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Abstract

This manuscript discusses the materials physics of thermal and electrical transport in the solid state. In

particular, the focus is on thermoelectric materials, which enable the direct conversion between thermal and

electrical energy. The ability of simple approximations and semiclassical models to describe transport is

explored in a variety of systems. In some cases, the traditional models provide a very accurate description

of the transport for the compositions of interest to thermoelectric applications. This is the case for n-type

Ba8Ga16−xGe30+x, where a single, parabolic band model captures the electrical transport and thus allows the

accurate prediction of optimal composition for energy conversion. This is not found to be true in La3−xTe4,

and more than one parabolic conduction band is required to describe the electrical transport. In this case,

the use of ab initio electronic band structure calculations provided critical knowledge for physical models to

be developed. The influence of structure on thermal transport is also examined in detail. The compounds

considered typically possess low lattice thermal conductivity, with values often being less than or equal to

1 W/m/K at 300 K. This can generally be associated with large unit cells, where the high number of atoms per

unit cell results in a large number of optical modes, which carry little heat due to their low group velocities.

Phonon scattering is also considered, and the cation vacancies in La3−xTe4 are found to reduce the lattice

thermal conductivity by over 100% at room temperature. Finally, the resulting thermoelectric efficiency is

discussed, where leg efficiencies near 20% of the Carnot efficiency are predicted in segmented legs. The work

detailed here has led to the continued development of La3−xTe4 by the Jet Propulsion Laboratory, where it is

a top candidate for future use in deep-space power-generation systems.
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Chapter 1

Introduction

1.1 Summary

This chapter begins with a discussion of the fundamentals of thermoelectricity. The evolution of a thermally-

induced voltage and the materials properties required to exploit such a voltage are discussed in detail. These

material properties are combined to form the thermoelectric figure of merit, zT , which is a dimensionless

number on the order of unity in good, modern thermoelectrics. The zT of state-of-the-art materials is shown,

along with some discussion of how to obtain a large zT .

The optimization of zT in a typical thermoelectric material is considered. These materials tend to be

semiconductors, and the importance of controlling the majority carrier concentration is highlighted by simu-

lation of temperature-dependent transport properties. The influence of the minority carrier on thermoelectric

properties is also highlighted. This discussion concludes with plots of zT versus temperature T and majority

carrier concentration n, the latter of which demonstrates the optimization of zT as a function of n.

The remainder of the chapter discusses background information on the materials considered: La3−xTe4,

Ba8Ga16−xGe30+x, and SrZnSb2 and SrZn2Sb2. Of particular importance is the discussion of charge count-

ing in La3−xTe4, which can be utilized to understand the electronic properties of this material. A historical

perspective is also given for La3−xTe4 to highlight the need for a simple synthesis procedure. The introduc-

tion for Ba8Ga16−xGe30+x also discusses the importance of valence-counting, as well as the motivation for

this work. Finally, the discussion of the Sr-Zn-Sb compounds briefly touches on some of the reasons these

“Zintl” materials are of interest to thermoelectric research.

1.2 Thermoelectric Energy Conversion

Thermoelectric devices convert between thermal and electrical energy via the solid state. This phenomenon

exists because charge carriers move in response to a temperature gradient, and thermoelectric generators can

be viewed as heat engines where the electronic gas is the working fluid. As such, the overall conversion

efficiency is limited to the Carnot efficiency, and typical devices achieve only a fraction of this value.
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Thermoelectric devices possess the desirable characteristics of being highly reliable, silent, and scalable.

In heating and cooling applications, thermoelectrics provide impressive temperature control because both

heating and cooling is performed by the same module (depending solely on the direction of current flow). For

stability reasons, thermoelectric devices have been utilized to produce power for deep-space missions, with

power generation continuing after 30 years in the case of Voyager I[1]. Despite these reliable characteristics,

thermoelectrics are not commonly employed due to their low efficiency[2]. Much of the efficiency loss

occurs due to poor thermal transport between reservoir and device, but another significant loss arises due

to poor performance at the material level. The majority of thermoelectric research conducted at universities

focuses on obtaining large performance at the material level.

The property that characterizes the response of a charge carrier to a thermal gradient is known as the

Seebeck coefficient α; specifically, α = V
∆T is the proportionality between the measured voltage V and

∆T when ∆T is small. Understanding the Seebeck effect requires some effort, and the interested reader

is referred to references [2–9]. The evolution of a thermally induced voltage is probably best visualized by

analogy to a gas-filled tube in a temperature gradient. The gas at the hot end of the closed tube has greater

thermal energy and diffuses to the cold side (the hot gas expands and the cold side gas contracts). A similar

effect is observed for electrons and holes (the electron’s positively charged counterpart), and the buildup of

these charge carriers on one side of the sample produces a voltage (see Figure 1.1a). The Seebeck coefficient

is negative when conduction is dominated by electrons, and it is positive when conduction is dominated by

holes.

When both electrons and holes are present in a material, the thermoelectric voltage is reduced because

both species diffuse from hot to cold. The energy gap in semiconductors helps eliminate this “compensa-

tion” of |α| (at moderate T ), and semiconductors tend to be the best thermoelectric materials. Both n-type

(electron conducting) and p-type (hole conducting) materials are necessary to form an efficiency device, and

the matching of mechanical properties in these materials is critical for device development. A thermoelectric

device is produced by connecting these thermoelectric materials (legs) in series electrically and thermally in

parallel so that a large total voltage can be produced.

At open circuit, the buildup of charge continues until the flux caused by the temperature gradient is

equal to the flux associated with the induced voltage (Vth). This voltage is generated due to the difference

across ∇T in the electrons’ electrochemical potential, ζ = ξ − eφ where ξ is chemical potential and φ is

the electrostatic potential. It is common to use proportionality coefficients Lij to relate forces to fluxes; the

field of Irreversible Thermodynamics is called on for the complete discussion and employs slightly different

representations[6, 10]. For the generic one-directional case, the total flux of current in the x direction is given

by[11]

Je = L11
−1
e

dζ

dx
+ L12

−dT
dx

. (1.1)
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Figure 1.1. (a) A schematic representation of the Seebeck effect, where charge carriers diffuse in response
to a temperature gradient until the resulting voltage counterbalances the flux associated with ∆T . (b) The
optimization of the thermoelectric power factor (α2σT ) reveals the need to control carrier density n such that
reasonable values of both α and σ are obtained. The data are compiled from the simulations (at 600 K) shown
in Section 1.4.

When∇T = 0, this expression reveals that Je = L11ε because εx = dφ
dx , assuming no change in ξ with x (no

change in carrier density). Thus, the electrical conductivity is found to be σ = L11 by recalling that Je = σε

in an isothermal medium (Ohm’s Law). The functional forms of Lij can be found in Section 4.2 where the

theory of electrical transport is discussed, and a more exact representation is given in Appendix E.

When a temperature gradient exists, but current is not allowed to flow, Equation 1.1 gives

−1
e
dζ
dx

dT
dx

=
L12

L11
, (1.2)

which leaves the definition of the Seebeck coefficient α,

Vth
∆T

=
L12

L11
≡ α. (1.3)

The thermoelectric effect is therefore a fundamental response of conductive materials to a temperature gradi-

ent. Combining Equation 1.1 for electric flux with a similar expression for the entropy flux, it is found that

the Seebeck coefficient gives the entropy transported per unit charge[6]:

α =
(

entropy flux via electrons
current density

)
∇T=0

. (1.4)

Thermoelectric devices require materials with large Seebeck coefficients (α) so that a large voltage may

be obtained from a temperature gradient, or vice versa. The power output of a solid state generator is V2/R,

where R is the total resistance. Thus, at the materials level, low electrical resistivity ρ or large electrical

conductivity σ = 1/ρ is desired.

High thermoelectric efficiency is most readily achieved in semiconductors, where the free carrier concen-

tration can be manipulated readily and the detrimental effects of minority carriers can be avoided. A typical
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optimization of performance is illustrated in Figure 1.1b, where the balance between the Seebeck coefficient

α and electrical conductivity σ leads to large α2σ (known as the thermoelectric power factor). It is common

to multiple the power factor by T to obtain units of thermal conductivity, as in Figure 1.1b. The complete

optimization of thermoelectric efficiency is heavily influenced by the optimization of the power factor, but

the thermal conductivity must also be considered in detail.

The flow of thermal energy is required for the production of electricity in a thermoelectric generator.

Fourier’s law gives the heat flux as q = −κ∇T , where κ is the thermal conductivity. Therefore, small κ

is desired so that a large ∆T is achieved from a given thermal flux thereby allowing a large voltage to be

produced from the thermoelectric effect.

In summary, good thermoelectric materials are those that possess a small thermal conductivity, a large

electrical conductivity, and a large Seebeck coefficient (more specifically, large |α| which is sometimes re-

ferred to as the thermopower). Obtaining this combination of material properties is particularly difficult

because large σ corresponds to low α and vice versa (see Figure 1.1b). Large σ also corresponds to large

κ due to the conduction of heat by charge carriers; the electronic contribution κe is often estimated by the

Wiedemann-Franz relationship κe = LσT , where L is an energy dependent proportionality known as the

Lorenz number (see Sections 4.2.8 and 5.2.3).

1.3 Thermoelectric Figure of Merit

The thermoelectric conversion efficiency η of a thermoelectric device is limited by the Carnot efficiency

ηC[3, 10]. Typical thermoelectric generators only achieve a fraction of this efficiency, say approximately

ηC/6. The loss of efficiency can be characterized by a reduced efficiency ηr, which approaches unity as

the material parameter zT approaches infinity (η = ηCηr). Thermoelectric materials research thus focuses

on improving zT , so as to improve the more complex, device level efficiency. While characterizing zT is

not easy, it is much simpler than examining improvements in device efficiency as the materials change. The

nature of zT makes physical sense in light of the discussion in the previous Section (large power output and

large ∆T are desired).

zT =
α2σT

κ
. (1.5)

The values of zT in state-of-the art materials, at the onset of this thesis work, are shown in Figure 1.2.

The figure of merit zT generally increases with increasing T at ‘moderate’ temperatures, and a maximum is

observed at high T due to minority carrier effects. Good thermoelectric materials have zT near unity at the

desired operating temperature. The highest zT values are typically observed in doped semiconductors, where

reasonable balance between large α and large σ is achieved. There is no theoretical bound on zT [10], though

experimentally zT > 2 is rarely reported. Note that, for a particular semiconductor, the declaration of ‘high
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Figure 1.2. The temperature-dependent zT values for state-of-the-art thermoelectric materials at the onset
of this work; panel (a) shows n-type materials and (b) shows p-type. The La3−x−yYbyTe4 data were taken
from this thesis, and all other curves are from Reference [13]. TAGS stands for (GeTe)1−x(AgSbTe2)x.

T ’ is generally given by the size of the band gap Eg with Eg at least 6–10 kTHot required in a thermoelectric

material operating with a hot-side temperature of THot[12].

It is insightful to recall that the thermal conductivity has two primary contributions, a lattice conductivity

κL and an electronic contribution κe:

zT =
α2σT

κe + κL
. (1.6)

The value of κe is proportional to σ, and thus thermoelectric research typically attempts to reduce κL. Mini-

mizing κL while maintaining large σ can be very difficult because many of the obstacles that scatter phonons

also scatter charge carriers. Furthermore, large carrier mobility µ is typically found in materials with large κ

(covalent semiconductors with stiff bonds). Traditionally, improvements in zT were achieved via alloying,

such as in Si1−xGex[14, 15], where phonon transport is affected more significantly than carrier transport.

Modern technologies have allowed the design of systems with nanometer scale features which allow the

inherent connection between κL and µ to be manipulated. This is possible because the characteristic mean

free path of electrons is generally much smaller than that of phonons. Introducing scattering centers at length

scales larger than the carrier mean free path but smaller than the phonon mean free path therefore allows an

increase in the quantity µ/κL to be achieved[16]. A number of good review articles discuss the influence of

this type of nanoengineering on κL[16–19].

Large enhancements in zT have been achieved by producing nanobulk Si, SiGe, and Bi2Te3 via me-

chanical alloying[20–23]; nanobulk refers to a bulk specimen composed of nanoscale crystals/grains. Other

phonon inhibiting structures include superlattices[24], bulk materials with nanometer scale precipitates[25],

and lamellaer structures at scales as large as 300 nm[26]. The latter two approaches can often be achieved

through traditional heat treatments and exploitation of the phase diagram (temperature-dependent solubil-

ity, invariant reactions). Another approach to reduce κL focuses on the selection of complex materials with
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inherently low κL, as discussed in References [9, 27].

In the limit κL = 0, the figure of merit is given by

zT =
α2

L
, (1.7)

and the Lorenz number L is a function of energy that relates σ to κe (see Section 4.2.8). This representation

of zT is useful in that it provides an immediate guideline for the values of α required for large zT . In this

limit, zT of 1 requires α ∼ 150µV/K, and finite κL necessitates even larger α. Indeed, it is common for

κL ≈ κe in thermoelectric materials, which requires α ∼ 210µV/K for zT ∼ 1.

As discussed above, significant efforts to reduce κL have been made. Much less work has been done

on manipulating the electrical transport properties to obtain large α2σ. Yet the need for large α is clearly

demonstrated by Equation 1.7. As discussed in Section 4.2 and shown in Figure 1.1b, the values of σ and

α are intimately linked and it is very difficult to obtain significant improvement in the power factor (α2σ).

Large α is obtained when σ has a large energy dependence around the electrochemical potential (σ is highly

asymmetric about ζ)[28, 29]. Such behavior is promoted by highly energy-dependent density of states N(E)

or carrier relaxation times τ .

The manipulation ofN(E) for increased zT was demonstrated by doping PbTe with Tl, where a change to

the majority carrier mass led to an∼ 100% increase in zT while shifting the peak to higher T [30]. Also, large

α may be obtained in low-dimensional materials due to a sharp electronic density of states associated with

reduced dimensionality[31]. A change to the relaxation time is believed to be possible via electron filtering,

where the low energy electrons are excluded from the conduction process via energy barriers (designed using

superlattices or precipitates)[32–35].

1.4 Optimizing Thermoelectric Efficiency

For a given set of material parameters, such as the carrier’s effective massm∗ and mobility µ and the crystal’s

lattice thermal conductivity κL, the thermoelectric figure of merit zT optimizes as a function of carrier

concentration n. Thermoelectric efficiency generally optimizes in the range 1019cm−3 ≤ nopt ≤ 1021 cm−3.

This is primarily the result of a balance between the Seebeck coefficient α and the electrical conductivity

σ (see Figure 1.1), though the thermal conductivity also plays a role in this optimization. Furthermore, the

ability to reduce κL and thus shift nopt (to lower nopt) must also be considered[9].

The requirements for optimization typically lead to the observation of large zT in semiconductors, where

the carrier density can be tuned to a desired level and the suppression of α due to bipolar conduction (the

presence of multiple carrier types) can be avoided via the band gap Eg . The carrier concentration in such a

system is generally independent of temperature, as these free carriers result from an imbalance in the valence

electron count and not activation of electron-hole pairs across the energy gap (generally referred to as an
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Figure 1.3. The temperature-dependent (a) electrical resistivity and (b) Seebeck coefficient in materials with
extrinsic carrier density given in the key (units of cm−3); it is assumed acoustic phonon scattering limits
the carrier mobility. Data markers represent a single, parabolic band model and the solid curves represent a
semiconductor with a band gap of 0.5 eV and equal characteristics for holes and electrons. In the multiband
case, minority carrier effects lead to reduced ρ and α at high T ; the notation CB+VB = implies a conduction
band and a valence band.

extrinsic semiconductor)[27]. At high T , however, the activation of carriers generally occurs because the

extrinsic carrier concentration cannot be too large if high zT is to be achieved. The term heavily doped

semiconductor is often utilized to describe a material with this type of n 6= n(T ). The following phrase

is then, in turn, utilized to describe transport in typical thermoelectric materials: “the transport properties

behave as expected for a heavily doped semiconductor.”

Before discussion transport, let us first clarify the nomenclature associated with these semiconductors.

A material that possesses a high carrier density is often said to be degenerate, which is synonymous with

heavily doped semiconductor to some scientists. This is not entirely true (to a physicist), as the level of

degeneracy (of the electron gas) is not determined by the value of n, but rather by the corresponding value of

the electrochemical potential ζ, often discussed in terms of the reduced potential η = ζ/kT . For this reason,

degeneracy is determined by a combination of n, T , and m∗.

An electron gas is highly degenerate when the electrochemical potential is well above the band edge.

In this case, approximations for the Fermi statistics or necessary integrals can be utilized to simplify the

transport coefficients and the electronic properties are generally well described by the theory of metals. An

electron gas is mildly degenerate when η is within a few kbT of the band edge, and Fermi-Dirac statistics

must be utilized. Finally, a nondegenerate electron gas is defined as one that obeys Boltzmann statistics, and

this generally occurs when η is more than a few kbT below the band edge (into the band gap). Thus, the term

degenerate is often applied to any electron gas that does not obey Boltzmann statistics. In a chemical sense,

the term degenerate is often used to imply that a crystal has a high level of impurity atoms (dopants) which

are all ionized. A higher concentration of impurity atoms generally results in a lower ionization energy due

to the formation of an impurity band as opposed to impurity states.

This section demonstrates the transport properties of heavily doped semiconductors with the goal of
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Figure 1.5. The (a) total thermal conductivity and (b) its electronic contribution versus temperature for
a variety of extrinsic levels (indicated by the key in units of cm−3). The lattice contribution is taken to
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n < 1020 cm−3. The effect of minority carriers in an ideal semiconductor is shown by the solid curve, which
reveals the relatively large bipolar contribution at high T and low n.

revealing the ‘expected behavior’ as well as why zT optimizes as a function of n. Two sets of data are shown

in the various plots to provide insight into this behavior. The data represented by markers are for the case of an

infinite band gap (single band), and the solid curves represent the case ofEg=0.5 eV in a semiconductor where

the electrons’ and holes’ effective mass and limiting mobility are equal. The effect of the minority carrier’s

properties on the net transport properties is significant and is examined in more detail in Appendix A. The

equations utilized to generate these plots are provided in Section 4.2. It is assumed that conduction occurs

in a parabolic band and that acoustic phonons limit the carriers’ mobility. The pertinent material parameters

were selected arbitrarily, though they are reasonable for materials with modest zT : a deformation potential

of 3 eV, longitudinal sound velocity of 3000 m/s, density of 6 g/cm3, and a lattice thermal conductivity of

κL = 600/T + 0.5 in W/m/K were utilized for these simulations.

When the carrier density is independent of T , the electrical resistivity ρ increases with increasing T (Fig-
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ure 1.3a) because lattice vibrations (phonons) disrupt the movement of the charge carriers. This is observed

as a decrease in the carrier mobility µ (Figure 1.4a) and is the behavior typically observed in metals at high

T (itinerant conduction with constant n). At low temperatures, localization, impurity scattering, or carrier

activation (ionization) effects are observed and a different temperature-dependence is expected. Typically,

this leads to an exponential rise in either µ and/or n with increasing T at low temperatures.

The Seebeck coefficient increases with increasing T , as shown in Figure 1.3b. This is because η decreases

with increasing T in materials with temperature independent n. The linear increase with T is exemplified

by the metallic limit expression for α (Eqn. 1.8), which also reveals the desire for low carrier density (more

specifically, low η). Derivations of Equation 1.8 are given in Appendix F. As T increases, the level of de-

generacy decreases (because η decreases) and the increase in α slows (even in an infinite band gap material).

Finally, at high T , the activation of electron-hole pairs across the energy gap results in reduced ρ and α, as

observed by the solid curves representing a material with Eg=0.5 eV in Figure 1.3.

α =
π2k2

bTm
∗

3eh2

( π
3n

)2/3

(1.8)

The total thermal conductivity κ generally decreases with increasing T , as demonstrated in Figure 1.5a.

This behavior is caused by a decrease in the lattice thermal conductivity κL, which generally decays as T−1

at high T in crystalline materials due to phonon-phonon scattering[29, 36, 37]. κL does not approach zero,

though, and κL tends to a minimum value at high T . Therefore, a simple model for κL suggests κL =

A/T+κmin, where A is a constant. However, when other scattering mechanisms become important, κL has

less temperature-dependence and approaches a temperature independent value in the limit of extremely high

scattering rates. The values of κ and κL are equal in Figure 1.5a for n ≤ 1019 cm−3 in the single band model

because the electronic contribution κe is essentially equal to zero.

At high T , the thermal activation of charge carriers can lead to a large increase κe due to the bipolar

thermal conductivity κb. The single band approximation does not account for this rise in κ associated with

the thermal activation of electron-hole pairs. At high T , the use of a single band model thus introduces error

due to the presence of κb, and an overestimation of κL results from such data analysis (often observed as an

increase in κL as T increases). A more detailed discussion of the electronic contribution in real semiconduc-

tors can be found in Appendix A and in Section 5.2. Note that the single band Lorenz number (Figure 1.4b)

decreases with increasing T due to decreasing η, and is almost always less than the metallic limit (dashed

line) of 2.45×10−8WΩK−2. Using this metallic limit of L is discouraged, and can even result in negative

values for κL[38].

The net result of this heavily doped semiconductor behavior is an increase in the figure of merit zT with

increasing T at moderate T . zT increases with increasing T for all doping levels in the single band case,

which is likely the case for materials with band gap Eg on the order of 1 eV (up to ∼1200 K). Materials with

small Eg , however, would experience the detrimental effects of minority carriers, and zT (T ) would display
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Figure 1.6. (a) The temperature-dependent zT increases with increasing T , and a maximum is observed in
the case when both valence and conduction band are considered (solid curve, Eg=0.5 eV). The key contains
the extrinsic carrier concentration in units of cm−3. (b) The optimization of zT reveals increasing optimum
n as T increases, an effect that is more severe when the influence of minority carriers is taken into account
(solid curves). The thin black curves represent zTmax versus nopt and increasing n corresponds to increasing
T ; these curves are parametric plots of Figures A.3a,b in Appendix A. In the legend, ‘1B’ stands for one
parabolic band, ‘2B’ for the case of a valence and conduction band separated by 0.5 eV, and ‘ND’ stands for
the extrinsic carrier concentration while n stands for the true carrier concentration (extrinsic plus intrinsic).

a maximum at high T ; this effect is estimated for a material with Eg = 0.5 eV by the solid curves.

The figure of merit optimizes near n = 1 × 1020 cm−3 for the material properties simulated here. This

optimization is typical of semiconductors, and controlling n is of the utmost importance in thermoelectrics.

When n is too large, small zT results due to large κe and small α; zT is small due to small σ when n is too

small. This is the inherent difficulty in obtaining large zT . Note that the maximum in zT does not correspond

to the maximum in α2σ (as a function of n) due to the influence of thermal conductivity[3, 9].

The maximum (optimized) zT and corresponding optimum carrier density nopt increases with increasing

T . The thin solid curves in Figure 1.6b trace zTmax versus nopt with the influence of T implied by increasing

zTmax. This behavior is consistent with simple theories, as discussed in Section 6.2. A more significant shift

to higher nopt with increasing T occurs when the effect of minority carriers is considered because a higher

majority carrier concentration corresponds to a lower minority carrier concentration. For the two band (2B)

models in Figure 1.6b, the solid curve is plotted as a function of the extrinsic doping level (ND) which is

always slightly less than the total carrier concentration n (extrinsic plus intrinsic). However, near zTmax, the

carrier concentration is dictated by the extrinsic level because the intrinsic carriers must be avoided (as much

as possible) for large zT to be achieved.

The characteristics of the minority carrier play an important role in determining the high T transport

properties in real semiconductors. The effect of these properties and the band gap is examined in Appendix

A. It is clear, however, that multiple carrier types lead to reduced zT at high T , and thus a large band gap

is desired. This feature has been discussed by several authors, and a general rule of Eg at least 6-10)kTop is

accepted, where Top is the desired operating temperature[7, 8, 12].

The increase in nopt with increasing T has significant implications for device development, as does the
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general behavior of zT (T ). Thermoelectric generators operate in a temperature gradient, and larger ∆T

allows a higher efficiency to be achieved. The optimum carrier density therefore changes across the thermo-

electric material, and segmenting different materials together is a common method to achieve large, average

zT [39]. Maintaining a variation of n across an individual thermoelectric material (a graded material) is

difficult due to diffusion at high T over the long lifetime of a thermoelectric device.

1.5 Pertinent Materials

1.5.1 La3−xTe4

This section is an adapted reproduction, with permission, from Phys. Rev. B, 78 125205 (2008) and Phys.

Rev. B, 81, 125205 (2010). Copyright 2008 and 2010, American Physical Society. Reprinted, in part, with

permission from Chem. Mater 22, 2995 (2010). Copyright 2010 American Chemical Society.

Lanthanum telluride is one of many rare earth (RE) chalcogenides (RE3−xCh4, Ch=chalcogen) that pos-

sess relatively large thermoelectric efficiency at high-temperature[38, 40–44], as well as superconductivity at

low temperature[45, 46].

These materials adopt the body centered cubic Th3P4 structure type (space group I4̄3d, No. 220), the

crystal structure of which is shown in Figure 1.7. Up to one-ninth of the cations can be vacant (0 ≤ x ≤ 1
3 ),

which corresponds to a phase width of roughly three atomic percent. This can be observed in the phase

diagram, which is presented in Figure 2.1 (Section 2.2.1).

In La3−xTe4, tellurium atoms sit on the phosphorus site and experience sixfold coordination by lan-

thanum via a distorted-octahedron (the shaded polyhedron in Figure 1.7). The lanthanum atoms are eightfold

coordinated by Te, which can be considered to sit on the corners of two inverted and distorted tetrahedra.

Details of the crystallography in La2.667Te4 can be found in Reference [47], and a nice overview of the lat-

tice parameters and phases present in various RE3−xCh4 is found in Reference [48]. Note that La3−xTe4

only exists in the Th3P4 structure type, whereas other RE3−xCh4 possess multiple crystal structures; as a

consequence of this phase stability, La3−xTe4 is attractive for device development.

To first order, the electronic behavior of La3−xTe4 and other rare-earth chalcogenides possessing the

Th3P4 structure type is easily understood in terms of sample stoichiometry[7, 49, 50]. For x < 1
3 , La3−xTe4

can be considered like a heavily doped semiconductor, or a metal with an underlying ionic structure (but,

this is unlike metals which typically possess cation cores underneath the electron cloud). Each La donates

three electrons (the 5d1 and 6s2 electrons) to the crystal to become La3+, and tellurium utilizes two of

these to complete valence and is thus Te2− (both ions possess the electronic configuration of xenon). The

insulating composition is therefore represented by the stoichiometry La2Te3, though this composition exists

as La3−xTe4 with x = 1
3 . When x < 1

3 , the electrons released by La that are not necessary to fulfill Te valence

begin to fill the conduction band, and the relationship between free electron concentration and composition
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I. INTRODUCTION

A. Motivation

Thermoelectric devices convert between thermal and elec-
trical fluxes via the solid state and offer significant reliability,
compactness, scalability, and quietness. In addition, they are
environmentally friendly compared to alternative energy
conversion devices, such as compression-based refrigerators.
Despite these desirable qualities, thermoelectric devices have
low conversion efficiency and are therefore found primarily
in niche applications, such as generating power for deep-
space science missions, where excellent reliability is para-
mount. To maximize performance, hot-side temperatures
reach 1275 K and the generator’s reliability depends greatly
on the thermal stability of the refractory electronics utilized,
such as Si-Ge alloys.

Lanthanum telluride and other rare-earth chalcogenides of
the Th3P4 structure type have been studied over several de-
cades as potential high-temperature thermoelectric
materials,1–5 as well as for their superconducting
properties.6–8 A good summary of the early thermoelectric
investigations was provided by Wood,9 where lanthanum tel-
luride is identified as the most promising thermoelectric ma-
terial of the rare-earth chalcogenides examined. This is due
to the excellent thermal stability of the rare-earth
chalcogenides10 and the large dimensionless figure of merit
zT of lanthanum telluride. The material’s zT characterizes
thermoelectric performance and is defined as

zT =
�2�

�
T , �1�

where T is the absolute temperature, � is the Seebeck coef-
ficient, � is the electrical conductivity, and � is the thermal
conductivity. State-of-the-art bulk thermoelectric materials

have peak zT values near 1 at the desired operating tempera-
ture.

B. Background

The rare-earth chalcogenide phase of interest exists in the

Th3P4 structure �space group Ī43d�, which is shown in Fig. 1.
Tellurium atoms sit on the phosphorus site and experience
sixfold coordination with lanthanum via a distorted octahe-
dron. The structure accommodates vacancies on the rare-
earth site, and up to one-ninth of the lanthanum atoms can be
vacant. The presence of vacancies provides disorder and dis-
tortion in the lattice, which enhances phonon scattering and

FIG. 1. �Color online� The La3−xTe4 structure, where the dis-
torted octahedron of lanthanum atoms demonstrates the sixfold lan-
thanum coordination around tellurium. The structure is shown with
lanthanum at full occupancy; however, up to one-ninth of the lan-
thanum atoms can be vacant. Cyan spheres represent lanthanum
atoms and brown spheres represent tellurium atoms.

PHYSICAL REVIEW B 78, 125205 �2008�

1098-0121/2008/78�12�/125205�12� ©2008 The American Physical Society125205-1

Figure 1.7. The structure of La3Te4 with blue spheres representing La and brown spheres representing Te.
The shaded polyhedron shows the octahedron-like coordination around Te. Reprinted with permission from
Phys. Rev. B, 78 125205 (2008). Copyright 2008, American Physical Society.

is obtained by combining simple valence counting with crystallographic data. By analogy to simple ionic

compounds, one expects the (filled) anionic Te states to reside mostly in the valence band while the (empty)

cationic La states make up the conduction band. This was verified during this thesis work[51].

The chemical environment in La3−xTe4 can be represented by

La3+
3−x�La,xTe2−

4 e1−
1−3x,

where �La,x represents a La vacancy and e−1 an electron. The free electron concentration in La3−xTe4 is

therefore easily calculated as n = nmax(1 − 3x), where nmax ∼ 4.5×1021cm−3 corresponds to x = 0, or

one free electron per formula unit. While the value of n is typically utilized in this thesis, prior publications

on these compounds have utilized the reduced carrier concentration n∗=n/nmax=(1-3x).

A metal-insulator transition is observed as x changes from zero to one-third. For small values of x, the

carrier concentration is large and the transport properties are similar to those of metals or heavily doped

semiconductors. This behavior is maintained for most of the solid solution; it is only when x → 1
3 that

the carrier concentration is reduced enough for non-degenerate semiconductor behavior to be observed at

moderate temperatures. In this limit, the conductivity is also expected to switch from itinerant to hopping

conduction, as discussed by Cutler and Mott in work describing the low temperature transport in Ce3−xS4

samples with large x[52].

Despite extensive investigations in the 1980s, the thermoelectric properties of lanthanum telluride have

been difficult to reproducibly confirm for a particular stoichiometry. Previous investigations utilized solid-

state diffusion, melt synthesis, or a combination of the two[53–56]. Studies employing melt synthesis re-

quired the use of pressure sealed tungsten or tantalum crucibles, and temperatures reached between 2080 and

2280 K[40]. These high-temperature techniques are time consuming and often result in inhomogeneous sam-

ples or, at a minimum, a lack of stoichiometric reproducibility. High-temperature syntheses are complicated

by several factors: (i) vapor phase loss of tellurium (Te melts at 722 K and boils at 1261 K), (i) high melting
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temperature of La3−xTe4 and LaTe (1992 K), (iii) severe reactivity with oxygen for La3−xTe4 and elemental

lanthanum, especially at elevated temperatures, and (iv) the presence of a liquid/solid two-phase region above

the La3−xTe4 solidus curve, as well as a neighboring eutectic reaction.

Previous work sponsored by the Jet Propulsion Laboratory and performed at ThermoElectron Corporation

was able to overcome the difficulties associated with high-temperature synthesis, and thermoelectric transport

was investigated on a series of single phase samples with a varying composition[40, 41]. These studies

concluded that relatively high thermoelectric efficiency was achievable in La3−xTe4, with zT ∼ 1.2 obtained

at 1273 K. Despite synthetic difficulties, it was suggested that the optimal composition corresponded to x ∼

0.26[40, 41], though it appeared as though larger n may be desirable.

The continued development of La3−xTe4 was hampered not only by synthetic difficulties, but also by the

lack of a complementary p-type material. La3−xTe4 does not produce p-type conduction, and thus a different

material system is required for the development of a thermoelectric generator. Traditionally, SiGe was utilized

for high-temperature thermoelectric generators, and p-type SiGe has lower thermoelectric efficiency than n-

type SiGe[15]. The net gain associated with replacing n-type SiGe by La3−xTe4 would be limited by the poor

performance of p-type SiGe, not to mention the mechanical issues that would arise due to poor matching of

the thermal expansion coefficients. However, the desire to develop La3−xTe4 regained a sense of urgency

with the discovery that Yb14MnSb11 could serve as a p-type leg[57].

The primary goal of this work was to obtain single phase samples of La3−xTe4 and demonstrate re-

producible control over composition and thermoelectric transport. After this initial task was fulfilled, the

characterization of a series of compositions was to be performed. The next step in this research and devel-

opment project was to model the thermoelectric transport and investigate methods for optimizing efficiency.

This requires understanding the physics governing thermoelectric transport.

The analysis of transport data is, in general, complicated by a variety of factors. For La3−xTe4, the materi-

als physics governing thermoelectric efficiency is difficult to isolate due to the inherent link between structural

defects (vacancies) and carrier concentration. Two approaches were utilized to separate the influence of the

vacancy and carrier concentrations on the various transport properties: (i) first-principles calculations of the

electronic structure and (ii) chemical manipulation. The former task was accomplished through collabora-

tions with theorists David Singh of Oak Ridge National Laboratory and Espen Flage-Larsen of the University

of Oslo. These calculations were performed on ideal structures and thus provide an approximate model to

investigate the influence of electronic structure on the thermoelectric transport.

The following describes the local environments in the most successful elemental substitutions:

La3+
3−x−y�La,xYb2+

y Te2−
4 e1−

1−3x−y ,

and

La3+
3−x�La,xTe2−

4−zSbze1−
1−3x−z .

In the case of a divalent cation substitution, such as that shown above for the substitution of La3+ by Yb2+,
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Table 1.1. Cation radii for eightfold coordination reveals similar ionic size in Yb2+ and La3+[59].
ion radii (Å)

La3+ 1.16
Yb2+ 1.14
Na1+ 1.18
Ca2+ 1.12
Sr2+ 1.26
Ba2+ 1.42
Pb2+ 1.43
K1+ 1.51

the theoretical carrier density can thus be expressed as n = nmax(1 − 3x − y). Similarly, in the case of

anionic substitutions for Te2−, such as by Sb3− or Bi3−, the expected carrier density is expressed in terms of

the Sb or Bi content as n = nmax(1− 3x− z). In both types of substitutions, the carrier density and vacancy

concentration are no longer interdependent, and the physics governing phonon and charge carrier transport

can be probed more explicitly.

The non-isoelectronic substitutions thus provide finer control over carrier density than can be achieved in

La3−xTe4. In La3−xTe4, the chemical control of carrier density is limited by the formal valence of lanthanum

(III). The tuning of Yb content y or Sb(Bi) content z should render a threefold finer control of n compared to

that achieved by changing the La vacancy concentration x.

A variety of cationic substitutions can be envisioned, though the anionic substitutions are limited and

to our knowledge these studies represent the first of their kind. The selection of a substitutional element is

relatively simple. According to the Hume-Rothery rules for solubility in solid solutions[58], high solubility

is promoted by similarity in ionic (atomic) radii. Based on the data in Table 1.1[59], Yb is very promising for

substitution on a La site.

Yb is typically a divalent cation in Te compounds[60]. This is exemplified by the formation of only

YbTe in the Yb-Te phase diagram[61], which is an insulating phase with divalent Yb[62, 63]. Divalent

Yb is stabilized due to the full 4f shell, such as in elemental Yb[63], where the 4f states lie at binding

energies between 1.3 and 2.5 eV[64]. This reasoning is also consistent with the formation of divalent Yb

in Yb4Bi2Te[65], which possesses the anti-Th3P4 structure type. Also, divalent Yb has been suggested

in Pb1−xYbxTe from lattice parameter data[66], as well as x-ray photoemission spectroscopy[67]. This is

contrary to Pb1−xYbxS where mixed Yb valency is observed[67], and is expected to be the case for Yb

substitution in La3−xS4. Thus, it is believed that Te is not electronegative enough to promote significant

concentrations of Yb3+ and Yb can be regarded as predominantly Yb2+ in the lanthanum telluride matrix.

