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ABSTRACT

The problems asscociated with the detached
shock wave are considered from the analytical stand-
point in this report. For considering the general case
for the detached shock wave, the non-stationary isen-
tropic differential equation is derived. In general.
the stationary detached shock wave is curved and thus,
the flow back of the shock is rotstional. The effect
of rotational flow upon the velocity snd pressure dis-
tribution over a circular cylinder is analyzed for a
parabolic velocity distribution in the undisturbed
region,

The basic equations for both nérmal and obli-
gue shock waves are presented and the significance éf
these equetions to the problem of detached shock is
discussed. The conditions for the shock wave to be
detached sre presented and the mathematicsl formula-
tion of the Tricomi type of differentigl equation for
the detached shock wave is given.

The first approximetion to the location of the
detached shock wave is derived and the analytical results
are correlated with the experimental dats for spheres
obteined from the supersonic wind tunnel and the ballisé
tic range., The agreement was found to be satisfactory.

The existence and uniqueness of a potentiel
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solution for an infinite wedge with normal detached
shock wave moving at constant velocity is presented,
It is shown that even for en infinite Wedge with normal
detached shock wave the potentisl solution dees not

exist,
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I, INTRODUCTION AND SUMMARY
With the introduction of rocket and gas turbine

jet power plents, the speeds of missiles and sirplasnes have

reached and exceeded the speed of sound, With the aettain-
ment of supersonic speeds, such problems as high tempera-
ture due to high Mach number, flutter et supersonic speeds,
and detached shock weve problems in the transonic range of
Mach number are becoming sericus., If the transition is
rapid through the trensonic Mach number range which can be
considered as being in the range of Mach number of .95 to
about 1.4, the probiams of detached shock wave are not
serious, At the higher subsonic Mach numbers the shock
waves are formed ususlly on the bedy, (Cf, Ref. 1), At s
Mech number of one the shock wave is formed ahesd of the
body énd is detached for all bodies, The detached shock
waves, which sre formed only for the supersonic flow, will
be considered in this thesis, Part of the flow behind such
e detached shock wave is slways subsonic becsuse the shoek
wave 1e normal to the axis of symmetry and at some distance
away frém the normal shock position the flow behind the shock
will be equsal to Macﬁ number of 1.0 and for points on the
shock wave beyond this location the flow is supersonic., The
detached shock wave 1s always curved and thus, the Mach

number back of the shock wave varies from the lowest value
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back of the normel shock wave to the free stream Mach number
at some finite distence from the body where the shock wave
has become a Mach wave due to the interaction of the shoek
wave and the expansion wave from the surface, The flow in
this case will be divided into two regions, the main flow
being supersonic end the subsonic region is bounded by the
shock wave and the,sufface of the body as shown in Fig, 1.
Thus, the problem is slightly different from the lower
transenic flow problem in which the free stream flow is
sﬁbsonie end there i1s a supersonic region imbedded in the
subsonic flow as discussed in Ref, 2,

The mathematical solution to the problem is diffi-
cult becausse of the mixed character of the differentisl
equation., For the subsonic region the differentisl equation
is of the elliptiec type and in the supersonie region the
differentisl equation is of the hyperbolic type., One other
physicel feature of the detached shock wave which makes the
exact enalytical solution difficult to obtain is that the
flow is not irrotational after the detached shock wave be=
cause the entropy is not constent for all stresnlines when
the curvature of the shock wave is large, as for example,
the flow at supersonic speed for blunt body. At lower
super sonic Mach numbers where the detached shock is not

curved sppreciably, the vorticity of the flow after the
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shock wave will not be large., Even without the effect of
vorticity, the solution to the mixed flow problem is diffi-
cult because of the mixed type of differential equation,
There is at present no general mathematical method for sol-
ving such a mixed flow problem, Tricomi in Ref. 3 has con-
sidered the problem and has proven the unigqueness and exise
tence of the solution under certain cnditions, Frankl in
Ref, 4 has shown that for a partieculer mixed flow problem
the solution would be unique, but he did not show how to
obtain such & solution,

If we consider the supersonic flow over a wedge,
as shown in Figs, la and 1b, the shock wave will be de-
tached for free stream Mach number of 1.0 to a critical va-
lue of Mcrl,'which depends upon the wedge eangle, at which
Mach number the flow would be attached to the surface and
part of the flow will be subsonic as shown by the chart in
Ref., 5, For = finité wedge the detached shock wave will be
curved end even for the attached shock wave for the critiecal
Mach number, Mcrl’ the shock is curved as shown in Fig. lb.
The attached shock wave will become straight in the region
from the nose to the intersection of the expansion waves
with the shock for the finite wedge when the Mach number
after the shock wave is equal to one, and we shall call this

the second critical Mach number, Mcrgg For this Masch nume
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ber the pressure distribution over the wedge will become
constant and for higher Mach numbers the pressure will also
remain constant, At Mach numbers lower than this critical
value, Merg, the pressure distribution over the wedge sur-
face will not be constant because the flow has to speed up
from a subsonic Mach number at the nose to Mach number of
one at the shoulder, where the wedge intersects the para-
llel side, At this point the flow will become supersonie
by expending around the corner as a Prandtl-Meyer flow,
which is discussed in Ref, 6., |

The flow behavior for cone with detached shock
waves is very similar to that for a two-dimensionsal wedgs,
Some preliminéry experimental data have indicated that the
transition from the detached to attached condition is rather
graduasl without any large discontinuity as indlicated in
Ref, 7,

Ail‘the sarlier references for analyzing the su-
personic flow over bodies of revolution, as given in Refs,
8, 9, 10, and 11 have considered the disturbances to be
emall so thet the shock waves were always attached to the
body. As soon as the supersonic Mach number becomes low
for a given cone angle and the shock wave was detached, the
above results would no longer apply. For supersonic flow

over two-dimensional bodies with sharp leading edges, the
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flow was also snalyzed from the standpoint of small dis-
turbence as given in Refs, 12, 13, and 14, Agein, as soon
as the shock wave beceme detached the-results would no
longer apply 5ecause the method did not give the solution
for the detached shock cbnditionso
Recently there has been some work done to analyze

the supersonic flow with detached shock waves, In Ref, 15
a numerical method was used to solve the subsonic region
for simple bodies, In obtaining these sclu@i@ns, assump=
tions were made with regards to the sonie line and the vor-
tieity, Guderley discussed the nature of flow condition
with detached shock wave in Ref, 16 and he obtained some
mathematieal relationships for the problem by neglecting
vorticity and using an approximation to the shock polar,

| The detached shock wave 1s in general a function
of the free stream Mach number, wedge or coneé angle at the
nose, and angle of attack. If a double wedge airfoil or
other sharp nosed airfoil is in a supersonic flow with
attached shock wave, the shock wave will become detached as
soon as‘the sngle of attack reaches a definite value for
a given supersonic Mach number. If the deflection is high
enough for moveables control surfaces such as aileron, rudder,
or elevator at supersonic speeds, a detached shock wave

will form and the flow will become of the mixed type again,
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subsonic flow imbedded in the supersonic flow., For missiles
and airplanes, it is very importent to be able to predict
the assrodynamic characteristics with detached shock wave
for bodies, 1ifting surfaces and moveable control surfaces,
in order to be asble to determine the serodynamic loads for
structursl design purposes and to predict the performance
and dynamic stability. This problem is becoming more seri-
ous becsuse the speeds of the latest research and military
airplsnes sre approaching and exceeding the speed of sound,

The problem of detached shock wave was first no-
ticed by the writer when 5"-HVAR rockets with 10% biconvex
wings with pressure orifices were fired to obtain free
flight aerodynamic déta for supersonic and %ransonic Mach
numbers, The maximum velocity ettained by these vehicles
was sbout 1,9 at launching end decressed tosbout .75 Mach
number before striking the ground. The pressure dats was
telemetered during the flight and the vehicles were tracked
with Redar to obtain the altitude snd velocity during the
flight. At the supersonic speeds where the shock wave was
sttached to the airfoil the agreement betwéen the theory and
flight dete for the varistion of the pressure coefficient
with Mach number was feirly good, but for the transonic
renge of Mach number, the pressure veriation with Mach num-

ber was exsctly opposite to thaet predicted by the linear
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supersonic theory, as shown in Ref. 1%,

The present analytical research work was under-
taken to obtain some informetion about the behavior and
characteristics of detached shock waves. The ultimate ob-
jective of the research project is to derive g theory for
predicting the complete aerodynemic characteristics of
bodies end lifting surfaces with detached shock wave, This
cbjective is extremely difficult to obtain immedistely due
to the mathematical difficulties encountered in solving
mixed flow problems snd also to the lack of adequaete experi-
mental data on detached shock waves,

The present Thesis gives some of the results that
were obtained for the prbblems of detached shock waves, In
Section II the general differential equation for non-sta-
tionary adiabatic flow is developed as well as the non-
stationary differentisl equation for vorticity in & com-
pressible fluid. The general non-stationary equation was
developed in detail because of later applicastion of the
equation for anslyzing the detached shock wave for an in-
finite wedge in Section VIII,

Section III is devoted to investigate the effect
of vorticity upon the velocity and pressure distribution
over a bédye The flow behind e detached shock that is curved

is rotational and also subsonic for a definite region bounded
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by the shock wave and the body. To obtain some idea about
the effect of vorticity for subsonic flow, psrsbolic velo-
city distribution at infinite distance shead of the body
was sssumed for an incompressible flow. The effects of ro-
tational flow upon the velocity and pressure distribution
for the circular cylinder with and without circulation were
investigated.

In Section IV the conditions for a propagating
normal shock wave sre discussed in detail, For 2 given con-
dition ghead of the normal shoék and velocity of propegstion,
the conditions behind the shock were determined in a conven-
ient form for investigating the detesched shock wave. The
resulte presented in this Section were applied for determin-
ing the first approximetion to the detached shock wave
distence from the body in Section VII.

Section V is devoted to the investigation of the
stationsry oblique shock wave., Various suthors have dis-
cussed the oblique shock wave theory, but in this Section
the shoeck polar for the oblique shock wave is shown to be
of fundamental importance in anslyzing the flow back of the -
detached shock weve, By the use of the shock polsr the vel-
ocity megnitude and direction at the detached shock wave can
be determined. Also, the Mach number at which the shock

would attach to the pointed body can be determined from the
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use of shock polar, For sharp-nosed, finite‘two-dimensiomal
bodies, the Mach number at which the veiocity and pressure
becomes constant over the nose can be determined from the
shock polar, ©Shock poler for oblique shock wave plays an
important part in formuleting the boundsary condition for

the mixed flow problem or for the region behind the detached
shock wave. The results discussed in this Section are used
in Section VI for the investigastion of the condition for the
shock wave to become detached from the body.,

In Section VI, the results présented in Sections
IV and V are applied for the investigation of the physicsal
conditions, shape and types of flow for detached shock wave
for finite and infinite wedges, A detailed discussion of
the detached shock wave in the physicel snd hddograph planes
for a twéndimensional finite wedge is presented in this Sec-
tion., The significance of the critical Mach numbers is
given in terms of the shock polar, The differential equation,
which is the type first considered by Tricomi in Ref, .3, for
the flow behind the detached shock wave is discussed,

In Section VII e theory for the first approxima-
tion to the distance between the nose of a symmetricsl body
at zero angle of attack is presented, The assumption is
made that the curvature of the detached shock is small and

thus, the flow behind the shock 1s assumed to be irrotational,



=10=

The theory is applied to determine the first approximetion

to the shock distence for circulsr cylinder and sphere with
and without the correction for the compressibility effects,
The correlation of the predicted and actusl detached shock

distence for the sphere is discussed,

In Section VIII the detsched shock wave for an
infinite wedge is investigated by considering the non-
stationary differential equation of motion for compressible
fluid., The flow is sssumed to be isentropic and adiabatie
back of the normal detached shock wave, It is also assumed
thet the normal shock wave propagetes away from the nose of
the wedge at constant velocity. With these assumptions the
general non-stationsry differentisl equation is transformed
into non=-dimensional ststionary differential eguation., From
the analysis of the existence and uniqueness of a potential
solution for an infinite wedge with normal detached shock
wave moving at constant speed, it is shown that no potential

flow exists back of a detached shock wave,



IT. WNON-STATIONARY ISENTROPIC DIFFERENTIAL EQUATION

- A, Fundamentel Equations and Assumptions

The hydrodynamicel equation of general two-
dimensional motion in terms of the Cartesisn coordinste
system is given as discussed in Refs, 18 and 19 by the

vector equation,

LG _
Sh=-fre,

where the differentisl operator in the expanded form is

Ot 40y
7. 0 . - 200,49
Of 73 -/-5 7( ) = + U

(2 .yt
¢ Jx Jy

The body forces, viscosity, and heat condition are ne-
Zlected in the consideration of the fluid motion to sim-
plify the anslysis, The Eq. (2.1la) c¢en be expanded and

be written as

J_-

p *8-?

