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Chapter 5

Perturbation theory around a

nontrivial flat connection

We now change focus to consider Chern-Simons theory with noncompact, complex gauge

group, and in particular the various approaches to computing its perturbative partition

functions that were outlined in the Introduction.

We begin here by reviewing some basic features of Chern-Simons theory with complex

gauge group and its perturbative expansion, following mainly [39] and [40]. The notations

we introduce will be used throughout Part II. We then pursue the most traditional approach

to Chern-Simons theory, based on the evaluation of Feynman diagrams. This analysis will

show that the perturbative coefficients in the Chern-Simons partition functions have a very

special structure, motivating the definition of “arithmetic TQFT.” We define a “geometric”

flat SL(2,C) Chern-Simons connection that is related to the hyperbolic structure on a

hyperbolic three-manifold M , and conjecture that in the background of this connection

SL(2,C) Chern-Simons theory is such an arithmetic TQFT. In the last section of the

chapter, we substantiate this claim with explicit computations for the knots 41 and 52.

The discussions of Feynman diagrams and arithmeticity follow [3].

Starting in Section 5.2, some understanding of hyperbolic geometry will be helpful. We

will introduce several basic concepts as needed, but also refer the reader to Section 8.1 for

a more thorough treatment of hyperbolic three-manifolds. Similarly, the computations in

Section 5.4 will require some familiarity with the Volume Conjecture, which is described

much more fully in Sections 6.2 and 7.4.
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5.1 Basics

Let us denote a compact gauge group by G, its noncompact complexification by GC,

and the respective Lie algebras of these groups as g and gC. We can assume that G, GC are

reductive. As noted in the Introduction, the Chern-Simons action for a complex gauge field

A can be written as a sum of two (classically) topological terms, one for A and one for Ā:

S =
t

8π

∫
M

Tr
(
A ∧ dA+

2
3
A ∧A ∧A

)
(5.1.1)

+
t̄

8π

∫
M

Tr
(
Ā ∧ dĀ+

2
3
Ā ∧ Ā ∧ Ā

)
.

The field A here is a locally-defined gC-valued one-form on the euclidean three-manifold M .

The two coupling constant t and t̄ can be written as

t = k + σ , t = k − σ , (5.1.2)

and different physical unitarity structures force the “level” k to be an integer and σ to be

either real or imaginary [39]. For example, in the case GC = SL(2,C), the above action can

be recast as the action for euclidean gravity with negative cosmological constant by writing

A as a vielbein and a spin connection, A = −(w+ ie) [96], and under the resulting unitarity

structure the coupling σ must be real. Unlike in the case of compact gauge group, the level

k does not undergo a shift in the quantum theory [44].

It is explained in [39] that introducing a noncompact gauge group is a perfectly accept-

able option in Chern-Simons theory. In Yang-Mills theories, a noncompact gauge group

would lead to a kinetic term that is not positive definite, and hence to unbounded energy

(or an ill-defined path integral). In Chern-Simons theory with complex gauge group the

kinetic term is indefinite, but this is no problem: the Hamiltonian of the theory vanishes

due to topological invariance, so the “energy” is always exactly zero.

The classical solutions, or extrema of the action (5.1.1), are flat connections, i.e. con-

nections that obey

A+A ∧A = 0 , Ā+ Ā ∧ Ā = 0 . (5.1.3)

Flat GC-connections on a three-manifold M are completely determined by their holonomies,

i.e. by a homomorphism

ρ : π1(M)→ GC , (5.1.4)
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up to conjugacy (i.e. up to gauge transformations). Thus the moduli space of classical

solutions can be written as

Mflat(GC;M) = Hom(π1(M), GC)//GC . (5.1.5)

As discussed in the introduction, one can then consider perturbation theory around a given

flat connection A(ρ) ∈ Mflat(GC;M) corresponding to the homomorphism ρ. Since the

classical action is a sum of terms for A and Ā, the perturbative expansion of the partition

function around A(ρ) will factorize as (cf. [40, 41])

Z(ρ)(M) = Z(ρ)(M ; t)Z(ρ)(M ; t̄) . (5.1.6)

One may hope that the full non-perturbative path integral obeys a relation of the form

Z(M) =
∫
DA eiS =

∑
ρ

Z(ρ)(M ; t)Z(ρ)(M ; t̄) , (5.1.7)

summing over all flat connections. Here, however, we merely focus on the perturbative

pieces Z(ρ)(M ; t).

