωΣ ⊗ f̃∗N∨E/Ar has degree 2`− 2. Hence, the moving part is

(t1 + t2)
∏
k∈S1

k( `−1
` (r + 1)t1) + (2`− 2− k)( 1−`

` (r + 1)t1)

2`− 2
mod (t1 + t2)2
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(which is simply (t1 + t2) for ` = 1). We further simplify it to get

(t1 + t2)τ `−1
`−1∏
k=1

(
`− k
`

)2 mod (t1 + t2)2. (4.5.4)

On the other hand, eT(H0(Σ, f̃∗TAr))mov equals eT(H0(Σ, f̃∗TE))mov, that is con-

gruent modulo (t1 + t2) to

∏
k∈S2

k(−(r + 1)t1) + (2`− k)((r + 1)t1)

2`
≡ τ `

`−1∏
k=1

(
`− k
`

)2. (4.5.5)

Dividing (4.5.4) by (4.5.5) gives (4.5.3).

2. Infinitesimal automorphisms of C:

We need only investigate the nonspecial points p, which lie on noncontracted curves Σ and

are mapped to fixed points. In fact, each p gives the weight of the tangent space to Σ at

p. This has zero (t1 + t2)-valuation.

3. Infinitesimal deformations of C:

Given any node P joining two curves V1 and V2. Let P, V1, V2 be coarse moduli spaces of

P,V1,V2 respectively and Stab(P) the stabilizer of P. In each of the following, we study

the contribution arising from smoothing the node P.

(a) V1 and V2 are noncontracted: We may assume that the restriction of fc to Vk is a

dk-sheeted covering

fc|Vk : Vk → Σk := fc(Vk) ∼= P1

for some dk > 0, k = 1, 2. The node-smoothing contribution is

|Stab(P)| (
w1

d1
+
w2

d2
)−1, (4.5.6)

where wk is the tangent weight of the rational curve Σk at the fixed point fc(P ).

Thus, (4.5.6) is proportional to (t1 + t2)−1 only if d1 = d2 and w1 + w2 is a multiple

of t1 + t2.

(b) V1 is noncontracted but V2 is contracted: Let w be the tangent weight of V1 at the

node P and L the tautological line bundle formed by the cotangent space T ∗PV2 (see
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Chapter 6). Denote by ψ the first Chern class of L. The node smoothing contributes

|Stab(P)|
w − ψ

. (4.5.7)

So, neither (t1 + t2) nor (t1 + t2)−1 is generated in this case.

Thus, only 1(c) and 3(a) may produce any power of (t1 + t2). We conclude that F gives positive

(t1+t2)-valuation because the number of noncontracted curves is more than the number of nodes

joining them.

Suppose F is a T-fixed component described in (4.5.1), in which case we have a unique chain

of noncontracted rational components for the cover associated to C. The discussion in 3(a) shows

that each node in the chain gives (t1 +t2)-valuation −1. In total, the node smoothing contributes

i − j in valuation. On the other hand, the chain has j − i + 1 irreducible components. By the

result of 1(c), 1
eT(Nvir

F )
has valuation 1, which establishes the first assertion.

Assume that F is not as in (4.5.1). If the associated cover has at least two disjoint chains

of noncontracted rational curves, a (t1 + t2)-valuation at least 2 is obtained because each chain

gives valuation at least 1. Otherwise, the cover has a unique chain but property (e) (and hence

(iii)) in Section 4.4 is not fulfilled for each i, j, s. In this case, we have the same consequence by

the discussion in 3(a) and the result of 1(c). This shows the second assertion.

4.6 Counting branched covers

Later, we will count certain coverings of (chains of) rational curves. Let us now review some

related notions and fix notation.

For partitions η1, . . . , ηs of n, the Hurwitz number

H(η1, . . . , ηs)

is the weighted number of possibly disconnected covers π : X → (P1, p1, . . . , ps) such that π

are branched over p1, . . . , ps with ramification profiles η1, . . . , ηs and unbranched away from

p1, . . . , ps. (Each cover is counted with weight 1 over the size of its automorphism group).

The Hurwitz number H(η1, . . . , ηs) is essentially a combinatorial object. It can be described

combinatorially by

1

n!
|H(η1, . . . , ηs)|.
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Here H(η1, . . . , ηs) is the set consisting of (g1, . . . , gs) ∈
∏s
i=1 Sn satisfying (i) for each i =

1, . . . , s, gi has cycle type ηi; (ii) g1 · · · gs = 1.

Let us introduce some other Hurwitz-type numbers. Let

Hσ(η1, . . . , ηs | τ1, . . . , τt)

be the subset of H(η1, . . . , ηs, τ1, . . . , τt) such that each element (g1, . . . , gs, h1, . . . , ht) has an

additional property that g1 · · · gs has cycle type σ (and so h1 · · ·ht has the same cycle type as

well). Put

Hσ(η1, . . . , ηs | τ1, . . . , τt) :=
|Hσ(η1, . . . , ηs | τ1, . . . , τt)|

n!

(in case σ is a vacuous partition, we set Hσ(η1, . . . , ηs | τ1, . . . , τt) = 1).

We readily find the following relations.

Lemma 4.6.1. The number Hσ(η1, . . . , ηs | τ1, . . . , τt) is exactly the product

|C(σ)| H(η1, . . . , ηs, σ) H(σ, τ1, . . . , τt).

Moreover, we have

H(η1, . . . , ηs, τ1, . . . , τt) =
∑
|σ|=n

Hσ(η1, . . . , ηs | τ1, . . . , τt).

4.7 Localization contributions

4.7.1 Reduction

From now on, fix cohomology-weighted partitions µ1(~η1) and µ2(~η2) of n with ηk`’s 1 or divisors

on Ar. We concentrate on the two-point extended invariant

〈µ1(~η1), µ2(~η2)〉[Symn(Ar)]
(a,β) (4.7.1)

of twisted degree (a, β), β 6= 0. We will leave out the superscript [Symn(Ar)] when there is no

likelihood of confusion.

Let us write

µi(~η1) = κi(~ηi1)θi(~ηi2)
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where the entries of ~ηi1’s are all 1 and the entries of ~ηi2’s are all divisors, i = 1, 2. We may

assume that

`(κ1) ≤ `(κ2).

Use the identity 1 =
∑r+1
k=1

1
LkRk

[xk], we see readily that (4.7.1) is a Q(t1, t2)-linear combination

of the invariants of the form

〈
κ11([xm1 ]) · · ·κ1`(κ1)([xm`(κ1)

])θ1(~η12), µ2(~η2)
〉

(a,β)
. (4.7.2)

Additionally, (4.7.2) is an element of Q[t1, t2] as the first insertion has compact support. Also,

the sum of the degrees of the insertions is at most 1 larger than the virtual dimension. Precisely,

the difference is

`(κ1)− `(κ2) + 1.

Thus, the invariant (4.7.2) is a linear polynomial if `(κ1) = `(κ2); otherwise, it is a rational

number.

Assume that β is not a multiple of Eij for any i, j. Clearly, the fixed loci (4.5.1) make

no contribution. By Proposition 4.5.1, the invariant (4.7.2) is zero by divisibility of (t1 + t2)2

(each of the two insertions is a linear combination of fixed-point classes with coefficients being

0 or having nonnegative (t1 + t2)-valuation; for details, consult the discussion preceding Lemma

4.7.3). It follows that (4.7.1) is zero as well. So we can now set our mind on the invariant

〈µ1(~η1), µ2(~η2)〉(a,dEij) , d, i, j > 0. (4.7.3)

We fix positive integers i, j, d with i ≤ j from here on. Let β = dEij . By virtual localization,

(4.7.2) can be expressed as a sum of residue integrals over T-fixed loci. By Proposition 4.5.1,

the invariant (4.7.2) is α(t1 + t2) for some rational number α, and it suffices to evaluate (4.7.2)

over all T-fixed loci lying in the union
∐i,j F~σ

λ0,ρ0,σ0;bL0 ,u
L
0

(~λ, ~ρ;~bL,~bR)[i, j, s], where
∐i,j

means

that only i, j are fixed and the other parameters can vary.

4.7.2 The setup for localization

Given M ∈ F~σ
λ0,ρ0,σ0;bL0 ,u

L
0

(~λ, ~ρ;~bL,~bR)[i, j, s] and F ∈MT, we let

ιF : F →M([Symn(Ar)],Λ, ℘, (a, dEij))
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be the natural inclusion (as partitions, Λ = λ̂, and ℘ = ρ̂).

Let M ∈ F~σ
λ0,σ0,ρ0;bL0 ,u

L
0

(~λ,~bL | ~bR, ~ρ)[i, j, s] (resp. M ∈ F~σ
λ0,ρ0,σ0;bL0 ,u

L
0

(~λ, ~ρ,~bL | ~bR)[i, j, s]).

As mentioned earlier, there are natural morphisms

φF : F →M0,bL0 +uL0 +2 ×M0,bR0 +uR0 +2 (resp. M0,bL0 +uL0 +3 ×M0,bR0 +uR0 +1)

for F ∈MT and

φM0
: M0 →M0,bL0 +uL0 +2 ×M0,bR0 +uR0 +2 (resp. M0,bL0 +uL0 +3 ×M0,bR0 +uR0 +1).

Obviously, F c = M
c

0. We intend to calculate our Gromov-Witten invariants by localization,

which will be reduced to integrals over F c’s. So it is necessary to understand the degree deg(φF )

of the morphism φF .

For F ∈ MT with M ∈ F~σ
λ0,σ0,ρ0;bL0 ,u

L
0

(~λ,~bL | ~bR, ~ρ)[i, j, s], we let [f : CL ∪ D ∪ CR →

[Symn(Ar)]] ∈ F (in the notation of Section 4.4) be a typical element. We obtain

deg(φF ) = m1 ·m2.

Here

• m1 = c0(o(σ̂)−1
∏r+1
k=1 |C(σk)|)ε(F ) is a factor arising from the nodes, which are glued over

the rigidified inertia stack. Here c0 is an overall factor coming from nodes of the cover

C̃0 → C (we do not have to give a careful description here as c0 will be cancelled by an

identical term in deg(φM0
)), and ε(F ) = ε1(bL0 + uL0 ) + ε1(bR0 + uR0 ) + j − i (the terms

ε1(bL0 + uL0 ) and ε1(bR0 + uR0 ) record the dimensions of CL and CR respectively).

• m2 is given by

dj−i+1m0

r+1∏
k=1

H(λk, (2)b
L
k , 1b

L
0 +uL0−b

L
k , σk) H(σk, σk)j−i+1 H(σk, (2)b

R
k , 1b

R
0 +uR0 −b

R
k , ρk),

where dj−i+1 is an automorphism factor that takes care of the restriction f |D forgotten by

φF , m0 is the contribution of C̃0, and the other terms account for the overall contribution

of the disconnected curve
∐r+1
k=1 C̃k.
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Also, the degree of φM0
can be calculated in a similar fashion. That is,

deg(φM0
) = c0(

1

o(σ0)
)ε(F )dj−i+1m0.