1.5.2 Ba8Ga16−xGe30+x

This section is an adapted reproduction, with permission, from Phys. Rev. B, 80, 125205 (2009). Copyright

2009, American Physical Society.
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The clathrate structure types contain three-dimensional, covalently bound frameworks with voids (cages)

where guest atoms (fillers) can reside. The Ba8Ga16−xGe30+x compound discussed here has the Type I

clathrate structure (cubic, space group Pm3̄n, No. 223)[68], which possesses two types of cages formed by

the Ga-Ge framework and the Ba atoms reside within these cages; a nice overview of the crystal structure is

found in Reference [69].

The composition Ba8Ga16Ge30 is valence balanced, as each Ba donates two electrons and every Ga

utilizes one of these electrons for bonding within the framework. Deviation from this stoichiometry results in

valence imbalance and thus doped semiconductor behavior, with excess Ge giving n-type samples and excess

Ga resulting in p-type behavior[27, 70–72].

At high-temperature, the clathrates have shown to possess thermoelectric efficiency equivalent to state of

the art materials, such as PbTe and SiGe[73–75]. Specifically, the clathrates possess zT ∼ 1 near 900 K due

to the combination of relatively low κL and large µm∗3/2, where µ is the electron mobility and m∗ is its

effective mass.

A large number of investigations on the low temperature thermal conductivity of clathrates have been

performed[76–84]. The main purpose of these studies was to reveal the role of the filler atom, with filler

atom-phonon and filler atom-framework interactions of primary interest. Many clathrates have glass-like

thermal conductivity (κL independent of T at high T ), and similar behavior has been observed in p-type

Ba8Ga16−xGe30+x. Interestingly, n-type Ba8Ga16−xGe30+x has crystalline-like thermal conductivity (κL ∝

T−1 at high T ).

While many studies continue to investigate the coupling between chemical composition and thermoelec-

tric properties in Ba8Ga16−xGe30+x-based compounds[85–88], the transport features in Ba8Ga16−xGe30+x

have not been completely characterized and analyzed for the compositions of interest to thermoelectric ap-

plication (for n-type 15≤x≤ 16). One objective of this thesis is to provide a thorough study of the high-

temperature transport in polycrystalline Ba8Ga16−xGe30+x, and address the claim of surprisingly large nopt

made in Reference [89].

1.5.3 SrZnSb2 and SrZn2Sb2

This section is an adapted reproduction, with permission, from J. Appl. Phys., 106 013706 (2009). Copyright

2009, American Institute of Physics.

The search for high efficiency thermoelectric materials encompasses many classes of semiconductors.

While most conventional thermoelectric materials employ tellurium, its low natural abundance suggests the

discovery of Te-free thermoelectric materials may be required for widespread application. A large variety

of uncharacterized materials exists, and the trick is to predict which compounds will possess large zT . One

class of promising compounds are termed Zintl compounds, which are valence balanced (semiconducting)

materials that possess both ionic and covalent bonding in a single compound[9, 27, 90]. The term Zintl

compound is used loosely here to include compositions that have a valence imbalance.



16

Figure 1.8. Crystal structures of (a) SrZnSb2 and (b) SrZn2Sb2. Green spheres represent Sr, gold sphere
represent Sb, and Zn is located within the tetrahedra. The solid black lines trace the edges of the primitive
unit cells. Reprinted with permission from J. Appl. Phys., 106 013706 (2009). Copyright 2009, American
Institute of Physics.

Zintl compounds are attractive for thermoelectric application because their valence-precise nature fre-

quently results in tunable semiconductors[27, 38, 91]. Also, Zintl compounds are often composed of discrete

structural units (layers, cages, channels, polyanionic groups) that promote low κL[9, 92–94]. Many material

systems can be understood using Zintl chemistry[9], including high performance thermoelectric materials like

Yb14MnSb11, La3−xTe4, and Ba8Ga16Ge30. However, the transport properties of many Zintl compounds re-

main uncharacterized.

This thesis examines transport in polycrystalline SrZnSb2 and SrZn2Sb2 between room temperature and

725 K. A variety of AZn2Sb2 (A= Ca, Yb, Sr, Eu) compounds exist[95–97], and their transport properties

were discussed in detail in a recent article[97]. This discussion focuses mainly on the variation of κL between

SrZnSb2 and SrZn2Sb2.

SrZnSb2 was predicted to be a semimetal by ab initio calculations that predicted a maximum zT of 0.14

(0.21) for p-type (n-type) conduction at 300 K; slightly lower zT was predicted for SrZn2Sb2[98]. The crystal

structure of SrZnSb2 (orthorhombic, Pnma; Fig.1.8a) is derived from the ThCr2Si2 structure (tetragonal,

I4/mmm), where anionic slabs of edge sharing tetrahedra are separated by square monolayers of cations. In

SrZnSb2, every other (Zn2Sb2)2− slab is replaced by a monolayer consisting of (Sb2)2− zigzag chains.

The AZn2Sb2 compounds have been shown to possess moderate thermoelectric performance, with 0.5 ≤

zT ≤ 1 at 750 K[95, 96]. As shown in Fig. 1.8, theAZn2Sb2 compounds (P3m CaAl2Si2 parent compound)

have structural features similar to SrZnSb2, but the unit cell of SrZnSb2 is larger due to the layer of (Sb2)2−

zigzag chains. The AZn2Sb2 (A= Ca, Yb, Sr, Eu) compounds are composed of trigonal monolayers of A2+

cations separating (Zn2Sb2)2− slabs. The anionic slabs can be viewed as two puckered graphitic Sb-Zn layers

that have been brought into contact[99].
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1.6 Summary of Research

This thesis addresses the ability of traditional solid-state models to describe transport in modern thermoelec-

tric materials. The models of interest are solutions to the Boltzmann transport equation combined with the-

ories of the electronic relaxation times associated with various scattering mechanisms. The simplest model

utilizes a parabolic dispersion relationship (free electron behavior), while more complex models combine

multiple parabolic bands. The analysis and modeling of temperature T and carrier concentration n dependent

transport properties is the primary concern.

The compound La3−xTe4 is considered for much of this work, and is in some ways an ideal com-

pound to study due to the explicit link between the free carrier concentration n and the vacancy count x

(n ∝ (1− 3x)). This system was known to have large thermoelectric performance,[40, 41] but synthetic dif-

ficulties inhibited detailed studies. Therefore, the initial goal of this research was to circumvent downfalls of

the high-temperature synthesis (the compound melts near 1775 K) by utilizing a low-temperature, solid-state

synthesis technique. This was achieved via mechanical alloying, or ball milling, which resulted in the repro-

ducible synthesis of single-phase samples.[38, 100] Characterization of the transport properties as a function

of composition x led to confirmation of large thermoelectric efficiency near x = 0.26.[38]

With a reliable set of data, the materials physics governing transport in La3−xTe4 was investigated. The

electronic properties were considered within the single, parabolic band model. The model did not describe

the core thermoelectric property, the Seebeck coefficient α, for all compositions.[38, 51] Specifically, lower-

than-expected α was observed at large x (low n). Thus, this analysis suggested that a fundamental material

property changed as various carrier concentrations were probed.

Two hypotheses were examined regarding the failure of the initial model: (i) the scattering of electrons

by La vacancies influences α at large x, and (ii) the electronic structure depends on n and/or x. Hypothesis

(i) was quickly eliminated by examining the T and n dependent carrier mobility, which is well described by

a theory for the scattering of electrons by phonons (even at large x). Also, unusual scattering mechanisms

tend to enhance α (relative to phonon scattering), which is opposite to what was observed here.

Collaboration with David Singh of Oak Ridge National Laboratory (ORNL) investigates hypothesis (ii).

A first-principles calculation on vacancy-free La3Te4 was performed, and this revealed that multiple bands

contribute to electron conduction for the energy ranges (the n, T values) of interest. Specifically, a light band

was found in the energy range corresponding to small n (large x), which provided a qualitative description

of the experimental α data.[51] Also, a collaboration with Olivier Delaire of ORNL investigated the vibra-

tional characteristics of La3−xTe4 via calorimetry and inelastic neutron scattering. This work confirmed the

existence of a light band at large x, and also found a significant stiffening of the phonon density of states at

large x due to the reduction in ion core screening as n decreases. The pertinent results of this study are called

on during the discussion of thermal transport, and the interested reader should see Reference [101] for the

detailed publication.
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With the general picture of transport in La3−xTe4 developed, attempts to manipulate and optimize the

thermoelectric efficiency were conducted. The incorporation of Yb by substitution on the La site revealed no

significant changes in transport, but the difference in formal valence between these two rare earth elements

facilitated the optimization of efficiency and an optimum was identified at n ∼3×1020cm−3,[102] which is

smaller than previously identified.[38, 40, 41] The substitutions of Sb or Bi for Te in nominally vacancy free

samples were utilized to examine the electron and phonon scattering mechanisms in detail.[103] These substi-

tutions resulted in changes in the transport properties, with a transition from itinerant to activated conduction

observed as Sb(Bi) content increased. Also, a reduction of the energy gap was observed and confirmed via

first-principles calculations by Espen Flage-Larsen of the University of Oslo. An increase in both the carrier

mobility and lattice thermal conductivity was observed at high Sb (Bi) content, likely due to the reduced La

vacancy concentration, which resulted in a small increase in zT at high T .

The work on La3−xTe4 taught me the basics of thermoelectric research, from synthesis to theoretical

considerations. As such, it enabled my role in the investigations of several other compounds.[91, 97, 104–

107] Much of this work is discussed in a recent review article.[27]

In addition to the core work on La3−xTe4, this thesis discusses the transport in Ba8Ga16−xGe30+x and

the SrZnSb2/SrZn2Sb2 systems. The work discussed here corresponds to the publications in which I was first

author.[104, 105] After much effort obtaining reproducible data in the Ba8Ga16−xGe30+x system,[107] the

parabolic band model was utilized to optimize performance with x = 0.25 identified as the most promising n-

type composition.[104] A collaborative effort with Bo Iversen’s group at the University of Aarhus is currently

underway in an attempt to understand an anomalous transition event that was observed.

The SrZnSb2/SrZn2Sb2 materials were examined to investigate the influence of atomic structure on trans-

port. It was found that the high number of atoms per unit cell in SrZnSb2 corresponds to a low lattice thermal

conductivity, whereas the smaller unit cell of SrZn2Sb2 possesses a higher lattice thermal conductivity. This is

believed to be due to the direct relationship between atoms per cell and the number of optical phonons, which

generally have low group velocities and thus promote low lattice thermal conductivity. The nano/micro-

structure of these compounds is currently being examined via transmission electron microscopy by Øystein

Prytz of the University of Oslo.
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Chapter 2

Experimental Methods

2.1 Summary

This chapter discusses the synthesis and characterization of inorganic, crystalline materials. It begins with

an introduction to solid-state synthesis, in which case mass diffusion limits the reaction time. The essential

tools to overcome this kinetic barrier are discussed in relation to the basic forms for the diffusion coefficient.

After establishing the basic principles for the synthesis of crystalline solids, the procedures utilized to obtain

the compounds discussed in this text are given in detail.

In the case of La3−xTe4, direct milling (high-energy ball milling) of the elements was utilized to obtain

single-phase samples near room temperature; the importance of this is discussed in relation to the phase

diagram. Ba8Ga16−xGe30+x samples were prepared by a combination of melting/quench and ball milling.

For the Sr-Zn-Sb compounds, melting of the elements was followed by a short anneal at elevated temperatures

then ball milling. In all cases, pressure-assisted sintering was utilized to transform the fine powder product

into a dense cylinder. The chapter also contains the pertinent details for characterizing the chemical and

transport properties of these compounds, as well as some computational details provided by the theoretical

collaborators performing density functional theory calculations.

2.2 Synthesis of Inorganic Solids

The synthesis of inorganic, crystalline solids is generally limited by mass diffusion. That is, the phase diagram

reveals which compounds are thermodynamically accessible, and the goal is then to overcome kinetic barriers

for forming the desired phase. The primary goal during synthesis is thus to reduce the time for diffusion to

occur. In general, the diffusion time (tD) scales as l2D/DM , where lD is the diffusion length and DM is the

mass diffusion coefficient.

In solids, the diffusion coefficient has activated behavior, DM = D0,MExp[−Qa/kT ], where Qa is

the activation energy for diffusion[108, 109]. Therefore, synthesis often employs high-temperatures, which

results in relatively large diffusion coefficients. Upon melting, DM increases by several orders of magnitude
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and lD decreases dramatically[109], and thus procedures involving melting are often employed. Alternatively,

one can reduce lD and thus greatly reduce tD.

The synthesis of a single phase material from a high-temperature melt procedure can be very difficult.

The pertinent phase diagram(s) should always be consulted before attempting such a synthesis. However,

phase diagrams are not available for many systems, and in such cases trial and error typically leads to the

most-successful synthesis procedure. Often times, solidification must be avoided due to the presence of a

peritectic reaction or other phase diagram feature that leads to the formation of undesired phase(s). In these

cases, lower temperature, solid-state synthesis is often employed.

The classic ‘shake and bake’ procedure can often be applied: elements are combined and held at an

elevated temperature for a long period of time to allow diffusion to occur. The mixture is cooled, the system is

ground, and the procedure is repeated until the desired phase is obtained. This technique has the disadvantage

of taking a long time to complete, and the high number of cycles provides ample opportunity for contaminants

(such as oxygen) to enter the system or for the experimentalist to make an error. The sublimation or boiling

of volatile elements can also complicate high-temperature synthesis, leading to a system with an undesired

stoichiometry that may or may not result in the formation of an undesired phase(s).

The work discussed in this thesis has employed high energy mechanical grinding (mechanical alloying,

high-energy ball milling) to reduce lD and promote the synthesis of homogenous, single phase samples in

a short period of time. In some cases, as in the La3−xTe4 system, mechanical alloying alone has been

utilized to form the desired phase. In other cases, such as in Ba8Ga16−xGe30+x or SrZnSb2, the mixture is

first melted and quenched, and then ball milled. Sometimes the best synthesis involves slow cooling upon

solidification, while quenching may be required elsewhere. The postmilled mixture is often single phase,

but small quantities of impurities may be present. In particular, this procedure can result in grain boundary

oxidation, as the resulting grains are typically small. Thus, it is important to perform all tasks that expose the

sample in an inert atmosphere.

The final synthetic step is the sintering of powders to produce dense samples that can be characterized

by a variety of techniques. The samples discussed in this work were sintered via pressure-assisted sintering,

or hot pressing. Pertinent details for this technique can be found in Appendix B. The combination of fine

grains resulting from milling and high-temperature sintering is believed to reduce the inhomogeneity within

a single phase region, and likely promotes single phase samples through a macroscopic reflection of the mi-

croscopic mixing. After dense cylinders (roughly 0.5–1.5 cm tall, 1.2 cm in diameter) were obtained from hot

pressing, the samples were cut using a low-speed diamond saw and non-aqueous lubricant. The characterized

specimens were roughly 1–2mm in thickness.

2.2.1 La3−xTe4

The synthesis of La3−xTe4 is complicated by the lanthanum-tellurium phase diagram, which is shown in

Figure 2.1[54]. The compositions of interest are La3−xTe4 with 0 ≤ x ≤ 1
3 , which possess the Th3P4 struc-
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ture type; the end-member compositions can be represented by La3Te4 and La2Te3. As observed in Figure

2.1, the compositions of interest melt near 1773 K and both peritectic and eutectic reactions are observed to

occur with end-member compositions and the appropriate neighboring phase. The melting temperature of

La3−xTe4 is above the boiling point of tellurium (Te melts at 722 K and boils at 1261 K), and thus tellurium

evaporation/sublimation is a significant concern.

Solidification of a particular composition (x value) results in changing tellurium content within a partic-

ular grain (due to liquid/solid two phase regions) and long annealing times are required to homogenize such

a sample. For samples with less than approximately 58 at.% Te, the proximity of the eutectic reaction with

LaTe necessitates large quenching rates during solidification and only a small stoichiometric window exists.

Together with the high vapor pressure of tellurium, this makes producing high resistance/semi-insulating

samples (x = 1
3 ) especially difficult. Finally, the sensitivity of lanthanum to oxygen provides an additional

complication. Despite these difficulties, prior work sponsored by the Jet Propulsion Laboratory was success-

ful in generating single phase samples of lanthanum telluride via a melt and anneal procedure that utilized

tungsten crucibles. However, the process was slow and obtaining single phase (and homogeneous) samples

was not systematic. Therefore, the initial goal of this work was to produce single phase, homogenous samples

of La3−xTe4 in which the stoichiometry could be reproducible controlled.

(a) (b)

Figure 2.1. The lanthanum-tellurium phase diagram[54]. The melting point of La3−xTe4 is higher than the
boiling point of elemental Te, and the presence of a peritectic and eutectic reaction with the neighboring
LaTe2 and LaTe binaries complicate traditional melt synthesis. (b) Close examination of the pertinent region
of the phase diagram. Panel (a) is reprinted with permission from Inorg. Chem. 4, 1154 (1965). Copyright
1965, American Chemical Society. Panel (b) is reprinted with permission from Phys. Rev. B, 78 125205
(2008). Copyright 2008, American Physical Society.

The synthesis of lanthanum telluride is accomplished near room temperature by mechanical alloying.

The production of the desired La3−xTe4 phase near room temperature increases sample homogeneity and
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reproducibility by two distinct routes: (i) avoiding solidification reduces concerns about the production of

inhomogeneous grains, and (ii) reducing elemental tellurium to the Te2− state (via reaction with La) stabilizes

tellurium with respect to vapor phase losses. Mechanical alloying also allows multiple samples to be produced

in a short time period, and is therefore an ideal tool for studying the relationship between the thermoelectric

properties and composition in La3−xTe4.

Mechanical alloying occurred as follows: A total of ten grams of the raw elements are combined in

a stainless steel vial with two half-inch stainless balls (purchased from SPEX). The vial is placed into a

SPEX 8000 Series Mixer/Mill and is milled for a total of eight hours, using a procedure of one hour of

milling followed by one hour of cooling to minimize damage to the motor and keep the metallic phases from

becoming overly ductile. The amount of milling time required has not been investigated thoroughly; the goal

for this study was to obtain single phase, homogenous samples, thereby allowing the thermoelectric efficiency

to be investigated.

For a successful synthesis, elemental lanthanum must be cut to 2-3 mm pieces. Elemental species were

obtained from Alfa Aesar; lanthanum and tellurium chunks with metals basis purity 99.9% and 99.999%,

respectively, were utilized. The size of the tellurium starting material has little impact on the final product

because tellurium is very brittle and grinds quickly. Lanthanum, on the other hand, is ductile and if the initial

pieces are too large the lanthanum will stick to the walls or corners of the vial and prevent the formation of

single phase samples. A similar effect is observed if too much material is placed into the vial and complete

reaction is inhibited due to this ‘caking’ (compaction of material into the corners of the vial).

The lanthanum obtained from Alfa Aesar comes packaged under mineral oil, which is removed via d-

limonene; after cleaning the metal it must be stored in an inert atmosphere. The surface of the lanthanum

ingots (roughly 1 cm2 in size, enough for two samples) must be polished to remove all oxygen contamination.

Along with polishing, the lanthanum ingots are cut to the appropriate size just prior to the onset of mechanical

alloying to ensure minimal surface contamination. A two foot bolt cutter followed by an eight inch bolt cutter

was found to be the best method for obtaining the necessary particle size in a reasonable amount of time

(∼1 hr per sample). All steps are performed in an argon dry box. The synthesis has been attempted with

powder lanthanum, however this approach was not successful, presumably due to oxidation of the La grains.

A fine grain, homogenous powder results from the mechanical alloying. This powder is believed to

contain only the desired La3−xTe4 phase. The powder is recovered from the vial using a curved bearing

scraper obtained from McMaster-Carr, which enables yields greater than 95%. The powder is densified using

pressure assisted sintering, or hot pressing, where the powder is sintered at elevated temperatures while under

uniaxial pressure. See Appendix B for further details regarding hot pressing; the use of a graphoil liner was

not found to be critical in the sintering of La3−xTe4, but was employed to avoid cross contamination.

Samples with large x are more difficult to sinter than those with low x. This is likely due to a combination

of effects. Samples with low x are metallic, and are thus more ductile than those with large x. The nature

(effective composition) of the sample can be observed after milling, because the low x samples tend to
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stick to the vial, while large x or oxidized samples are easy to remove and produce very high yields. Also,

samples with large x are more readily oxidized to La2O2Te and the presence of this compound likely inhibits

sintering. Many different press profiles were utilized, with none providing the high density observed in the

more metallic samples. The best profile (∼90% theoretical density) involved changing the vacuum conditions,

suggesting Te loss may have caused additional problems. The large x samples do not possess the optimal

thermoelectric performance and are thus of little technological interest.

2.2.2 Ba8Ga16−xGe30+x

This section is an adapted reproduction, with permission, from Phys. Rev. B, 80, 125205 (2009). Copyright

2009, American Physical Society.

Polycrystalline samples of the Type I clathrate Ba8Ga16−xGe30+x were synthesized using a melt, quench,

ball mill, hot-press procedure[104, 107]. The work performed on Ba8Ga16−xGe30+x was a collaborative

effort, with the synthesis responsibilities falling primarily on Ali Saramat after a procedure was decided

upon. The samples discussed here were synthesized by a direct reaction of the elements in pyrolytic boron

nitride crucibles sealed within evacuated (2×10−5 torr) quartz ampoules. High purity Ga (99.99% metals

basis, Aldrich), Ge (99.9999% metals basis, Alfa Aesar) and Ba (distilled, dendritic 99+% metals basis,

Aldrich) were utilized, and a slight excess of Ba was employed to compensate for possible oxidation–nominal

compositions were Ba8.2Ga16−xGe30+x[107].

Mixtures of the elements were heated to 1325 K at 100 K/hr, where the melts were held for 2 hr prior

to quenching in air. The resulting ingots were ground under argon in a SPEX SamplePrep 8000 Series

Mixer/Mill for a minimum of 1 hr and maximum of 4 hr inside stainless steel vials with two half-inch, stainless

steel balls. Fine, homogeneous powders from the high energy milling were hot pressed in high density

graphite dies (POCO) utilizing roughly 1.1 metric tons of force over a 12 mm diameter at 1100 K. Hot pressing

took place over 1 hr in an argon atmosphere, and was followed by 1 hr of stress free anneal under vacuum.

Further details of the sintering procedure can be found in Appendix B.

2.2.3 SrZnSb2 and SrZn2Sb2

This section is an adapted reproduction, with permission, from J. Appl. Phys., 106 013706 (2009). Copyright

2009, American Institute of Physics.

Stoichiometric amounts of the elements (at least 99.9% metals basis purity) were combined in a pyrolytic

BN crucible, which was sealed in a quartz tube evacuated to 1×10−5 torr. Samples were slowly heated

from 575 to 1225 K, and the resulting melt was held at 1225 K for 30 min. The melt was cooled to 825 K

in 2.5 hr, and the sample was annealed at 825 K for 2.5 hr. The resulting ingot was ball milled under argon

for 15 min in the high energy SPEX 8000 Series Mixer/Mill utilizing stainless steel vial and balls. The

fine grain, homogenous powder obtained from milling was hot pressed (see Appendix B) in a high-density
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graphite die (POCO) at 825 K, for approximately 3 hr, while roughly 1.4 metric tons of force was placed on

a 12 mm diameter surface. The dense ingots obtained from hot-pressing were cut using a slow cut saw with

non-aqueous lubricant, and the resulting wafers were ∼1–2 mm thick.

2.3 Characterization

2.3.1 Chemical Characterization

Phase purity was addressed using powder x-ray diffraction, electron probe microanalysis (EPMA), and scan-

ning electron microscopy (SEM). To address composition and homogeneity, wavelength dispersive spec-

troscopy (WDS) and energy dispersive spectroscopy (EDS) were performed during EPMA and SEM, respec-

tively. X-ray diffraction was the primary tool utilized to identify the phases contained within a sample. A

Philip’s X’Pert Plus diffractometer with Cu radiation (Kα) was employed under a current of 40 mA with a

voltage of 45 kV. A JOEL JXA-8200 electron microprobe was utilized in the back-scattered electron mode

to create compositional contrast images. Images were taken at magnifications up to 1000×, however, the

images taken at 200× provide the same evidence of single-phase samples with near theoretical density.

Table 2.1. Standards and detector settings commonly utilized during wavelength dispersive spectroscopy
(WDS).

Element Standard Detection Crystal Radiation Type Background Position
Te Te PETH Lα (+3,-3.4)
Sb Sb PETJ Lα (+3.0,-2.9)
Bi Bi PETJ Mα (+5.0,-3.0)
La LaPO4 PETL Lα (+4.0,-2.0)
Yb YbPO4 LIF Lα (+5,-5)
Ba BaTiSi3O9 (benitoite) PETH Lα (+5.0,-3.0)
Ga GaAs LIF Kα (+5.0,-5.0)
Ge Ge Tap Lα (+3.0,-5.0)

The JEOL JXA-8200 was also employed for WDS where an electric potential of 15 kV is utilized and

a ZAF matrix correction is employed to account for atomic number, absorption and fluorescence effects.

The EPMA was performed by Teruyuki Ikeda, with some assistance from Chi Ma, in Caltech’s Division of

Geology and Planetary Sciences. WDS is generally considered to be a more accurate probe of elemental

composition due to the use of standards. The standards employed are shown in Table 2.1. Also shown in

Table 2.1 are the typical settings utilized during WDS. Specific background positions are selected to avoid

peak overlap.

For La3−xTe4, a NETZSCH Dilatometer (DIL 402C) measured the coefficient of thermal expansion to

1225 K, in an argon forming gas of 7% H2, at 2 K/min[100, 101]. Vilupanur A. Ravi and Samad A. Firdosy

performed these measurements at JPL. Also, a NETZSCH STA 449C simultaneously performed thermo-

gravimetry and differential thermal analysis (TG-DTA); this was performed by J. Paik of JPL to estimate the
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rate of sublimation as this is a candidate material for deepspace power generation. The TG-DTA data were

obtained between room temperature and 1375 K at 20 K/min, under argon flow with an alumina crucible as

reference.

2.3.2 Characterization of Transport Properties

Transport properties were characterized from room temperature to a temperature specified by the material of

interest. All measurements were performed under dynamic vacuum; a pressure of less than 5 × 10−4 torr is

desirable.

Electrical transport was characterized via Hall coefficient, electrical resistivity, and Seebeck coefficient

measurements. The Hall coefficient and electrical resistivity were obtained using the Van der Pauw method.

Hall coefficients (RH ) were measured on two separate systems. High-temperature measurements (T >

673 K) were performed at the Jet Propulsion Laboratory using a magnetic field of ∼1 T. Lower temperature

Hall effect measurements were generally performed at Caltech to take advantage of the ∼2 T magnetic field

(signal ∝ field). The Seebeck coefficient (α) was obtained at room temperature using Cu/constantan thermo-

couples by accounting for the Cu voltage. High-temperature αmeasurements employed W/Nb thermocouples

and utilized the differential light pipe method discussed in Reference [110]; a ∆T ∼ 5 K was employed for

all temperatures. The electrical resistivity and Seebeck coefficients for lanthanum telluride-based materials

and the Ba8Ga16−xGe30+x samples were collected at the Jet Propulsion Laboratory; ‘System 1’ was typi-

cally employed using the software written by G. J. Snyder. Data for SrZnSb2 and SrZn2Sb2 were collected

at Caltech.

Thermal conductivity (κ) was determined via κ=DTCP d, where DT is the thermal diffusivity, CP the

heat capacity, and d the geometric density. The value ofDT was obtained via a NETZSCH Laser Flash Anal-

ysis (LFA) 457. The JPL and Caltech NETZSCH LFA 457 systems were found to provide indistinguishable

data, and thus measurements from both systems can be accurately compared and reported simultaneously.

The LFA measurements were generally performed under vacuum pulled by a turbo pump after purging the

system multiple times with industrial argon.

For La3−xTe4-based samples, the heat capacity initially reported [38] was obtained from the NETZSCH

LFA 457 using a pyroceram 9606 standard. This heat capacity was lower than expected at room temperature

and more recent publications have utilized an updated version obtained during a collaboration with scientists

at Oak Ridge National Laboratory[101]. These later measurements were performed at ORNL by W. D.

Porter on a NETZSCH 404c differential scanning calorimeter (DSC). The results were found to be in better

agreement with the value expected from the Dulong-Petit limit of 3R/M̄ , where M̄ is the mean molecular

weight of the crystal. The high-temperature data were collected for a highly metallic sample with nominal

composition La3Te4. To utilize these data for the wide compositional range, the data is manipulated to

estimate the electronic contribution and account for the reduced electronic contribution as x increases.

The high-temperature DSC measurements performed at ORNL utilized Pt crucibles with alumina liners
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under an ultrapure Ar purge gas cycled through a Ti gettering furnace. The scans were performed after a

careful evacuation of the sample chamber. The temperature scan rate was 20 K/min. Low temperature heat

capacity was also collected, for which a Quantum Design physical property measurement system (PPMS)

was employed. Data were collected between 1.85 and 300 K in zero applied magnetic field for all samples.

Data for the highly metallic La3Te4 sample were also collected over the temperature range of 1.86 to 10 K in

an applied field of 12 T to suppress the superconducting transition[101].

For Ba8Ga16−xGe30+x samples, high-temperature heat capacity data were collected from the LFA 457 by

utilizing a pyroceram 9606 standard. A NETZSCH 200 series DSC also obtained CP to roughly 775 K using

a sapphire standard and a heating rate of 20 K/min with Pt crucibles and Al2O3 liners. Thermogravimetry

(TGA) data were obtained in a NETZSCH TG 209 F3 from 300 to 1025 K at 20 K/min under nitrogen; the

purpose of this was to confirm there was no weight loss through the observed transition[104]. The DSC

and TGA data were collected by Lloyd MacPherson of NETZSCH, while the LFA 457 measurements were

performed at Caltech.

The Dulong-Petit limit of CP was employed for SrZnSb2 and SrZn2Sb2. This likely provides an accurate

description of the room temperature heat capacity, as the Debye temperature for both compounds is esti-

mated to be 222 K, based on sound velocity data. This is likely an underestimation at higher temperatures,

particularly for SrZnSb2 due to the high electrical conductivity (implying a high electronic contribution to

CP ).

Normal and shear ultrasonic measurements were performed at room temperature to extract the longitu-

dinal and transverse sound velocities, respectively. The couplant utilized for the normal mode varied from a

thin oil (mineral oil, vegetable oil) to the thick couplant utilized for shear measurements (honey or a specially

purchased shear couplant). The data collected for La3−xTe4 were originally obtained at the Jet Propulsion

Laboratory with the assistance of Jack Aldrich in the laboratory of Yoseph Bar-Cohen. These data were ob-

tained using input from a Panametrics 5052 Pulser/Receiver with the filter at 0.03 MHz. The response was

recorded via a digital oscilloscope, the Tektronic TDS 5054B-NV; the high resolution mode was employed

for the longitudinal speed of sound and an averaging mode (16 waveforms) was utilized for the transverse

speed of sound measurements. Raw data for the La3−xTe4 system are shown in Appendix G along with some

additional comments. For the Ba8Ga16−xGe30+x and Sr-Zn-Sb based samples, a Panametrics NDT 5800

pulser/receiver was employed with a Tektronix TDS 1012 digital oscilloscope; these measurements were

performed in W. Johnson’s laboratory at Caltech.

2.4 Analysis of Transport Properties

The solutions to the Boltzmann transport equation are utilized to analyze the experimental transport data. The

required equations contain infinite integrals, though the upper limit can be reduced significantly to facilitate

computation when necessary. These calculations were performed in Mathematica and MathCad. MathCad
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Table 2.2. Experimental lattice parameter of La3Te4[48], and computational lattice parameters for the relaxed
La3Te4, La3Te3Sb, and La3Te3Bi cells. Reprinted with permission from Phys. Rev. B 81, 125205 (2010).
Copyright 2010, American Physical Society.

Lattice Parameters (Å) Wyckoff Positions
a b c x y z

La3Te4 (exp) 9.634 9.634 9.634 La 0.375 0.000 0.250
Te 0.083 0.083 0.083

La3Te4 9.687 9.687 9.687 La 0.375 0.000 0.250
Te 0.076 0.076 0.076

La3Te3Sb 9.692 9.686 9.690 La 0.375 0.000 0.250
Te 0.075 0.076 0.076
Sb 0.080 0.081 0.081

La3Te3Bi 9.741 9.736 9.742 La 0.375 0.000 0.251
Te 0.074 0.075 0.075
Bi 0.079 0.080 0.080

was found to handle the larger, more complex integrations more rapidly. Mathematica was, however, utilized

frequently to generate files containing tabular data for plotting the simulated transport properties.

2.5 Density Functional Calculations

This section is an adapted reproduction, with permission, from Phys. Rev. B, 79, 153101 (2009) and Phys.

Rev. B, 81, 125205 (2010). Copyright 2009 and 2010, American Physical Society.

This primarily experimental dissertation was complemented by first-principles calculations, which pro-

vide invaluable information when examining transport in solids. These density functional theory calcula-

tions (DFT) were performed by David J. Singh[51] of Oak Ridge National Laboratory and Espen-Flage

Larsen[103] of the University of Oslo.

The calculations performed by David J. Singh on La3Te4 employed the local-density approximation

(LDA) using the linearized augmented plane-wave (LAPW) method with local orbitals[111] as implemented

in WIEN2K[112]. The experimental lattice parameter of a = 9.634 Å from Reference [48] was used with

LAPW sphere radii of 2.9 Bohr and tested basis sets. Relativistic effects, including spin-orbit were included.

Calculations of transport properties generally require knowledge regarding the relevant scattering mech-

anisms. However, the Hall and Seebeck coefficients do not contain a dimension of time and can often be

well characterized by assuming the electronic relaxation time (τ ) is independent of energy. The prior pub-

lication[51] terms this the constant relaxation time approximation (CRTA) though now we call this energy

independent scattering EIS, as discussed in the Electrical Transport Theory section. The Boltzmann trans-

port equation was utilized to calculate the Seebeck and Hall coefficients within the EIS(CRTA) using the

BoltzTraP code[113].

The electronic structures of La3Te4, La3Te3Sb, and La3Te3Bi[103] were calculated by Espen Flage-

Larsen within the DFT framework of the Vienna ab-initio simulation package (VASP)[114, 115]. Even
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though these valence balanced, ternary compounds have never been synthesized and are likely to contain

significant anion site disorder, these calculations serve as an approximate model to shed light on the role

of the Te to Sb and Bi substitution. The calculations employed the Perdew-Burke-Ernzerhof (PBE)[116]

exchange-correlation functional in the generalized gradient approximation (GGA). In the absence of exper-

imental lattice parameters for La3Te3Sb and La3Te3Bi, relaxations of the structures were performed using

the experimental lattice parameter[48] of La3Te4 as input. Four out of sixteen Te atoms were exchanged

for Sb or Bi within the original unit cell to obtain the La3Te3Sb and La3Te3Bi stoichiometry, respectively.

The structures were relaxed in cell shape, volume, and atomic positions using a residual minimization, direct

inversion in the iterative subspace scheme (RMM–DIIS)[117]. For comparison reasons, the relaxed La3Te4

structure was utilized.

An energy cutoff of 650 eV and a Γ–centered k–point sampling of 9×9×9 were sufficient to converge

the electronic structures. The density of states were obtained from a second run using the modified linear

tetrahedron method[118].

The Te positions in the relaxed La3Te4 differs by 5-8% (see Table 2.2 for the diagonal lattice constants

and Wyckoff positions) of the experimental structure reported in Reference [48], while the change in the

La positions are within 1%. Slight distortions of the symmetry of the unit cell of La3Te3Sb and La3Te3Bi

was observed, but was found to be less than 1% (based on the full lattice constant matrix). Hence, only the

diagonal of the relaxed lattice vectors are given in Table 2.2. Wyckoff positions of La3Te3Sb and La3Te3Bi

are strictly not valid (symmetry breaking), but are given for comparison reasons. The Sb and Bi sites change

by approximately 1% with respect to the relaxed Te sites of La3Te4. The discrepancy between the relaxed

and experimental lattice parameters of La3Te4 stem from a DFT failure of properly describing the heavy

elements and is most likely related to the well-known delocalization error. Due to the localization of the La

f and Te d states, this error is particularly important in these systems. Relaxations of the Sb and Bi filled

structures are within 1% of the relaxed La3Te4 structure and due to later comparisons we persist on using

the relaxed La3Te4 parameters throughout this work. Comparisons of the band structure near the Fermi level

reveal no significant change except a small shift of the La f states in the conduction band to lower energies

in the relaxed La3Te4 structure. In addition, the band gap (of primary concern here) remains approximately

constant upon relaxation. A unit cell expansion is observed upon the substitution of Sb and Bi for Te, which

is expected due to size differences.