By standard methods of quantum field theory — essentially a stationary phase approx-

imation to the path integral — each component Z(ρ)(M ; t) can be expanded in inverse

powers of t. Explicitly, let us define Planck’s constant

~ =
2πi
t

(5.1.8)

and expand

Z(ρ)(M ; ~) = exp

(
1
~
S

(ρ)
0 − 1

2
δ(ρ) log ~ +

∞∑
n=0

S
(ρ)
n+1~

n

)
. (5.1.9)

The coefficients S(ρ)
n (and δ(ρ)) completely characterize Z(ρ)(M ; t) to all orders in pertur-

bation theory.

5.2 Coefficients and Feynman diagrams

Let us examine each term in the expansion (5.1.9) more carefully. As already mentioned

in the introduction, the leading term S
(ρ)
0 is the value of the classical holomorphic Chern-

Simons functional
1
4

∫
M

Tr
(
A ∧ dA+

2
3
A ∧A ∧A

)
(5.2.1)
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evaluated on a flat gauge connection A(ρ) that corresponds to a homomorphism ρ. It is also

easy to understand the integer coefficient δ(ρ) in (5.1.9). The homomorphism ρ defines a

flat GC bundle over M , which we denote as Eρ. Letting H i(M ;Eρ) be the i-th cohomology

group of M with coefficients in the flat bundle Eρ, the coefficient δ(ρ) is given by

δ(ρ) = h1 − h0 , (5.2.2)

where hi := dimH i(M ;Eρ). Both this term and S(ρ)
1 come from the “one-loop” contribution

to the path integral (1.0.2); S(ρ)
1 can be expressed in terms of the Ray-Singer torsion [97] of

M with respect to the flat bundle Eρ (cf. [13, 44, 98]),

S
(ρ)
1 =

1
2

log
(
T (M ;Eρ)

2

)
. (5.2.3)

b)a)

Figure 5.1: Two kinds of 2-loop Feynman diagrams that contribute to S(ρ)
2 .

The geometric interpretation of the higher-order terms S(ρ)
n with n > 1 is more interest-

ing, yet less obvious. To understand it better, we note that the saddle-point approximation

to the path integral (1.0.2) gives an expression for S(ρ)
n as a sum of Feynman diagrams

with n loops. For example, the relevant diagrams for n = 2 are shown schematically in

Figure 5.1. Since the Chern-Simons action (5.1.1) is cubic, all vacuum diagrams (that is,

Feynman diagrams with no external lines) are closed trivalent graphs; lines in such graphs

have no open end-points. Therefore, a Feynman diagram with n loops (n > 1) has 3(n− 1)

line segments with end-points meeting at 2(n − 1) trivalent vertices. Each such diagram

contributes an integral of the form (cf. [42])∫
M2n−2

L3n−3 , (5.2.4)

where M2n−2 denotes a product of 2n− 2 copies of M and L3n−3 denotes a wedge product

of a 2-form L(x, y) ∈ Ω2(Mx ×My; gC ⊗ gC). The 2-form L(x, y), called the “propagator,”
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is a solution to the first-order PDE,

dA(ρ)L(x, y) = δ3(x, y) , (5.2.5)

where δ3(x, y) is a δ-function 3-form supported on the diagonal in Mx ×My and dA(ρ) is

the exterior derivative twisted by a flat connection A(ρ) on the GC bundle Eρ.