By Lemma 4.6.1, we may write deg(φF ) as

deg(φM0
)(
o(σ0)

o(σ̂)
)ε(F )

r+1∏
k=1

Hσk(λk, (2)b
L
k , 1b

L
0 +uL0−b

L
k | (2)b

R
k , 1b

R
0 +uR0 −b

R
k , ρk). (4.7.4)

Similarly, for F ∈MT with M ∈ F~σ
λ0,ρ0,σ0;bL0 ,u

L
0

(~λ, ~ρ,~bL | ~bR)[i, j, s], deg(φF ) is given by

deg(φM0
)(
o(σ0)

o(σ̂)
)ε(F )

r+1∏
k=1

Hσk(λk, ρk, (2)b
L
k , 1b

L
0 +uL0−b

L
k | (2)b

R
k , 1b

R
0 +uR0 −b

R
k ). (4.7.5)

Now ε(F ) is set to be 1 + ε2(bR0 + uR0 ) + j − i.

Remark. The term ( o(σ0)
o(σ̂) )ε(F ) will cancel with a similar term in 1

eT(Nvir
F )

(see Lemma 4.7.1

below). Moreover, forgetting the indices involving the partition 1 does not change the value of

the Hurwitz-type numbers. We did not do this in the above formulas so as to keep track of the

ramification profiles corresponding to the simple marked points.

4.7.3 Virtual normal bundles

Let us determine 1
eT(Nvir

F )
modulo (t1 +t2)2 for each connected component F described in (4.5.1).

The following outcome should be within our expectation. Recall again that τ = −(r + 1)2t21.

Lemma 4.7.1. Given M ∈ F~σ
λ0,ρ0,σ0;bL0 ,u

L
0

(~λ, ~ρ;~bL,~bR)[i, j, s] and any connected component F ∈

MT, we have the congruence equation

1

eT(Nvir
F )
≡ (

o(σ̂)

o(σ0)
)ε(F ) τ

1
2 (a−s−`(~λ)−`(~ρ))

eT(Nvir
M0

)
mod (t1 + t2)2.

Here ε(F )’s are as in (4.7.4), (4.7.5) respectively.

Proof. We just investigate the case where M ∈ F~σ
λ0,σ0,ρ0;bL0 ,u

L
0

(~λ,~bL | ~bR, ~ρ) and F ∈ MT, the

other case being similar.

Let p =
∑r+1
k=0 b

L
k and q =

∑r+1
k=0 b

R
k , and so p + q = a. Assume that p, q > 0. Pick any

point [f ] ∈ F . Again, we follow the notation of Section 4.4. The contribution of the contracted
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component CL is

eT(H1(CL, f∗[Symn(Ar)]))
eT(H0(CL, f∗[Symn(Ar)]))

≡ τ
∑
k(gk−1) mod (t1 + t2).

Here gk’s are the genera of connected components of the covering associated to CL. We find, by

Riemann-Hurwitz formula, that
∑
k(gk − 1) = 1

2 (p− `(λ̂)− `(σ̂)). Hence CL contributes

τ
1
2 (p−`(λ̂)−`(σ̂)) mod (t1 + t2).

Similarly, CR contributes

τ
1
2 (q−`(ρ̂)−`(σ̂)) mod (t1 + t2).

And the contribution of nodes joining contracted components to D is

τ2`(σ̂) mod (t1 + t2).

These three contributions, taken together, yield

τ
1
2 (a−`(λ̂)−`(ρ̂)+2`(σ̂)) mod (t1 + t2).

One can check that the same formula holds when p = 0 or q = 0.

As for the cover C̃L0 ∪ D̃0 ∪ C̃R0, by a similar argument, the combined contribution of

C̃L0, C̃R0, and nodes joining C̃L0, C̃R0 to D̃0 is given by

τ
1
2 (s−`(λ0)−`(ρ0)+2`(σ0)) mod (t1 + t2).

Further, the covers D̃1, . . . , D̃r+1 (including the nodes inside) contribute

1

τ `(~σ)
mod (t1 + t2).

We now study the infinitesimal deformations of C. Let k = L,R. When Ck is a curve,

smoothing the node Pk joining Ck to D contributes

o(σ̂)

wk − ψk
,
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where wk is the T-weight of the tangent space to c(D) at the point c(Pk), and ψk is the class

associated to T ∗c(Pk)Ck (cf. (4.5.7)). By property (e) in Section 4.4, f̃ : C̃0 → Ar corresponds to

the point [f0 : CL0 ∪ D0 ∪ CR0 → [Sym|λ0|(Ar)]] ∈M0, so

o(σ0)

wk − ψk

is the factor smoothing nodes joining Ck0 and D0 and is o(σ0)/o(σ̂) times the preceding factor.

Similarly, the overall contributions of node smoothing inside D and node smoothing inside D0

differ by a factor (o(σ̂)/o(σ0))j−i. Hence, deformations of C contribute (o(σ̂)/o(σ0))ε(F ) times

those of CL0 ∪ D0 ∪ CR0, and the term

(
o(σ̂)

o(σ0)
)ε(F ) 1

eT(Nvir
M0

)

is the combined contribution of the deformations of C and the unique noncontracted connected

component C̃0 of the associated cover C̃.

Putting all these together, we get

1

eT(Nvir
F )

≡ (
o(σ̂)

o(σ0)
)ε(F ) 1

eT(Nvir
M0

)
· τ

1
2 (a−`(λ̂)−`(ρ̂)+2`(σ̂))

τ
1
2 (s−`(λ0)−`(ρ0)+2`(σ0))

· 1

τ `(~σ)

≡ (
o(σ̂)

o(σ0)
)ε(F ) τ

1
2 (a−s−`(~λ)−`(~ρ))

eT(Nvir
M0

)
mod (t1 + t2)2,

as desired.

4.7.4 Vanishing and relation to connected invariants

Let us look closely at the invariant (4.7.2) with β = dEij . We will go back to (4.7.3) in the end.

For every nonnegative integer s, let

I(s)

be the contribution of the T-fixed loci
∐i,j,s F~σ

λ0,ρ0,σ0;bL0 ,u
L
0

(~λ, ~ρ;~bL,~bR)[i, j, s] (all but i, j, s vary)

to the invariant (4.7.2) with β = dEij . We claim the following.

Proposition 4.7.2. For any s < a,

I(s) ≡ 0 mod (t1 + t2)2.
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Now fix a nonnegative integer s < a as well. For simplicity, we drop the index [i, j, s] from

the notation of fixed loci.

We would like to deduce Proposition 4.7.2 by replacing the first two insertions with T-fixed

point classes. Fix T-fixed point classes ~A, ~B. Define

I :=
∑
M

∑
F∈MT

∫
F

ι∗F (ev∗1( ~A)ev∗2( ~B))

eT(Nvir
F )

, (4.7.6)

where M is taken over all possible T-fixed loci in
∐
σ0,bL0 ,u

L
0 ,~σ,

~bL,~bR F
~σ
λ0,ρ0,σ0;bL0 ,u

L
0

(~λ, ~ρ;~bL,~bR).

The coefficient
〈κ11([xm1

]) · · ·κ1`(κ1)([xm`(κ1)
])θ1(~η12)| ~A〉

〈 ~A| ~A〉
· 〈µ2(~η2)| ~B〉
〈 ~B| ~B〉

,

is either zero or has nonnegative valuation with respect to t1 + t2, so Proposition 4.7.2 follows

from the following lemma.

Lemma 4.7.3.

I ≡ 0 mod (t1 + t2)2.

Proof of Lemma 4.7.3

Lemma 4.7.3 is clear if the condition

λk ⊂ Ak and ρk ⊂ Bk, ∀k = 1, . . . , r + 1 (4.7.7)

does not hold, in which case I is identically zero. Now we assume (4.7.7), and the idea of the

proof in this case is to relate I to certain connected invariants. We put

λ̄k = Ak − λk, ρ̄k = Bk − ρk.

That is, we may write ~A = ((λ1, λ̄1), . . . , (λr+1, λ̄r+1)) and ~B = ((ρ1, ρ̄1), . . . , (ρr+1, ρ̄r+1)). Let

Ā = (λ̄1, . . . , λ̄r+1) and B̄ = (ρ̄1, . . . , ρ̄r+1)

be T-fixed point classes.

First of all, it is good to have some observations on hand.
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Lemma 4.7.4. For every partition σ0 and (r + 1)-tuples ~bL,~bR, ~σ,

J1(σ0; bL0 , u
L
0 ) :=

∑
M∈F~σ

λ0,σ0,ρ0;bL0 ,u
L
0

(~λ,~bL | ~bR,~ρ)

deg(φM0
)

∫
M
c
0

ι∗
M0

(ev∗1(Ā)ev∗2(B̄))

eT(Nvir
M0

)

is ∑
M∈F~θ

λ0,σ0,ρ0;bL0 ,u
L
0

(~λ,~cL | ~cR,~ρ)

deg(φM0
)

∫
M
c
0

ι∗
M0

(ev∗1(Ā)ev∗2(B̄))

eT(Nvir
M0

)
,

and

J2(σ0; bL0 , u
L
0 ) :=

∑
M∈F~σ

λ0,ρ0,σ0;bL0 ,u
L
0

(~λ,~ρ,~bL | ~bR)

deg(φM0
)

∫
M
c
0

ι∗
M0

(ev∗1(Ā)ev∗2(B̄))

eT(Nvir
M0

)

is ∑
M∈F~θ

λ0,ρ0,σ0;bL0 ,u
L
0

(~λ,~ρ,~cL | ~cR)

deg(φM0
)

∫
M
c
0

ι∗
M0

(ev∗1(Ā)ev∗2(B̄))

eT(Nvir
M0

)
,

for any ~cL, ~cR and ~θ satisfying |θk| = |σk| for each k = 1, . . . , r + 1. Here the collections of

T-fixed loci under the summation symbols are all nonempty.

Proof. The first identity follows as F~σ
λ0,σ0,ρ0;bL0 ,u

L
0

(~λ,~bL | ~bR, ~ρ) and F~θ
λ0,σ0,ρ0;bL0 ,u

L
0

(~λ,~cL | ~cR, ~ρ)

have the same number of elements and the same configuration for the unique noncontracted

connected component of the associated cover (see the description in Section 4.4). The second

identity holds for similar reasons.

We apply Proposition 4.5.1 to the connected invariant

〈
Ā, B̄, (2)s, 1a−s

〉conn

dEij
(4.7.8)

and find that (4.7.8) is given by

∑
σ0,bL0 ,u

L
0

(J1(σ0; bL0 , u
L
0 ) + J2(σ0; bL0 , u

L
0 )) mod (t1 + t2)2.

