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ABSTRACT 

The relatively recent identification of microRNAs (miRNAs) has added a new layer of 

complexity to our understanding of gene regulation.  These small noncoding RNAs cause 

the downregulation of target mRNAs, leading to downstream effects.  We have studied 

how particular miRNAs can impact hematopoietic development in mice and correlated 

these findings with miRNA deregulation in human disease.  Specifically, we studied the 

role of miR-155 in myeloid cells, finding that it promoted myeloid cell expansions when 

induced by lipopolysaccharide and a myeloproliferative disease when constitutively 

expressed.  Interestingly, miR-155 is overexpressed in acute myeloid leukemia, a human 

disease that has the proliferation of myeloid cells in common with our mouse model.  

miR-155 is a growth-promoting factor in cells and acts in early hematopoiesis by 

repressing the inositol phosphatase, SHIP1.  We have also studied the role of miR-34a, a 

putative growth-suppressing miRNA, in hematopoietic development, finding a specific 

perturbation in B-cell development by gain- and loss of function analyses.  In this case, 

the majority of the findings are attributable to repression of Foxp1, a transcription factor 

involved in regulation of immunoglobulin gene V(D)J recombination.  Our findings show 

how miRNAs are integrated into developmental pathways that control hematopoiesis, and 

suggest that they may act as nodes of regulation during specific hematopoietic 

developmental processes. 
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Overview of Thesis 

The first chapter will deal with background information on the history of miRNA 

discovery, miRNA biogenesis and function, and the roles that miRNAs play in 

hematopoietic development.  The next three chapters represent the bulk of the 

experimental work during my time at Caltech.   In chapter 2, we describe the features of 

bone marrow in which miR-155 is constitutively expressed.  My contributions to this 

work included the analysis of the histologic data, enabling a collaborative research 

project to profile acute myeloid leukemia (AML) samples at UCLA, analysis of the AML 

miRNA expression data along with the clinical data, and contributing to the organism-

level understanding of the phenotype induced by constitutive miR-155 expression.  In 

chapter 3, we describe a specific target of miR-155, the inositol phosphatase SHIP1, 

which is responsible for a large part of the phenotype induced by miR-155.  Here, I 

contributed to the target analysis and to the histologic assessment of the animals in the 

experiment.  In the chapter 4, I describe a B-cell developmental phenotype induced by 

constitutive expression of miR-34a.  In this chapter I detail a novel target of miR-34a, 

Foxp1, and use loss of function and gain-of-function approaches to demonstrate specific 

targeting.  In addition, I describe the utilization of retroviral strategy to induce miRNA 

loss of function, which can greatly aid in studying the physiological roles of miRNAs in 

general.  In chapter 5, I will describe some of the conclusions based on this body of work, 

including implications for hematopoiesis and for our understanding of how miRNAs may 

be integrated into developmental networks.  I will close chapter 5 with a brief summary 

of future directions of the work.    
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A brief history of the discovery of microRNA 

The first animal microRNA (miRNA) was discovered in C. elegans in the early 

1990s (Lee et al. 1993).  This early work described a small noncoding RNA that 

controlled the timing of several events during postembryonic development.  The gene, 

lin-4, was known from genetic studies to control the levels of the LIN-14 protein; in its 

absence, LIN-14 was unregulated.  To further study this, the lin-4 gene was cloned but 

found not to have an open reading frame.  Further analyses revealed that there were two 

small RNAs in C. elegans, 61 nucleotides long and 22 nucleotides long, respectively, that 

were products of lin-4.   These RNA species, remarkably, showed regions of 

complementarity to the 3’ untranslated region (3’-UTR) of the lin-14 mRNA.  The 

principle that a small RNA acting in an antisense fashion could regulate an mRNA was 

first presented by these authors. 

Concurrently, a colleague of Victor Ambros, Gary Ruvkun, had been working on 

this idea from the other “end” of the problem.  His earlier work had shown that Lin-14 

was a nuclear protein that controlled a developmental switch in C. elegans (Ruvkun and 

Giusto 1989).  Upon careful examination of the gene, negative regulatory elements were 

discovered within the 3’-UTR of lin-14 that were required to generate the above-

mentioned developmental switch (Wightman et al. 1993).  Further analysis revealed 

seven of these regulatory elements with complementarity to lin-4.  These regulatory 

elements were both necessary and sufficient to confer lin-4-mediated temporal 

posttranscriptional regulation.  This early work established much of the framework for 

our understanding of how miRNAs interact with their targets. 
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At the time of this discovery, it was speculated that this novel mechanism may 

represent an unusual mechanism unique to nematodes.  However, this view changed 

dramatically with the description of RNA interference by Andrew Fire and Craig Mello 

(Fire et al. 1998).  By injecting double-stranded RNA into C. elegans, they were able to 

induce specific and potent interference of gene expression.  Although antisense 

approaches had been used previously to induce partial repression of gene expression, and 

some effects were specific (Fire et al. 1991; Izant and Weintraub 1985; Nellen and 

Lichtenstein 1993), the contribution of Fire and Mello was especially significant in 

recognizing the importance of double-stranded transcripts and in finding that the non-

stochiometric inhibition of targets implied a catalytic mechanism.   This study established 

RNA interference as a specific and powerful way of altering gene expression but also 

raised the possibility of the existence of a cellular pathway that utilizes RNA interference.  

It should also be mentioned that concurrently, David Baulcombe and colleagues had 

discovered a small noncoding RNA that mediated some aspects of innate immunity in 

plants (Hamilton and Baulcombe 1999).  This, too, appeared to work by RNA 

interference. 

The discovery of RNA interference was followed shortly by the discovery of the 

let-7 miRNA in C. elegans, and shortly thereafter by the description of a conserved 

mechanism in other species (Pasquinelli et al. 2000; Reinhart et al. 2000; Slack et al. 

2000).  The term microRNA was coined in 2001 in a series of articles that described the 

existence of additional miRNAs and their conservation across species (Lagos-Quintana et 

al. 2001; 2002; Lau et al. 2001; Lee and Ambros 2001).  These discoveries established 
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miRNAs as significant and widespread in biology, with RNA interference as their 

putative mode of action.   

 Starting very early in the field, a major theme of research in miRNAs has 

involved mechanism of action.  One line of research has involved the prediction of 

miRNA targeting based on sequence information-the idea being that small RNAs should 

have predictable targets in trans, unlike promoter/enhancers and transcription factors.  In 

this effort, the sequencing of the genomes of multiple organisms has allowed for analyses 

that were simply not possible previously.  Indeed, the mapping of miRNA genes and 

interspecies comparisons is central to miRNA discovery and target prediction.  Several 

algorithms have been generated over the years to predict miRNA-target interactions, with 

varying degrees of success (Chen and Rajewsky 2006; Enright et al. 2003; Lewis et al. 

2005; Rajewsky 2006).  Of these algorithms, the one that has met with fairly good 

success in prediction utilizes a seed match that aligns nucleotides 2-7 of the miRNA with 

the 3’ UTR (Lewis et al. 2005).  

 Finally, the biogenesis and mechanism of action of miRNAs has been an area of 

intensive research (the current state of knowledge will be discussed in the subsequent 

section).  Major milestones included the discovery of the miRNA processing enzymes, 

Drosha and Dicer (Bernstein et al. 2001; Ketting et al. 2001; Lee et al. 2003).  In 

addition, the description of the RISC complex and the proteins that comprise it, including 

the Argonaute proteins (which were first discovered in plants), has illuminated the 

mechanism of action of miRNAs to a large extent (Hammond et al. 2001; Tabara et al. 

1999).  However, significant work remains to be done, as the biochemistry, stochiometry 

and other aspects of miRNA function remain to be fully understood. 
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miRNA Biogenesis and Mechanism of Action 

miRNAs are encoded by cellular genes and are generally transcribed by RNA 

polymerase II, which allows for their regulation by transcription factors much like 

protein-coding genes (reviewed in Kim et al. 2009).  In the genome, miRNAs can exist as 

unique transcriptional units, or in other cases, reside within the intron of a gene.  Certain 

miRNAs, like the miR-17-92 family, are grouped in clusters on a single mRNA transcript 

and are expressed together (He et al. 2005).  miRNAs are processed from their primary 

transcripts (pri-miRNAs) by the enzymes Drosha and DiGeorge syndrome critical region 

gene 8 (DGCR8), and recent data suggest that this occurs cotranscriptionally (Ballarino et 

al. 2009).  The resulting pre-miRNA is a stem-loop structured RNA that is approximately 

60 nucleotides in length.  This pre-miRNA is then exported to the cytoplasm where it is 

further acted on by the cytoplasmic RNAse Dicer, which cleaves the loop structure, 

leaving a double-stranded miRNA precursor.  Following processing by Dicer, the double 

stranded miRNA-miRNA* duplex (which is now the “stem” without the “loop”) is 

unwound concurrently with loading into the RNA Induced Silencing Complex (RISC).  

This complex, whose exact composition remains unknown, is thought to consist of 

multiple proteins and RNA, the most important of which is a member of the Argonaute 

(AGO) family of proteins (Liu et al. 2004).  In miRNA-mediated regulation, Ago2 is the 

most important protein component of the RISC complex.  The miRNA then guides the 

RISC complex to bind a target mRNA, leading to downregulation of protein expression.  

This can occur by several mechanisms, including degradation of the target mRNA and 

translational inhibition (reviewed in Nilsen 2007).   
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Regulation of miRNA expression and function occurs at four levels: transcription, 

processing, subcellular localization and turnover.  The expression of miRNAs is 

controlled at the transcriptional level by transcription factors that regulate the production 

of miRNA-containing pri-miRNA, conferring cell type specificity and inducibility.  For 

example, c-Myc, p53 and NF-κB have all been shown to induce specific miRNAs in 

different cell types (Bommer et al. 2007; Chang et al. 2007; He et al. 2007; 2005; 

Taganov et al. 2006).  Several posttranscriptional regulatory mechanisms that affect 

miRNA processing have recently been identified.  Arsenate resistance protein 2 (ARS2) 

is expressed by proliferating cells and is a component of the RNA cap-binding complex 

that promotes processing of pri-miRNA transcripts (Gruber et al. 2009). Adenosine 

deaminase acting on RNA (Adar) can regulate pri-miRNA processing through mutation 

of the double-stranded miRNA stem sequence (Yang et al. 2006).  The tumor suppressor 

protein p53, in addition to regulating the transcription of specific miRNAs, also has an 

important role in miRNA processing following the onset of DNA damage (Suzuki et al. 

2009).  p53 can induce increased processing of pri-miRNAs to pre-miRNAs, by forming 

a complex with Drosha.  The miRNA loop also mediates cis-regulatory control over 

miRNA processing, and the KH-type splicing regulatory protein (KSRP) has been 

implicated in this process (Ruggiero et al. 2009; Trabucchi et al. 2009).   

After transport into the cytoplasm, posttranscriptional modifications can further 

regulate miRNA abundance.  Some pre-miRNAs are inhibited from undergoing further 

processing by TUTase4, which is recruited by LIN28 to mediate uridylation of pre-let7 

miRNA (Hagan et al. 2009; Heo et al. 2009). This modification prevents further 

processing of pre-let7 miRNA, thus abolishing its function.  In addition, LIN28 itself 
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inhibits processing of the primary let-7 RNA, indicating a coordinated regulation of the 

abundance of this miRNA (Piskounova et al. 2008).  Levels of canonical miRNA 

processing enzymes themselves can be regulated during certain conditions, such as the 

regulation of Dicer during inflammatory responses (Wiesen and Tomasi 2009).  Another 

protein, importin-8, is thought to be important in the delivery of the processed miRNA to 

the RISC complex  (Weinmann et al. 2009).  It remains an important question as to 

whether subcellular localization plays an important role in regulation of miRNA function.  

miRNAs have been shown to associate with stress granules following the onset of cell 

stress (Leung et al. 2006). However, the relevance of this localization to the regulation of 

miRNA function is unknown. 

The final aspect of miRNA regulation is turnover.  In general, it is thought that 

miRNAs are highly stable, as evidenced by the long half-life of miRNAs in cells 

following siRNA-mediated inhibition of essential miRNA processing enzymes (Denli et 

al. 2004; Gregory et al. 2004).  Some miRNAs, however, can be rapidly depleted, e.g., 

miR-122 in hepatocytes following treatment with interferon (Pedersen et al. 2007).  This 

implies an active turnover mechanism for miRNAs, which is beginning to be studied, 

with early work coming from plants and nematodes.  Specifically, a family of 

exoribonucleases in Arabidopsis thaliana that degrade miRNAs has recently been 

described (Ramachandran and Chen 2008).  In C. elegans, recent work has highlighted 

the importance of Xrn-2 by gain- and loss of function approaches (Chatterjee and 

Grosshans, 2009).  In this model system, siRNA-mediated Xrn-2 depletion led to the 

accumulation of many miRNAs, including let-7.  It is unknown if this function is 

conserved in higher animals, as the homologous protein in man, XRN2, is thought to play 
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a role in transcriptional termination by causing cotranscriptional cleavage via its 5’-3’ 

exoribonuclease activity (West et al. 2004).  Mammalian regulation of miRNA turnover 

remains an aspect of miRNA biology that demands further examination. 

The mechanism of miRNA action has been an area of active investigation in 

recent years.  A canonical siRNA-type mechanism seems to be operant when the miRNA 

and its target share a high degree of complementarity.  Here, the target mRNA is 

downregulated via degradation, an action thought to involve the RNAse catalytic activity 

of AGO2 (also called the “slicer function”) (Joshua-Tor, 2004; Liu et al. 2004; Song et al. 

2004).  In general, it is thought that the target sites reside within the 3’UTR of the target 

gene, similar to the initially discovered interaction between lin-4 and lin-14.  In most of 

these target sites, the complementarity is far from perfect; in fact, there is usually a 6-8 

nucleotide match at the 5’ end of the miRNA, a bulged region without complementarity, 

and a 3’-complementary region of variable length.  In these cases, a variety of 

translational inhibition mechanisms have been suggested to be responsible for the 

observed repression of the target protein.  These mechanisms include deadenylation and 

destabilization of translational complexes, proteolysis of the nascent target peptide, 

repressed initiation of translation via decreased mRNA cap recognition or 60S ribosomal 

recruitment, and translation elongation block (reviewed in Nilsen (2007)).  However, 

more recent studies seem to indicate that the level of target mRNA repression is a very 

good measure of the effects of miRNA action, calling into question the relative 

contribution of the modulation of these various translational mechanisms (Baek et al. 

2008). 
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Central to studying the mechanism of miRNAs has been the development of 

target prediction algorithms.  As alluded to in a previous section, several algorithms have 

been developed.  Briefly, TargetScan utilizes a seed match which aligns nucleotides (nt) 

2 to 7 of the miRNA with 3’ UTR.  Once this has been done, conservation of a 7 or 8 nt 

sequence is assessed between species, with additional weight given to a 5’ flanking 

adenosine residue (Lewis et al. 2005).  PicTar uses a more complex algorithm using an 

11 nt-core “nucleus,” following which the thermodynamics of binding of the entire 

miRNA is assessed.  Again, conservation between species is used to identify “true” 

targets (Chen and Rajewsky 2006; Rajewsky 2006).  miRanda utilizes a simpler 

algorithm assessing complementarity between the entire miRNA and the 3’UTR, with 

additional weight given to complementarity amongst the 11 residues at the 5’ end 

(Enright et al. 2003).  We have tested several of these algorithms against experimentally 

generated data sets, finding that they can be useful in predicting if a given repressed 

mRNA is likely to be a direct target of the miRNA under study.  Unfortunately, none of 

the algorithms provide a completely fool proof, a priori method of target prediction.  

It should be noted here that new and unexpected twists to our understanding of 

miRNA function are beginning to be reported; these include the upregulation of targets 

by miRNAs in certain cellular contexts, “seedless” target sites, and the presence of target 

sites outside of the 3’UTR (Lal et al. 2008, 2009; Vasudevan et al. 2007).  Hence, while 

enormous progress has been made in understanding the biochemical underpinnings of 

miRNA biogenesis and action, important aspects remain incompletely understood.  The 

major challenges, in my opinion, will be to understand the posttranscriptional processing 

and turnover of miRNAs in greater detail, to completely describe the mechanism of 
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miRNA repression and to concurrently develop high-fidelity algorithms to accurately 

predict miRNA targeting.  This is in addition to the broader goal of integrating miRNAs 

into our knowledge of gene regulation and development.   

Role of miRNAs in hematopoietic development. 

Hematopoiesis in mammals involves a complex interplay of extracellular growth 

factors/cytokines and cellular contacts, transcription factor activation of gene expression 

programs, and DNA remodeling and epigenetic changes.  The differentiation of cells in 

the hematopoietic lineage involves a progressive loss of multipotency from a pluripotent 

hematopoietic stem cell, with specific transcription factors leading to terminal lineage 

commitment.  This has been best described in the differentiation of lymphocytes 

(reviewed in Medina and Singh (2005) and Rothenberg (2007)), but the general 

principles apply to other hematopoietic lineages as well.  It stands to reason that mRNA 

transcripts coding for any of the molecular players in this developmental process could be 

regulated at the posttranscriptional level by miRNAs.  In fact, a significant body of work 

has examined the roles of miRNA in hematopoietic development and cancer.  Since the 

research in the current work focuses on myeloid and B-cell development, I will focus the 

next section on miRNA roles in hematopoiesis and aspects of development of these two 

lineages.  For a broader review of the topic that includes all hematopoietic lineages, the 

reader is referred to a recent review on miRNAs in hematopoiesis that I coauthored for 

Nature Reviews Immunology and is presented as an appendix (see appendix 2). 
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Regulation of early hematopoietic development by miRNAs 

Hematopoietic stem cells (HSCs) reside primarily in the bone marrow and 

maintain a balance between self-renewal and differentiation into multipotent progenitors.  

Several groups have performed global miRNA expression profiling of human CD34+ 

stem and progenitor cells, and have identified certain miRNAs as being enriched in this 

cell population (Georgantas et al. 2007; Merkerova et al. 2009).  Some studies have 

shown that deregulation of factors responsible for miRNA processing leads to major 

deficits in hematopoiesis.  Mice deficient in Ars2, which contributes to pri-miRNA 

processing, exhibit bone marrow failure possibly due to defective HSC function (Gruber 

et al. 2009). Conditional deletion of Ago2 in the hematopoietic lineage leads to 

disruptions in hematopoiesis, including B-lymphocyte development and erythroid 

development (O'Carroll et al. 2007).  Specific miRNAs are also thought to play important 

roles in HSC homeostasis.  These include miR-126, miR-10 and miR-196b, which 

repress Hox genes; as well as miR-221 and miR-222, which target c-Kit (Argiropoulos 

and Humphries 2007; Garzon et al. 2008; Mansfield et al. 2004; Shen et al. 2008; Yekta 

et al. 2004). 

The differentiation of hematopoietic stem cells into the various lineages has been 

an area of active investigation.  The first study to address this idea utilized retroviral 

vectors to constitutively express miRNAs that were found to be enriched in particular 

hematopoietic populations (Chen et al. 2004).  miR-181, miR-223 and miR-142, which 

are enriched in B-cells, myeloid cells, and T-cells, were studied.  When miR-181 was 

overexpressed in hematopoietic stem and progenitor cells in vitro and in vivo, increased 

CD19+ cells were found, indicating a skewing of development toward a B-cell fate.  
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These experiments set an important precedent for the field and for much of the work 

presented here, as they showed the importance of miRNAs in lineage choice during 

hematopoiesis.  Numerous additional studies have followed, and it is becoming 

increasingly clear that hematopoietic development is significantly modulated by miRNA 

expression.      

Regulation of myeloid development by miRNAs 

Myeloid development from hematopoietic stem and progenitor cells is driven by 

sequential activation of transcription factor networks, producing the specialized immune 

effector cells of this lineage.  Classically, granulocytes and monocytes are the circulating 

cells that are derived from the bone marrow myeloid progenitors.  Some of the key 

transcriptional regulators of monocyte and granulocyte differentiation are now known to 

be regulated by miRNA expression; in addition, many of the known transcription factors 

regulate miRNA gene expression (reviewed in Appendix 2).  Of these miRNAs, miR-223 

has been studied extensively, and it seems to have an important role in myeloid 

development.  

miR-223 has been studied in the context of normal myelopoiesis and myeloid 

malignancy (Fazi et al. 2007; Johnnidis et al. 2008). This miRNA is expressed 

specifically in cells of the granulocytic lineage. Its expression changes during maturation, 

becoming incrementally higher as granulocytes mature (Johnnidis et al. 2008).  miR-223 

expression is lower in a subtype of acute myeloid leukemia, known as acute 

promyelocytic leukemia, that has a block in differentiation (Garzon et al. 2007).  

Granulocytic differentiation is restored by constitutive expression of miR-223 in 

leukemic blast cells; this suggests a physiological function for miR-223 in this process 
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that is disrupted in disease (Fazi et al. 2007).  The mechanisms regulating miR-223 

expression have been a chief focus of study, given its apparent importance in 

granulocytic differentiation. 

Expression of miR-223 is regulated by a combination of factors.  Initially, a 

circuit consisting of C/EBPα (a member of the CCAAT enhancer-binding protein 

family), NFI-A (a transcription factor related to the CCAAT family) and miR-223 was 

described (Fazi et al. 2005).   In this scenario, C/EBPα activates transcription of miR-

223, whereas NFI-A represses it; miR-223 itself targets NFI-A, thereby turning off its 

repressor once it is expressed. This positive-autoregulatory circuit was postulated to be 

critical in granulocytic maturation, causing commitment to this lineage. Further work has 

shown that the situation is probably more complex (Fukao et al. 2007). Analysis of 

conserved proximal cis-regulatory elements has shown that the putative binding sites for 

the transcription factors mentioned above do not overlap the promoter elements defined 

for the gene encoding miR-223.  Instead, these analyses indicate that miR-223 expression 

may be driven by myeloid transcription factors such as PU.1 and C/EBP, similar to many 

protein-encoding genes involved in granulopoiesis. In disease, the AML1-ETO fusion 

oncoprotein targets the miR-223 promoter for epigenetic silencing, abrogating the ability 

of myeloid transcription factors to transcribe this miRNA precursor. 