For example, suppose that M is a geodesically complete hyperbolic 3-manifold of finite

volume. As we pointed out in the Introduction, such 3-manifolds provide some of the most

interesting examples for Chern-Simons theory with complex gauge group. Every such M

can be represented as a quotient

M = H3/Γ (5.2.6)

of the hyperbolic space H3 by a discrete, torsion-free subgroup Γ ⊂ PSL(2,C), which is

a holonomy representation of the fundamental group π1(M) into Isom+(H3) = PSL(2,C).

Furthermore, one can always choose a spin structure on M such that this holonomy repre-

sentation lifts to a map from π1(M) to SL(2,C). In what follows, we call this representation

“geometric” and denote the corresponding flat SL(2,C) connection as A(geom).

In order to explicitly describe the flat connection A(geom), recall that H3 can be defined

as the upper half-space with the standard hyperbolic metric

ds2 =
1
x2

3

(dx2
1 + dx2

2 + dx2
3) , x3 > 0 . (5.2.7)

The components of the vielbein and spin connection corresponding to this metric can be

written as

e1 =
dx1

x3
w1=

dx2

x3

e2 =
dx2

x3
w2=− dx1

x3

e3 =
dx3

x3
w3=0 .

These satisfy dea + εabcwb ∧ ec = 0. It is easy to check that the corresponding (P )SL(2,C)

connection

A(geom) = −(w + ie) =
1

2x3

dx3 2dx1 − 2idx2

0 −dx3

 (5.2.8)

is flat, i.e. obeys (1.0.3) on page 6. In Chern-Simons theory with gauge group GC =

(P )SL(2,C), this gives an explicit expression for the flat gauge connection that corresponds
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to the hyperbolic structure on M . In a theory with a larger gauge group, one can also define

a geometric connectionA(geom) by embedding (5.2.8) into a larger matrix. We note, however,

that A(geom) constructed in this way is not unique and depends on the choice of embedding.

Nevertheless, we will continue to use the notation A(geom) even in the higher-rank case

whenever the choice of embedding introduces no confusion.

The action of Γ on H3 can be conveniently expressed by identifying a point (x1, x2, x3) ∈

H3 with a quaternion q = x1 + x2i+ x3j and defining

γ : q 7→ (aq + b)/(cq + d) , γ =

 a b

c d

 ∈ PSL(2,C) . (5.2.9)

Explicitly, setting z = x1 + ix2, we find

γ(z + x3j) = z′ + x′3j , (5.2.10)

where

z′ =
(az + b)(c̄z̄ + d̄) + ac̄x2

3

|cz + d|2 + |c|2x2
3

, x′3 =
x3

|cz + d|2 + |c|2x2
3

. (5.2.11)

Let L0(x, y) be the propagator for H3, i.e. a solution to equation (5.2.5) on H3 × H3

with the non-trivial flat connection A(geom). Then, for a hyperbolic quotient space (5.2.6),

the propagator L(x, y) can simply be obtained by summing over images:

L(x, y) =
∑
γ∈Γ

L0(x, γy) . (5.2.12)

5.3 Arithmeticity

Now, we would like to consider what kind of values the perturbative invariants S(ρ)
n

can take. For n ≥ 1, the S(ρ)
n ’s are given by sums over Feynman diagrams, each of which

contributes an integral of the form (5.2.4). A priori the value of every such integral can

be an arbitrary complex number (complex because we are studying Chern-Simons theory

with complex gauge group) that depends on the 3-manifold M , the gauge group GC, and

the classical solution ρ. However, for a hyperbolic 3-manifold M = H3/Γ and for the flat

connection A(geom) associated with the hyperbolic structure on M , we find that the S(geom)
n ’s

are significantly more restricted.