As a− s > 0, (4.7.8) is zero. We have

∑
σ0,bL0 ,u

L
0

(J1(σ0; bL0 , u
L
0 ) + J2(σ0; bL0 , u

L
0 )) ≡ 0 mod (t1 + t2)2. (4.7.9)

Here is an elementary but helpful combinatorial fact.
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Lemma 4.7.5. Given nonnegative integers k, p and p1, . . . , pk with p1 + · · ·+ pk = p. For any

nonnegative integer m ≤ p,

(
p

p1, . . . , pk

)
=

∑
m1,...,mk

(
m

m1, . . . ,mk

)(
p−m

p1 −m1, . . . , pk −mk

)
.

Note that
(

`
`1,...,`k

)
is declared to be 0 if ` is smaller than some of `i’s or if some entries are

negative integers.

We continue the proof of Lemma 4.7.3. Let

θ =
1

2
(a− s+ `(~λ) + `(~ρ)).

For every (r + 1)-tuple ~q with |~q| = a− s, let

Q(~q) = {(~bL,~bR) | bLk + bRk = qk, ∀k = 1, . . . , r + 1}.

Fix σ0, b
L
0 , u

L
0 , we consider two cases:

(1) The contribution of F~σ
λ0,σ0,ρ0;bL0 ,u

L
0

(~λ,~bL | ~bR, ~ρ)’s to I with the constraint (~bL,~bR) ∈ Q(~q)

is

∑
(~bL,~bR)∈Q(~q)

∑
~σ

∑
M

∑
F∈MT

∫
F

ι∗F (ev∗1(A)ev∗2(B))

eT(Nvir
F )

mod (t1 + t2)2, (4.7.10)

where M ∈ F~σ
λ0,σ0,ρ0;bL0 ,u

L
0

(~λ,~bL | ~bR, ~ρ) runs through all T-fixed loci. By (4.1.1), for each

F ∈MT,

ι∗F (ev∗1(A) · ev∗2(B)) ≡ τ `(~λ)+`(~ρ) ι∗
M0

(ev∗1(Ā) · ev∗2(B̄)) mod (t1 + t2).

Applying the pushforward φF∗ and Lemma 4.7.1, (4.7.10) is given by

τθ
∑

(~bL,~bR)∈Q(~q)

∑
~σ

∑
M∈F~σ

λ0,σ0,ρ0;bL0 ,u
L
0

(~λ,~bL | ~bR,~ρ)

∑
F∈MT

deg(φF )

·( o(σ̂)

o(σ0)
)ε(F )

∫
M
c
0

ι∗
M0

(ev∗1(Ā)ev∗2(B̄))

eT(Nvir
M0

)
mod (t1 + t2)2.
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By (4.7.4), (4.7.10) is congruent modulo (t1 + t2)2 to

τθ
∑

(~bL,~bR)∈Q(~q)

(
uL0

bL1 , . . . b
L
r+1

)(
uR0

bR1 , . . . , b
R
r+1

)

·
∑
~σ

r+1∏
k=1

Hσk(λk, (2)b
L
k , 1b

L
0 +uL0−b

L
k | (2)b

R
k , 1b

R
0 +uR0 −b

R
k , ρk)

·
∑

M∈F~σ
λ0,σ0,ρ0;bL0 ,u

L
0

(~λ,~bL | ~bR,~ρ)

deg(φM0
)

∫
M
c
0

ι∗
M0

(ev∗1(Ā)ev∗2(B̄))

eT(Nvir
M0

)
,

where the product
( uL0
bL1 ,...b

L
r+1

)( uR0
bR1 ,...,b

R
r+1

)
is the number of choices to distribute simple ram-

ification points lying above simple markings.

By Lemmas 4.6.1, 4.7.4 and 4.7.5, (4.7.10) is simplified to

(
a− s

q1, . . . , qr+1

)
τθ

r+1∏
k=1

H(λk, (2)qk , 1a−qk , ρk)J1(σ0; bL0 , u
L
0 ) mod (t1 + t2)2.

(2) By a similar argument, the contribution of F~σ
λ0,ρ0,σ0;bL0 ,u

L
0

(~λ, ~ρ,~bL | ~bR)’s to I with the

constraint (~bL,~bR) ∈ Q(~q) is

(
a− s

q1, . . . , qr+1

)
τθ

r+1∏
k=1

H(λk, (2)qk , 1a−qk , ρk)J2(σ0; bL0 , u
L
0 ) mod (t1 + t2)2.

In total, I is given by

H ·
∑

σ0,bL0 ,u
L
0

(J1(σ0; bL0 , u
L
0 ) + J2(σ0; bL0 , u

L
0 )) mod (t1 + t2)2, (4.7.11)

where H :=
∑
|~q|=a−s

(
a−s

q1,...,qr+1

)
τθ
∏r+1
k=1H(λk, (2)qk , 1a−qk , ρk). By (4.7.9),

I ≡ 0 mod (t1 + t2)2.

This shows Lemma 4.7.3 and ends the proof of Proposition 4.7.2.
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4.8 Combinatorial descriptions of two-point extended in-

variants

Now we return to the invariant (4.7.3). We will interpret it combinatorially in terms of orbifold

Poincaré pairings and connected invariants. In general, we have the following fact on two-point

extended invariants of nonzero degree.

Theorem 4.8.1. Given partitions µ1, µ2 of n and `(µ1)-tuple ~η1, `(µ2)-tuple ~η2 with entries 1

or divisors on Ar. For any curve class β 6= 0, the invariant

〈µ1(~η1), µ2(~η2)〉(a,β) (4.8.1)

is given by the sum ∑
〈θ(~ξ1)|θ(~ξ2)〉 〈ν1(~γ1), ν2(~γ2)〉conn

(a,β) . (4.8.2)

Here the sum is taken over all possible cohomology-weighted partitions θ(~ξ1), θ(~ξ2), ν1(~γ1), ν2(~γ2)

satisfying µ1(~η1) = θ(~ξ1)ν1(~γ1) and µ2(~η2) = θ(~ξ2)ν2(~γ2). (In particular, ν1, ν2 are subpartitions

of µ1, µ2 respectively and µ1 − ν1 = θ = µ2 − ν2).

Proof of Theorem 4.8.1

The statement is clear if β is not a multiple of Eij for each i, j because both (4.8.1) and (4.8.2)

vanish. Now fix i, j, d > 0 and let β = dEij .

We learn by Proposition 4.7.2 that I(a) is the only possible contribution to (4.7.2). In other

words, only

Fσ0,b(λ0, ρ0;~σ) := F1 ∪ F2,

ranging over all possible λ0, ρ0, σ0, b, ~σ, can possibly make a contribution. Here

F1 = F~σλ0,σ0,ρ0;b,0(~σ, (0, . . . , 0) | (0, . . . , 0), ~σ)[i, j, a], (4.8.3)

F2 = F (1n)
λ0,ρ0,σ0;b,0(~σ, ~σ, (0, . . . , 0) | (0, . . . , 0))[i, j, a]. (4.8.4)

(With notation of Section 4.4, the admissible cover C̃ corresponding to any of these fixed loci

has all those simple ramification points that are branched over simple markings in the connected

component C̃0, and each C̃k (k 6= 0) is either empty or a chain of rational curves.)
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As mentioned earlier, in order to evaluate the invariant (4.8.1), it is enough to perform local-

ization calculations over Fσ0,b(λ0, ρ0;~σ)’s because (4.8.1) is a linear combination of invariants of

the form (4.7.2).

We have a lemma on the inverse Euler classes of virtual normal bundles.

Lemma 4.8.2. Given F ∈MT with M ∈ F1 ∪ F2, we have

1

eT(Nvir
F )

= (
o(σ̂)

o(σ0)
)εk(F ) 1

t(σ̃) eT(Nvir
M0

)
,

for M ∈ Fk, k = 1, 2. Here ε1(F ) = ε1(b) + ε1(a− b) + j − i and ε2(F ) = 1 + ε2(a− b) + j − i.

Proof. All contracted connected components of the associated cover are necessarily of genus 0.

The proof of Lemma 4.7.1 can be carried through.

We let

I(ν1, ν2) and I(ν1, ν2;~σ)

be the contributions to (4.8.1) of
∐
σ0,b,~σ

Fσ0,b(ν1, ν2;~σ) and
∐
σ0,b
Fσ0,b(ν1, ν2;~σ) respectively.

Now we compute I(ν1, ν2;~σ). In order for the contribution not to vanish, the partitions ν1

and ν2 must be subpartitions of µ1 and µ2 respectively. Let us assume ν1 ⊂ µ1, ν2 ⊂ µ2. The

configurations (4.8.3) and (4.8.4) force µ1 − ν1 = µ2 − µ2. We set θ = µ1 − ν1.

Lemma 4.8.3. Take a fixed locus M ∈
∐
b,σ0
F~σσ0

(ν1, ν2, ~σ). For k = 1, 2 and each F ∈MT,

ι∗F ev∗k(µk(~ηk)) = t(σ̃)
∑
Pk

αθ(~ξk)(σ̃) ι∗
M0

ev∗k(νk(~γk)). (4.8.5)

Here Pk means that we take the sum over all possible θ(~ξk), νk(~γk) satisfying the equality

µk(~ηk) = θ(~ξk)νk(~γk).

Proof. The left side of (4.8.5) is
∑
δ̃⊃σ̃ αµk(~ηk)(δ̃) t(δ̃). By Proposition 3.2.1, it equals

∑
δ̃⊃σ̃

∑
Pk

αθ(~ξk)(σ̃)αν1(~γk)(δ̃ − σ̃) t(δ̃) = t(σ̃)
∑
Pk

αθ(~ξk)(σ̃)
∑
ε̃

αν1(~γk)(ε̃) t(ε̃),

which gives the right side of (4.8.5).

It follows from Lemma 4.8.3 that for each F ∈ MT, ι∗F (ev∗1(µ1(~η1)) · ev∗2(µ2(~η2))) coincides
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with

t(σ̃)2
∑
Q

αθ(~ξ1)(σ̃)αθ(~ξ2)(σ̃)ι∗
M0

(ev∗1(ν1(~γ1)) · ev∗2(ν2(~γ2))). (4.8.6)

In the formula, the index Q means that the sum is over all possible θ(~ξ1), θ(~ξ2), ν1(~γ1)) and

ν2(~γ2)) satisfying µ1(~η1) = θ(~ξ1)ν1(~γ1) and µ2(~η2) = θ(~ξ2)ν2(~γ2). Applying (4.8.6) and Lemma

4.8.2, the contribution I(ν1, ν2;~σ) is

t(σ̃)

a!