Y

2-FvR (2.1b)

or in terms of the vorticitngi=vxiﬂ we have

J - =
;f-gxﬂ:-}{—VP—VE&z. (2.1¢)

From the condition of conservation of the mass,
we have the continuity equation

or

5rtVi(rg)=o0 (2.28)
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or in ths expended form this equation hecomes
;‘L’-;-ffv.g—-fvaf: 0. (2@2“0)

Thus, this cen be written in another convenient form

__..ffv.i:o' (2;26)

which is used often in the analysis of the fluid flow,
 For the steady flow the;% terms dissppears; and thus,

the equation becomes
PVF+ g PP=0,

To obtain the relationship between the pressure
and density, we shsall assume the flow to be adiabatic,

then we have

;i = constant, (2,3)

where

b= é% , ratio of the specific heats., The
flow process taeskes place rapidly so there can be no heat
conduction, and thus, the adigbatic zssumption is good
es indicated by the experimental data., We shall also
agsume the fluid to be a perfect gas so the equation of

state relating the pressure, density9 and temperature

takes the form
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£
7 R7 (2.4)
where £ is the gas constant. The velocity of sound in

the fluid medium is given by

at= 4= 27

dp P (2.5)
for an adiebatic flow,
B. Non-Stationary Vorticity Differential Equation
To obtein the differential equation for the
vorticity, which is necessary in the analysis of flow
with vorticity, operate on the equation of motion, Eg.

(2.1c), with VY4 to obtain

J/VX-)- S ) = = [t
-—-—-Zdz va(FaA) = VXC,VP)

or IR A ‘
gJe J) = —-,_7 P avd
52 vx(§an) y rXVP

If the pressure is a function of the density, ‘the general

vorticity equstion for the compressible fluid becomes

27 _ o o o
ot =vi-fnvg (2.6)

Crocco in Ref., 20 obtained the differential equation for
the vorticity for a steady compressible flow and Vazsonyil
in Ref, 21 obtained the non-stationary differential equa-
tion for the vorticity in 2 slightly different form than
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BEg, (2.86),

The BEg., (2.6) gives the raste of change of vor-
ticity of a fluid psrticle as 1t moves about in the
region. For the incompressible fluld the second term
on the right hand side of the equetion does not exist
because the divergence of the velocity is equal to zero,
This equation also shows that if the fluid particle does
not have vorticity et a particular time, the vorticity
will alwsys remain zero unless some discontinuity such as
curved shock wave 2nd coefficient of viscosity not equsl
to zero will produce rotational flow alter the shock,
Once the fluid pérticle has vorticity, it will continue
to be a rotational flow.

C. Velocity Potentisl for Irrotetional Flow
If the flow is irrotational, Vx§==0 , it is

possible to introduce the velocity potential which is given

by
(4) fé'd‘ (2.7)
¢ = Lar, ®
4 1

The gradient of this velocilty potentisl gives the velo-

city

™y
n
N
AN
N
Q
xls
[N
4
Lra
<ls
o
A %
Ay}
@
C
[}

where
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g
1]
5
I

(2.8b)

<
n
Ot

The equation of motion, HEg, (2,1b), becomes for an irro-

iy
w0

tationel motion in terms of the velocity potential

JP 2
V=+vs_ . _.~Lpp
It -éz- Vel .

This can be integrated in terms of The space derivetives

to obtain
2
g*g#/;—{—’: F/f}, (2@93)

where A is en arbitrary function of time, And for an

adisgbatic flow, the integrsl can be expressed as

P
LV (2.10)

which 1s the expression for the enthalpy of the gas
£ ,
7= c,Tfff:-f-;. (2,11)
Thus, Egq. (2,9a) becomes

= £, (2,9b)

D, Non-Ststionary Differential Equation for Irrotetional

end Isentropic Compressible Fluid,

To obtain the general non-stationary differential
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equation in terms of the velocity, multiply the equation
of motion, Eq. (2.1b), by g. |

+g-[§-°8]=

~
“Lﬁl

- g_

\|~

since a=2
o9
Substituting the expression for &;f’ from this eguation

into the continulty equation (2.2b), we obtain

Fgoog Bt - A7 05l

or
Frarvi-7 -1 1505]=0 (2.12)
By taking the = of Eq. (2.9b) we obtain the expression
%’,«f;/}‘),f‘g_#w (2.13)

for F/#H=constant, which is valid if the velocity poten-

tial is teken to be independent of time, g.;= , in the

undisturbed region. Substitute the expression for 353?

from this equation into Eq. (2.12) to obtain the non-

stationary differentiasl equation for the veloclty,

""‘01

\.‘L

+25.-58+5.[§5:78]= a*v.], (2.148)

where @ 1s determined by Eq. (2.5).

For an isentropic irrotational motion, the diff-
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erentiallequation for the velocity potential can be ob-

tained by substituting g§=-ve into Eg., (2,14a) to obtain

j{’:,«z\?p vi‘i-fv;o V(ZL—?)—avwa (2,15a)

One can seé that due to non-stationery motion there are
two extra terms appesring in Egs. (2,14a) and (2.15a),
which are the varistion of the velocity and the second
derivative of the velocity potentisl with respect to time,
Since it is necessary to consider these equations in de=-
teil for the solution of}%%tached shock wave for an in-
finite wedge, it will be convenient to write Eqs, (2,14a)
and (2,158) in terms of the two=dimensioﬁal»velooity COmM=

ponents instead of using the vector form, The equations

becoms »
JU AV ‘JU Jv JU X )y LY =

J{dz/u WL )sutsh v uvsk +UVJy *ij @ /.a:*ay (2,14%b)
and

Pl ¢ Ji |, Jp S l-)‘# 2@ ¥ )¢

Jnt? /JX gt " ay .ay.w) X+ * 20 Jj JXIY

2%
+ (5, ..yx—a/m* (2.15b)

The right hend terms ccn be transferred to the left side

to obtain.

Ity v L gy 2« rls Ju L g4 JY o ]
J,.*z/" +vdf)+(u @) 55 U g (v a) 3= 0 (2,14¢)
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and
J"P J¢ J'¢ 2L Dt Y a3 SYIEY 3
Jit Z/Jx o’ 7y Jy)f) / ) ¢]Jx‘*24X %‘ijgy [7;)“0‘]:’7]{_‘10.(2@15@)

The general solubtion for the velocity potential
is extremely difficult ot obtain because the equation 1is
non=linear and also to the fact that there is another ine-
dependent variable, time, being introduced. The solution
of the stesdy state condition, which does not have the
partisl derivative with respect to time, is very difficult
and only special casés have been solved analytically as
discussed in Ref, 1,

If the velocity potentisgl is tsken to be inde-
pendent of time for the undisturbed region, the partial
derivetive of the velocity potential with respect to time
will be equal to zero, i{:o , for the undisturbed region
end the value of £/ for Eq. (2.9b) will be egual to @

constent,. The Eg., (2.9b) for this condition becomes

—-—2 -_—t- P- = =
e _g_ o F S F(H = A= conrtonl, (2.9¢)

At infinite distance ahead of the body in the undisturbed

region, 2{:-0 , the velocity, pressure and density will be

3

constent, g , 2 , end » . The constant of Eq. (2.9¢) in
terms of these quantities is given by

2

. =

=1

blog

= A, (2.186)

IR
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The velocity of sound for the stagnation con=

dition in the undisturbed region can be determined by

using the energy equation for the compreseible fluid and

is given by

L : a,‘ z r-t pg?
a‘,:(r-///gu;:}:o,/u TM’]; (2.17)
at= rP
where . " = 77

and M.%- is the Mach number of the undisturbed flow,
Prom Eqs, (2,16) a2nd (2.17) we see that the constant ean
be expressed in terms of the stagnation velocity of sound

for the undisturbed region as follcws
53-—0-2— . (2018)

The local velocity of sound for non-stationary
flow csn be determined from Egs, (2,9¢) and (2,18), and

the result is

or
et= 0,‘//— (5 {- ’%}1“7"'], (2,19b)
where 4%

FPor o steady flow condition, the local velocity of sound is

given by the first two térms of Bq, {(2,19b) and the varia-
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tion of the velocity potential with respect to time does
not exist, In terms of the velocity potential the Eqg,

(2.19b) becomes
2_ g2/, (0 /.4_2 "+/J¢)‘]_ (k1) 28 2.19e¢
0 = & 4 20;, X J; "a.z o+ ( g oa v)

Thus, the value for a can be solved by using this equa-
tion and by substituting Eg. (2.19¢) into Bq. (2,15b),the
velocity potential appears explicitly as the only depen=-
dent wvariable,

In deriving the non-stationary partial differen-
tial equation for the velocity potential, Eg. (2.15b), it
was assumed thet there was no disturbance which would
cause rotational flow, The differential equation will hold
for region back of discontinuity, such as normal shock wave,
if the vorticity is equal to zero, With vorticity the so-
luﬁion to the fluid flow must be obtained by solving the
vorticity equation, Eq., (2.6). The general non-stationary
differential equation for an isentropic irrotational flow
was derived for the velécity potential since the equation
was necessary for the analysis of the detached shock wave

flow for aen infinite wedge in Section VIII,
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IITI, PFLOW WITH VORTICITY

When the shock wave is not attached tc the body
at supersonic speeds, the detached shock wave intersects at
right angles the axis of symmetry for a symmetrical body at
zero angle of attack., In the general case the detached |
shock is aslways curved and at some point the shock wave is
normael to the free stream flow direction, The detached
shock wave gradually curves and becomes equal to the Mach
angle at some finite distance from the finite body, With
such a curved detached shock wave, the Mach number is sub-
sonie back of the nofmal part of the wave and the Mgeh num-
ber af@er the shock wave becomes equal to the free stream
Mach number where the ghoak'wave angle is equal to the Maech
angle, The subsonic region of flow for a wedge with a
detached shock wave is shown in Fig, la. PFrom this fig-
ure it 1s seen that the subsonic region for & two-dimen=
sional wedge is bounded by the detached shock, wedge sur-
fece to the corner and the soniec line that gees from the
corner toe the shock weve, Within this region the flow is
subsonic, but it is also rotational because of the curved
shock weve which causes the entropy to vary for the stream-
lines, The Mach number after the normel part of the shoek
wave is slways subsonlc and becomés more subsoniec as the

free stream becomes more supersonic. The relatlionship be-
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tween the Maéh number after the normal shock and the fres
stream Mach number will be discussed in Section IV,

In order to obtain more information regarding
the effectsJOf subsonic rotational flow after the detached
shock, en snalysis was mede for an incompressible flow with
paraboliec distribution of velocity aﬁ infinity. The vore
ticity distribution in thie case will be a linear function
of y in the undisturbed reglon of the flow., Tsien in Ref,
22 had studied the effect of linear velocity distribution,
which corresponds to constant vorticity, upon the aero=
dynamic characteristics of Joukowsky Airfoil., Kuo in Ref,
2% hed considered the same problem and used snother method
to derive the Blasius? equations for flow with constant
vorticity.

The problem of flew with parabolic velocity dis-
tribution is slsc encountered in & wind tunnel 1if the velo-
city is not constant in the test section. The effects of
this type of flow upon the loads on objects in the duct
where the velocity distribution is not constant at the
station where the object is placed csn be estimsted by ep-
plying the anslysis that will be presented in this Sectiom,
A, Fundementel Equstions snd Assumptions

It will be assumed that the flow is incompressible,

constent, steady, non-viscous, and two-dimensional, The
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genersl dynamicsl equstion of motion wss shown in Section

II to be

_.!-’xvtz —--—PP V.& (231@)

C
For an incompressible two-dimensional flow the equation

becomes
-gxAl=-v(2+ 8 (3.1)
where
A= vxf= (%-3) £, (8-2)

Now For the steady flow condition the Eq., (3.1) reduces to

Frr=v(f+E£) (3.3)

since =0 . It can be seen from this equation thst if

the vorticity is equal to zero, =0 , the right hsnd term

must be equal to a constant,
;{1* :g‘ = consbtant (3.4)

which is the Bernoullils equation for the incompressible
fluid, To show that the vortlcity for a steady flow must

be permanent, operste with Vx on Eq, (2,1¢) to obtein

+§PANVG ~NAVF

TjL
Ibl
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which becomes

4

./Z~\7§'-ﬁ_v-§' (3.5a)

QP,
L[]

This equation gives the rate of change of vorticity, 2,
as the particle moves sbout, For a two-dimensional incone

pressible motion, the vorticity equation becomes

.0_..-:0

o )‘ (395%)

since the veloeity does not vary in the direction of the

vorticity, and for & stesdy motion, the equation reduces to
g-vn=0, (3.5¢)

which shows that the vorticity of the particle does not
chenge as the particle moves, If the flow is irrotastional,
./'Z-=Pxf=0 , the flow will alweys remsin irrotationsl un-
less vorticity is produced by e discontinuity such as a
detached shock wave or any other similsr dlsturbence which
produces non-uniformity in the energy for the streamlines,
These considerations have shown for a two-dimen-

sional incompressibia motion that the vorticity is constant
for esc¢h streamline, Consider the case where the velocity
distribution at infinite distence shesd of the body is
parabolic, ”

uzu.(/-rk_:_’;) (3.6)

v=o |,
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where 4 1s a non-dimensionel constant, C 1is s representas
tive length of the body, and U, is the undisturbed flow
velocity along the x-gxis, The vorticity st x=-cc ean be

determined from Eq, (3,6) and is given by

C
v _Ju_ LUk
JX Iy 4 ce 7, (3,7)

which is a linear function of y
The equation of dontinuity for steedy ineomﬁfess«

ible flow is

<ly

it (3.8)

A stream function, ¥ , which satiefies this equetion is

introduced snd is defined by

us 2¥ J V:‘—‘%‘L". (3.9)

Substitute this into Eq. (3.2) to obtain the vorticity

equation in terms of the stream function;

rx, ) .
3f§*;;f=’J1. (3.108)

Due to the fact that the vorticity is associated with the
perticle and maintains the strength, each.streamline at
infinite distance away from the body will have a definite
vorticity and will maintain the strength throughout the

field, Hence, the vorticity equation can be considered ss
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I ¥ _
ST o W (3.100)

and the problem reduces to solving this equation with the
proper boundary conditions., The general solution for this
equation is very difficult to ocbtsin, We shall sssume thet
the velocity curvature factor, £ , is small and slso that
the disturbance dus to the body is smell such that the
deflection of the streemlines is smell, If the velceity
curvature factor, 4 , is equel to zero, which would corr-
espond to e uniform velccity distribution at «=-.o, the
Eqg, (3.10a) for the stream function reduces to the Leplace
equation,

For the undisturbed region the stream function

can be determined by using Eqgs, (3.6) and (3.9) and is

%1 {y+ 2 (3.11)

The vortieity equation for the undisturbed region is

I :

22U &
+ £ Lol
X '

el (3,128.)