The electronic structure obtained for La3Te4 is consistent with that computed by David Singh[51], where

a slightly smaller band gap (0.95 eV) was obtained due to the inclusion of spin-orbit coupling. The main

effects of spin-orbit coupling in La3Te4 appear to be a small reduction in band gap and a 0.03 eV splitting of

degenerate bands near the Fermi level (for the energies of interest). An additional calculation by D. Singh

confirmed that spin orbit had little impact on the electron’s effective mass, though it was found to be important

when investigating the curvature of the valence band (p-type character).
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Chapter 3

Chemical and Structural Results

3.1 Summary

The purity and composition of the synthesized compounds are discussed in this chapter. Specifically, powder

x-ray diffraction data is utilized to address phase purity. The La3−xTe4 based compounds are all found to be

phase pure. While the presence of the typical oxide La2O2Te is difficult to rule out, these samples appear

and behave (electronically) as though they are single-phase and the diffraction scans are very clean. Three

of the Ba8Ga16−xGe30+x samples were found to be phase pure, while two contained a very small amount of

Ge impurity. The Ge impurity is common in polycrystalline Ba8Ga16−xGe30+x, and these samples represent

some of the cleanest polycrystalline samples considered in the literature. The SrZnSb2 compound was nearly

phase pure, with a small elemental Sb impurity, while the SrZn2Sb2 contained a fairly large amount of ZnSb

impurity.

Electron-probe microanalysis is utilized to examine sample homogeneity via backscattered electron im-

ages in La3−xTe4. This instrument also permits analysis of the chemical composition via wavelength disper-

sive spectroscopy and a detailed table is given to summarize these data for samples of nominal composition

La3−xTe4, La3−x−yYbyTe4, and La3Te4−zSbz . The trends in composition are found to correspond to the

expected changes in carrier density; the experimentally measured carrier density is the primary method of

characterizing thermoelectric samples when developing physical models for transport.

A scanning electron microscope was utilized to investigate the sample homogeneity and composition

in Ba8Ga16−xGe30+x. The chemical characterization results from energy dispersive spectroscopy are sum-

marized in a table, and are discussed in relation to the experimental carrier concentration in the electrical

transport section.

3.2 La3−xTe4 and Subsystems

The mechanical alloying synthesis successfully produced single phase, homogeneous samples of La3−xTe4,

La3−x−yYbyTe4, La3−xTe4−zSbz and La3−xTe4−zBiz . This statement is slightly less justified for the Sb
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Figure 3.1. X-ray diffraction scans for two lanthanum telluride samples. The bar at the bottom demonstrates
the positions of the desired peaks, and all observed peaks can be attributed to the expected Th3P4 structure
type.

Figure 3.2. Electronprobe micrographs, taken using back scattered electron mode to reveal compositional
fluctuations, indicate the samples are homogeneous with some porosity. The images shown were taken on
the samples in Figure 3.1: (a) is nominal composition La2.80Te4 and (b) is La2.72Te4.

or Bi containing compounds due to the possible formation of a very difficult to identify phase (La4Sb3), as

discussed below. However, no direct evidence for additional phases exists in these samples, and even the

common oxide (La2O2Te) has been avoided in most cases.

Chemical characterization via X-ray diffraction (XRD) and electron microprobe analysis (EMPA) indi-

cates that only the La3−xTe4 phase has been synthesized. This is demonstrated for two different compositions

of La3−xTe4 in Figures 3.1 and 3.2, where the composition shown is the nominal one. The primary concern

with synthesis is avoiding oxidation, which is typically observed as La2O2Te. This tetragonal phase has pri-

mary diffraction peaks near the primary diffraction peak of La3−xTe4; the primary peaks for La2O2Te are at

2Θ ∼ 30◦, 31◦. The bars at the bottom of Figure 3.1 contain the desired peak positions for La3−xTe4, and all

peaks can be assigned to the expected structure.

The micrographs shown in Figure 3.2 were taken in back scattered electron mode, which reveals compo-

sitional fluctuations or impurity phases via a change in contrast. These images correspond to the diffraction
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Figure 3.3. (a) X-ray diffraction scan and (b) compositional contrast image of the matrix in sample LYT107
(nominal composition La2.375Yb0.55Te4).

data shown in Figure 3.1. Figure 3.2 reveals homogeneous samples with some porosity.

Further evidence for the synthesis of a single, stable phase was observed via thermogravimetry and differ-

ential thermal analysis, where no significant weight loss or peaks are observed up to 1375 K (not shown). This

measurement reveals the sublimation rate is slightly better than that of uncoated SiGe[100], with a beginning

of life (BOL) sublimation rate of 5×10−5 g/cm2/hr compared to 8×10−5 g/cm2/hr in uncoated SiGe. The

coated SiGe, used in thermoelectric generators, has a BOL sublimation rate of 5×10−7g/cm2/hr. The linear

coefficient of thermal expansion (∼19×10−6 m/K between 300 and 1200 K) was found to closely matched

that of Yb14MnSb11, the p-type complement to La3−xTe4[100]. The thermal expansion data of La3−xTe4

can be found in Reference [101]. A discussion of the sublimation rates and thermal expansion, as well as the

reproducibility of this synthesis technique can be found in Reference [100].

The WDS data for the La3−xTe4 samples are summarized in Table 3.1, where the data reported for

La3−xTe4 are an average of five point measurements which probe roughly one cubic micron. The WDS

analysis leads to a lanthanum content that is not physically permitted by the crystal structure (x < 0). This

is believed to be due to the use of LaPO4 as the La standard, though the particular ZAF correction employed

or oxidation of grain boundaries may also be the source for this deviation. Regardless of the source, the

deviation between the nominal and experimentally observed compositions is relatively consistent across the

entire series of samples, and the desired trend is observed. One sample contained a small inclusion of iron

and chromium, presumably from the milling balls or vial; however, these elements were not found in the

neighboring La3−xTe4 matrix. Thus, the ability to reproducibly synthesis homogeneous La3−xTe4 samples

has been developed. Considering that this investigation is primarily concerned with thermoelectric transport,

the Hall carrier density nH is a better measure of sample character and is utilized throughout the manuscript.

The La3−x−yYbyTe4 samples were also found to be phase pure and homogeneous by X-ray diffrac-

tion and electron probe microanalysis, as observed in Figure 3.3. During EPMA, wavelength dispersive

spectroscopy (WDS) revealed a changing Yb:La content that trends well with the experimental Hall carrier

concentration. The WDS data summarized in Table 3.1 are an average of many (roughly 25) 20µm WDS
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Table 3.1. Summary of sample information for La3−xTe4 and subsystems. Wavelength dispersive spec-
troscopy (WDS) data and the corresponding room temperature Hall density nH are provided.

Nominal Notebook nH La Te Yb Sb (Bi) WDS Formula Unit
Composition ID (1021cm−3) at.% at.% at.% at.%

La2.99Te4 LT134 34 4.07 43.3 56.7 - La3.03Te4

La2.92Te4 LT137 3 3.90 43.4 56.6 - La3.04Te4

La2.86Te4 LT57s 3 2.90 42.8 57.2 - La3.00Te4

La2.82Te4 LT142 1 2.02 42.4 57.6 - La2.91Te4

La2.80Te4 LT143 4 1.63 42.2 57.8 - La2.88Te4

La2.74Te4 LT146 5 0.52 41.4 58.6 - La2.79Te4

La2.72Te4 LT147 2 0.12 40.5 59.5 - La2.74Te4

La2.55Yb0.3Te4 LYT103 0.30 37.7 57.9 4.4 - La2.61Yb0.30Te4

La2.65Yb0.2Te4 LYT104 0.75 39.2 57.8 2.9 - La2.71Yb0.20Te4

La2.75Yb0.1Te4 LYT105 0.90 39.9 58.4 2.0 - La2.75Yb0.14Te4

La2.325Yb0.6Te4 LYT106 0.06 34.0 57.4 8.6 - La2.36Yb0.60Te4

La2.375Yb0.55Te4 LYT107 0.19 34.8 57.4 7.9 - La2.42Yb0.55Te4

La3Te3.80Sb0.20 LTS20 1 2.94 42.6 46.0 - 11.4 La3.05Te3.76Sb0.24

La3Te3.65Sb0.35 LTS35 1 1.33 43.1 46.5 - 9.4 La3.32Te3.67Sb0.33

La3Te3.40Sb0.60 LTS60 1 0.54 43.4 46.8 - 9.8 La3.06Te3.31Sb0.69

La3Te3.35Sb0.65 LTS65 1 0.35 45.4 50.1 - 4.5 La3.15Te3.33Sb0.67

La3Te3.20Sb0.80 LTS80 3 0.08 43.3 53.3 - 3.4 La3.10Te3.18Sb0.82

La3Te3.35Bi0.65 LTB65 1 0.39 43.5 47.0 - 9.5 La3.09Te3.33Bi0.69

La3Te3.20Bi0.80 LTB80 1 0.39 43.6 45.2 - 11.2 La3.10Te3.20Bi0.80

scans. Thus, it appears that Yb substitutes or fills the La position as expected, and single phase samples were

produced. The expected (nominal) carrier density did not, however, trend that well with the experimental Hall

density. These deviations are likely due to changing milling properties as the ratio Yb/La changes. Regard-

less, varying Yb/La produced a series of samples that allowed the optimization of thermoelectric efficiency

to be inspected.

The samples of nominal composition La3Te4−zSbz and La3Te4−zBiz were found to be phase pure via

X-ray diffraction. A representative set of diffraction data is shown in Figure 3.4 for the sample containing the

maximum, nominal Sb content. However, the investigation of phase purity in these samples is complicated

by the possible formation of La4Sb3 or La4Bi3. These compounds possess the anti-Th3P4 structure types,

placing La on the P site and Sb(Bi) on the Th site. The lattice constants (the diffraction scans in general), are

very similar in the La3Te4 and La4Sb3 (La4Bi3) phases, to the extent that identifying one of these phases is

nearly impossible via X-ray diffraction.

Electron probe microanalysis also suggested phase pure samples with Sb/Bi substituted on the Te site.

This technique is plagued by resolution limitations, and small regions of La4Sb3 or La4Bi3 could go unde-

tected. For instance, small portions of these phases at grain boundaries (or nanometer-scale inclusions) would

be nearly impossible to identify without high resolution tunneling electron microscopy.

One strong indication of the formation of the desired phase is the absence of any additional peaks. For

instance, if La4Sb3 or La4Bi3 were to form, then there would be an excess of Te which would likely form

an additional phase. Thus it seems likely that these compounds form as desired, with the exception of La
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Figure 3.4. (a) X-ray diffraction scan of a sample that contains the maximum nominal Sb content
(La3Te3.2Sb0.8). (b) Wavelength dispersive spectroscopy (WDS) data for bulk atomic percent Sb versus
nominal atomic percent Sb. Reprinted with permission from Phys. Rev. B 81, 125205 (2010). Copyright
2010, American Physical Society.

content, which appears to be smaller than desired based on carrier concentration data. That is, La vacancies

are likely present in much higher concentrations than expected from the nominally vacancy free compositions.

For instance, carrier density measurements suggest x ∼ 0.10 (assuming La3+
3−xTe2−

4−xSb3−
z ). This feature is

discussed in further detail in the electrical transport section. Despite the presence of some vacancies, these

samples will still be referred to by their nominal compositions throughout the text.

3.3 Ba8Ga16−xGe30+x

This section is an adapted reproduction, with permission, from Phys. Rev. B 80, 125205 (2009). Copyright

2010, American Physical Society.

The Ba8Ga16−xGe30+x samples discussed in this thesis are given labels (capital letters A through E)

and specific symbols are utilized to present the data, as shown in Table 3.2. Compositional data obtained

via wavelength dispersive spectroscopy (WDS) are also provided in Table 3.2, and the expected changes in

Ga:Ge are observed. The variation in Ba content is within the instrument resolution of∼ 0.5 at.%; Ba content

is not expected to change as all samples possess the same nominal Ba concentration.

The polycrystalline samples were observed to be homogeneous via scanning electron microscopy and

electron probe microanalysis. Samples A, B, and D were single phase via x-ray diffraction (XRD), while

samples C and E contained a small amount of elemental Ge (refined to less than 1 wt.%), which is a common

impurity phase in polycrystalline Ba8Ga16−xGe30+x samples[89]. Phase purity is demonstrated in Figure

3.5, where a diffraction scan for the sample containing the most Ge impurity is shown (sample E). Figure

3.5b compares the scan shown in Figure 3.5 to a phase pure sample (A) in the vacinity of the Ge impurity

peak.
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Table 3.2. Atomic composition of Ba8Ga16−xGe30+x samples assessed via wavelength dispersive spec-
troscopy. Reprinted with permission from Phys. Rev. B 80, 125205 (2009). Copyright 2010, American
Physical Society.

Sample Symbol Ba Ga Ge
at.% (std dev) at.% (std dev) at.% (std dev)

A 4 15.09 (0.08) 28.13 (0.14) 56.78 (0.17)
B � 15.31 (0.08) 28.54 (0.21) 56.15 (0.23)
C 5 15.12 (0.06) 28.66 (0.17) 56.21 (0.18)
D © 15.44 (0.16) 29.23 (0.14) 55.33 (0.18)
E ♦ 15.10 (0.29) 29.87 (0.64) 55.03 (0.63)

Figure 3.5. (a) X-ray diffraction scan of sample E, which contains the maximum Ge impurity observed in
these polycrystalline samples. (b) The position around the Ge impurity is examined in detail, with a scan for
sample A included. Reprinted (adapted) with permission from Phys. Rev. B 80, 125205 (2009). Copyright
2010, American Physical Society.

3.4 SrZnSb2 and SrZn2Sb2

The SrZnSb2 samples contained a very small impurity phase of Sb. The SrZn2Sb2 samples contained an

impurity phase of ZnSb, which was estimated to be ∼ 6 volume % by Eric Toberer via Rietveld refinement.

The position of the ZnSb peak is shown in Figure 3.6b. The expected (simulated) patterns are shown by the

thin, gray curves in Figure 3.6. The samples also appeared relatively homogeneously under scanning electron

microscopy.
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Figure 3.6. X-ray diffraction scans for (a) SrZnSb2 and (b) SrZn2Sr2. The black curves are experimental data
and the thin gray curves are the simulated, expected patterns. The impurity phase of ZnSb in (b) is indicated
by the included text, while Sb impurity in (a) is difficult to observe.
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Chapter 4

Electrical Transport

4.1 Summary

This chapter discusses the electrical transport properties in solids, with a focus on the high-temperature

thermoelectric behavior. It begins with an overview of the pertinent transport properties. In particular, ex-

pressions are given for the description of these transport properties within parabolic band models. Some

discussion of the electronic relaxation times and corresponding scattering mechanisms is given. Graphs are

provided to help understand the energy dependence of the more complex expressions, such as those for the

Hall and Seebeck coefficients. The theoretical details discussed here are primarily concerned with the single

band expressions, though bipolar or multiband effects are briefly discussed as well. A short discussion of the

electronic contribution to the thermal conductivity is also provided.

The electrical transport in La3−xTe4 and its subsystems containing Yb, Sb, and Bi are discussed in detail.

By controlling the composition, a transition from metallic to semiconducting behavior is observed. A single

band model does not describe the dependence of Seebeck coefficient on carrier density for the compositions

considered here. Analysis of the data suggests, and first principles calculations confirm, that the electronic

structure contains multiple conduction bands in the pertinent energy range. Specifically, a light band domi-

nates transport at low energy (low carrier density and/or high temperature) and heavy bands are important at

high energies.

The substitution of Yb for La does not produce significant changes in the electronic behavior, with the

exception of changing the carrier density. The substitution of Sb (Bi) for Te is found to promote activated

conductivity at modest temperatures, though the high-temperature transport behavior is observed to be similar

to that in La3−xTe4. The incorporation of Sb (Bi) also results in a reduction of the energy gap, which is

confirmed via temperature-dependent Seebeck coefficient data and first principles calculations.

The electrical transport in n-type Ba8Ga16−xGe30+x is found to be well described the single parabolic

band model in the compositional range of interest to thermoelectric application. This is confirmed by con-

sidering previously reported first principles calculations, as well as data obtained here for a variety of carrier

concentrations. Also, insulating samples have been prepared, which suggest a thermal band gap of roughly
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0.4 eV.

Lastly, transport in the Sr-Zn-Sb compounds is considered. The SrZnSb2 compound is found to be very

heavily doped in a p-type manner, and the carrier density increases rapidly with increasing temperature.

Combined with the temperature-dependent Seebeck coefficient data, this suggests a very small energy gap

(or semimetallic behavior). SrZn2Sb2 is also p-type with a large number of free carriers; however, the carrier

concentration is an order of magnitude lower than that of the SrZnSb2 samples. Both compounds show the

behavior expected for doped semiconductors, with the Seebeck coefficient and electrical resistivity increasing

with increasing T before the onset of bipolar conduction.

4.2 Electrical Transport Theory

4.2.1 Introduction

Many textbooks provide detailed discussions of the following material. I have drawn significantly from Fis-

tul’s Heavily Doped Semiconductors[119], which provides a detailed treatment of transport. Also, I have

enjoyed Goldsmid’s books, in particular the concise yet informative Applications of Thermoelectricity[4].

MacDonald’s book Thermoelectricity, An Introduction to the Principles[120] provides a nice, simple dis-

cussion of thermoelectric transport. Of course, Ziman’s Electrons and Phonons. The Theory of Transport

Phenomena in Solids[29] and Ashcroft and Mermin’s Solid State Physics[11] are invaluable resources for

anyone interested in condensed matter physics. Despite the variety and thoroughness of the available texts,

the aspects of electrical transport which are critical to the analysis and optimization of thermoelectric perfor-

mance are now summarized.

Transport data are generally analyzed in an attempt to develop a predictive model. That is, by under-

standing the interactions and mechanisms governing transport one can manipulate or optimize a particular

transport property. The solutions to the Boltzmann transport equation (BTE) are generally utilized to per-

form this task. This model for the transport properties is based on the concept of an electron distribution

function, and the equilibrium Fermi-Dirac distribution function (f ) is utilized as an approximation for the

non-equilibrium distribution function found within the BTE. Also, it is assumed that the relaxation of the

electron distribution function (back to equilibrium) can be described by a characteristic (relaxation) time τ .

The BTE is typically valid for electronic transport at high-temperatures[119]. Specifically, the relaxation

time approximation is valid when scattering events are elastic in nature (energy is conserved), or when carrier

scattering is isotropic[119]. These criteria are typically met, although complex dispersion relations bring the

second part into question. The transport equation itself is valid when the relaxation time is much larger than

the time over which the scattering events occur. This criterion is more difficult to address, though it has been

suggested that it is met for systems of interest to the field of thermoelectrics[119].

The last major assumption utilized here is that the charge carrier energies are described by an isotropic,
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parabolic dispersion relationship. This is equivalent to saying that the carriers have the free electron disper-

sion relationship. While it may appear inappropriate to exclude the impact of the atomic (ionic) lattice on the

dispersion relation, this approximation often leads to very accurate models. This is due, in large part, to the

periodic nature of crystalline solids which allows electrons to be treated similar to free electrons by introduc-

ing the concept of an effective mass (m∗)[121]. Of course, the use of semi-classical models describing local

interactions (within the BTE) contributes significantly to the accuracy of the final models.

The isotropic, parabolic band dispersion relation for an electron in conduction band i is

E =
~2k2

2m∗i
+ Emin,i, (4.1)

where m∗i is the electron’s effective mass and Emin,i is the minimum energy of band i. The density of

electronic states Ni(E) (including spin degeneracy) in this band increases as the square root of energy:

Ni(E) =
(2m∗i )

3/2

2π2~3

√
E − Emin,i. (4.2)

For simplicity, it is assumed Emin,i=0 and that only one band contributes to conduction; this is the single

parabolic band (SPB) model. For this isotropic approximation, the electron’s effective mass is

m∗ =
1
~

(
∂2E(k)
∂k2

)−1

. (4.3)

The ever-increasing ease with which theorists can perform first principles calculations of electronic (band)

structures requires the experimentalist to, at a minimum, qualitatively understand a band structure diagram

(the ‘spaghetti diagram’). The definition of m∗ in Equation 4.3 facilitates this effort: the traditional way to

present a band structure is to show E as a function of wavenumber k, in which case energy bands that are

shallow or ‘flat’ are considered ‘heavy’ (largem∗) while bands with a sharp dispersion are ‘light’ (smallm∗).

The following sections discuss the transport of electrons in a solid. The equations commonly utilized to

analyze transport data are solutions to the linearized Boltzmann transport equation treated within the relax-

ation time approximation. It is assumed that itinerant conduction (non-hopping) occurs within a parabolic

band(s). In this model, all electrical transport properties depend on the carrier’s electrochemical potential (ζ)

and relaxation time (τ ), and in some cases upon the carrier’s effective mass (m∗). It is common to use the

reduced energy ε = E/kT and the reduced electrochemical potential is η = ζ/kT , where k is Boltzmann’s

constant.

The electrochemical potential is utilized to describe the carrier’s free energy because electrons carry a

charge. The electrochemical potential (ζ) is related to the chemical potential (ξ) by ζ = ξ − eφ, where φ is

the electrostatic potential. In this thesis, the attempt is made to only use the phrase electrochemical potential,

though chemical potential is generally taken to be equivalent because the electron cannot be separated from

its charge (experimentally). The term Fermi energy (EF , or εF = EF /kT ) is taken as the 0 K limit of the
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electrochemical potential, and represents the highest filled energy at 0 K. In the case of electrons, which are

described by the Fermi distribution function f = (1 + Exp[ε − η])−1, the electrochemical potential is the

energy at which f = 0.5 for non-zero T .

The Drude model for electrical conductivity (σ) is perhaps the simplest and yet most commonly utilized

model for electrical conductivity. In this model, the electrical conductivity (σ) arises as a concentration n of

charged species moves in the direction of the applied field ε with an average velocity vd, which is known as

the drift velocity. These particles (electrons) carry a charge of magnitude e and the resulting electrical flux

Je (charge per area per time) across a plane perpendicular to ε is

Je = nevd. (4.4)

Ohm’s law states that

J = σε, (4.5)

and, therefore, the electrical conductivity is

σ =
nevd
ε

. (4.6)

Considering electrons in a classical manner, these charged particles accelerate in the field (with force =

εe) based on their mass m. The acceleration (a) is assumed to occur for some average time τ at which point

it is interrupted by an obstacle (a scattering center). The corresponding average drift velocity is then

vd =
∫ τ

0

adt =
∫ τ

0

εe

m
dt =

εe

m
τ. (4.7)

Utilizing this expression, a more familiar expression is obtained:

σ = ne2τ/m. (4.8)

Finally, it is common to define the carrier’s drift mobility µd,

µd =
eτ

m
=
vd
ε
. (4.9)

The concentration of charge carriers n and the relaxation time τ that describes the movement of these

carriers in an electric field is therefore of great concern to those studying electrical transport. Generally, as

discussed below, the carrier density is taken to correspond to all carriers in the band of interest (conduction

band, for instance). However, it is the charge carriers near the electrochemical potential ζ that contribute sig-

nificantly to electrical transport. This point is exemplified by the presence of ∂f
∂E in the transport coefficients,

which is nearly a delta function about ζ when ζ >> kT .
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4.2.2 Relaxation Times and Carrier Scattering

The concept of a carrier relaxation time τ is frequently utilized to model electrical transport. A broad dis-

tribution of local electron relaxation times exists, and the macroscopically observed (average) τ is the result

of thousands of microscopic interactions with defects, impurities, electrons, holes, and the crystalline lattice

itself. Modeling τ can be quite difficult.

In general, τ is obtained from a reciprocal sum (Eqn. 4.10) over the relaxation times associated with the

various scattering mechanisms:

1
τ

=
s∑
s=1

1
τs
. (4.10)

The relaxation time τ associated with a particular scattering mechanism (s) is commonly described by a

power law dependence on reduced carrier energy,

τs = τ0,sε
λ−1/2, (4.11)

where τ0,s can be a function of material parameters and temperature[28, 119, 122]. A nice review of the

pertinent relaxation times is found in Reference [119].

In a few circumstances, such as in the extremes of temperature, one scattering mechanism produces much

shorter relaxation times than the other scattering mechanisms, and it is said that this scattering mechanism

limits τ . In this case, the additional scattering mechanisms can be ignored (to first order). The most common

scattering mechanisms are acoustic phonon scattering and ionized impurity scattering, which tend to limit τ

in the high and low temperature regimes, respectively.

When acoustic phonon scattering limits τ , the deformation potential theory provides the description of τ

shown in Equation 4.12 (λ = 0, τL ∝ ε−0.5), where the subscript L stands for lattice scattering. This theory

accounts for the presence of lattice vibrations by subjecting electrons to an alternating potential (the defor-

mation potential). Here, vl is the longitudinal speed of sound and the deformation potential Edef quantifies

the change in the electronic band energy as the crystal volume changes due to the presence of a phonon[119].

τL =
π~4v2

l d√
2E2

def (m∗kT )3/2ε1/2
(4.12)

Ionized impurities also disturb the potential associated with the ideal lattice, and electrons are scattered

by the Coulombic field associated with the randomly distributed ionized impurity. The carrier relaxation time

associated with ionized impurity scattering can be described by (essentially λ = 2)[122],

τi =
16
√

2m∗πχ2(kT )3/2ε3/2

NiZ2e4g
, (4.13)

where χ is the permittivity, Z the effective charge, Ni is the concentration of the ionized impurity, and g is
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Table 4.1. Summary of energy and effective mass dependence of the carrier relaxation time due to various
scattering mechanisms for carriers in a parabolic band, which are described by τ = τ0,sε

λ−1/2.
Scattering Type λ m∗ Dependence of τ0

Acoustic Phonon 0 (m∗)−3/2

Ionized Impurities 2 (m∗)1/2

Neutral Impurities 0.5 (m∗)2

Point Defects 0 (m∗)−3/2

given by

g = ln(1 + b)− b

1 + b
(4.14)

with

b =
8m∗εkT

~2

χkTF [0.5, η]
ne2F [−0.5, η]

, (4.15)

and Fj is defined by Equation 4.20.

The scattering of electrons by point defects can also be significant, and may be especially important when

modeling transport in vacancy rich compounds, such as La3−xTe4. The relaxation time associated with point

defect scattering (τPD) is described by λ = 0 as in the case for acoustic phonon scattering,

τPD =
π~4

21/2(m∗)3/2V0Nd

1
(εkT )1/2

. (4.16)

Energy independent scattering (λ = 0.5) is often utilized in first principles transport calculations to

facilitate the computationally expensive process. This may be similar to a balance of ionized impurity and

acoustic phonon scattering, which would be quite common in intermediate temperature ranges. However, the

relaxation time associated with scattering by neutral impurities (τNI ) of concentration Nn is also modeled

in this manner (Eqn. 4.17). This is usually unimportant in heavily doped semiconductors, because the high

doping concentration causes impurities (dopants) to be ionized at even very low kT . Note that scattering by

optical phonons below the Debye Temperature (ΘD) is also modeled by EIS[119].

τNI =
(m∗e)2

20h2χNn
(4.17)

Given the importance of the energy dependence of τ when calculating the Seebeck coefficient, as dis-

cussed below, as well as the influence of the effective mass on electrical conductivity, a summary of the key

scattering mechanisms is provided in Table 4.1.

4.2.3 Carrier Concentration and Hall Coefficient

The free carrier concentration n (density) is the most critical parameter available to an experimentalist when

attempting to understand and optimize thermoelectric conversion efficiency. Experimentally, the Hall effect
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is utilized to probe the carrier density; this measurement provides a very accurate estimation of the carrier

density in a parabolic band. The Hall effect also provides information on which type of carrier dominates

electrical transport: the Hall coefficientRH is positive in a p-type material and negative in an n-type material.

The density of carriers contributed from one parabolic band is obtained by integrating over all occupied

states in the band (assuming the minimum band energy is 0),

n =
∫ ∞

0

N(E)f(E)dE, (4.18)

which, upon substitution for N(E) and f(E), becomes

n = 4π
(

2m∗kT
h2

)3/2 ∫ ∞
0

ε
1
2 dε

1 + Exp[ε− η]
, (4.19)

where ε and η are the reduced carrier energy and reduced electrochemical potential, respectively. As discussed

in Appendix H, it is convenient to define the Fermi integral of order j as

Fj(η) =
∫ ∞

0

fεjdε =
∫ ∞

0

εj dε

1 + Exp[ε− η]
, (4.20)

and thus

n = 4π
(

2m∗kT
h2

)3/2

F 1
2
(η). (4.21)

Clearly, a theoretical calculation of n is not sufficient when examining experimental data. Rather, n must

be measured experimentally. This is accomplished via the Hall effect, which relates the voltage response to

an electric current in the direction perpendicular to an applied magnetic field[123].

From the BTE, the Hall coefficient is

RH =
3h3

8πe(2m∗kT )3/2

∫∞
0
ε3/2τ2 ∂f

∂ε dε

(
∫∞

0
ε3/2τ

∂f
∂ε dε)2

. (4.22)

By relating this to the theoretical carrier density, one obtains

RH =
rH
ne

=
1

nHe
, (4.23)

where the Hall carrier density nH is defined. The dimensionless Hall factor rH accounts for scattering

effects that cause deviation between n and nH . Through comparison with Equation 4.19, which represents

the chemical or true carrier density, one finds that

rH =
3
2
F1/2(η)

∫∞
0
ε3/2τ2 ∂f

∂ε dε

(
∫∞

0
ε3/2τ ∂f∂ε dε)

2
, (4.24)

and
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Figure 4.1. Hall factor (rH = n/nH ) versus reduced electrochemical potential (left) and Hall carrier density
(center). The right panel summarizes this behavior in the carrier concentration domain, where nH = n for
energy independent scattering; m∗/me = 1 and 300 K have been assumed.

nH =
1

RHe
=

n

rH
= 4π

(
2m∗kT
h2

)3/2 F1/2(η)
rH

. (4.25)

In many circumstances, the Hall factor is set to unity and nH is treated as n. However, this is generally

only valid when the electron gas is highly degenerate (η >> 0), as shown in Figure 4.1. Indeed, for all

scattering mechanisms, rH → 1 when η becomes large. In the limit of a nondegenerate electron gas, rH =

1.18 when τ is limited by acoustic phonon scattering and rH = 1.93 when τ is limited by ionized impurity

scattering. In thermoelectric materials research, a factor ∼2 difference between n and nH is not that sig-

nificant because the optimization of thermoelectrics generally involves examination of a very wide range of

carrier densities (spanning at least an order of magnitude). However, proper modeling should account for this

to avoid incorrect conclusions regarding the optimization of thermoelectric efficiency.

In general, the transport property data discussed in this text was taken at high-temperatures, where phonon

scattering tends to dominate. This also means that high degeneracy is rarely obtained, and rH and the full

Fermi integrals should be utilized when modeling transport properties.

4.2.4 Electrical Conductivity and Mobility

The solution to the BTE gives the electrical conductivity of a single parabolic band as

σ =
8πe2m1/2(2kT )3/2

3h3

∫ ∞
0

ε3/2τ
∂f

∂ε
dε. (4.26)

When multiple bands are present, or multiple species are conducting in parallel, the total conductivity is

merely the sum of the individual conductivities.

By utilizing the Drude model (Eqns 4.6-4.9) and the equation for n, the drift mobility is obtained as

µd =
2e
3m

∫∞
0
ε3/2τ ∂f∂ε dε

F1/2(η)
. (4.27)
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Figure 4.2. Normalized values of the Hall mobility versus reduced electrochemical potential (left) and Hall
carrier density (right) (300 K, m∗/me = 1).

The Hall mobility is defined as

µH = RHσ =
e

m

∫∞
0
ε3/2τ2 ∂f

∂ε dε∫∞
0
ε3/2τ ∂f∂ε dε

. (4.28)

By comparing the Hall mobility to the drift mobility, it is observed that the two differ by the Hall factor rH .

As discussed above, the Hall factor is utilized to provide internal consistency when modeling transport and is

necessary because the Hall coefficient is impacted by scattering events.

The energy dependence of the Hall mobility is shown in Figure 4.2, where the Hall carrier density is

obtained using m∗/me = 1 and T = 300 K. This figure shows the drastically different behavior associated

with the various scattering mechanisms. The mobility associated with ionized impurity scattering increasing

with increasing η (or increasing nH ) while that associated with acoustic phonon scattering decreases in

this direction. This is because higher energy electrons have higher velocities and are thus less likely to be

influenced by local disturbances caused by ionized impurities; this also explains the trend with increasing T

shown in Eqn 4.13. The higher energy electrons are, however, scattered more strongly by acoustic phonons

because a greater number of states are available for the electrons to be scattered into (number of states increase

as ε1/2 and thus 1/τ increases as ε1/2).

The energy dependence of τ influences the temperature-dependent µ because η is generally a function

of T . The value of η tends to decrease with increasing T in thermoelectric materials because n is usually

independent of T (extrinsic semiconductors, considering modest T ). The mobility of highly degenerate

electrons scattered by acoustic phonons decays as T−1 (classic metallic behavior at high T ), whereas µH

decays as T−1.5 in a nondegenerate material (see Figure 1.4a in Section 1.4). Temperature-dependent material

properties m∗, Edef , and vl can modify the behavior of µ(T ) dramatically.
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4.2.5 Seebeck Coefficient

The Seebeck coefficient (α) is the most important thermoelectric transport property; its existence defines ther-

moelectricity. α determines how large of a voltage can be obtained from a temperature gradient (V=α∆T ),

or vice versa. Clearly, large values of α are desired. Physically, the voltage produced is the difference in the

electrochemical potential of the electrons (or holes) across the temperate gradient (at open circuit conditions).

For a parabolic band, the magnitude of α is a function of τ(ε) and the electrochemical potential (the

reduced potential η is typically utilized). Here, only the magnitude of α is considered, which is sometimes

referred to as the thermopower. The appropriate sign is input when modeling transport data: electrons have

negative α and holes have positive α (like the Hall coefficient). The Seebeck coefficient does not contain a

dimension of time, and thus the magnitude of τ does not impact α. This is observed by the presence of τ in

both numerator and denominator in the equation describing the Seebeck coefficient:

α =
k

e

(∫∞
0
τε3/2(ε− η)∂f∂ε dε∫∞
0
τε3/2 ∂f∂ε dε

)
. (4.29)

Comparison of Equation 4.29 and the expression for σ (Eqn. 4.26) reveals the close relationship between

α and σ. While not obvious at first, this expression essentially states that it is difficult to obtain large α and

large σ simultaneously. Large α is only obtained when σ has a large energy dependence. In other words,

large α is obtained when σ is highly asymmetric about the electrochemical potential (the weighting by (ε−η)

in numerator). This tends to occur when the electrochemical potential is within the energy gap, and thus the

conducting electrons are all located above η; this explains the large α observed in insulators (also, see Figure

4.3a). Large σ, on the other hand, occurs when η is high in the band (a large carrier density).

The “Mott relation” (Eqn. 4.30) is often utilized to demonstrate the relationship between α and σ. Please

see Appendix E for details of this expression.

α =
π2

3
k2
bT

(
∂

∂E
lnσE

)
E=ζ

. (4.30)

σE is the first order approximation of σ defined by

σ =
e2

12π3

∫
dE

∂f

∂E

∫
E=ζ

vkvkτ
dS

∇kE
=

e2

12π3

∫
dE

∂f

∂E
σE , (4.31)

which becomes Equation 4.26 in the parabolic band approximation. Here, the fundamental (k space) defini-

tion is utilized to reveal the generality of the Mott relation. The connection to τ is clear, and it is common to

isolate the density of states N(E),

N(E) =
1

4π3

∫
dS

∇kE
. (4.32)

The Mott relation is valid for any dispersion relation (band structure) provided ζ >> kT (degenerate
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limit). For a detailed derivation and discussion of the Mott relation, please see Appendix E. It is common

to assume that the velocities and relaxation times are only a function of energy in otherwise isotropic bands

with the same energy minimum, in which case Equation 4.30 reduces to

α =
π2k2

bTm
∗

3eh2

(
dlnN(E)
dE

+
dlnv(E)2

dE
+
dlnτ(E)
dE

)
EF

. (4.33)

The assumption required to generate this expression limits its applicability, but the direct inclusion of N(E)

is appealing. Thus, this expression reveals ways in which α can be enhanced beyond the traditional behavior

observed when η is manipulated through n and T . For instance, the engineering of N(E) for enhanced α has

been demonstrated by doping PbTe with Tl[30]. The energy dependence in τ is difficult to exploit at high T ,

where phonon scattering tends to dominate. One approach to exploit τ is to filter the low energy carriers by

introducing energy barriers (insulating layers or particles) within a conductive matrix (this effectively turns τ

into a step function in energy)[32–35].