The precise physiological function of miR-223 remains elusive. Initial loss of 

function approaches focused on in vitro assays, where approaches based on “antagomirs” 

(cholesterol-linked single-stranded antisense RNA) disrupt induced granulocytic 

differentiation in leukemic blasts (Fazi et al. 2007). However, studies of a miR-223-

knockout mouse rather unexpectedly showed that these mice had a two fold increase in 
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granulocytes (Johnnidis et al. 2008). These granulocytes were morphologically 

hypermature and hypersensitive to activating stimuli and demonstrated more fungicidal 

activity. The mice also had inflammatory lung lesions and develop more tissue 

destruction after endotoxin challenge.  The relevant target in this context seems to be 

Mef2c, which encodes a transcription factor involved in promoting myeloid progenitor 

differentiation, as demonstrated by correction of the miR-223-null phenotype in mice 

lacking both miR-223 and Mef2c. These results collectively suggest that miR-223 is 

involved in regulation of granulocytic maturation but is not absolutely required for the 

production of granulocytes in vivo.  

The miR-223 story highlights several important points about miRNAs.  First, the 

field of miRNA research is relatively young, and there are many results which seem 

contradictory.  As the methods and approaches to research mature, some of the technical 

issues responsible for discrepant results will likely be resolved.  The second issue is a 

recurring theme in hematopoietic development in general-that miRNAs can be induced 

by transcriptional regulators of lineage development and can in turn influence the levels 

of developmental regulators.   This finding with miR-223 and other miRNAs (reviewed 

in appendix 2) integrates miRNAs into the regulatory networks that control 

hematopoietic development.  Last, these studies allude to the importance of specific 

regulation of single or small numbers of critical regulators of miRNA development in the 

control of developmental processes.     

miRNAs play vital roles during inflammatory responses. 

The interest of the Baltimore laboratory in miRNAs was initiated by a study of 

miRNAs regulated by a study of miRNAs that were responsive to endotoxin in a human 
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monocytic cell line (Taganov et al. 2006).  Three miRNAs emerged from this analysis- 

miR-146, miR-155, and miR-132.  Subsequently, NF-κB has been implicated in 

transcriptional activation of both miR-146a and miR-155.  These miRNAs have now 

been found to be crucial in the regulation of the immune response, albeit in very 

different, almost opposing, ways. These findings began several important lines of 

research, including those presented in chapters 2 and 3 of this thesis.    

The inflammatory response is an intensively studied aspect of mammalian biology 

and involves the coordinated action of the two arms of the immune system-innate and 

adaptive immunity.  The innate system, mainly consisting of granulocytes and 

monocyte/macrophage system is important in the early response to foreign antigens.  

Simplistically, this involves the identification of these antigens by pattern-recognition 

receptors followed by activation of innate immune cells and killing of the invading 

pathogen (Janeway 2005).  The adaptive immune system, consisting of B- and T-

lymphocytes is important in the provision of long-term immunity, with the net effect of 

enabling a prophylactic response against a pathogen that has previously been 

encountered.  It is now recognized that such a dichotomy is somewhat artificial, in that 

the innate and adaptive systems interact with each other at multiple levels.  It has long 

been known that Th1-skewed T-lymphocytes, for example, can activate the innate 

immune system (Cherwinski et al. 1987; Mosmann et al. 1986).  Similarly, the role of 

dendritic cells in antigen uptake and presentation to T-lymphocytes is central to their 

activation (Janeway 2005). 

At the cellular level, activation of immune cells is controlled by pathways that 

share some features across the innate and adaptive immune systems.  Distinctive features 
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include the cell surface receptors and adapter proteins that initiate the activation of 

different subsets of immune cells.  For example, lymphocytes have antigen receptors (T-

cell receptors and membrane antibody) while monocyte/macrophages have pattern 

recognition receptors (e.g., the Toll-like receptors) (Janeway 2005).  Downstream of 

these receptors, many immune cells activate NF-κB in response to antigenic challenges.  

The details of this activation are an area of intensive study in the Baltimore lab and 

elsewhere, but the net effect is a transcriptional sea change in immune cells, generally 

leading to effector functions of the particular cell type.  This occurs in a temporally 

regulated manner, with functionally distinct subsets of transcripts activated in a sequence 

of short-acting, intermediate-acting, and long-acting genes (Hoffmann et al. 2003).  This 

sequential transcriptional activation is likely accompanied by posttranscriptional 

regulation that confers temporal specificity.  In this regard, it is interesting to note that the 

3’-UTRs of these genes may regulate their expression (Hao and Baltimore 2009).   

 miRNA-mediated regulation of mRNA/protein expression may have several very 

important advantages over transcription factor-mediated repression of gene expression 

(Hobert 2008).  For the latter to occur, the transcription factor may need to be transcribed, 

translated, and then translocated to the nucleus so as to repress the transcription of the 

target gene.  In addition, the chromatin state of the target gene may have to be modified 

in order to provide access to the transcriptional machinery.  Following repression, the 

stability of the target mRNA greatly influences how quickly a gene can be 

downregulated.  Since miRNAs are not translated, the time sequence for their production 

could be shorter.  Second, they directly repress target mRNAs, and therefore may be able 

to more rapidly induce downregulation of a protein.  Hence, in highly time-sensitive 
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processes (such as in controlling a bacterial infection, where the number of bacteria can 

double every 20 minutes or so), miRNA-mediated gene regulation may represent a 

preferred mode of action.   

As examples of miRNAs important in inflammatory reposes (potentially in a 

time-sensitive fashion), our lab has shown that miR-155 is a positive regulator of the 

inflammatory response, while miR-146a negatively regulates the immune response 

((O'Connell et al. 2007; Taganov et al. 2006) and data not shown).   miR-155 is 

upregulated soon after LPS treatment, seems to promote B-cell activation, and also has 

important effects on early myeloid development, with constitutive expression leading to a 

myeloproliferative disease (Chapters 2 and 3).  The latter miRNA may be important in 

the termination of inflammatory responses by targeting key adapter proteins that are 

involved in transducing the signal from the cell surface receptor, in this case TRAF6 and 

IRAK1 (Taganov et al. 2006).  Overall, the study of miRNAs in the inflammatory 

response has uncovered these previously unknown molecules as integral components of 

cellular pathways controlling inflammation.    

miRNAs in B-cell development. 

The production of antigen-specific antibodies is a central component of 

mammalian immunity, and occurs through the development and activation of B-

lymphocytes (Hardy and Hayakawa 2001).  Following antigen-independent development 

in the bone marrow, B-lymphocytes further refine their antigen-specificity in secondary 

lymphoid organs under inflammatory conditions.  MiRNAs play important roles in 

antigen-independent and antigen-dependent B-cell development, and are dynamically 

regulated during these processes.  Profiling studies in early B-cell development are 
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lacking, but several groups have profiled the expression of miRNA in naïve, germinal 

center, and postgerminal center lymphocytes (Basso et al. 2009; Tan et al. 2009; Zhang et 

al. 2009).  Dynamic developmental regulation of several different miRNAs has been 

observed, and putative new cell-type specific miRNAs have also been identified, 

suggesting that new regulatory pathways remain to be discovered in B-cell development.     

The control of early B-cell development relies on the commitment of progenitor 

cells to the B-cell lineage by activation of transcription factor networks, rounds of V(D)J 

DNA rearrangement, and selection for effective antigen receptors.  The roles of miRNA 

in controlling the early development of B-cells are now thought to relate to the 

modulation of critical protein factors that control development (Xiao and Rajewsky 

2009).  In a study examining the global role of miRNA in B-cell development, the 

conditional deletion of the essential miRNA processing RNAse Dicer in B-cells leads to a 

complete block in B-cell development (Koralov et al. 2008).  This block is thought to 

relate to deregulated expression of Bim, an important regulator of cellular apoptosis.  

When this block was overcome by transgenic expression of Bcl-2, mature B-cells with a 

strange distribution of V(D)J rearrangements were observed, indicating that the defect 

lies in the regulation of antigen receptor selection.  Of interest, the changes noted in gene 

expression profiling of Dicer-deficient B-cell precursors were largely similar to that 

observed for the knockout of the highly conserved miRNA cluster, miR-17-92 (Ventura 

et al. 2008).  This cluster of miRNAs is plays a role in B-cell development and its 

overexpression is associated with pathological lymphoproliferative conditions in humans 

and mice (Xiao et al. 2008).  It is likely then that the major effects of conditional deletion 

of Dicer in B-cells are largely due to the loss of these critical miRNA in early B-cells.   
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In addition to effects on antigen receptor selection, miRNAs can regulate critical 

transcription factors in early B-cell development, as evidenced by overexpression of miR-

150.  Constitutive expression of this miRNA, which shows a dynamic expression profile 

in the early B-cell lineage, causes a block at an early stage of B-cell development, namely 

at the pro-B to pre-B-cell transition, and this block is dependent on the dysregulation of 

c-Myb (Lu et al. 2008).  Mice deficient in miR-150 show an accumulation of B-1 B-cells 

(B-cells with a limited repertoire of relatively broad-specificity antibodies) in the spleen 

and the peritoneum, with a relative decrease in the number of B-2 B-cells (Xiao et al. 

2007).   

During inflammation, T-cell-dependent somatic hypermutation and class-switch 

recombination occur in the germinal center, and again rely on specific transcriptional 

events, class-switch recombination and somatic hypermutation, and selection for high-

affinity antibodies.  MiRNAs are now thought to play important roles in these antigen-

specific adaptive immune responses.  The above-mentioned miR-150-deficient mice 

show exuberant antibody secretion both at baseline and following T-dependent antigenic 

stimulation, although the mechanism of the latter is not understood (Xiao et al. 2007).  

Perhaps the best-characterized miRNA during this stage of B-cell development is miR-

155, which is upregulated upon B-cell activation.  miR-155 deficient B-cells show 

defective class switching and differentiation into plasma cells, resulting in a blunted 

humoral response to T-dependent antigenic stimulation (Thai et al. 2007; Vigorito et al. 

2007).  These effects are likely to be mediated by multiple targets, as both Pu.1 and Aid 

are targeted by miR-155 (Dorsett et al. 2008; Teng et al. 2008; Vigorito et al. 2007).  The 

targeting of Aid was investigated by germLine mutation of the miR-155 seed sequence in 
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the murine Aicda gene in an elegant genetic demonstration of direct targeting of a 3’UTR 

by miRNA.  Based on these previous studies it seems safe to say that miRNAs play 

important and critical roles in normal B-cell development. In Chapter 4, I will describe a 

novel role for miR-34a in the regulation of B-cell development.            
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CHAPTER 2:  Constitutive expression of miR-155 causes a 

myeloproliferative disorder in the bone marrow. 
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Abstract 

Mammalian microRNAs (miRNAs) are emerging as key regulators of the development 

and function of the immune system. Here, we report a strong but transient induction of 

miR-155 in mouse bone marrow after injection of bacterial LPS correlated with 

granulocyte/monocyte (GM) expansion. Demonstrating the sufficiency of miR-155 to 

drive GM expansion, enforced expression in mouse bone marrow cells caused GM 

proliferation in a manner reminiscent of LPS treatment. However, the miR-155-induced 

GM populations displayed pathological features characteristic of myeloid neoplasia. Of 

possible relevance to human disease, miR-155 was found to be overexpressed in the bone 

marrow of patients with certain subtypes of acute myeloid leukemia (AML). 

Furthermore, miR-155 repressed a subset of genes implicated in hematopoietic 

development and disease. These data implicate miR-155 as a contributor to physiological 

GM expansion during inflammation and to certain pathological features associated with 

AML, emphasizing the importance of proper miR-155 regulation in developing myeloid 

cells during times of inflammatory stress. 
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Introduction 

Mammalian hematopoiesis involves the generation of blood cells from a common 

hematopoietic stem cell (HSC) through many intermediate stages, each of which can give 

rise to various types of malignancies upon their dysregulation. However, the molecular 

mechanisms that govern this process are incompletely understood. In particular, the 

quantitative decisions regarding how many cells take which pathway of maturation 

remain obscure. Most studies of this process have focused on cytokines and transcription 

factors, which can control cellular proliferation and differentiation decisions (Rosenbauer 

and Tenen 2007). MicroRNAs (miRNAs) are a novel class of small, regulatory RNA 

molecules that play evolutionarily conserved roles in cellular development and function, 

and mediate target gene repression through 3’ untranslated region (UTR) interactions 

(Ambros, 2004; Bartel and Chen 2004; He and Hannon 2004). Recently, a growing body 

of evidence has implicated specific miRNAs in the modulation of mammalian 

hematopoiesis during both physiological and pathological conditions (Georgantas et al. 

2007; Kluiver et al. 2006b).   

Among miRNAs expressed by hematopoietic cells, miR-155 has emerged as 

having significant impact on the biology of lymphocytes (Costinean et al. 2006; 

Rodriguez et al. 2007; Thai et al. 2007). MiR-155 is upregulated to high levels in 

response to B or T cell receptor engagement (Haasch et al. 2002; Van den Berg et al. 

2003), and plays a B-cell intrinsic role in germinal center formation and subsequent 

antibody production in vivo following antigen challenge (Rodriguez et al. 2007; Thai et 

al. 2007). Furthermore, miR-155 deficient T cells exhibit a Th2 bias, likely through 

repression of c-Maf. Beyond its apparent contribution to the humoral immune response, 
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the need to properly regulate miR-155 levels is suggested by its dramatically elevated 

expression in several types of human B-cell lymphomas (Eis et al. 2005; Kluiver et al. 

2005; Van den Berg et al. 2003), and its reported sufficiency in triggering B-cell 

lymphoma when overexpressed in a B-cell-restricted manner in mice (Costinean et al. 

2006).   

In contrast to the emerging picture of miR-155 functions in lymphocytes, the role 

or consequences of miR-155 expression in hematopoietic cells of myeloid origin have 

been largely uncharacterized. Our group recently reported high levels of miR-155 

expression in cells of the innate immune system, such as monocytes and macrophages, 

following exposure to inflammatory stimuli (O'Connell et al. 2007; Taganov et al. 2006). 

As in lymphocytes, miR-155 expression is tightly regulated in myeloid cells, suggesting a 

specialized function during times of inflammatory stress. Interestingly, the inflammatory 

process is known to have a significant impact on hematopoiesis by enhancing production 

of granulocyte/monocyte (GM) populations in order to replenish those that become 

depleted while combating infection (Shortman and Naik 2007; Ueda et al. 2005). This 

developmental reprogramming is driven in part by cytokines and growth factors produced 

during inflammation, and by direct recognition of pathogen associated molecular patterns 

such as LPS by mammalian Toll-like receptors (TLRs) expressed on hematopoietic stem 

and progenitor cell populations (Nagai et al. 2006). Because miR-155 is part of the TLR-

induced gene program, we have examined its potential role in regulating GM expansion 

in the bone marrow during inflammation.   

In the present study, we demonstrate that miR-155 expression is greatly increased 

in mouse bone marrow cells after LPS injection and is sufficient to drive 
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granulocyte/monocyte (GM) expansion when constitutively expressed in mouse HSCs in 

vivo.  However, sustained expression of miR-155 also leads to several features 

characteristic of pathological myeloid proliferations, correlating with its overexpression 

in samples from human AML patients.  Finally, miR-155 directly repressed a broad range 

of target mRNAs implicated in myeloid hyperplasia and/or hematopoiesis.  These data 

suggest an important physiological role for miR-155 in GM expansion during times of 

inflammation, yet underscore the importance of its proper regulation for maintaining the 

balance between an efficient immune response and the potential for inducing malignant 

disease.   
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Results 

LPS induces bone marrow expression of miR-155 prior to myeloid expansion 

in vivo. 

Although miR-155 is expressed at low levels in mice under steady-state 

conditions, we examined whether its expression is elevated in the bone marrow 

compartment following the onset of inflammation in vivo, as seen in cultured 

macrophages (O'Connell et al. 2007). Mice were injected intraperitoneally with a sub-

lethal dose of LPS (50 µg), or PBS control, and their bone marrow cells were analyzed 

for miR-155 expression. Strong induction of miR-155 levels were observed following 24 

hours of LPS treatment, which returned to control levels by 72 hours (figure 2-1A). 

Upregulated miR-155 expression was also detected upon direct LPS or GM-CSF 

stimulation of isolated bone marrow cells from Wt or Rag1-/- mice, demonstrating that 

cells other than mature B and T lymphocytes contribute to this response (figure 2.1B).  

Furthermore, both populations enriched in mature cells (Mac-1, B220 and Ter119 

positive) and those enriched in immature cells (Mac-1, B220 and Ter119 low to negative) 

responded to LPS by upregulating miR-155, with the immature population having a 

distinctly stronger response than the mature (Supplemental figure 2.S1).      

In addition to miR-155 expression, we also monitored bone marrow cell dynamics in 

response to LPS in vivo. While there was little change in bone marrow GM 

(Mac1+Gr1+), B-cell (B220+) and erythroid precursor (Ter119+) populations by 24 

hours postLPS treatment (Supplemental figure 2.S2), substantial expansion of GM cells 

and reductions in B-cells and erythroid precursors was evident by 72 hours (figure 2.1C), 
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consistent with a previous study (Ueda et al. 2005). Histological analyses also showed 

myeloid preponderance and hyperplasia, with relative erythroid hypoplasia, after 72 

hours of LPS treatment (figure 2.1D). Together, these data indicate that LPS-induced 

miR-155 expression in the bone marrow precedes GM cell expansion. 

 

Figure 2.1. LPS treatment induces bone marrow expression of miR-155 prior to GM 

expansion. (A) Wt mice (n=3 per group) were injected i.p. with 50 µg of LPS (dissolved 
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in PBS), or PBS alone. RNA was collected from total bone marrow cells and miR-155 

expression assayed by qPCR (mean +/-SD). (B) Bone marrow was flushed out of femurs 

and tibias of Wt and Rag1-/- mice, stimulated with LPS (100 ng/mL), GM-CSF (GM) 

(100 ng/mL) or medium (M) for 24 hours, and RNA was then assayed for miR-155 

expression levels (mean +/-SD). NC: no template control. (C) BM cells collected from 

mice in A at the 72 hour time point were stained with antibodies against Mac1, Gr1, 

B220, Ter-119 or CD4 and analyzed by FACS. (D) Wright-stained bone marrow smears 

(top, scale bar=60 µm) or H&E-stained bone marrow sections (bottom, scale bar=25 µm) 

from Wt mice injected with LPS or PBS for 72 hours. 

 

Enforced expression of miR-155 in hematopoietic stem cells causes a 

myeloproliferative disorder in the bone marrow. 

We next investigated whether miR-155 is sufficient to mediate GM expansion in 

the mouse bone marrow in vivo. Retroviral-mediated gene transfer was used to force 

expression of GFP and miR-155 in HSCs (figure 2.2A), followed by engraftment of these 

cells into lethally irradiated C57BL6 mouse recipients. By two months postreconstitution, 

mice were sacrificed and coexpression of miR-155 and GFP was detected in various 

hematopoietic tissues, including the bone marrow (figure 2.2B), thymus, spleen, and 

lymph nodes (Supplemental figure 2.S3). Control mice only expressed GFP but not miR-

155. 

 Gross analyses of femurs and tibias from mice expressing miR-155 revealed a 

white-tan bone marrow coloration unlike the vibrant red seen in controls (figure 2.2C). 

Upon microscopic inspection of H&E-stained bone marrow sections and Wright-stained 
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bone marrow smears (figure 2.2D), miR-155-expressing bone marrow was dominated by 

GM cells at a variety of either normal or abnormal developmental stages based upon their 

morphology (figure 2.2E). Indeed, many of the cells that appeared to be granulocytic 

precursors showed irregular segmentation of their nuclei and lacked condensation of 

nuclear chromatin. Conversely, miR-155 expression also led to a reduction in 

erythrocytes, megakaryocytes and lymphocytes in the bone marrow (figures 2.2D and 

2.2E).  

Flow cytometry identified approximately twice as many CD11b+GR1+ GM cells, 

very few Ter119+ erythroid precursors and a reduction in B220+ B-cells in the bone 

marrow of mice expressing miR-155 versus the control vector (figure 2.2F). When gated 

on GFP+ cells (expressing miR-155), there was a dramatic increase in large, granular 

cells, as defined by having high forward scatter (FSC) and side scatter (SSC), 

respectively (figure 2.2G). Back gating confirmed that these cells were Mac1+, with a 

majority also positive for Gr1. Furthermore, the cells responsible for the overall GM, B 

and erythroid precursor differences were largely GFP+ (figure 2.2H). These observations 

reveal profound myeloid proliferation with dysplastic changes in the bone marrow of 

mice expressing miR-155 compared to controls.   
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Figure 2.2. Expression of miR-155 in HSCs causes a myeloproliferative disorder in 

the bone marrow. (A) Depiction of the retroviral construct used to enable both miR-155 

and GFP expression in HSCs. (B) Bone marrow cells of mice reconstituted with MG155- 
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or control vector-infected HSCs were analyzed for their expression of GFP by FACS, 

where the percentage of GFP positive cells is indicated; black line:C57BL6 control; grey 

line:MG155 or control vector. Cells from the same compartments were analyzed for miR-

155 expression using qPCR (mean +/- SD). (C) Tibias were removed from mice 

reconstituted with MG155 or control vector HSCs for 2 months, or untreated C57BL6 

(B6) mice and photographs were taken. (D) H&E-stained bone marrow sections from 

miR-155-expressing or control mice (scale bar=60 µm) (E) Wright-stained bone marrow 

smears from mice reconstituted with MG155 or control vector HSCs (scale bar=25 µm). 

Examples of dysplastic myeloid cells observed in miR-155-expressing bone marrow are 

enlarged on the left. (F) Number of specified cell types found in the bone marrow (1 

femur+1 tibia) of mice reconstituted with MG155 or control vector HSCs (mean +/- SD). 

(G) GFP-gated bone marrow cells from mice reconstituted with MG155 or control vector 

HSCs were analyzed for forward (FSC) and side (SSC) scatter counts and expression of 

Mac1 and Gr1. (H) Bone marrow cells from mice reconstituted with MG155 or control 

vector HSCs were analyzed for expression of Mac1, Ter-119 or B220 on both GFP 

positive and negative cells by FACS. Data represent at least 6 independent animals in 

each group and *p values of <0.05 were considered significant following a student’s 2 

tailed t-test. 

  

MiR-155 expression in hematopoietic stem cells causes splenomegaly and 

extramedullary hematopoiesis. 