<
K

|
|

-
<
~

\S

and from Eg, (3,11) y can be expressed in terms of the un-

disturbed stream function, ) , 80 that Eq, (50125) becones

Lkl 7V (3.12b)
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To simplify the solution of the problem, we shall
introduce the stream function ¥ which is due to the pres-

ence of the body and is defined as

Y= V:;‘%‘ (5013)

But substituting this equetion into Eq. (3,1Cb), the gen-

eral vorticity equation becomes
PU%r¥)= Fl%+Y) (3.142)

and by substituting the relstionship given by Eq. (3.12b),

the equation for ¥ becomes
Y= AEe¥ )= Fl¥) (3,14Dp)

The right hend side of this equation can be approximated by
the use of derivative for smell disturbence due to the

presence of the body so that Eq, (3,14b) becomes

sy - dF(K) | _
¥ 7 ¥ . (3.14¢c)

It is seen by comparing Egs, (3.12a) and (3,12b) that

Aixs= 128y (3.15)
for a parabolic distribution of veleeity at infinite dis-
tance ghead of the body, By using Egs, (3,11) and (3,18)

the derivative of the A¥with respect to ¥ is
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a

/
= & (3.16a)

C [ k/{;] :
If the value of £ is small such that

X%

k..cg;<</.0
the right hand side of Eq. (3.16a) cen be expanded to obe
tain

¥
R R AL ] = (3.16D)
The Eq, (3.14¢) becomes after substituting Eg, (3,16b)

Vi 2 et 1% (3,17)

[ Y Y

Since it wes assumed that 4 small and slso the disturbance
stresm function ¥ was smell, the product of these terms
will be second order so will be neglected for the first
approximation, Thus, Eq, (3.17) for the first approximstion

becomes

3% L SE .
x"“@i-o' {5918}

which is a Leplace equation# Hence, the solution of this
equation combined with the undisturbed stresm function will
give the first spproximestion to the solution of the basie
Eq. (3.1Cb). In this Section the first spproximetion solu-

tion for the vorticity flow over eirculsr cylinder will be

% The second gspproximestion for the disturbence stream function
is obteined by considering Eq. (3.17) with the first term on
the right hend side and the solution is expressed in terms of
the modified Bessel functions.
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preseﬁt@d@
B, Circuler Cylinder in Shear Flow
If the circulsr cylinder is located at the ori-
gin as indiceted in Fig. 2, and the radius is teken to be
g s the undisturbed velcecity « at any point in the fluid
is

2% 2
u= 7= Lf,[/-/—k?“_’; . (3019}

And on the surface of the cylinder the vslue of ) in terms
of the angle is

y:%Jl?’ﬁ_
Thus, the undisturbed velccity on the surface becomes in

terms of the poler coordinate
u= Ui [ 1+ Keaim’8] (3.20)

At the surface the normal component of the resultant fluid
velocity must be equal to zero; hence, the normel component
of the velocity due to the undisturbed velocity must be
equal and opposite to the normel disturbance veloecity due

to ¥ . The normel velocity st the surfeces produced by
¥ is

%= UcosB= U, [cos8+ Ly coss] | (3.21a)

which becomes by using trigonometric relations
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Y= U[(H- Jcos 6 - Aco::é} (3 21b)

The normsl veloclty component due to the disturbence stresm

function is

R

|

S~
L

9
= e),.=% (3.22)

and this must be equal and opposite to the value given by
Eg, (3.21b) to satisfy the boundary condition et the sur-

face,

2 J¥ £ -4

The solution of the Laplsce equation for the
disturbance stream function which must venish st infinite dis-

tance awey from the body is

¥= u‘[o.,/o';r té, 5"‘2 (Gncosnb +b,,.rm»)ﬁ)—- , (3,24)

n=y¢

where 4,5 and 4,5 are undetermined coefficients, To de=
termine these cosfficients, substitute this eguation into
Eg, (3,23) to obtain

o
. /
{;g l,;[“fz (~nanSinndt+ nb,cosns)—o f = - [(/7‘/-1('2} cos &
L 2rd

1]

(3,25)

Since there is no sine term on the right hand side of this

equation, the coefficients, 4, , must vanish, The coeffi-
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cients that do not vanisgh are

=- (&) 1+ £
[z/ (/1‘/‘) (5326)

¥
4= (3

Sl

Hence, the resultant stream function is
Yz ¥+¥ 2, [rsiab +;_C'_;‘J/‘ﬂ;9]+ Us [‘[{'}l(""/i:) 'L;;ﬂ"g (3.,272a)

¥ 24
5 ezt ]

Y= Uo{[r—a‘.(/-f <) ].;/m9+_'f ——;m¢9+ C Jm.w]} (3.,27b)

which is similar to the expression obtained by Tsien in
Ref, 22 for constant vorticity distribubtion., At the sure

£ and substie-

face of the eylinder which corresponds to +=3

tuting this into Eq. (3.27b), the result is

which satisfies the boundary condition for the circulsr
eylinder, The tangentisl velocity at any point can be cal=-
culsted by mesns of Eg, (3.27b) end is equel to

v=-X=-1. [//7‘—[/1‘ ‘]:/hﬁ*ée-[-‘%?‘ﬂ"?’ﬂ (3.28)
8~ ok

- 2¢ J/n.!&]

T2 ¥ .

The normal velocity on the surface vanishes since

V: ;!—%) :0
r /I‘Ja":%
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end by substituting r= % into Eg. (3.28), the velocity on the

surface of the cylinder is given by
(l/&}r:yz—U;{(.zf;%).u'né-ff(.n'”fa--,‘_/,";_ff)]. (3,29)
(A

At the stagnation point the velocity is zero, which corr-

esponds to (%) =0, and this occurs at #-2 and 7 for sall

%
velues of £ : These locations are the same as for the
flow without vorticity snd this should be expected since
the parabolic velocity distribution at xs=-e is symmetrical
about the x-axis, PFor uniform flow at infinite distance

aheed of the cylinder, the velocity on the surfece of the

cylinder is given by
{V”;% == 2U, 578, (3.30)

which can be obtained by placing 4z0in Egq. (3.29). This
meens that the solution for the veloecity on the surface
given by Eq. }(&29) will approach in the limit as £ ap-
proaches gerc, which corresponds to the flow becoming irro-
taetional, the correct value for the uniformh flow at infini-
tyo

It is interesting to determime the location for
the meximum velccity on the cylinder for flow with linesar
vorticity distribution. To obtain the location and the

magnitude of the maximum veloecity, differentiate the Eqg.
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(3,29) with respecs to & and set it equal to zero and

solve the equation for & as

sl

=-y'.[(¢.,/_l‘=_)¢°,a+-$‘(3.r/4‘&co:9— -7_‘_‘;;:_3_‘9}}=o_ (3,31)

By utilizing the trigonometric relationships, the equation

reduces to

(2 f;‘_‘k) cos B~ 32—/-‘ cos’=0.

Thus, the real soclution of this equation is
cosb=0, (3.32)

This meens that the meximum velocity locations are for b=z Z

which corresponds to the intersections of the cylinder with
the y-axis and is the same location as for uniform flow

without vortiecity. The magnitude for the meximum velocity
on the surface of the cylinder is obtained by substituting
9=¢_g'int@ Eg, {3.29) and the result is

(p)pos =-Usl2#F4) (3,33)

z
Therefore, the maximum veloclity on the cylinder is a fune~
tion of 4 which depends on the vorticity of the undis-
turbed flow, If we let 4-oin this equation, which would
correspond to uniform flcw, the maximum velocity becomes

equal to twice the free stream velocity,
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In‘considering the detached shock wave, it is
important to determine the effect of vorticity upon the ve-
locity distribution s2long the negetive x-axis, Only the
radisl velocity exists along the x-axis since it is the
exis of symmetry. The radial velocity at any point 1s given
by |

V:-’&-g‘//;ﬁ- L{/fk) ]“;y.,_[.!—'.}.r/n‘éco.re

_c__’_’ 2cos3¢ co:.?e ]
.z.rc

‘Along the negative x-axis, &= 7, and therefore, the equa-

(3,34)

tion hecomes
tt’
byuit e[~ 5 1K1 5] K55 (3.55)
If we let #-o in this egquation, the result is

‘/rezg':-U"(/-— 1‘/“') b (5056)

which is the correct expression for the flow without vor-

ticity., For a given ratic of K%f”g the location on the

(-]

negative x-axis of this velocity ratio will be farther
awey from the origin for the rotational flow than for the
uniform velocity es can be seen by comparing Egqs, (3.38)
and (3,36). In other words, the effect of wvorticity heas
made the location for a given decrease in free stream ve-

locity farther away than for the case of uniform flow.
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Co Circular Cylinder with Circulation in Flow with Vor-

ticity

Consider the case of circulsr cylinder with cir-
culation in an incompressible flocw with persbolie veloecity
distribution at y=-o0 as indicated in Fig. 2,

The stream function for a two-dimensional vortex

motion is
K=5= 97 , (3.37)

where 7 1s the strength of the circulaetion end will be
considered positive for the clockwise direction, Since
the circulation does not affect the normal velocity at the
surface of the c¢ylinder, the resultant firsﬁ approximation

stream functicn will be the sum of Eqgs, (3.27b) and (3.37),

T

Y= Y+Y+¥ = U, [[r—ﬁ.(/-f )£ ]sin 6 » £[En"6 (5,38)

c” .;m-?tﬁ’] Al /o_9r
.2.}"

This equation will satisfy the boundary condition of no
flow across the surface of the cylinder as previocusly,
The introductiom of the circulation is {o introduce snother
term to the stream function.