The influence of electrochemical potential and carrier scattering is shown in Figure 4.3. In the left panel,

α is plotted versus η for the three common energy dependences in τ , and the center panel shows the same data

in the carrier density domain by using the free electron mass to convert between η and n(300 K). As expected

(recall Table 4.1), ionized impurity scattering produces the largest Seebeck coefficient. Unfortunately, this

scattering tends to reduce τ significantly and thus the corresponding electrical conductivity σ is generally low

when τi limits τ . Also, ionized impurity scattering tends to dominate at low temperatures, where large α is

difficult to obtain due to large η. The energy independent scattering mechanisms (EIS) also provide a larger

Seebeck coefficient than does scattering by acoustic phonons. This is of particular interest because the first

principles calculations typically utilize EIS and thus the predicted Seebeck coefficients are likely to be larger

than observed at high-temperatures where acoustic scattering limits τ .

A large band mass is often said to be desirable because it produces a large carrier density n for a given

value of η, thus allowing large electrical conductivity to be obtained for small η. This effect is shown in the

right panel of Figure 4.3, where data for three different band masses are presented. The increase in m∗ to

m
′∗ moves the α curves to the right because n′ = n× (m

′∗/m∗)3/2 (for a given η, T ). By inspection of the

Equation 4.25, varying the temperature produces a similar effect as varying m∗. Viewed alternatively, these

effects (higher m∗ or T ) produce larger α for a given carrier density because the corresponding value of η

must be reduced to accomodate the larger m∗ or T . The left panel in Figure 4.3 is valid for any T,m∗.

At first glance, it appears as though large m∗ is desirable. However, large m∗ actually results in lower σ

(for acoustic phonon scattering) because of the relationship between mobility and effective mass, in particular

due to the dependence on m∗ located in τ [7]. Large effective mass does suppress the minority carrier contri-

bution at a given n and lead to the optimization of zT at higher n (see Appendix A). Thus, it is difficult to

state whether large or small m∗ is preferred. Note that large band degeneracy (such as that found in silicon)

is desirable because high band degeneracy means a large number of states contribute to conduction at a given
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Figure 4.3. Seebeck coefficient as a function of chemical potential and scattering mechanism (left). The
complementary dependence on the Hall carrier density is shown in the center panel, where m∗/me = 1 is
utilized. The right panel reveals the influence ofm∗, which causes the theoretical nH curves to shift to higher
values; this panel assumes acoustic scattering limits τ .

energy. Band degeneracy (an equivalence of energy states) is determined by crystallography and should not

be confused with the degeneracy of an electron gas determined by η.

At high-temperatures, the scattering of electrons and/or holes is typically dominated by lattice vibrations

(phonons), in which case Equation 4.12 applies (τ ∝ ε−1/2). This is equivalent to saying that the carrier’s

mean free path, lσ , is energy independent because lσ = v×τ , with velocity proportional toE1/2. By inserting

Equation 4.12 into Equation 4.29, the Seebeck coefficient for acoustic phonon limited τ is

α =
k

e

(∫∞
0
ε2 ∂f∂ε dε∫∞

0
ε∂f∂ε dε

− η

)
=
k

e

(
2
∫∞

0
εfdε∫∞

0
fdε

− η

)
. (4.34)

It is common to consider the limits of high and low degeneracy, as these provide insight into the behavior

of the Seebeck coefficient. Strictly speaking, however, these limits are generally not valid when examining

optimized thermoelectric materials, as they tend to produce the highest efficiency in the region of mild de-

generacy (−0.5 < η < 1). However, these limits are useful when considering the general behavior of the

thermoelectric phenomena.

In the limit of high degeneracy and acoustic scattering (see Appendix F for derivation), the Seebeck

coefficient is

α =
π2k2

bT

3eEF
=
π2k2

bTm
∗

3eh2

( π
3n

)2/3

. (4.35)

This representation highlights the need for low chemical potential, or Fermi energy EF , which is revealed in

Figure 4.3. The connection to band mass and carrier concentration was easily drawn by substitution for the

free electron EF . A word of caution should be taken with this representation because the values of n and m∗

are intimately linked via EF . Also, this equation is only valid for large EF and is clearly not valid for η < 0

(η within the energy gap), which is where the largest values of α are obtained (Figure 4.3). However, this
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equation does provide insight into the behavior of the Seebeck coefficient, and can be utilized in simplified

models to obtain a rough optimization of the thermoelectric power factor, particularly at low temperatures.

The Seebeck coefficient of a nondegenerate (η << 0) electron gas is

α =
k

e
(2 + λ− η) =

k

e

2 + λ+ ln

2
(

2πm∗kT
h2

)3/2

n


 . (4.36)

Thus, at low n, the Seebeck coefficient increases as ln[ 1
n ] and ln[T ]. This ‘low density’ limit allows the

relationship to entropy to be easily drawn. Consider an ideal gas, for which pV = NkT and the internal

energy U = 3
2NkT ; µ is the chemical potential. The entropy is given by

S =
U

T
+
pV

T
− µ

T
=

3
2
Nk +Nk − µ

T
= Nk

(
5
2
− µ

kT

)
. (4.37)

The nondegenerate electron gas is treated like an ideal gas, though the electrons carry a charge and thus their

effective chemical potential includes a term associated with the electrostatic potential. Despite the inability

to include a scattering related term, this simple method reveals that the Seebeck coefficient represents the

electronic entropy per carrier α ≈ S
Ne . Of course, this is a transport property and thus the entropy of

interest must be capable of flowing, hence the definition given in Section 1.2 that α = entropy flux
current density |∆T=0.

More detailed discussions of the relationship between α and entropy, including the necessary irreversible

thermodynamics, are found in References [6, 120, 124].

4.2.6 Mixed Conduction

When both holes and electrons are present the analysis of transport data becomes significantly more compli-

cated. In particular, the determination of the electrochemical potential is difficult, and requires knowledge of

the band features of both holes and electrons, as well as the band gap Eg and the concentration of extrinsic

dopants, not to mention the T dependence of band features. In an n-type semiconductor at high T , where the

donor dopants are fully ionized, the charge neutrality equation states that the number of free electrons n is

equal to the number of holes p plus the number of ionized donor dopants Nd[119]:

n = Nd + p, (4.38)

or, upon substitution of the appropriate expressions for parabolic bands (single band degeneracy),

4π
(

2m∗nkT
h2

)3/2

F 1
2
(η) = Nd + 4π

(
2m∗pkT
h2

)3/2

F 1
2
(−εg − η), (4.39)

where εg = Eg/kT is the reduced energy gap. A similar expression can be developed when the dopant is an

acceptor and the semiconductor is extrinsically doped p-type.

The solution of Equation 4.39 yields η, as well as the concentration of electrons and holes. Once η is
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obtained, the transport properties of the individual species can be computed using the above expression and

the realization that η be replaced by −εg − η in the expressions for the minority carrier. Care must be taken

to utilize the appropriate sign in the expressions for the Hall and Seebeck coefficients, as electrons and holes

contribute differently to these terms. The Hall and Seebeck coefficients are negative in the case of electron

conduction, and positive for hole conduction.

The equations for multiband conduction are now provided. The summations are over all pertinent bands,

and it is assumed that the Hall coefficients RH and Seebeck coefficients α carrier the appropriate sign.

These expressions are valid in the case of weak magnetic fields[123], the criterion for which is nearly always

satisfied in thermoelectric research[119].

σ =
∑
i

σi, (4.40)

α =
∑
i αiσi∑
i σi

, (4.41)

RH =
∑
iRH,iσ

2
i

(
∑
i σi)2

. (4.42)

4.2.7 Estimation of the Band Gap

The fundamental characteristic of a semiconductor is the existence of an energy gap between the conduction

and valence bands, the magnitude of which is known as the band gap Eg . Here, the conduction and valence

bands are implicitly defined by their relation to an energy gap that is near the Fermi energy; core electrons do

not lie in the valence band. The size of Eg determines a variety of properties, such as the number of carriers

thermally activated in an ideal (valence balanced) crystal. As discussed above, a large Eg is necessary for

large zT to be achieved, and the manipulation of Eg is common in thermoelectric materials research. Eg

typically decreases as T increases and can be greatly affected by impurities.

A need to characterize Eg clearly exists and two methods to do so were employed in this work. The first

technique involves measuring the electrical conductivity in an intrinsic sample, and the second utilizes the

existence of a maximum in |α(T )|.

In an intrinsic semiconductor, the charge neutrality expression requires n = p, with the exact location of η

determined by T ,Eg , andm∗n/m
∗
p. So long asEg is reasonably large, the carriers are described by Boltzmann

statistics, which allows η to be eliminated from Equation 4.39. Using the notation that n = p = ni, this leads

to

ni = (np)0.5 =
√
NnNpExp

[
−Eg
2kT

]
, (4.43)

where Nn and Np are given by[121]
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Ni = 2
(

2πm∗i kT
h2

)3/2

. (4.44)

The temperature-dependence of the carrier mobility tends to cancel the factors T 3/2 in the expression for

ni, and thus the total electrical conductivity increases as

σ = σ0Exp
[
−Eg
2kT

]
. (4.45)

Eg is therefore easily obtained from an Arrhenius plot of the conductivity (ln[σ] versus 1/T ). Obtaining a

pure, intrinsic semiconductor is extremely difficult, and typically some extrinsic carrier concentration exists.

However, at high T , the intrinsic carrier concentrations dominate and estimates for Eg can be obtained.

The magnitude of the Seebeck coefficient displays a maximum at high T because minority carriers reduce

the thermal voltage. Sharp and Goldsmid have shown that the value of |αmax| is related to Eg via[125]

Eg = 2e|αmax|Tmax, (4.46)

where Tmax is the temperature at which |αmax| is observed. This is derived assuming Boltzmann statistics

apply and that m∗n/m
∗
p=1 and µn/µp=1; the data in Appendix A confirm this expression. Significant vari-

ations can be observed when these ratios change. For instance, when the mobility of the minority carrier is

ten times the mobility of the major carrier, Eg is underestimated by ∼35% (for a particular set of properties;

see Appendix A for the consideration of minority carrier effects). Similarly, if the minority carrier mobility

is much less than the majority carrier mobility (or m∗maj/m
∗
min >>1), a large overestimation of Eg occurs.

Thus, the characterization ofEg viaEg = 2e|αmax|Tmax is actually very powerful because it produces an ef-

fective band gap that reflects the influence of the minority carrier on thermoelectric transport. The elementary

charge is included to convert between Volts and Joules, and is eliminated in the conversion to electronvolts.

4.2.8 Electronic Contribution to the Thermal Conductivity

The electronic contribution to the thermal conductivity κe is also an electrical transport property. To state it

in complete form the definition of a generic transport integral provided in Appendix E is utilized.

κe =
1
T

(
K2 −

K2
1

K0

)
(4.47)

The Wiedemann-Franz relationship is generally utilized to estimate κe via

κe = LσT, (4.48)

where L is known as the Lorenz number. In the limit of a single, parabolic band with τ ∝ ελ−1/2 the Lorenz

number is found to be



51

-5 0 5 10 15
η

1.6

2.0

2.4

2.8

 L
  (

10
-8

 W
Ω

K
-2

)

Ionized Impurities

Neutral Impurities

Acoustic Phonons

10
18

10
19

10
20

10
21

nH (cm
-3

)

Figure 4.4. Lorenz number as a function of electrochemical potential and scattering mechanism (left). The
complementary dependence on the Hall carrier density is shown in the panel on the right, where m∗/me = 1
and T = 300 K are utilized. The metallic limit is 2.45×10−8WΩK−2, which is often employed at high T
where it is likely to result in an underestimation of κL.

L =
k2

e2

(1 + λ)(3 + λ)Fλ(η)Fλ+2(η)− (2 + λ)2Fλ+1(η)2

(1 + λ)2Fλ(η)2
. (4.49)

The Lorenz number depends on η and the energy dependence of τ , which is similar to the behavior of

α. The energy dependence of L is shown in Figure 4.4. The metallic limit of the Lorenz number is given

by L = π2k2/3/e2=2.45×10−8 WΩK−2, and is valid at high degeneracy regardless of the carrier scattering

mechanism. This limit is often utilized in transport analysis. At high-temperatures, the use of this value

typically results in an overestimation of L (κe) and thus an underestimation of κL. In such cases, attention is

often drawn to the “low” value of κL and incorrect conclusions can be drawn regarding the physics governing

thermoelectric efficiency and the best methods for increasing efficiency.

When a sample has both holes and electrons contributing significantly to σ, an increase in κe beyond the

individual electron (κe,n) and hole (κe,p) contributions is possible. This is termed the bipolar thermal conduc-

tivity, κb, which accounts for the transportation of the thermal energy associated with the creation/annihilation

of electron-holes pairs[4].

κb =
k2T

e

σpσn
σ2

(αp − αn)2T (4.50)

From this expression, it is clear that κb is largest when the conductivity from electrons σn and holes σp

are equal. In this case, the nondegenerate equations are typically valid (provided the band gap is relatively

large so that η << 0 can be achieved) and κb becomes

κb =
k2T

4e
(4 + λn + λp + εg). (4.51)
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4.3 La3−xTe4

This section is an adapted reproduction, with permission, from Phys. Rev. B, 78 125205 (2008) and Phys.

Rev. B, 79, 153101 (2009). Copyright 2008 and 2009, American Physical Society.

4.3.1 Heavily Doped La3−xTe4

The thermoelectric properties of interest all depend on temperature T and carrier concentration n, and thus

n must be characterized as quantitatively as possible. This is accomplished via the room temperature Hall

effect, which yields a Hall carrier concentration nH = 1/RHe where RH is the Hall coefficient and e

the charge of an electron. The characterization at room temperature is generally sufficient because the free

carriers are not thermally induced, though the high-temperature Hall effect is desirable for understanding the

carrier mobility.

The room temperature Hall carrier concentration is shown in Figure 4.5a as a function of nominal com-

position, which is characterized by the carrier density (nnominal) obtained via charge counting for La3−xTe4.

The agreement between nH and nnominal is better than that between the WDS concentration and nominal,

and this demonstrates the need for a transport-based characterization of sample composition. Here, the WDS

data is transformed from atomic percent into a vacancy count xWDS by assuming full Te occupancy, which

is then utilized to calculate a carrier density as nWDS = nmax(1 − 3xWDS). The scatter associated with

the Hall data can be observed in Figure 4.5b, where the carrier concentration of the most resistive sample is

found to be constant up to approximately 750 K, above which the data is too scattered to analyze. For large n

(low resistivity), the carrier concentration is expected to be constant for all temperatures explored, as larger

n is equivalent to a higher Fermi energy which effectively increases the band gap.

The room temperature Hall carrier concentration and temperature-dependent electrical conductivity (Fig.

4.8a) are utilized to estimate the temperature-dependent Hall mobility µH (Figure 4.6a). The µH values

are similar to those previously reported for lanthanum telluride[40], and are slightly larger than the values

reported cerium sulfide, Ce3−xS4[49]. The mobility decreases with increasing temperature, which suggests

phonon scattering limits µH .

In Figure 4.6b, the decay of µH (raw experimental data) for nominal La2.72Te4 is fit to the theory of

acoustic phonon scattering using Equations 4.12 and 4.28 with η(T ) obtained from the experimental See-

beck coefficient data via Equation 4.34. An effective mass of 2.8me was employed (based on Seebeck

coefficient analysis), along with a longitudinal sound velocity of 3580 m/s (measured)[38], which produced

a deformation potential of 6.1 eV. The deformation potential is generally expected to be on the order of an

electronvolt[28], and is thus acceptable. The agreement between theory and experiment is good, suggesting

acoustic phonon scattering does indeed limit the carrier mobility. While this is not unusual for the temper-

atures probed, it is somewhat surprising that the curve in Figure 4.6b was able to describe the data so well

given the large number of lanthanum vacancies and complex electronic structure (see below).
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Figure 4.5. (a) Experimental carrier density as obtained from Hall effect data and compositional analysis
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permission from Phys. Rev. B, 78 125205 (2008). Copyright 2008, American Physical Society.
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phonon scattering, even in the sample with the highest vacancy concentration (nominal La2.72Te4). The solid
line can be approximated by a simple decay of T−1.28, representing a change from roughly T−1.15 to T−1.40

behavior as the temperature range of interest increases.

To further examine the effect of scattering mechanisms on the carrier mobility, we consider the carrier

concentration dependence of the mobility in Figure 4.7. The room temperature Hall mobility is found to

increase with decreasing n, with µH = 8.4 cm2/V/s obtained at the lowest nH . The dependence of µH on

nH is consistent with the theory of acoustic phonon scattering, which is shown as the solid curve in Figure

4.7. The convergence of µ at high T is also consistent with this theory, as µ is independent of n in the non-

degenerate limit (a loss of degeneracy is strongly promoted by the high T ). Some deviations exist between

theory and experiment, which may be caused by the electronic band structure or the presence of vacancies,

both of which complicate the analysis of transport in La3−xTe4.
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Figure 4.7. The room temperature Hall mobility is fit to a model for acoustic phonon scattering. At high
temperature (1273 K), the estimated values of µH converge to roughly 1.5 cm2/V/s due to the loss of degen-
eracy. Reprinted (adapted) with permission from Phys. Rev. B, 78 125205 (2008). Copyright 2008, American
Physical Society.

The theoretical curve in Figure 4.7 was obtained using an effective mass of 3.0me, a longitudinal sound

velocity of 3580 m/s, and a deformation potential of 6.6 eV was obtained from the fit. Note, however, that

smaller values of the Edef would be obtained if the residual resistances were accounted for. That is, if the

residual resistances that reduce the mobility (independent of T ) were accounted for, then a larger thermal

mobility would be obtained which would result in a smaller Edef from the fit. A simplified estimate suggests

Edef would be reduced by about 70%, and that the expected dependence on nH is still observed (for the

most part, extrapolations are difficult to make at low n). Interestingly, this trend in the thermal mobility was

not observed by Cutler, who reported that the thermal mobility (unexpectedly) increased with increasing n in

Ce3−xS4[49].

The transport properties of La3−xTe4 samples display the trends typical of a heavily doped semiconductor,

which is expected because the samples inherently possess n > 1020 cm−3. Recall Section 1.4 for a summary

of this ‘expected’ behavior. Specifically, the electrical conductivity decreases with increasing temperature

and the magnitude of the Seebeck coefficient increases with increasing temperature, as shown in Figure 4.8.

The electrical conductivity decreases with increasing T due to the decrease in the mobility, which was shown

in Figure 4.6. This is the classic behavior of heavily doped materials, where the carrier density is independent

of T , and is often referred to as metallic behavior. Similarly, the Seebeck coefficient behaves as expected (Fig.

4.8b): The Seebeck coefficient of a metal should increase linearly with T , as shown in Equation 4.35 (Section

4.2 and Appendix F). For large n, the Seebeck coefficient is linear with T for all T examined, confirming the

metallic behavior in the samples with largest n. As n decreases, the increase in |α| with T slows at high T

(approaching log[T ]), and for the samples with lowest n the detrimental effect of minority carrier activation

is observed at high T . That is, as electron-hole pairs are thermally activated, the holes produce a positive

Seebeck coefficient which decreases the net voltage. In this sense, the n and T dependence of the Seebeck
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Figure 4.8. Temperature dependence of (a) electrical conductivity and (b) Seebeck coefficient in La3−xTe4

reveals the behavior expected for an extrinsically doped semiconductor with large n. At high T and low nH ,
the effects of minority carriers are observed via the decrease in |α| and the increase in σ. Reprinted (adapted)
with permission from Phys. Rev. B, 78 125205 (2008). Copyright 2008, American Physical Society.
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Figure 4.9. The dependence of |α| on nH is found to be complex in La3−xTe4. Two different parabolic band
masses are required to describe the data, with a light band required at low carrier density. Reprinted (adapted)
with permission from Chem. Mater. 22, 624 (2010). Copyright 2010 American Chemical Society.

coefficient reveals a transition from highly degenerate to non-degenerate electron gas.

The nH = 4.07×1021 cm−3 sample is expected to have a larger conductivity than the nH = 3.90×1021 cm−3

sample, and this inconsistency may be the result of many factors, including experimental error and sample

inhomogeneity. For the most resistive sample, the increase in σ above ∼1000 K indicates the activation of

minority carriers. The electrical conductivity for this nH ∼ 1.2 × 1020 cm−3 sample was difficult to verify,

most likely due to the increased sensitivity to oxidation at low carrier concentration and/or the poor density

(∼85% theoretical).

The plot of Seebeck coefficient versus carrier density, sometimes referred to as the Pisarenko Plot, is

extremely valuable in the analysis of thermoelectric transport because it allows information about the band

structure to be obtained. In this simplest case, the validity of the parabolic band assumption is examined.

If the data lie significantly far from the parabolic band model (at a given n), then the conduction process



56

400 600 800 1000
T (K)

1

2

3

4

5

 m
*/

m
e

4.07
3.90
2.90
2.02
1.63
0.46
0.12

nH

(10
21

cm
-3

)

Figure 4.10. The calculated single-band effective masses in La3−xTe4 are found to be highly temperature-
dependent. This suggests, in a manner similar to Figure 4.9, that conduction either occurs in multiple bands
or in a non-parabolic band. The strong temperature dependence also suggests the band curvature(s) may be
temperature-dependent, which is consistent with the behavior in Figure 4.9.

may be occurring in a non-parabolic band or multiple bands. However, a change in the dominant scattering

mechanism can also lead to unexpected trends in this plot. Thus, crystallographic features and the thermal

energy scale should be considered when performing such an analysis.

The Seebeck coefficient α is plotted versus the Hall carrier density nH in Figure 4.9a,b at 400 and 1000 K,

respectively. Shown along with the experimental data are two theoretical curves that assume acoustic scat-

tering limits µ. These parabolic band (PB) models possess different effective mass m∗ to describe the high

and low n behavior; a reduced m∗ is necessary to describe the low n data. The x-axis is plotted in log format

to highlight the deviations between these two models. This analysis reveals that a single effective mass is

not adequate in describing the dependence of α on n for all n. A similar deviation from simple, parabolic

band conduction is observed in the temperature-dependent effective mass values shown in Figure 4.10. These

values were obtained by assuming the room temperature nH was independent of T , and η(T ) was obtained

from the temperature-dependent α data.

The analysis of α data shown in Figures 4.9 and 4.10 suggests that electronic conduction occurs in either

a non-parabolic band or in multiple bands. To draw such a conclusion, the influence of vacancy scattering

was also considered and it appears that vacancy scattering is an unlikely source for the significant difference

in m∗ values required to describe all α(n). For starters, acoustic phonon scattering appears to limit µ, even

at large vacancy concentrations (see Figure 4.6). Furthermore, if vacancy scattering were treated as ionized

impurity scattering (vacancies possess an effective charge), the result would be an apparent increase in α (or

m∗) at low n (large x), and not a suppressed α as observed in Figure 4.9. This is because ionized impurity

scattering promotes large α through a large energy dependence of τ (see Table 4.1 and Section 4.2). Finally,

vacancies might also be treated as neutral impurities, the scattering by which is modeled by the same energy

dependence (n dependence) as acoustic phonon scattering and thus no change in α(n) would be expected in

this scenario.
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Figure 4.11. The calculated band structure in La3Te4 reveals a direct gap conductor with a Fermi energy
well within the conduction band. (b) An examination of the pertinent bands reveals two/three bands dictate
electronic transport in La3−xTe4. The higher energy bands possess a larger band mass, which is consistent
with the analysis presented in Figure 4.9. Reprinted (adapted) with permission from Phys. Rev. B, 79, 153101
(2009). Copyright 2009, American Physical Society.
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Figure 4.12. The projected density of states in La3Te4 reveals the conduction and valence bands are composed
primarily of La and Te states, respectively. The sharp rise in N(E) observed near -0.2 eV is associated with
the heavy bands observed at that energy in Figure 4.11. Reprinted (adapted) with permission from Phys. Rev.
B, 79, 153101 (2009). Copyright 2009, American Physical Society.

To elucidate the influence of the electronic band structure on electrical transport in La3−xTe4, collabo-

ration with David Singh of Oak Ridge National Laboratory was developed. David Singh performed density

functional theory calculations (DFT) to obtain an electronic structure for La3Te4[51]. While these calcula-

tions utilized the ideal, defect-free stoichiometry, they provide an adequate approximation to obtain invaluable

information regarding the electronic structure in this system.

First principles calculations support the hypothesis that multiple bands influence electrical transport in

La3−xTe4. The electronic band structure of La3Te4 is shown in Figure 4.11, where panel (b) highlights

the region of interest to n-type conduction and it is revealed that the conduction band is composed of three

pertinent bands. The lower energy band, corresponding to transport at low values of n, is found to have a

lighter band mass (steeper curvature) than the higher energy bands.
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Figure 4.13. The Hall carrier density as a function of (a) Fermi energy and (b) chemical carrier density at
300 K. The Hall carrier density is always slightly less than the true carrier density due to non-parabolicity;
scattering effects are not considered here and may contribute to further deviation. Reprinted (adapted) with
permission from Phys. Rev. B 79, 153101 (2009). Copyright 2009, American Physical Society.

The calculated band structure for La3Te4 has a direct gap at Γ of 0.95 eV. There is one free electron per

formula unit in La3Te4, and the corresponding Fermi energy EF is 0.48 eV above the minimum conduction

band edge. This position is taken as the origin in Figures 4.11a,b. The semiconducting composition corre-

sponds to one-ninth of lanthanum atoms being vacant (La2.666Te4), and electrons fill conduction states as

La vacancies are filled. To simulate a change in the carrier concentration, the position of the Fermi energy

(and corresponding electrochemical potential as T changes) is shifted within the calculated band structure

(a rigid-band calculation). Therefore, these calculations allow an examination of the n dependence of α in

vacancy-free La3−xTe4, which is impossible do experimentally.

The pertinent conduction bands are fairly parabolic in nature. The energy minima of these bands are

Emin,1 = -0.48 eV, Emin,2 = -0.18 eV, and Emin,3 = -0.15 eV (relative to EF ). The two higher energy bands

would be degenerate at Γ in the absence of spin orbit coupling. These bands can be described by parabolic

band effective masses of m∗1/me = 0.39, m∗2/me = 1.05, and m∗3/me = 1.56. The corresponding degeneracy

for each band is g1 = 2, g2 = 1, and g3 = 2 (excluding spin degeneracy). The splitting between the heavy

bands is small, and thus the system can be modeled fairly well with two bands, as suggested in Figure 4.9.

Figure 4.12 shows the total electronic density of states and projections from constituent orbitals. The

conduction bands are primarily composed of La states while the valence bands are Te derived. This is ex-

pected, as the compound is primarily ionic at heart, with the empty cation states forming the conduction band

and the valence band edge being composed of filled anion states. These findings are also consistent with

previous calculations on La3S4[126]. The coupling of n and x (vacancy concentration) thus complicates both

experimental and theoretical studies of electron transport within this class of materials.

The heavy bands lead to an increase in the energy dependence of the density of states, N(E), which

can be observed in Figure 4.12 at approximately -0.16 eV. A similar increase in the corresponding carrier
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Figure 4.14. Theoretical Seebeck coefficients calculated from the first principles band structure by assuming
rigid bands and a shift in the electrochemical potential as determined by the carrier concentration (legend)
and the Fermi distribution function. The dependence on nH and T is similar to that observed experimentally.
The crossing of curves at low T is a clear demonstration of the multiband effects. Reprinted (adapted) with
permission from Phys. Rev. B, 79, 153101 (2009). Copyright 2009, American Physical Society.

density is also observed, as shown in Figure 4.13a for the theoretical nH versus electrochemical potential ζ

at 300 K. The approximate location of the heavy bands is indicated by the dashed line in Figure 4.13a. The

first principles nH values are slightly lower than the corresponding values of the chemical n due to the non-

parabolic nature of the bands. The deviation is largest at high energy (high n), where a maximum difference

of 4% is observed at 300 K; a larger deviation occurs at higher T . Also, the first principles calculation of nH

assumes energy independent scattering which leads to a Hall factor of unity; an inherent variation between n

and nH of up to 17% is associated with the τ(E) for acoustic phonon scattering.

The impact of band structure on α is now examined in the context of experimental results. Behavior

typical of a heavily doped semiconductor is observed in both the experimental (Fig. 4.8b) and theoretical

results (Figure 4.14). The theoretical results suggest the crossing of Seebeck coefficient curves at low T ,

which is consistent with an extrapolation of the experimental data. This is not possible within the single

parabolic band framework, and such a feature is an indication of strongly energy-dependent transport. The

crossing of these curves is best viewed in the Pisarenko plot. This plot of α versus nH is shown again for

clarity (Figure 4.15), as several curves have been added. For consistency with the DFT based results, the

parabolic band models in Figure 4.15 have utilized an energy independent relaxation time and thus the m∗

reported differs from Figure 4.9.

The theoretical n dependence of α makes sense in light of the fundamental form of the Seebeck coeffi-

cient, which suggests that the heavy, degenerate bands increase |α| by increasing the energy dependence of

σE . This effect is most pronounced at lower T , but is present to some extent for all T examined. The agree-

ment between experimental data and the ab initio results (labeled as DFT) is best at high T , as highlighted

by Figure 4.15b, which shows data for 1000 K. This suggests that either the band masses or the assumption

of energy independent scattering are more applicable at high T .
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Figure 4.15. The theoretical dependence of Seebeck coefficient on Hall carrier density is compared to ex-
perimental data. First principles calculations suggest a dramatic decrease in |α| at low nH . This behavior is
well reproduced using a three parabolic band (3PB) model, and is improved upon when the effective mass of
the light band is adjusted to match the data (3PB-SE). All theoretical curves assume an energy independent
relaxation time. Reprinted (adapted) with permission from Phys. Rev. B, 79, 153101 (2009). Copyright 2009,
American Physical Society.

Figure 4.15 also shows multiparabolic band approximations of the first principles results (labeled as 3PB).

These curves were generated using the band parameters (m∗i , gi) from the first principles calculations as input.

The multiparabolic band approximation of |α| agrees very well with the full calculation, indicating minor

asymmetries and band splitting do not have significant impact on α while multiband effects have dramatic

impact on α.

The final curve shown in Figure 4.15 is a semi-empirical, multiparabolic band model (labeled as 3PB-

SE). The semi-empirical models allow the value of m∗1 to be adjusted for a better description of the low

nH data; all other band parameters remained as calculated by first principles. The agreement between the

semi-empirical model and the experimental data is quantitative at low T . However, a larger m∗1 is required to

describe the low n data at 1000 K. It is difficult to know if this is a real feature of the material or if it simply

represents a failure of the model, but it is consistent with the increasing m∗ for low n shown in Figure 4.10.

If vacancies scatter electrons like ionized impurities, then the energy dependence of τ would vary with T

and one would expect energy independent scattering to be more accurate at high T (where phonon scattering

dominates). While this is consistent with the results presented here, the electrical resistivity seems to suggest

µH is dominated by phonon scattering at all T examined, and the general trend in α(nH) also suggests

impurity scattering is not present, though it could be hidden by band features (a very light band with ionized

impurity scattering). At this level of analysis, it is most appropriate to say that either the density functional

band masses or the scattering assumption are not valid for all n and T examined.

4.3.2 Near-Insulating La3−xTe4

The production of insulating La3−xTe4 is complicated by the La-Te phase diagram, as well as the high vapor

pressure associated with Te. The use of mechanical alloying allowed for the production of such samples near
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Figure 4.16. (a) Electrical conductivity of near insulating lanthanum telluride samples in an Arrhenius plot.
Data for two samples are fit to obtain the thermal band gap (see Eqn. 4.45). (b) The Seebeck coefficient
of the near insulating sample ‘*’ is much larger than that for the sample with nH ∼1.2×1020 cm−3 ‘+’.
The clear peak in the Seebeck coefficient for ‘*’ suggests a thermal band gap of 0.84 eV, consistent with
the corresponding electrical conductivity data. Reprinted (adapted) with permission from Phys. Rev. B, 78
125205 (2008). Copyright 2008, American Physical Society.

room temperature. An exact characterization of the electrical properties of these samples is also difficult, in

particular due the extreme sensitivity to oxidation.

The electrical conductivity for the near insulating samples is plotted in Arrhenius format in Figure 4.16a.

The data shown correspond to 800 K to 1100 K, and the band gaps of 0.85 eV and 1.3 eV are obtained from the

linear fits. At room temperature, the sample with data indicated by ‘*’ possessed a Hall carrier density near

5×1016 cm−3; this value is meaningless in a truly intrinsic sample but some extrinsic carriers are inferred

from the Seebeck coefficient data. The existence of some vacancies is expected, thus the presence of some

free carriers is not surprising. At high T , however, the intrinsic carrier concentration likely dominates and

leads to the traditional activated T dependence observed for σ in semiconductors. Two different data sets are

shown: the ‘*’ data were collected using the Van der Pauw technique while the filled symbols were obtained

via a four-point bar method (JPL System 2). This latter method uses a 1 cm tall sample, as opposed to a disk.

The linear behavior observed at high T is lost at low T , presumably due to the presence of some extrinsic

carriers, though hopping conduction may be present at these low n values[52].

The Seebeck coefficient for the near insulating sample (‘*’) is compared to that of the sample with

nH ∼1.2×1020 cm−3 (‘+’) in Figure 4.16b. The Seebeck coefficient in this near insulating sample is much

larger than that of the high nH sample; note that this ‘high’ nH sample has the lowest nH of the previously-

discussed, heavily doped samples.

The band gap estimated via Eg=2eαmaxTmax is approximately 0.84 eV. This value is in agreement with

that obtained from the fitting of electrical conductivity data at high T . Also, while the Seebeck coefficient

of the nH ∼1.2×1020 cm−3 sample does not demonstrate a clear maximum, one is essentially implied at

the highest temperature, from which a similar value is obtained. These values are also consistent with the
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Figure 4.17. Wavelength dispersive spectroscopy (WDS) data are presented along with the room tempera-
ture Hall concentration nH . The expected correlation between nH and WDS compositions is qualitatively
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simple theory but is shifted in n to match the data; it is the consistent slope that provides strong evidence that
simple valence counting applies. Reprinted with permission from Chem. Mater 22, 2995 (2010). Copyright
2010 American Chemical Society.

density functional calculations on La3Te4, which revealed Eg ∼0.95 eV; the theoretical band gap would

likely decrease if the high defect concentration at La2.667Te4 were taken into account.

4.3.3 La3−x−yYbyTe4

This Section is reprinted with permission from Chem. Mater 22, 2995 (2010). Copyright 2010 American

Chemical Society.

It is believed that primarily Yb2+ exists in the lanthanum telluride matrix, and the following environment

is expected:

La3+
3−x−y�La,xYb2+Te2−

4 e1−
1−3x−y .

The variation of rare earth content results in the desired control over carrier density, which is assessed

via the Hall carrier density nH , as observed in Figure 4.17. The values of nWDS were obtained from the

experimental atomic compositions using the outlined valence counting (n ∝ (1− 3x− y)). As with the pure

La3−xTe4 samples[38], WDS overestimates the rare earth content and quantitative agreement between nH

and nWDS is not obtained. The expected trends are observed, however, and the samples with and without

Yb fall on the same line indicating the desired chemical behavior has been achieved. The observation of

larger than expected rare earth content is believed to be an instrumental error associated with the use of

oxide standards for La and Yb, though minor oxidation may be present at grain boundaries (not observed

experimentally).
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Figure 4.18. The temperature dependence of the (a) electrical resistivity and (b) Seebeck coefficient in
La3−x−yYbyTe4 is found to be similar to that in La3−xTe4. Reprinted with permission from Chem. Mater
22, 2995 (2010). Copyright 2010 American Chemical Society.
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Figure 4.19. The electrical transport properties at 1000 K in La3−x−yYbyTe4 and La3−xTe4 are well de-
scribed by simple models. The fit to α is a three parabolic band model (3PB-SE) taken from Figure 4.15 and
σ is described by a linear fit. Reprinted with permission from Chem. Mater 22, 2995 (2010). Copyright 2010
American Chemical Society.

The temperature dependence of the electrical resistivity and Seebeck coefficient is shown in Figure 4.18.