∑
Q

αθ(~ξ1)(σ̃)αθ(~ξ2)(σ̃)
∑

σ0,b,M0

H(σ̃)

∫
M0

ι∗
M0

(ev∗1(ν1(~γ1)) · ev∗2(ν2(~γ2))

eT(Nvir
M0

)
,

where H(σ̃) :=
∏r+1
k=1H(σk, σk) is a product of Hurwitz numbers. Thus, I(ν1, ν2;~σ) is simplified

to

H(σ̃)t(σ̃)
∑
Q

αθ(~ξ1)(σ̃)αθ(~ξ2)(σ̃) 〈ν1(~γ1), ν2(~γ2)〉conn
(a,dEij) .

Adding up all possible I(ν1, ν2;~σ)’s, we obtain

I(ν1, ν2) =
∑
Q

∑
σ̃

H(σ̃)t(σ̃)αθ(~ξ1)(σ̃)αθ(~ξ2)(σ̃) 〈ν1(~γ1), ν2(~γ2)〉conn
(a,dEij) .

Moreover,

〈θ(~ξ1)|θ(~ξ2)〉 =
∑
σ̃

αθ(~ξ1)(σ̃)αθ(~ξ2)(σ̃)〈σ̃|σ̃〉 =
∑
σ̃

αθ(~ξ1)(σ̃)αθ(~ξ2)(σ̃)H(σ̃)t(σ̃).

This implies that

I(ν1, ν2) =
∑
Q

〈θ(~ξ1)|θ(~ξ2)〉 〈ν1(~γ1), ν2(~γ2)〉conn
(a,dEij) .

Consequently, by taking into account of all I(ν1, ν2)’s, we deduce that (4.8.1) equals

∑
〈θ(~ξ1)|θ(~ξ2)〉 〈ν1(~γ1), ν2(~γ2)〉conn

(a,dEij) ,

where the sum is taken over all possible choices stated in the theorem. This finishes the proof.

For partitions µ, ν of n, we denote the Hurwitz number H(µ, ν, (2)b) by Hg
µ,ν , where g =

1
2 (b+ 2− `(µ)− `(ν)) is determined by the Riemann-Hurwitz formula, and we refer to it as the
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double Hurwitz number. In general, it is not easy to obtain a closed formula for Hg
µ,ν . However,

when ν = (n), we have the following fact due to Goulden, Jackson, and Vakil.

Proposition 4.8.4 ([GJV]). Given any partition µ = (µ1, . . . , µ`(µ)) of n. The so-called one-

part double Hurwitz number Hg
µ,(n) is the coefficient of t2g in the power series expansion of

(2g + `(µ)− 1)! n2g+`(µ)−2

|Aut(µ)|
t/2

sinh(t/2)

`(µ)∏
i=1

sinh(µit/2)

µit/2
.

Given nonnegative integers a1, a2, let ga1 , ga2 , g(a) be integers satisfying

ak = 2gak − 1 + `(µk), k = 1, 2

g(a) =
1

2
(a− `(µ1)− `(µ2) + 2).

For k = 1, 2, we put

[µk(~γk)] =
|Aut(µk)|
|Aut(µk(~γk))|

.

Our connected invariants can be expressed in terms of one-part double Hurwitz numbers.

Theorem 4.8.5. Assume that γ1k, γ2`’s are E1, . . . , Er or 1 and β is a nonzero effective curve

class. If β = dEij for some d, i, j and all γ1k, γ2`’s are either Ei or Ej, the invariant

〈µ1(~γ1), µ2(~γ2)〉conn
(a,β) (4.8.7)

is given by

(t1 + t2)(−1)g(a)(−1− δ1,r)`(µ1)+`(µ2)da−1[µ1(~γ)][µ2(~γ2)]

na−2

∑
a1+a2=a

H
ga1

µ1,(n)H
ga2

µ2,(n)

a1!a2!
, (4.8.8)

where δ1,r is the Kronecker delta (which is 1 if r = 1 and 0 otherwise). Otherwise, (4.8.7)

vanishes. Thus, by Proposition 4.8.4, there is an explicit closed formula for the invariant (4.8.7).

Proof. Let r > 1. Each insertion of (4.8.7) is a linear combination of fixed-point classes with

coefficients zero or having nonnegative (t1 + t2)-valuation. According to Lemma 4.5.1, (4.8.7) is

divisible by t1 + t2.

As mentioned earlier, (4.8.7) is a polynomial in t1, t2. So if at least one of γ1k, γ2`’s is 1, the

invariant must be zero because the sum of the degrees of the insertions is at most `(µ1)+`(µ2)−1,

which is the virtual dimension.
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Assume that all γ1k, γ2`’s are E1, . . . , Er, in which case (4.8.7) is proportional to (t1 + t2).

By Lemma 4.5.1 again, the invariant is zero if β is not a multiple of Eij for all i, j.

Now we assume further that β = dEij for some d, i, j. We may evaluate (4.8.7) modulo

(t1 + t2)2, so any T-fixed locus that contributes a factor (t1 + t2)k for some k ≥ 2 may be ruled

out. That is, it is enough to investigate those T-fixed loci defined in (4.4.1) (s = a), which we

denote by F ’s. However, in order for the contributions of these loci to (4.8.7) not to vanish,

the ramification points lying above the distinguished markings must map to xi or xj+1. As a

result, (4.8.7) vanishes if one of γ1k, γ2`’s is Ek for some k 6= i, j. This completes the proof of

the second assertion.

Now we show the first assertion. Let

P = − 1

Li
[xi], Q = − 1

Rj+1
[xj+1].

It remains to evaluate (4.8.7) with γ1k, γ2`’s from Ei or Ej . We check that

Ei ∼ P, Ei ∼ Q

(“∼” means that the difference between the left side and the right side can be written in terms

of classes [xi+1], . . . , [xj ] and 1 as long as we are working modulo (t1 + t2)); similarly,

Ej ∼ P, Ej ∼ Q.

By the vanishing claims just verified, we can replace all γ1k’s with P and all γ2`’s with Q.

The invariant (4.8.7) is not exactly the resulting invariant

〈µ11(P ) · · ·µ1`(µ1)(P ), µ21(Q) · · ·µ2`(µ2)(Q)〉conn
(a,dEij).

Instead, it is congruent modulo (t1 + t2)2 to

J := [µ1(~γ1)][µ2(~γ2)]〈µ11(P ) · · ·µ1`(µ1)(P ), µ21(Q) · · ·µ2`(µ2)(Q)〉conn
(a,dEij).

We can thus execute localization calculations over those F ’s with one more constraint on the

source curve C0: CL0 carries the marking corresponding to µ1, and CR0 carries the marking

corresponding to µ2 because the ramification points associated to µ1 (resp. µ2) are mapped to
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xi (resp. xj+1). This means that in (4.4.1), λ0 = µ1, ρ0 = µ2, and σ0 = (k).

To summarize, we only have to consider such T-fixed loci, denoted by Fa1,a2 , where the source

curve C decomposes into three pieces Ca1
∪ Σ ∪ Ca2

: Cak is a contracted component carrying ak

simple markings, and its unique distinguished marking corresponds to µk; the intersection Ca1 ∩

Ca2
is empty; the cover C̃ak associated to Cak is of genus gak ; and Σ is a chain of noncontracted

components, which connects Ca1
and Ca2

, and the two twisted points of intersection have stack

structures given by the monodromy (n). Note that Cak ’s are twisted points whenever they

contain less than three special points and are otherwise twisted curves.

In this way, we reduce our calculation to the integral over

M(BSn, µ1, (n); a1)×M(BSn, µ2, (n); a2),

followed by division by the product of the automorphism factor dj−i+1 and the distribution

factor a1!a2! of simple marked points.

Let

ε1 : M(BSn, µ1, (n); a1)→M0,a1+2

be the natural morphism mapping Ca1
to its coarse moduli space Ca1

(the node Ca1
∩Σ is mapped

to the marking Q1) and L1 the tautological line bundle formed by the cotangent space T ∗Q1
Ca1 .

Let ψ1 = c1(L1). We define ε2 : M(BSn, µ2, (n); a2)→M0,a1+2 and ψ2 in a similar way.

To proceed, let us summarize the contributions of virtual normal bundles. Set θ = (r+ 1)t1.

• Contracted components: For k = 1, 2, Cak contributes

(−1)gak−1θ2gak−2 mod (t1 + t2).

• A chain of noncontracted components: The contribution of each node smoothing is just

(
t1 + t2
d

)−1.

All other node contributions are

LkRk, k = i, . . . , j + 1,
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each of which equals −θ2 mod t1 + t2. Furthermore, all noncontracted curves contribute

(
t1 + t2
−θ2

)j−i+1 mod (t1 + t2)2.

Hence the total contribution equals

−θ2dj−i(t1 + t2) mod (t1 + t2)2.

• Smoothing nodes joining a contracted curve to a noncontracted curve: The contributions

are given by

1
1
n (nRid − ε

∗
1ψ1)

,
1

1
n (

nLj+1

d − ε∗2ψ2)
.

The contribution Ia1,a2
of the fixed locus Fa1,a2

to J is congruent modulo (t1 + t2)2 to

−θ2dj−i(t1 + t2)
[µ1(~γ1)][µ2(~γ2)]

dj−i+1a1!a2!
θ`(µ1)(−θ)`(µ2) · (−1)a1

θ4

×
2∏
k=1

(−1)gak θ2gak
1

nak−1
(
d

θ
)ak

∫
M(BSn,µk,(n); ak)

ε∗kψ
ak−1
k .

Note that each factor in the second line is replaced with 1 in case ak = 0. Simplifying the

expression yields

(t1 + t2)(−1)g(a)+`(µ1)+`(µ2)da−1[µ1(~γ1)][µ2(~γ2)]

na−2a1!a2!

2∏
k=1

∫
M(BSn,µk,(n);ak)

ε∗kψ
ak−1
k .

For ak > 0, ∫
M(BSn,µk,(n); ak)

ε∗kψ
ak−1
k = deg(εk)

∫
M0,ak+2

ψak−1
k = H

gak
µk,(n).

We conclude that

Ia1,a2
≡ (t1 + t2)(−1)g(a)+`(µ1)+`(µ2)da−1[µ1(~γ1)][µ2(~γ2)]

na−2
·
H
ga1

µ1,(n)H
ga2

µ2,(n)

a1!a2!
mod (t1 + t2)2.

Keeping in mind that (4.8.7) is a multiple of t1 + t2, so we obtain (4.8.8).

The case r = 1 is similar, and so we omit the proof.

By applying the intersection matrix with respect to the curve classes E1, . . . , Er, we arrive

at the following statement which is a little shorter than Theorem 4.8.5.

Corollary 4.8.6. Let γ1k, γ2`’s be 1 or divisors on Ar and β a nonzero effective curve class.
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If β = dEij for some d, i, j, the connected invariant 〈µ1(~γ1), µ2(~γ2)〉conn
(a,β) is given by

(t1 + t2)(−1)g(a)da−1[µ1(~γ1)][µ2(~γ2)]
∏`(µ1)
k=1 (Eij · γ1k)

∏`(µ2)
k=1 (Eij · δk)

na−2

∑
a1+a2=a

H
ga1

µ1,(n)H
ga2

µ2,(n)

a1!a2!
.