The tangentlial velocity is obtained by differen-
tiating Bq, (3.38) with respect to »r , and is
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=-2¥ . Vi £ - ;
B=-777 L’o{[/—l'é(/-*/-z)-};‘]flhﬁ + }é/_oz_g‘.fm-'ﬁ

-3¢ s5cn3é ]
256 ¥ 27n— ’

On the surface of the cylinder, the velocity is obtained

(3.39)

oy substitubingr=5in this equation, and the result is
=- L) K [oe - $endéy) _ _~ "
()5 =~ Vo[ 1275505076 + £ [s's - 2238]) - 2 (5.40)

The stagnetion points on the surfece can be determined by

placing Eg, (3.40) equel to zers and solving for & and the

equation for determining £ is

o .
(2- —}Jlﬂ¢9+-2—.r/n9+”cu 0. (3.41)
The solutions to BEg, (3,41) are:

Sin B, (AHB 6)
sin 6= 4 (W Hr w8 -4) (3,42)

J,‘”a.r: —.;—/wﬂ-v‘w".@-é) 3

where
3_ o [ -sur s EATA
ﬁ-Z{ch°k WCUk)+/06( )] }
~” SR b «_ 41314
8= 3 {5~ [lmczn) « 100 (%) ]
-+ 877
w=
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Hence, 1t can be seen that the lccaticn of the stegnestion
point depends upon the vorticity £ , eirculation »~ end
the velocity & o

The pressure distribution on the surface of the
cylinder in shear flow cen be determined by applying the
Bernoulli's equation, For each streamline the value of

the constant given by

L, 2" = constant

Vel 2
must hold for incompressible flow and the value of constant
will be different for each streamline depending upon the
vorticity. If there is no vorticity, the constant will
be the same throughout the field, For the streamline along

the x-8xls, the equation for pressure on the surface of

the cylinder is given by

gt 4r = Petr V; (3,43)
end the pressure coefficient is
P-A v
( = ‘= /- —a (59%4)
Y 2 4 ,

- Substitute Bg, (3.40) into Eq. (3.44) to obtain the pressure

coefficient on the surface as

p 2
G =/~ [ f(247)sm8 * 2 [rn%6 - -L’_"g'?-’]j-f;::]_&_: (3.45)
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‘This equation shows that the effect of vorticity, 4 , for
the same circulation strength is to make the pressurse co-

efficient more negative than for the flow without vorticity,
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IV, CONDITIONS FOR PROFPAGATING NORMAL SHOCK WAVE

Por detached shock wave at supersonic speeds, the
shock will be normal té the axis of symmetry for e symmetri-
cal body and for general case the shock will be normal to
the free stream direction at some point on the detached
shock wave, When the shock wave is normal to the free
stream velocity, the velocity aft of the shock will be sube
sonic. The relationships for the normal shock wave which
are useful for the analysis of the detached shock wave will
e presented in this Section., In Refs, 5, 24, and 25, a
discussion of the normal shock wave is given, For the first
approximation of the distance shead of the body for the
detached shock wsve on the axis of symmetry,fthe condition
for the normal shock wave propagating into fluid at rest
is used aend the detailed derivation of this epproximetion
is presented in Section VIZ,
A, Genersl Propagating Normal Shock Wave

The general case of normal shock wave will be dis-
cussed in which the shock wave is assumed to be moving at
constant velocity and the velocities in front end back of
the shock wave are finite, It will be assumed that the
flow is adisbatic and steady and that the viscosity snd heet
conduction effects are neglected,

With these assumptions, consider the case where
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the flow is in e duct as shown in Fig. 3, with conditions
shead of the shock designated by subscript { )y, snd for
conditions after the shock wave designated by subscript

( )o and the normel shock wave is propagating et a con-
stent velocity 4 . To simplify the analysis, introduce
the relastive motion of the fluld with respect to the moving

shock wave which is given by

~
Y

'4‘: “/"‘th (49J=)

where (=/,2 refers to conditions before and after the shock
wave,

Prom the conservetion of the mass, the mass flow
per uniﬁ time across the shock wave must be constant., The

continuity equation is

LYY=y =m | (4.2)

2 J

where » 18 the mass flow through the shock wave for unit
time, The conservation of the momentum across the shoeck

is given by

e pits €02 K° (4.3)

which involves only the relative veloclties with respset
to the shock, The third equetion is the condition for the
conservation of energy and is

(4.4)

: ., -
f‘ffll:zyd 'f(zl
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where ¢ is the enthalpy of the gas

- P__r P
(=2 G 7+ L
v 7.

These three equations, Eqs, (4.2), {4.3), and (4.4) are
sufficient to determine the three unknown quantities «,,

£ s and A2 o, It is important to notice that for a gen=
eral normal shock wave the velocities relative to the shock
wave determine the conditions efter the shock, Since only
relative velocities are involved in these bassiec equations,
the shock conditions esre invarisnt under the translstion
with constant velocity.

The change in the relastive velocity across a nore

mal shock cen be found by using the three basic equations

to obtain

E L3
Ho & =
V-¥ < (4-¥) 5 7y 7 TR (4.5)

(% ’

where 4, 13 the velocity of sound for /7= fcdo@ The solu=
tions o this equation are
and

V= a' (4.6)

The first solution is a triviel case and the second one is

used to obtain the relationship between the velocites in
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front and back of the normasl shoek wave, The Mach number

before and after the shock is given by

/f—M
/\41"; =2, (4,7)
rr - Lt
4 z
where /7= £  and 4 - 2# » The Mach numbers are based

“e o

upon the flow velocities relative to the shoeck wave and the
equation is identicael for the case where the shock wave is
steticnary, 4 -0 . 1In terms of the Mach number of the

relative velocity with respect to the shock, the change in

velocity across the shock is given by

l{"/ AR /‘”/‘
/ ‘//I/‘//'-r‘/// Aza.) - (498)
For supersonic¢c Mach numbers, /7 >/0 , this equation shows

that the velocity across the shock always decreases,

The increase in pressure across a shock is given

(%

This equation shows that the pressure increases across the

by

= 7 Per (17* 7. (4,9)

shock and thus, the wave in a supersonic flow must be a com-
pression shock. In terms of the Mach number shead of the

shock, the increase in density across a normal shock is

given by
L-r mi7/
= = L 2 4010
5 = s (4.10)
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B. Propagating Normgl Shock Wave in a Fluid at Rest

The eguations derived in the previous part were
based upon the fluid being in motion both ahead and after
the normal shock and also the shock wave was propagating
et constant velocity 4, . For the ease where the fluid
ahead of the shock is at Pssﬁ and the shock wave 1s moving
through the fluid, the velocity &, is equal to zero, but the
velocities ¢ 2nd «, sre not equal to zero, It was shown
thaet as long as the state 4~ , £ , and 7 ahead of the
shoek and the velocity of the propagation of the normal
shock wave are known, the stete after the shock is unique-
ly determined, Hence, the solution to the problem is ob-
tained by substituting ¢=0into the equations derived for
the genersl normal shock wave condition, Assume that the

shock wave is propagating from left to right as shown in

Figs 8. The equation for |/ becomes

l{.‘: ul— ‘f:—ét ‘ (4911@)
and
M = .{L‘
! /"f (4,11Db)

where qﬂ:ﬁg? , the velocity of sound for the undisturbed
4
flow ahead of the shock wave,

Due to the normasl shock wave propagating at s
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constant veloclty into the fluid st rest, the velocity
of the fluid after the shock also moves at constant velo=
¢ity end in the same direction as the shock wave, The in-
croment of velocity imparted by the normal shock to the

fluid is obtained by using Eg. (4.8) and the result is

u,z /,—j—,)/M;;ff 4 (4.12)

or ”;_A /'7/}"//

Pl

Thus, knowing £, and 4 , the increment of velocity lmperted
by the shock to the fluild cen be calculated by this equa=
tion., When the propagation velocity is equal to the speed
of sound for the undisturbed flow, the increment of velo-
city imparted to the fluid 1s zero and this corresponds
to the propagation of sound. For spronger shock waves,
which would correspond to a definite value for ,, the
propagation velocity will be supersonic, Explosion waves
and other similer disturbances must travel at speed greater
than the speed of sound for the undisturbed flow,

The increasse in the pressure scross the shock

wave can be determined by Eq. (4.9) end the resuit is

(_r::_;;_/?/z 7—%//;5/‘- /] (4.13)

and the pressure ratio is
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The increase in the density across the shock is obtained by

using Eq. (4.10) and is expressed by

- 4,
/’f 7)< (2~ (4.14a)
g /ﬁffy(ﬂ/j
2 V4
and the density retio is

22 1) L2
T esg)]
These basic equations, Egs, (4.12), (4,13), and
(4,14), for propagating normal shock wave into an undis-
turbed fluid region indiééte that if the staste ahesd of
the shock wave and one of the parameters for ﬁh@ state of

the fluid after the shock are known, the propagation velo=

eity can bs determined; The propagation velocity is given

by

b= (%) /15) 0 + 4 (4,22a)

2 22l ) [B=F
4 ”’//:/3%//7;‘/ (4.22b)

/+ L0
Zf= o/ﬂ //./j/l’—e (4922@)
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For determining the normal shock wave location ahesd of a
given body, the increment of veloeity, Eq. (4.12), produced
by the moving shock wave will be utilized in Section VII,
Por supersoniec Msch numhers c¢lose to one, the de-
tached shock wave is nearly normal with very littls cur-
vature, Thus, the normal shock wave results presented in
this Seection can be utilized, At higher supersonie Mach
numbers the detached shock waves are curved so the normal
shock weve results cannot be applied except where the
shock is actuelly normal to the free stream velocity. The
curved shock wave will be considered in the next Section

from the standpoint of the shock polar,
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V. BASIC EQUATIONS AND SIGNIFICANCE OF SHOCK POLAR
In the investigation of thé flow conditions ime-
mediately behind the detached shock wave, the shock polar,
which is disucssed in Refs, 5, 24, and 25, is very impor-
tant and thus, will be considered in deteil in this Section,
The condition for the shock to become detached as the Mach
number is lowered for a given sharp nosed body is clesarly
given by the shock polar, Also some idea about the subsonie
region behind the detached shock wave can be gained by us-
ing the shock polsr. In the physicsl plane the shape and
location of the detach@@ shock are very difficult to deter-
ming mathematicelly because of the mixed flow nature of the
boundary condition, but in the hodograph plane the shock wave
corresponds to the shoek polar, This brief discussion illu-
strates the lmportance of the shock polar iﬁ the study of
the detached shock wave,
A, PFundamental Equations for the Obligue Shock Wave
| It will be assumed in the present enalysis for
the obligue shock wave that the shock is stationary, the
flow is steady, the viscosity end heat conduction effects
are neglected, and the process is adisbatic., The obligue
shock wave can be analyzed by considering it bo be moving
at & constant speed and the flow before and after the shoek

having a finite constant velocity, similar to the general
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analysis of the normasl shock wave in Section IV, The flow
will be assumed to be two-dimensional in the derivation
of the shock polar, Even for three dimensional shock wave,
the shock poler will apply to determine the state varia-
bles back of the shock in terms of known state vaﬁiabl@g
ahead of the shock, because a local element of the three-
dimensional shock is spproximately a two-dimensionsl shock,
With these assmmptions, a supersoniec flow over a
two-dimensional corner as shown in Pig, 4 with the origia
placed at the corner will be considered, At the corner there
mast be an obliquse comprgssion shock to change the flow
direction so that the flow after it crosses the obligue shock
will be perallel to the surface. The change in the velo-
city direction is caused by the obligque shock, It will be
assumed that the angle of the corner is such that the ob-
1ique shock is sttached snd straight,
To obtain the basic equations for the obligue
shock, consider an element of the shock as shown in Figs.és
By considering the conservation of mess across the shock,

the continuity equation is
Pu,oin 8,5 £ (U, sin By~ 4 cos By)= m (5.1)

where the subscript 1 refers to the uniform condition a-

head of the shock and subscript 2 refers to the condition
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immediately behind the shock and &, is the obligue shock
wave sngle, The velocities «Vv and v's are the ccmponent
of the velocities in the x and y directions,

The conservation of the momentum in the direction

normal to the shock wave is given by
/I,f/‘,”’:-,,-”"ywz /;-,‘/;/‘/&J/‘/Iﬂw'l/‘fd-'i.v/‘ (5,23)

and the conservation of momentum parallel to the shock is

given by
puteinbycosB, = f(Niin 8- K cosBy)(heo by boenb)  (5.2D)

For an ediabatie process the conservation of energy across

the shock wave, according to Eq, (4.4) is given by

. |
Yy r Bttty et B0 0" ;
PR R AT e ) Fes constand, (5.3)

The boundary condition on the surfaece requires
that the velocity after the shock be parallel to the sur-
face and thus, the relation between the flow deflection
eangle & and the components of the velocity after the shock

is giveﬂ by

tan &= = (5.4a)

P

Egs, (5.1) end (5.2b) give the condition that the welocity

parallel to the shock wave i1s not altered by the compression



shock since there is no force ascting in the tangential
direction end hence, the tangentisl velccity relation is

given by
Vyp= Uy €05 b, =t co38y +V, sin By (65.5)

This mesns that only the normal velocity to the shock wave
is altered from supersonic to subsonic speed., Thus, the
flow across an oblique shock wave is always deflected to-
wards the shock. The velocity after the oblique shock wave
may be supersonic or subsonic depending upon the magnitude
of the initiel velocity and the deflection engle. The

shock wave angle can be expressed as

fo” aw': ul‘;u‘ (596)

Eqs. (5.1), (5.2a), (5.2b), (5.3), and (5.4a) are
the five equations neceséary to solve for the five unknowns
for the oblique shock wave, 4 , £, 4, 4 , and &, for given

B s L s U s and & . To obteln the shock polar, it is
necessary to eliminate 6. , £, and 2 from these basic

equations and obtain the equation relating the velocity

as function of u, and u,

v (- ) (5.7a)

&
(7-%7 PRSI NR N NI

2
K_ = ‘“1"“;)

This equation gives the velocity component ¥ in terms of



u s U, and &', PFor a given flow problem «, end &, are
known and it is desired to solve for ¢, and y that will

satisfy this equation., The equation can also be written as

&
K=¢(M-%§/r2--% (5.70)
—_—
2
2 ¢, ?:/".. o, .