As with La3−xTe4 samples, an increase in the magnitudes of α and ρ is observed with increasing T and de-

creasing nH (increasing Yb content). For samples with the largest nH , |α| increases linearly with increasing

T , while those with low nH manifest the detrimental effects of minority carrier activation at high T . Similar

behavior is observed in the electrical resistivity, where the more heavily doped samples behave more like

metals (linear increase with T ) and those with lower doping act more like heavily doped semiconductors (ρ

increases as ∼ T 1.5 until minority carrier activation is observed). Note the data for ρ of the most resistive

sample was very difficult to obtain due to rapid oxidation and poor quality contacts at this carrier concen-

tration; efforts to obtain the high-temperature ρ data were abandoned upon realization that this sample has a

non-optimal carrier density.

To examine the influence of Yb on thermoelectric performance other than by changing nH , the nH de-

pendence of α and the electrical conductivity (σ = 1/ρ) is examined in Figure 4.19, which shows data at
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1000 K. The dependence of α and σ on nH is found to be similar in samples with and without Yb. Also, the

thermal band gap, estimated from the maximum in the Seebeck coefficient Eg ∼ 2eαmaxTmax, is found to

be ∼ 0.8 eV in both types of samples[38]. These results suggest that the addition of Yb changes the transport

properties through a modification of the carrier density alone, and not through a change in the electronic

structure. As discussed in Section 4.3, a single band model fails to capture the full n dependence of α in

La3−xTe4 and thus the solid curve in Figure 4.19a is a three parabolic band (3PB) model taken from Section

4.3 (or Reference [51]), where it is termed the semiempirical multiparabolic band model (3PB-SE).

Previous work on La3−xS4 revealed an increase in the thermoelectric power factor (α2σ) with substitu-

tions of the form La3−yREyS4, whereRE = Sm, Eu, and Yb[44]. This observed improvement was attributed

primarily to enhancements in the Seebeck coefficient, which can be understood as changes in the effective

mass. This is physically plausible, as the conduction band is dominated by lanthanum states[51, 126] and

thus a substitution for lanthanum may change the conduction band curvature (mass). If a similar change were

to occur in the tellurium based system, La3−x−yYbyTe4, a deviation from the 3PB model in Fig. 4.19a would

have been observed. The absence of any obvious change to band structure indicates the Yb f-states reside

below the valence band edge in lanthanum telluride. This generalization is consistent with the Yb-Te phase

diagram, where only YbTe is observed, whereas the Yb-S phase diagram is complex and contains phases with

Yb3+ (one unfilled f-state). Thus, the improvement in electrical properties of La3−yYbyS4 may be related

to a valence fluctuation that places f-states near the conduction band edge and promotes a larger effective

mass. This may be viewed as similar to Tl doping in PbTe, which promotes an enhanced hole effective mass

through resonant states near the valence band edge[30].

4.3.4 La3−xTe4−zSbz and La3−xTe4−zBiz

This section is an adapted reproduction, with permission, Phys. Rev. B 81, 125205 (2010). Copyright 2010,

American Physical Society.

The (ideal) non-isoelectronic anionic substitution of Sb (or Bi) for Te produces a chemical environment

that can be described by

La3+
3−x�La,xTe2−

4−zSbze1−
1−3x−z .

As shown in Table 4.2, the magnitudes of the Seebeck coefficients and electrical resistivity increase with

increasing Sb or Bi content, and the Hall carrier density nH=1/RHe decreases with increasing Sb content.

This is expected for the substitution of 3− anion (Sb, Bi) for a 2− anion (Te) in an n-type semiconductor.

As shown in Figure 4.20, the experimental values of nH are consistently lower than expected from va-

lence counting assuming nominal composition, and the deviation is greatest at large Sb (Bi) content. The

primary source for reduced nH is likely to be the presence of lanthanum vacancies, which remove electrons

from the system and thus reduce nH . Vacancy formation may be promoted by the presence of Sb or Bi in

the crystal. However, simple valence counting would suggest that the sample with the most Sb is not the
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Table 4.2. Nominal composition and sample label for nominal La3Te4−zSbz and La3Te4−zBiz are provided
along with Hall ccarrier density and electrical resistivity at 300 K, and Seebeck coefficient at 400 K; a few
La3−xTe4 samples are also given labels for convenience. Reprinted with permission from Phys. Rev. B 81,
125205 (2010). Copyright 2010, American Physical Society.

Sample ID Nominal Composition nH ρ α
(1021cm−3) (mΩ-cm) (µV/K)

Sb1 La3Te3.80Sb0.20 2.9 0.53 -45
Sb2 La3Te3.65Sb0.35 1.3 1.1 -53
Sb3 La3Te3.40Sb0.60 0.54 9.0 -74
Sb4 La3Te3.35Sb0.65 0.35 18 -91
Sb5 La3Te3.20Sb0.80 0.08 43 -148
Bi1 La3Te3.35Bi0.65 0.39 7.1 -71
Bi2 La3Te3.20Bi0.80 0.39 10 -76
LT1 La2.99Te4 4.1 0.61 -41
LT2 La2.74Te4 0.52 2.7 -88
LT3 La2.72Te4 0.12 8.8 -175

sample with the largest vacancy concentration, and thus the driving force for vacancy formation does not

seem to be proportional to Sb or Bi content. It is possible that the presence of Sb or Bi modifies the me-

chanical alloying synthesis and promotes the loss of one species (or some binary compound) over another.

In general, the mechanical alloying synthesis may have a systematic loss of one species over another due to

differences in brittleness or ductility (elements may preferentially stick to vial) or reactivity. The vacancy

count in La3−xTe4 can reach x = 1
3 , and x ∼ 0.12 is the maximum x required to satisfy the electron count

in the Sb or Bi systems (found in Sb2); the x values needed to explain these trends are quite reasonable.

Note that cationic Sb substitution for La does not provide an explanation for the observed trend in carrier

concentration. Vacancy formation may be promoted by the formation of La4Sb3 (anti-Th3P4 structure type),

though identifying this phase is extremely difficult due to the similar lattice parameters and atomic masses.

One interesting possibility is anionic (acceptor) Sb sitting on a La site in La3−xTe4, which would reduce the

carrier concentration and could certainly manipulate electronic transport. Note that anionic Sb does exist in

the thermoelectric material Sb2Te3.

Scattering mechanisms can also produce a variation between nH and the chemical n, which is the n

associated with charge counting. The influence of scattering effects are manifested in the Hall factor, rH =

n/nH , which is discussed in Section 4.2. As will be shown below, large Sb (Bi) addition modifies electron

conduction, and thus likely leads to a change in rH relative to the pure La3−xTe4 samples (or samples with

low Sb content). The influence of rH is relatively small compared to stoichiometry, as rH=1.93 and 1.18 are

the upper limits of rH when the carrier mobility is limited by ionized impurity scattering and acoustic phonon

scattering, respectively[119].

The temperature dependence of the Seebeck coefficients is shown in Figure 4.21. The magnitude and

temperature dependence of α in the Sb containing (filled circles, panel (a)) and Bi containing samples (open

triangles, panel (b)) are similar to that of pure La3−xTe4 samples (gray curves). However, at high tempera-

tures a suppression of the magnitude of α is observed in the Bi containing samples and those with high Sb
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Figure 4.20. The experimental Hall carrier density nH = 1/RHe at room temperature is plotted versus the
theoretical carrier density obtained from charge counting for nominal La3Te4−zSbz and La3Te4−zBiz . The
experimental carrier density is always less than the expected value (solid line) and the discrepancy is likely
due to the presence of La vacancies. Reprinted with permission from Phys. Rev. B 81, 125205 (2010).
Copyright 2010, American Physical Society.

content due to the thermal activation of minority carriers.

At moderately high temperatures, where acoustic phonon scattering should limit the carrier relaxation

time regardless of sample composition, the dependence of the Seebeck coefficient on carrier density is found

to be similar for all samples. This is shown in Figure 4.22a, where the magnitude of α at 1000 K is plotted

versus the room temperature nH . The minor changes in α imply that the conduction band does not change

significantly upon Sb or Bi substitution for Te, which is consistent with the DFT results presented below.

However, it is possible the effective mass is lower in the Sb or Bi substituted compounds, as suggested by the

slight suppression of the Seebeck coefficient at low nH . The single parabolic band model shown in Figure

4.22a (solid curve) is generated utilizing an effective mass of m∗=2.8me and the assumption that acoustic

phonon scattering limits µ[119].

Less variation in the electronic properties of these samples is observed when |α| is plotted as a function of

ln(σ) at 1000 K, see Figure 4.22b. This implies any reduction in |α| (for a given n) associated with band mass

is compensated for by an increase in µ. Such a trend is consistent with the relationship between mobility and

effective mass, µ ∝ 1/m∗; scattering effects can cause an even stronger variation in µ as m∗ changes (see

Eqn. 4.12). The apparent increase in |α| for pure La3−xTe4 samples near 2×1021 cm−3 is likely related to

the electronic structure (heavy bands are found at∼0.3 eV above the low-mass, minimum energy bands)[51],

although experimental error must also be acknowledged.

The primary effect of Sb or Bi substitution on α is a compensation of α at high T and large z, which is

caused by the thermal excitation of minority carriers. This is evidence for a reduced band gap in samples with

high Sb or Bi content, as La3−xTe4 samples showed this feature at lower n and higher T . The thermal gap can
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be estimated by the maximum in |α| versus T , Eg = 2eαmaxTmax[125], which yields Eg∼0.46 eV for the

two Bi containing samples, Eg∼0.63 eV for sample Sb5, and Eg∼0.84 eV was obtained for La3−xTe4[38].

A reduced energy gap is also inferred, in a similar manner, from the ρ and κ data.
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Figure 4.21. Temperature dependence of Seebeck coefficients for nominal (a) La3Te4−zSbz (closed circles)
and (b) La3Te4−zBiz (open triangles) are similar to those of the pure La3−xTe4 samples[38] (solid gray
curves). The maximum value of |α| and the corresponding temperature suggest that the band gap is reduced
by Sb addition, and is further reduced with Bi addition. Reprinted (adapted) with permission from Phys. Rev.
B, 81, 125205 (2010). Copyright 2010, American Physical Society.
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Figure 4.22. (a) The dependence of Seebeck coefficient at 1000 K on the room temperature Hall carrier
concentration is similar for La3Te4−zSbz , La3Te4−zBiz , and pure La3−xTe4 samples[38], implying little
change to the conduction band occurs upon substitution. Also shown is a single parabolic band model (solid
curve). (b) Seebeck coefficient as a function of the natural logarithm of the electrical conductivity (at 1000 K)
demonstrates similarity of electrical transport in all samples at high T , where it is assumed acoustic phonon
scattering limits the carrier mobility in all samples. Reprinted with permission from Phys. Rev. B, 81, 125205
(2010). Copyright 2010, American Physical Society.

The experimental observation of reduced energy gap upon Sb or Bi substitution is consistent with the

density functional theory (DFT) calculations. The DFT calculations on the idealized La3Te4, La3Te3Sb, and

La3Te3Bi compounds suggest the primary effect of Sb or Bi substitution is to raise the energy of the valence
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Figure 4.23. The calculated electronic structures of (a) La3Te4, (b) La3Te3Sb and (c) La3Te3Bi shown for
the relevant energy range. Reprinted with permission from Phys. Rev. B 81, 125205 (2010). Copyright 2010,
American Physical Society.

band, where the majority of Te, Sb, and Bi states are located, and thus the substitutions result in a reduction of

the energy gap (see Figure 4.23). The most noticeable change to the conduction band with Sb (Bi) substitution

is the splitting of heavy, degenerate bands at the Γ point near 0.3 eV above the minimum conduction energy.

The substitutions also flatten these bands somewhat, and thus an increased band mass may be expected at high

doping levels. However, these changes in electronic structure are predicted for high Sb or Bi concentration,

and it is thus not surprising that the samples with low Sb content and high nH do not show an increased band

mass. Therefore, a dramatic change in the Seebeck coefficient (n-type) is not expected with these anionic

substitutions (at moderate T ), which is in agreement with the experimental data. These results imply cation

substitutions are required to significantly modify the conduction bands in La3−xTe4 (primarily composed of

La states) and provide large changes in the Seebeck coefficient.

The DFT energy gaps are most easily observed in the density of states (Figure 4.24), where Eg of 1.22,

0.51, and 0.38 eV are calculated for La3Te4, La3Te3Sb, and La3Te3Bi, respectively. To further validate these

trends, the band structure of isostructural La3S4 was calculated and an energy gap of 2.07 eV was observed;
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Figure 4.24. The projected density of states (DOS) reveals a decreasing energy gap in the compounds (a)
La3Te4, (b) La3Te3Sb and (c) La3Te3Bi. A total of 3 eV is shown for all panels. Reprinted with permission
from Phys. Rev. B, 81, 125205 (2010). Copyright 2010, American Physical Society.

the larger gap of La3S4 is consistent with prior calculations[126] and the increasing electronegativity as one

moves from Te to S. Note the Fermi level (0 eV) is placed within the conduction band for La3Te4 because it

has one free electron per formula unit, and the Fermi level for La3Te3Sb and La3Te3Bi is at the top of the

valence band because these are valence balanced compositions.

In Figure 4.25a, the electrical resistivity of Sb containing compounds (filled circles) are compared to

that of sample LT3 (gray curve), which has the highest resistivity of the heavily doped La3−xTe4 samples.

In Figure 4.25b, the less resistive samples are examined in further detail, along with samples containing Bi

(open triangles) and the two less resistive La3−xTe4 samples (gray curves). At low Sb content (and low Bi

content, not shown), electrical conduction is very similar to that in La3−xTe4, which makes physical sense

because these samples have high carrier concentrations and similar composition. The linear increase in ρ

with increasing T implies acoustic phonon scattering limits the carrier mobility, which is consistent with the

data for La3−xTe4 (even for large x).

In Figure 4.25a, the electrical resistivity of Sb containing compounds (filled circles) are compared to

that of sample LT3 (gray curve), which has the highest resistivity of the heavily doped La3−xTe4 samples.
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Figure 4.25. The resistivity of nominal La3Te4−zSbz at low Sb content is similar to that of pure La3−xTe4

samples, and as Sb content increases an activated process emerges. Panel (a) also includes nominal
La3Te4−zBiz samples, which display similar behavior. Reprinted with permission from Phys. Rev. B, 81,
125205 (2010). Copyright 2010, American Physical Society.

In Figure 4.25b, the less resistive samples are examined in further detail, along with samples containing Bi

(open triangles) and the two less resistive La3−xTe4 samples (gray curves). At low Sb content (and low Bi

content, not shown), electrical conduction is very similar to that in La3−xTe4, which makes physical sense

because these samples have high carrier concentrations and similar composition. The linear increase in ρ

with increasing T implies acoustic phonon scattering limits the carrier mobility, which is consistent with the

data for La3−xTe4 (even for large x).

The expected heavily doped behavior (positive dρ/dT at moderate T ) is lost at large Sb or Bi content, and

activated conduction is observed at moderate T for z ≥ 0.6. This transition is shown in Figure 4.25b, where

the resistivity decreases with increasing T for large z and moderate T . The source for activated conduction

is unclear; it could be caused by the substitution of Sb for Te which promotes local variations in the electric

potential associated with the randomly distributed anions, or defects or impurities which may be promoted

by large Sb (Bi) concentrations. The decrease in ρ with increasing T is primarily associated with a change

in the carrier mobility, not carrier density, as demonstrated by the temperature dependences of nH and µH in

Figures 4.26a and 4.26b, respectively.

Above∼550 K, the mobility in the Sb containing sample (Sb5) is larger than the mobility in the La3−xTe4

(LT3) sample (Fig. 4.26b). The larger mobility in Sb5 at high T may be related to the reduction in La

vacancies, which are likely scattering sources in La3−xTe4 when x is large. The Seebeck coefficient data in

Figure 4.22a implies a minor reduction in effective mass, which would also promote an increased mobility

(consider Eqn. 4.12 and the classic definition µ = eτ/m). Note the similar nH in Sb5 and LT3.

Activated conduction is inferred from the µH(T ) shown in Figure 4.26b. However, due to the small

temperature range over which the activated behavior is observed in this high-temperature study, a variety of

models are found to adequately fit the data. In particular, small polaron and variable range hopping (three
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Figure 4.26. Temperature dependence of (a) Hall carrier concentration and (b) the Hall mobility for the
samples containing the most Sb (solid markers) and highest vacancy content (LT3). The Hall mobility of the
La3−xTe4 sample (gray markers) decays with increasing temperature as expected for simple acoustic phonon
scattering, the theoretical description of which is shown by the solid gray curve. The mobility of the nominal
La3Te3.2Sb0.8 sample (Sb5) increases with increasing T for moderate T , and decreases with increasing T at
high T . The theoretical temperature dependence for ionized impurity scattering is represented by the black
curve; the dashed curve shows T 3/2 behavior (see Eqn. 4.13). Fit to generic activation in Sb5 at moderate
T yields an activation energy of 0.06 eV. Reprinted with permission from Phys. Rev. B, 81, 125205 (2010).
Copyright 2010, American Physical Society.

dimensional) both provide a reasonable description of the data in Figure 4.26b. For the sake of simplicity,

a generic activated mechanism (µH ∝ exp[Ea/kT ]) is considered for the data in Figure 4.26b. In the range

300 to 600 K, an activation energy of Ea = 0.06 eV is obtained.

Anderson localization is a type of activated conduction studied by Cutler and Mott in Ce3−xS4[52],

which is another rare-earth chalcogenide possessing the Th3P4 structure type. In their study, Cutler and Mott

concluded that the random distribution of Ce vacancies promotes Anderson localization[52]. However, in

Ce3−xS4, localization was only observed at low temperatures and/or very low n (x→ 1
3 ). For instance, the

most conductive Ce3−xS4 sample to display this behavior had a room temperature resistivity of ∼25 mΩ -

cm, and displayed predominantly itinerant conduction down to ∼100 K where the onset of localization was

observed. Localization was not observed in phase pure La3−xTe4 samples for the temperatures (T > 300 K)

and doping levels considered here[38]; low temperature studies have yet to be performed. Activated ρ(T ) was

observed near room temperature in two samples that were not phase pure, though this effect was not present

past 400 K and was very minor in comparison to the behavior observed in the Sb (Bi) doped samples. The be-

havior in these impurity containing samples was not reproducible in phase pure La3−xTe4, whereas activated

behavior was reproduced by multiple synthetic efforts and procedures (for instance additional annealing time

was considered) in the Sb (Bi) containing samples. Recall the Sb or Bi doped samples are phase pure by

the same characterization techniques that identified the impurities believed responsible for the observation of

small deviations from itinerant conduction (assumed due to “dirty” grain boundaries) in La3−xTe4.

The temperature dependence of µH for sample Sb5 may be explained by the conventional theory of

itinerant electron conduction with multiple scattering sources. In this framework, the increase in µH with

increasing T at moderate T is due to ionized impurity scattering (by Sb or Bi anions), and the decrease in
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µH at high T is caused by acoustic phonon scattering. To utilize the equations describing µH presented

in Section 4.2, the carrier relaxation time τ must be obtained via appropriate summation of all contributing

scattering times τs (see Eqn. 4.10). Difficulty treating multiple scattering mechanisms arises due to the

dependence of µH on η, as well as the functional forms of the various τs (the prefactor τ0,s is not always

independent of energy). In general, the experimentalist obtains an approximate temperature-dependent η

from the temperature dependence of the Seebeck coefficient utilizing Equation 4.29. The values of η(T )

are difficult to obtain when multiple scattering mechanisms are present, and an additional measurement is

generally required to allow a more complete solution to be obtained. As discussed, in the limit of high or

low T , a single scattering mechanism may limit µH , which allows η(T ) to be obtained more easily. Clearly,

the reliability of such a treatment rests heavily on the electronic structure, which is assumed to be well

described by a parabolic band. The samples analyzed here (LT3 and Sb5) have relatively low doping levels

and transport is likely to be determined by only the minimum energy conduction band, which is, to first order,

parabolic.

First recall the temperature dependence of µH for the La3−xTe4 sample (LT3) in Figure 4.26b (from

Figure 4.6b). The decay of µH in LT3 with increasing T is well described by the theory of acoustic phonon

scattering, which is shown by the solid gray curve in Figure 4.26b and was discussed in Section 4.3. The

temperature dependence of µH for sample LT3 in Figure 4.26b differs from the T−3/2 decay implied by

Equation 4.12 because the decrease in η with increasing T impacts µH via the integrals in Equation 4.28.

Temperature-dependent m∗, vl, and Edef can also effect the magnitude or temperature dependence of µH

significantly. A change in one or all of these material properties with Sb substitution may explain the differ-

ence between the µH for samples Sb5 and LT3 at high T , where acoustic phonon scattering likely limits µH

regardless of composition.

For illustrative purposes, the moderate T behavior of µH for sample Sb5 is compared to a theoretical

curve (solid black line) generated by assuming ionized impurity scattering limits τ . The relevant equations

are Equations 4.13-4.15 and 4.29. The theoretical curve is generated assuming the nominal composition

La3Te3.2Sb0.8 is valid to obtain Ni, and again m∗=2.8me. Then χ=27ε0 is obtained by fitting to the room

temperature data (ε0 is the permittivity of free space). The deviation from this theoretical curve and the

experimental data can be easily explained by temperature-dependent m∗ or χ, though other sources of error

include the single band approximation, temperature independent n=8×1019 cm−3, and the inclusion of only

one type of scattering. In this case, a temperature-dependent m∗ could result from the multiband features

and the increased occupation of states associated with thermal broadening (recall this is a parameterized,

single-band effective mass). The dashed black line in Figure 4.26b demonstrates T 3/2 behavior commonly

associated with ionized impurity scattering in the non-degenerate limit.
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4.4 Ba8Ga16−xGe30+x

This section is an adapted reproduction, with permission, from Phys. Rev. B, 80, 125205 (2009). Copyright

2009, American Physical Society.

As discussed in the Section 1.5.2 of the Introduction, the charge counting in type I clathrates leads to a

flexible system that enables an inherent optimization of thermoelectric performance. The strict relationship

between composition and carrier density is illustrated in Figure 4.27a, where Hall carrier concentrations are

plotted versus experimental composition. The experimental x values were obtained from the WDS data

assuming no vacancies on the framework: 30+x
16−x=Geat.%Gaat.% . The results agree well with the theoretical n versus

x (solid curve), which is obtained by simple charge counting that reveals x free electrons per formula unit

(holes are formed for x < 0). Note there is a small difference between the chemical n and nH due to

scattering effects, which are discussed below.

The agreement between experiment and theory suggests that valence counting rules are strictly obeyed in

n-type Ba8Ga16−xGe30+x (for the compositions of interest to thermoelectric applications). Note the same

conclusion is drawn from both EDS and WDS data, due to the similar slope, though the EDS data is shifted

to excess Ge by roughly x = 0.4. The use of standards during WDS measurements typically yields higher

accuracy than in EDS measurements. The atomic percent Ba obtained from WDS reveals greater Ba content

than allowed by the crystal structure (8/54=14.8 at.%); this assumes no framework vacancies. The error in

Ba content may be related to the use of an oxide for the Ba standard, as similar errors in WDS data were

observed for the La3−xTe4 system, where LaPO4 was utilized for the La standard and La content was found

to be greater than that allowed by the crystal structure (the same conditions were employed)[38]. However,

this may also be due to the presence of a barium rich oxide at the grain boundaries, or Ge/Ga vacancies.

While simple charge counting rules appear to apply assuming no vacancies, the role of vacancies (both

framework and filler) remains unclear[127–129]. Ba vacancies have been suggested by refinement of diffrac-

tion data[128], and the literature also contains studies which fit diffraction data to Ba8GayGez where y+z

< 46, as well as the fully occupied Ba8Ga16−xGe30+x[129–131]. The formation of vacancies in n-type

clathrates appears to be most important when compositions lie far from the charge balanced composition[129,

132]. Vacancies remove electrons from the system and thus move the Fermi energy (and carrier concentra-

tion) towards more reasonable levels, as seen in K8Si46−x and Rb8Sn46−x (for n-type systems)[90].

The growth of single crystal samples with nominal composition near Ba8Ga16Ge30 frequently results in

n-type samples[73, 74], which could be due to greater Ge content than expected. Energetic arguments have

been made to suggest Ba8Ga15Ge31 may be more stable than Ba8Ga16Ge30 due to a reduction in Ga-Ga

repulsion[69].

The Ba8Ga16−xGe30+x samples produced for this investigation were found to be unstable upon mea-

surement to 1050 K[107]. The pertinent data and a discussion of this issue and its resolution are provided in

Appendix C. In summary, a decrease in the electrical resistivity was observed after samples were measured
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Figure 4.27. (a) Room temperature Hall density in Ba8Ga16−xGe30+x as a function of elemental composition
x, as determined from wavelength dispersive spectroscopy (WDS) and energy dispersive spectroscopy (EDS).
The solid line is generated from electron counting assuming Ba8Ga16−xGe30+x stoichiometry, and the dashed
line possesses the same slope but contains a shift in x of 0.4. (b) The Hall carrier density increases slighly
with increasing T ; the dashed lines are visual guides. Reprinted (adapted) with permission from Phys. Rev.
B, 80, 125205 (2009). Copyright 2009, American Physical Society.

Table 4.3. Room temperature properties of Ba8Ga16−xGe30+x samples, where the calculated rH and m∗ are
obtained assuming acoustic phonon scattering limits µ. Reprinted with permission from Phys. Rev. B, 80,
125205 (2009). Copyright 2009, American Physical Society.

Sample Symbol nH rH µH α m∗

(1020cm−3) - (cm2/V/s) (µV/K) (me)
A 4 5.9 1.02 11.6 -52 1.82
B � 4.3 1.04 12.8 -65 1.86
C 5 2.7 1.05 14.4 -81 1.74
D © 0.9 1.11 12.1 -159 2.02
E ♦ 0.03 1.18 7.2 -143 -

to T > 1000 K in the JPL high-temperature Hall effect station. This was found to be due to an increase in the

carrier density. No such behavior was observed after measurement in the Seebeck coefficient or thermal dif-

fusivity systems. This issue was resolved by determining a temperature to which the data/samples remained

stable (1000 K).

The change in carrier density (composition) produces the expected change in transport properties. This is

readily observed at room temperature, as summarized in Table 4.3.

The temperature dependence of nH is shown in Figure 4.27b. While a slight increase with increasing T is

observed, the values of nH are dominated by extrinsic doping, which is consistent with the valence counting.

The increase in nH with T cannot be explained by temperature-dependent rH when only acoustic phonon

scattering is present (rH would increase with T and nH = n/rH should decrease if n originates from

a valance imbalance associated with framework composition). A temperature-dependent rH may explain

some, though not all, of the T dependence of nH if there are competing scattering mechanisms. If ionized

impurity scattering is important at low T , the values of rH would be larger than those shown in Table 4.3,

and rH would decrease with increasing T as acoustic phonon scattering becomes more important.
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Figure 4.28. (a) Temperature dependence of the Hall mobility in log-log format, with a T−1.5 decay (solid
curve) shown for comparison (see Eqn. 4.12). (b) Room temperature Hall mobility versus carrier concen-
tration for samples from this study (open markers with symbols as in Table 3.2), as well as data at 350 K
from Martin (filled markers). The experimental data are compared to theoretical curves generated assuming
the carrier mobility is limited by acoustic phonon scattering (solid curve for 300 K, dashed curve at 350 K).
The data symbols are consistent with those in Table 4.3. Reprinted with permission from Phys. Rev. B, 80,
125205 (2009). Copyright 2009, American Physical Society.

As shown in Figure 4.28a, µH decreases with increasing T for samples A-D. The temperature depen-

dence of µH in a heavily doped semiconductor can usually be modeled by a power law µH ∝ T−p when

one scattering mechanism dominates µH for the temperature range of interest. Examining the µH data in

this manner, we find that the empirically observed parameter p for samples A −D changes with increasing

temperature. Such deviations from power law behavior are best observed in a log-log plot, hence the axis

selection in Figure 4.28a. The failure of a single power law to fit the mobility data is likely due to the presence

of multiple scattering mechanisms. However, the theoretical dependence of µH on T for charge carriers scat-

tered by acoustic phonons is more complex than initially observed via Equations 4.12 and 4.28, and p>1.5

can be explained via Equation 4.12 when vl, m∗, and Edef depend on T . Of course, at high T the single

carrier description fails and an underestimated µH is obtained. The nH and α data imply m∗ does increase

with increasing T .

As can be inferred from Figure 4.28a, the empirical p is found to increase as the T range of interest

increases. This is consistent with competing scattering mechanisms, where the influence of acoustic phonon

scattering becomes increasingly important as T rises. A single p value describes the data much better if it is

obtained using nH(T ) = nH(T = 300K). The carrier density is believed to originate from a valence imbal-

ance associated with the framework composition, and should thus be independent of temperature at moderate

T . Thus, it is possible that the unexpected temperature dependence of nH leads to an incorrect µH(T ). At

high temperatures, p >1.5 is observed, which suggests temperature-dependent band mass (consistent with

the α and nH ).

The dependence of µH on T and nH is complex, particularly in materials where multiple scattering

mechanisms limit the carrier mean free path. A proper treatment of µH data requires allowance for all
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Figure 4.29. (a) Electrical resistivity and (b) Seebeck coefficient versus temperature in Ba8Ga16−xGe30+x

(open markers with symbols as in Table 4.3). Reprinted (adapted) with permission from Phys. Rev. B, 80,
125205 (2009). Copyright 2009, American Physical Society.

relevant scattering mechanisms, including residual resistances associated with grain boundaries and defects.

At moderate temperatures, the mobility of a heavily doped semiconductor is typically limited by acoustic

phonon scattering and/or ionized impurity scattering. The effect of ionized impurities is greatest at lower

temperatures, and acoustic phonon scattering tends to dominate at higher temperatures. Alloy scattering,

which has been considered in the Ba8GaxCuyGe46−x−y system[133], may also be present and would be

most influential at lower temperatures (also modeled with λ=0). At high temperatures we expect µH to be

limited by acoustic phonon scattering, and this assumption (λ=0) is utilized in the subsequent analysis.

The variation of µH with nH is shown in Figure 4.28b, where room temperature data from this study

and data at 350 K reported by Martin et al.[89] are compared to theoretical curves based on Equations 4.25,

4.12 and 4.28. We note the µH values are in agreement with the literature[71, 73]. The dependence of µH

on nH is found to be in fair agreement with the theoretical description of acoustic scattering, though only

a small concentration window is examined and relatively little variation with nH is observed. The effect of

residual resistance (via grain boundaries and defects) is to decrease µH , although this alone does not appear

to explain the deviation from theory for sample D. In the traditional view of ionized impurity scattering, a

reduced carrier concentration eventually leads to a lower mobility due to decreased screening of the ionized

impurities (unlikely to be the case). The suppression of µH in sampleD may be associated with an additional

scattering mechanism, or a processing related feature, and thus no conclusion can be drawn at this time.

The curves in Figure 4.28b were generated using temperature-dependent values of C11 from the litera-

ture[86], which are related to vl via the density d by vl =
√

(C11/d). A value of m∗ = 1.86me is selected

based on similar analysis of the room temperature Seebeck coefficients (4.31a). The theoretical curves in

Figure 4.28a were generated using a deformation potential of Edef = 8.3 eV, which is a reasonable value for

a doped semiconductor[28, 119].

The electrical resistivity increases with decreasing n and increasing temperature for samples A − D,

as expected for a heavily doped semiconductor (see Figure 4.29a). The increase in ρ with increasing T
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Figure 4.30. (a) Electrical resistivity of near-insulating sample E decreases rapidly with increasing tempera-
ture. The inset examines an interesting event that occurs upon heating; the source of this event has not been
isolated. (b) An Arrhenius plot of the resistivity demonstrates this behavior between 340 and 540 K, where
an energy gap of Eg = 0.41 eV is obtained from the linear fit shown. Reprinted (adapted) with permission
from Phys. Rev. B, 80, 125205 (2009). Copyright 2009, American Physical Society.

corresponds to the decrease in µH shown in Figure 4.28a. The effect of thermally activated minority carriers

can be observed at high temperature where the resistivity begins to decrease for samples C and D.

The resistivity of sample E displays the temperature dependence commonly observed for an intrinsic

semiconductor, as shown in Figure 4.30a,b. If the decrease in ρ is assumed to be due to the thermal excitation

of charge carriers across the energy gap, yielding ρ ∝ Exp(Eg/2kT ), a band gap Eg of 0.41 eV is obtained

from the fit (solid line) in Figure 4.30b. The high-temperature behavior of this sample is examined in the

inset of Figure 4.30a, where an event is observed upon heating. This event is also observed in the Seebeck

coefficient (α) at high temperatures, where a decrease in the magnitude of α is observed at high temperature

(see Fig. 4.29b). The event (increase in ρ) observed in sample E occurred upon consecutive heating cycles

for both ρ and α, and was not observed upon cooling. This behavior is not understood, and high-temperature

diffraction measurements have been undertaken to elucidate the role of structure on transport; these measure-

ments are being conducted by Bo B. Iversen’s group (University of Aarhus, Denmark). See Appendix C for

related discussion.

As shown in Figure 4.29b, the Seebeck coefficients have the expected sign and temperature dependence

for heavily doped, n-type semiconductors. Consistent with the behavior of ρ in Figure 4.29a, the magnitudes

of the Seebeck coefficients of the low n samples display maxima at high temperature, where the thermally

activated holes reduce the thermoelectric voltage. By utilizing Eg ∼ 2eαmaxTmax[125], a thermal band gap

of ∼ 0.39 eV is observed for samples C, D, and E, which is consistent with Eg obtained from electrical

resistivity data for sample E. The values of Eg reported here are consistent with ab initio electronic structure

calculations reported by Blake et al. (Eg ∼0.5 eV)[134], while calculations by Madsen et al. predicted a

larger value (Eg ∼0.9 eV)[135].

In Figure 4.31a, the room temperature data for |α| from this study and the literature are compared to

two theoretical calculations, while Figure 4.31b examines the behavior observed at 600 K for the Caltech
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Figure 4.31. Absolute value of the Seebeck coefficient versus Hall carrier density at (a) 300 K and (b) 600 K.
At 300 K, data from this study and the literature are compared to a single parabolic band (SPB) model, as
well as the ab initio calculation by Madsen et al[135]. Note the data from Martin et al. is reported at 350 K.
The experimental data were taken from References [71, 73, 89]. The effective mass required to model the
data is found to increase with increasing temperature. Panel (a) is reprinted with permission from Phys. Rev.
B, 80, 125205 (2009). Copyright 2009, American Physical Society.

samples. The dashed curve in Figure 4.31a is the result of ab initio calculations previously reported by

Madsen et al[135]. The experimental data are well described by the SPB model (solid curves), the curvature

of which also agrees well with the ab initio results, though a small change in curvature exists at high n.

The agreement between theory and experiment strongly justifies the use of a single parabolic band model

during the analysis of electronic transport, particularly for the Ba8Ga16−xGe30+x compositions of interest

for thermoelectric application. The solid curve in Figure 4.31a is generated using a single parabolic band

(SPB) model, with an effective mass of m∗=1.86me, while in Figure 4.31b an effective mass of 2.7me

was necessary to describe the data at 600 K. We note the ab initio results shown here were extracted from the

published report, which was originally presented as a function of electrons per formula unit (chemical n), and

is thus not a direct comparison with the Hall data and contains minor error associated with data extraction.

4.5 SrZnSb2 and SrZn2Sb2

This section is an adapted reproduction, with permission, from J. Appl. Phys., 106 013706 (2009). Copyright

2009, American Institute of Physics.

SrZnSb2 and SrZn2Sb2 were found to be p-type conductors with room temperature Hall carrier concen-

trations of 5×1020cm−3 and 1.5×1019cm−3, respectively. As shown in Figure 4.32b, the value of nH for

SrZnSb2 increases quickly with increasing temperature, which is indicative of a small band gap semicon-

ductor or a semimetal. At high temperatures, the single-carrier description yields an exaggerated nH due to

the excitation of electrons into the conduction band. Without knowledge regarding the mobility of holes and

electrons (as a function of temperature) it is impossible to calculate the true hole concentration and mobility

at high T in materials with small Eg .
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Figure 4.32. The Hall effect data reveals a decrease in the carrier mobility with increasing T for both sam-
ples. (b) The carrier density is relatively temperature independent in SrZn2Sb2, but increases strongly with
increasing T in SrZnSb2 which indicates a very small energy gap. Reprinted with permission, from J. Appl.
Phys., 106 013706 (2009). Copyright 2009, American Institute of Physics.

The electrical resistivity (ρ) of SrZnSb2 and SrZn2Sb2 increases with increasing temperature, as shown

in Figure 4.33a. For SrZnSb2, ρ increases less than linearly with temperature due to the thermal excita-

tion of carriers. The corresponding Hall mobility (µH ) decreases with increasing temperature (Fig. 4.32a),

presumably due to scattering by acoustic phonons, and at high temperatures multi-carrier effects yield an

underestimated µH . See Appendix A for a discussion of multi-carrier effects.