Otherwise, it is zero.

Theorems 4.8.1 and 4.8.5 provide an effective method to compute two-point extended invari-

ants of [Symn(Ar)] of nonzero degrees. With the equations in the following proposition, this

also determines the divisor operators as a consequence of three-point extended invariants of zero

degree being determined by the Gromov-Witten theory of [Symn(C2)].

Proposition 4.8.7. Given any classes α1, . . . , αk ∈ A∗T,orb[Symn(Ar)]. We have

〈〈α1, . . . , αk, (2)〉〉 =
d

du
〈〈α1, . . . , αk〉〉, (4.8.9)

and for each ` = 1, . . . , r,

〈〈α1, . . . , αk, D`〉〉 = 〈〈α1, . . . , αk, D`〉〉|s1,...,sr=0 + s`
d

ds`
〈〈α1, . . . , αk〉〉. (4.8.10)

Proof. By definition,

〈α1, . . . , αk, (2)〉(a,β) = (a+ 1) 〈α1, . . . , αk〉(a+1,β) ,

and by the untwisted divisor equation (β 6= 0 or k ≥ 3),

〈α1, . . . , αk, D`〉(a,β) = (ω` · β) 〈α1, . . . , αk〉(a,β) .

These relations yield (4.8.9) and (4.8.10). (Note, however, that (4.8.10) is read as

〈〈α1, . . . , αk, D`〉〉 = s`
d

ds`
〈〈α1, . . . , αk〉〉

for k ≥ 3.)

The sine function sin(u) is a rational function of eiu, where i2 = −1. It is straightforward

to verify that extended three-point functions involving (2) or D` are rational functions in t1, t2,

eiu, s1, . . . , sr by the above equations.
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On the other hand, we treat (4.8.9) as a twisted divisor equation because it provides a means

of pulling the twisted divisor (2) out. If we substitute q = −eiu, we immediately obtain a relation

on differential operators:

d

du
= iq

d

dq
.

With this, (4.8.9) seems quite close to the usual divisor equation. They are still different, though.
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Chapter 5

Comparison to other theories

5.1 Relative Gromov-Witten theory of threefolds

Fix k distinct points p1, . . . , pk of P1. Given a positive integer n and partitions λ1, . . . , λk of n,

let

M
•
g(S × P1, (β, n);λ1, . . . , λk)

be the moduli space parametrizing genus g relative stable maps (cf. [L1, L2]) to S × P1 relative

to S × p1, . . . , S × pk with the following data:

• the domains are nodal curves of genus g and are allowed to be disconnected;

• the relative stable maps have degree (β, n) ∈ A1(S × P1;Z) and have nonzero degree on

any connected components;

• the maps are ramified over the divisor S × pi with ramification type λi. The ramification

points are taken to be marked and ordered.

Given any cohomology weighed partition λi(~ηi), i = 1, . . . , k, we have an evaluation map

evij : M
•
g(S × P1, (β, n);λ1, . . . , λk)→ S

corresponding to the ramification point of type λij over the divisor S × pi. The genus g relative

invariant in the cohomology-weighed partitions λ1(~η1), . . . , λk(~ηk) is defined by

〈λ1(~η1), . . . , λk(~ηk)〉S×P
1

g,β =
1∏k

i=1 |Aut(λi(~ηi))|

∫
[M
•
g(S×P1,(β,n);λ1,...,λk)]vir

T

k∏
i=1

l(λi)∏
j=1

ev∗ij(ηij).
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Let B1, . . . , B` be a basis for A1(S;Z) and B∗1 , . . . , B
∗
` its dual basis. We define the partition

function by

Z′(S × P1)λ1(~η1),...,λk(~ηk) =
∑
g,β

〈λ1(~η1), . . . , λk(~ηk)〉S×P
1

g,β u2g−2sβ·B1

1 · · · sβ·B`` .

However, we are more interested in the following shifted generating function

GW(S × P1)λ1(~η1),...,λk(~ηk) = u2n−
∑k
i=1 age(λi)Z′(S × P1)λ1(~η1),...,λk(~ηk). (5.1.1)

5.1.1 Degree (0, n) case

In this section, we study the following (truncated) shifted partition function

GWu(S × P1)λ1( ~η1),...,λm( ~ηm) = GW(S × P1)λ1(~η1),...,λk(~ηk)|s1=0,...,s`=0.

Like the treatment of the fixed-point basis for A∗T,orb([Symn(S)]), we denote the cohomology-

weighted partition

σ11([x1]) · · ·σ1`(σ1)([x1]) · · ·σs1([xs]) · · ·σs`(σs)([xs])

associated to fixed-point classes by

σ̃.

Evidently, the shifted partition function GWu(S × P1)λ1( ~η1),...,λm( ~ηm) is determined by shifted

partition functions GWu(S × P1)σ̃1,...,σ̃m ’s.

Let i be the square root of −1 appearing in the SYM-HILB correspondence introduced in

Section 3.5. We can translate the three-point shifted partition functions to the three-point

functions of [Symn(S)] and Hilbn(S) by the following equations.

Proposition 5.1.1. For any cohomology-weighted partitions λ1(~η1), λ2(~η2), λ3(~η3),

GWu(S × P1)λ1( ~η1),λ2( ~η2),λ3( ~η3) = 〈λ1(~η1), λ2(~η2), λ3(~η3)〉[Symn(S)](u)

= (−i)
∑3
k=1 age(λk)〈aλ1(~η1), aλ2(~η2), aλ3(~η3)〉Hilbn(S)(−eiu).
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Proof. By Theorem 3.5.2, it suffices show that

GWu(S × P1)λ̃,µ̃,ν̃ = 〈λ̃, µ̃, ν̃〉[Symn(S)](u). (5.1.2)

Both sides are zero if the condition |λk| = |µk| = |νk| for each k = 1, . . . , s is violated. Now

assume that the condition holds. Since the relative stable maps collapse along the S-direction to

x1, . . . , xs, the shifted partition function GWu(S×P1)λ̃,µ̃,ν̃ is simply
∏s
k=1 GWu(S×P1)

λ̃k,µ̃k,ν̃k
.

Moreover, GWu(S × P1)
λ̃k,µ̃k,ν̃k

and GWu(Uk × P1)
λ̃k,µ̃k,ν̃k

obviously coincide. As the equality

GWu(Uk × P1)
λ̃k,µ̃k,ν̃k

= 〈λ̃k, µ̃k, ν̃k〉[Symn(Uk)](u)

is guaranteed by results of [BP, BG] for the C2-case, the identity (5.1.2) follows immediately

from Corollary 3.4.2.

Remark. The functions GWu(S × P1)λ1( ~η1),λ2( ~η2),λ3( ~η3) are elements of Q(t1, t2, e
iu), and we

may also recover the cup product of Hilbn(S) from the limits

lim
u→+i∞

GWu(S × P1)λ1( ~η1),λ2( ~η2),λ3( ~η3).

5.1.2 Ar case

Assume that the partition functions GW(Ar × P1)λ1(~η1),...,λk(~ηk) are defined by using the ba-

sis E1, . . . , Er. Our results in the preceding chapter recover certain relative Gromov-Witten

invariants by the following equalities.

Theorem 5.1.2. For α = 1(1)n, (2) or Dk, k = 1, . . . , r,

〈〈λ1(~η1), α, λ2(~η2)〉〉[Symn(Ar)] = GW(Ar × P1)λ1(~η1),α,λ2(~η2). (5.1.3)

Proof. When specialized to s1 = · · · = sr = 0, the equality (5.1.3) follows from Proposition

5.1.1. In particular, (5.1.3) is valid for α = 1(1)n without the constraint.

For α = (2) or Dk, the coefficients of uisj11 . . . sjrr , where j1 + · · ·+ jr > 0, match up on both

sides of (5.1.3) by a direct comparison of Proposition 4.4 in [M] with our results in Section 4.8.

Hence, (5.1.3) follows as well in this case.
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5.2 Quantum cohomology of Hilbert schemes of points

5.2.1 Quantum cup product

Let ρ∗ : A1(Hilbn(Ar);Z) → A1(Symn(Ar);Z) be the homomorphism induced by the Hilbert-

Chow morphism ρ : Hilbn(Ar)→ Symn(Ar). There are isomorphisms

A1(Hilbn(Ar);Z) ∼= Ker(ρ∗)⊕A1(Symn(Ar);Z) ∼= Ker(ρ∗)⊕A1(Ar;Z).

Let ` be the class dual to the divisor −a1(1)n−2a2(1) on Hilbn(Ar). It is an effective rational

curve class generating the kernel Ker(ρHC
∗ ). For any classes α1, . . . , αk on Hilbn(Ar), we consider

the k-point function

〈α1, . . . , αk〉Hilbn(Ar) =

∞∑
d=0

∑
β∈A1(Ar;Z)

〈α1, . . . , αk〉Hilbn(Ar)
(d`,β) qdsβ·ω1

1 · · · sβ·ωrr . (5.2.1)

Now given any basis {δ} for A∗T(Hilbn(Ar)) and {δ∨} its dual basis. Define the small quantum

cup product ∗crep on A∗T(Hilbn(Ar)) by the three-point functions as follows:

α1 ∗crep α2 =
∑
δ

〈α1, α2, δ〉Hilbn(Ar)δ∨.

Like the orbifold case, we define

QA∗T(Hilbn(Ar))

as the vector space A∗T(Hilbn(Ar))⊗Q[t1,t2] Q(t1, t2)((q, s1, . . . , sr)) with the multiplication ∗crep.

5.2.2 SYM-HILB correspondence

In Section 4.8, we provide a combinatorial description of any divisor operator on the ring

A∗T,orb([Symn(Ar)]). In [MO1], on the other hand, any divisor operator on A∗T(Hilbn(Ar)) is

expressed in terms of the action of affine Lie algebra ĝl(r + 1) on the basic representations.

These two expressions are actually equivalent via the correspondence given in Section 3.5.

We make the substitution q = −eiu as in Section 3.5 and consider the map L there. Put

F = Q(i, t1, t2)((u, s1, . . . , sr)) and K = Q(t1, t2)((u, s1, . . . , sr)).
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The map L extends to a F -linear isomorphism

L : QA∗T,orb([Symn(Ar)])⊗K F → QA∗T(Hilbn(Ar))⊗K F.

Further, we have the following SYM-HILB correspondence.

Theorem 5.2.1. The F -linear isomorphism L respects quantum multiplication by divisors:

L(D ∗orb α) = L(D) ∗crep L(α) (5.2.2)

for any class α and divisor D.