I

B, Physiecal Significance of Shock Polar

Eg. (5.,7a) is cubic in terms of ¢, and is sym-
metrical about the u-axlis. The shock poler is obtained by
plotting Eq. (5.72) in the hodograph plane which has « snd

v as the coordinate axes, For each value of the free
stream veloéity 4, with constent criticel velocity o ,
there will correspond in the hodograph plane a particular
shock polar curve as indicested in Fig, 5. The oniy part
of the shock poler that has any physicsl significence 1is
plotted in FigerS, With the use of the shock polar it is
possible to determine the conditions after the oblique
shock for a given free stream velocity end the deflection
angle., A convenient shock polar diagram for anelyzing the
flow after obligue shoek is given in Ref, 5,

The - shock polar is divided by the critical sonic
velocity 4, into two regions as indicated by Fig. 3. For
region within the circle with radius g=% » the flow after
the obligue shock wave is completely subsonic. For region

outside the eirecle the flow after the obligue shock is
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supersonie, When the free stream velocity is equal to the
eritical velocity 4, , the shock polar degenerates into a
point at @ of Fig., 5. For all other supersonic speeds the
shock polar will exist. The shock angle with respeet to

the free stream is given by the angle PTM of Pig, § ss shown
by Eq. (5.6). As the flow deflection sngles become smaller
and the flow is supersonic after the shock, the shock angle
6, epproaches the Mach angle which correspondes to a weak
disturbance,

For a given flow deflection of the supersoniec ve-
locity ¢« , there are two possible oblique shoeck waves
which corresponds to two points of intersection with the
shock polar, A and 7 , as indicated in Fig. &, /Thusg
there will be two shock wave angles which will produce the
same flow deflection, At point 7 the fliow after the shoeck
is supersonic end the disturbance is not large, At point A
the flow is subsonie after the shock and the shock wave
engle is close to being normal to the free stream, The dis-
turbence corresponding to point A is large and is approach-
the normal shock condition, There are two values for &, when
there is no flow deflection, points A2 and K of PFig, &, At
the point ~2 , ¢=-¢,, and there is no change in veloclity
which corresponds to & Mach wave, At the point & the velo-

city is subsonic and the shock wave is normal to the free
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stream veloclty., As the flow deflection angle inecresses,
there is s maximum deflection angle for s given free stream
veloeity end this point corresponds to a tangent to the shoek
polar as indicated by £ in Fig, B. The point of tangency
to the shock polar will slways be in the subsonic region,
For all shock corditions given by points on the are £ A~, the
shock wave is weak since the flow is close to Mach number
of one from £ %o J and supersonic for the region § to 2,
The shock condition given by the arc £< of the shock polar
corresponds to the strong shock since the velocity after
the shoek is subsonic and thus, the disturbance due to the
shock is large, _

For a two-dimensional body with atta@h@d‘shoak
wave, the shock corresponds to the weak shock, When the
flow deflection angle for alﬁinit@ wedge exceeds the maxie
mum velue for a given free stream supersonic veioeity, the
shock wave will be detached and curved, the detached shoek
wave is represented by both strong end weak shoecks, and in
the hodograph plene tae shoeck wave corresponds to the shoek
polar, 5P of Fig, 5. For an infinite wedgs with the
wedge angle greater than the meximum deflection sngle for
a given free stream velocity, the d@tached she k wave will
not be stationary as will be discussed in Section VIII,

The curved detached shock wave may be considered to be come
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posed of small elements of oblique shock waves, The flow
behind each point of the detached shock may be determined
from the shock polar and thus, the flow immediately behind
the detached shock can be completely determined even though
the region is not uniform, This is the fundamantal impor- |
tence of the shock polar for the study of the detaeched shock

wave problem,



VI. DETACHMENT CONDITIONS FOR SHOCK WAVE
In the two previocus sectionsg, the basic equa=-

tions for the normsl and obligquse shock waves were discussed

e
o

from the physicsl standpoint., These results Ltogether with

[

&

o

some of the methewaticsl knowledge sbout the mixed flow
problem presented in Refs, 3, 4, and 16 will be used in
the present section to discuss the condition, shepe, and
types of flow for detached shock wave for wedges and cones,
The flow et infinity will be assumed to be steady and uni-
form and that the effects of viscosity and heat conduction
are negligible,
A. Mathematical Problem for Detached Shock Wave

With the detached shock wave as shown in Figs.6a
and @b Tor physical and hodograph plenes, the boundary cone-
ditions of the flow is reduced to the mixed sub- and.sﬁp@rm
sonic flecws, The region ABCO is subsonic imbedded in the
supersonic flow for the rest of the region, If the super=-
sonic free stream Mach number is close to unity, the detached
shock wave will have small curvature and the vorticity back
of the shock will also be small., For this condition, if the
vorticity of the flow 1s neglikible, the velccity potential
and stream function cen be used to snalyze the flow back of
the detached shock wave, With these sssumptions the follow=

ing differential equation for the stream function was obe
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tained by Prankl in Ref, 4.

(8.1)

where ¢ is a function of the velocity end is given by
(2p+0”

:/ (/-'r)'::r
T 2T
=
£=3
r= £
ol .
_ I~ (2870)
7T

and é 1is the inclinaetion of the velocity. Thus, when the
veloeity is supersonic the value of K is negative and when
the velocity is subsoniec the value of K is positive, Hence,
it can be seen that the differential equation is hyperbolic
type for supersonic region and elliptie type for subsonie
region, The mathematicael problem for determining the flow
over a wedge with detached shock wave of small curvature
reduces to solving Eg, (6.1) in the region AOCDB of the
hodograph plene as indicated by Fig., ©b with the proper
boundary condition, The Egq., (6.1) is the type that was
first considered by Tricomi (Cf. Ref, 3 ) in which he
proved the uniqueness and existence of the solution, In the
region for which the solution té Bg, (6,1) is desired, the
segment AB of the boundery is part of the shock poler, OA is
the segment of the u-axis, 0C is the side of the wedge, CD
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and BD are segmeénts of the characteristics, B and ¢ are
points on the soniec eircle,

Frankl in Ref, 4 has shown that for a wedge angle
less than 54 degrees the Eq, (6.1) has a unigue solution,
but did not show the method for obtaining this unigue solu=
tion, Guderley in Ref, 16 has treated the seame problem
and by using the epproximate shock polar was able to show
that the transition of the shock wave from asttached to de-
tached condition was continuous., This reference slso doses
not give the soclution for the two-dimensional edge with de-
tached shock wave,

Since the mathematical solution to Eq, (6.1l) is
difficult to obtain, a discussion of the physiceal condition
for the shock wave to become detached and the condition beck
of the detached shock wave will be presented in this section.
B, Detached Shock Wave for Pinite Wedge

For s two-dimensional wedge as shown in Fig, %é,
the shock wave becomes detached from the nose for a partie
culer free stream supersonic velocity when the angle of the
wedge exceeds the maximum deflection angle, When the shock
becomes detached, a stagnation 1s formed et the nose of the
wedge, Up to the maximum critical flow deflection there was
no stagnation point at the nose because the obligue shock

was was strong enough to deflect the free stream veloelty to
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coincide with the surface of the wedge,

From the shock polar it is seen that the pres-
sure on the wedge surface will be constant if the Mach
number Mg back of the oblique shock wave is supersonic or
equal to unity. The shock wave is asttached to the nose snd
is straight up to the point on the shock wave where the
Prandtl-leyer expansion waves from the corner, (Cf. Fig,
Ta), intersects the shock wave., The shock wave will be
curved in the region where the expansion waves from the core
ner interact with the shock wave,

When the Mach’numbar after the oblique shock is
equel to unity or the free stream Mach number M= .,
the shock wave from the nose will be straight and the angle
of the wave is given by the shock polar, The shock wave
will become curved when the expansion wave from the corner
intersects the shock wave, Thus, for this case there is a
triasngular region OCB (Cf. Fig, 7o) in which the Mach num-
ber is constent snd equal to 1l.0. The pressure on the
wedge surface must also be constant. In the hodograph plane
of FPig., Bb, the region 0CB of the physical plane corres-
ponds to a point B,

For the wedge angle, point 0 in Pig, Te, which is
between the meximum critical flow deflection and the defleec-

tion for which M =40, the Mach number after the obligue
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shock is subsonic., The flow on the surface must speed up
from the subsonie speed at the nose to Mach number of 1.0
at the corner., Thus, the pressure on the surface will not
be constant but will become less positive as it approaches
the corner, The shock wave will be attached to the surface
as shown in Fig, 71 but will be curved even before the exe
pension waves from the corner intersect the shock wave be-
cause of the decreasing pressure om the wedge surface,
Th@_sh@@k wave angle at the nés& ls given by the shoek po-
lar. In the hodograph plane of Pig., 7e¢, the region OCB of
the phygiéal rlane does not correspond to a point 2s in the
previous case, but corresponds to the regiom BOCD with (D
and BD being & segment of the chracteristics, The differe
ential Eg. (6,1) must be solved for this region.

The maximum deflection point, which corresponds
to point L of Fig,  and to free stresm Mach number, M, ., ,
the shock wave is sttached but it 1s sgain curved before
the intersection of the expansion wave from the corner with
the shock wave., The velocity is subsonic et the nose and
must speed up to Mach number of 1.0 at the corner; hence,
the preassure on the surface will not be constsnt., To de-
termine this pressure distribution over the wedge, it is
necessery to solve the Eq., (6.1) in the hodogrsph region
BUCD' of Fig, 7e. The subsonic region in the hodograph
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plane as shown by Fig, 7¢ is larger than for the wedge engle
less then the meximum criticsl flow deflection,

For all wedge angles larger than the maximum de=-
flection angle, the shock wave becomes detached (Cf. Fig.
B2) and in the hodograph plane the mixed: flow region is
represented by AOCCDB as shown in Fig., 6b, At the nose for
these cases there is s stangation point. The detached
shock weve will be normsel at the exis of symmetry snd will
curve snd become equael to the Mach wave st a finite dis-
tence from the wedge. The shock wave is curved even before
the expsnsion wave from the corner intersects the shock
wave, The flow condition through this detached shock wave
is given by the shock polar, ABE of Fig, 8b., The strong
shock wave 18 represented by the arc of the shock poler
from the meximum deflection angle point to the intersection
of the shock polar with the u-axis, The segments in the
hodogreph plane CD and BD are characteristics whieh start
from the sonic cirecle., To obtain the distribution of the
pressure on the wedge surfacé, it is necessary to solve the
Eq. (6.,1) in the region AOCDB with the proper boundary cone
dition, This equation ise for en irrotational flow so the
curvature of the detached shock wave should not be large
for the solution of the equation to give reasonable agree-

ment with experimental data., The rotational condition of
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the flow aft of the shock wave should be considered in ob-
taining the exact solution to the flow region AOCDB., Vhen
the supersonic free stream Mach number is close to unity,
the detached shock wave will become more normel and the
curvature will be smell, PFor this condition the flow beck
of the shock wave will have small vorticity which may be
neglected and conseguently, the solution to Eq; (6,1) should
give eclose sgreement with experimental data,

As the wedge engle epproaches 180 degrees, the
region of subsonic flow in the hodograph plane becomes lare
ger for s given supersénie flow., In the physicel plane
the subsonic region will be larger and thus, the shock will
be located at greater distance sway from the nose and the
region with neerly normel shock wave will slsc be larger,
For these large wedge asngles, the shock will be detached
to a higher supersonic Mach number ss indicated by experi-
mental date for spheres given in Refs, 26 and 2%,

C. Detached Shock Wave for Infinite Wedge

The shock polesr applies to flow over an infinite
wedge, The difference in the flow back of an attached
shock wave for & finite and infinite wedge is that for ean
infinite wedge the velocity and pressure on the wedge sure
face 1g constant even though the Mach number after the

shoek ie subsoniec, This difference in the flow aft of the
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atteched shock wave is caused by the lsck of corner to ine
fluence the shock wave for the infinite wedge, If the Mach
number after the shock wave is less than 1.0, the velocity
after the shock will be uniform and constant, The flow back
of the shock is represented by the singular point in the
hodograph plane, Thus, there is only uniform supersonie
flow ahead of the shock end uniform subscnic flow efter the
obligue shock., The obligue shoek wave will be stréight
end will not be curved as for the finite wedge,

The problem of determining the subsonic flow
after the attached obligue shock wave f@rran infinite wedge
reduces to the shock poler snd it is not necessary to solve
the Tricomi problem Eq, (6.1) as for the finite wedge, If
the shock wave is attached, the pressure and velocity on
the surfsce of the infinite wedge can be determined from the
shock polar without any difficulty. Hence, the Tricomi
problem for the mixed flow condition simplifies es the
wedge becomes infinite,

For the meximum eritical deflection condition,
the obligue shock wave will be attached to the nose for an
infinite wedge with uniform subsonic flow sfter the shock
wave, For the finite wedge at thie same condition the
shock wave will be sttached to the nose and will he‘curved

eas indicated in Fig, 7d., Thus, the flows over the infinite
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end finite wedges with the same wedge angle and free stresm
supersonic Mach number at the meximum eriticsl deflecticn
condition is not the same,

When the deflection engle exceeds the maximum
eriticael valuwe, the shock wave for the infinite wedge must
become detached., Since the infinite wedge has no finite
length, the detached shock wave will not be fized at any
particular point but will move eway from the nose, For the
case of finite wedge, the detached shock wave wes located
at some finite distance awsy from the nose, the distance
depending upon the wedge sngle, length, end the free stream
supersonic Mach number, The detsched shock waves for the
infinite end finite wedges with the same wedge engle are
entirely different. A more deteailed analysis of the de-
tached shock wave for en infinite wedge is given in Section
VIII, PFor the finite wedge the detached shock wave csn be
analyzed by solving BEq, (6.1), which is for the stationary
condition, For the infinite wedge the detached shock wave
must be analyzed from the general non-stationary differen-
tiel ‘equation, Eg, (2,15¢) discussed in Sectien II., &
perticuler type of sclution for the infinite wedge with
detached shock wave is presented in Section VIII.