The higher mobility in SrZn2Sb2 is explained by the change in carrier density and the reduced effective

mass (see Seebeck coefficient analysis below). Specifically, the reduced carrier density in SrZn2Sb2 acts to

push the chemical potential closer to the band edge, thus promoting a larger µH when acoustic scattering

limits τ as discussed in Section 4.2. However, the deformation potential is observed to be fairly different

in these materials, with Edef = 14.7 eV in SrZn2Sb2 and Edef = 9.7 eV in SrZnSb2. These values were

obtained at room temperature, usingm∗/me=0.55 (SrZn2Sb2) and 0.92 (SrZnSb2) as discussed below; values

for vl are given in Table 5.2. The temperature dependence of µH is not well described by the theory presented

in Section 4.2 when temperature independent properties are utilized. This is likely due to the changing

effective mass, speed of sound, and/or deformation potential, though additional scattering mechanisms may

also be important. Note that if additional scattering mechanisms were included, the calculated values of Edef

would decrease. Also, multi-carrier effects may cause significant deviations from the true carrier properties.

Seebeck coefficient (α) measurements support p-type conduction, with positive α obtained for all temper-

atures (Fig. 4.33b). The Seebeck coefficient of SrZnSb2 is small, likely due to the high doping level, and the

observed temperature dependence is similar to that of a heavily doped semiconductor. Similarly, the Seebeck

coefficient of SrZn2Sb2 is relatively large, due to the low doping level.

A thermal band gap ofEg=0.07 eV is estimated for SrZnSb2, whileEg∼ 0.3 eV is obtained for SrZn2Sb2.

The small energy gap estimated for SrZnSb2 is consistent with the sharp increase in nH observed in Fig-

ure 4.32b. These estimates are obtained using the maximum value of α and the corresponding T : Eg ∼
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Figure 4.33. (a) Electrical resistivity and (b) Seebeck coefficient in the Sr-Zn-Sb systems. The behavior of
SrZn2Sb2 is best described as a doped, small band gap semiconductor, while a significantly smaller energy
gap (nearly semimetallic) is inferred from the electrical transport properties in SrZnSb2. Reprinted with
permission, from J. Appl. Phys., 106 013706 (2009). Copyright 2009, American Institute of Physics.

2eαmaxTmax[125]. The effective mass of SrZnSb2 is calculated to be 0.92me at room temperature, while

that of SrZn2Sb2=0.55me. The effective mass is calculated from the room temperature nH and α using a

single parabolic band model with carrier mobility limited by acoustic phonon scattering. The Hall factor was

not taken into account in this case.

The transport properties of other AZn2Sb2 (A= Ca, Yb, Eu) were previously reported[95–97] and are

summarized here. The nominally stoichiometric compounds were found to be extrinsically doped, p-type

semiconductors with 3.0 × 1019 to 1.5 × 1020 holes per cm3 at 300 K[97]. Using the same approach as

above, Eg ∼ 0.3 eV and m∗ ∼ 0.6me have been calculated for these compounds[97], with m∗ = 0.57

me obtained at 300 K for EuZn2Sb2 from the data in Reference [96]. The carrier mobility of all AZn2Sb2

(A= Sr, Ca, Yb, Eu) is found to be larger than in SrZnSb2, probably due to the reduced effective mass and

lower carrier density. While the various AZn2Sb2 compounds have similar m∗, the variation in µ does not

follow any trend with carrier concentration and the Yb and Eu compounds have surprisingly large µ. The

difference in m∗, µ, and Eg between these compounds and SrZnSb2 suggests the layer of infinite Sb chains

impacts the electronic structure of SrZnSb2 near the top of the valence band. We have recently published

a more-detailed account of these AZn2Sb2 compounds, which included first principles calculations, and the

reader is pointed to that body of work for a complete discussion[97].
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Chapter 5

Thermal Transport

5.1 Summary

This chapter begins with a general discussion of the thermal conductivity κ of solids. The importance of

the distribution of phonon group velocities is highlighted. Specifically, it is not appropriate to assume that all

phonon modes move at the highest velocity (the sound velocity, or the velocity of acoustic phonons). As such,

the classic result obtained from kinetic theory must be reconsidered or used cautiously. A few expressions for

κ at high temperatures in insulating materials are given, along with some expressions for the corresponding

minimum κ.

The thermal conductivity, in the materials discussed here, generally behaves as expected for doped semi-

conductors. That is, κ decreases as the carrier density decreases due to a decreasing electronic contribution,

and decreases with increasing temperature due to increased phonon-phonon scattering. A few exceptions to

these trends are observed, however, when the influence of point-defect scattering or phonon group velocity

changes dramatically with composition.

In La3−xTe4, the high defect concentration at large x promotes a very low lattice thermal conductiv-

ity κL. By considering samples with low carrier concentration and low vacancy concentration (nominal

La3Te4−zSbz), the influence of an increasing group velocity is observed as it produces a higher lattice ther-

mal conductivity at higher defect concentrations. Also, these Sb containing samples regain the expected

decay in κL with increasing temperature, which is suppressed in the presence of high concentrations of point

defects.

The lattice thermal conductivity of Ba8Ga16−xGe30+x is found to be approximately 1 W/m/K at 300 K.

This low lattice thermal conductivity is likely not due to the presence of a Ba “filler” atom that promotes

phonon scattering; κL decays as expected for simple phonon-phonon scattering. Rather, the large number of

atoms per unit cell promotes a large number of optical phonon modes, which have low group velocity and thus

do not contribute significantly to the thermal conductivity. This behavior is also inferred by considering the

two Sr-Zn-Sb compounds, where the large unit cell compound contains a smaller lattice thermal conductivity

and the trends can be explained by simple consideration of the number of atoms per unit cell.
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5.2 Thermal Transport Theory

The formulations reviewed here are discussed by a number of authors. I have found the papers by P. G.

Klemens to provide a significant amount of detail and discussion.[36, 37] Of course, several books discuss

thermal transport in detail, and of particular interest to those studying thermoelectrics are the books by Bhan-

dari and Rowe[136] and Drabble and Goldsmid,[137, 138], though traditional texts such as Ziman’s are also

very useful.[29]

5.2.1 Lattice Thermal Conductivity

Kinetic theory relates the thermal conductivity κ for a system of particles to their specific heatC (per unit vol-

ume), mean velocity v, and a mean free path l characterizing the distance traveled between random scattering

events:

κ =
1
3
Cvl. (5.1)

In an electrically insulating, crystalline material, the flow of heat is through lattice vibrations that are

quantified as phonons, which are often treated by kinetic theory. In this case, the above expression defines an

average phonon mean free path l. However, this approach comes with several shortfalls because, in general,

a variety of vibrational modes exists and thus a more appropriate expression is

κ =
1
3

∑
i

Civili. (5.2)

It is common to consider the frequency dependent properties; if C, v, and l depend on the frequency of

the lattice vibrations in a continuous manner, then

κ =
1
3

∫
C(ω)v(ω)l(ω)dω =

1
3

∫ ωmax

0

C(ω)v(ω)2τ(ω)dω. (5.3)

The difficulty in using Equation 5.3 arises primarily in the description of v(ω) and τ(ω), as several

reasonable theories for C is exist. The frequency-dependent velocity of phonons is essentially impossible

to measure. However, the velocity of the long wavelength vibrations can be approximated by the material’s

sound velocity, vs. These phonons are termed acoustical phonons, and the maximum frequency associated

with acoustical phonons is here termed ωD,A. The velocity of all acoustical phonons is generally close to

vs, though some change in v(ω) is expected at large ω (typically a reduction of v). For ω > ωD,A, the

vibrational modes are termed optical phonons, and the Debye frequency, ωD is the upper limit of ω for these

modes and thus the upper limit in Equation 5.3. The Debye frequency is related to the Debye temperature

ΘD by ωD = kΘD/~, and ΘD can be readily estimated from the mean sound velocity vm from
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ΘD =
vm~
kb

(
6π2

V

)1/3

, (5.4)

where the average vm of the longitudinal vl and transverse vt sound velocities is

vm = 31/3(v−3
l + 2v−3

t )−1/3. (5.5)

Optical phonons generally have (very) low group velocity and, to simplify models, it is common to ignore

the heat they transport. In general, this approximation becomes more valid in materials that contain atoms

with high mass contrast, as well as a variety of chemical bonds, as these features promote a large energy

gap between the acoustic and optical modes (which often leads to lower group velocities as well).[36, 139]

Also, optical modes can promote thermal resistance through the annihilation of acoustic phonons: acoustic +

acoustic→ optic.[140] Therefore, some of the heat carried by optical phonons may be offset by an increased

scattering of the acoustical modes.

When the majority of heat is transported by acoustical phonons, the macroscopic phonon mean free path

l is more physical if it is considered to be the mean free path of acoustic phonons lac:

κL =
1
3
Cacvaclac, (5.6)

where Cac = C/Na is the contribution of the acoustic phonons to the volumetric specific heat for a primitive

cell containing Na atoms. The specific heat is scaled by Na because acoustic phonons are associated with 3

of the 3Na degrees of freedom in a crystal, with the remaining (3Na − 3) modes being associated with the

optical phonons. The total C in a crystal is often cited as 3R/Vm, where R is the ideal gas constant and Vm

is the molar volume; this is known as the Dulong-Petit limit of C and is actually quite accurate at T > ΘD

where all modes are thermally accessible.[11] To perform an equivalent calculation using Equation 5.3, the

upper limit of the integration is taken to be ωD = ωD,A = ωD/N
1/3
a . This is (mathematically) equivalent to

setting the velocity of all optical phonons to zero.

A value for vac is required to obtain an estimate for lac from Equation 5.6. This is obtained fairly easily

from measurements of the sound velocity, which are discussed in Appendix G. Equation 5.6 implies the three

acoustic branches have the same velocity, and thus the average vm must be utilized.

Use of Equation 5.6 generally leads to a more reasonable value of l than would be obtained from Equa-

tion 5.1, which assumed the optical phonons also travel at vm. The concept that acoustic phonons dominate

transport and the corresponding mean free paths are longer than otherwise thought can help optimize ther-

moelectric materials by allowing phonon scattering to be considered within a more physically realistic model

(especially for large Na).

The equations expressed above are generally useful for analyzing transport data, rather than for predicting

it. Clearly, vac can be estimated from ultrasonic measurements and Cac can be estimated by considering the
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Dulong-Petit limit. Therefore, a predictive theory of κL (at high T ) must estimate the value of the mean free

path or phonon relaxation time (lac = vacτac). Similar to the relaxation times of electrons, theories have

been developed to estimate τ for phonons when they are scattered by various sources. In general, the phonon

relaxation times depend on temperature and frequency. Phonon-phonon interactions tend to limit τ at high

temperatures where phonon populations are large. Phonon populations are determined by the Bose-Einstein

distribution function, and the phonon occupations (and thus interactions) increase linearly with T at high T .

This, in turn, produces the κL ∝ T−1 behavior commonly observed in crystalline materials at high T .[37]

To obtain a more rigorous treatment of κ, one must consider the frequency dependence of C, v, and

τ . Typically, the Debye model is utilized to estimate C(ω) and theoretical model development focused on

obtaining τ(ω). Estimating v(ω) is extremely difficult, and it is common to utilize the speed of sound as an

estimate for all v(ω), though this drastically overestimates v for optical phonons (large ω). The details of

such considerations are provided in several texts and the reader is referred to References [11, 36, 37, 139].

The high temperature limit leads to a simplification of the integrand in Equation 5.3 when the Debye

model for C is combined with the theory of τ derived for phonon-phonon interactions. Klemens shows this

limit to be[37]

κL ≈
π

2γ2

(
k

h

)3

Ma
Θ3
D

T
, (5.7)

where a is the lattice parameter, M the mass, and the Grüneisen parameter γ is defined as

γ = −
(
dlnωD
dlnVm

)
T

=
3αTBTVm

C
. (5.8)

γ can be obtained from the linear coefficient of thermal expansion (αT ) and the isothermal bulk modulus, BT

= Bs/(1+αT γT ) where Bs is the adiabatic bulk modulus.

Slack’s model, which only considers the contribution from acoustic phonons, leads to a slightly different

high temperature limit,[139]

κL =
BM̄V 1/3Θ3

D

N
2/3
a γ2T

, (5.9)

where M̄ is the average atomic mass, and H is a function of γ equal to

H =
4.86× 107

2(1− 0.514γ−1 + 0.228γ−2)
≈ 3× 107s−3K−3. (5.10)

This formulation suggests that the lattice thermal conductivity decreases with increasing Na, which can

be understood as reducing the relative contribution of the acoustic phonons. Increasing Na results in a larger

number of optical phonons, and these phonons generally possess low (group) velocities. These trends have

been discussed in a recent review article produced by the Snyder Group.[27] The main conclusion is that

complex materials with large unit cells are likely to have low κL, and are thus promising starting points in
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the search for novel thermoelectric materials.

5.2.2 Minimum Lattice Thermal Conductivity

Theories for the minimum thermal conductivity of a solid are often useful to consider when analyzing thermal

transport data. The simplest models revolve around the idea of a minimum mean free path lmin that is on

the order of the interatomic distance. This assumption presents a difficult situation, as now the phonon

wavelength is much longer than its mean free path, and the concept of a phonon tends to break down.

Cahill’s formulation is developed for amorphous materials and is an extension of Einstein’s model (“a

random walk of energy between localized oscillators of varying size and frequencies”).[141] This approach

assumes the minimum phonon mean free path is one-half of its wavelength, which yields[141]

κmin =
(π

6

)1/3

kV −2/3
∑
i

vi

(
T

Θi

)2 ∫ Θi/T

0

x3ex

(ex − 1)2
dx, (5.11)

where the summation is over the one longitudinal and two transverse modes, V represents the average volume

per atom, Θi = vi(~/kb)(6π2/V )1/3, and vi is the sound velocity for the longitudinal and transverse modes.

The high temperature limit of this expression is easily calculated to be

κmin =
1
2

(π
6

)1/3

kV −2/3(2vt + vl). (5.12)

Slack’s model for the minimum thermal conductivity in crystalline materials assumes the minimum mean

free path of a phonon is equal to its wavelength, as he believes this is the lower limit for a phonon to be

considered a wave. [139, 141] Slack gives the minimum thermal conductivity for acoustic modes at high

temperatures as[142]

κmin,Acoustic =
3
2

(
4π
3

)1/3(
vk

V 2/3N2/3

)
. (5.13)

5.2.3 Electronic Contribution to the Thermal Conductivity

The treatment of the electronic contribution (κe) to the total thermal conductivity was covered in Section 4.2.

However, the important details are briefly reviewed here along with some general discussion.

In general, the electronic contribution is the sum of three terms: κe,n being the contribution from elec-

trons, κe,p the contribution from holes, and the bipolar contribution κb arises when holes and electrons con-

tribute a similar portion to the total electrical conductivity.

κe = κe,n + κe,p + κb. (5.14)

While the values of κe,n or κe,p can be obtained relatively accurately in a heavily doped semiconductor

by use of the Wiedemann-Franz relationship, it is very difficult to isolate these values in an intrinsic semicon-
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ductor at high T . However, at moderate T , κe,n and κe,p are typically low in this case (σ is small), and thus

a measure of κ in an intrinsic semiconductor provides a good, direct estimate for κL. At high temperatures,

where minority carrier activation influences transport, the electronic contributions are difficult to address. The

bipolar contribution κb is especially difficult to characterize because it is influenced by the Seebeck coeffi-

cient and electrical conductivity of both carrier types. Thus, at high temperatures, the electronic contribution

is difficult to obtain and the commonly employed single band model (majority carrier κe only) results in an

artificially high value of κL (an apparent increase in κL at high T ). For this reason, it is best to discuss the

estimated κL in the region where the single band Lorenz number L, as obtained from α(T ), is decreasing

(assuming τ is limited by acoustic phonon scattering).

For convenience, the primary equations of interest are restated now. The Wiedemann-Franz relationship

states that the electronic contribution from species i is related to the electrical conductivity of species i (σi),

temperature T , and the corresponding Lorenz number Li via

κe,i = LiσiT, (5.15)

where, for carriers in a parabolic band experiencing a carrier relaxation time of the form τ ∝ ελ−1/2,

L =
k2

e2

(1 + λ)(3 + λ)Fλ(η)Fλ+2(η)− (2 + λ)2Fλ+1(η)2

(1 + λ)2Fλ(η)2
. (5.16)

The reader is reminded that λ = 0 describes acoustic phonon scattering of carriers. The bipolar thermal

conductivity is

κb =
σhσe
σ

(αh − αe)2T. (5.17)



87

5.3 La3−xTe4

This section is an adapted reproduction, with permission, from Phys. Rev. B, 78 125205 (2008). Copyright

2008, American Physical Society.

The thermal transport in La3−xTe4 samples is similar to that in many other heavily doped semiconduc-

tors. Specifically, the thermal conductivity is heavily influenced by an electronic contribution κe and the

lattice contribution κL is clearly important. The magnitude of κe is directly linked to sample composition be-

cause the carrier density is a function of lanthanum content. However, this inherent link between lanthanum

vacancy concentration and carrier density results in an additional influence of composition on κ via κL, as

the crystallographic defects scatter phonons. In this manner, the thermal transport in La3−xTe4 is actually

rather complex.

The thermal diffusivity of La3−xTe4 samples is shown in Figure 5.1a. The values of DT decrease with

increasing T above ∼600 K for all compositions. An increase in DT at moderate T is observed in samples

with relatively large nH . While this is not typical of crystalline materials, it can be explained by considering

the temperature independent, residual (electronic) resistance.

The calculated values of the specific heat CP are shown in Figure 5.1b. The specific heat increases with

increasing temperature due to an increase in both the anharmonic contributions and the electronic contribu-

tion. The compositional dependence shown in Figure 5.1b is due to differences in the electronic contribution

Ce. The values of Ce for La3−xTe4 were estimated by scaling a calculated value for Ce in La3Te4 by the ratio

of room temperature Hall carrier density. In the limit of a free electron gas, Ce increases linearly with increas-

ing T and is proportional to the carrier density divided by the Fermi energy[11]. The values of Ce(T ) for

La3Te4 utilized here were taken from Reference [101], where they were calculated from the first-principles

band structure reported in Reference [51] and shown in Section 4.3. Low temperature specific heat data

confirmed the trend in Ce utilized here to obtain CP for a range of x values[101].

The assumption that the only compositional dependence in CP arises due to Ce is not strictly valid. For

instance, considering the 3R/M̄ limit of CP known as the Dulong-Petit limit, it is observed that a small

change in the mean atomic weight M̄ occurs as x ranges from zero to one-third. However, this factor only

results in a decrease in CP by ∼ 0.2%, and is thus of little concern.

An interesting feature in the La3−xTe4 system is a change in the phonon density of states (pDOS) with

composition. The specific nature of this relationship was discussed at length in Reference [101], and the

most critical feature is reviewed here. The phonon density of states were found to stiffen with increasing

vacancy content. This means that the phonon dispersion shifted to higher energies, and the corresponding

Debye temperature increased as x increased. The decrease in carrier density is believed to be responsible for

this stiffening. Specifically, a large carrier density (or large N(EF )) reduces the impact of ion displacements

by screening the force felt on neighboring ions. As the carrier density decreases, the energy to produce a

given displacement increases, and thus the pDOS becomes stiffer. The change in average phonon energy
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Figure 5.1. Temperature dependence of the (a) experimental thermal diffusivity and (b) calculated heat ca-
pacity in La3−xTe4 as estimated from data taken on La3Te4[101]. Panel (a) is reprinted (adapted) with
permission from Phys. Rev. B, 78 125205 (2008). Copyright 2008, American Physical Society.
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Figure 5.2. Temperature dependence of the (a) total and (b) lattice thermal conductivity in La3Te4. The
decrease with increasing T is due to phonon-phonon scattering, while the decrease in κL with decreasing nH
is due to increased point defect scattering associated with La vacancies.

with composition does not significantly alter CP at high temperatures. Therefore, to first order, the values of

CP shown in Figure 5.1b provide an accurate description of the true CP .

The total thermal conductivity is shown in Figure 5.2a, and the corresponding lattice contribution is

shown in Figure 5.2b. In general, both κ and κL decrease with increasing T and increasing x. The decrease

in κL with increasing T is expected for crystalline materials due to increased phonon-phonon interactions

as temperature increases. This feature was discussed in Section 5.2. The decrease in κ with increasing x is

expected, as this is primarily due to a decrease in the electronic contribution κe. The Lorenz values utilized to

obtain κe are shown in Figure 5.3. It was shown that using the metallic limit (dashed line) results in negative

κL at high temperatures for La3−xTe4[38].

The decrease in κL with decreasing n is not common in semiconductors. In classic semiconductors,

such as Si or GaAs, the free carriers are introduced via point defects (dopants) and thus a higher n typically

implies a higher level of defects and lower κL. Point defects scatter phonons due to a combination of mass

contrast and lattice strain. The effect of mass contrast (an additional ∆M of mass above or below matrix
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mobility limited by acoustic phonon scattering. The dashed line indicates the metallic limit, and negative
values of κL are obtained when this value is employed for data analysis in the La3−xTe4 system[38]

.

atom mass M ) is easier to address than is lattice strain. The phonon relaxation time associated with mass

contrast scattering is proportional to the mole fraction of impurity atoms (xI ) and the square of the relative

mass difference; for a one atom system this simplifies to[143]

1
τmass

=
(

∆M
M

)2
V

xI

ω2

4πv3
. (5.18)

In La3−xTe4, a high defect concentration corresponds to a low carrier density, and thus one expects κL

to decrease as x increases (n decreases). This phonon scattering is strong due to the large mass contrast

associated with the vacancy point defect, as implied by the behavior of τmass in Equation 5.18. Also, large

mol fractions of vacancies are possible, as up to one-ninth of lanthanum atoms can be vacant. The decrease

of κL with decreasing n is observed in Figure 5.2b. Some irregularities are observed, likely due to small

errors in measuring the three properties required to obtain κL, thogh the single band model is not strictly

valid. Recall α(T ) is utilized to obtain the temperature-dependent chemical potential, and κ(T ) and σ(T )

are also used in the calculation as well. Also, some of the unusual behavior in Figure 5.2b is associated with

the estimation of CP , which possesses error due to the complicated electronic and vibrational spectrums in

this system. Regardless, the expected trends are observed as κL generally decreases with both T and nH .

The stiffening of the pDOS discussed above can also have significant impact on κL. The increase in ΘD

with decreasing nH implies an increase in the speed of sound with increasing vacancy concentration. The

value of κL is greatly influenced by the speed of sound, as discussed in Section 5.2. The expected increase in

κL due to increasing ΘD may be offset by the decrease in κL associated with point defect scattering. Thus, the

contributions of these two factors are extremely difficult to estimate. The phonon density of states did reveal

significant peak broadening at high x, which is likely due to the scattering of phonons by vacancies[101] .

The scattering of phonons by electrons is common in metals at low temperatures. Isolating this interaction
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is very difficult, and generally requires low temperature thermal conductivity data. In the case of La3−xTe4,

this scattering seems plausible due to the large carrier density that can be achieved, as well as the transition

to a superconducting state at low T . The presence of superconductivity at large n implies strong electron-

phonon coupling, which is enhanced by the large effective mass (large N(EF )). However, the presence of

defect scattering by vacancies and the stiffening in the pDOS severely complicates the study of electron-

phonon coupling in La3−xTe4. This feature is discussed in more detail in Section 5.3.2 where nominally

vacancy free samples were utilized to probe the possibility of electron-phonon interactions at high T .

5.3.1 La3−x−yYbyTe4

This Section is reprinted with permission from Chem. Mater 22, 2995 (2010). Copyright 2010 American

Chemical Society.

The thermal diffusivity and thermal conductivity of Yb containing lanthanum telluride samples are shown

in Figure 5.4. The thermal conductivity decreases with increasing temperature and decreasing nH (Fig. 5.4b),

as was observed in the La3−xTe4 samples. This is generally due to the increasing phonon-phonon interactions

and the decreasing electronic contribution to κ, respectively.

The dependence of thermal conductivity on nH is shown in Figure 5.5 (at 1000 K). The decrease in κwith

decreasing nH is common for semiconductors due to the decrease in the electronic contribution κe, which is

proportional to the electrical conductivity. However, it is once again observed that even the lattice thermal

conductivity κL decreases with decreasing nH . The decrease in κL for La3−xTe4 is due to increasing point

defect scattering as the La vacancy concentration increases.[38] The Yb substitution results in an additional

point defect scattering, albeit with the filling of some vacancies, and thus the dependence of κL on nH is

similar in the Yb containing samples.

As before, the lattice thermal conductivity was obtained by using a single parabolic band model to esti-

mate the Lorenz number under the assumption that acoustic phonon scattering limits the carrier mobility. The

Wiedemann-Franz relationship is then utilized to estimate κe, which is subtracted from κ to obtain κL.[38]

The data shown in Figures 5.4 and 5.5 thus confirms that Yb can be utilized to control the carrier density in

La3−xTe4 while maintaining the desirably low κL that makes La3−xTe4 a prime candidate for thermoelectric

application.

5.3.2 La3−xTe4−zSbz and La3−xTe4−zBiz

This section is an adapted reproduction, with permission, Phys. Rev. B, 81, 125205 (2010). Copyright 2010,

American Physical Society.

The thermal diffusivity and conductivity of nominal La3−xTe4−zSbz and La3−xTe4−zBiz are shown as

a function of temperature in Figure 5.6. For moderate temperatures, all samples behave similarly and DT

and κ generally decrease with increasing T and decreasing nH . At high temperatures, DT and κ rise in the
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with permission from Chem. Mater 22, 2995 (2010). Copyright 2010 American Chemical Society.

samples containing Bi (open triangles) or large amounts of Sb. This is due to the thermal excitation of charge

carriers across the energy gap, which is facilitated by Sb (Bi) substitution due to the reduction of the energy

gap. The heat capacity utilized to obtain κ increases (nearly linearly) with increasing T , and thus κ mimics

DT . In the absence of heat capacity data for all compositions, the values of CP were taken from Reference

[101] for La3Te4 and recalculated to account for reduced electronic contribution, as done for La3−xTe4 and

La3−x−yYbyTe4. While some changes in CP with elemental substitution are expected due to changes in

average atomic mass, these effects are estimated to be less than 7% for the Bi compounds (a decrease in CP

is expected), and less than 1% for the Sb compounds (an increase inCP is expected) for complete substitution

(z = 1).

As discussed in Sections 4.2 and 5.2, the lattice thermal conductivity (κL) is estimated via the Wiedemann-

Franz relationship within the limitations of a single band approximation, from which the Lorenz number L
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DT and κ at high temperature, and is observed in the Sb and Bi containing samples because these elemental
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125205 (2010). Copyright 2010, American Physical Society.

is obtained via common solution to the Boltzmann transport equation. This approach assumes the energy

dependence of τ can be modeled by simple power law (τ ∝ ελ−1/2), which is typically most valid when

one scattering mechanism limits the carrier mobility. Acoustic phonon scattering (λ = 0) appears to limit

µ for low Sb content. For large Sb content, one could argue that ionized impurity scattering limits the car-

rier mobility at low or moderate T . Fortunately, at large Sb content, κe is small regardless of the scattering

assumption and thus the trends observed are not strongly dependent on the choice of scattering mechanism.

To demonstrate the minor influence of λ on κL, the values of κL obtained from the limiting assumptions of

λ = 0 (L ≤ 2.44×10−8 V2K−2) and λ = 2 (L ≥ 2.44×10−8 V2K−2) are compared in Figures 5.7a,b. Due

to the small influence of L for the low σ compounds, the calculation of L for the case of ionized impurity

scattering has been simplified by assuming that b defined by Equation 4.15 is independent of carrier energy

and thus λ = 2 can be utilized in Equation 4.49. Recall the necessary η(T ) is obtained from α(T ).

The lattice thermal conductivity is plotted versus the electrical conductivity in Figure 5.7a, where data at

573 K are shown. The increase in κL as σ decreases may be linked to a decrease in electron-phonon inter-

actions, the strength of which increase with increasing carrier mass[144, 145]. According to Pippard[145],

when perfectly free electrons scatter acoustic phonons, the phonon mean free path le−p scales as

le−p ∝
dv2
s

nm∗vf
, (5.19)

where d is the density and vf and vs are the Fermi and mean sound velocities, respectively. This suggests that,

if electron-phonon interactions limit κL, the value of κL should decrease as carrier density n increases. For

the current system, a decrease in n generally leads to a decrease in m∗ due to the multiband features shown

in Figure 4.11. Pippard’s theory differs somewhat from that presented by Ziman for le−p, though the same n

dependence is observed in the T→ ∞ limit[144]. In general, these theories do not predict the scattering of
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with permission from Phys. Rev. B, 81, 125205 (2010). Copyright 2010, American Physical Society.

phonons by electrons at moderate or high T , where the energy scales are unfavorably, and thus this effect is

expected to be small compared to Umklapp scattering (based on traditional theory).

Electron-phonon interactions are not the only explanation for the trends observed in Figure 5.7a. Calorime-

try and inelastic neutron scattering have suggested the Debye temperature in La3−xTe4 increases by roughly

20% from x=0 to x = 1
3 [101]. This is believed to be due to the decrease in carrier concentration and the cor-

responding decrease in density of states at the Fermi level (reduction in ion displacement screening), and thus

this effect should be relatively similar in the La3Te4−zSbz compounds where carrier concentration is reduced

with Sb substitution. This feature is likely to be hidden in La3−xTe4 samples due to the strong scattering of

phonons by vacancies as n decreases.

From kinetic theory, the lattice thermal conductivity is proportional to vs (which is proportional to the

Debye temperature) and thus the 20% change in Debye temperature can explain much of the change in κL

shown in Figure 5.7a. Approximately a 4% reduction in CP is expected when z increases from 0 to 1 due to a

reduction in the electronic contribution (at 573 K), and less than a 1% increase is expected from the reduction

in average atomic mass (for the Sb containing compounds).

In Figure 5.7a, it is observed that point defect scattering significantly reduces κL at low σ. This makes

physical sense, as low σ samples have large La vacancy content (for pure La3−xTe4) or high Sb concentra-

tions. In La3−xTe4, an ∼50% reduction in κL occurs as x increases from roughly 0 to 0.3, which demon-

strates the strong scattering of phonons by vacancies. The reduction in κL at low σ and large Sb content

appears faster than expected for point defect scattering by Sb ions alone (very little mass contrast to scat-
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tering phonons), and thus the data suggests an additional scattering source is present. Additional phonon

scattering may arise due to local inhomogeneity or differences in microstructure that are related to changes in

the synthesis due at high Sb (Bi) concentration. Also, if La4Sb3 forms or anionic Sb sits on cationic La sites,

additional phonon scattering would likely be observed. We note that the vacancy concentration inferred from

Hall data and electron counting (assuming complete Sb substitution) suggests the vacancy concentration is

fairly independent of Sb content, and thus vacancy formation is not utilized to explain the results at high Sb

content.

The strong scattering of phonons by lanthanum vacancies leads to a nearly temperature independent κL

in sample LT3 (nominal La2.72Te4), see Figure 5.7b. In nominal La3Te3.2Sb0.8, the reduced number of

vacancies increases the effective crystallinity (reduces point defect scattering of phonons), thereby increasing

κL and promoting the usual decrease in κL with increasing T (∼ T−1) expected for a crystalline material at

high T . The temperature dependence of κL for the samples containing Sb leads to low κL at high T , thus

allowing large thermoelectric performance to be achieved.

5.4 Ba8Ga16−xGe30+x

This section is an adapted reproduction, with permission, from Phys. Rev. B, 80, 125205 (2009). Copyright

2009, American Physical Society.

The thermal diffusivity for n-type Ba8Ga16−xGe30+x is shown in Figure 5.9a. The values ofDT decrease

with decreasing n and temperature, for T < 800 K. An unusual (sudden) decrease in DT is observed in

samples A− C, which is most readily observed in sample A near 650 K. Additional DT data were taken for

sample A using 10 K increments, and the event appears to occur continuously.

The high-temperature specific heat capacity is shown in Figure 5.9c. The CP data reported here are

consistent with low temperature data from in the literature[79], an estimate of which is shown as a solid line

in Figure 5.9c below 300 K. Also, the room temperature specific heat is found to be approximately equal to

the value obtained using the method of Dulong-Petit (dashed line, 0.3065 J/g/K), and thus the CP reported

is physically reasonable. At moderate T , CP increases linearly with increasing temperature, presumably

due to an increase in the anharmonic and/or electronic contributions. The linear temperature dependence is

lost at roughly 650 K, where an event occurs and CP increases abruptly. Above this event, CP appears to

be independent of temperature, and a value of 0.361 J/g/K is utilized to draw the solid line in Figure 5.9c

between 675 and 1000 K. The exact high T behavior and the compositional dependence of this ‘transition’

are unknown. These features are not addressed in the literature, and their origin remains unknown. The linear

fit from 300 to 675 K (CP=7.8×10−5+0.28 in J/g/K) followed by a constant value of 0.361 J/g/K was utilized

to calculate κ for all compositions.

The temperature dependence of κ = DTCP d is shown in Figure 5.9c. The decrease in κ with decreasing

n and increasing T is expected for a doped, crystalline semiconductor. A clear increase in κ associated
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Figure 5.8. (a) The thermal diffusivity of n-type Ba8Ga16−xGe30+x shows the expected temperature de-
pendence at moderate T . Above 650 K, sudden decreases in DT are observed. This is most readily seen
in the data for sample A, where DT was collected in smaller T intervals to examine this behavior. (b) The
temperature-dependent specific heat also reveals a transition. At moderate T , the data collected for this study
(markers) are consistent with the low temperatureCP reported by Sales et al.[79] and the simple Dulong-Petit
model (3R/M̄ ). Reprinted (adapted) with permission from Phys. Rev. B, 80, 125205 (2009). Copyright 2009,
American Physical Society.

with the event in CP is observed near 675 K, which is indicated by the dashed line in Figures 5.9. At high

temperatures, the thermal excitation of charge carriers leads to an increase in κ via an increased electronic

contribution. The electronic component of the thermal conductivity (κe) has contributions from electrons,

holes, and the bipolar conductivity (κb).

The lattice contribution to the thermal conductivity is shown in Figure 5.9b, where no compositional de-

pendence is observed. As discussed in Section 4.2.8, the values of κL are calculated from κL = κ − κe,

where κe is estimated via the Wiedemann-Franz relationship (κe=LT /ρ). The Lorenz number L is calculated

by employing a single parabolic band model, and the carrier mobility is assumed to be limited by acoustic

phonon scattering (λ=0). The values of L obtained from this method are most accurate for moderate temper-

atures (before intrinsic carrier activation is observed), which is the region in Figure 5.9b where L decreases

with increasing T . At higher T , this approximation breaks down and the estimated κL begins to increase

because κb is not included in the single band definition of L.

Here, the carrier mobility is assumed to be limited by acoustic phonon scattering (λ=0) and the reduced

Fermi energy η is obtained as a function of temperature from the experimental Seebeck coefficients using

Equation 4.29.

Also shown in Figure 5.9b is the theoretical value of the minimum lattice thermal conductivity, κmin.

Consistent with the observed κL, the theoretical κmin shows little compositional dependence (the calcu-

lation is for samples A and E). At moderate temperatures, κL approaches κmin. Thus, even though

Ba8Ga16−xGe30+x demonstrates crystalline-like thermal conductivity, the absolute value of κL appears to

approach the amorphous limit at high temperatures (in the absence of κb). The values of κmin were obtained

using Cahill’s formulation[141], which is shown in Equation 5.11.
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Figure 5.9. a) Total thermal conductivity and (b) lattice thermal conductivity versus temperature. κL does not
reveal any trend with composition, and approaches the theoretical κmin (solid and dashed curves for samples
A and E) before the estimated κL begins to increase due to the unaccounted bipolar contribution at high T
(the increase is an artifact of the analysis). A clear increase in κ associated with the abrupt increase in CP can
be observed (marked by dotted curve). Reprinted (adapted) with permission from Phys. Rev. B, 80, 125205
(2009). Copyright 2009, American Physical Society.