Most basically, one might expect that the values of S(geom)
n ’s are periods [99]

S(geom)
n ∈ P. (5.3.1)
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Here P is the set of all periods, satisfying

Q ⊂ Q ⊂ P ⊂ C. (5.3.2)

By definition, a period is a complex number whose real and imaginary parts are (absolutely

convergent) integrals of rational functions with rational coefficients, over domains in Rn

defined by polynomial inequalities with rational coefficients [99]. Examples of periods are

powers of π, special values of L-functions, and logarithmic Mahler measures of polynomials

with integer coefficients. Thus, periods can be transcendental numbers, but they form a

countable set, P. Moreover, P is an algebra; a sum or a product of two periods is also a

period.

Although the formulation of the perturbative invariants S(geom)
n≥1 in terms of Feynman

diagrams naturally leads to integrals of the form (5.2.4), which have the set of periods, P,

as their natural home, here we make a stronger claim and conjecture that for n > 1 the

S
(geom)
n ’s are algebraic numbers, i.e. they take values in Q. As we indicated in (5.3.2), the

field Q is contained in P, but leads to a much stronger condition on the arithmetic nature

of the perturbative invariants S(geom)
n . In order to formulate a more precise conjecture, we

introduce the following definition:

Definition: A perturbative quantum field theory is called arithmetic if, for all n > 1, the

perturbative coefficients S(ρ)
n take values in some algebraic number field K,

S(ρ)
n ∈ K , (5.3.3)

and S
(ρ)
1 ∈ Q · log K .

Therefore, to a manifold M and a classical solution ρ an arithmetic topological quantum

field theory (arithmetic TQFT for short) associates an algebraic number field K,

(M,ρ) K . (5.3.4)

This is very reminiscent of arithmetic topology, a program proposed in the sixties by

D. Mumford, B. Mazur, and Yu. Manin, based on striking analogies between number theory

and low-dimensional topology. For instance, in arithmetic topology, 3-manifolds correspond

to algebraic number fields and knots correspond to primes.
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Usually, in perturbative quantum field theory the normalization of the expansion pa-

rameter is a matter of choice. Thus, in the notations of the present paper, a rescaling

of the coupling constant ~ → λ~ by a numerical factor λ is equivalent to a redefnition

S
(ρ)
n → λ1−nS

(ρ)
n . While this transformation does not affect the physics of the perturbative

expansion, it certainly is important for the arithmetic aspects discussed here. In particular,

the above definition of arithmetic QFT is preserved by such a transformation only if λ ∈ Q.

In a theory with no canonical scale of ~, it is natural to choose it in such a way that makes

the arithmetic nature of the perturbative coefficients S(ρ)
n as simple as possible. However,

in some cases (which include Chern-Simons gauge theory), the coupling constant must obey

certain quantization conditions, which, therefore, can lead to a “preferred” normalization

of ~ up to irrelevant Q-valued factors.

We emphasize that our definition of arithmetic QFT is perturbative. In particular, it

depends on the choice of the classical solution ρ. In the present context of Chern-Simons

gauge theory with complex gauge group GC, there is a natural choice of ρ when M is a

geodesically complete hyperbolic 3-manifold, namely the geometric representation that cor-

responds to A(geom). In this case, we conjecture:

Arithmeticity conjecture: As in (5.2.6), let M be a geodesically complete hyperbolic

3-manifold of finite volume, and let ρ = geom be the corresponding discrete faithful rep-

resentation of π1(M) into PSL(2,C). Then the perturbative Chern-Simons theory with

complex gauge group GC = PSL(2,C) (or its double cover, SL(2,C)) in the background of

a non-trivial flat connection A(geom) is arithmetic on M .