D, Detsched Shock Wave for Three-Dimensicnal Cone

For a finite cone the shock polsr can agein be
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applied to determine the flow after the oblique shock wave
as for the two-dimensionsl problem, The principsl differ-
ence between the two-dimensional wedge problem and the axisl
symmetricel cone problem is that for the cone the flow
must be anslyzed from the stsndpoint of coniecsl flow, In
Ref, £8 the Taylor and Maccall solutions for cones at 4iff-
erent lMach numbers were celculated snd tebulasted, The ana=
lytical results indicated that the oblique shock wave
woulé be attached even for cone angles greater than the
moximum eritical deflection angles, This means that for
conical body it is possible to have an sttached strong shock
wave, dliscussed in Seection V, to exist., In the two-dimen=
sional problem the strong shock wave was present only when
the shock was detached from the nose of the body. The ex=-
perimental data, presented in Ref, 7 for a 75 degree cone,
illustrates the existence of the strong shock wave attached
to the nose, The agreemegt for the free streasm Mach nunmber
at which the shock is sttached to the nose between the ex-
perimentel result snd the celculated data of Ref., 28 was
very good,

The difference in the shape of the sttached shock
waves for infinite cones with same cone angle and free
stream supersonic Mach number is similar to that for finite

and infinite wedges, For the infinite cone due to lack of
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influence of the corner, the attached oblique shock wave
will be straight even for subsenic Mach number after the
shock, The detached shock wave will be stationary as shown
in Ref, 29 for a finite cone, but for an infinite cone the
detached shock will not be stationary and will behave simi-
larly to that for en infinite wedge,
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VII. PFIRST APPROXIMATION FOR THE LOCATIQN.
OF DETACHED SHOCK WAVE

In this section an approximate theory for obtalning
the first approximation to the distasnce between the nose of
symmetrical body at zero angle and the detached shock wave
will be presented, It will be assumed thet the detach-
ment conditions for the shock wave discussed in Section VI
are fulfilled, Either the body is blunt so the shock wave
is slweys detached or else the supersonic Mach number is
low enough to cause the shock to be detached even for a
body with sharp noss, The shape of the detached shock wave
will not be predicted by the first epproximate theory for
determining the distance between the detached shock wave and
-the nosof e symmetrical body, To obtain the shape of the
detached shock wave, it is necessary to solve the Tricomi
problem, Eg, (6.1), in the mixed flow region and the rota=-
tiénality of the flow must also be considered to obtsin the
correct shape for the detached shock wave,

The flow back of the detached shoeck wave will be
assumed to be irrotational, adiabatic end steady., The vis-
~cosity end heat conduction effects will be neglected, For
supersonic Mach number close to unity, the assumption of
irrotational flow back of the shock wave is reasonable, To

simplify the derivation for the detachment distance of the
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shoek wave, it will be essumed that the flow at infinity
is at rest and the body is moving through this fluid at
constant supersonic speed,

Since the derivation of *he first spproximate
theory for the detached shock wave distance was obtained,
e NACA report, Ref, I , has been published on the same sub=
jeet, In this reference the shoeck wave distance is dster-
mined on the assumption of no entropy change across the
normal shock wave, The free stream Mach number was taken
to be slightly greater then 1.,0; thus, the result does not
hold except for Mach number close to unity as will be shown
leter, A comparison of the results obtained by the present
theory and that of Ref, 30 for e sphere is presented in
Fig, 1% together with the actual experimentasl date presented
in Refs. 28 and 27, For these references the representative
detached shock wave pictures obtsined in the supersonie
wind tunnel and the bellistic range are presented in Figs,
1 and 12, In the present approximate theory there is no
restriction regarding the change in entropy through the
shock wave and the exact normal shock wave result is used
to obtein the change in the velocity through the shock,
A, PFirst Approximation Theory for Locating the Detached
Shock Wave

For these assumptions the flow back of the detached



shoeck wave can be described by velocity potentiasl and stream

funetion, It was shown in Section IV that the velocity
back of the normal shock wave was aslways subsonic and that
the velocity became more subsonic as the free stream super-
sonic Mach number increased as shown by Eq. (4,79,

It will ba‘firﬂt assumed that the flow back of
the shock is’iné@mpressible and next a correction will be
applied to teke care for the compressibility effects., Fur-
ther refinements to the asnslysls will not be made on sccount
of the essumptions utilized to obtain the results, A solu~
tion to the Tricomi problem considering the effects of rota-
ticnal flow should give the exact detachment distance.

When e finite body 18 moving in a fluld at rest
et constant supersonic speed 4,5 the detached shock wave
will be stetionary with respect to the body. On the exis
of symmetry, (Cf. Fig. '8 ), the velocity induced by the
normal shock wave must be equal to the induced velocity at
that point due to the body for the detached shock wave to
be stationary with respect to the body, If the induced velo=
city due to the normsl shock on the axis of symmetry 1s
greater than the velocity induced by the body, the detached
shock wave will move towards the body to & position wherse
the two velocities sre equal, If the induced velocity on

the exis of symmetry due to the detached shock wave is less
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than that due to the body, the shock wave will move eway
from the body., At all points on the detached shock wave
the induced velocities due to the shoek wave and the body
must be equal in order to have stationary detached shock
wave with respect to the body, The first epproximation
theory for the detached shock wave distence was determined
on thie basis of equel induced velocities on the axis of
symmnetry.

In Seetion IV the velocity induced by & normal
shock wave moving in a fluid at rest at constant supersonie

speed £, was shown to be

/;7,)/"7 - (4.12)
Q _
¥ //‘-fl)/M 4 J
s
where M, = 2
and 4% %7 1s the veloeity of sound for the fluid at rest

7
shead of the shock wave, It can be seen from this equstion
that for A)=<¢ which corresponds te the velocity of
propagation of sound, there is no indueced velceity by the
normel shock, As the Mach number becomes more supersonic,
the induced velocity ¢ becomes larger, The shock wave

is fixed relative to the finite body end thus, the shock
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wave veloclty <, must be equal to that of the body., The
state of the fluid shead of the normal shock wave is known
s0 the velocity of sound 4 2nd the induced velocity given
by Eq., (4.,12) cen be determined as a function of the Mach
number ﬂz=.§f@ With the body moving in the nsgative x-
direction as shown in Fig, .8, the induced veloeity will
heve negative sign, The Eq, (4,12) is valid for a normsal
shock wave traveling st supersonic Mach numbers and there
is no limitation that My must be close to unity as in Ref,
30, TFor supersonic Mach numbers close to unity, the use
of normel shock wave to calculate the deteched shock wave
should be a good approximation.
B, Detached Shock Wave Distance for Circular Cylinder

The shock wave will be detached, as shown in
Fig. '8, for a circular cylinder of radius g moving et
constant supersonic speed <, in the negstive x-direction
in & fluid that is at rest, If we assume for the first
spproximaetion that the flow back of the detached shock is
incompressible and irrotational, the flow besck of the shoeck

can be spproximatéed by the complex potential (Cf. Refs,

18 and 19 ),
Fla)= gpri'¥ = -4—‘2—?-& (7.1a)

where @ is the velocity potentiel
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and 3 is the stream function.
In terme of the polar coordinates the complex potentizl

becomes

Y-
rlz= 22 (7.1b)

The radisl end tangentisl velocities at any point in the

fluid are
== ﬁ_? cos b
s (7.2)
l@: _‘LELJ/ﬂ&
re

On the negetive x-axis the value of 6 is 7 and the resul-

tant velocity is

Ly 7°

yo 2

, (7.3)

which is in the direction of the motion of the cylinder,

At the normal shock wave on the negetive x-axis,
the velocity induced by the shock wave must be egual to
the velocity induced by the body ss given by Eg, (7.3),
Hence, the disteance of the normal detached shock wave ahead
of the body on the axis of symmetry cen be obtained from

Eg., (7.3) and Eq., (4,12) as

L () 7) o (7.4)

The location of the detached shock wave on the negative




x-gxis is obtained by solving this equation and the result

(5= /12922 ). (7.5)

In terms of the distance 4/ from the nose of the cylinder
to the detached shock wave and the diesmeter o of the cy-

linder, the equation for the deteched shock distance becomes

('2 3 7/”‘//"7" —/} (7.6)

and this is plotted in Fig. 8.. For the velocity of the
cylinder equal to the sound velocity, /z=u§=/§ the dis-
tance (»55/‘ becomes infinite snd for M—-»- the shock distence

approaches the limilt

%) =5{/12) -1} (7.7)

The Prandtl-Glauert correction (Cf., Ref, 1, for
the compressibility effects can be used to determine the
veloclity distribution for the compressible fluid, The Mach
number Mo after the normsal shock wave will be used to de-
termine the correction for compressibility. For this assump-
tion either the lateral dimension or the perturvation ve=

locity cen be corrected by as discussed in Ref, 1,

7~
If we take the correction to be for the perturbed velocity,

the increment in veloecity for compressible flow along the
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negstive x-axis is obtained from Eg, (7.3) and the result
is

o=
=

4 at
28 L 7.8
£ - M ( )

2

a ™

With thie for the increment in velocity on the negstive
x=gxis for the cyliﬁder moving in a compressible fluid, the
location for the normal detached shock wave can be deter-
mined in the same manner as for the incompressible fluid

cese, The result is obtained by equating Egs, (4.12) and

(7.8},
< ‘
;{;== /;ﬂ//_hf/ﬂ (7.9)
and
2K .
(£)= (~ ) /1=y 22 ) (7.208)
or
r v~
(Z-/C= (-71) " (%) (7.10D)
and
-
D)= {1015, -1} (7.11)

The Mach number Mp after the normal shock was shown in

Section IV to be

Ul
mie 220 (4.7)
M-
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in terms of the Mach number My shead of the shock. 1In
Fig. ‘9 the Eg, (7.11) is plotted together with the re-
sult for the incompressible fluid to show the effect of
compressibility upon the detached shock wave distance, and
the result of Ref, 30 is plotted for comparison,
C. Detached Shock‘wgv@ Distence for Two-Dimensional Source

The debached shock distance for a two-dimensional
tody represented by a two-dimensional source can be consider=
ed by the method epplied for the circuler cylinder, For the
body moving at constant velocity 4 in the negative x-di-
rection, the induced velocity on the negetive x-axis is

given by

4 4

(7.12)
LaTr

K:

where A is the thickness of the plate at x=#eo, The
shock distance for this blunt two-dimensional body for the
assumption of incompressible flow back of the shoek is ob-
tained from Egs, (4.,12) and (7.12) and the result is

Raatl

(7.,13)

/l M"-/

and the distance from the nose of the body 1is

()= 75113 /(,,._,) -/} (7.148)

For a Mach number of A :Zf!:/a}, the normel detgched shock
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wave becomes infinite and for M—=<2the distance approaches

esymptatically to
(L) _ [r-¢
/b/(-‘/iﬂr.
For the Prandtl-Glavert correcticn for the com-
pressibility effects in the region back of the shock, the

normal shock wave distance can be determined from Egqs. (4.12)

end (7.13) as

;53‘-—“”__&5 (77)( %=1 ), (7.14Db)
or

&)= (- n‘)"‘(fl. (7.14¢)
and

&)= {("’”:)-7‘(2/;‘ 7 (7.15)

D. Detached Shock Wave Distance for Sphere
1. Zero Order Correction for the Compressibility
Effects to the Detached Shock Distance for Sphere
For irrotational, steady, and incompressible as=
sumption for the flow back of the detached shock wave, the
velocity potential for the sphere moving at a uniform velc-
city in the negetive x-direction in terms of spherical coor-

dinates (Cf. Ref, 12) is given by

: 3
g L% 05 (7.16)

2wt
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where A is the radius of the sphere as indicated in Fig,
10. The radial veleocity W, in the édirection of w is

7

%c:-—e-':-’if cos B~ (7.,172)

<

"

Along the negative x-axis, which corresponds to &=7 , the

radiegl velocity is given by

3
Vg = ‘;’f , (7.,170)

which is in the direction of the motion of the sphere,

Gn‘the negative x-axis of symmetry the induced
velocity due to the detached normsel shock must be eqgual to
the induced velocity due to the sphere for the first approx-
imetion for lceating the detached shock distance as discussed
in the first part of this Section., Hence, the shock dis-
tance can be determined by using Egs, (4.1¢) snd (7.17b) and
the result is

28 (53) (122, (7.188)
or
R
()= {155} (7.280)

and the normal shock distance £ from the nose of the sphere

in terms of the diemeter O 1is given by

G-+ {11520 -0 (7.19)



When the velceity of sphere is equal to the sound velocity

of the undisturbed fluid, A7=/0, the distance (%)
becomes infinite and when the velocity of the sphere ap-
proaches infinity, ~7—ee , the shock distance approaches

the asymptote

/1,—’2.-2&{/5*—’)5-,}' (7.20)

Comparison of Egs, (7.17) and (7.,19) shows that the normal
shock wave distance in terms of the diemeter 1s very similar
for circuler cylinder and sphere, The Eq, (7.1¢) is plctted
in Fig. 13 together with the result of Ref, 3 and the ex-
perimental date obtained in a supersonic wind tunnel, Ref,
28, and from the firing range, Ref., 27,

2, Pirst Order Correction for the Compressibility Ef-

fects to the Detached Shock Distance for Sphers

The correction for the compressibility effects

will be made by using the solution obtained by the expan-
sion of the velocity potentiel @2 in powers of the free
stream Mach number which ie the Rayleigh-Janzen method
(Cf., Refs, 31 and 32) as

@'= g @M+ AR (7.21)

where



=78
In Ref, 33 Kaplen used the method of Rayleigh-Janzen and
Tamada in Ref., 34 used the method of Poggi, Ref, 35, to
obtein the second order correction to the veloeity poten-
tial for the irrotational flow of a compressible fluid past
a sphere, The zero order correction to the velocity poten=
tiel would correspond to the potentisl for the incompressible
fluid which is given by Eq. (7.16), The deteched shock
wave distance for the sphere will be determined for the
first and second order corrections to the velocity poten-
tial.