The lattice thermal conductivity decreases with increasing T for moderate temperature, suggesting κL

decreases due to an increase in phonon-phonon scattering with rising temperature. In a crystalline material,

κL should decay as T−1 when phonon-phonon scattering limits the phonon mean free path, but κL remains

finite at high temperatures (hence κmin). Thus, for phonon-phonon scattering alone, the physical description

of high-temperature thermal transport in a crystalline material is κL = κmin+κ0/T and the κmin term is

important when it is comparable to κ0/T . The data shown in Figure 5.9b are well described by such behavior

(before the onset of bipolar conduction at high T ), and fitting results in κmin∼0.56(0.06) Wm−1K−1 and

κ0=150(30) Wm−1 with standard deviations given in parenthesis. Note the good agreement between the

value of κmin obtained via this method and that from Equation 5.11 (∼0.66,Wm−1K−1). Therefore, the

high-temperature κL behavior in Ba8Ga16−xGe30+x is likely determined by phonon-phonon interactions

(assuming the bipolar thermal conductivity is accounted for). The low temperature thermal transport is in

agreement with this conclusion, as κL of n-type Ba8Ga16−xGe30+x increases with decreasing T to roughly

10 K.

It has been shown[83] that the classic definition of the phonon mean free path l is inconsistent with the

phonon lifetimes measured via inelastic neutron scattering. The phonon mean free paths are generally ob-

tained via κL = (1/3)CP vl (Equation 5.1); note this CP is in units of J/K/m3. Indeed, this equation suggests

that l is on the order of 6Å, which would mean the phonon lifetimes are a fraction of a picosecond (∼0.2 ps).

In the case of thermal transport dominated by acoustic phonons, as in κL for the Ba8Ga16−xGe30+x system,

a more appropriate mean free path to consider is that of the acoustic phonons, as these carry most of the heat.

In this case, the appropriate definition is κL = (1/3)Cacvaclac (Equation 5.6), where lac is the mean free path

of acoustic phonons and the volumetric specific heat of acoustic phonons is Cac = CP /Na, where Na is the

number of atoms per primitive cell. Using this equation, and the data shown in Table 5.1, it appears that the
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Figure 5.10. The calculated Lorenz numbers versus T in Ba8Ga16−xGe30+x are significantly lower than
the metallic limit, which is represented by the dashed line. Data were generated assuming acoustic phonon
scattering limits µ. Reprinted (adapted) with permission from Phys. Rev. B, 80, 125205 (2009). Copyright
2009, American Physical Society.

Table 5.1. Room temperature ultrasonic data and calculated properties of Ba8Ga16−xGe30+x samples.
Reprinted with permission from Phys. Rev. B, 80, 125205 (2009). Copyright 2009, American Physical
Society.

Sample vL vt vm κL,exp κL,theory ΘD γ
m/s m/s m/s W/m/K W/m/K K -

A 4500 2690 2970 1.0 2.1 311 1.62
E 4510 2630 2920 1.1 1.9 306 1.55

low κL in Ba8Ga16−xGe30+x is largely a result of the suppression of the volumetric specific heat of acoustic

phonons due to the large unit cell. This formulism leads to lac∼300Å, which corresponds to phonon lifetimes

near 10 ps, which are larger than those obtained via neutron scattering. Clearly, as discussed in Reference

[83], the microscopic representation of the kinetic theory (Equation 5.3) should be utilized.

At high temperature, κL appears to increase, but this is an artifact of the above analysis because the

bipolar thermal conductivity (κb) is not included. The bipolar thermal conductivity arises when both holes and

electrons are present and contributing significantly to the electrical conductivity[138]; the common expression

for κb is shown in Equation 4.50. In Figure 5.9a, the increase of κ at high T is observed to be most significant

for samples with lower nH . This is in agreement with the basic theory for κb and thus we believe κb is the

primary source for increased κ at high T , as opposed to a contribution from optical phonons.

Alternatively, κL can be estimated from a plot of κ versus 1/ρ for various samples at a particular tem-

perature. This method assumes κ = κL + LT/ρ. Performing this task yields κL = 1.1 Wm−1K−1 and L =

1.78×10−8 WΩK−2 at 300 K, and the change with increasing temperature occurs as expected: at 500 K this

approach yields κL = 0.88 Wm−1K−1 and L = 1.73×10−8 WΩK−2.

In Table 5.1, speed of sound corresponding to the longitudinal (vL) and transverse (vt) modes are provided

for samples A and E. The similarity in vL for the two different samples suggests the elastic constant C11
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does not vary much with composition, and thus a composition-dependent C11 cannot explain the lower than

expected Hall mobility in sample D (see Section 4.4). Also shown in Table 5.1 are experimental and theoret-

ical values for κL, as well as the calculated Debye temperatures (ΘD) and Grüneisen parameters (γ) for these

samples (at 300 K, calculated using equations in Reference [142]). The theoretical κL is calculated utilizing

Slack’s formulation (Equation 5.9)[142]. The moderate agreement between experimental and theoretical κL

is acceptable for such a simple theory, which only considers thermal resistance from Umklapp processes. To

calculate the Grüneisen parameter[142], a thermal expansion coefficient of 1.5×10−5K−1 is selected, which

is an average of the reported values[75, 86]. The Debye temperatures in Table 5.1 are consistent with those

in the literature[79, 83].

As shown in Figure 5.10, the Lorenz numbers utilized to determine κL are significantly smaller than the

metallic limit of 2.44×10−8 WΩK−2, which is shown as the dashed line in Figure 5.10. As expected, the

calculated L values decrease with increasing temperature (due to decreasing η), and at high temperatures L

rises due to the failure of a single band model (the calculated η rises). The simplest analysis for κe utilizes

the metallic limit for L, which commonly overestimates the electronic contribution and leads to reduced

κL. For example, at ∼800 K the value of κL for sample A is ∼0.49 W/m/K using the metallic limit of L

and ∼0.76 W/m/K using L∼ 1.75×10−8 WΩK−2 (obtained from single band analysis). Of course, there are

cases where L is greater than the metallic limit, but this generally requires the carrier mobility to be limited

by ionized impurity scattering. Therefore, the literature values for κL are often an underestimation of the

true values, which can lead to improper conclusions regarding appropriate methods for further optimization

of thermoelectric efficiency.

5.5 SrZnSb2 and SrZn2Sb2

This section is an adapted reproduction, with permission, from J. Appl. Phys., 106 013706 (2009). Copyright

2009, American Institute of Physics.

The thermal conductivity shown in Figure 5.11a is calculated as the product of the density d, thermal

diffusivity DT , and heat capacity CP , the latter of which is estimated using the method of Dulong-Petit.

CP=0.252 J/g/K for SrZnSb2, and CP=0.270 J/g/K for SrZn2Sb2. As seen in Figure 5.11a, the thermal con-

ductivity of SrZnSb2 is relatively independent of temperature. Specifically, the value of κ initially decreases

with increasing temperature, and then rises for T > 500K. The lattice contribution shown in Figure 5.11b

is estimated by κL = κ - κe. The electronic contribution is obtained from the Wiedemann-Franz relationship,

κe = LσT , where the Lorenz number L is calculated using a single band model with carrier mobility limited

by acoustic phonon scattering[4]. For SrZnSb2, the calculation of L yields values between 2.35 and 2.19 ×

10−8 WΩK−2 for T between 300 and 675 K, respectively, which is consistent with the ‘metallic’ nature of

SrZnSb2.

The estimation of κL reveals a significant contribution to κ from κe, as expected for materials with low
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Figure 5.11. Temperature dependence of the (a) total and (b) lattice thermal conductivity in the Sr-Zn-Sb
systems. κL is significantly lower in SrZnSb2 at moderate temperature, likely due to the larger number of
atoms per unit cell promoting the formation of low-velocity, optical phonons. Both compounds are found to
have a similar minimum thermal conductivity due to their similar sound velocities, as observed in Table 5.2.
Reprinted (adapted) with permission from J. Appl. Phys., 106 013706 (2009). Copyright 2009, American
Institute of Physics.

ρ. In Figure 5.11b, the value of κL for SrZnSb2 is observed to decrease with increasing temperature up to

roughly 500 K, where it remains at ∼1 W/m/K. A decrease in κL with increasing temperature is expected

for crystalline materials (T−1 decay due to an increase in phonon-phonon scattering for the acoustic modes),

while temperature independent κL is typically observed in disordered systems.

The plateau above 500 K does not suggest that SrZnSb2 has glass-like thermal conductivity at high T .

At high temperatures, κe possesses additional contributions due to the thermal excitation of charge carriers

across the band gap. In particular, the bipolar thermal conductivity (κb) can occur when both holes and

electrons are present. The value of κb cannot be determined without knowledge of the electronic properties

of both carrier types. We expect κb to be significant at high temperature in SrZnSb2 due to the large increase

in nH , which suggests holes and electrons are thermally activated. The net result is an overestimation of κL,

particularly at high temperatures, and thus the temperature independent κL estimated in Figure 5.11b is likely

an artifact of the analysis.

As shown in Figure 5.11b, the lattice thermal conductivity of SrZnSb2 is roughly one-half that of SrZn2Sb2

at 300 K. For most of the temperatures examined, κL for SrZnSb2 is significantly lower than that of SrZn2Sb2.

The values of κL converge at high T , likely due to the crystalline-like decay (T−1) of κL in SrZn2Sb2 and

the presence of κb in SrZnSb2. Due to the complexity of transport at high T in SrZnSb2, only the room

temperature properties are considered in further detail. Furthermore, significant variations from the estimated

values of CP are not expected at room temperature.

Sound velocities are utilized to estimate the mean phonon group velocity (vm), Debye temperature (ΘD),

and average acoustic phonon mean free path (lac), which is discussed below. The room temperature data is

summarized in Table 5.2, where it is shown that the two compounds have very similar vm and ΘD, which

was estimated via Equation 5.4. The values of vl and vt are also used to estimate the minimum value of the
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thermal conductivity (κmin) with Cahill’s formulation for amorphous materials (Eqn. 5.11)[141].

Within Cahill’s model, both compounds are predicted to have very similar κmin (lower curves in Figure

5.11b), which is roughly one-half of the κL observed at high T . The values of V employed here are obtained

from References [146, 147]. When utilizing Slack’s formulation for κmin (including the optical contribu-

tion)[142], a smaller κmin = 0.28 Wm−1K−1 is calculated for SrZnSb2 while κmin = 0.45 Wm−1K−1 for

SrZn2Sb2; the difference is due to a smaller acoustic contribution for SrZnSb2 (related to number of atoms

per unit cell).

When thermal transport is governed by acoustic phonons, such as implied by the temperature dependence

of κL, it is more appropriate to consider average properties of the acoustic modes. The mean free path of

acoustic phonons is then obtained from Equation 5.6.

From this formulation, and the summary of results in Table 5.2, it is observed that the ratio of the specific

heat of acoustic phonons (in J/g/m3) is

(Cac)SrZnSb2
(Cac)SrZn2Sb2

≈ 0.3,

but the ratio of (acoustic) mean free paths is

lac,SrZnSb2
lac,SrZn2Sb2

≈ 1.9.

Therefore, the reduced κL in SrZnSb2 is likely associated with a decrease in the relative ability of acoustic

phonons to carry heat, or the increased number of optical modes, which have low group velocity. If the classic

definition of a average phonon mean free path is utilized (CP in place of Cac, Eqn. 5.1), the average mean

free path of SrZnSb2 would be calculated to be roughly a factor of two smaller than that of SrZn2Sb2 and

both mean free paths would be roughly an order of magnitude smaller than those reported in Table 5.2.

From a structural point of view, the larger unit cell of SrZnSb2 results in reduced κL via a reduction

in the volumetric specific heat of heat carrying phonons. According to Slack, when only acoustic phonons

contribute to the thermal transport, the thermal conductivity is proportional to N−2/3
a (Eqn 5.9)[139]. The

trends observed here are in agreement with this theoretical prediction, provided γ does not vary much between

the two compounds. Specifically, when γ = 2 is assumed, Equation 5.9 yields κL = 1.78 Wm−1K−1 for

SrZnSb2 and κL = 3.56 Wm−1K−1 for SrZn2Sb2. The main difference is the value of Na, with a ratio

suggested by Slack’s model of (Na,SrZnSb2 /Na,SrZn2Sb2)−2/3 = (16/5)−2/3 = 0.46, and thus unit cell size

can explain the observed trends in κL. The relationship between κL and unit cell size (a lose description of

the number of atoms per unit cell) in Sb-containing compounds was discussed in a recent review article[27].

The role of optical phonons complicates this comparison some, as the increased number of atoms per unit

cell in SrZnSb2 leads to more optical modes than in SrZn2Sb2. Optical phonons may carry heat, however

in these compounds the mass ratios are greater than one (between 1.3 and 1.9) and thus optical modes are

not expected to contribute significantly to thermal transport[139]. Also, optical modes can promote thermal

resistance through the annihilation of acoustic phonons: acoustic + acoustic → optic[140]. Therefore, the
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Table 5.2. Room temperature properties of SrZnSb2 and SrZn2Sb2. Reprinted (adapted) with permission
from J. Appl. Phys., 106 013706 (2009). Copyright 2009, American Institute of Physics

compound na κL vl vt vm ΘD lac Cac
at./cell W/m/K m/s m/s m/s K Å J/g/K

SrZnSb2 16 1.2 3540 2040 2270 222 170 0.0157
SrZn2Sb2 5 2.1 3750 2010 2240 222 91 0.0540

small amount of heat carried by the optical phonons may be offset by an associated scattering of the acoustical

modes.

Structural features must also be considered as a source for low κL in SrZnSb2. The infinite chains of

Sb may be flexible and/or have large thermal parameters that promote phonon scattering. Also, the similar-

ity in a and b lattice parameters may allow the frequent production of twin boundaries, which would also

promote phonon scattering. This feature is currently being investigated by transmission electron microscopy

via collaboration with Øystein Prytz of the University of Oslo. The point defects (vacancies) associated with

hole production are most likely not responsible for reduced κL in SrZnSb2 because large changes in defect

concentrations would be expected between SrZn2Sb2 and YbZn2Sb2 (based on the values of nH ), and these

compounds have similar κL. The presence of Sb impurity in SrZnSb2 is not believed to be the source of

low κL as the SrZn2Sb2 samples contained a fairly large quantity of ZnSb impurity. Finally, the scattering

of phonons via charge-carriers was determined to be insignificant based on the theory by Ziman. Further-

more, scattering effects are unlikely to be the source for reduced κL as lac for SrZnSb2 is larger than lac for

SrZn2Sb2, which suggests less phonon scattering in SrZnSb2.

The data reported in Reference [96] suggests a significantly lower κL for EuZn2Sb2 at high T , but this

is calculated using L = 2.45×10−8 WΩK−2, which is the metallic limit that generally overestimates κe.

Using the same single band model discussed here, κL is estimated to be slightly lower in EuZn2Sb2 than

in SrZn2Sb2: κL of EuZn2Sb2 ∼1.8 Wm−1K−1 at 314 K and κL ∼ 0.7 Wm−1K−1 at 713 K (these values

correspond to L = 1.82×10−8 WΩK−2 and 1.65×10−8 WΩK−2, respectively).
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Chapter 6

Thermoelectric Efficiency

6.1 Summary

This chapter examines the thermoelectric performance of the following compounds: the La3−xTe4 based

materials, the type-I clathrate Ba8Ga16−xGe30+x, and the layered materials SrZnSb2 and SrSn2Sb2.

Before discussing the various compounds, a brief review of thermoelectric efficiency is given. The impor-

tance of the carrier concentration is discussed, as well as some simple methods for determining if the carrier

concentration should be increased or decreased to improve a material’s figure of merit zT . This concludes

with zT written as a function of one material dependent parameter (β) and three energy-dependent parame-

ters, and a short discussion of how this expression is utilized to obtain a plot of zT versus carrier density is

given.

The thermoelectric figure of merit zT in optimized La3−xTe4 is found to be greater than that in SiGe

alloys, the competing high-temperature material, with zT ∼ 1.2 achieved at 1273 K. The chemical manip-

ulations considered (Yb, Sb, Bi addition) were not found to significantly modify thermoelectric efficiency

at high temperatures, with the exception of Bi addition which reduced zT due to a significant reduction in

the band gap. Lower zT is observed in Ba8Ga16−xGe30+x, with zT near 0.85 at 1000 K. Still lower zT is

observed in the Sr-Zn-Sb compounds, which are not candidates for thermoelectric application.

Later in the chapter, the relationship between zT and device efficiency is considered. Here, the importance

of the material’s thermoelectric compatibility factor s is highlighted. This feature is particularly important

when generating segmented devices, as can be observed when comparing the efficiency of segmented legs

based on La3−xTe4 with those based on SiGe alloys. The theoretical efficiency in a La3−xTe4-PbTe leg is

found to approach 20% of the Carnot efficiency, or about 14% total efficiency.

6.2 Review of Thermoelectric Efficiency

The primary measure of a material’s thermoelectric performance is the dimensionless figure of merit,
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zT =
α2σT

κ
, (6.1)

which is determined by the Seebeck coefficient α, the electrical conductivity σ, and the thermal conductivity

κ = κL + κe which is the sum of the lattice and electronic contributions, respectively. Thermoelectric

compatibility also influences thermoelectric conversion efficiency, as discussed in Section 6.6.

For a given material, zT is generally optimized via the free carrier density. A few effortless approaches

can be utilized to estimate the optimum carrier density for a given system. In general, the most important

thing for an experimentalist to recognize is whether the carrier density needs to be increased or reduced.

The Seebeck coefficient is perhaps the best thermoelectric property to consider for this initial approach. Of

course, if the resistivity is far too large (say, hundreds of mΩ-cm) then it is clear that the carrier density is too

low (unless κL=0). As discussed in the Introduction, the limit of zT when κL=0 is very informative:

zT =
α2

L
, (6.2)

where a Lorenz number of L ≈ 2 × 10−8WΩK−2 is a reasonable estimation to consider. This reveals that

|α| = 141µV/K is required for zT = 1 in the ideal limit of κL = 0. The functional form of α is well

understood, and has been demonstrated in Section 4.2, where it is shown that |α| increases with decreasing

n. Thus, if the experimental values of α are less than ∼150µV/K, the carrier density must be decreased

for attractive zT to be achieved. This also reveals that obtaining large |α| is critical for obtaining large zT .

Furthermore, this suggests that when smaller values of κL are achieved, a concurrent decrease in n can be

performed to maximize zT ; low κL allows for larger α to be utilized.

The field of thermoelectrics is rich with history, and many of our ‘Giants’ have discussed the optimiza-

tion of thermoelectric materials[3, 4]. For instance, the famous text by Ioffe cites that nopt increases with

increasing m∗ and T as[3]

nopt =
2(2πm∗kbT )3/2

h3
. (6.3)

This simple model is developed assuming Boltzmann statistics hold, and is actually an optimization of the

power factor (α2σ). However, it does provide an initial guideline for the optimization of thermoelectric

efficiency. The ease with which complex integrations can be computed has certainly changed since Ioffe’s

day, and thus a more complete optimization can be readily achieved using a program such as Mathematica.

From the theory of electrical transport outlined in Section 4.2, the dependence of zT on carrier concen-

tration can be readily computed for a given set of material parameters. The key thermoelectric parameters are

the lattice thermal conductivity κL, and the carrier’s effective massm∗ and mobility µ. To generate a theoret-

ical zT (nH), one must assume something about the behavior of µ (the behavior of the carrier relaxation time

τ ). Generally, at high temperatures, µ decreases with increasing T due to scattering by phonons. Therefore,
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it is common to assume phonon scattering limits µ. First principles calculations often utilize the assumption

that µ is independent of energy, as this facilitates computation and is a reasonable approximation.

The figure of merit zT can be written as a function of the carrier’s (reduced) electrochemical potential η

and the key material properties:

zT =
α2

L+ (ψβ)−1
, (6.4)

where

β =
µ0(m∗)3/2T 5/2

κL
, (6.5)

and

ψ =
8πe
3

(
2k
h2

)3/2

(1 + λ)Fλ(η). (6.6)

The values of µ0, m∗, and κL must be obtained at the temperature of interest, and are consistent with the

type of carrier scattering assumed (λ). The values of α and L are calculated using Equations 4.29 and 4.49,

and the corresponding carrier density is calculated using Equation 4.25.

The zT expression is developed using the drift mobility, µd=µH /rH , and the value of µ0 is obtained from

Equation 4.28 by taking µ0 = eτ0/m
∗. For λ=0 (acoustic phonon scattering), µ0>µH , while for λ = 0.5

(energy independent scattering) µ0 =µH . All of the necessary expressions can be found in Reference [119]

or Section 4.2.

These equations are utilized to estimate the optimum carrier density for a particular value of β. This

method is based on the single, parabolic band assumption and is simply a convenient expression for zT that

is a restatement of the previously shown expressions for α, σ, and κ. Therefore, in some cases (such as

Ba8Ga16−xGe30+x), this method is very accurate, while in others modifications must be made to account

for multiband behavior (such as La3−xTe4). Despite this limitation, they are very useful in determining

how to maximize zT or increase the maximum zT . For instance, reductions in κL or increases in µH can

be simulated and are often very informative. The validity of these predictions certainly decreases as the

amount of data is reduced and the applicability of the parabolic band approximation or a particular scattering

assumption becomes unclear.

6.3 La3−xTe4

The temperature-dependent zT values for La3−xTe4 are shown in Figure 6.1a, and similar behavior is ob-

served in the La3−x−yYbyTe4 samples (Figure 6.1b). zT increases with increasing temperature, primarily

due to the direct dependence of zT on T and the increase in α2σ, though the decrease in κ also contributes.

The zT values are generally increasing with increasing T for all temperatures considered because the large

band gap of La3−xTe4 prohibits the detrimental effects of minority carriers, even at 1273 K (for most com-
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Figure 6.1. The temperature dependent zT in La3−xTe4 and its subsystems reveals a maximum of zT ∼ 1.2
at 1273 K. The distribution of zT is small in the Yb containing samples due to the narrow range of carrier
densities examined (shown in the legends of (a) and (b)). In Sb (Bi) containing samples, zT increases slowly
due to the activated nature of the electrical conductivity. Reprinted (adapted) with permission from Phys.
Rev. B, 78 125205 (2008) and Phys. Rev. B, 81, 125205 (2010). Copyright 2008 (panel a) and 2010 (panel
b), American Physical Society.

positions). The samples with large nH do not possess large zT due to small |α| and large κ.

The Sb containing samples have lower zT at moderate T due to the reduced σ. However, large zT is

observed at high T due to the increased carrier mobility. Unlike La3−xTe4 or La3−x−yYbyTe4 samples, the

zT values display a maximum at high T and high Sb (Bi) content. This is due to the reduction of the energy

gap with Sb (Bi) substitution for Te. Specifically, zT is reduced due to a compensation of α and a small

increase in κe occurs due to the excitation of minority carriers across the energy gap.

The carrier concentration dependence of zT (T = 1000 K) is shown in Figure 6.2, where data for Yb

containing samples are included in panel (a) and for the Sb(Bi) containing samples in panel (b). The largest

zT is observed in samples with relatively low nH , and a maximum is predicted at n=3×1020cm−3. This is

primarily associated with a large |α| and the reduced κL observed at low nH and high defect concentrations.

The low κL is also relatively independent of T in the La3−xTe4 or La3−x−yYbyTe4 samples, which promotes

large zT over a wide temperature range. The data for Sb/Bi containing samples in Figure 6.2b reveals lower

zT than found in La3−xTe4 due to the reduced σ. However, an increase in σ occurs at high T , and thus large
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Figure 6.2. The carrier density dependence of zT for La3−xTe4 and its subsystems reveals an optimum carrier
density near nH ∼ 3× 1020cm−3 (at 1000 K). The Sb(Bi) containing samples have lower than predicted zT
due to the suppression of σ at moderate T . The theoretical curve is generated using the fits to α, σ, and κ
shown in Figures 4.19 and 5.5; linear models for σ and κ are combined with a three parabolic bands model
for α. The model predicts larger than observed α at high nH , which leads to the overestimation of zT .

zT is observed above 1000 K in the Sb-containing samples.

The heavy bands at high energy influence the thermoelectric performance of La3−xTe4 by modifying the

electrical transport, in particular through changes in the Seebeck coefficient. At 1000 K, the optimum carrier

density is predicted to be n=3×1020cm−3 from semi-empirical models, and this is confirmed by experiment

as well. However, there is a wide range of compositions with large zT . This feature is highlighted in Figure

6.3, where the carrier density is plotted versus the theoretical electrochemical potential (both from parabolic

band(s) and from DFT). The orange area corresponds to the room temperature nH for samples that obtain

zT > 1 at 1273 K. The heavy band location is indicated by the gray region, and the offset of these bands

from the light band (edge of the conduction band) results in the large zT at relatively high n. Thus, while

the absolute optimization appears to occur near the band edge, which is consistent with traditional theory, the

presence of nested bands leads to a wide range of samples with large thermoelectric performance because

they introduce a large density of states beyond what would be observed if only the light band existed (this is

shown for n by the ‘1PB light’ curve). Of course, the effects of κ must also be considered; the decrease in

κL as n decreases would typically lead to the optimization of zT at even lower n[9].

6.4 Ba8Ga16−xGe30+x

This section is an adapted reproduction, with permission, from Phys. Rev. B, 80, 125205 (2009). Copyright

2009, American Physical Society.

The thermoelectric figure of merit zT in n-type Ba8Ga16−xGe30+x is shown as a function of temperature

in Figure 6.4a. The values of zT are calculated using polynomial fits to the α, ρ, and DT data, as well as the

two-part fit for CP shown in Figure 5.9b. As observed in Figure 6.4a, the maximum zT is found to be ∼0.86
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Figure 6.3. A representation of the theoretical relationship between chemical potential and carrier concen-
tration in La3−xTe4. The optimum carrier concentration corresponds to the edge of the light band, for the
semi-empirical model developed in Figure 4.15b, as expected for a typical semiconductor. However, the
nested, heavy bands lead to a wide range of carrier concentrations with zT > 1 at 1273 K. This theoretical n
versus ζ is influenced by the choice of scattering mechanism, and the energy independent scattering assumed
hear likely leads to lower band masses than expected and thus larger ζ for a given n, T .

at 950 K, and occurs in samples with n = 2.7 and 4.4×1020cm−3 at 300 K (C and B, respectively). Samples

with lower doping levels (D,E) display smaller zT due to higher ρ, and possess a maximum in zT (T )

at lower T . This temperature dependence is expected because samples with a lower nH possess a greater

compensation (reduction by minority carriers) of the Seebeck coefficient and a larger increase in κ due to κb

(for a given T ). SampleA, which has the largest nH at 300 K, displays a lower value of zT for all T , likely due

to the lower value of |α|. Note that permanent changes in the material properties of Ba8Ga16−xGe30+x were

observed upon characterization to 1050 K[107], and thus thermoelectric operation above 1000 K is unlikely

(see Appendix C). The optimum nH values are found to be consistent with the simple theory outlined by

Ioffe[3], which predicts an optimum carrier density near 4×1020cm−3 for Ba8Ga16−xGe30+x operation at

950 K (based on room temperature m∗).

Also shown in Figure 6.4a is the zT curve generated for sample B (BDP ) using the Dulong-Petit heat

capacity (CP = 0.3065 J/g/K). This calculation reveals that zT reaches unity at 950 K for the common CP as-

sumption; this curve provides a direct comparison with literature data utilizingCP = 3R/barM=0.3065 J/g/K.

Note the zT values presented here do not account for thermal expansion effects. It has been shown that includ-

ing the effects of thermal expansion in ρ andDT leads to an∼3% reduction in zT for Ba8Ga16−xGe30+x[75].

The zT values shown here are consistent with those presented for polycrystalline samples[75, 89], and are

lower than those reported by Saramat et al. for single crystal samples (zT ∼1.3 at 935 K)[74]. The CP used

by Saramat et al. is lower than that utilized here, but this difference alone does not explain the observed
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Figure 6.4. (a) The temperature-dependent zT in n-type Ba8Ga16−xGe30+x reveals a maximum near 950 K
for samples B and C. The value of zT obtained using the Dulong-Petit estimate of CP is provided by the
curve labeled BDP . For sample E, fits to the cooling data for α and ρ were utilized to generate zT , for all
other samples both heating and cooling were utilized to obtain zT . (b) The experimental zT is plotted versus
nH with all parameters obtained at 600 K. Also shown are three single band models, which demonstrate the
expected dependence of zT on nH at 600 K. The curves for λ=0 are generated assuming acoustic phonon
scattering limits the carrier mobility, and λ=0.5 implies an energy independent mobility. The input parameters
for these curves are given in Table 6.1. Reprinted with permission from Phys. Rev. B 80, 125205 (2009).
Copyright 2009, American Physical Society.

discrepancy and thus the larger zT may be related to increased mobility in single crystals.

The carrier concentration dependence of zT is well described by conventional theory, as shown in Figure

6.4b. In Figure 6.4b, the experimental zT at 600 K is plotted versus nH (at 600 K) and is compared to single

parabolic band models, the details of which are described below. The experimental data are well described

by the rigid band models, which show a maximum zT of 0.5 near 2×1020cm−3 (at 600 K). This corresponds

to roughly Ba8Ga15.75Ge30.25.

The predicted carrier dependence is believed to be accurate because the Seebeck coefficients are well

described by a single band model (Fig.4.31b) and the value of κL did not demonstrate any trend with compo-

sition (Fig.5.9b). Also, the data presented in Figure 6.4b is for ∼600 K, where the single carrier description

should be valid. It is possible the theoretical curves underestimate zT at high nH (>8×1020cm−3), as the

first principles Seebeck coefficient curve in Fig. 4.31b has less n dependence than expected from a single

band description. The theoretical curves are plotted as a function of nH at 600 K, and thus a shift to lower

room temperature nH is expected. However the samples are extrinsically doped and nH varies only slightly

with temperature (Figure 4.27b). The optimum doping level estimated in Figure 6.4b is likely applicable to

high temperatures, although the effect of minority carriers must be considered.

The theoretical curves in Figure 6.4b are calculated using Equations 6.4–6.5 and Equation 4.25, as dis-

cussed in Section 6.2. The input parameters are summarized in Table 6.1.

Consistent with rigid band conduction, similar optimum doping level and maximum zT are obtained

regardless of which data set (which sample) is utilized to generate the input parameters. The selection of
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Table 6.1. Parameters for theoretical zT (T = 600 K) versus nH shown in Figure 6.4. Reprinted with
permission from Phys. Rev. B, 80, 125205 (2009). Copyright 2009, American Physical Society.

Sample λ µ0 m∗ κL
(cm2/V/s) (me) (W/m/K)

A 0 7.6 2.7 0.81
C 0 8.3 2.7 0.87
C 0.5 5.9 1.8 0.80

dominant scattering mechanism (within reason) also has little impact on the optimum doping level and max-

imum zT . When energy independent scattering is assumed (λ = 0.5), the theoretical zT is very similar to

that from the assumption of acoustic phonon scattering, as observed by the similarity between the solid and

dashed black curves.

Perhaps the simplest way to enhance zT in this system is to reduce κL via alloying. In fact, substituting

Yb on the Ba site has shown to reduce κL[85], although the carrier density was found to increase with

increasing Yb content suggesting the framework composition was not fixed. The theoretical zT for a given κL

is easily calculated within the model presented here, and given the agreement between theory and experiment

the values obtained are expected to be fairly accurate. Assuming a 20% decrease in κL at 600 K, and using

the input parameters for sample A from Table 6.1, a maximum zT of 0.61 is obtained at T=600 K. This

corresponds to a minor reduction (8%) in optimum doping level, as expected for a simple semiconductor[3, 9].

It therefore seems reasonable that the zT of a polycrystalline, n-type Ba8Ga16−xGe30+x-based compound

could exceed unity at high temperatures.

6.5 SrZnSb2 and SrZn2Sb2

The thermoelectric performance in SrZn2Sb2 greatly exceeds that in SrZnSb2, as observed in Figure 6.5a.

This is due to both the high carrier density in SrZnSb2, which promotes a low Seebeck coefficient and large

κ, as well as the small energy gap which also promotes reduced α and increased κ at high T . The zT value

obtained for SrZn2Sb2 is similar to that obtained in otherAZn2Sb2 compounds (whereA = Sr,Ca, Y b,Eu).

However, the performance is lower in the A = Sr compound[97]. This is despite the existence of near

optimum carrier density in the SrZn2Sb2 compound.

The theoretical dependence of zT on nH is shown in Figure 6.5b, where it has been assumed that acoustic

phonon scattering limits µ. The SrZn2Sb2 is found to have near optimal carrier density for the given set of

m∗, T , µ and κL. SrZnSb2, on the other hand, is too heavily doped, as expected from the large nH and low

α. The single band model estimates a zT of 0.3 at 500 K in SrZnSb2, though this value would be difficult

to achieve due to the small band gap in SrZnSb2; the single band model is not accurate in SrZnSb2 at high

T . Thus, SrZnSb2 is unlikely to achieve large zT and is not a candidate for thermoelectric application.

Similarly, the relatively low zT in SrZn2Sb2 prohibits further development of this material, despite the fact

that it possesses the optimum carrier density for its material properties. In particular, the YbZn2Sb2 and
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SrZn2Sb2, respectively. (b) The SrZnSb2 sample possesses too large of a carrier density to obtain large zT ,
while the SrZn2Sb2 sample has the optimum carrier density for that material’s transport parameters.

Table 6.2. Parameters for theoretical zT versus carrier density in SrZnSb2 and SrZn2Sb2

Sample T µ0 m∗ κL
(cm2/V/s) (me) (W/m/K)

SrZnSb2 300 78.6 0.92 1.17
SrZn2Sb2 300 133.8 0.55 2.20
SrZn2Sb2 600 76.5 0.51 1.12

EuZn2Sb2 compounds are promising materials due to their abnormally large µ. This feature is not well

understood, and has been discussed in a preliminary manner in Reference [97].

The curves at 300 K and 600 K were generated using the values in Table 6.2. The curves were generated

assuming acoustic phonon scattering limits the hole mobility. A model is not generated for SrZnSb2 at 600 K

due to its small band gap

6.6 Thermoelectric Compatibility and Device Efficiency

6.6.1 Overview of Device Efficiency

The efficiency (η) of a thermoelectric energy conversion leg is given by η = ηCηr, where ηC = TH−TC
TH

is the Carnot efficiency and ηr is a reduced efficiency that depends on the material properties. For a single

thermoelectric element (one leg of a thermoelectric ‘couple’) with constant α,σ, and κ, the optimized leg

efficiency is[39]

η = ηC

√
1 + ZT̄ − 1√

1 + ZT̄ + TC/TH
, (6.7)

and thus η → ηC as ZT → ∞; T̄ is the average of the hot (TH ) and cold (TC) side temperatures. This

expression defines a device level figure of merit Z, which then depends on the material properties and op-
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erating temperatures. The theoretical maximum efficiency (for temperature dependent material properties)

occurs when the optimum reduced current density u is achieved across the entire temperature gradient[39].

The reduced current density u is defined as the ratio of the electric current density J to the heat flux by

conduction[39]:

u =
J

κ∇T
. (6.8)

The optimum reduced current density is defined as the thermoelectric compatibility factor s, which is[39]

s =
√

1 + zT − 1
|α|T

. (6.9)

The parameter s is an intrinsic materials property, like zT , and has units of inverse volts. Conversion effi-

ciency decreases when u 6= s, and thus efficiency decreases when s changes strongly across a thermoelectric

couple (the value of u is constant). The change in s can be caused by the presence of multiple types of

materials (segmentation), or simply the change in s across one material (a strong temperature dependence

in s). Therefore, when forming a segmented couple, it is best to match the s values of adjoining materials

(at the temperature of the joint). It is also desirable to have a self-compatible material, where s is relatively

independent of T . The interested readers are recommended to review References [39, 148, 149].

6.6.2 Efficiency in La3−xTe4 and Subsystems

This section reveals the predicted (optimized), single-leg conversion efficiencies for the lanthanum telluride

based materials. Data for SiGe are also provided, as lanthanum telluride is a candidate material to replace

SiGe in high temperature power generation. A program developed by G. J. Snyder was utilized to compute

the optimized, single leg efficiency of the materials considered. This code utilizes the temperature dependent

thermoelectric properties and performs a full calculation of device efficiency, including the effects of com-

patibility. The transport data for materials not discussed in this text were taken from the internal JPL data

set.

The calculated efficiency of single leg thermoelectric generators is shown in Figure 6.6. The hot side is

taken to be 1273 K, and the efficiency is plotted versus the temperature drop. The temperature drop in NASA’s

traditional, SiGe based thermoelectric generators is 700 K (from a 1273 K hot side)[150]. The thermoelectric

efficiency of these devices is about 8%, though an additional ∼1–2% is lost at the device level. In Figure 6.6,

SiGe is shown to have a single leg efficiency over 9% at this ∆T , and the theoretical device efficiency quoted

here is reduced by the poor performance of the p-type SiGe leg. The actual system power output is reduced

by ∼1.6% each year, and only roughly 0.33% of this is due to degradation of the thermoelectric materials

over time; the majority is associated with reduced thermal flux and temperature[150].