Proof. For cohomology-weighted partitions λ1(~η1), λ2(~η2) and α = (2) or Dk,

〈〈λ1(~η1), α, λ2(~η2)〉〉[Symn(Ar)] = GW(Ar × P1)λ1(~η1),α,λ2(~η2)

= 〈L(λ1(~η1)), L(α), L(λ2(~η2))〉Hilbn(Ar).

Indeed, the first equality is Theorem 5.1.2 while the second equality is Proposition 6.6 in [MO1].

As L preserves Poincaré pairings, it follows from the above equalities that

〈L(λ1(~η1) ∗orb α) | L(λ2(~η2))〉 = 〈L(λ1(~η1)) ∗crep L(α) | L(λ2(~η2))〉.

This implies that L respects quantum multiplication by (2) and Dk’s. The equality (5.2.2) now

follows due to the fact that (2) and Dk’s give a basis for divisor classes.

5.3 The Crepant Resolution Conjecture

Before discussing the full version of Bryan-Graber Crepant Resolution Conjecture, let us study

a simple example.

5.3.1 An example

We would like to give an explicit expression for the divisor operator D1 ∗orb − on the quantum

ring A∗T,orb([Sym2(A1)]). Let us substitute q = −eiu so that

sin(γu) =
1

2i
((−q)γ − 1

(−q)γ
).
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Consider the following basis

B := {1(E1)1(E1), 2(E1), 1(1)1(E1), 2(1), 1(1)1(1)},

whose elements are ordered according to their orbifold degrees. The matrix representation of

the operator D1 ∗orb − with respect to B is given by



2θ(1− 1
1+sq −

1
1+s/q ) iθ( 1

1+sq −
1

1+s/q ) −1 0 0

−2iθ( 1
1+sq −

1
1+s/q ) θ(2− 1

1+sq −
1

1+s/q −
2

1−s ) 0 −1 0

2t1t2 0 −θ(1+s)
1−s 0 − 1

2

0 4t1t2 0 0 0

0 0 4t1t2 0 0


,

where θ := t1 + t2 and s := s1. This is also the matrix representation of the operator

L(D1) ∗crep −

with respect to the ordered basis L(B)(cf. [MO1]).

It is straightforward to check that D1 ∗orb − has distinct eigenvalues. In particular, we have

a basis {v1, . . . , v5} of eigenvectors. By quantum multiplication by D1 and the identity 1, we

find

vi ∗orb vi = aivi, for some ai 6= 0;

vi ∗orb vj = 0, ∀i 6= j.

So by replacing vi with vi/ai, we may assume that {v1, . . . , v5} is an idempotent basis; in which

case,

1 =

5∑
i=1

vi. (5.3.1)

Moreover, the Vandermonde matrix associated to the eigenvalues of D1 ∗orb − is invertible.

In other words, by (5.3.1) the set

{1, D1, D
2
1, D

3
1, D

4
1}

is a basis for the quantum cohomology QA∗T,orb([Sym2(A1)]). Similarly, L(D1) generates the
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quantum ring QA∗T(Hilb2(A1))⊗K F . We conclude that

L : QA∗T,orb([Sym2(A1)])⊗K F → QA∗T(Hilb2(A1))⊗K F

is indeed an F -algebra isomorphism.

This simple example raises the question: Do divisor classes generate the whole quantum ring?

In response to this, one may wish to examine the eigenvalues of divisor operators for bigger n.

This, however, seems a difficult task to perform directly.

If one of the operators (2) ∗orb−, Dk ∗orb−’s turns out to have distinct eigenvalues, the ring

structure will be determined, and L will be an F -algebra isomorphism. The hypothesis has yet

to be entirely verified and may seem a little too good to be true. It is reasonable to expect

something weaker (maybe certain combinations of these operators work).

5.3.2 Nonderogatory Conjecture

We name the following nonderogatory conjecture, but we claim no originality for the statement.

The reader is urged to consult [MO1] for a partial evidence of the conjecture.

Conjecture 5.3.1 ([MO1]). Let L be as in Section 5.2.2. The commuting family of the operators

L((2)) ∗crep −, L(D1) ∗crep −, . . . , L(Dr) ∗crep −

on the quantum cohomology of Hilbn(Ar) is nonderogatory. That is, its joint eigenspaces are

one-dimensional.

Let us briefly explain some consequences of the nonderogatory conjecture on our quantum

cohomology rings. We set

R = Q(i, t1, t2, q, s1, . . . , sr) and q = −eiu.

Since the quantum ring A∗T(Hilbn(Ar)) ⊗Q[t1,t2] R is semisimple, it admits a basis, say

{v1, . . . , vm}, of idempotent eigenvectors summing to the identity 1. Note that the basis elements

are also the simultaneous eigenvectors for L((2)) ∗crep −, L(D1) ∗crep −, . . . , L(Dr) ∗crep −.

Suppose that e0k, e1k, . . . , erk are respectively the eigenvalues of the operators

L((2)) ∗crep −, L(D1) ∗crep −, . . . , L(Dr) ∗crep −
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corresponding to the eigenvector vk. The nonderogatory property ensures that we can find

numbers a0, a1, . . . , ar such that

r∑
j=0

ajej1, . . . ,

r∑
j=0

ajejm

is a sequence of distinct elements. Therefore, the Vandermonde argument given earlier shows

that the element a0 ·L((2)) +
∑r
j=1 aj ·L(Dj) generates A∗T(Hilbn(Ar))⊗Q[t1,t2] R. This implies

that a0 · (2) +
∑r
j=1 aj · Dj generates the quantum cohomology of [Symn(Ar)] over R as well.

We thus obtain the following “corollary”.1

“Corollary” 5.3.2. The divisor classes (2) and D1, . . . , Dr generate the quantum cohomology

ring QA∗T,orb([Symn(Ar)]), and any extended three-point function is a rational function in t1, t2,

eiu, s1, . . . , sr. Under the substitution q = −eiu, the map

L : QA∗T,orb([Symn(Ar)])⊗K F → QA∗T(Hilbn(Ar))⊗K F

gives an isomorphism of F -algebras.

On the other hand, we can match the orbifold Gromov-Witten theory with the relative

Gromov-Witten theory.

“Corollary” 5.3.3. The equality

〈〈λ1(~η1), λ2(~η2), λ3(~η3)〉〉 = GW(Ar × P1)λ1(~η1),λ2(~η2),λ3(~η3)

holds for any cohomology-weighted partitions λ1(~η1), λ2(~η2), λ3(~η3) of n.

5.3.3 Multipoint functions

Once the nonderogatory conjecture holds, all extended three-point functions are known by

“Corollary” 5.3.2. In this situation, we are actually able to generalize “Corollary” 5.3.2 to cover

multipoint invariants. This can be done by proceeding in an analogous manner to Okounkov

and Pandharipande’s determination of multipoint invariants of Hilbn(C2) (cf. [OP1]).

1 Whenever we put a double quotation mark “ ”, we emphasize that the statement or word inside comes with
the hypothesis of the nonderogatory conjecture.
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Let B be a basis for the Chen-Ruan cohomology A∗T,orb([Symn(Ar)]). We recall the WDVV

equation from [AGV2], but we write it in terms of extended functions to better suit our needs.

For the time being, we drop the superscript [Symn(Ar)].

Proposition 5.3.4 ([AGV2]). Given Chen-Ruan classes α1, α2, α3, α4, β1, . . . , βk. Let S be the

set {1, . . . , k}, we have

∑
S1

∐
S2=S

∑
γ∈B
〈〈α1, α2, βS1

, γ〉〉〈〈γ∨, βS2
, α3, α4〉〉

=
∑

S1
∐
S2=S

∑
γ∈B
〈〈α1, α3, βS1

, γ〉〉〈〈γ∨, βS2
, α2, α4〉〉.

Here, for instance, 〈〈α1, α2, βS1
, γ〉〉 := 〈〈α1, α2, βi1 , . . . , βi` , γ〉〉 if S1 = {i1, . . . , i`}.

“Proposition” 5.3.5. All extended multipoint functions of [Symn(Ar)] can be determined from

extended three-point functions and are rational functions in t1, t2, eiu, s1, . . . , sr.

Proof. We may see this by induction. Suppose that any extended m-point function with m ≤ k

is known and is a rational function in t1, t2, eiu, s1, . . . , sr. To determine extended (k+ 1)-point

function, it suffices to study

N := 〈〈α0, α1, . . . , αk〉〉

for α0 = (2)` ∗orb D
m1
1 ∗orb · · · ∗orb D

mr
r , where `, m1, . . . ,mr are nonnegative integers. We may

assume that `+m1 + · · ·+mr ≥ 2 in light of Proposition 4.8.7 and the fundamental class axiom.

Let us write α0 = D ∗orb δ for some D = (2) or Dj . Clearly,

N =
∑
γ∈B
〈〈D, δ, γ〉〉〈〈γ∨, α1, . . . , αk〉〉.

Let S = {1, . . . , k − 2}. By the WDVV equation,

∑
γ∈B
〈〈D, δ, γ〉〉〈〈γ∨, αS , αk−1, αk〉〉+

∑
γ∈B
〈〈D, δ, αS , γ〉〉〈〈γ∨, αk−1, αk〉〉

=
∑
γ∈B
〈〈D,αk−1, γ〉〉〈〈γ∨, αS , δ, αk〉〉+

∑
γ∈B
〈〈D,αk−1, αS , γ〉〉〈〈γ∨, δ, αk〉〉

+ (terms with extended m-point functions, 3 ≤ m ≤ k).

This says that N is determined by lower-point functions and extended (k + 1)-point functions

with a δ-insertion. By replacing D ∗orb δ with δ if necessary and continuing the above procedure,

we conclude that N can be calculated from lower-point functions and is a rational function in
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t1, t2, eiu, s1, . . . , sr. By induction, our claim is thus justified.

“Corollary” 5.3.6 (The Crepant Resolution Conjecture). Let q = −eiu and k ≥ 3. For any

Chen-Ruan classes α1, . . . , αk on [Symn(Ar)], we have

〈〈α1, . . . , αk〉〉[Symn(Ar)] = 〈L(α1), . . . , L(αk)〉Hilbn(Ar).

In particular, 〈α1, . . . , αk〉[Symn(Ar)] = 〈L(α1), . . . , L(αk)〉Hilbn(Ar)|q=−1.

Proof. We suppress the indices [Symn(Ar)] and Hilbn(Ar). The proof of “Proposition” 5.3.5

works as well for multipoint functions on Hilbn(Ar). What makes things nice is that we get

exactly the same set of WDVV equations on both [Symn(Ar)] and Hilbn(Ar) sides via L provided

that we have the equalities:

〈〈α1, α2, α3, D〉〉 = 〈L(α1), L(α2), L(α3), L(D)〉

for D = (2) and Dj (j = 1, . . . , r). But these are clear by divisor equations and “Corollary” 5.3.2.