The first order correction Z't@ the veloecity
potentisl for sphere of unit radius as obtained in Refs,

35 and 34 is given by

@ (Fwt-Ffuik w )R cosn) (7.22)

-¢ - -
G (AW R ) s 2,

/e

where A (cos®) s .are Legendre Polynomials (Cf, Refs, 36
end 37) and

/,’((o;b'-): cos B

Z(tos &) =§"(-"C°J-—?”‘+ .?co.rv-)'

On the negative x-axis 2=7, the value of these polynomials

are
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PltosB)==/
,g{faJ 2) =

The first order correction to the velocity 2zt any point
on the negative x-exis for a particular Mach number is

obtained from Eq, (7.22) and is
W, = vt % w’s-f:’_!"-_fw"-{w"-.ﬁ?’_".w")_ (7.23)

Thus, the resultant velocity on the negative x-axis for
the sphere moving at constant velocity 4, in the direc-
tion of the negative x-axis for a sphere of unit rasdius is

given by the sum of Egs, (7.17b) and (7,23) as
V,= 4w’y M;/Z’-' ‘“-J*ﬁg“‘d‘f“’-“ :4/ ") s (7.24)

where Mg is the Mach number after the normal shock wave,
The corresponding shock distance for the first order corr-
ection is obtained by using Egs, (4.19) and (7.24) and the

result is
//-f__L/w'fM [/ob‘w £ Lty .z/ -7 fw/(M-/ | (7.25)

- From the normasl shock wave condition discussed in Section
IV, the relstion between the Mach number before and after
the shock wave is given by Eg., (4.12)., Thus, knowing the

Mech number M, = the Mach number Ms can be determined

a ?



=80=
which ig used in Eg. (7.25) to obtsin the effect of com-
pressibility upon the shock wave distance, The normal de-
tached shoeck distance corresponding to the first order
correction to the velceity potential for supersonic Mach
number M] is obtained by solving Eq, (7.25) for w , A
numerical graphicel method was used to solve for w , and
the results are plotted in Fig, 15 together with the experi-
mental data,
3, Second Order Correction for the Compressibility
Effects to the Detached S3Shock Distance for Sphere
The second order correction @&~ (Cf, Refs, 33
and 34) to the veloclity potentisl is given for a sphere of

unit radius by

599 -2 _ w "-.‘ L ow ‘_.L'! w-l/ 73 w__,y
= (r4 [ Zegoo " e 2¢ o Tigeo ) R (cos )
IJ/J-? w-Y_ -J' .8 N-B- 57 w-l{f
Jéesao /0 * e 79606 8“ / £ (eord)

- -6 k4 -8 YU 5 -
f{;’w’-;"&ﬂzw 4 2w WL w

2766%0 Je /7/20 8572 / /} (ca.x(}-)

/3285953 -~  #9 I 2#2 ,77, 20¥9 08 To¥P -1, 2289 - ¥
———e T W) e e M - — L — ) 71}
(«o €500 /50 925 2080 Pv80 Fesso0” ) Blces )

(_.r_z wot o 70620063 -y 6 o3 . 156 w7 28 w8, 2037 00 226770 WY 29 w"’yp(m;w-)

/50 5295200 /50 75" S 24576 6% 6800 5700 2
g5r29s5ee0 o2
- - -0 .
+( -1_ gw-v* 2 (—d-:* /3,91/ ‘_ 6 © w” * 2977 w 8_* F? 9"7 w //* w"?/’(“-’”‘)
N4 ‘vo;yc 27 228 /50 //y}o J—N‘é

(7.26)
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where

= = COSSB 235 Cos 3B +30 Costh
Lleos ) = 32 (63 )

end on the negative x-gxis 2=# , the value of this Leg-
endre Polynomial is

2 (cos &)=~/
The second order correction to the velocity at any point
on the negative x-axis for @ particuler Mach number bsack
of the normal shock is obtained from Eq., (7.26) by diff-

erentlisting with respesct to the radius « and the result is

W, = UMV[‘VA wlswpw iy w b w, W ey w oy w? (7.27)

-t/ =72 3 o
+ Ry L3 A, W ol L ]
?

where oS are constants and ere given in the Appendix I,
Thus, the resultant induced velocity on the negative x-axis
for a sphere of unit radius moving at a constant velocity
U= 4, in the negative x-direction is given by the sum of
these perturbed velocities, Eqs. (7.17b), (7.23), end (7.29)

as

< - -3 2/, <2, 208,70 F -6, 2/ =9
%, Vw,-f le-l-Vw._- Z,w +[#/\t/‘_ Z:-_w f?r.‘u -i-w fn“’ ) (57028)

- - - -2 -8 -9 27 -r2 JpPs
R G s A AR A S T M R LA ’j}

where Mo is the Mach number after the normal deteched shock

waves.
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As discussed in the first part of this Section,
the detached shock distance can be determined for the second
order correction for the ccmpressibility effects by eque-
ting the induced vei@city given by Eq, (7.28) to the in-
duced velocity due to the normal shock wave given by Eq.

(4,19), and the result is

' » -
- 244 gyodon 208 =S L by Il ?) 4 M o, s om0 o, w6
w-r/%/;w A b4 i ) ‘/_, /p

(7.29)

- i . - - o, [ 2 g
+ &) w ,-A/‘w ‘fﬁ,w 914111.0"4-’,“*’ *“/”w“)-/"‘f/// ,:1"/)
¢ .

The detsched shock distence is detsrmined by solving this
equetion for w in terms of ﬁz=-% s the Mach number for
the sphere, A numberical-graphical method was used to
solve for w , The detached shock distangce for the sec-
ond order corrsection is plotted in Fig, 12 together with
other results as function of Msch number of the sphere
moving in e compressible fluid at rest,

4, Correlation of Calculated Detached Shock Wave

Distance wibth Experimental Data for Sphere

In Fig, 13 a comparison of the variation of the

detached shock wave distance as function of Mach number
asccording to the approximate theories is shown, For com-
parison the experimental results obtsined in the wind tun-

nel, Ref, 26, and the ballistic range, Ref, 2V, are also
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presented,

The detached shock wave distance as calculatsd
by the approximate theory developed in this Section for a
given free strsam Mach number is less than the experimental
results. The variation of the detached shock distance with
Mach number is similar to the experimental results., AL
lower supersonic Mach numbers the first and second order
corrections for the compressibility effects move the de-
teched shock wave distence farther eway from the body, but
gt higher supersonic Mach numbers the correction in shock
distance for compressibility effects is small, The result
of Ref, 30, which is elso plotted in Fig, 13, shows that it
is tangent to the curve given by Eq., (7.19) end gives nega-
tive detached shock distance for Mach numbers greater than
1.6,

The difference in the detached shock wave distance
between the spproximate theories and the experimental date
is due to the neglection of vorticity, curvature of the
shock, viscosity, more exact compressibility correction,
interaction of subsonic end supersonic regions, snd decel-
eration, which is present for the ballistic renge data., I%
was shown in Section IITI that for a rotationsl flow corre
esponding to parabolic velocity distribution at infinite

distance shead of a body the location for a given velocity
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decrease was farther ahead of the body than for the case of
flow without vorticity. Thus, by considering the rotation-
ality of the flow back of the detached shock wave the shock
distance will be farther away from the body and be closer
to the experimental data.

At the detached shock wave only the condition on
the gxis of symmetry, where the shock wave is normal, was
considered to determine the shock distence, The proper
boundary conditions for the subsonic and suw rsonic reglons
gshould be considered as discussed in Seection VI to obtain
the correct shape and the location of the detached shock
wave, The normal detached shock wave distance determined
by the approximate theory presented in this Section is

only an approximetion to the actwal distance,
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VIII, ODETACHED SHOCK WAVE FOR INFINITE WEDGE

In Section VII a {irst spproximation theory for
locating the detached shock wave distance from the nose
of the body was discussed snd the approximate theory aspplisd
to few symmetricel bodies with blunt nose., In this section
the detached sghock wave for an infinite wedge will be in-
vestigated by considering the non-stationery differentisl

equation of motion for compressible fluid,

=

or an infinite wedge which has no length dimen-

[

sion and only angle, the possible types of debached shock
waves for supersonic flow from the dimensional snalysis
gstandpoint are the normal and curved shock waves, A nor-
mal detached shock wgve which is fixed in space is not
poasible becsuse the wedge has no length dimension. The
normal shock must move at constant speed or accelerste
away from the wedge., If the normal detached shock moves
with acceleration, the entropy beck of the shock will not
be constant; and hence, a potential flow does not exist
back of this type of shock wave, The flow back of a nore
mal debached shock wave which moves at constant speed
would be irrotational,

If there exists a definite relstionship between
the radiug of curvature of the detached shock wave and the

distgnce from the wedge to the shock wave, a curved de-
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tached sghock wave may be possible for an infinite wedgs,
The flow back of the curved shock wave will be rotational
s0 that the potential flow cannot exist back of the shock,

Trerafore, the only possible type of detached
shock weve for o supersonic free stream flow for an infin-
ite wedge with possible p@tential flow back of the shock is
a normal detached shock wave moving at constant speed saway
from the wedge, In this section this vype of detached
shock wave will be analyzed for the infinite wedge,
A, PFundamentael Egquations and Assumptions

It will be assumed that the flow is isentropic
and adiabatic, and the effects of viscosity and heat con-
duction will be essumed to be negligible, The detached
shock will be sssumed to be normal and moving at constant
speed, and thus, the flow after the shock will be irrota-
tional,

For these assumptions, the non-stationary diff-

o

erentisl equation is given by

CL T PRI P ( )

SRS 5 ve) B e By {g2.2%)  (2.150)

Jy »"

and

azza.l{ B 5 5)]- (’T”—:},

which were discussed in Section IIL., To simplify the Eq,.
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(2,18b) for the detached shock flow analysis for an in-
finite wedge as shown in Fig, l4a, the non-dimensional
spaceé parameters are introduced., The x and y distances
ere divided by the distance 4 , which is the distence
from the nose of the wedge to the normal detached shock

wave, in order to obtain the non-dimensional space para-

meters,
¥= X
L4
A {(8.1)
7% 2e4)
z’:z‘
It is elso szssumed that the normel shock wave 1s propa=-
gating in the negetive x-direction at a2 constent velocity

£y 3 hence, the distance of the detached shock weve from
the wedge is only a function of time, The physical plsne
in which the wedge exists will be referred as Z -plane,
Fig., 16a, and the trensformed non-dimensionsl space plane
as ¥ =plane, Fig, 14b, The Z and T in terms of the com=
ponents can be written as

z:}(v‘/}/ {832)

Y= §+iq. (8,3)
In the 2 -plane the veloclity potential is given in the

general form as

w= S’/‘,)’J Z‘) iaa@)
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1 in the [ -plane the potentisl is given by

p=w(ra,T) (8.5)

I iifferential equation in terms

the non-dimensional space parameters, it is necessary
igl derivatives

of
to use the reletionships connecting the par

shich are obtained from Zgs, (8.,1), (8.4), and (8,5),

LIRS TR S ION SRFIDN SNUITY
QX I Jx T Iq Iy T I Ix ~ 2 IF
uz-zuif,i,_u_ QT _ QU (8.6)
Jy ¥y Tdg d)y Yoz Y ARK

Z

where <,- 2% s the velocity of the detsched shock wave,
4" Jf g

is
Thusg, the pertisl derivaetives of the veloeity potential in
terms of the non-dimensional space parameters are obtained

by using the relationship given by Eq. (8.6) and the re=

ults are
2¢, 2 2¢ Y L 22
= = )
Jr 4L I¥ L2 /4 (8,8)
dp_ L 0¥ 2 _ L 2F
JX LTIF* - VAL A
and
L’e--z*(;er,‘iﬂ)_ &y, 1 2%
Jrdp T 2 VL IYT L gyde )Y T 4L JFIT
ICk RS S N L N R VR _1_"‘.
Iy Z/Z'J )»,."2‘“,[_2.) 7t 2 A {8,9)

a
2% =0 o 327,1“1 Mawt*‘zfz(’jy*%:)

Q' i:’f- .21/
e Jdrt /}‘ JYIT 'z-’th
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By substitu

r"“
uJ

18, (8,8) eand (8,9) into Eg., (2.15b),

,;ZJ

{CJ

the differential equation for the velocity potentisl in
terms of the non-dimensional space parasmeters is obtained

ag

LY 24 (e .J_‘z 2P 244 g e e )i
Jrr "ZJ(J 1 )t ﬁ/’—f il ——J-(I’—E-——*'I T}

24" 21 .m 24 g Iy 24 /TP 1ip
* ‘l "'l "I"‘! .Z ’l ) {’l;-’g;—Ig)Lffa—E T)I)—T:({W)f(ﬁ)](gglg}

2 (22 L Irde J“, Jw)‘s- Vo G/ ot 9t
and
3 2] / 4
o% a, { ;- &L~ - /_’_//[ 4 FELST
.{ 9, ZL[ ] r} J J_i] <8gi1)

B, Nonedimensional Differential Equetions for Infinite
Wedge.