Splenomegaly was observed in miR-155-expressing compared to control mice 

(figure 2.3A). H&E staining of splenic sections from miR-155-expressing mice revealed 
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expanded interfollicular regions containing various hematopoietic elements, as well as 

constricted and disrupted B-cell follicles compared to control spleens (figure 2.3B). Upon 

analyses of Wright-stained splenic touch preparations, we observed a large number of 

erythroid precursors, megakaryocytes and some developing GM cells in the spleens of 

miR-155-expressing mice, while very few of these cell types were observed in control 

spleens (figure 2.3B).  FACS analyses corroborated these observations: we saw elevated 

numbers of Mac1+Gr1+ myeloid cells and Ter119+ erythroid cells, with little change in 

CD4+ T cells and B220+ B-cells in miR-155-expressing compared to control spleens 

(figure 2.3C). When gated on GFP+ cells (expressing miR-155), there were elevated 

numbers of large, granular cells, as defined by having high FSC and SSC, respectively, 

with a majority coexpressing Mac1 and Gr1 (figure 2.3D). Furthermore, miR-155-

expressing splenocytes contained overall higher numbers of Mac1+ cells that expressed 

GFP compared to controls (figure 2.3E).  Conversely, the Ter-119+ cell population from 

miR-155-expressing spleens was largely negative for GFP, possibly arising from non-

transduced HSCs. These results clearly demonstrate the presence of splenic 

extramedullary hematopoiesis in miR-155-expressing mice, likely compensating for the 

bone marrow defects.   
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Figure 2.3. Expression of miR-155 in HSCs triggers extramedullary hematopoiesis 

in the spleen. (A) Spleens were removed from mice reconstituted with MG155 or control 

vector HSCs for 2 months and photographs were taken (top). Spleen weight was also 

determined in the two groups (bottom, mean +/- SD). (B) H&E stained sections (top, 
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scale bar=200 µm) or Wright stained touch preps (bottom, scale bar=25 µm) from mice 

reconstituted with MG155 or control vector HSCs. (C) Number of specified cell types 

found in the spleens of mice reconstituted with MG155 or control vector HSCs (mean +/- 

SD). (D) GFP-gated spleen cells from mice reconstituted with MG155 or control vector 

HSCs were analyzed for forward (FSC) and side (SSC) scatter counts and expression of 

Mac1 and Gr1. (E) Splenocytes from mice reconstituted with MG155 or control vector 

HSCs were analyzed for expression of Mac1, Ter-119, CD4 or B220 on GFP positive and 

negative cells by FACS.  Data represent at least 6 independent animals in each group and 

*p values of <0.05 were considered significant using a Student’s 2 tailed t-test. 

 

Expression of miR-155 in hematopoietic stem cells perturbs peripheral blood 

cell populations.  

Consistent with the disrupted hematopoiesis observed in miR-155-expressing 

mice, their peripheral blood demonstrated several distinct abnormalities compared to 

controls. By two months postreconstitution, FACS detected significantly elevated 

numbers of Mac1+ cells (figure 2.4A), and Wright stained blood smears revealed the 

presence of morphologically abnormal GM cells in miR-155 expressing mice (figure 

2.4B). Complete blood cell counts showed a significant reduction in red blood cell, 

hemoglobin, and platelet levels (figure 2.4C), FACS found decreased B220+ B-cells and 

CD4+ T lymphocytes (figure 2.4C), and Wright staining identified several immature 

erythrocytes demonstrating polychromatophilia in miR-155-expressing animals (figure 

2.4D).  
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Figure 2.4. Expression of miR-155 in HSCs perturbs peripheral blood cell 

populations. (A) Peripheral blood was collected from mice reconstituted with MG155 or 

control vector HSCs for 2 months and analyzed by FACS to determine Forward (FSC) 

and Side (SSC) Scatter Counts and expression of Mac1. Total Mac1 cells were also 

determined. (B) Photomicrographs of a normal Wright stained monocyte (Mo) and 

neutrophil (Ne) from the blood of mice reconstituted with control vector HSCs, and 2 

examples of the Wright stained irregular myeloid cells found in MG155 HSC 
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reconstituted animals. (C) RBC, Hemoglobin (Hb), platelet, WBC, B220 B-cell and CD4 

T cell levels in the blood of mice reconstituted with MG155 or control vector HSCs.  

(D) Microscopic photographs of Wright stained peripheral blood RBCs from mice 

reconstituted with MG155 or control vector HSCs. Data represent at least 9 independent 

animals in each group and *p values of <0.05 were considered significant following a 

student’s 2 tailed t-test. 

 

A subset of human AML patients overexpress miR-155 

Several of the pathological features observed in miR-155-expressing mice are 

associated with human myeloid malignancies, including acute myeloid leukemia (AML).  

Therefore, bone marrow samples from 24 AML patients and 6 normal people were 

assayed for miR-155 and 5S expression levels by quantitative PCR.  On average, the 

AML samples significantly overexpressed miR-155 compared to healthy donors, with a 

level approximately 4.5 times higher (figure 2.5A). A few AML samples had miR-155 

levels that were lower than the normal samples, while the overall AML sample 

distribution had a wide variance. In contrast, no significant difference in the average 

expression levels of 5S RNA was observed between the groups (figure 2.5A). MiR-155 

levels in different subtypes of AML were next ascertained using the WHO classification 

system. Patients with acute myelomonocytic leukemia and acute monocytic leukemia, 

corresponding to FAB-AML-M4 and FAB-AML-M5, respectively, exhibited significant 

overexpression of miR-155 compared to normal samples (figure 2.5B).  These 

observations demonstrate that miR-155 expression in the bone marrow is significantly 

elevated in a subset of patients suffering from AML.  
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Figure 2.5. Overexpression of miR-155 in a subset of human AML patients. (A) 

RNA was collected from the bone marrow of 6 normal patients and 24 patients diagnosed 

with AML. MiR-155 (left) and 5S RNA (right) expression levels were assessed using 

qPCR. (B) MiR-155 and 5S RNA expression data were compared between normal 

subjects and AML patients of the FAB subtypes M4 and M5. *Group differences were 

considered statistically significant when the p value was <0.05. 
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MiR-155 can directly repress genes implicated in hematopoietic development 

and disease. 

MiRNAs exert their biological functions through the degradation and/or 

translational repression of target mRNAs. To identify miR-155 target genes that may be 

involved in the observed myeloproliferative phenotype, we first transduced RAW 264.7 

myeloid cells with a miR-155-expressing retrovirus that increased miR-155 cellular levels 

within 2-fold of those observed following LPS stimulation (Supplemental Figure 2.S4).  

A mRNA microarray analysis was next performed on RNA samples collected from miR-

155 expressing and control cells to identify genes regulated by miR-155 (Supplemental 

Figure 2-S5). Some 1080 transcripts were downregulated more than 1.2 fold with a p 

value of < 0.08 and 89 of the repressed mRNAs contained conserved (human and mouse) 

miR-155 binding sites with 7- or 8-mer seeds in their 3’ UTRs according to published 

lists of computationally predicted target genes found on the TargetScan 4.0 website 

(Grimson et al. 2007; Lewis et al. 2003). Finally, genes with reported roles in myeloid 

hyperplasia and/or hematopoiesis were identified through literature searching. Using 

these criteria, our attention was drawn to 10 candidate targets: Bach1, Sla, Cutl1, Csf1r, 

Jarid2, Cebpβ, PU.1, Arntl, Hif1α and Picalm (figure 2.6A). To confirm the microarray 

results, qPCR was performed using gene specific primers: it showed that the mRNAs 

encoding these proteins were downregulated approximately 20% to 70% in RAW 264.7 

cells expressing miR-155 versus empty vector control (figure 2.6A).  We also observed 

strong repression of Cebpβ, PU.1, Cutl1 and Picalm protein levels in RAW 264.7 cells 

expressing miR-155 (figure 2.6B).   
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 Next, we tested whether miR-155 could directly repress the identified mRNA 

targets through 3’ UTR interactions. Each full length 3’ UTR, or in 2 cases (Bach1 and 

Cebpβ) the region of the UTR containing the miR-155 binding site(s), was cloned into a 

reporter vector downstream from luciferase. These vectors were then used to assess 

whether miR-155 could repress luciferase gene expression in 293T cells. Luciferase 

expression was repressed between 35% to 78% depending upon the 3’ UTR tested (figure 

2.7). There was even a rough correlation between the qPCR results in RAW 264.7 cells 

and the luciferase repression in 293T cells. To demonstrate a direct interaction between 

miR-155 and the 3’ UTRs tested, we systematically mutated each conserved miR-155 7- 

or 8-mer seed region and found that a majority of the miR-155-mediated repression was 

abolished (figure 2.7). As a control, miR-155 repressed a reporter construct containing 

tandem miR-155 sites approximately 80%.  However, luciferase levels were relatively 

unaffected when the Traf6 or Irak1 3’ UTRs were tested, consistent with their lack of 

miR-155 binding sites (figure 2.7). These results provide strong evidence that miR-155 

can directly regulate several genes with relevance to hematopoiesis and the 

myeloproliferative phenotype.  
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Figure 2.6. Repression of specific target genes involved in myeloid hyperplasia 

and/or hematopoiesis by miR-155. (A) Messenger RNA from Raw 264.7 cells infected 

with MSCVpuro-155 or empty vector control was subjected to a microarray analysis and 

results indicate expression changes mediated by miR-155. The intensities of red and 

green correlate with increased or decreased mRNA levels, respectively, and numerical 

repression values for each mRNA are listed. RNA from the same cell types were 
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converted to cDNA and used to assay expression of these genes by qPCR (mean +/- SD). 

All values have been normalized to L32 mRNA levels, are displayed as percent 

expression of control, and are the average of 3 independent experiments.  (B)  Western 

blotting was performed to assay Cebpβ, PU.1, Cutl1, Picalm or αTubulin using extract 

from Raw 264.7 cells stably expressing miR-155 or empty vector, and data are 

representative of at least 3 independent experiments (left).  Expression of miR-155 in 

Raw 264.7 cells infected with MSCVpuro-155 or empty vector control was assayed by 

Northern blotting to ensure proper expression of mature miR-155. 
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Figure 2.7. MiR-155 repression of specific target genes occurs through direct 3’ 

UTR interactions. (A) The 3’ UTR regions from identified miR-155 target mRNAs 

containing miR-155 binding site/s with conserved 7- or 8-mer seeds (grey boxes), non-

conserved 7-mer seed (Arntl, white box) or conserved 6-mer seed (Cutl1, white box), 

were cloned downstream from luciferase (pmiReport vector).  Mutations to these specific 

seed regions are marked with an X. The region of the 3’ UTR cloned is designated with a 
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red line, and the cartoon schematics of the UTRs are not drawn to scale.  These constructs 

were used for reporter assays in 293T cells by cotransfection with a control β-

galactosidase expression plasmid, and a miR-155 expression vector (FUW-155) or empty 

vector control (FUW). A positive control vector contained tandem miR-155 binding sites, 

while negative controls contained no 3’ UTR or the 3’ UTR from Irak1 or Traf6 which 

lack miR-155 sites.  Data using wt 3’ UTRs are in black, while mutant UTRs are in grey. 

All luciferase values have been normalized to β-galactosidase, and are represented as 

percent luciferase expression of control (mean +/- SD). All data are a triplicate set 

representing at least three independent experiments.   
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Discussion  
 
 As cells of the innate immune system combat infectious pathogens, their numbers 

are often depleted and must be replenished. This process is characterized by an increased 

production of GM populations, a response shown to involve GM-CSF- and LPS-mediated 

signaling events (Nagai et al. 2006; Ueda et al. 2005; Zhan et al. 1998). Our present 

findings demonstrate that miR-155 is induced by GM-CSF and LPS in the bone marrow 

compartment, and sufficient to increase the relative and absolute numbers of GM cells 

when expressed in HSCs and throughout hematopoietic development. This expansion 

appears to be at the expense of B lymphocytes and erythroid precursors in the bone 

marrow, as also observed following LPS treatment. Thus, miR-155 may play a regulatory 

role in hematopoietic cell fates during times of inflammatory stress when factors like LPS 

or GM-CSF are present. Because stimulation of most Toll-like receptors induces miR-155 

in macrophages (O'Connell et al. 2007), our results with LPS can probably be generalized 

to many conditions of microbial invasion.      

It remains unclear whether miR-155 participates in hematopoiesis under steady-

state conditions. A recent study detected miR-155 expression in human CD34+ cells, a 

population containing HSCs and early progenitors of lymphoid and myeloid lineages 

(Georgantas et al. 2007). However, defective myeloid populations in miR-155 deficient 

mice were not observed when analyzed under steady-state (non-inflammatory) conditions 

(Rodriguez et al. 2007).         

Whether miR-155 is only sufficient or in fact required for increased myelopoiesis 

during inflammation, our findings demonstrate that its unregulated expression triggers a 

myeloproliferative disorder, exhibiting many preleukemic aspects. Because frank 
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myeloid leukemia was not observed in any of our mice analyzed within 2 months of 

reconstitution with miR-155-expressing HSCs, such a transition may require additional 

mutations. However, the relevance of our observed phenotype in mice is substantiated by 

the elevated expression levels of miR-155 seen in human patients with AML. 

Interestingly, the two AML subgroups found to be overexpressing miR-155 are 

characterized as myelomonocytic (M4) and monocytic (M5), both thought to be derived 

from cells demonstrating aspects of GM cell differentiation, similar to the expanded GM 

cells in our miR-155-expressing mice. It is of note that miR-155 may also be elevated in 

other subtypes of AML where we did not have enough samples to make such a 

conclusion. If miR-155 does prove to be dysregulated in specific subtypes of AML, it 

might complement the recent finding that miR-181 expression positively correlates with 

M1 and M2 subtypes of AML, but not M4 or M5 (Debernardi et al. 2007).  Furthermore, 

as the full spectrum of miRNAs that become dysregulated during AML is defined, these 

small RNAs may prove to have utility as diagnostic indicators of AML subtypes. 

Despite the similarities mentioned above, certain aspects of the miR-155-induced 

myeloproliferative phenotype were not observed following LPS-mediated acute 

inflammation, including extramedullary hematopoiesis, GM dysplasia, peripheral blood 

leukopenia and polychromatophilic RBCs, and reduced megakaryocyte and platelet levels 

(data not shown). These observations may reflect a differential effect of sustained miR-

155 expression in cell types that require strictly regulated levels of this miRNA. 

However, chronic inflammation (which may also sustain high miR-155 expression levels) 

might trigger some of these pathological events given enough time. For instance, 

following months of polymicrobial sepsis in mice, there is reported extramedullary 
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hematopoiesis in the spleen and significantly increased numbers of morphologically 

heterogeneous GM cells in both the spleen and bone marrow compartments (Delano et al. 

2007). The inflammatory response in the bone marrow involves profound myeloid 

proliferation, and through factors such as miR-155, may create a microenvironment 

suitable for cancer formation and development if not resolved in a timely manner.  

Unlike a previous report, which found that B-cell restricted, transgenic expression 

of miR-155 triggers B-cell lymphoma in mice (Costinean et al. 2006), we did not observe 

a B-cell malignancy in our model. This may be explained by differences in the systems 

used, because our model allows for miR-155 expression beginning in adult hematopoietic 

stem cells, which precedes formation of pro-B-cells during hematopoietic development 

(Rosenbauer and Tenen 2007). These observations suggest that miR-155 may trigger 

unique phenotypes when expressed at different stages or in distinct cell type/s during 

hematopoiesis. There is also evidence that developing B-cells and GMs may occupy an 

overlapping bone marrow niche. Based upon our current findings, miR-155 expression 

may allow for GM progenitors to dominate this compartment and inhibit B-cell 

development, which has been proposed to occur during inflammation (Ueda et al. 2005). 

This mechanism might also block events required for miR-155-dependent B-cell 

transformation.     

In an effort to explore the mechanistic basis for the myeloproliferative phenotype 

caused by HSC expression of miR-155, we identified several mRNA targets that were 

directly repressed by miR-155 according to 3’ UTR reporter assays. Of note, the reduced 

expression or altered function of some of these targets has been linked to AML, as in the 

case of PU.1 and Picalm (Metcalf et al. 2006; Okada et al. 2006), or myeloproliferative 
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conditions, as is true for Cutl1 and Csf1r (Fontana et al. 2007; Sinclair et al. 2001). Other 

identified targets have been implicated in control of various aspects of hematopoiesis 

involving many of the cell types that are perturbed in mice expressing miR-155 in HSCs. 

These include Cebpβ (Hirai et al. 2006), Bach1 (Toki et al. 2005), Arntl (Scortegagna et 

al. 2003), Sla (Dragone et al. 2006), Jarid2 (Kitajima et al. 1999), and Hif1α (Yoon et al. 

2006). Thus, miR-155 could mediate its overall biological affects, both physiological and 

pathological, through the combinatorial repression of a broad range of targets in a variety 

of cell types. Such a multitarget regulation has recently been described for T-cell receptor 

signaling (Li et al. 2007). Therefore, it is possible that complete rescue of this phenotype 

will not be achieved through replacing any one of the specific miR-155 target genes. 

However, the specific spatial and temporal contribution of individual targets to the 

myeloproliferative phenotype and AML in the context of miR-155 repression remains an 

area for future investigation.  

There is emerging evidence that individual miRNAs are part of a more complex 

regulatory network involving other miRNAs and transcriptional regulators that cooperate 

to govern myelopoiesis.  For example, Csf1r is important for monocyte development and 

has recently been reported to be regulated indirectly by miRNAs 17-5p-20a-106a 

(Fontana et al. 2007).   miRNAs 17-5p-20a-106a repress the transcriptional regulator 

AML1 required for Csfr1 transcription.  Therefore, both miRNAs 17-5p-20a-106a and 

miR-155 can influence Csfr1 expression through different mechanisms.  In the case of 

miR-155 targets PU.1 and Cebpβ, they have been shown to transcriptionally regulate 

expression of myeloid specific miR-223 (Fukao et al. 2007).  miR-223 is subsequently 

involved in unleashing C/EBPα function, a central transcription factor in myelopoiesis, 
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through the direct repression of its inhibitor NFI-A (Fazi et al. 2005).  Such dynamic 

systems require appropriate miRNA expression levels and kinetics to carefully 

orchestrate hematopoietic development, as has been recently described during T cell 

development in the thymus (Neilson et al. 2007).  However, it is easy to see how this 

delicate process would be vulnerable to dysregulated miRNA expression leading to 

pathological outcomes. This concept is exemplified by the dysplastic features observed in 

many GM cells from our miR-155-expressing mice.  It is possible that while initial miR-

155 expression expands GM numbers, its timely downregulation is necessary for these 

cells to complete their developmental programs.  Such a model would be consistent with 

the transient expression of miR-155 that precedes expansion of morphologically normal 

GM populations in the bone marrow after LPS treatment. 

Based upon our current study, miR-155 appears to play a role in promoting GM 

cell expansion during inflammatory responses, while initiating pathological processes 

under forced expression. Due to the enhanced expression of miR-155 in a subset of AML 

patients, and its ability to repress several genes relevant to myeloid malignancies, 

therapeutic targeting of miR-155 with such agents as antagomirs may provide a beneficial 

option (Krutzfeldt et al. 2005). Because miR-155 knockout mice display few detrimental 

phenotypes in the absence of infection (Rodriguez et al. 2007), decreasing miR-155 

function in human patients suffering from myeloid, lymphoid or other malignancies 

correlated with enhanced miR-155 expression may provide more benefits than harm.  
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Materials and Methods 
 

Cell culture and Reagents 
RAW 264.7 and 293T cells were both cultured in complete DMEM containing 

10% FBS, 100 units/mL penicillin, and 100 units/mL streptomycin with 5% C02. Murine 

bone marrow-derived macrophages were made using M-CSF containing media.  LPS 

from E. coli strain 055:B5 was purchased from Sigma Aldrich, and recombinant mouse 

GM-CSF from eBioscience.    

DNA constructs 
A miR-155 expression cassette containing the human miR-155 hairpin sequence 

and flanking regions was cloned from a B-cell cDNA library into pcDNA3 as described 

(Eis et al. 2005). This cassette was subcloned into pMSCVpuro, FUW, or pMG.  

pMG155 is a modified MSCV vector whereby GFP was placed downstream from the 5’ 

LTR, and the miR-155 expression cassette was cloned downstream from the GFP stop 

codon (detailed cloning strategy available upon request). For reporter assays, the 3’UTRs 

of the respective mRNAs were cloned into pmiReport (Ambion) after amplification from 

a mouse macrophage cDNA library.  Primer sequences are described in Supplemental 

Table 2.1.  The Bach1 3’ UTR region was amplified from a human B-cell library.  Site 

directed mutagenesis was used to change specific nucleotides found within the miR-155 

seed regions (Supplemental Table 2.2).  The 2-mer Control insert consists of a tandem 

repeat of the complimentary sequence to the mature mouse miR-155 sequence. Cloning 

of the TRAF6 and IRAK1 3’ UTR into pmiReport was previously described (Taganov et 

al. 2006). 
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Mice 
Wt C57BL6 mice were purchased from the Jackson Laboratories and Rag1-/- 

mice were bred in house. All experiments involved female mice and were carried out 

according to IACUC approved protocols. 

Retroviral infections, stable cell lines and bone marrow reconstitution 

To generate VsVg pseudotyped retroviruses containing the miR-155 expression 

cassette, 2 x 106 293T cells were transfected with pMSCVpuro-miR-155, pGag-Pol, and 

pVsVg using a standard calcium phosphate protocol. After 48 hours, viral supernatant 

was harvested and used to infect 5 x 105 RAW 264.7 cells for 8 hours in the presence of 

polybrene at 10 µg/mL. Following 48 hours, stably transfected cells were selected using 

puromycin at 7 µg/mL for 7 - 10 days, and miR-155 expression was assessed at the same 

time as experiments were performed by Northern blotting or QPCR for all batches made.  