Thus by a recursive argument, we conclude that L preserves (extended) multipoint functions,

and the first claim follows. The second claim is now clear.

5.3.4 Closing remarks

All “results” discussed above are honestly true for the case n = 2 and r = 1 since the divisor

operator D1 ∗orb − has distinct eigenvalues and determines the orbifold quantum product.

Also, in the definition of the map L, we may choose −i instead of i, in which setting the

correct change of variables is q = −e−iu. As a matter of fact, the transformation

q 7−→ 1

q

takes 〈〈λ1(~η1), . . . , λk(~ηk)〉〉[Symn(Ar)] to (−1)
∑k
j=1 age(λj)〈〈λ1(~η1), . . . , λk(~ηk)〉〉[Symn(Ar)]. To il-

lustrate this, just look at the matrix in Section 5.3.1. There we observe that terms involving q

and 1
q agree up to a sign.

The calculation of [Symn(Ar)]-invariants in Section 5.1.1 gives an indication that these in-

variants might be closer, geometrically and combinatorially, to the relative invariants of Ar×P1

than the invariants of Hilbn(Ar). In reality, it is the form the relative invariants take that mo-
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tivates our calculation. We do know that GW(Ar × P1)λ1(~η1),...,λk(~ηk) can be “reduced” to the

three-point case by the degeneration formula (cf. [M]). It is, however, unclear if the WDVV

equation “behaves” in a similar way to the degeneration formula. At the moment, we expect

that the equality

〈〈λ1(~η1), . . . , λk(~ηk)〉〉[Symn(Ar)] = GW(Ar × P1)λ1(~η1),...,λk(~ηk)

should also be true. Particularly, the usual k-point function 〈λ1(~η1), . . . , λk(~ηk)〉[Symn(Ar)] should

be the coefficient of u
∑k
i=1 age(λi)−2n in Z′(Ar × P1)λ1(~η1),...,λk(~ηk).

On the other hand, for n ≥ 2, the smooth schemes Hilbn(Ar) and Hilbn([C2/µr+1]) are two

different crepant resolutions of the symmetric product Symn(C2/µr+1). Thus, it is quite possible

that the genus zero Gromov-Witten theories of the schemes Hilbn(Ar) and Hilbn([C2/µr+1]) are

equivalent for positive integers n and r (note that the statement is obviously true for the case

where n = 1 as the schemes Hilb1(Ar) and Hilb1([C2/µr+1]) coincide). We will discuss a little

about the Quantum Minimal Model Conjecture, which predicts that there exists an equivalence

between the Gromov-Witten theories of two crepant resolutions, in the next chapter.
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Chapter 6

Ordinary flops

6.1 Preliminaries

Let X be a nonsingular projective variety and Mg,n(X,β) the moduli space parametrizing genus

g, n-pointed stable map f : (C, p1, . . . , pn)→ X of degree β.

We recall some basic notions before proceeding. For i = 1, . . . , n, denote the ith evaluation

map by

ei : Mg,n(X,β)→ X.

There is also a map

ft : Mg,n+1(X,β)→Mg,n(X,β)

defined by forgetting the last marked point and contracting any resulting unstable components.

For i = 1, . . . , n, the map ft carries a tautological section

si : Mg,n(X,β)→Mg,n+1(X,β)

defined by

si([f : (C, p1, . . . , pn)→ X]) = [f ′ : (C ∪ P1, p1, . . . , pi−1, [1 : 0], pi+1, . . . , pn, [0 : 1])→ X],

where [1 : 0], [0 : 1] ∈ P1, and f ′ := f on C but f ′(P1) := f(pi). Let ωft be the relative dualizing

sheaf of ft. We have tautological line bundle

Li := s∗iωft,
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whose fiber over [f : (C, p1, . . . , pn) → X] is the cotangent line T ∗piC at the ith marked point,

and we let

ψi := c1(Li),

the first Chern class of Li.

The virtual dimension of Mg,n(X,β) is given by

∫
β

c1(TX) + (1− g)(dimX − 3) + n.

For α1, . . . , αn ∈ H∗(X), we have the n-point Gromov-Witten invariant

〈α1, . . . , αn〉g,n,β :=

∫
[Mg,n(X,β)]vir

e∗1(α1) ∪ . . . ∪ e∗n(αn).

6.2 The main formula

The main goal of this chapter is to show the following formula.

Theorem 6.2.1. With notation as above,

∫
[M1,0(Pr,d)]vir

e(R1ft∗e
∗
1(OPr (−1)⊕(r+1))) =

(−1)(r+1)d(r + 1)

24d
.

When we set r = 1, we obtain the following equality:

∫
[M1,0(P1,d)]vir

e(R1ft∗e
∗
1(OP1(−1)) =

1

12d
,

which was first computed in physics (cf. [BCOV]) and proved later in mathematics (cf. Propo-

sition 5.2 in [GP]). Also, Theorem 6.2.1 has been independently discovered and proved by Iwao,

Lee, Lin, and Wang [ILLW]. We remark that our proof, dating back to 2007, is totally different

from theirs and is much simpler.

Proof of Theorem 6.2.1

For each i = 0, . . . , r, let Ti = (C×)r+1 act on Cr+1 by

(s0, . . . , sr) · (x0, . . . , xr) = ((s−1
i s0) · x0, . . . , (s

−1
i sr) · xr).
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Now let qi = [0, . . . , 0, 1, 0, . . . , 0] ∈ Pr (1 is the ith component). Denote by

πi : (P∞)r+1 → P∞

the projection onto the ith factor. Let

H = c1(OP(⊕ri=0π
∗
iOP∞ (1))(1)),

ti = c1(π∗iOP∞(1)).

The first Ti-equivariant Chern class of OPr (−1) can be determined as follows:

cTi1 (OPr (−1)) = ti −H.

This means particularly that Ti acts on OPr (−1)|qi trivially.

We denote Ti’s by T if there is no danger of confusion. In order to establish Theorem 6.2.1,

it suffices to show that

∫
[M1,0(Pr,d)]vir

T

r∏
i=0

eTi(R
1ft∗e

∗
1(OPr (−1)) =

(−1)(r+1)d(r + 1)

24d
. (6.2.1)

The rest of the section is devoted to proving (6.2.1). By the virtual localization formula, the

left side of (6.2.1) equals

∑
Γ

1

|AΓ|

∫
MΓ

∏r
i=0 i

∗
Γ(eTi(R

1ft∗e
∗
1(OPr (−1))

eT(Nvir
Γ )

, (6.2.2)

where

(i) Each Γ is a labeled graph, which is actually a connected tree. Its vertices v are labeled

with T-fixed loci of Pr and genera of the corresponding contracted components, and its

edges e are labeled with the degrees de of their images. Moreover, MΓ is the product of

moduli spaces of pointed curves associated to Γ.

(ii) iΓ : MΓ → M1,0(Pr, d) is a finite morphism with image, realized as MΓ/AΓ, a connected

component of M1,0(Pr, d)T. Here AΓ is a finite group of automorphisms acting on MΓ and
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fits into the exact sequence of groups

1→
∏
e

Z/de → AΓ → Aut(Γ)→ 1.

(iii) iΓ(MΓ)’s form a complete set of connected components of M1,0(Pr, d)T.

(iv) eT(Nvir
Γ ) is the T-equivariant Euler class of the virtual normal bundle to MΓ.

The following lemma helps us get rid of superfluous fixed loci.

Lemma 6.2.2. If a labeled graph has more than one edge, then it makes no contribution to

(6.2.2).

Proof. Suppose that such a graph Γ has more than one edge. Let [f : C → Pr] ∈ MΓ, and

consider the normalization sequence

0→OC→ v∗OC̃→⊕
δ
j=1Onj → 0.

Here v : C̃ → C is the canonical normalization map and n1, . . . , nδ are nodes of C.

Tensoring the sequence by f∗OPr (−1) and taking cohomology, we get

0 →H0(C, f∗OPr (−1))→H0(C̃, v∗f∗OPr (−1))
φf→⊕δj=1OPr (−1)|f(nj)

θf→H1(C, f∗OPr (−1))→H1(C̃, v∗f∗OPr (−1))→ 0.

We claim that θf is not trivial. To see this, we examine the map φf . Let C1, . . . , Cm

be (f ◦ v)-contracted components of C̃ and Cm+1, . . . , Cn the noncontracted components. As

H0(Ci, (f ◦ v)∗OPr (−1)) = 0 for i ≥ m+ 1, we have

H0(C̃, v∗f∗OPr (−1)) =

m⊕
i=1

H0(Ci, (f ◦ v)∗OPr (−1)) ∼= Cm.

Moreover, a simple analysis shows that a connected contracted curve has nodes at least one less

than the number of its irreducible components. As Γ is not a one-edge graph, we deduce that

δ > m.

Therefore, φf cannot be surjective, and so θf is not a zero map.
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By the claim, there exists a node nk such that the Ti-weight of OPr (−1)|f(nk) divides

eTi(H
1(C, f∗OPr (−1)) for each i. Because f(nk) = qs for some s, and Ts acts trivially on

OPr (−1)|qs , it follows that

eTs(H
1(C, f∗OPr (−1)) = 0.

That is, Γ does not contribute to (6.2.2).

For a, b = 0, . . . , r, let Γda,b be the one-edge graph with the unique edge labeled with degree

d > 0 and two endpoints labeled with points qa, qb and genera ga = 1, gb = 0:

d
• •
qa

(ga = 1)
qb

(gb = 0)

Figure 6.1. Γda,b.

This is, in fact, a graph in which the source curve C consists of a noncontracted component

Ce ∼= P1 and a genus one contracted component Ca labeled with qa (the vertex labeled with qb

corresponds to a single point). By the above lemma, these are all graphs that can possibly make

a contribution.

To proceed, it is helpful to make use of the identification

H1(C, f∗OPr (−1)) ∼= H1(Ca, f
∗OPr (−1))⊕H1(P1, f∗OPr (−1)),

which, together with the following lemma, enables us to calculate eTi(H
1(C, f∗OPr (−1))).

Lemma 6.2.3. Let λ = c1(H0(Ca, ωCa)). We have the equalities

eTi(H
1(Ca, f

∗OPr (−1))) = −λ+ ti − ta,

and

eTi(H
1(P1, f∗OPr (−1)) = (−1)d−1

d−1∏
s=1

(
sta + (d− s)tb

d
− ti)

for i = 0, . . . , r.

Proof. By Serre’s duality,

H1(Ca, f
∗OPr (−1)) = H0(Ca, ωCa)∨ ⊗OPr (−1)|qa .