For a normal detached shock wave moving 2t con-
stant speed into a supersonic free stream flow, the velo=-
city back of the detached shock cen be detsrmined from the
normal shock Eqs, (4,11bknd (4.12). It is seen from these
equetions that, as long ss the superscnic free stream flow
is steady and the propagating normel shock velocity is con=-
stant, the flow back of the shock wave will also be con-
stent, Thus, the boundasry condition for g normal detached
shock wave moving at constanb speed away from an infinite

wedge is thst the velocity at the shock wave will be con-
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stant,

At the surface of the infinite wedge, the normal
velocity must be equal to zero in order to sstisfy the
condition of no flow across the solid boundary., This
normal velocity must be zero for all velues of time or for
all locstions of the normel detached shock wave,

To satisfy these boundary conditions for an in-
finite wedge with & normal detached shock wave moving at
constant veloeity, and also to satisfy the non=-stationary
differential Eq., (8,10), a possible solution for the velo-

city potentiel is given by
w=a,l0) E(5) (8,12)

where @ 1is the speed of sound for the stefnation condition
back of the detached shock wave and is evaluated by using
Eg., (2,9¢)s <e¥ is the detached shock distence from the
wedge, and FlEn) is the velocity potentisl which is only

function of the non-dimensionasl space parsmeters,

s}
O

The partial derivative

<3

f the velocity potentisl

n terms of the non-dimensional potentisl, Eq, (8.12),ere

el

o9 2f oy _ )¢
J‘r“'ao-éjr— ;%-%L-jl‘ (8 15)
e 5227 EVIRFY &

o7 ors P o7*
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nor °1 (8.14)

since the detached shock was assumed to be moving at con-
stant velocity., The differentisl equation for the velocity
potential, which is only function of non-dimensional space

parameters, is obtained by substituting BEgs, (8,13) and
Ey 9 - 4 1y

(8.14) into Eg, (3,10) and the result is

)i '-Z >
_gi‘}’ zlr;){*(-’ﬂ],);& 7 24‘7 M)j:’l‘ [2:: 5{-22‘@:—{{—1;_: }"’_:.T
SYar e /rw 24 /0d I, (8,15a)
7”?]auq - ) (J%/”WJ/”) H%Uﬂﬂay)

ot 0.1[/_ (—_'2——”//3);29 j] (r-u_z [/f”fqal}-ff]} (8,15)

If we introduce the parsmeter A= % , which is the rstio

of the velocity of the detached shoek weve to the velocity
of sound for the stagnation condition, evaluated by using
Eg. (2.9c), after the shock, the differentisl equation for
# becomes

[r1t sz-’ ')]) s [ 20022 ,,( 22 ;;:#/,2/! Fq - 229 _’f
-5 gE ] 2L < - ’;—"’/{%’)’:‘/.ffyﬂ(r-ux[(f;’—frffﬁd]} (8.150)

JFI%
(-)‘f )‘f
%
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Hence, the problem for the infinite wedge with
the normal detached shock wave moving at constant speed
reduces to solving this particular difforentiel equation

e J.

with proper boundary conditions., The first boundary cone

[N

iition 418 thet at the normal detachad shock wave the velo-

Jo

city potential must be continuous and the velocity after
the shock as shown iﬁ Section IV is also constant and is
a function of the condition sgiiead of the shock ard the
propagating velocity of the shock wave, The second boun=
dary condition is that the normal velocity at the wedge
gurface must be equal to zero.
C, Existence and Uniqueness of the Velocity Potential for
an Infinite Wedge with Normali Detached Shock Wave

The existence and the unigqueness of 2 potential
golution for an infinite wedge can be determined by in-
vestigating the differential equetion for the non-dimen-

l

sionai velocilty potential, Eg. (8,15b), and the boundsry

e

conditions,
Immediately back of the normel shock wave moving
at ccnstant velocity into & uniform supersonic flow, the

general energy equation, discussed In Section II, is

Jo P ) AP =% 2.9¢
B L () Bt F e (#.90)

where () refers to the conditions lumedietely after the



normel shock and ¢, is the veloecity of sound for the stage

&

natlion condition back of the shock including the non-sta=
tionery effects, In this equation the values of 4, g‘ 2
and 4 are known for given free stream condition end velo-
city of propegation of the normal shock,
To evaluste the arbritrary function A of the

enargy equation at the shock wave moving at constant speed

4, 5 1t 1s necessary to know the partlsl derivative of the
velocity potential with respect to time, I the velocity
potential, & , is continuous throughout the flow field with
discontinuouvs first and higher order derivatives, the par-
tial derivsetive of the velocity potential with respect to
time ot the shock wave is determined by the following sns-

lysis, Ahead of the shock wave define

Jeo _
Z-°
and st time 2Z-24, the normal shock wave is locsted at point

¥ =46 and the boundary conditlons are

é

?:0
At = I, v+t the normal shock wave has moved to point

6 3= X

1
|
I
I
|
I
f
Q |
|

= 0/4\':-40/1‘ bt
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end for a continuous velccity potential the increment of

velocity potentiel st point x=ais
P, =~ Uy ot (8,18)

and the increment of velocity potential et the point 4 ,

which is fixed, is
a/@.—.a/%,c U,Z,‘olz" (8,17a)
By substituting Bq. (8.16) into this equation, one obtains
A =~ (4,-w,)dyd?. (8,17b)

Hence, the partisl derivstive of the velccity potentisal

with respect to time at the moving normal shock wave is

é"?":/=/§f‘)--/~,-u‘)4 (8,18)

The constant for the non=-ststionary energy egua-
tinr cen be evaluated immediately back of the normal shock

by substituting Eg, (8,18) into Eg, (2.9¢) to obtain

a3

(uu)d,r P . B (8,19)
oy F-7 ?
where
2 _ u, s A
il M S 2 (8.20)

For a normsl shock wave moving at constant veloe
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¢ity, the energy equatiocn in terms of the relative velo-

cities with respect to the shock is

a 2
Y, re_ ¥X,r Z_ constant,
2 ripE 2 g
where
kf—' u,-fz“
Y= 4+dy, (8,22)
Substitute Bg, (8.22) into EBg. (8.21la) to obtain
¢ Wy A r £ (8.21%
.;_dl-ﬂ-ll,z/ +’__I-Z“- Zlf‘ﬂl/fm;z—‘ . (89219}

The stagnation velocity of sound for fluid shead of the

shoek wave is

3" 4, r £ \
z T2 Trp (8.23)

Eliminate the pressure snd density from Eg. (8.21b) by

using Egs, (8,20) and (8,23) to obtain

2 Y
Lyt Gy Ly G
&= )

Hence, we have

_qg'— ﬁ’_‘_:—/‘//'u&)zzg' (89243

By substituting Eq. (8.24) into Eq. (8,19) the following

result 18 obtained



~96-

2 k% %
@ o, s 47 7 , -
7] - _/__— - [] [ 3 g
;2 e (8,25)

which shows thet the constant for the non-ststionary energy
equation, Eq, (2.9¢), for both sides of the normal shock

wave moving at constasnt velocity is the same,

13

rBRout, G
( *h—‘* 1;‘%-7*}—.7 =_-LI- . (8326)

2

\\L\

For an infinitve wedge with normal detached shock
wave moving at constant velocity, the partial derivstive of
the veloclty potentisl with respect to time in terms of
non-dimensional velocity potential and space parsmeters can

be determined from Eg, (8.6) and is
J :
FemalilsE103E) 4 a4, (8,27)

Immedietely after the shock wave, the boundary conditions

are
X= <Ll F=-z0
us=u, )z‘
‘1‘/ /J,m; ‘-t~ =0
V=0 [J =
L &

For these boundary conditions the partisl derivative of the

velocity potentisl with respect to time becomes

/3 )_uzuuif (8,28)
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Thus, the value of the non-dimensional velocity potentisl,

# , st the shock wave is determined by equeting Egs.
(8,18) and (8,.28) and is

= -
5= -4 (8.29)

This is the value for # at the shock wave that must be
used in order to satisfy the non-stationary energy Eg.
(2.9¢). On the surface of the wedge, to satisfy the con-
dition of no flow across the boundery the partial derivsa-
tive of the non-dimensional velocity potential with respect

to the normal to the surfaece must be equal to zero,
o’—;=o. (8030)

The existence snd unigueness of the potentiel
solution for sn infinite wedge with normal shock wave
moving at constant velocity can be det ermined by consider-
ing the non-stationasry differentiel equation, Eg. (8.15b),
and the proper boundary conditicns, At the shock wave the

differentisal equation, Eg., (8.15b), becomes
. 0 F) L 26 F_ & I
(:‘-*2’\(7,-},_*{;7};]?‘.-;:};‘- . (85318)
and the velocity of sound given by Eq. (8.16) becomes

a' i) (2] 1y PI4
Tz sm G2 (F) 08 [(55) 4] (8.32)
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oo J P P 3
Since /;,{/f % , the Bg, (8.31la) reduces to

a- TR g I*F z
(A+2Aﬂ—:+ﬁ)7{=—j;~—r_' (8,31b)
(-] (]

The values of A= % which will sstisfy this equatior’ is

determined from the equation

[

t a,
(A% 24 4 3 4 ) = 2o (8,32)
2 ") T g °
and the solutions are
Yyl ) 4 {8.33a
/"*o,)'*(o, 0,)"“‘5;‘ Ve )

The positive sign applies for the shcck wave moving tower
the negstive x-axis at constant velocity snt the negative
sign applies for the shock wave moving Gtowerds the positive
x=axis, In terms of the relative velocity of the fluid

with respect to the normal shock, the Eg, (8.33a) becomes
K:‘(J*U&:i”._' {‘-@53}3}

Thug, the Mach number of the relstive velocity of the

fluid with respect to the &hock is equal to unity,

vy (8.5%)

ne
"QLR

whether the normal shock is propagsting towards the posi-

tive or negstive x-axzis, This shows that the boundary

X

3

24

Ji‘%:o leads to 8 uniform flow with no wedge
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condition at the shock wsve and the differentisl Eq, (8.185b)
is satisfied only if ﬁg’=40 , Which corresponds to a sonie
disturbance,

The conclusion of thie enalysis for the existence
and uniqueness of a potensial solution for an infinite
wecge with normal shock wave moving et constant spsed is
thet no potential flow exists back of a detached shock wave,
For sll finite bodies there will be no potentiel flow back
of the detached shock wave since the shock must be curved,
and consequently, the flow back of the shock will be rota=-
tional, The only possible type of deteched shock wave with
irrotational flow back of the shnock ig a normel shock wave,
A possiple solution for an infinite wedge is 2 normal shock
wave moving at constant speed, but the snalysis indicates
thaet the flow will not be potentisl back of the normal
shoek wave, Therefore, no potentisl flow can exist back
of detached shock wave, The results of the exlstence and
unigueness of the potentisl solution for an infinite wedge

will also apply to infinite cone where the shock wave will

be normsl and cannot bs stationary,
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APPENDIX I

Coefficients for the Second Order Correction to the Velo-
city as given by Eq., (7.27) are:

o= .2122314

o= 8187377

o, = =.3353333

o, = 8347244

0y ==10, 3090910

o, =10,1682984

o, = 2,8150032

o, =-4,8219218

or= 6153508
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