To obtain HSC-enriched bone marrow cells, mice were injected intraperitoneally 

with 5 µg of 5-Fluorouracil for 5 days prior to bone marrow harvest (Yang and 

Baltimore, 2005). Cells were collected from the bone marrow and RBCs were removed 

using an RBC lysis solution (Invitrogen). Cells were cultured for 24 hours in IL-3 (20 

ng/mL), IL-6 (50 ng/mL) and SCF (50 ng/mL), all from eBioscience, containing 

complete RPMI (10% FBS, 100 units/mL penicillin, 100 units/mL streptomycin, and 50 

µM beta-mercaptoethanol) before initial retroviral infection. To generate retroviruses for 

infecting HSC-enriched bone marrow cells, 293Ts were transfected with pMG155 and 

pCL-Eco. After 48 hours, polybrene (8 µg/mL) was added to culture supernatant 

containing retroviruses and this was used to spin infect 106 HSC-enriched cells per donor 

for 1.5 hours at 2500 RPM and 30 degrees Celsius. This procedure was repeated 3 times 
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once daily, followed by injection of 106 retrovirally infected HSC-enriched cells per 

lethally irradiated (1100 Rads from Cesium 137 source at 50 Rads/minute) recipient. 

Recipients were maintained on Septra throughout the reconstitution period.    

RNA quantification 

Northern blotting and qPCR were used to assay miR-155 and other mRNAs as 

described (O'Connell et al. 2007). Gene-specific primer sequences used for qPCR are 

located in Supplemental Table 2.3. For the microarray study, total RNA was collected 

from 5 RAW 264.7 stably infected clones expressing miR-155 or empty vector using the 

RNeasy Mini Kit per manufacturer’s instructions (Qiagen). The microarray analysis was 

then carried out using pooled RNA from each group by the Millard and Muriel Jacobs 

Genetics and Genomics Laboratory at Caltech according to their detailed protocols 

(http://mmjggl.caltech.edu). Data were analyzed using Rosetta Resolver Software.   

Western blotting 

Western blotting was performed using standard protocols and the following 

antibody clones from Santa Cruz Biotechnology: Cebpβ (C-19), PU.1 (T-21), Cutl1 (M-

222), Picalm (C-18) and αTubulin (AA12).  Protein expression differences were 

determined using Scion Image software. 

Flow cytometry and cell separation 

Fluorophor-conjugated monoclonal antibodies specific for either Mac1, Gr1, Ter-

119, B220, and CD4 (all from eBiosciences) were used in various combinations to stain 

RBC-depleted splenocytes, bone marrow or peripheral blood mononuclear cells and fixed 



53 
 

  

after washing using paraformaldehyde (1% final). Stained cells were assayed using a BD 

FACSCalibur flow cytometer and further analyzed with FloJo software.  Cell separation 

was performed using biotinylated monoclonal antibodies against Mac-1, Ter119 and 

B220 (eBioscience), streptavidin-conjugated magnetic beads (Miltenyi) and MACS LS 

Separation Columns (Miltenyi). 

Luciferase reporter assays  

8 x 104 293T cells were plated in DMEM media containing 5% FBS for 18 hours, 

followed by transfection of relevant plasmids using Lipofectamine (Invitrogen) per 

manufacturer’s instructions. Luciferase assays were performed 48 hours later using a dual 

luciferase kit (Promega). A β-gal expression plasmid was cotransfected and β−gal levels 

were assayed and used to normalize the luciferase values. 

Human AML sample collection and analysis 

Bone marrow biopsy samples collected from patients with acute myeloid 

leukemia were flash frozen and stored at -80 degrees Celsius after the completion of 

diagnostic work in a tissue bank at UCLA. For this study, 24 samples were rapidly 

thawed and subjected to TRIzol purification of RNA. In addition, 6 RNA samples were 

isolated from normal volunteers. AML cases were categorized according to the World 

Health Organization “Classification of Tumors” using anonymous clinical reports. All 

work performed on these tissues was approved by the Institutional Review Board (IRB) 

at UCLA. 
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Morphologic assessment of hematolymphoid tissues 

For histologic sectioning, organs were placed into 10% neutral buffered formalin 

immediately after necropsy, fixed for 12-18 hours, washed and transferred to 70% 

ethanol prior to standard paraffin embedding, sectioning and staining with H&E. Bones 

were also decalcified. For cytologic assessment, touch preparations of the cut surface of 

the spleen were performed. Peripheral blood smears were obtained from the tail vein 

bleeds or from the heart at necropsy. Bone marrow smears were prepared from extracted 

bone marrow of reconstituted mice. All cytologic preparations were air dried, and stained 

with Wright’s stain. Both histologic and cytologic preparations were examined on an 

Olympus BX-51 microscope, and photographed using a Spot Digital Camera and 

software. Complete blood cell counts were performed at UCLA’s Department of 

Laboratory Animal Medicine. 

Statistical tests 

All statistical analyses were performed using Microsoft Excel statistical software 

module. For patient samples, an F-test determined that the distributions of miR-155 

expression in normal samples versus AML samples were heteroscedastic (p=4.5x10-6 for 

F-test). Similarly, the distributions of miR-155 expression in normal versus AML-M4 

was determined to be heteroscedastic (p=1.8x10-5 for F-test). Following this, a two-tailed 

T-test was performed assuming heteroscedastic distributions for both comparisons.  For 

all other data, a student’s two-tailed T-test was used.         
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Figure 2.S1. Mature cell–depleted bone marrow populations up-regulate 
miR-155 to higher levels in response to LPS than mature cell–enriched 
populations.  Mature cell–enriched populations were positively selected from mouse bone 
marrow using biotinylated antibodies against Mac-1, B220, and Ter119, and streptavidin-
conjugated magnetic beads and a MACS column. Mature cell–depleted populations were 
negatively selected using the same column. FACS was used to verify the presence or absence of 
lineage marker expression. Cells were stimulated with medium or LPS (100 ng/mL) for 6 or 24 h, 
followed by miR-155 expression quantification by quantitative PCR. 
 
 

 
 
Figure 2.S2. Bone marrow cell dynamics after 24 h of LPS treatment. 
C57BL6 mice were injected i.p. with 50 µg LPS or PBS for 24 h. B220, Gr1, or Mac1 surface 
expression was assayed on RBC-depleted bone marrow cells using FACS. 
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Figure 2.S3. Coexpression of GFP and miR-155 in several lymphoid organs. 
RBC-depleted cells from the spleen (sp), lymph nodes (ln), and thymus (th) of mice reconstituted 
with MG155- or control vector–infected HSCs were analyzed for their expression of GFP by 
FACS, where the percentage of GFP+  cells is indicated. Black line, C57BL6 control; gray line, 
MG155 or control vector. Cells from the same compartments were analyzed for miR-155  
expression using quantitative PCR. 
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Figure 2.S4. Comparative expression of miR-155 induced by LPS or 
produced from MSCV-155 in myeloid cells. MiR-155 expression was assayed in (left) 
Raw264.7 cells stably transfected with MSCV and treated with media or 50 ng/mL LPS, stably 
infected with MSCV-155 or (right) bone marrow–derived macrophages (BMMs) generated from 
MG-infected bone marrow treated with media or LPS (5 ng/mL), or generated from MG155-
infected bone marrow.  
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Figure 2.S5. miR-155 target identification and analysis scheme. 
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Table 2.S1. Primer sequences used for cloning each respective 3’UTR into 
pMIR-Report. 
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Table 2.S2. MiR155 seed sequences found in target gene 3’UTRs and 
subsequent mutations induced to disrupt miR-155-mediated repression 
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Table 2.S3. Primer sequences used for quantitative PCR 
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CHAPTER 3:  Discovering a primary target of miR-155: The 

SHIP1 inositol phosphatase 
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Abstract 

 
MicroRNA-155 (miR-155) has emerged as a critical regulator of immune cell 

development, function and disease. However, the mechanistic basis for its impact on the 

hematopoietic system remains largely unresolved. Because miRNAs function by 

repressing expression of specific mRNAs through direct 3’UTR interactions, we have 

searched for targets of miR-155 implicated in the regulation of hematopoiesis. In the 

present study, we identify Src homology 2 domain-containing inositol 5-phosphatase 1 

(SHIP1) as a direct target of miR-155, and show using gain and loss of function 

approaches that miR-155 represses SHIP1 through direct 3’UTR interactions that have 

been highly conserved throughout evolution. Repression of endogenous SHIP1 by miR-

155 occurred following sustained overexpression of either mouse or human miR-155 in 

hematopoietic cells both in vitro and in vivo, and resulted in increased activation of the 

kinase Akt during the cellular response to LPS. Furthermore, SHIP1 was also repressed 

by physiologically regulated miR-155, which was observed in LPS treated wild-type (wt) 

versus miR-155-/- primary macrophages. In mice, specific knockdown of SHIP1 in the 

hematopoietic system following retroviral delivery of a miR-155 formatted siRNA 

against SHIP1 resulted in a myeloproliferative disorder (MPD) with striking similarities 

to that observed in miR-155 expressing mice. Our study unveils a molecular link between 

miR-155 and SHIP1 and provides evidence that repression of SHIP1 is an important 

component of miR-155 biology.   
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Introduction 

 
 In recent years, microRNAs have emerged as critical regulators of gene 

expression in a variety of mammalian cell types, including cells of the immune system 

(Baltimore et al. 2008; Bartel and Chen, 2004; Lodish et al. 2008). Through their ability 

to repress expression of specific target genes via direct 3’UTR interactions, several 

miRNAs have been shown to impact both physiological and pathological immune 

processes (Costinean et al. 2006; He et al. 2005; Johnnidis et al. 2008; O'Connell et al. 

2008; Rodriguez et al. 2007; Thai et al. 2007; Ventura et al. 2008; Xiao et al. 2007; Xiao 

et al. 2008). Among the most prominent and well-studied immune system miRNAs to 

date, miR-155 clearly is involved in protective immunity when properly regulated, yet 

contributes to malignant conditions upon its dysregulated expression.   

 MiRNA-155 is expressed in a variety of immune cell types including B-cells (Eis 

et al. 2005; Fulci et al. 2007; Kluiver et al. 2005; Rodriguez et al. 2007; Tam et al. 1997; 

Thai et al. 2007; Van den Berg et al. 2003), T cells (Haasch et al. 2002), macrophages 

(O'Connell et al. 2007; Taganov et al. 2006), dendritic cells (Rodriguez et al. 2007) and 

progenitor/stem cell populations (Georgantas et al. 2007; O'Connell et al. 2008). 

Interestingly, miR-155 is found at low levels in most of these cells types until their 

activation by immune stimuli such as antigen, Toll-like Receptor ligands and/or 

inflammatory cytokines, which rapidly increase miR-155 expression (Haasch et al. 2002; 

O'Connell et al. 2007; Rodriguez et al. 2007; Taganov et al. 2006; Thai et al. 2007). 

Consistent with its expression pattern, miR-155 appears to function in hematopoiesis and 

the immune response (O'Connell et al. 2008; Rodriguez et al. 2007; Thai et al. 2007). For 

example, defective germinal center (GC) formation and antibody isotype class switching 
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have been observed in miR-155-/- mice following infection or vaccination (Rodriguez et 

al. 2007; Thai et al. 2007; Vigorito et al. 2007). In T cells, miR-155 promotes skewing 

toward the Th1 subset (Rodriguez et al. 2007; Thai et al. 2007). In dendritic cells, miR-

155 is necessary for proper activation of responder T cells in the context of antigen 

presentation (Rodriguez et al. 2007).  

Enhanced expression of miR-155 occurs constitutively in a subset of cancer cells 

of lymphoid (Eis et al. 2005; Fulci et al. 2007; Kluiver et al. 2005; Tam et al. 1997; Van 

den Berg et al. 2003) and myeloid origin (Garzon et al. 2008; O'Connell et al. 2008). We 

and others have recently demonstrated that sustained expression of miR-155 in the 

hematopoietic system leads to pathological outcomes. Our group expressed miR-155 

ubiquitously in the hematopoietic compartment via bone marrow transfer of HSCs 

infected with a retroviral vector. This caused a myeloproliferative disorder (MPD) 

characterized by increased granulocyte/monocyte (GM) populations in the bone marrow, 

peripheral blood and spleen, impaired erythropoiesis, and severe splenomegaly due to 

extramedullary hematopoiesis (O'Connell et al. 2008). Costinean et al. found that 

transgenic expression of miR-155 from a B-cell specific promoter can trigger a B-cell 

malignancy (2006).  

While much has been learned about miR-155 expression patterns and functions, 

the molecular basis underlying its biology is relatively uncharacterized. As a result, we 

have been searching for novel targets of miR-155 implicated in overlapping biological 

processes. Using microarray technology, bioinformatics, and an extensive review of the 

literature we have identified the inositol phosphatase SHIP1 as a target of miR-155. 

Through both gain and loss of function approaches we demonstrate that miR-155 
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represses SHIP1 through direct 3’UTR interactions during both sustained and 

physiological expression of miR-155. Furthermore, specific knockdown of SHIP1 in the 

hematopoietic system using a miR-155 formatted siRNA against SHIP1 largely 

recapitulated the MPD phenotype we previously described in miR-155 expressing mice. 

Together, our data demonstrate a novel molecular link between miR-155 and SHIP1 in 

the immune system, and suggest that repression of SHIP1 is a critical aspect of miR-155 

function. 
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Results 

MicroRNA-155 represses SHIP1 through 3’UTR interactions 

We previously performed a mRNA microarray analysis using RAW 264.7 

macrophages stably expressing miR-155 to identify possible targets of miR-155 

(O'Connell et al. 2008). Among the targets was SHIP1 (INPP5D), a gene that is repressed 

by miR-155 and which has a conserved 8-mer target “seed” in its 3’UTR (figure 3.1A). 

SHIP1 was of particular interest because miR-155 is the only miRNA with a highly 

conserved binding site located in the SHIP1 3’UTR according to the TargetScan 

algorithm (Lewis et al. 2005), and because mice deficient in SHIP1 suffer from a 

myeloproliferative condition resembling that which we previously described for mice 

expressing miR-155 (Harder et al. 2004; Helgason et al. 2003, 1998; Liu et al. 1999; 

O'Connell et al. 2008).   

To directly test whether miR-155 can repress SHIP1 through direct 3’UTR 

interactions, we cloned the 3’UTR of SHIP1 into a reporter plasmid downstream from 

luciferase and performed reporter assays using 293T cells. While miR-155 produced from 

a cotransfected plasmid repressed expression of luciferase fused to the wild-type (wt) 

SHIP1 3’UTR, it failed to repress the SHIP1 3’UTR containing a mutated miR-155 seed 

sequence (figure 3.1B). As controls, miR-155 repressed the Picalm 3’UTR and 2-mer 

control constructs, but not the control UTR without miR-155 sites (figure 3.1B). These 

data reveal that miR-155 directly targets the SHIP1 3’UTR leading to repressed 

expression. 
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To determine whether miR-155 can repress endogenous SHIP1, we assayed 

SHIP1 expression in RAW 264.7 cells expressing wt human miR155, human miR-155 

containing a mutated seed region, or vector control.  SHIP1 was measured at the mRNA 

and protein levels by qPCR and Western blotting, respectively. Wt miR-155 repressed 

SHIP1 mRNA and protein below control levels, while the miR-155 seed mutant had little 

impact on SHIP1 expression compared with the vector control (figure 3.1C and 3.1D). 

The wt miR-155 was overexpressed in cells receiving the wt miR-155 vector (figure 

3.1E) and the mature miR-155 seed mutant was produced in cells receiving the miR-155 

seed mutant vector (figure 3.1F), indicating that the specificity of the repression was 

determined by the seed region of miR-155.  

SHIP1 is well known to be a negative regulator of the kinase Akt, a downstream 

target of the phosphatidylinositol-3-kinase (PI3K) pathway. Therefore, we assayed Akt 

activation following LPS treatment of the different RAW 264.7 derivatives. Consistent 

with reduced SHIP1 levels, cells expressing wt human miR-155 exhibited increased 

activation of Akt following LPS treatment, while Akt activation was similar in the control 

and human miR-155 seed mutant expressing cells (figure 3.1G).  
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Figure 3.1: MicroRNA-155 represses SHIP1 expression through 3’UTR 

interactions 

A. Schematic layout of the SHIP1 mRNA coding sequence (CDS) and 3’UTR, with the relative 

location of the miR-155 binding site. Depiction is not to scale. Sequence of mouse and human 

miR-155 and predicted interaction with conserved 8-mer miR-155 seeds found within the SHIP1 

3’UTRs from different species (highlighted) are shown. The sequence of the SHIP1 3’UTR seed 

mutant used for reporter assays and predicted disruption of the miR-155 interaction is also shown. 

B. Luciferase reporter assays were performed by transiently transfecting 293T cells with an 

empty plasmid (FUW) or miR-155 expressing plasmid (FUW-155), the indicated 3’UTR 
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luciferase reporter plasmids, and a plasmid producing beta-galactosidase. Luciferase values have 

been normalized to beta-galactosidase, and the percent repression in cells transfected with miR-

155 is presented. Raw 264.7 cells stably infected with a retroviral vector expressing wt human 

miR-155 (MGP-h155), mutant seed human miR-155 (MGP-h155mut), or control (MGP) were 

assayed for SHIP1 levels by qPCR (C) and Western blotting (D). As a loading control for the 

Western blot, αTubulin was also assayed. The fold repression of SHIP1 by the different 

constructs is shown. E. Levels of mature human miR-155 in the different cell types were assayed 

by qPCR with primers that detect the wt mature miR-155 sequence. F. RNA from the different 

cell types and a probe specific for the human miR-155 seed mutant sequence was used for 

Northern blotting. G. The different cell types were stimulated with LPS (200 ng/mL) over the 

indicated time course and Ser-473-phosphorylated-Akt (p-Akt), total Akt and β-Actin were 

assayed by Western blotting. Data represent at least two independent experiments. 

Enhanced expression of SHIP1 in miR-155-/- macrophages following LPS 

treatment 

We next evaluated whether SHIP1 is regulated by miR-155 under physiological 

conditions. To achieve this we generated bone marrow derived macrophages (BMMs) 

from either wt or miR-155-/- mice. As LPS has been shown to be a potent inducer of miR-

155 in macrophages (O'Connell et al. 2007), we stimulated these cells with LPS over a 

time course. In wild-type cells, rapid induction of the miR-155 precursor, BIC, was 

followed shortly after by elevated expression of mature miR-155 (figure 3.2A and 3.2B), 

as previously seen with poly (I:C) treated BMMs (O'Connell et al. 2007). We also 

noticed that while BIC levels fall considerably by 24h, miR-155 expression peaks at this 

time point. Protein levels of SHIP1 were assayed at 0h, 4h and 24h after LPS treatment of 

both wt and miR-155-/- BMMs. We observed no change in SHIP1 protein levels up to 4h 
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following LPS treatment in cells of both genotypes (figure 3.2C). After 24h, both Wt and 

miR-155-/- BMMs demonstrated an increase in SHIP1 expression compared with earlier 

time points. However, miR-155-/- BMMs had an enhanced level of SHIP1 protein 

compared to wt control cells at this time point (figure 3.2C). SHIP1 mRNA levels 

reflected similar differences between wt and miR-155-/- BMMs following 24h of LPS 

treatment (figure 3.2D). These results are consistent with miR-155 repressing SHIP1 

expression after their induced coexpression by LPS, and demonstrate that this can occur 

under physiologically relevant conditions in primary cells.  
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Figure 3.2: Enhanced expression of SHIP1 in miR-155-/- macrophages 

following LPS treatment 

Bone marrow derived macrophages from Wt or miR-155-/- mice were stimulated with 10 ng/mL 

LPS from E.coli for the indicated periods of time. Expression of BIC (A) or mature miR-155 (B) 

was assayed by qPCR. Expression of SHIP1 was assayed in BMMs by Western blotting (C) and 

qPCR (D). β−Actin was assayed as a loading control for the Western blot, while qPCR data was 

normalized to L32. The fold increase in SHIP1 expression versus the wt 0h sample is shown. 

Data represent at least two independent experiments.  

 

Knockdown of SHIP1 in vivo using siRNA in the context of miR-155 

processing 

 Having identified SHIP1 as a direct target of miR-155, we next determined if 

specific knockdown of SHIP1 levels could recapitulate the miR-155 MPD phenotype in 

mice that we recently described (O'Connell et al. 2008). Although this phenotype is 

predicted by the MPD observed in SHIP1-/- mice (Helgason et al. 2003; 1998; Liu et al. 

1999), we wanted to perform a specific reduction in SHIP1 using the same retroviral 

vector and bone marrow reconstitution context as we used to promote sustained miR-155 

expression in the hematopoietic system. To accomplish this, we built a retroviral vector 

that expresses a miR-155 formatted SHIP1 siRNA cassette (figure 3.3A). The cassette is 

driven by a RNA Polymerase II promoter and the hairpin arms and loop are comprised of 

mouse miR-155 sequences, while the stem structure contains an antisense sequence 

designed to target the SHIP1 coding sequence (figure 3.3A). Knockdown of other genes 

in vitro has been shown using this approach (Chung et al. 2006). Following construction 
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of this vector, we stably infected RAW 264.7 cells and assayed SHIP1 expression. SHIP1 

protein levels were markedly reduced in cells expressing the siRNA cassette, compared 

to the control vector (figure 3.3B).  

We next tested whether we could achieve knockdown of SHIP1 expression in vivo 

by expressing miR-155 or the siRNA against SHIP1. To this end, HSC enriched bone 

marrow cells were infected with retroviral vectors encoding miR-155, siSHIP1 or 

controls and used to reconstitute lethally irradiated mice as we previously described for 

delivery of miR-155. Following 2 months of reconstitution, we analyzed SHIP1 

expression in the total bone marrow by qPCR. We observed a reduction in SHIP1 mRNA 

levels in mice expressing miR155 or siSHIP1 compared to control vectors (figure 3.3C).   
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Figure 3.3: Knockdown of SHIP1 in vivo using siRNA in the context of miR-

155 processing 

A. Schematic of the retroviral vector (MGP-155f) used to deliver siRNA against SHIP1 in miR-

155 format. B. Knockdown of SHIP1 was assayed in Raw 264.7 cells infected with MGP-

siSHIP1 or control vector by Western blotting. αTubulin was assayed as a loading control.  

C. Knockdown of SHIP1 in vivo by retroviral expression of miR-155 (MGP-155, n=4 mice) or 

siSHIP1 (MGP-siSHIP1, n=3 mice) in the hematopoietic compartment was assayed by qPCR 

using RNA isolated from total bone marrow following two months of hematopoietic 

reconstitution. Relative expression values have been normalized to L32 mRNA. A p-value of 0.05 

or less using a Student’s t-test was considered statistically significant and indicated with an 

asterisk. 