The efficiency of the optimized La3−x−yYbyTe4 sample (LaYbTe) is greater than that of SiGe for all

temperature drops. In nearly optimized La3−xTe4 (LaTe), the efficiency is similar to SiGe for a single-
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Figure 6.6. Optimized, single leg conversion efficiencies are plotted versus temperature drop for a hot side
of T = 1273 K. The open markers represent single material (non-segmented) legs, while the closed markers
represent segmentation with PbTe (the ‘3N’ data, internal JPL reference). The solid line indicates 20% of the
Carnot efficiency. The samples with the highest zT were selected for these calculations, with ‘LaTe’ repre-
senting pure La3−xTe4, ‘LaYbTe’ representing the substitution of Yb for La, and ‘LaTeSb’ the substitution
of Sb for Te.

material leg. At low ∆T , this La3−xTe4 provides higher efficiency because the zT of SiGe is higher at low

T . In Sb containing samples, LaTeSb = La3Te4−zSbz , the conversion efficiency is low for all ∆T due to the

decreased zT at low T associated with the activated behavior of the electrical conductivity.

The efficiency of these legs is increased by segmenting with PbTe. The segmented leg efficiencies are

shown by the filled markers in Figure 6.6. For the case of optimized lanthanum telluride (optimized with

the aid of Yb addition), the segmented leg efficiency breaks 14% for a cold side temperature of 373 K. For

small ∆T , the benefits of segmentation are minor and do not outweigh the complications associated with

segmenting two materials together (mechanical failure due to thermal expansion, chemical reactivity).

The amount of increase in efficiency upon segmentation is dictated by the thermoelectric compatibility.

In Figure 6.7a, the compatibility factors of the optimized Ba8Ga16−xGe30+x and La3−x−yYbyTe4 from this

thesis (filled markers) are compared to data for PbTe, SiGe, and CoSb3, the latter of which is a contender

for low T power generation. It is observed that the compatibility factor of La3−x−yYbyTe4 matches those

of PbTe and CoSb3 better than SiGe does, and thus a larger increase in net efficiency is expected (in seg-

mented legs) Also, the Ba8Ga16−xGe30+x compound is found to have a highly favorable compatibility, and

s is very independent of T (except for the drastic change associated with the spike in CP ). This aspect of

Ba8Ga16−xGe30+x was discussed in detail by Toberer et al. in Reference [75].

The effect of composition on s in La3−xTe4 is shown in Figure 6.7b. In this system, the change in

s with composition is complex. The extremes of high and low carrier density are both found to have the

lowest s. However, the change in s is relatively small (take note of the axis), particularly when varying

composition near the maximum zT . Therefore, the maximum conversion efficiency is likely to be dictated

by zT alone. However, the changes in mechanical properties must certainly be considered when performing

device development.
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Chapter 7

Future Studies

The work discussed in this thesis provides an excellent baseline for future studies attempting to improve

the thermoelectric performance in the La3−xTe4 and Ba8Ga16−xGe30+x systems. To perform a scientific

study examining the influence of modifications on performance, the interested researcher(s) should perform

baseline experiments on these systems and compare the thermoelectric performance at specific Hall carrier

concentrations. This is particularly important, as small changes in processing can affect the thermoelectric

performance of a material. Also, given the difficulty in measuring the thermoelectric properties, it is important

to isolate the effects of differing experimental apparatuses.

Continued efforts to understand and optimize transport in La3−xTe4 should focus on enhancing the elec-

trical properties while maintaining low lattice thermal conductivity. Specifically, La3−xTe4 is a low mobility

compound and an enhancement in the mobility should be targeted. A fundamental change to the band struc-

ture may be favorable for increased mobility, and may also benefit the Seebeck coefficient. Specifically,

decreasing the energy offset between the light and heavy bands would likely promote larger thermoelectric

efficiency (all things remaining equal).

Chemical manipulations are likely to enhance performance by allowing scattering and carrier concen-

tration to be tuned independently, and will be necessary to modify the electronic structure. Some specific

compositions to consider include the vacancy free compositions, such as

La3+
3−yYb2+

y Te2−
4 e1−

1−y ,

and perhaps the anionic substitution

La3+
3 Te2−

4−zAs3−
z e1−

1−y .

The influence of other trivalent rare earth compounds on the electronic structure should be considered,

through compositions such as

La3+
3−x−yCe3+

y Te2−
4 e1−

1−3x,

and

La3+
3−x−y−zCe3+

y Yb2+
z Te2−

4 e1−
1−3x−z .



115

Measurements on the transport properties at low temperature are likely to be beneficial when attempting

to improve performance in lanthanum telluride and understand the role of chemical manipulation. These

measurements may also elucidate the temperature dependence of the band features (curvature, band energy

offsets) and would provide additional information about the scattering of electrons and phonons via vacancies

that would allow scattering mechanisms to be avoided and/or exploited.

The Ba8Ga16−xGe30+x system has been studied for some time now, with a large emphasis on the low

temperature transport. While these compounds are unlikely to achieve very large zT , it is likely that zT

greater than unity can be achieved through either (i) alloying to reduce the thermal conductivity or (ii) chem-

ical modification to increase the energy gap and suppress the bipolar contribution at high T . To achieve (i),

samples containing both Yb and Ba may be considered; this would most likely increase zT at lower temper-

atures and promote a larger average zT . For approach (ii), the energy gap in other Type-I clathrates should

be considered to allow chemical modifications to be selected appropriately.
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Appendix A

Minority Carrier Properties and Transport

A.1 General Trends

This appendix examines the influence of minority carrier properties and band gap, on the observed thermo-

electric properties in a simple semiconductor. Holes are taken to be the majority carriers, and electrons the

minority carriers (simply so that all coefficients are positive). The calculations assumed an acceptor density

of 5×1020cm−3, with complete filling of these states (complete ionization). It was assumed that acoustic

phonon scattering limits the relaxation times of both holes and electrons. The baseline calculation assumed

identical material properties for holes and electrons: m∗/me=1, Edef=3 eV, Eg=0.5 eV, vl=3000 m/s, and a

material density 6 g/cm3. These parameters lead to moderate zT .

The baseline properties were maintained for the majority carrier in all calculations. The ratios provided

in the legend correspond to changes in minority carrier properties and thus the single band model represents

the limit of thermoelectric performance. Results of the baseline calculation (Equal Props) are shown by the

solid curves in the following figures.

When the mass of the majority carrier is increased relative to the minority carrier (dashed curves), the

number of minority carriers decreases and thus the influence of the minority carriers is weakened. However,

when the mass of the minority carrier increases (dotted curves), the detrimental effects of minority carriers

are noticed more profoundly. This process is complicated the relation of the carrier mass to its mobility

(µ ∝ (m∗)−5/2), and the net change in zT with the effective mass ratio is not that significant.

An increasing minority carrier mobility results in a significant decrease in zT due to a large bipolar

thermal conductivity and a large decrease in the Seebeck coefficient. A similar effect is observed for a reduced

band gap. The opposite is true for an increased band gap or a reduced minority carrier mobility. Clearly a

large energy gap is desired. Indeed, the minority carrier effects consistently lead to reduced zT . Note that

the Eg=0.7 eV data set is nearly equivalent to a single band model (for the baseline carrier properties)

One approach for increasing zT at high T is to increase the energy gap. This allows low n samples to be

utilized, thus promoting large zT via a large α, as well as the reduced electronic contribution to the thermal

conductivity. However, an equally valid approach is to modify the band properties of the minority carrier.
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merit. ‘Equal Props’ stands for Eg=0.5 eV and carrier property ratios of unity.

Sometimes, this can be achieved through the introduction of heavy states that result in localization of carriers

(significant reduction in the mobility). This must be done with care, as an increased band mass does lead to

increased minority carrier effects when all else remains constant. Of course, the individual band masses are

closely linked to the band gap itself, and thus the manipulation of minority carrier effects is very complicated.

The variation of minority carrier properties, and energy gap, also effects the maximum zT obtained

at a particular temperature and the corresponding optimum carrier density nopt. When the band gap or

majority carrier mass or mobility are increased (relative to the minority carrier), the value of zTmax and the

corresponding nopt increases and nopt decreases as both approach the single band limit. Recall that the above

analysis utilized a constant majority carrier property set, and thus the increase in mobility ratio does not result

in an increase in zT .

The above discussed is complicated, though only slightly, by the interrelation of these transport properties

and the electrochemical potential. The effective mass ratio and the energy gap influence the chemical poten-

tial via the charge neutrality expression (see Figure A.4). Therefore, the temperature dependent Seebeck

coefficients of the individual carriers (functions of energy alone) also change (and not just the weighted sum
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of these properties). However, this effect is relatively small.

A.2 Experimental Hall Carrier Concentration and Mobility

The presence of multiple carrier types leads to difficulty analyzing Hall effect data. This behavior is partic-

ularly important to understand because the temperature dependent Hall carrier density nH and mobility µH

is one of the most useful data sets in thermoelectric research. Generally, a single band model is assumed and

thus the observed values of nH and µH are not strictly valid. That is, the values of nH and µH are derived

from the Hall coefficient, which has contributions from both holes and electrons. The deviation between these

observed (single band) values and the true values is greatest at high T , low Eg , µmajority < µminority, and

m∗majority >> m∗minority.

The multi-carrier effects lead to an overestimation of the majority carrier concentration, and an underesti-
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Figure A.5. Demonstration of the variation in Hall properties obtained using a single band assumption as
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the electrical conductivity is an overestimation of the Hall carrier density and an underestimation of the Hall
mobility. The variation between this nH and the actual n is also shown. At low T , the Hall carrier concentra-
tion is generally less than the actual carrier density because in this single carrier regime, the scattering effects
must be considered and n = 1/Rhe is not strictly valid (see Section 4.2).

mation of the majority carrier mobility. However, it should be noted that this statement is only valid at high T

where the minority carrier has a significant contribution to the total electrical conductivity. At low T , where

only one carrier type is present, the Hall density underestimates the actual carrier density due to scattering

effects (assuming acoustic phonon scattering, recall the Hall factor rH ). Only when these are considered, and

the Hall factor is calculated, does the Hall effect produce an accurate characterization of the true n value. Of

course, when n is very large, the Hall factor approaches unity and even at low n this error is generally less

than 20%. This intricate relationship between n and nH is observed in Figure A.5b-d. Also, non-parabolic

band effects are not being considered here, but can be important.

It should be stressed that Figure A.5 represents the data that would be obtain from a Hall effect measure-

ment if the single band model were employed when multiple carrier types were contributing to conduction.

The data shown correspond to the actual majority carrier properties in the limit of large Eg or small µmin.
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Appendix B

Pressure-Assisted Sintering

In an argon glove box, the materials to be sintered are loaded into a high density graphite die, which was ob-

tained from POCO. This step may appear trivial, but it can have significant impact on the sample’s properties.

In particular, the loading procedure can determine whether or not a mechanically stable sample is formed,

and can also lead to oxidation. Before the powder can be poured into the die, a circular piece of graphoil

and an anvil (spacer) are inserted into the base of the die. The powder is then poured into the die. Typically,

7-10 g of material are loaded, and a series of dumping/settling stages is often required. The poured powder

is settled by tapping on the side of the die or tapping the die on the glove box floor. The author tended to

tap the die while rotating for about ten seconds. The settled powder is then compressed by hand using a long

graphite plunger, after which the final graphoil, spacers, and (shorter) plunger are be inserted. The prepressed

configuration should have about one inch of plunger exposed. The prepared die is generally inserted into a

plastic bag and transported to the hot press. Upon removal from the bag, the die should be loaded as quickly

as possible. Note that simple steps, such as examining the condition of the hot press before removing the die

from the glove box, can easily save a sample.

Hot pressing was completed at JPL on the “Old Press,” which allows for a stress-free anneal after sin-

tering. The hot press employs industrial argon flow and mechanical pump vacuum capable of ∼60 mTorr. It
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Figure B.1. Representative press profiles of the samples considered in this thesis. The complete release of
force is usually an important step in the production of mechanically stable, refractory materials. In the legend,
Sr-Zn-Sb stands for the SrZnSb2 and SrZn2Sb2 samples.
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possesses a minimum load of roughly 0.9 metric tons when the hydraulics are engaged and the force con-

troller is running in “Auto”; this is the minimum force applied to a sample at the beginning of a hot-press

run. Thus a value of 0 metric tons in Table B.1 at the onset of a press run refers to 0.8 to 0.9 metric tons.

However, programming for 0 metric tons at the end of a press run does correspond to a complete removal of

force when an interlock is utilized to switch the hydraulics off and to turn the vacuum on (with argon off).

The press profiles shown in Figure B.1 illustrate this point.

Table B.1. Programming details for the sintering of selected compounds in the “Old Press.” The programming
times are specified as R=Ramp and D=Dwell.

La3Te4 Ba8Ga16−xGe30+x SrZnSb2, SrZn2Sb2

Stage Temperature Force Temperature Force Temperature Force
(◦C, min) (103 kg, min) (◦C, min) (103 kg, min) (◦C, min) (103 kg, min)

1 (100, 10R) (0, 10D) (300, 10R) (0, 60D) (110, 10R) (0, 50D)
2 (100, 10D) (1, 10R) (300, 10D) (1.1, 20R) (110, 10D) (1.4, 15R)
3 (1100, 90R) (1, 150D) (825, 90R) (1.1, 60D) (475, 40R) (1.4, 50D)
4 (1100, 180D) (0, 60R) (825, 120D) (0, 30R) (475, 90D) (1, 35R)
5 (700, 240R) - (700, 60R) - (350, 30R) (1, 35D)
6 (700, 1D ) - (700, 30D) - (350, 60D) (0, 20R)
7 (25, 180R) - (20, 120R) - (0, 90R) -
8 (25, 1D) - (20, 1D) - (0, 1D) -

The loading of the die into the chamber can be difficult for a new or out-of-practice user. As such, this

step can cause oxidation of the sample if the user is not careful. The die is placed into the chamber and a

thermocouple is inserted near the bottom of the die. The condition of the thermocouple should be examined

prior to removing the die from the argon bag to minimize exposure to oxygen. The dies were typically

12.3 mm inner diameter, and a graphoil sheet (0.15 mm thick) was utilized to isolate the sample from the

die (and plunger). Generally, vacuum was pulled and the system was purged with Ar three or four times.

A nice procedure is to pull vacuum the to 400 mTorr, purge, then 300 mTorr, purge, then 200 mTorr, purge

then for about 10 minutes with the force and temperature profiles running for the last 5. This should allow

the temperature to reach 100 ◦C while vacuum is still being pulled, thus promoting the removal of water.

Also, this procedure may allow a significant concentration of oxygen to be removed from the chamber before

the lower level vacuum is reached, which will cause the evacuation of the argon trapped within the powder

matrix.

Generally, the temperature and force profiles are entered into the controllers while the vacuum/purge

procedure is being performed. The details required for the controller are given in Table B.1, where the format

chosen is to benefit the user of the “Old Press” at JPL.
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Appendix C

Thermal Stability in Ba8Ga16−xGe30+x

Data collection on Ba8Ga16−xGe30+x samples originally occurred to 1050 K. This was believed justified by

the high melting point of Ba8Ga16−xGe30+x (> 1270 K) and the hot pressing of these samples near 1100 K.

However, this characterization procedure resulted in changing electrical transport properties, and thus an

adequate temperature needed to be identified. These features are discussed in Reference [107].

The characterization of electrical resistivity to 1050 K resulted in a decreasing electrical resistivity with

increasing measurement number, as shown in Figure C.1a. Upon lowing the upper limit to T = 1000 K, the

data were found to be stable and reproducible, as observed in Figure C.1b.

The decrease in electrical resistivity upon characterization to 1050 K is due to an increase in carrier den-

sity, as shown in Figure C.2. The data shown in Figure C.2 was taken at Caltech between high temperature

runs performed at JPL. These lower temperature data did not show any difference between heating and cool-

ing, and thus the difference observed is due to the repeated runs to 1050 K.

No change in transport was observed upon characterization to 1050 K in the Seebeck coefficient or thermal

diffusivity systems. However, some bleeding was observed from the sample surface after Seebeck coefficient

measurement to 1050 K. Thus, the extrusion of Ga from the sample may be the source for this behavior;

rearrangement on the clathrate framework would be required for Ga loss to occur, and this seems unlikely

in the measurement timeframe. However, Ga extrusion was observed via high resolution X-ray data taken

at SPRING-8 in Japan on the samples discussed in this text. These data were taken by Bo Iversen, and the

data are currently being considered in detail. The initial refinement revealed the formation of Ge at high T .

A linear increase in the lattice constant was observed (consistent with preliminary data obtained at Caltech),

and no irregular changes in the crystallographic data were inferred. It seems possible that this transformation

occurs at the grain boundaries, leaving the primary diffraction pattern of the bulk matrix to be observed.

The partnership with Bo Iversen was developed in hopes of explaining the transition event observed in the

transport properties, though no explanation of that behavior has been developed. Therefore, the stability of

this phase remains unclear.
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Figure C.1. Repeated high temperature measurements resulted in a decreasing electrical resistivity for
Ba8Ga16−xGe30+x when characterization occurred to T ∼ 1050 K. However, characterization to ∼1000 K
resulted in consistent properties, as shown in panel (b). The lower curve in panel (b) is for a sample with
∼2 wt.% Ge impurity, and thus the Ge impurity did not influence this thermal stability property. With kind
permission from Springer Science+Business Media: Journal of Electronic Materials, Thermal Stability and
Phase Purity in Polycrystalline Ba8GaxGe46−x, vol. 38, 2009; A. Saramat, E. S. Toberer, A. F. May, and G.
J. Snyder, Fig. 3.
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Figure C.2. Moderate temperature data collected between the runs to 1050 K to demonstrate the high tem-
perature measurements resulted in an increase in carrier density. Little change in the mobility was observed.
With kind permission from Springer Science+Business Media: Journal of Electronic Materials, Thermal
Stability and Phase Purity in Polycrystalline Ba8GaxGe46−x, vol. 38, 2009; A. Saramat, E. S. Toberer, A. F.
May, and G. J. Snyder, Fig. 4.
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Appendix D

Transport Coefficients in Single Scattering
Limit

The following equations are valid when the carrier relaxation time can be described by τ = τ0ε
λ−1/2. In

this representation, λ = 0 implies acoustic phonon scattering or point defect scattering, λ = 0.5 implies

energy independent scattering (such as neutral impurity scattering), and λ = 2 characterizes ionized impurity

scattering. This is only an approximation for ionized impurity scattering, as shown by 4.13 which contains

g(ε) and thus the simple power law description is not entirely accurate. This additional energy dependence

causes τ to decrease more rapidly with decreasing η (increasing T ), though the effect is not major.

The Hall factor is

rH =
3
2
F1/2(η)

(1/2 + 2λ)F2λ−1/2(η)
(1 + λ)2F 2

λ(η)
. (D.1)

Using µ0 = eτ0/m
∗, the Hall mobility is

µH = µ0

(1/2 + 2λ)F2λ−1/2(η)
(1 + λ)Fλ(η)

. (D.2)

The magnitude of the Seebeck coefficient is

α =
k

e

(
(2 + λ)Fλ+1(η)
(1 + λ)Fλ(η)

− η
)
. (D.3)

The electrical conductivity is

σ =
8πe2m1/2(2kT )3/2

3h3

∫ ∞
0

(1 + λ)Fλ(η). (D.4)

Recall that the Fermi integrals are

Fj(η) =
∫ ∞

0

ζj dζ

1 + Exp[ζ − η]
. (D.5)
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Appendix E

The Mott Relation

This appendix derives the Mott relationship (Eqn. E.1, also 4.30), which is a common expression for the See-

beck coefficient. No assumptions regarding the electronic structure are required to obtain Eq. E.1. However,

an assumption that the electron gas is highly degenerate (that the Fermi distribution is nearly a step function)

is required; specifically, the electrochemical potential ζ is large with respect to the thermal energy kT in

which case the expansion utilized converges quickly.[29]

α =
π2

3
k2
bT

(
∂

∂E
lnσE

)
E=ζ

, (E.1)

σE is the zeroth-order approximation for the electrical conductivity, and is defined by Equation E.3. The

Mott relation is equivalent to saying that only electrons with E = ζ contribute to σ (the width of ∂f
∂E is

not considered). Interestingly, in the formal definition of α, electrons with E = ζ do not contribute to the

Seebeck coefficient.

The electrical conductivity σ is

σ =
e2

12π3

∫
dE

∂f

∂E

∫
vkvkτ(Ek)

dS

∇kE
, (E.2)

and

σE =
∫

vkvkτ
dS

∇kE
. (E.3)

These expressions are equivalent to Equation 4.26 in the parabolic band approximation. Here, the k space

definitions are utilized to reveal the generality of the Mott relation.

The basic expression for α as obtained from the Boltzmann transport equation is

α =
1
eT

K1

K0
, (E.4)

where
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Kn = − 1
12π3

∫
∂f

∂E
dE

∫
E=ζ

vkvkτ(Ek − ζ)n
dS

∇kE
, (E.5)

and when reduced energies (ε = E/kT and η = ζ/kT ) are utilized, the Seebeck coefficient can be expressed

as

α =
k

e

∫
σE(ε− η)∂f∂ε dε∫

σE
∂f
∂ε dε

. (E.6)

In this fundamental expression, it is clear that large α is only obtained when the quantity σE is asymmetric

about η. The Mott relation is simply an extension of this definition, with the goal of obtaining a simple

expression that is easily interpreted.

The innermost integration in Kn is performed over all states k making up the Fermi surface that is

described by a differential skin dS. Therefore, an assumption regarding the dispersion relationship must be

made ifKn is to be evaluated. The evaluation of the integral over the Fermi surface eliminates the dependence

on k and results in a function of energy. One can thus consider the evaluation of a generic integral

Int = −
∫

Φ(E)
∂f

∂E
dE. (E.7)

This generic integral can be estimated using the first few terms of the Sommerfeld expansion, which

is accurate when the system is highly degenerate (η >> 0). The integrand is approximated by a Taylor

expansion about E = ζ, leading to

Int = −
∫ (

Φ(ζ) + (E − ζ)
∂Φ(E)
∂E

|E=ζ + (E − ζ)2 ∂
2Φ(E)
∂E2

|E=ζ + . . .+ (E − ζ)j
∂jΦ
∂Ej |E=ζ

)
∂f

∂E
dE.

(E.8)

The first term in the solution of our generic integral simply becomes Φ(ζ), and the odd-order terms do not

contribute because ∂f
∂E is even in (E − ζ).[11] The even order terms evaluate as

∫
(E − ζ)2n ∂

2nΦ
∂E2n |E=ζ

∂f

∂E
dE = 2C2n(kbT )2n ∂

2nΦ
∂E2n |E=ζ

, (E.9)

Thus the generic integral is given as[11, 29]

Int ≈ Φ(ζ) + 2
∞∑
n=1

C2n(kbT )2n ∂
2nΦ
∂E2n

|E=ζ , (E.10)

where, in the words of Ziman, the integrations to obtain the constant C2n utilize elegant mathematics that

yield

C2n =
∞∑
s=1

(−1)s+1

s2n
, (E.11)
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for which

C2 = π2

12 , and C4 = 7π4

720 .

The necessary expressions Kn are thus approximated to zeroth order as

K0 =
1

12π3

(∫
E=ζ

vkvkτ
dS

∇kE

)
, (E.12)

and the first non-vanishing term for K1 is second order in kT :

K1 =
1

12π3

π2

3
k2
bT

2 ∂

∂E

(∫
E=ζ

vkvkτ
dS

∇kE

)
. (E.13)

Placing these expressions back into Equation E.4,

α =
π2

3
k2
bT

 ∂
∂E

(∫
E=ζ

vkvkτ
dS

∇kE

)
∫
E=ζ

vkvkτ
dS

∇kE

 , (E.14)

and thus we have obtained Equation E.1 (Eqn. 4.30).

The trick is to then utilize this expression to gain insight into the behavior of α. To perform this task, we

recognize that we have been considering the movement of electrons on a Fermi surface–the integrations in k

space are said to be performed at E = ζ. Thus, we are concerned with the behavior of τ and vk at E = ζ.

Considering the definition of the group velocity vk,

vk =
1
~
∇kE(k). (E.15)

It is clear that this quantity will depend on k for an arbitrary surface S. Equation 4.30 is therefore the only

form of the Mott relation that is valid for all dispersion relations E(k). Indeed, discussions of manipulating

the band structure for enhanced α can only call upon this form where sharp changes in vk are permitted.

However, it is a nice demonstration of the fact that when σ has strong energy dependence at the chemical

potential E = ζ the Seebeck coefficient is large.

To proceed further and provide a simplified version of the Mott Relation, we must therefore make an

assumption about τ and vk. The simplest case to consider is that of a cubic material, where kx = ky = kz

and thus v2 = 1
3 (v2

x + v2
y + v2

z ). It is then assumed that τ is only a function of E, or only depends on k via

E(k) and can thus be removed from the integral over dS. Also, it is recognized that the density of electronic

states at E = ζ is defined as

N(ζ) =
1

4π3

∫
E=ζ

dS

∇kE
. (E.16)

Therefore, for cubic (isotropic) materials the Mott relation becomes
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α =
π2

3
k2
bT

(
∂

∂E
ln v(E)2τ(E)N(E)

)
E=ζ

=
π2

3ζ
k2
bT

(
∂

∂lnE
ln v(E)2τ(E)N(E)

)
E=ζ

, (E.17)

where v(E), τ(E) and N(E) are all functions of energy. Again, to make any additional simplifications one

must assume something regarding the electronic structure. In general v2 ∝ E and τ ∝ Eλ−1/2, in which

case

α =
π2

3ζ
k2
bT

(
1
2

+ λ+
∂ln N(E)
∂lnE

)
E=ζ

, (E.18)

and for parabolic bands N(E) ∝ E1/2, which leads to the expression discussed in Appendix F.

To utilize the carrier mobility in place of τ , we recognize that µ = eτ
m∗ and thus this leads to the same

expression as Eqn. E.18 provided that m∗ is not a function of energy. To include the carrier density n

and mobility µ one must use the free electron model (or similar, simple expression). For free electrons,

the electron density n is related to the Fermi energy EF and corresponding density of states N(EF ) via

n = 2
3EFN(EF ); the Fermi velocity is v2

F = 2EF
m∗ . Recognizing that v2

F τ(EF )e/2EF = µ(EF ) is the

mobility of electrons at EF , we find

α =
π2

3EF
k2
bT

(
∂ln µ(E)
∂lnE

+
∂ln n(E)
∂lnE

)
E=EF

. (E.19)

Therefore, to utilize the carrier density n and mobility µ in the Mott relation requires the assumption of a

parabolic band (or some other simple dispersion relationship). Furthermore, this expression is derived for

(and only strictly valid at) T=0 K because the simple relationship between n and EFN(EF ) was utilized.

Clearly, additional assumptions make Equation E.1 more and more user friendly. However, each assump-

tion limits the validity of this expression, and it is best to utilize this expression solely for insight into the

behavior of α. That said, similar insight can be obtained from the basic relationship for α (Eqn. E.6), which

clearly shows that a large Seebeck is possible only when there is a large asymmetry in σ about E = ζ.
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Appendix F

Degenerate Limit of the Seebeck
Coefficient

A common expression for the Seebeck coefficient is

α =
π2k2

bTm
∗

3eh2

( π
3n

)2/3

(1 + λ). (F.1)

This is the metallic or high-degeneracy limit of α for a parabolic conductor. This expression is clearly

simplified when acoustic phonon scattering limits τ , in which case τ ∝ E−1/2 and λ = 0. Saying acoustic

phonon scattering limits the mobility or relaxation time is equivalent to saying the carrier mean free path

l = v × τ is energy independent (v =
√

2E/m and τ ∝ E−1/2).

Here two methods of obtaining this equation are discussed. The first approach utilizes the fundamental

equation for a parabolic band conductor as obtained from the Boltzmann transport equation. The second

utilizes the “Mott relation,” which is already a degenerate limit equation for the Seebeck coefficient.

F.1 From the Boltzmann Transport Equation

Repeating from the Electrical Transport Theory section, the magnitude of the Seebeck coefficient for a single,

parabolic band conductor is

α =
k

e

(∫∞
0
ε5/2τ ∂f∂ε dε∫∞

0
ε3/2τ ∂f∂ε dε

− η

)
. (F.2)

Upon assuming that a single scattering mechanism modeled with a relaxation time τ ∝ ελ−1/2, the above

equation can be integrated by parts (see Appendix H) to yield an equation composed of the Fermi integrals

Fj =
∫∞

0
εjfdε:

α =
k

e

(
(2 + λ)Fλ+1(η)
(1 + λ)Fλ(η)

− η
)
. (F.3)
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In the limit of high degeneracy (η >> 0), the Fermi integrals can be approximated to second order as[119]

Fj(η) =
(η)j+1

j + 1
+
jπ2

6
(η)j−1. (F.4)

Utilizing this approximation, and after some algebraic manipulation, we obtain

α =
k

e

(
(1 + λ)π

2

6

η(1 + (1 + λ)2 π2

6 η
−2)

)
. (F.5)

Thus, in this representation we see that an additional criterion for using this high degeneracy Seebeck equation

is

η2 >> (1 + λ)2, (F.6)

which, when true, leads to

α =
k

e

(
(1 + λ)π2

6η

)
. (F.7)

Recalling that η is the reduced electrochemical potential, which is nearly equivalent to EF /kT for the case

of high degeneracy, we obtain

α =
k2T (1 + λ)

6eEF
. (F.8)

And by inserting the relationship between EF and n,m∗ we obtain

α =
π2k2

bTm
∗

3eh2

( π
3n

)2/3

(1 + λ). (F.9)

F.2 From the Mott Relation

This same result can also be obtained by utilizing the commonly cited “Mott Relationship” (see App. E),

which describes the Seebeck coefficient of a free electron metal at low temperatures (another high degenerate

limit):

α =
π2k2

bT

3eh2

(
dlnσE
dE

)
EF

=
π2k2

bTm
∗

3eh2EF

(
dlnσE
dlnE

)
EF

. (F.10)

Following MacDonald[120], we expand this to include the density of states N(E), carrier velocity v and

τ :

α =
π2k2

bT

3eh2EF

(
dlnN(E)
dlnE

+
dlnv(E)2

dlnE
+
dlnτ(E)
dlnE

)
EF

. (F.11)
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Now, taking E = 1
2mv

2, τ ∝ ελ−1/2, and assuming a parabolic band where N(E) ∝ E0.5, one obtains

α =
π2k2

bT

3eh2EF

(
1
2

+ 1 + λ− 1
2

)
=
π2k2

bT (1 + λ)
3eh2EF

. (F.12)
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Appendix G

Sound Velocity: Measurement and Use

Knowledge of a material’s speed of sound (v) allows an easy estimation of the materials Debye temperature,

ΘD. Ultrasonic measurements are a relatively simple method of obtaining v. This appendix describes the

general methods utilized for this thesis and shows a representative example within the La3−xTe4 system. The

instrument settings utilized to obtain quality data will depend on the material of interest. The measurement

of longitudinal (normal) and transverse (shear) sound velocities requires a couplant between the sample and

transducer, and thus care should be taken to not harm the material surface during measurement. That is, when

possible, use a non-aqueous couplant and/or perform the tests quickly.

The first task is to record ultrasonic response data. The quality of the data generally depends on the

quality of the sample, with both surface defects and internal defects reducing the quality of the data. Due to

this effect, and the transient nature of this data, it is best to obtain similar data several times to obtain some

sense for the error in the simple analysis. Thus, it is common to take data over both a wide range (as shown

in Figure G.1) and over smaller ranges (ones that include only two peaks).

After obtaining data similar to that in Figure G.1, the distance (in time) between peaks is determined. In

general, it is best to perform this task for a variety of conditions (first maximum, first minimum, etc.) and

then combine these results for an average. The velocity is then obtained from v = length
time , where the length

associated with the time between two (nearest) peaks is twice that of the sample length. In some cases, the

velocity is simply too low to allow a large number of responses to be recorded. Also, the data often contains

multiple peaks and thus preliminary knowledge of the sound velocity is useful.

With the sound velocity data, an estimation of the Debye temperature can be performed via[137]

ΘD =
vm~
kb

(
6π2

V

)1/3

, (G.1)

where V is the average volume per atom and vm is calculated from the longitudinal vl and transverse vt

speeds of sound by

vm = 31/3(v−3
l + 2v−3

t )−1/3. (G.2)
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Figure G.1. (a) Longitudinal and (b) transverse response in an ultrasonic pulse/response experiment. These
curves are taken for a sample of nominal composition La2.8Te4, using a digital oscilloscope system at JPL.

The sound velocities are also utilized in the estimation of the minimum thermal conductivity, κmin, via

Cahill’s formulation for amorphous materials[141],

κmin =
(π

6

)1/3

kbV
−2/3

∑
i

vi

(
T

Θi

)2 ∫ Θi/T

0

x3ex

(ex − 1)2
dx, (G.3)

where the summation is over the one longitudinal and two transverse modes with Θi = vi(~/kb)(6π2/V )1/3.

The high temperature limit is

κmin =
1
2

(π
6

)1/3

kV −2/3(2vt + vl). (G.4)

If the linear thermal expansion coefficient is known, the bulk modulus and Grüneisen parameter γ can

be estimated for isotropic crystals; for instance, see Reference [142]. Also, these materials parameters are

combined in Slack’s model[142] to estimate the lattice thermal conductivity when only acoustic phonons

contribute to κL (Eqn. 5.9 in Section 5.2).
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Appendix H

The Transport Integral

Integrals of the type

∫ ∞
0

k3τ
∂f

∂k
dk (H.1)

are very common in the solutions to the Boltzmann transport equation, and are appropriately termed the

transport integrals. To this point, we have not made an assumption regarding the relationship between E

and k (the energy or band dispersion relationship). We have, however, assumed that there exists a band of

energies which are a continuous function of position and that the motion of electrons has a characteristic time

τ . To proceed further, the experimentalist needs a relationship between E and k. We shall see that when the

expression ∂f
∂k is transformed into the energy domain via a parabolic band approximation, this term acts to

weight the contributions from various energies to the transport property at hand. Effectively, by weighting

the energy dependence with the derivative of the Fermi distribution only energies near the electrochemical

potential contribute significantly to the transport. This makes physical sense, as those states well below the

chemical potential are subject to the Pauli exclusion principles, and those well above the chemical potential

are rarely accessible.

Assuming a parabolic band of index i, the energy is given by E = ~2k2

2m∗i
+Emin,i where m∗i is the density

of states effective mass of band i and Emin,i is the minimum energy of the band. In a single band system, it

is convenient to set Emin,i = 0, so that

k3 =
(
E2m∗

~2

)3/2

, (H.2)

and

∂f

∂k
dk =

∂f

∂E
dE, (H.3)

thus,
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∫ ∞
0

k3τ
∂f

∂k
dk =

∫ ∞
0

(
E2m∗

~2

)3/2

τ
∂f

∂E
dE. (H.4)

For a parabolic band the integrals of concern generally have the form

∫ ∞
0

E3/2τ
∂f

∂E
dE =

∫ ∞
0

−E3/2τ
Exp[E−ζkT ]

(1 + Exp[E−ζkT ])2
dE, (H.5)

where

∂f

∂E
=
−1
kT

Exp[E−ζkT ]

(1 + Exp[E−ζkT ])2
. (H.6)

It is common to utilize the dimensionless energies ε = E
kT and η = ζ

kT , which leads to integrals of the

form

(kT )3/2

∫ ∞
0

−ε3/2τ ∂f
∂E

dE. (H.7)

We are thus concerned with the form of τ . The common assumption is that the relaxation time τ associated

with a particular scattering mechanism (s) is described by a power law, τs = τ0,s(T )ελ−1/2. In general,

multiple scattering mechanisms influence the carrier relaxation time, and τ is obtained from

1
τ

=
s∑
s=1

1
τs
. (H.8)

In a few circumstances, such as in the extremes of temperature, one scattering mechanism leads to much

shorter characteristic relaxation time and this in turn limits the absolute τ . In this case, the additional scatter-

ing mechanisms can be ignored (to first order), and the integrals will take the form

−τ0,s
∫ ∞

0

ε3/2ελ−1/2 ∂f

∂E
dE = −τ0,s

∫ ∞
0

ελ+1 ∂f

∂E
dE. (H.9)

Therefore, the generic integral of interest is

−
∫ ∞

0

εj
∂f

∂E
dE, (H.10)

which, when integrated by parts, gives

∫ ∞
0

fjεj−1dE. (H.11)

The Fermi integrals Fj(η) are thus commonly encountered

Fj(η) =
∫ ∞

0

fεjdε =
∫ ∞

0

εj dε

1 + Exp[ε− η]
. (H.12)
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