This shows the first equality.
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Now set p0 = [1 : 0], p1 = [0 : 1] ∈ P1. We know that Ti acts on (f∗OPr (1) ⊗ ωP1)|p0 and

(f∗OPr (1)⊗ ωP1)|p1
with weights

w0 : = ta − ti +
tb − ta
d

=
d− 1

d
ta +

1

d
tb − ti,

w1 : = tb − ti +
ta − tb
d

=
1

d
ta +

d− 1

d
tb − ti,

respectively, and so

eTi(H
0(P1, f∗OPr (1)⊗ ωP1) =

d−2∏
s=0

sw0 + (d− 2− s)w1

d− 2

=

d−2∏
s=0

(
(s+ 1)ta + [d− (1 + s)]tb

d
− ti)

=

d−1∏
s=1

(
sta + (d− s)tb

d
− ti).

Thus,

eTi(H
1(P1, f∗OPr (−1)) = eTi(H

0(P1, f∗OPr (1)⊗ ωP1)∨)

= (−1)d−1
d−1∏
s=1

(
sta + (d− s)tb

d
− ti),

which proves the second equality.

Now we study the inverse equivariant Euler class 1/eT(Nvir
Γda,b

) for all a, b and d:

(a) Infinitesimal automorphisms of C: At the point where Ce and Ca intersect, the tangent

space to Ce contributes 1, while at the point labeled with qb, the tangent space contributes

tb − ta
d

.

(b) Infinitesimal deformations of C: It comes from the node joining Ca and Ce, and so it is

given by

(
ta − tb
d

− ψ)−1,

where ψ is the first Chern class of the tautological line bundle formed by the cotangent

space of Ca at the node.

(c) Infinitesimal deformations of the stable map with the domain held fixed:
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• Vertices: The vertex labeled with qa contributes

eT(H1(Ca, f
∗TPr))

eT(H0(Ca, f∗TPr))
.

As studied earlier, it is expressible in terms of the Hodge class and ti’s:

∏
j 6=a

(1 +
−λ

ta − tj
).

On the other hand, the vertex labeled with qb contributes

1

eT(TqbPr)
=
∏
j 6=b

1

tb − tj
.

• Flags: The contribution is none other than the product eT(TqaPr) · eT(TqbPr), which

is ∏
j 6=a

(ta − tj) ·
∏
j 6=b

(tb − tj).

• The unique edge: We need to look at the moving part of eT(H0(Ce, f
∗TPr)), which

can be determined by the Euler sequence on Pr. Since a detailed discussion has been

provided in [GP], we just write down the expression:

(−1)dd2d

(d!)2((ta − tb)2d

∏
j 6=a,b

1∏d
s=0

sta+(d−s)tb
d − tj

.

Now we are ready to deduce (6.2.1). By Lemma 6.2.3, we have

r∏
i=0

i∗Γda,b
eTi(R

1ft∗e
∗
1(OPr (−1))) = −λ

∏
i6=a

(−λ+ ti − ta)

× (−1)d−1[(d− 1)!]2
(ta − tb)2d−2

d2d−2

× (−1)(d−1)(r−1)
∏
i 6=a,b

d−1∏
s=1

(
sta + (d− s)tb

d
− ti),

for all a, b, and d.

By our expression of 1/eT(Nvir
Γda,b

), we find that the contribution of each Γda,b to (6.2.1) is given
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by

∫
M

Γd
a,b

∏r
i=0 i

∗
Γda,b

eTi(R
1ft∗e

∗
1(OPr (−1)))

eT(Nvir
Γda,b

)

= (−1)(r+1)(d+1) tb − ta
d

1∏
j 6=a,b(ta − tj)(tb − tj)

×
∫
M1,1

λ
∏
i 6=a

(−λ+ ti − ta)[
d

ta − tb

∑
k≥0

(
d

ta − tb
ψ)k]

∏
j 6=a

(ta − tj − λ)

= (−1)(r+1)(d+1) tb − ta
d

1∏
j 6=a,b(ta − tj)(tb − tj)

· (−1)r
∏
j 6=a

(ta − tj)2 d

ta − tb

∫
M1,1

λ

=
(−1)(r+1)d

24

∏
j 6=a,b

ta − tj
tb − tj

.

As we are dealing with one-edge graph, we have AΓda,b
∼= Z/(d) for all a, b, and d. In other

words, |AΓda,b
| = d. Using the well-known fact that

∫
M1,1

λ =
1

24
,

we obtain

∫
[M1,0(Pr,d)]vir

T

r∏
i=0

eTi(R
1ft∗e

∗
1(OPr (−1)))

=

r∑
a,b=0,a 6=b

1

|AΓda,b
|

∫
M

Γd
a,b

∏r
i=0 i

∗
Γda,b

eTi(R
1ft∗e

∗
1(OPr (−1)))

e(Nvir
Γda,b

)

=
(−1)(r+1)d

24d

r∑
a,b=0,a 6=b

∏
j 6=a,b

ta − tj
tb − tj

=
(−1)(r+1)d(r + 1)

24d
,

where the last equality is a consequence of the following beautiful identity.

Lemma 6.2.4. Given r + 1 variables x0, . . . , xr,

r∑
k=1

∏
j 6=0,k

x0 − xj
xk − xj

= 1.

Proof. Write

R(x) :=

r∑
k=1

∏
j 6=0,k

x0 − xj
xk − xj

=
P (x)

q1 · · · qr−1
,

where x = (x0, . . . , xr), qi =
∏
j≥i+1(xi − xj) for i = 1, . . . , r − 1, and P (x) ∈ Q[x0, . . . , xr].
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First of all,

(x1 − x2)|P (x).

To see this, consider P (x) as a polynomial with coefficients in Q[x0, x2, . . . , xr]. Then

P (x) = (x0 − x2) . . . (x0 − xr)(x2 − x3) . . . (x2 − xr)Q1

−(x0 − x1)(x0 − x3) . . . (x0 − xr)(x1 − x3) . . . (x1 − xr)Q1

+(x1 − x2)S,

where Q1 = q3 . . . qr−1 and S ∈ Q[x0, . . . , xr]. Obviously, P (x0, x2, x2, x3, . . . , xr) = 0. Thus,

(x1 − x2)|P (x).

By a similar argument, all other factors of qi divides P (x) for each i, and the product

q1 . . . qr−1 divides P (x) because qi’s are relatively prime. Hence we deduce that

P (x) = h · q1 . . . qr−1

for some h ∈ Q[x0, . . . , xr]. Note that for each i, the degree of xi in P (x) is at most r − 1 but

the degree of xi in the product q1 . . . qr−1 is exactly r− 1. This means that h is free of variables

x1, . . . , xr and is thus a polynomial in at most one variable x0.

Let us write h = h(x0), it remains to show that

h(x0) = 1.

We need only check the cases x0 = n ∈ Z and xi = i+ x0 for i ≥ 1:

h(n) =

r∑
k=1

(−1)r−1r!/k

(k − 1) · · · 1 · (−1) · · · (k − r)
=

r∑
k=1

(−1)k−1 r!

k!(r − k)!

= −(1− 1)r + 1 = 1.

Therefore, the lemma is proved.

6.3 Minimal Model Conjecture

The motivation behind Theorem 6.2.1 is the Quantum Minimal Model Conjecture, which is

stated as follows.
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Conjecture 6.3.1 ([R]). K-equivalent projective varieties have isomorphic quantum cohomolo-

gies.

In this section, we merely focus on a special kind of K-equivalences, which we now discuss.

Let X be a smooth complex projective variety and X → X̄ a flopping contraction, with the

exceptional locus

Z ∼= Pr,

and the normal bundle

NZ/X ∼= OPr (−1)⊕(r+1).

The corresponding Pr flop f : X 99K X ′ exists and is referred to as simple ordinary Pr flop.

The simple flop may be constructed in this way: Blowing up X along Z to get a morphism

φ : Y → X. The exceptional divisor E of φ is

PZ(NZ/X) = Z ×C Z
′,

where Z ′ = Pr. It can be shown that there is a morphism φ′ : Y → X ′ obtained by blowing

down E onto Z ′, and the normal bundle to Z ′ is given by

NZ′/X′ ∼= OPr (−1)⊕(r+1).

More details can be found in [LLW]. The varieties X and X ′ are K-equivalent since φ∗KX =

φ′
∗
KX′ .

The invariance of the genus zero Gromov-Witten theory under simple ordinary flops has been

demonstrated in [LLW]. Theorem 6.2.1 suggests a similar result concerning genus one Gromov-

Witten theory attached to the extremal ray. In the recent paper [ILLW], a more general setting

is considered, namely ancestors and descendents are both included.

For later convenience of explanation, we introduce the extremal Gromov-Witten potential of

X, which is defined by

〈α1, . . . , αn〉X =

∞∑
g=0

∞∑
d=0

〈α1, . . . , αn〉g,d` q
d,

where ` is the line class in Z ∼= Pr. We define similarly the extremal Gromov-Witten potential

〈−, . . . ,−〉X′ of X ′ but we replace the quantum parameter q with q−1.
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We consider the correspondence

F = φ′∗φ
∗

and set

F(q) = q−1.

Corollary 6.3.2. The extremal Gromov Witten potentials are preserved by simple Pr flops.

More precisely, we have the following equality:

F 〈α1, . . . , αn〉X = 〈Fα1, . . . ,Fαn〉X
′
, (6.3.1)

where X and X ′ are as above.

Proof. First of all, we assume that X and X ′ are not three-dimensional. By dimension reasoning,

the positive degree, genus one, extremal Gromov-Witten theory is completely determined by

zero-point Gromov-Witten invariants, and the genus g theory is trivial for g ≥ 2. Moreover, we

have

M1,0(W,d`) = M1,0(Pr, d)

for W = X,X ′ and the following equality:

∫
[M1,0(W,d`)]vir

1 =

∫
[M1,0(Pr,d)]vir

e(R1ft∗e
∗
1(OPr (−1)⊕(r+1))).

On the other hand, in [LLW] and [ILLW], the degree zero theory and the genus zero theory of

X and X ′ have been determined, and the relations

F(`k) = (−1)r−k`k, k ≥ 1

have also been established. Therefore, our statement follows from Theorem 6.2.1 and a direct

comparison of both sides of (6.3.1).

Suppose now that X and X ′ are of dimension 3. The above argument for genus ≤ 1 also

works but we also need to understand higher genus invariants, in which case, the main formula

for the equality (6.3.1) to hold is simply

∫
[Mg,0(P1,d)]vir

e(R1ft∗e
∗
1(OPr (−1)⊕OPr (−1))) =

d2g−3|χ(Mg)|
(2g − 3)!

, (6.3.2)
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where χ(Mg) is the orbifold Euler characteristic of Mg for g ≥ 2. However, (6.3.2) has already

been shown in [FP]. The proof is now complete.

The Quantum Minimal Model Conjecture is not independent of the Crepant Resolution

Conjecture, which has been studied in the previous chapters. Indeed, if the crepant resolutions

of a singular variety exist, they can be related to one another by K-equivalences. Thus, the

Minimal Model Conjecture also tests the validity of the Crepant Resolution Conjecture.
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