  

Knockdown of SHIP1 in the hematopoietic compartment causes a MPD 

similar to that observed in mice expressing miR-155 

 Mice expressing miR-155, siSHIP1 or control vectors were next studied to 

determine their impact on hematopoietic populations after two months of reconstitution. 

Both miR-155 (human and mouse sequences) and siSHIP1 caused similar MPD 

phenotypes in the bone marrow and spleen compared to control vectors (figures 3.4 and 

3.5). Gross analysis revealed a miR-155 or siSHIP1 dependent splenomegaly and pale 

coloring of the bone marrow (figure 3.5A and unpublished observations). Flow cytometry 

detected an increase in CD11b+ (Mac1+) myeloid populations in the bone marrow and 

spleen (figures 3.4A and 3.5A). The percentage of Ter119+ erythroid precursor cells was 
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increased in the spleen and decreased in the bone marrow, while the percentage of B220+ 

B-cells was decreased in both the spleen and the bone marrow (figures 3.4A and 3.5A).  

Histological analyses of Wright stained bone marrow smears confirmed the 

presence of pathological myeloproliferative conditions in miR-155 and siSHIP1 

expressing mice, characterized by elevated numbers of GM progenitors at various stages 

of development compared to controls (figure 3.4B). There was also a reduction in 

developing erythroid precursors and megakaryocytes in both miR-155 and siSHIP1 mice. 

Of note, miR-155 mice did exhibit a subtle increase in the number of dysplastic 

granulocytic cells compared with siSHIP1, possibly due to an additional miR-155 target. 

Flow cytometry also identified that both miR-155 and siSHIP1 expressing cells, which 

are GFP positive, are responsible for the increased myeloid populations (CD11b+) in the 

bone marrow (figure 3.4C).  

Hematoxylin and Eosin staining of fixed spleen sections from miR-155 or siSHIP1 mice 

revealed expanded interfollicular regions containing developing myeloid populations, 

erythroid precursors and megakaryocytes compared to control mice (figure 3.5B). The 

normal follicular architecture of the spleen was disrupted by these expanded myeloid 

populations in both cases. Thus, miR-155 expression and specific SHIP1 knockdown in 

the hematopoietic system triggers marked extramedullary hematopoiesis, a likely 

consequence of the dysregulated blood cell development in the bone marrow.  
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Figure 3.4: Knockdown of SHIP1 or expression of miR-155 in the 

hematopoietic compartment cause similar MPDs in the bone marrow. 

A. Bone marrow was extracted from mice expressing human miR-155 (MG-155, n=3 mice), 

mouse miR-155 (MGP-155, n=4 mice), siSHIP1 (MGP-siSHIP1, n=3 mice), or control vectors 

(MG, n=2 mice or MGP, n=3 mice) 2 months following bone marrow reconstitution. Total bone 
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marrow cells were assayed for expression of CD11b (Mac1), Ter119 or B220 using flow 

cytometry. Each dot represents an individual mouse. A p-value of 0.05 or less using a Student’s t- 

test was considered statistically significant and indicated with an asterisk. B. Bone marrow from 

MGP, MGP-155 or MGP-siSHIP1 mice was smeared and Wright stained. Photomicrographs are 

shown (1000x magnification, scale bar 20 µm). C. Representative flow cytometry plots from 

control, MGP-155 and siSHIP1 vector-containing mouse bone marrow analyzing GFP and 

CD11b expression.  
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Figure 3.5: Knockdown of SHIP1 or expression of miR-155 in the 

hematopoietic compartment causes splenomegaly and extramedullary 

hematopoiesis in the spleen.  

A. Spleens were extracted from mice expressing human miR-155 (MG-155, n=3 mice), mouse 

miR-155 (MGP-155, n=4 mice), siSHIP1 (MGP-siSHIP1, n=3 mice), or control vectors (MG, 

n=2 or MGP, n=3 mice) 2 months following bone marrow reconstitution. Spleens were weighed 

and RBC-depleted splenocytes subsequently assayed for expression of CD11b, Ter119 or B220 

by FACS. Each dot represents an individual mouse. A p-value of 0.05 or less using a Student’s t- 

test was considered statistically significant and indicated with an asterisk. B. Spleens from MGP, 

MGP-155 or MGP-siSHIP1 mice were fixed, sectioned and H&E stained. Photomicrographs are 

shown (400x magnification, scale bar 50 µm).  
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Discussion 

Similar to miRNAs like miR-155, many proteins have evolved to regulate 

immune cell function, and cause disease upon their dysregulated expression. Among such 

proteins, the inositol phosphatase SHIP1 is expressed in the hematopoietic system and 

has a broad impact on the biology of different hematopoietic cell types (Leung et al. 

2008). SHIP1 functions at the molecular level by hydrolyzing the 5’ phosphate of 

Phosphatidylinositol (PI)-3, 4, 5-P3 to generate PI-3,4-P2, a process that blocks PI3K-

mediated membrane localization of certain PH domain containing signaling molecules 

such as Akt and PLCγ (Backers et al. 2003; Lioubin et al. 1996; Sly et al. 2003). 

Consequently, mice with a global SHIP1 deficiency develop a MPD characterized by 

increased GM populations, and decreased B lymphocyte numbers. This condition is 

thought to occur as a result of its role as a negative regulator of signaling by growth 

factors and other immune receptors (Kalesnikoff et al. 2003; Leung et al. 2008). 

Furthermore, knockout of SHIP1 in B lymphocytes causes spontaneous GC formation 

and antibody class switching (Helgason et al. 2000; Leung et al. 2008; Liu et al. 1998), 

while a SHIP deficiency in T cells skews peripheral T lymphocytes towards Th1 and 

away from Th2 in response to an immune challenge (Tarasenko et al. 2007). Thus, SHIP1 

impacts the same cell types that express miR-155, and plays an opposing role in many 

cases. In the present study, we identify and characterize a direct link between miR-155 

and SHIP1, whereby miR-155 can directly repress expression of SHIP1 and thereby 

impede its function. 

 The connection between miR-155 and SHIP1 has implications for normal immune 

physiology, as described above, as well as pathological conditions such as cancer. Our 
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present findings demonstrate a strong correlation between the MPDs caused by miR-155 

expression or specific knockdown of SHIP1. Both perturbed the hematopoietic process, 

resulting in increased GM cell populations, reduced lymphocyte numbers, impaired 

erythropoiesis and extramedullary hematopoiesis in the spleen. Therefore, miR-155 

repression of SHIP1 may prove to be a contributing factor to human MPDs and myeloid 

leukemia where miR-155 has been shown to be overexpressed (Garzon et al. 2008; 

O'Connell et al. 2008). Of note, SHIP1 is mutated in some AML patients, where loss of 

function has been implicated in the oncogenic process (Luo et al. 2004, 2003). As miR-

155 levels are elevated in certain B-cell lymphomas (Eis et al. 2005; Fulci et al. 2007; 

Kluiver et al. 2005; Tam et al. 1997; Van den Berg et al. 2003), and because SHIP1 is a 

negative regulator of B-cell activation and survival (Helgason et al. 2000; Leung et al. 

2008; Liu et al. 1998), the miR-155-SHIP1 axis should also prove to be of relevance to 

B-cell malignancies. Two recent abstracts suggest that this is the case (Chen et al. 2008; 

Pedersen et al. 2008). It is also plausible that virally encoded orthologs of miR-155 

(Gottwein et al. 2007; Skalsky et al. 2007; Zhao et al. 2009), or miR-155 induction by 

viruses such as Epstein-Barr virus (Yin et al. 2008), can decrease SHIP1 expression en 

route to B-cell activation and transformation. Interestingly, the seed region of these 

orthologs is identical to that of miR-155, while the flanking regions have diverged 

dramatically from the mature mammalian miR-155 sequence. This would indicate that 

certain viral miRNAs have specifically evolved to repress seed-dependent targets of miR-

155 including SHIP1.    

An important question in the field is whether miRNAs function through 

repression of a single or a few targets, or via the cumulative impact of repressing large 
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sets of targets. To date, several putative targets of miR-155 have been predicted through 

bioinformatic and proteomic approaches (Selbach et al. 2008), indicating that there may 

be great complexity underlying miR-155 function. It may be that the MPD caused by 

miR-155 also involves other targets than SHIP1, but our studies show that SHIP1 alone 

can phenocopy the effects of miR-155. MiR-155 has various roles in different cell types 

and physiological situations and analysis of particular specific targets such as PU.1 

(Vigorito et al. 2007), AID (Dorsett et al. 2008; Teng et al. 2008), SOCS1 (Lu et al. 

2009) and now SHIP1 suggest that individual targets likely make significant 

contributions to miR-155 function in a context-dependent manner. For instance, PU.1 is 

repressed by miR-155 and its overexpression has been shown to recapitulate the 

immunoglobulin class switching defect observed in miR-155-/- B-cells (Vigorito et al. 

2007). AID is repressed by miR-155 in B lymphocytes, which has been elegantly 

demonstrated via germLine mutation of the miR-155 seed in the 3’UTR of AID (Dorsett 

et al. 2008; Teng et al. 2008). The AID studies also provide evidence that miR-155 

targeting of AID impacts Ig class switching and the rate of c-Myc translocations in B 

lymphocytes. SOCS1 targeting by miR-155 has just recently been shown to impact T-

regulatory cell homeostasis (Lu et al. 2009). Similar observations have been made for 

specific targets of miR-150 (Lu et al. 2008; Xiao et al. 2007), miR-223 (Johnnidis et al. 

2008) and miR-17-92 (Ventura et al. 2008; Xiao et al. 2008), suggesting a common 

theme of a few significant targets making dominant contributions to miRNA function. 

Ultimately, germLine mutation of miRNA target seed sequences within the 3’UTR 

regions of specific targets, as has been done for AID (Dorsett et al. 2008; Teng et al. 

2008), will provide the strongest argument for relevance. 
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As both miR-155 and SHIP1 regulate critical and overlapping functions of a 

variety of cell types of the immune system, therapeutic manipulation of this novel 

molecular interaction may prove to be useful in the treatment of diverse pathological 

conditions including infection, cancer and autoimmunity. 
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Materials and Methods 

Cell Culture 

Raw 264.7 macrophage and 293T cells were cultured in complete DMEM with 10% 

FBS, 100 units/mL penicillin, and 100 units/mL streptomycin. For generation of BMMs, 

bone marrow cells were isolated from the tibias and femurs of mice as previously 

described (O'Connell et al. 2007). All cells were cultured in a humidified incubator with 

5% CO2 at 37°C. Primary macrophages were stimulated using fresh DMEM containing 

10 ng/mL 055-B5 LPS (Sigma, St. Louis, MO), while Raw 264.7 cells were treated with 

LPS at 200 ng/mL.  

Sequence alignments 

SHIP1 3’UTR sequences from human, mouse, rat and dog were obtained and aligned 

with each other and with the miR-155 seed region using TargetScan (Lewis et al. 2005). 

DNA constructs 

Retroviral constructs MG and MG-155 (human sequence) were described previously 

(O'Connell et al. 2007). Oligonucleotide sequences used to generate new constructs are 

provided as supplemental data (Table 3.S1). The MGP-155 expression cassette 

containing the mouse miR-155 hairpin sequence and flanking regions was cloned from 

cDNA made from LPS treated BMMs. The cassette was subcloned into MGP. MGP is a 

modified pMSCV vector (Clontech, Mountain View, CA) where GFP was placed 

downstream of the 5’ LTR, and the miR-155 expression cassette was cloned downstream 

of the GFP stop codon (detailed cloning strategy available upon request). The h155, 
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h155mut and siSHIP1 oligonucleotides, which produce mature human miR-155, human 

miR-155 seed mutant and siRNA against mouse SHIP1, respectively, were designed 

using the Invitrogen Block-iT pol II miR RNAi strategy and PCR amplified using Fw 

NotI- and Rev XhoI-containing primers. The Invitrogen Block-iT RNAi Designer was 

used to predict the siRNA sequence against mouse SHIP1. For reporter assays, the 

Picalm 3’UTR was cloned as described previously (O'Connell et al. 2008). The mouse 

SHIP1 3’UTR was amplified by PCR from cDNA derived from mouse RAW 264.7 cells. 

This PCR product was cloned into pmiReport (Ambion, Austin, TX) using SpeI and 

HindIII. Assembly PCR was used to mutate the 6 nucleotide miR-155 seed region. A 2-

mer control insert and the IRAK1 3’UTR were described previously (O'Connell et al. 

2008). 

Luciferase-Beta Gal reporter assays 

Experiments were performed as previously described using FUW, FUW-155, Beta-gal 

expression vector and pmiReport vectors transfected into 293T cells (O'Connell et al. 

2008). Transfections were carried out with TransIT 293 (Mirus, Madison, WI). Data was 

normalized for transfection efficiency using a Beta-gal reporter and is represented as the 

ratio of luciferase activity of the transfection containing FUW-155 to that of the 

transfection containing FUW. 

RAW 264.7 stable cell lines 

To generate VSV-G-pseudotyped MSCV retroviruses, 2 x 106 293T cells were 

transfected with pGag-Pol, pVSV-G, and either MGP, MGP-h155, MGP-h155mut or 

MGP-siSHIP1. Transfection was performed with TransIT 293 as per manufacturer’s 
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instructions. After 48 hours, viral supernatant was harvested and used to infect 5 x 105 

RAW 264.7 cells for 8 hours in the presence of polybrene at 10 µg/mL. After 48 hours, 

stably transduced cells were selected using puromycin at 10 µg/mL for 7-10 days.  

Mice 

Wt mice on a C57BL/6 genetic background were bred and housed in the Caltech Office 

of Laboratory Animal Resources (OLAR) facility. Mice deficient in miR-155 and on a 

C57BL/6 genetic background were obtained from Alan Bradley at the Wellcome Trust 

Sanger Institute, Cambridge, UK. All experiments were approved by the Caltech 

Institutional Animal Care and Use Committee (IACUC). 

Bone marrow reconstitution 

Experiments were performed as previously described (O'Connell et al. 2008), with the 

following modifications: HSC enriched bone marrow was cultured for 48 hours before 

the first spin infection using the respective retroviral vector. Transfection of retroviral 

constructs was performed using TransIT 293. Cells were subjected to two spin infections, 

and transduced cells were delivered to recipient mice through retro-orbital injection.  

RNA quantification 

SYBR Green based quantitative real-time PCR (qPCR) was conducted using the 7300 

Real-time PCR system (Applied Biosystems, Foster City, CA) to assay BIC, miR-155, 

5s, SHIP1 mRNA and L32 mRNA levels as described previously (O'Connell et al. 2008). 

Mature miR-155 and 5s RNA were assayed using a mirVana miRNA detection kit as per 

manufacturer’s instructions (Ambion). Mouse BIC, SHIP1 and L32 mRNA were detected 
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using specific primers (Table 3.S1). Northern blotting was performed as described 

(O'Connell et al. 2007) using a probe reverse complementary to the human miR-155 seed 

mutant (Table S1). 

Western blotting 

Cell extracts were size fractionated by SDS-PAGE and transferred to a nitrocellulose 

membrane using a semidry transfer apparatus (Bio-Rad, Hercules, CA). Western blotting 

was performed using the following antibodies: SHIP1 V-19 (sc-1963), SHIP1 M-14 (sc-

1964), α−Tubulin B-7 (sc-5286), donkey anti-goat HRP-conjugated (sc-2020), goat anti-

rabbit HRP-conjugated (sc-2004), goat anti-mouse HRP-conjugated (sc-2005) (Santa 

Cruz Biotechnology, Santa Cruz, CA); α-Actin (A2066), β-Actin (A1978) (Sigma, St. 

Louis, MO); SHIP1 (D1163), Akt1 (C73H10), Phospho-AKT (Ser473) (Cell Signaling, 

Boston, MA). Protein expression intensities were determined using Scion Image 

software. 

Flow cytometry 

Fluorophore-conjugated monoclonal antibodies specific to CD11b (Mac1), Ter-119 or 

B220 (eBioscience) were used to stain RBC-lysed splenocytes and RBC-containing bone 

marrow cells that were washed and fixed with paraformaldehyde (1% final). Stained cells 

were assayed using a BD FACSCalibur flow cytometer (BD, Franklin Lakes, NJ) and 

further analyzed with FlowJo software. 
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Morphological assessment of hematolymphoid tissues 

Histological and cytological samples were prepared and analyzed as described previously 

(O'Connell et al. 2008).  

Statistical tests 

All statistical tests were performed using Microsoft Excel. 
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Summary 

MicroRNAs (miRNAs) play important roles in hematopoietic development and in many 

cases, influence lineage choice or affect critical developmental checkpoints.  The 

microRNA-34a (miR-34a) has recently been identified as a component of the p53 tumor 

suppressor network.  In addition to its role in cancer, p53 also plays roles in 

hematopoietic development and specifically in lymphopoiesis.  To search for a role of 

miR-34a in hematopoiesis, we performed a gain-of-function analysis in murine bone 

marrow.  Constitutive expression of miR-34a led to a block in B-cell development at the 

pro-B-cell to pre-B-cell transition, leading to a reduction in mature B-cells in the bone 

marrow and peripheral blood.  This block in B-cell development appears to be mediated 

primarily by inhibited expression of the Forkhead transcription factor, Foxp1.  We 

demonstrate that Foxp1 is a direct target of miR-34a and that a conserved site in its 

3’UTR mediates repression.  Bone marrow transfer experiments with a siRNA directed 

against Foxp1 recapitulated many aspects of the B-cell developmental phenotype induced 

by miR-34a.  Cotransduction of miR-34a with Foxp1 lacking its 3’UTR rescued the B-

cell developmental phenotype. Last, knockdown of miR-34a resulted in an increased 

level of both Foxp1 and mature B-cells, indicating that Foxp1 is a major target of miR-

34a during B-cell development.  These findings identify an important role for miR-34a in 

connecting the p53 network with suppression of Foxp1, a known B-cell oncogene. 
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Introduction 

Antigen-independent B-cell development from hematopoietic stem and progenitor 

cells is a complex process, closely coordinated with the generation of functional antigen 

receptors (Hardy and Hayakawa 2001).  B-cells are the end product of an ordered series 

of developmental steps punctuated by checkpoints following the rearrangement of the 

immunoglobulin heavy and light chain loci.  Defined stages of committed B-cell 

precursors include pro-B-cells, during which B-cells complete rearrangement of their 

heavy chain locus, pre-B-cells, during which rearrangement of the light chain locus 

occurs, and finally immature and mature B-cells expressing variable levels of surface 

immunoglobulin (IgM).  A complex sequence of molecular events orchestrates successful 

V(D)J rearrangement in B-cells.  It includes the activation of several transcription factors, 

notably PU.1, E2a, Ebf, and Pax5, the last of which is thought to result in the final 

commitment of lymphoid precursors to the B-cell lineage (Busslinger 2004).  A recent 

addition to the list of transcription factors required for early B-cell development is Foxp1 

(Hu et al. 2006).  Foxp1 is a forkhead transcription factor with functions in tissue and 

cell-type specific gene expression and its targeted deletion is lethal in embryogenesis, 

mainly due to cardiac defects (Shu et al. 2001; Wang et al. 2004).  By using a 

Recombination activating gene-2 (Rag2) complementation system, it was discovered that 

loss of this transcription factor results in a block in early B-cell development.  

Furthermore, a functional role in coordinating the development of B-cells was suggested 

by Foxp1’s ability to bind to enhancer elements within the Rag gene loci (Hu et al. 2006).        

During B-cell development, multiple checkpoints follow the rearrangement of the 

immunoglobulin loci, dependent on the proper assembly of the pre-B-cell receptor at the 
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pro-B to pre-B transition, and the B-cell receptor at the pre-B-cell to B-cell transition 

(Meffre et al. 2000). Based on the following observations, these checkpoints appear to be 

partially dependent on p53.  First, Trp53-/- mice show decreased apoptosis of pro-B-cells, 

as well as  accumulation of pre-B-cells and immature B-cells (Lu et al. 2000; Lu and 

Osmond, 2000).  Second, in the context of decreased double-strand break repair in scid 

mice, deficiency of Trp53 leads to a massive accumulation of pro-B-cells (Guidos et al. 

1996).  Presumably, such cells would normally undergo apoptosis as consequence of 

p53’s action in coordinating the response of cells to DNA damage.  The apoptosis of pro-

B-cells depends on the ratio of pro-apoptotic Bax to the pro-survival Bcl-2 protein, and 

this ratio is disrupted in Trp53-/- mice.   

Recently, the miR-34 family of miRNAs, was discovered to be transcriptionally 

induced by p53, and it is now thought to be an important component of the p53 tumor 

suppressor network (Chang et al. 2007; He et al. 2007; Raver-Shapira et al. 2007).  These 

miRNAs act by suppressing a range of genes important in cell cycle progression, 

antiapoptotic functions, and regulation of cell growth.  As might be expected, expression 

of these miRNAs is altered in a broad range of cancers, with the most common scenario 

being one in which both p53 and miR-34 are downregulated (reviewed in Hermeking 

(2009)).  In cancers of the hematopoietic system, profiling studies have suggested a role 

for one member of the miR-34 family, miR-34a, in chronic lymphocytic leukemia and 

acute myeloid leukemia (Isken et al. 2008; Mraz et al. 2009; Zenz et al. 2009).  In the 

case of chronic lymphocytic leukemia, miR-34a alterations have been described both in 

association with and independent of p53 deletions.  
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A role for miR-34a in normal hematopoiesis has not yet been defined.  Such a role 

has been described for many miRNAs, with multiple recent studies describing the impact 

of miRNAs on lineage determinations during hematopoietic differentiation (reviewed in 

(Baltimore et al. 2008)).  Indeed, these were some of the first functions described for 

miRNAs in mammalian systems, with miR-181 promoting B-lineage differentiation and 

miR-223 affecting myeloid differentiation (Chen et al. 2004). The functional effects of 

miRNAs may depend on the regulation of a few critical factors that control gene 

expression, thereby affecting lineage choice (Xiao and Rajewsky 2009).  The range of 

targets ascribed to miR-34a suggests that it might have a role in the regulation of 

hematopoietic development.  In fact, a role in B-cell development was hypothesized 

following the demonstration that Bcl-2 is a direct target of miR-34a regulation (Bommer 

et al. 2007).  It was particularly striking that an imbalance between Bax and Bcl-2 could 

lead to a defect in pro-B-cell apoptosis in Trp53-/- mice.   

Here, we describe the initial characterization of miR-34a in hematopoiesis.  We 

found that miR-34a constitutive expression causes a block in B-cell differentiation. We 

have further characterized this block showing by a combination of gain-of-function and 

loss of function analyses that Foxp1 is a major target of miR-34a in this developmental 

context.  These findings connect the p53-induced miR-34a with Foxp1, paradoxically a 

known B-cell oncogene as well as an important factor in B-cell development. 
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Results 

Constitutive expression of miR-34a in the bone marrow leads to a significant 

decrease in B-lymphocytes 

To explore the role of miR-34a in hematopoietic differentiation, we designed 

retroviral vectors that express the microRNA.  The vector coexpresses miR-34a and GFP 

and exploits the miR-155 format vector that we have previously utilized successfully to 

give strong expression of microRNA and siRNA (figure 4.1A and (O'Connell et al. 

2009)).   The vector produced pre-miR-34a and mature miR-34a as demonstrated by 

Northern blotting (figure 4.1B) and the mature microRNA by RT-qPCR (supplemental 

figure 4.1A) in addition to GFP for labeling of transduced murine cells (supplemental 

figure 4.1B). 

 After transduction of murine bone marrow cells with the miR-34a and control 

vectors followed by reconstitution of lethally irradiated syngeneic C57/B6 mice, we 

analyzed the recipient’s bone marrow 2 months later.  GFP positive cells were readily 

observed in both the control and miR-34a-transduced marrow recipients (figure 4.1C). 

Expression of miR-34a was found to be elevated in primary bone marrow cells from the 

miR-34a recipients (figure 4.1D). The bone marrow was stained with a combination of 

antibodies to delineate the various hematopoietic lineages, including mature B-cells 

(defined as being CD19+IgM+), myeloid cells (CD11b+), T-cells (CD3ε+), and erythroid 

precursors (Ter119+).  A significant reduction in mature B-cells, as a proportion of 

transduced cells (approximately 30% lower), was observed (figure 4.1E).  We did not 

observe statistically significant changes in myeloid cells (figure 4.1F), erythroid 
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precursors (figure 4.1G) or T-cells (figure 4.1H).  These differences were observed 

consistently across three experiments.        
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Figure 4.1.  Constitutive expression of miR-34a in the bone marrow compartment 

leads to a decrease in mature B-lymphocytes. 

A.  Schematic representation of the MSCV-based retroviral vector used to express miR-

34a, based on the previously described MGP vector (O'Connell et al. 2009).  The 

expression of GFP and miR-34a is driven by the viral LTR.   

B.  Expression of mature the pre-miR-34a (~60nt) and the mature miR-34a (~20nt) was 

assayed by Northern blotting.  The bottom panel shows ethidium bromide staining (EtBr) 

to confirm equal loading.   

C.  Analysis of GFP expression in bone marrow two months after retroviral transduction 

and transfer.  Bone marrow was infected with either the vector control or with vector 

expressing miR-34a and delivered into lethally irradiated recipients.   

D.  The bone marrow from recipient mice was also analyzed for expression of miR-34a 

by RT-qPCR, and normalized by analysis of 5S.  The overexpression of miR-34a was 

consistent in mice receiving MGP/34a transduced marrow (labeled miR-34a) as opposed 

to MGP (labeled vector) and was statistically significant (T-test, p=0.009).   

E.   Bone marrow mature B-cells (defined as GFP+CD19+IgM+) were detected by flow 

cytometry and their relative numbers were compared in mice expressing vector alone or 

miR-34a (T-test, p=0.0093).   

F-H. Flow cytometric analyses for myeloid cells (defined as GFP+CD11b+), erythroid 

cells (GFP+Ter119+), and T-cells (GFP+CD3ε+) are shown.  
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miR-34a expression results in a block in B-cell development at the pro-B to 

pre-B-cell stage in the bone marrow 

To determine whether the observed reduction in mature B-cells was the 

consequence of a specific developmental abnormality in B-cell ontogeny, flow 

cytometric analyses were performed to delineate the various stages of B-cell maturation.  

We found a significant (approximately two-fold) increase in pro-B-cells (CD19+ c-kit+ 

IgM-) in miR-34a mice (figure 4.2A).  Conversely, there was a significant reduction in 

pre-B-cells (B220+CD43-IgM-) in the miR-34a mice (figure 4.2B).  This pattern 

indicates a developmental retardation at the pro-B to pre-B transition when B-cells are 

passing through the pre-BCR checkpoint and beginning the process of light chain 

rearrangement.  A similar trend was observed when alternate stains were used to 

delineate pro-B-cells (including CD19+CD43+AA4.1+ and CD43+B220+IgM-) and pre-

B-cells (CD19+CD25+IgM-; data not shown).  The numbers of pro- and pre-B-cells in 

miR-34a overexpressing marrow correlated inversely with the expression pattern of miR-

34a in the normal B-lineage cells, where relatively high miR-34a was observed at the 

pro-B-cell stage with lower levels in pre-B-cells (figure 4.2C).  A second miR-34a 

expressing vector, which uses the native stem-loop structure and flanking regions and 

produces mature miR-34a at lower levels, induced a similar phenotype (Supplemental 

Figure 4.2A, 4.2C and 4.2D).  The decrease in bone marrow B-cells resulted in decreased 

circulating B-lymphocytes (figure 4.2D), but splenic populations of B-cells appear to be 

largely restored in miR-34a overexpressing mice (figure 4.2E).  This likely represents 

homeostatic expansion of B-cells in the periphery by mechanisms that are independent of 

miR-34a expression. 
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Figure 4.2.  miR-34a expression causes an increase in pro-B-cells and a decrease in 

pre-B-cells. 

A.   Analysis of pro-B-cells. Bone marrow cells stained with CD19, c-kit and IgM, 

analyzed by flow cytometry.  Left hand panels show representative histograms of the 

GFP+ IgM-negative compartment in control (vector) and miR-34a expressing mice.  The 

right hand panel shows aggregate data enumerating pro-B-cells (CD19+IgM-c-kit+) as a 

percentage of total GFP+ cells for three experiments (n=12 for vector control and n=10 

for miR-34a animals).  All three experiments showed similar trends and overall 

differences are statistically significant (T-test, p=0.0001). 

B. Analysis of pre-B-cells. Bone marrow cells stained with B220, IgM and CD43 were 

analyzed by flow cytometry.  Left hand panels show representative histograms of the 

GFP+ IgM- compartment in control and miR-34a expressing mice.  The right hand panel 

shows aggregate data enumerating pre-B-cells (B220+CD43-IgM-) as a percentage of the 

total GFP+ cells for three experiments (n=12 for vector control and n=10 for miR-34a 

animals).  All three experiments showed similar trends and overall differences are 

statistically significant (T-test, p=0.0002). 

C.  Assessment of miR-34a expression in B-lineage cells at various stages of 

differentiation. miR-34a  expression was assessed in the various cell populations 

collected by fluorescence activated cell sorting (FACS).       

D.  Peripheral blood B-lymphocytes are reduced in mice reconstituted with marrow that 

constitutively expresses miR-34a (data from 2 experiments, n=11 for vector control and 

n=7 for miR-34a; p=0.02).   
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E.  Splenic B-lymphocyte numbers are similar in vector and miR-34a reconstituted mice.    

Foxp1 is a bona fide target of miR-34a 

To understand what targets of miR-34a might mediate the B-cell developmental 

block, we examined predicted targets using the TargetScan database (Grimson et al. 

2007; Lewis et al. 2005).  From this list of targets, we identified a novel target, Foxp1, 

which is predicted to have two 7-mer sites in the 3’UTR.  Because Foxp1 has previously 

been implicated in B-cell development and its downregulation essential to normal 

monocyte development (Shi et al. 2008, 2004), we examined whether this gene is a novel 

target of miR-34a.  The 3’UTR of Foxp1 is schematically represented in Figure 4.3A, 

showing the more 5’ of the 2 conserved miR-34a sites.  To determine if Foxp1 might 

represent a direct target of miR-34a, luciferase assays were performed as previously 

described (O'Connell et al. 2009, 2008).  Cells cotransfected with pcDNA3-miR-34a and 

luciferase linked to the FOXP1-3’UTR showed repression of luciferase compared to 

control (figure 4.3B, FOXP1).  When the conserved site in the FOXP1 3’UTR was 

mutated (as depicted in figure 4.3A), luciferase expression was derepressed (figure 4.3B; 

FOXP1mt).  As controls, we examined repression of a UTR containing two repeats of the 

antisense sequence to miR-34a (2 repeats of antisense 22-mer), which showed the 

greatest repression (figure 4.3B, a.s. 2mer), as well as repression of a BCL2-3’UTR 

containing construct, a previously reported miR-34a target (figure 4.3B; BCL2 and 

BCL2mt; (Bommer et al. 2007)).  As negative controls, we utilized the 3’UTR of two 

genes, CEBPβ and PU.1, which we have previously reported as being repressed by miR-

155, as well as a control luciferase construct lacking a UTR (figure 4.3B, (O'Connell et 
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al. 2008)).  We have also examined the second UTR site which does not show repression 

in a similar assay (data not shown). 

To examine the effects of miR-34a expression on endogenous FOXP1, we utilized 

two cell lines at a similar stage of differentiation- NALM6, which is a human pre-B-cell 

line, and 70Z/3, which is a murine pre-B-cell line.  First, we assayed NALM6 single cell 

clones that had been transduced with a lentivector expressing miR-34a (supplemental 

figure 4.1C).  This vector expressed GFP as well as miR-34a by Northern blot analysis 

and RT-qPCR (supplemental figures 4.1D-F).   Analysis of the single cell clones revealed 

repression of FOXP1 and overexpression of miR-34a RNA (figure 4.3C and 4.3D, 

respectively).  As expected, the protein level of FOXP1 was decreased in these clones 

(data not shown).  Additionally, in murine 70Z/3 cells, we observed a similar repression 

of Foxp1 at the protein level within 4 days of transduction (figure 4.3E).  Analysis of 

Foxp1 RNA levels in B-cell subsets showed an inverse correlation with miR-34a levels at 

the same stages (figure 4.3F; compare with figure 4.2C).   Having observed repression of 

Foxp1 in cell lines, we also examined Foxp1 mRNA expression in whole bone marrow 

from the bone marrow transfer recipient mice.  Foxp1 mRNA is significantly 

downregulated in the bone marrow of mice transduced with miR-34a (figure 4.3G), with 

no significant change observed in L32 control RNA (figure 4.3H).   It is notable that this 

difference was observed in whole bone marrow, where only about half of the cells had 

been transduced with miR-34a.  Hence, repression of Foxp1 by miR-34a is demonstrated 

in human and mouse cell lines, as well as in primary murine bone marrow, and is 

mediated through a conserved site in the 3’UTR of Foxp1.  
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Figure 4.3.  Foxp1 is a bona fide target of miR-34a. 

A.  Schematic representation of Foxp1 cDNA and 3’UTR showing the conserved miR-

34a seed region in its 3’UTR.  Human and mouse miR-34a mature sequences with 

proposed base pairing to the 3’UTR are presented as is the mutant 3’UTR used in the 

luciferase assays depicted in B. 

B. Luciferase assays demonstrate that the targeting of Foxp1 by miR-34a is via direct 

3’UTR interactions.  Graphed is the relative luciferase activity of 293T extracts 

transfected with the designated luciferase-3’UTR construct and a miR-34a expressing 

vector compared to cells transfected with the luciferase-3’UTR and empty vector.  All 

data is normalized for transfection efficiency by a β-galactosidase reporter.  Designations 

are for the various 3’UTRs attached to the luciferase reporter: a.s.2-mer, two copies of 

the miR-34a anti-sense sequence; FOXP1mt, FOXP1 3’UTR with mutated mir-34a seed 

site; BCL2mt, BCL2 3’UTR with mutated mir-34a seed site; No UTR, luciferase gene 

without a 3’UTR. 

C.  FOXP1 expression, measured by RT-qPCR in NALM6 clones that express control 

vector (FUGW) or miR-34a (FUGW/34a).  These vectors were derived from FUGW 

(Lois et al. 2002).  Differences are statistically significant (T-test, p=0.0086). 

D.  miR-34a expression, measured by RT-qPCR, in NALM6 clones as in (C). 

E.  Western blot analysis of murine Foxp1 in 70Z/3 cells infected with MGP/34a as 

opposed to control vector alone.  The numbers below the blot indicate the relative 

expression level of the protein as compared with the control, as determined by using 

Scion software. 
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F. Foxp1 RNA levels in the same subsets of bone marrow cells as in figure 4.2C.  Note 

that the expression levels are roughly inversely correlated, particularly at the pro-B to 

pre-B-cell transition. 

G. and H. Foxp1 (G) and L32 (H) expression measured by RT-qPCR in the bone marrow 

of mice reconstituted with either vector- or miR-34a (n=7 for vector, n=8 for miR-34a).  

T-test, p=0.0225 for comparison of Foxp1 expression levels. 

Direct repression of Foxp1 by siRNA mediated knockdown recapitulates 

many features of miR-34a expression in the bone marrow 

Previous reports have indicated that the complete lack of Foxp1 results in a 

profound B-cell developmental block that generates a near-total lack of mature B-cells 

(Hu et al. 2006).  In the experiments described above, expression of miR-34a resulted in a 

partial block at the same developmental stage, but mature B-cells were still produced.  To 

examine whether the phenotype of miR-34a expression might be explained by the 

repression of Foxp1, we developed constructs to express a siRNA against Foxp1 

(Foxp1si) in the same format as the construct expressing miR-34a (figure 4.4A).   Testing 

of this construct in 70Z/3 cells showed that Foxp1 mRNA was repressed about 50%, 

similar to the repression observed in miR-34a-expressing cells (figure 4.4B).  In addition, 

repression by Foxp1si was similar to that by miR-34a at the protein level, where Foxp1 

expression was reduced by about 50% (figure 4.4B, right hand panel, compare to figure 

4.3E, right hand panel).   Retroviral transduction and bone marrow transfer showed a 

high degree of reconstitution of the marrow by Foxp1si-expressing cells (figure 4.4C).  

Foxp1 RNA was reduced by about 50% in the marrow of mice reconstituted with this 

vector (figure 4.4D).  With this degree of repression, a dramatic increase in pro-B-cells 
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(about 3.5-fold) was observed (figure 4.4E) along with a corresponding decrease in pre-

B-cells (figure 4.4F).  No changes were observed in the myeloid compartment by flow 

cytometric and morphologic analyses (data not shown).  On the other hand, retrovirally 

mediated knockdown of Bcl-2 in the bone marrow by a similar vector failed to 

recapitulate the phenotype observed in the miR-34a overexpressing mice, despite the 

demonstration that Bcl-2 is a direct target of miR-34a (supplemental figure 4.3A and 

4.3B).  Instead, there were major reductions in all stages of B-cell differentiation and a 

mild reduction in myeloid cells in the bone marrow (supplemental figures 4.3C, D, E, and 

F).  Hence, the block in B-cell development is largely recapitulated in a specific manner 

by the repression of Foxp1 using a siRNA in the miRNA-processing format. 
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Figure 4.4.  Knockdown of Foxp1 recapitulates miR-34a-induced B-lineage 

abnormalities.   

A.  Schematic diagram showing the MGP-based construct used to express the Foxp1 

siRNA.  Note that the format is identical to the format used to express miR-34a.  

B.  Left-hand panel shows Foxp1 RNA, measured by RT-qPCR, in 70Z/3 cells infected 

with either empty vector (Vector) or MGP/Foxp1si (Foxp1si). Right hand panel shows 

Western blot analysis of Foxp1 in these cells.  The numbers represent the fold expression 

of Foxp1 at the protein level compared to vector control, as determined by quantitation 

using Scion software.   

C.  GFP expression in the bone marrow of bone marrow recipient mice (vector and 

Foxp1si) 2 months after transplant. 

D.  Foxp1 expression in the bone marrow of recipient mice (vector and Foxp1si), as 

measured by RT-qPCR.  Shown is one representative experiment with 4 mice in each 

group.  Experiments were repeated three times, with similar trends in all three 

experiments.  (T-test, p=0.0026) 

E. Bone marrow cells stained with CD19, c-kit and IgM, analyzed by flow cytometry.  

Left hand panels show representative histograms of the GFP+ IgM-negative compartment 

in control (vector) and Foxp1si expressing mice.  The right-hand panel shows data 

enumerating pro-B-cells (CD19+IgM-c-kit+) as a percentage of total GFP+ cells for a 

representative experiment (n=4).  All three experiments showed similar trends and the 

differences shown here are statistically significant (T-test, p=0.0004). 
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F.  Bone marrow cells stained with B220, IgM and CD43 were analyzed by flow 

cytometry.  Left hand panels show representative histograms of the GFP+ IgM- 

compartment in control and Foxp1si expressing mice, below which the percentage of 

cells in each of the four quadrants is shown.  The right-hand panel shows data 

enumerating pre-B-cells (B220+CD43-IgM-) as a percentage of the total GFP+ cells for 

one representative experiment (n=4).  All three experiments showed similar trends and 

the differences shown here are statistically significant (T-test, p=0.005). 

Foxp1 cDNA lacking its 3’UTR is able to rescue the miR-34a mediated block 

in B-cell development 

Next, we tested whether complementation of Foxp1 by an exogenous cDNA not 

responsive to miR-34a could correct the B-cell phenotype.  MSCV based constructs 

containing the Foxp1 coding sequence were generated with and without miR-34a as 

depicted in Figure 4.5A, and designated as the “rescue vector.”  These constructs 

contained the entire coding sequence of Foxp1, followed by an internal ribosomal entry 

sequence (IRES) to allow for GFP expression.  The resultant constructs, when used to 

infect 70Z/3 cells, overexpressed Foxp1 at the protein level, at about 2-3 times 

endogenous levels (figure 4.5B), and also overexpressed miR-34a (figure 4.5C).  

Retroviral transduction and bone marrow transfer was completed as before, and we 

detected constitutive expression of Foxp1 RNA by RT-qPCR (figure 4.5D).  In addition, 

miR-34a was constitutively expressed in mice receiving the rescue vector, Foxp1+34a, in 

a quantitatively similar manner to that observed when miR-34a was expressed by itself 

(figure 4.5E).  The resultant mice showed recovery of B-cell numbers in the periphery 

(data not shown).  In the bone marrow, pro-B-cell numbers were significantly decreased 
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in animals receiving the rescue vector as compared to those receiving miR-34a alone, and 

similar to pro-B-cell numbers observed in the mice receiving the control vector (figure 

4.5F).  Similarly, pre-B-cell numbers were comparable to those in control mice, with a 

significant increase in animals receiving the rescue vector compared with those animals 

receiving miR-34a alone (figure 4.5G).  These findings indicate that B-cell maturation 

was largely rescued by provision of Foxp1 lacking its 3’UTR in murine bone marrow.  In 

contrast, such an effect was not observed when BCL2 was utilized in a similar “rescue 

experiment” (constructs depicted in Supplemental figure 4.5A).  Despite BCL2 being a 

direct target of miR-34a and the detection of transduced BCL2 in the bone marrow, the 

number of pro-B-cells remained elevated, and the number of pre-B-cells did not increase 

(Supplemental figure 4.5 B,C,D, and E).  Hence, the dependence of the miR-34a 

mediated B-cell phenotype on Foxp1 is demonstrated in both loss of function and rescue 

contexts, indicating that Foxp1 is a highly specific target of miR-34a during B-cell 

differentiation.   
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Figure 4.5.  Foxp1 expression rescues the miR-34a induced B-cell developmental 

abnormality. 

A.  Schematic representation of the constructs used to rescue miR-34a-mediated block in 

B-cell development. 

B.  Western blot analysis of extracts from 70Z/3 cells infected with retroviruses prepared 

from constructs depicted in A.  The numbers represent relative expression of Foxp1, 

compared with control, as determined by using the Scion program. 

C.  Expression of miR-34a as assayed by RT-qPCR in 70Z/3 cells infected with 

retroviruses [vector control only, MGP/34a (miR-34a), MIG-Foxp1 (Foxp1), or 

MIG/Foxp1+34a (Foxp1+34a)].  

D.  Expression of Foxp1 in bone marrow, as assayed by RT-qPCR, in mice receiving 

bone marrow transduced with the same constructs as in C.  Data were normalized to 

mouse L32, which did not show significant differences between the various marrow 

samples, and represented as fold overexpression as compared with the control vector.   

E.  Expression of miR-34a in bone marrow, as assayed by RT-qPCR, in mice receiving 

bone marrow transduced with the same constructs as in C.  Data were normalized to 5S 

levels, which did not show significant differences between the various marrow samples, 

and represented as fold overexpression as compared with the control vector.  

F. Enumeration of pro-B-cells (CD19+IgM-c-kit+) as a percentage of total GFP+ cells for 

a representative experiment (n=4 for each group).  Experiments were repeated twice and 

the difference shown here is statistically significant (T-test, p=0.0048). 
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G.  Enumeration of pre-B-cells (B220+CD43-IgM-) as a percentage of total GFP+ cells 

for a representative experiment (n=4 for each group).  Experiments were repeated twice 

and the difference shown here is statistically significant (T-test, p=0.0084). 

 

Knockdown of miR-34a results in increased numbers of mature B-cells in the 

bone marrow  

The evidence that miR-34a acts as a regulator of Foxp1, coupled with the previous 

evidence that Foxp1 is an activator of the Rag enzymes (Hu et al. 2006) led us to study 

whether miR-34a loss of function leads to an effect on B-cell development in vivo. We 

did this by attaching a  so-called sponge sequence to a reporter (Gentner et al. 2009).  In 

this approach, four consecutive synthetic miR-34a target sequences separated by four 4.6-

nucleotide spacer sequences were cloned downstream of GFP in the previously described 

MGP vector (MGP/anti-34as; figure 4.6A and supplemental Table 4.1).  Retrovirus 

generated from this construct was used to transduce 70Z/3 cells, which were 

immunoblotted for Foxp1.  The cells expressing anti-34as showed an approximately 1.4-

fold derepression of Foxp1 at the protein level and also showed a modest derepression at 

the RNA level (figure 4.6B and data not shown).  Luciferase assays performed using 

synthetic 34a target sites (i.e., a perfectly complementary sequence; 34a-2mer) as well as 

the Foxp1 3’UTR in the reporter constructs demonstrated derepression as a consequence 

of expression of anti-34as (figure 4.6C and 4.6D, respectively).  This derepression was 

seen both as an effect on endogenous miR-34a activity (left two bars in figures. 4.6C and 

4.6D) and an effect on exogenously overexpressed miR-34a (right two bars in figures. 

4.6C-6D).  The derepression was specific in that no derepression was seen if there was no 
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UTR in the reporter plasmid or an irrelevant UTR (figure 4.6E and data not shown).  

Next, we utilized this construct in a bone marrow transfer experiment, and found 

reproducible GFP expression in the recipient mice 2 months following transfer (figure 

4.6F).  Examination of the bone marrow revealed an increase in the mature B-cell 

population in mice with miR-34a knockdown (figure 4.6G versus 4.6H).  These 

differences were statistically significant (figure 4.6I).  Minor differences were seen in the 

pro-B and pre-B-cell populations, but these were not significant.  In the bone marrow of 

mice transduced with anti-34as, Foxp1 RNA levels were modestly, but significantly 

derepressed (figure 4.6J).  Because Foxp1 RNA levels seem so important in determining 

the course of B-cell development, we analyzed pooled data from two experiments in 

which we overexpressed Foxp1 (see figure 4.5), finding that indeed, it is the mature B-

cell pool (CD19+ IgM+) that is increased upon modest overexpression of Foxp1 (figure 

4.6K). 
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Figure 4.6.  Knockdown of miR-34a using a “sponge” strategy is effective and 

results in increased mature B-cells in the bone marrow. 

A.  Schematic representation of the construct used to knockdown miR-34a expression.  

The backbone is the MGP vector described previously with the insertion of “spacer miR-

Target sites” downstream of the GFP.  Abbreviation, 34a-T: miR-34a synthetic target 

site.   

B.  Western blot analysis of extracts from 70Z/3 cells infected with retroviruses prepared 

from construct depicted in A.  The numbers represent relative expression of Foxp1, 

compared with control, as determined by the Scion program. 

C-E.  Luciferase assays demonstrate that the knockdown of miR-34a by the construct 

designated in A is specific for miR-34a target-containing 3’UTRs.  For these assays, 

293T cells were transfected with a β-galactosidase reporter, luciferase reporter constructs 

containing the designated 3’UTR along with combinations of a miR-34a expression 

plasmid (pcDNA3/34a) and MGP/anti-34as.   All data is normalized for transfection 

efficiency by a β-galactosidase reporter.  These experiments were repeated three times 

with similar results. 

F.  Bone marrow FACS plot showing that transduction results in the expression of GFP. 

G-H.  Bone marrow FACS plot showing GFP+ cells plotted for expression of CD19 and 

IgM. Bone marrow is from a mouse transduced with MGP (Control; G), and a mouse 

transduced with MGP/anti-34as (H). 

I.  Enumeration of  mature B-cells (CD19+IgM+) as a percentage of total GFP+ cells in 

mice recieivng either control or the knockdown construct for miR-34a (n=4 for control 
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MGP; n=8 for anti-34as).  Experiments were repeated twice and the difference shown 

here is statistically significant (T-test, p=0.0285). 

J.  Foxp1 expression in bone marrow transductant mice reciveing marrow with either 

MGP (Control) or anti-34as marrow (n=4 for control MGP; n=8 for anti-34as). The 

difference in expression is statistically significant (T-test, p=0.0022). 

K.  Enumeration of  mature B-cells (CD19+IgM+) as a percentage of total GFP+ cells in 

mice recieivng either control or constitutive expression contruct for Foxp1 (n=8 for 

control MIG; n=8 for MIG/Foxp1).  Experiments were repeated twice and the difference 

shown here is statistically significant (T-test, p=0.0383). 
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Discussion 

We describe here a novel role for miR-34a in B-cell development that is largely 

explained by its repression of Foxp1.  The block induced by miR-34a specifically 

involves Foxp1 because it is rescued by Foxp1 expression and not expression of another 

miR-34a target, BCL2.  In early B-cell development, loss of Foxp1 is known to cause a 

block at the pro-B-cell to pre-B-cell transition, and a near complete absence of B-

lymphocytes in the peripheral lymphoid tissues (Hu et al. 2006).  Additionally, Foxp1 

downregulation is essential to monocytic differentiation, indicating a role in directing 

hematopoietic progenitors towards a B-cell fate and away from the myeloid fate (Shi et 

al. 2008, 2004).  By partial repression of Foxp1 in the bone marrow, constitutive miR-34a 

expression slows passage through the pro-B-cell to pre-B-cell transition, resulting in a 

lower number of circulating B-cells.  Conversely, loss of miR-34a function results in 

increased numbers of mature B-cells, implying a less stringent or faster transit through 

this checkpoint.  In differentiated B-cells, FOXP1 appears to act as a B-cell oncogene, 

whose dysregulated expression can be a consequence of translocations to the IGH locus, 

in cases of marginal zone lymphoma, and through amplification in many cases of diffuse 

large B-cell lymphoma (Lenz et al. 2008; Streubel et al. 2005; Wlodarska et al. 2005). 

Thus, Foxp1 is both needed for B-cell differentiation and is a danger in mature B-cell 

life. We speculate that the effects of miR-34a on Foxp1 may be the mode through which 

p53 suppresses this potentially oncogenic protein in postgerminal center B-cells.  Such an 

effect would parallel the previously described role of miR-34a as a direct connection 

between the tumor suppressor p53 and the oncogenic protein Bcl-2.        



119 
 

  

    The effect of miR-34a on the B-cell developmental pathway is consistent with 

previously reported abnormalities seen with a deficiency of p53, namely an increased 

number of pre-B-cells as well as B-cells, with the latter finding also as a consequence of 

loss of miR-34a function (Lu et al. 2000; Lu and Osmond 2000).  With miR-34a 

constitutively expressed, we find the opposite-an increase in pro-B-cells and a decrease in 

pre-B and B-cells.  Our findings imply a connection between p53 and Foxp1 via the 

action of miR-34a.  In early B-cell development, Foxp1 activates several B-cell factors, 

such as E2a and Pax-5 and binds to the enhancers of the Rag genes (Hu et al. 2006).  This 

activity of Foxp1 may be dependent on the downregulation of miR-34a, releasing 

repression of Foxp1, and allowing B-cell development to proceed.  There appears to be a 

differential requirement for Rag gene expression in D-J recombination as opposed to V-

DJ recombination during pro-B-cell development, with the latter process requiring higher 

levels of Rag (Hu et al. 2006).   The data we have presented indicates that miR-34a levels 

are inversely correlated with Foxp1 expression levels during the different stages of B-cell 

development.  There is a downregulation of miR-34a at the pro- to pre-B-cell transition, 

which we interrupt by constitutive expression.  With miR-34a loss of function, mature B-

cells are increased, likely arising from the loss of a miR-34a dependent checkpoint.  In 

both the gain-of-function and loss of function contexts, the changes in B-cell 

development are accompanied by changes in the levels of Foxp1.  The idea that Foxp1 

levels are important for the output of B-cells from the bone marrow is borne out by the 

finding that mature B-cells are increased in the marrow of mice that overexpress Foxp1 

and that a partial arrest at the pro-B to pre-B transition is found in Foxp1si-expressing 

mice.  We do not know if there is a role for regulation of p53 and/or miR-34a during the 
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pro-B to pre-B transition, but we speculate that it may be involved in the alternating 

generation and repair of double-stranded DNA breaks that occurs when heavy chain 

genes are being rearranged (Perkins et al. 2002). 

 The effects of miRNAs in B-cell development have been assessed globally as well 

as in terms of specific miRNAs.  The deletion of Dicer at the earliest stages of B-cell 

development leads to a block in development at the pro-B to pre-B transition (Koralov et 

al. 2008).  In this case, bioinformatic analysis showed that upregulated genes in Dicer-

deficient B-lineage cells were likely those targeted by the miR-17~92 cluster, and that 

ablation of the pro-apoptotic protein Bim (a target of miR-17~92) or transgenic 

overexpression of Bcl-2 could partially rescue the developmental block.  This target 

specificity is distinct from the block induced by miR-34a, because Bcl-2 increased 

survival of miR-34a expressing pro-B-cells but did not significantly promote their 

differentiation.  B-cell developmental blocks have also been seen following the disruption 

of specific miRNAs.  Early expression of miR-150 led to a block in B-cell development, 

while its deletion led to expansions of certain B-cell subsets (Xiao et al. 2007; Zhou et al. 

2007).  In this case, the relevant target appeared to be c-Myb, a transcription factor 

involved in many stages of lymphocyte differentiation.  Overexpression of the miR-

17~92 cluster led to a B-lymphoproliferative disease, likely as a consequence of 

suppression of the tumor suppressor gene PTEN and Bim (Xiao et al. 2008).  Other 

miRNAs with effects of B-cell development include miR-181a and miR-155, which 

promote early B-cell development and the germinal center response, respectively (Chen 

et al. 2004; Rodriguez et al. 2007; Thai et al. 2007; Vigorito et al. 2007).  Specific 

targeting by miR-155 in the context of B-cell development has been extensively 
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investigated and it appears that multiple targets are responsible for miR-155-induced 

phenotypes (Chen et al. 2008; Pedersen et al. 2008; Vigorito et al. 2007).                      

The specificity of miRNA targeting remains incompletely understood.  On the one 

hand, miRNAs, including miR-34a, are predicted to target hundreds of genes by 

computational algorithms.  On the other hand, an increasing number of reports suggest 

that in particular developmental contexts, one or a few genes are most important in the 

causation of a miRNA-mediated phenotype.  Such observations have been made in both 

loss of function and gain-of-function contexts, indicating the general applicability of this 

principle for particular miRNAs.  Our study extends these observations by demonstrating 

a specificity of miR-34a targeting for Foxp1 in early B-lymphoid development.  This is 

based on both recapitulation and rescue of the phenotype by Foxp1 loss- and gain-of-

function, respectively.  The basis of such specificity is likely the fact that certain cell fate 

decisions hinge on small changes in the expression of critical lineage specification genes, 

and miRNAs can cause such changes.  From this, it can be inferred that the study of 

miRNAs in hematopoietic development may illuminate critical points in cell fate 

decisions, and bring novel insights into this complex and dynamic developmental system.     

Our findings may be of relevance in human disease as others have observed that 

miR-34a is functionally lost (either directly or as a consequence of p53 deletion) in 

chronic lymphocytic leukemia but is overexpressed in acute myeloid leukemia (Isken et 

al. 2008; Mraz et al. 2009; Zenz et al. 2009).  In our study overexpression of miR-34a led 

to disruptions in B-cell development, but not myeloid development.  We have confirmed 

independently that miR-34a is overexpressed in AML by RT-qPCR (data not shown) and 

that its overexpression does not correlate with that of miR-155, which we had examined 
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previously in the same set of samples (Isken et al. 2008).  Since we did not observe a 

myeloproliferative disorder in miR-34a-overexpressing mice, any mechanism whereby 

miR-34a contributes to leukemia is likely to be distinct from that observed in miR-155 

expressing mice (O'Connell et al. 2008).  Our findings suggest one possibility-the 

expression of miR-34a may affect the phenotype of the leukemic cells by blocking cells 

transformed by other oncogenic lesions from differentiating into B- lineage cells. Indeed, 

some recent studies indicate that there may be a progenitor with lymphoid characteristics 

that gives rise to acute myeloid leukemia (Deshpande et al. 2006).  Our results suggest 

that miRNA expression may be one mechanism whereby the leukemia assumes a 

distinctive lymphoid or myeloid phenotype.  Such phenotypic specification certainly has 

clinical relevance, as acute myeloid leukemia in general remains the more difficult of the 

acute leukemias to treat.  However, further work needs to be done to understand the role 

that miR-34a plays in leukemia and how its action or inhibition can be parlayed into 

novel therapeutic strategies. 
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Materials and Methods 

Cell Culture 

 All cells were cultured in a sterile incubator maintained at 37°C with 5% CO2.  293T 

cells were cultured in complete DMEM with 10% FBS, 100 units/mL penicillin and 100 

units/mL streptomycin. WEHI-231 and 70Z/3 cells were cultured in complete RPMI with 

10% FBS, 100 units/mL penicillin, 100 units/mL streptomycin and 50 µM 2-

Mercaptoethanol.  

DNA constructs 

 The MGP vector system has been described previously, and further detailed cloning 

strategies are available upon request (O'Connell et al. 2009). Table 4.S1 contains 

sequence information for all oligonucleotides used to build new constructs. MGP-34a 

expresses human miR-34a, MGP-FoxP1si expresses a siRNA against FoxP1, and MGP-

BCL2si expresses a siRNA against BCL2.  MiR-34a and siRNAs were built using the 

Invitrogen BlockiT pol II miR RNAi strategy as described previously, using the miR-155 

arms for processing (O'Connell et al. 2009).  SiRNA sequences were predicted using the 

Invitrogen BlockiT miR RNAi designer.  In addition, a 300 base pair sequence of human 

genomic DNA encoding the native miR-34a mature sequence, endogenous stem-loop 

structure and flanking sequences was PCR-amplified using the 34a.NotI.f and 34a.XhoI.r 

primers and cloned into the MGP vector using the NotI and XhoI sites, as well as into 

pcDNA3 using 34a.EcoRI.f and 34a.XhoI.r primers and cloning into the EcoRI and XhoI 

sites.  The MGP-based vector is referred to as MGP-miR-34a-lo; as the expression level 

of miR-34a from this vector was lower than that from the vector utilizing miR-155 arms.  

The last set of expression vectors, utilized for expression of miR-34a in human cell lines, 
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was developed from the FUGW vector system (Lois et al. 2002).  For this purpose, miR-

34a genomic sequence was cut out of pcDNA3-34a and blunt-ligated into the FUGW 

EcoRI site, and screened for by using standard recombinant DNA techniques.  For 

reporter assays, two regions of the FoxP1 3’ UTR were amplified by PCR, each 

containing a putative miR-34a binding site as determined by TargetScan (Lewis et al. 

2005).  The 5’ segment was 637 base pairs and the 3’ segment was 760 base pairs.  2000 

base pairs of the BCL2 3’ UTR was also PCR-amplified.  These PCR products were 

cloned into pmiReport (Ambion, Austin, TX). The middle 6 nucleotides of the miR-34a 

seed regions in both the FoxP1 3’UTR 5’ segment and the BCL2 3’ UTR segment were 

then  mutated using PCR, and the product was cloned into pmiReport to yield Foxp1mt 

and BCL2mt constructs. A positive control insert consisting of two miR-34a antisense 

sites (antisense 2-mer) was constructed by annealing oligonucleotides with SpeI and 

HindIII sticky ends and cloning this into pmiReport.  Mouse CEBPβ and PU.1 3’UTRs 

cloned into pmiReport were described previously (O'Connell et al. 2008). T For the 

rescue vectors, we utilized the MSCV-IRES-GFP (MIG) vector as a backbone.  The 

cDNAs for Foxp1 and BCL2 were PCR amplified from pCMV-Sport-Foxp1 (Open 

Biosystems) and pDNR-Dual-BCL2 (Harvard PlasmID Core Facility), and cloned 

between the BglII and XhoI sites in MIG, yielding MIG/Foxp1 and MIG/BCL2, 

respectively.  The cDNAs contain the entire coding sequence for Foxp1 (listed in 

supplemental table 4.S1) and BCL2, respectively.  miR-34a was cloned by PCR 

amplification from pcDNA3-34a and cloned between the XhoI and EcoRI sites in the 

MIG vectors, yielding MIG/Foxp1+34a and MIG/BCL2+34a vectors respectively.   The 

MGP/anti-34as construct was generated by annealing the 34a-spacer-f and 34a-spacer-r 
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oligonucleotides (designed with XhoI/NotI sticky ends), digesting the parental MGP 

vector with XhoI and NotI, and ligating the annealed oligonucleotides downstream of 

GFP. The spacers between each miR-34a binding site were the same as those previously 

published (Gentner et al. 2009). 

Mice and Bone marrow reconstitution experiments 

C57BL/6 mice were bred and housed in the Caltech Office of Laboratory Animal 

Resources (OLAR) facility.  The Caltech Institutional Animal Care and Use Committee 

(IACUC) approved all experiments related to mice.  For reconstitution experiments, 

lethally irradiated mice were reconstituted via either tail-vein or retro orbital injection 

with 5-FU enriched bone marrow spin- infected with MSCV-based retroviruses (MGP-

34a, MGP-siFoxP1, MGP-siBCL2, MGP, MIG/Foxp1, MIG/Foxp1+34a, MIG/BCL2, 

MIG/BCL2+34a, and MGP/anti-34as).  Retroviruses were prepared by calcium 

phosphate based or TransIT-293 based-transient transfection as previously described 

(O'Connell et al. 2009, 2008).  Experimental groups of 4-5 mice received each of the 

vectors described.  Recipient mice were then monitored for health and a peripheral blood 

sample removed at 1 month for flow cytometric analysis.  Mice were sacrificed 2 months 

after reconstitution and were examined by morphology, FACS and RT-qPCR as 

described below.  All experiments were repeated at least twice and in most cases, 3 times, 

as described in figure legends.  

Flow cytometry 

Cells were isolated from the relevant tissue, homogenized, and red blood cells were lysed 

using RBC lysis buffer (Biolegend).  Cells were stained with the following Fluorophore-

conjugated antibodies (all from Ebioscience): CD3ε, CD11b, CD19, B220, CD43, 
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CD117 (c-kit), CD25, IgM, Gr-1, Ter-119, AA4.1, CD4, and CD8α, in various 

combinations to delineate the hematopoietic lineages and various stages of B-cell 

differentiation.  Cells were sorted using a FACSCalibur (Becton Dickinson) and all data 

were analyzed using FloJo software (Treestar).  Specific gating strategies to delineate 

various B-cell populations are available upon request. Data were presented as the 

percentage of GFP positive cells in the relevant hematopoietic compartment.  These data 

were also compared against the GFP-negative cells within the same mouse. 

Cell sorting for RNA analysis at various stages of B-cell differentiation 

Bone marrows were extracted from 2 mice, lysed in RBC lysis buffer, and spun down.   

Cells were then resuspended in lymphocyte FACS buffer (1X Hanks Buffered Salt 

Solution, 10mM HEPES, 2.5 mg/mL BSA), filtered through a 40µm mesh, blocked with 

FcBlock (Becton Dickinson), and depleted on a magnetic column for CD11b, Gr-1, 

Ter119, CD3ε, and NK1.1 using biotinylated antibodies and streptavidin-MACS beads, 

as per manufacturer’s instructions (Miltenyi).  Cells were then stained with c-kit, B220, 

CD43, IgM, Streptavidin, and CD138, and sorted on a BD Biosciences FACSVantage 

flow cytometer (Caltech Core facility). 4 populations of cells were collected: Lin-  

(B220-, IgM-, Streptavidin-, and CD138-); pro-B-cells (c-kit+B220+CD43+IgM-

streptividin-), pre-B-cells (B220+CD43-c-kit-IgM-streptavidin-) and B-cells (B220+c-

kit-CD43-IgM+strepatavidin-).  RNA was isolated by TRIzol (Invitrogen) purification 

and subjected to RT-qPCR as described below.   These sorts were repeated three times, 

with similar results. 
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Sequence alignments 

The miR-34a seed region and Foxp1 3’ UTR sequences from human (Homo sapiens), 

mouse (Mus musculus), rat (Rattus norvegicus) and dog (Canis familiaris) were obtained 

and aligned using TargetScan (Lewis et al. 2005, 2003). 

Experiments with cell lines 

VSV-G-pseudotyped FUGW lentiviruses were made using TransIT-293 based transient 

transfections of 293T cells as previously described (O'Connell et al. 2009).  The viruses 

were then used to infect NALM6 human pre-B-cells by spin-infection at 1,200xg for 90 

minutes at 30 degrees centigrade, supplemented with 10µg/mL polybrene (Chemicon).  

Single cell clones were derived by subjecting the cells to limiting dilution assays.  Clones 

were maintained in RPMI supplemented with 10% FBS and antibiotics.  For examination 

of Foxp1 levels in murine cells, MSCV-based retroviruses were prepared as described 

previously, pseudotyped with pCL-Eco, and used to infect 70Z/3 murine pre-B-cells.  

Cells were expanded for 3-4 days, and then utilized for RNA purification or protein 

extraction for Western blotting. 

Luciferase Reporter assays 

2 x 105 293T cells were cultured for 18 hours and subsequently transfected with relevant 

plasmids with TransIT 293.  Transfected plasmids included pcDNA3, pcDNA3-34a, β-

gal expression vector, and pmiReport vectors. For the derepression assays with the 

sponge construct, we added in MGP (empty vector) or MGP/anti-34as.  After 48 hours, 

cells were lysed using Reporter Lysis Buffer (Promega, Madison, WI) and firefly 

luciferase levels were measured in an Optocomp I luminometer (MGM Instruments, 

Hamden, CT) using a dual luciferase reporter assay kit (Promega) as per manufacturer’s 
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instructions.  β-galactosidase expression was assayed using a β-gal reporter gene assay 

kit (Roche, Basel, Switzerland) and used to normalize luciferase values. 

RNA preparation and quantitation 

RNA was isolated using TRIzol as per manufacturer’s instructions.  SYBR Green based 

quantitative real-time PCR (qPCR) was performed using the 7300 real-time PCR system 

(Applied Biosystems, Foster City, CA) to assay miR-34a, 5s, FoxP1 mRNA, BCL2 

mRNA and L32 mRNA levels as described previously (O'Connell et al. 2008). Mature 

miR-34a and 5s RNA were assayed using a miRVana miRNA detection kit as per 

manufacturer’s instructions (Ambion). Human FOXP1, BCL2 and L32 mRNA were 

detected using specific primers and utilizing the SybrGreen system (Applied Biosystems) 

(Table 4.S1). 

Western blotting 

Total cell extracts were fractionated by electrophoresis on 10% SDS polyacrylamide gel 

and electroblotted to Trans-Blot nitrocellulose membrane (Bio-Rad, Hercules, CA) using 

a semi-dry transfer apparatus (Bio-Rad). Protein detection was performed using the 

following antibodies: FoxP1 (ab16645) (Abcam, Cambridge, MA), β-Actin (A1978) 

(Sigma, St. Louis, MO); GAPDH (sc-47724), α-Tubulin (sc-5286), goat anti-mouse 

HRP-conjugated secondary antibody (sc-2005), goat anti-rabbit HRP-conjugated 

secondary antibody (sc-2004) (Santa Cruz Biotechnology, Santa Cruz, CA). Expression 

intensities were determined using Scion Image software. 

Statistical tests 

All statistical analyses were performed using Microsoft Excel.  Expression and flow 

cytometric data were first analyzed by an F-test to determine whether the distributions 
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were homo- or heteroscedastic.  Then, the correct type of unpaired, two-tailed T-test was 

applied to determine if the distributions were statistically different.  T-tests that returned 

p-values of less than 0.05 were considered to be statistically significant.     

 

 

 

 

 
  



130 
 

  

 

Supplemental figure 4.S1.  In vitro analyses of vectors used in this study. 

A.  RT-qPCR analysis of expression of miR-34a from the vector described in Figure 4.2 

shows overexpression following transduction of 70Z/3 cells.   

B.  Flow cytometric analysis of GFP expression in 70Z/3 cells following transduction 

with either MGP(vector) or MGP/34a (miR-34a).   
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C. Schematic representation of lentiviral construct used to express miR-34a in human cell 

lines.  A ubiquitin promoter drives expression of GFP and miR-34a (Lois et al. 2002).   

D.  miR-34a expression was measured by RT-qPCR in NALM6 human pre-B-cells 

following lentiviral transduction of FUGW or FUGW/miR-34a.   

E.  Flow cytometric analysis of GFP expression in NALM6 cells following lentiviral 

transduction of either FUGW or FUGW/miR-34a.  

F.  Northern blot analysis of miR-34a expression in NALM6 cells transduced with the 

lentiviral vectors, FUGW and FUGW/miR-34a. 
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Supplemental figure 4.S2.  Low-level miR-34a expression has subtle impacts 

on B-cell development. 

A.  miR-34a expression was measured in bone marrow samples of mice receiving MGP- 

transduced (vector) or MGP-miR-34a-lo (miR-34a-lo) vectors.  As described in the 

methods section, miR-34a-lo contains the endogenous stem-loop structure and 5’ and 3’ 

flanking regions found in the genomic sequence of miR-34a.  This results in production 

of lower amounts of mature miR-34a (n=4 for each group). 
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B.  Foxp1 expression was measured in the bone marrow by RT-qPCR in the same mice 

as in A.  A modest reduction in Foxp1 levels is seen, but less than that observed in mice 

overexpressing miR-34a at high levels. 

C.  Enumeration of pro-B-cells in mice described in A.  There is an elevation of pro-B-

cells, but results are not statistically significant.  This experiment was repeated three 

times, with similar trends being observed. 

D.  Enumeration of pre-B-cells in mice described in A.  There is a mild decrease in pre-

B-cells, but the results are not statistically significant (p=0.08).   
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Supplemental figure 4.S3. Bcl2 inhibition does not recapitulate the B-cell 

phenotype induced by miR-34a. 

A.  Vector design for MGP/Bcl2si which produces a siRNA that targets Bcl-2. 

B.  Bcl-2 expression in murine bone marrow measured by RT-qPCR, in mice that 

receivied marrow transduced with MGP (vector) or MGP/miR-34a (miR-34a).   This is 

the result from a representative experiment (n=4; T-test, p=0.03).  A second experiment 

showed a similar trend. 
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C.  Bcl-2 expression in murine bone marrow, measured by RT-qPCR in MGP- or MGP-

Bcl2si-transduced mouse bone marrow.  As expected, there is knockdown of Bcl2.   

D-G.  Enumeration of pro-B-cells (D), pre-B-cells (E), mature B-cells (F), and myeloid 

cells (G) in mice receiving marrow transduced with MGP (Vector) or MGP-Bcl2si (Bcl2-

si).  Note that all B-cell lineages and myeloid lineage cells show a trend toward reduction 

in the marrows that express Bcl2-si.     
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Supplemental figure 4.S4.  Foxp1 cDNA rescues the phenotype caused by 

miR-34a. 

A.  Flow cytometric analysis of bone marrow from recipient mice transduced with MIG, 

MIG/Foxp1, or MIG/Foxp1+34a.  Shown is a histogram of GFP fluorescence.  Note that 

the mean fluorescence as well as the size of the positive population is lowered by the 

addition of Foxp1 to MIG and is further lowered by the addition of the miR-34a element.   

B.  Flow cytometry histograms of GFP+ cells analyzed for pro-B-cell markers (B) and 

pre-B-cell markers (C).  The increased number of pro-B-cells seen in miR-34a mice 

(CD19+ c-kit+) is not seen in Foxp1-expressing or Foxp1+34a expressing mice (B).  The 

decreased number of pre-B-cells (CD43-B220+) observed in miR-34a mice is not seen in 

Foxp1-expressing or Foxp1+34a expressing mice (C).   
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Supplemental figure 4.S5.  Bcl2 does not rescue the B-cell developmental 

block induced by miR-34a.  

A.  Schematic representation of constructs encoding BCL2 and BCL2+miR-34a. 

B.  miR-34a expression in MIG (vector), MGP/34a (miR-34a), MIG/BCL2(BCL2) and 

MIG/BCL2+34a (BCL2+34a)-transduced mice, as measured by RT-qPCR.   

C.  BCL2 expression, measured by RT-qPCR in the same mice as in (B). 

D.  Bone marrow cells stained with CD19, c-kit and IgM, analyzed by flow cytometry.  

Left hand panels show representative histograms of the GFP+ IgM-negative compartment 

in BCL2 and BCL2+34a expressing mice.  The right-hand panel shows data enumerating 

pro-B-cells (CD19+IgM-c-kit+) as a percentage of total GFP+ cells (n=4).  The number 

of pro-B-cells was not significantly different in BCL2 mice versus control, but was 

significantly increased in BCL2+34a mice (T-test, p=0.0003). 

E.  Bone marrow cells stained with B220, IgM and CD43 were analyzed by flow 

cytometry.  Left hand panels show representative histograms of the GFP+ IgM- 

compartment in BCL2 and BCL2+34a expressing mice.  The right-hand panel shows  

data enumerating pre-B-cells (B220+CD43-IgM-) as a percentage of the total GFP+ cells 

(n=4).  The number of pre-B-cells was not significantly different in BCL2 mice versus 

control, but was significantly increased in BCL2+34a mice (T-test, p=0.004). 
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Supplemental Table 4.S1.  Cloning primers, template oligos, cDNA 
qPCR primers and cDNA sequence of Foxp1.  
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CHAPTER 5:  CONCLUSIONS AND FUTURE 

DIRECTIONS 
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Summary of Thesis 

The findings in the previous three chapters share the common theme of exploring 

the role of miRNAs in hematopoiesis and dissecting their connections with target 

mRNA/proteins in vivo.  These studies indicate that miR-155 and miR-34a are important 

players in myeloid and B-cell development, respectively.  In both of these cases, we can 

account for the majority of the phenotypic effects of the miRNA by downregulation of a 

single target.  Hence, this body of work has important implications for our understanding 

of cellular pathways that control hematopoietic development, and suggests specific 

modulation of a single or a few targets may be the relevant mode of miRNA function in 

hematopoietic developmental processes.  Additionally, we have developed a versatile 

methodology that will allow us to answer questions as to the role of particular miRNAs in 

hematopoiesis. 

The experimental approach to assessment of miRNA function in hematopoiesis 

that emerges from these studies is as follows.  In the hypothesis generation stage, 

particular hematopoietic developmental processes of interest can be assessed for miRNA 

involvement by profiling of cells at distinct developmental stages by array-based 

technologies.  Alternatively, the profiling of leukemic cells compared to their normal 

counterparts can reveal miRNAs of interest in malignancy.  In this regard, it is important 

to note that massively parallel sequencing techniques are beginning to reveal species-

specific and cell-type-specific miRNAs based on the presence of a mature small RNA 

sequence and the appropriate genomic context, i.e., the presence of 5’ and 3’ flanking 

regions, and a predicted stem-loop RNA structure (Basso et al. 2009).   
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 Following the identification of miRNAs of potential importance in a given 

developmental sequence, retrovirally based gain-of-function and loss of function 

approaches can be performed to assess the importance of a particular miRNA.  For this 

purpose, the MGP constitutive expression and “sponge” sequence vectors can be 

extremely useful (Chapters 3 and 4).  If these experiments reveal phenotypic changes in 

hematopoiesis, one can then begin to explore a molecular mechanism to explain the 

changes.  In this effort, array-based mRNA profiling of cell lines combined with a 

bioinformatics approach can reveal putative targets of the miRNA.  Further analyses to 

prove direct targeting (such as the luciferase-UTR assays described in the previous three 

chapters) can be followed by an assessment of the putative targets by gain- and loss of 

function analyses in hematopoiesis.  If a particular miRNA seems of great importance, 

traditional genetic techniques of targeted deletion can be utilized to further assess the 

miRNA of interest. 

 miR-155 has gained tremendous importance as an “oncomiR” over the past 

several years, and such a general role is consistent with our discovery of miR-155 

overexpression in acute myeloid leukemia (Eis et al. 2005; Habbe et al. 2009; Kluiver, 

Harakambieva et al. 2006; Kluiver et al. 2005; O'Connell et al. 2008; Pedersen et al. 

2009; Tam and Dahlberg, 2006; Tili et al. 2007).  In addition, we found a role in early 

hematopoietic development that seems to be connected to the inflammatory response.  

The critical distinction is that miR-155 is transiently upregulated from a very low 

baseline level during an inflammatory response, while it is constitutively active in cancer.  

It will be important to study the mechanisms whereby miR-155 is downregulated in cells 

following the acute phase of an inflammatory response.  While transcriptional 
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downregulation may play an important role, it will be very interesting to determine if 

posttranscriptional mechanisms, including miRNA degradation, are necessary for miR-

155 downregulation. 

 On the other hand, miR-34a is thought to be a tumor-suppressor miRNA, and it 

has been described to be a part of the p53-mediated transcriptional program.  miR-34a 

regulates B-cell development by modulating Foxp1, which is a transcription factor that is 

known to upregulate the Rag recombinase enzymes.  One curious reported finding is that 

miR-34a is upregulated in both acute lymphoblastic leukemia and acute myeloid 

leukemia (Isken et al. 2008; Zhang, Luo et al. 2009).  In the former case, it is tempting to 

speculate that miR-34a may be involved in causing the differentiation block found in this 

neoplasm of early B-cell progenitors, as was demonstrated in Chapter 4.  In the latter 

case, it has been postulated that a lympho-myeloid progenitor of AML exists (Deshpande 

et al. 2006); and miR-34a may play some role in modulating the lineage phenotype of a 

leukemia resulting from such a progenitor by blocking B-cell development.  However, 

both of these ideas require further study to be validated. 

 As this work developed, I have often wondered about how important miRNAs 

really are.  In fact, the majority of hematopoietic development seems to depend on 

transcription factor “switches,” and the conventional thought about miRNAs was that 

they served more as “fine tuners.”  However, the work presented here and elsewhere 

(Fontana et al. 2007; Xiao et al. 2007; Xiao and Rajewsky 2009; Zhou et al. 2007) is 

changing that paradigm-notably in the idea that miRNAs may be important in certain 

stages of developmental processes where they impact the levels of a few critical targets.   
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The idea that miRNAs regulate large numbers of genes is based on several lines 

of evidence-(i) miRNA-knockout cells show small changes in putative target mRNA 

abundance; (ii) miRNA overexpression in cell lines shows small impacts on large 

numbers of genes; (iii) luciferase-based reporter assays show repression in the context of 

a given miRNA and numerous putative target mRNAs, and (iv) target-prediction 

algorithms, based on a seed-sequence and interspecies conservation of both miRNA and 

target UTR sequences, predict large numbers of interactions (reviewed in Bartel and 

Chen (2004)).  However, these findings are based on models that fail to recapitulate a 

critical feature of hematopoietic development-that the cells are concurrently undergoing 

cell divisions and differentiating.  In most profiling studies, including those conducted 

with primary cells derived from knockout animals, the cells are relatively static, or fixed, 

in a particular stage of differentiation.  As such, it is difficult to capture what miRNA-

mRNA interactions are occurring in a cell that is transitioning from one stage of 

development to the next with a rapidly changing transcriptional profile.  In such a cell, a 

miRNA that regulates the abundance of a critical transcription factor may have dramatic 

effects on hematopoietic development, even if the effect on the transcription factor is 

small.  Indeed, such has been the case with miR-150/c-Myb, where small alterations in 

the concentration of miR-150 with reciprocal changes in c-Myb had dramatic changes in 

the output of B-lymphocytes from the bone marrow (Xiao and Rajewsky 2009). 

 This is not to say that all miRNA-target interactions follow such a specific 

paradigm.  There are many cells in the body that are quiescent and terminally 

differentiated.  It may very well be that in such cells, miRNAs do act in a manner 

analogous to dampeners in electrical circuits, shutting down the effects of transcriptional 
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noise, and maintaining the cells in a stable state.  This also has implications for cancer 

cells, where profiling studies have shown that there are fewer miRNAs expressed and that 

there are shorter 3’UTRs on the mRNAs that are expressed.  Hence, it implies fewer 

miRNA-target interactions, perhaps making it possible to target crucial interactions in 

these cells. 

 In addition to these concepts on miRNA-target specificity, I take away one 

additional idea from my thesis work.  miRNAs have shown new connections between 

cellular pathways that were previously considered disparate.  For example, the repression 

of SHIP1 by miR-155 connects NF-κB activation with SHIP1 repression, tying together a 

growth promoting pathway with repression of a tumor suppressor/growth inhibitory gene.  

In another example from the literature, c-MYC activates the transcription of the miR-17-

92 cluster, with resulting repression of the tumor suppressor PTEN by miRNAs from this 

cluster (He et al. 2005; Ventura et al. 2008).  Such connections may prove to be critical in 

the malignant transformation of cells, and disruption of miR-155 or miR-17-92 may 

markedly decrease the growth advantage of constitutive NF-κB or c-MYC.  Hence, there 

is an opportunity to more rationally understand how different growth-regulatory 

pathways are interconnected and to then parlay these discoveries into therapeutic 

possibilities for patients.   

Future Directions 

A mutually inhibitory regulatory circuit in myeloid differentiation? 

Myeloid differentiation in the steady state and during an inflammatory response 

seems to differ significantly.  In humans, for example, there is a so-called left-shift in the 
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peripheral blood during acute inflammation, which leads to a marked elevation of 

granulocytes in the circulation, as well as the release of some earlier myeloid forms from 

the bone marrow.  In the bone marrow of human patients with acute and chronic 

inflammatory diseases, there is an increase in myeloid cells, similar to the bone marrows 

of mice treated with LPS (personal observations and Chapter 2).  In surveying the 

literature in the past several years and from the work done in our laboratory, I have 

developed a hypothesis that may explain how two particular miRNAs may be important 

in regulating steady state and inflammatory myelopoiesis. 

Finding a powerful myeloproliferative phenotype with miR-155 overexpression, it 

was somewhat surprising that miR-155-deficient mice show no impairment in 

granulocytic differentiation at steady state.  Minor, but inconsistent, differences were 

seen during LPS-induced inflammatory myeloid development.  miR-223, when 

overexpressed, fails to cause a significant hematopoietic phenotype (Chen et al. 2004).  

However, when it is knocked out, mice develop a severe granulocytosis, including 

features indicative of activation (Johnnidis et al. 2008).  Indeed, some of the morphologic 

features of the granulocytes are similar to those seen in LPS-stimulated bone marrow.  

Also of interest, a recent study showed that miR-155 and miR-223 levels are inversely 

correlated in cases of acute myeloid leukemia (Wang et al. 2009). 

We and others have reported that LPS stimulation leads to induction of miR-155 

(O'Connell et al. 2008; Tili et al. 2007).  In a pilot experiment, I have discovered that 

miR-223 is repressed in bone marrow samples from mice treated with LPS (unpublished 

observations).  Hence it is possible that miR-155, by targeting transcription factors such 

as PU.1 and CEBP-β (known to enhance transcription of miR-223), can lead to a 
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downregulation of miR-223.  In doing so, an inflammatory program of myeloid 

differentiation may be activated.  Conversely, targets of miR-223 may represent 

activators of miR-155, although these factors have not yet been identified.  

The resultant hypothesis is that miR-155 and miR-223 form a mutually inhibitory 

miRNA-based network in regulating steady-state versus inflammatory granulopoiesis and 

myeloid development.  The predictions of this hypothesis lead to the formulation of broad 

specific aims as follows: 

(i) To determine if miR-155 expression is sufficient or necessary for repression 

of miR-223 

(ii) To determine if miR-223 expression is sufficient or necessary for repression 

of miR-155 

(iii) To determine if myeloid development is compromised if both miR-155 and 

miR-223 are absent   

It will be relatively straightforward to test these hypotheses in both the gain- and loss of 

function contexts.  It should be noted that miR-155 and miR-223 knockout mice have 

been generated and can be used for these experiments (Johnnidis et al. 2008; Thai et al. 

2007).    

Putative roles of miR-34a in normal and malignant B-cell development 

 The antigen-dependent stage of B-cell development that occurs in germinal 

centers of lymphoid organs and subsequent differentiation into plasma cells remains 

incompletely understood.  It is thought that mutually inhibitory transcription factor 

networks can explain the transition between the activated B-cells in the germinal center 
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and terminally differentiated quiescent plasma cells that are their progeny (reviewed in 

Johnson et al. (2005) and Shapiro-Shelef and Calame (2005)).  However, the mechanisms 

whereby the balance is shifted from the B-cell transcription factors to the plasma cell 

transcription factors is not completely understood.  Here, I propose that miR-34a may be 

an important factor in shifting that balance.   

By examining B-cell activation in tissue culture, we have discovered that miR-34a 

is upregulated following stimulation with LPS and IL-4, which results in the formation of 

activated B-cells and so-called plasmablasts that are partially differentiated antibody 

secreting cells.  In such cells, B-cell factors, such as Bcl6, Mitf, BCL2 and Bcl2, are 

repressed, and plasma cell factors, such as Blimp1, Xbp1, and Irf-4, are upregulated 

(Shapiro-Shelef and Calame, 2005).  One of the obfuscating points in the literature is the 

sometimes difficult distinction between activated B-cells and plasmablasts, the latter of 

which is thought to represent a later, more committed stage of differentiation.  Indeed, 

many of the papers in the field equate the presence of class-switched B-cells with plasma 

cell differentiation, which are related but distinct processes, at least from the standpoint 

of a cell biologist.  In this regard, the availability of a Blimp1-gfp reporter mouse, where 

GFP is expressed when the Blimp1 locus is transcriptionally active, has helped to clarify 

the issue by demonstrating low- and high-GFP expressing cells as B-cells at different 

points along the differentiation spectrum to the quiescent plasma cell. 

 We plan to study miR-34a involvement in this process for the following reasons: 

(i) miR-34a is upregulated upon activation of B-cells; (ii) p53, the transcriptional 

activator of miR-34a, is repressed by BCL6 (He et al. 2007; Phan and Dalla-Favera, 

2004); (iii) The predicted targets of miR-34a include Bcl6 and Bach2, which are both B-
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cell factors (Diehl et al. 2008; Muto et al. 2004; Ochiai et al. 2006, 2008); and (iv) p53 

itself was known to promote B-cell differentiation in some early work on this subject 

(Aloni-Grinstein et al. 1993).  The connections between p53 and miR-34a also raise the 

possibility that miR-34a is downregulated in p53-deficient malignancies and that 

restoration of its function can be a useful therapeutic strategy in cancer. 

 To summarize future work on this topic, I plan to test the following specific 

hypotheses: 

1. miR-34a is necessary and sufficient for plasma cell differentiation in cell culture 

models and following immunization in vivo. 

2.  Bcl6 and Bach 2 represent important targets of miR-34a in plasma cell 

differentiation. 

3. miR-34a restoration can mitigate the development of p53-deficient hematopoietic 

tumors by repressing several oncogenic miR-34 targets. 

Involvement of miRNAs and other noncoding RNA in human leukemia 

As alluded to in several previous chapters, miRNAs are deregulated in several 

types of cancer.  The functional characterization of these deregulated species, as in the 

case of miR-155, has led to a better understanding of normal hematopoiesis as well as the 

relationship between regulatory cellular pathways.  Yet, most studies show that several 

miRNAs are deregulated in various hematopoietic disease states.  An important question 

that arises from such profiling studies is whether multiple miRNAs that are deregulated 

in a particular disease state can synergistically have much larger effects on either normal 

or malignant development than a single miRNA alone.  In this, the development of 
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retroviral vectors that can constitutively express or simultaneously knockdown multiple 

miRNAs will be critical.  These can then be used in the bone marrow transfer system 

described in Chapters 2-4. 

It is also becoming apparent that miRNAs may form just one small portion of the 

cellular repertoire of noncoding RNA.  Indeed, some RNA biologists have estimated that 

the cell transcribes up to 20%-30% of its DNA sequence, with only 1% thought to 

represent protein coding genes (Cheng et al. 2005; Kapranov et al. 2002, 2007).  

Although the abundance of these noncoding transcripts (in comparison to protein coding 

transcripts and miRNA precursor transcripts) is only now being assessed, it is safe to say 

that there are likely additional classes of noncoding transcripts with gene regulatory 

functions.  Indeed, a recently described class of noncoding transcripts, linc-RNA (long 

intergenic noncoding RNA), associates with chromatin-modifying complexes and can 

modify gene expression (Guttman et al. 2009; Khalil et al. 2009; Rinn et al. 2007).  

Newly described classes of small RNA, dubbed promoter associated small RNA (PASR) 

and termini-associated small RNA (TASR) have also been ascribed putative functions in 

gene regulation (ENCODE Project, 2009). 

 Hence, it is an exciting time to be a physician-scientist studying the roles of 

noncoding RNA in normal and malignant hematopoiesis.  We have good questions to ask 

and robust experimental systems to use.  The ultimate hope is to transform the knowledge 

thus gained into a more meaningful understanding of biology and disease. 
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APPENDIX 1:  A review of miRNA in immune cell 

development 
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APPENDIX 2: 

A review of the roles of miRNAs in normal and pathological 

immune cell development 
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