In fact, we can be a little bit more specific. In all the examples that we studied, we find

that, for M as in (5.2.6) and for all values of n > 1, the perturbative invariants S(geom)
n take

values in the trace field of Γ,

S(geom)
n ∈ Q(trΓ) , (5.3.5)

where, by definition, Q(trΓ) is the minimal extension of Q containing trγ for all γ ∈ Γ. We

conjecture that this is the case in general, namely that the SL(2,C) Chern-Simons theory

on a hyperbolic 3-manifold M = H3/Γ is arithmetic with K = Q(trΓ). This should be

contrasted with the case of a compact gauge group, where one usually develops perturbation

theory in the background of a trivial flat connection, and the perturbative invariants S(ρ)
n
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turn out to be rational numbers.

Of course, in this conjecture it is important that the representation ρ is fixed, e.g. by

the hyperbolic geometry of M as in the case at hand. As we shall see below, in many cases

the representation ρ admits continuous deformations or, put differently, comes in a family.

For geometric representations, this does not contradict the famous rigidity of hyperbolic

structures because the deformations correspond to incomplete hyperbolic structures on M .

In a sense, the second part of this section is devoted to studying such deformations. As

we shall see, the perturbative GC invariant Z(ρ)(M ; ~) is a function of the deformation

parameters, which on the geometric branch1 can be interpreted as shape parameters of the

associated hyperbolic structure.

In general, one might expect the perturbative coefficients S(ρ)
n>1 to be rational functions of

these shape parameters. Note that, if true, this statement would imply the above conjecture,

since at the point corresponding to the complete hyperbolic structure the shape parameters

take values in the trace field Q(trΓ). This indeed appears to be the case, at least for several

simple examples of hyperbolic 3-manifolds that we have studied.

For the arithmeticity conjecture to hold, it is important that ~ is defined (up to Q-valued

factors) as in (5.1.8) on page 83, so that the leading term S
(ρ)
0 is a rational multiple of the

classical Chern-Simons functional. This normalization is natural for a number of reasons.

For example, it makes the arithmetic nature of the perturbative coefficients S(ρ)
n as clear

as possible. Namely, according to the above arithmeticity conjecture, in this normalization

S
(geom)
1 is a period, whereas S(geom)

n>1 take values in Q. However, although we are not going

to use it here, we note that another natural normalization of ~ could be obtained by a

redefinition ~ → λ~ with λ ∈ (2πi)−1 · Q. As we shall see below, this normalization

is especially natural from the viewpoint of the analytic continuation approach. In this

normalization, the arithmeticity conjecture says that all S(geom)
n>1 are expected to be periods.

More specifically, it says that S(ρ)
n ∈ (2πi)n−1 · Q, suggesting that the n-loop perturbative

invariants S(geom)
n are periods of (framed) mixed Tate motives Q(n − 1). In this form, the

arithmeticity of perturbative Chern-Simons invariants discussed here is very similar to the

motivic interpretation of Feynman integrals in [100].

Finally, we note that, for some applications, it may be convenient to normalize the path

integral (1.0.2) by dividing the right-hand side by Z(S3; ~). (Since π1(S3) is trivial, we have
1i.e. on the branch containing the discrete faithful representation.
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Z(S3; ~) = Z(0)(S3; ~).) This normalization does not affect the arithmetic nature of the

perturbative coefficients S(geom)
n because, for M = S3, all the S(0)

n ’s are rational numbers.

Specifically,

Z(S3; ~) =
(

~
iπ

)r/2(VolΛwt

VolΛrt

)1/2 ∏
α∈Λ+

rt

2 sinh (~(α · %)) , (5.3.6)

where the product is over positive roots α ∈ Λ+
rt, r is the rank of the gauge group, and % is

half the sum of the positive roots, familiar from the Weyl character formula. Therefore, in

the above conjecture and in eq. (5.3.5) we can use the perturbative invariants of M with

either normalization.

The arithmeticity conjecture discussed here is a part of a richer structure: the quantum

GC invariants are only the special case x = 0 of a collection of functions indexed by rational

numbers x which each have asymptotic expansions in ~ satisfying the arithmeticity conjec-

ture and which have a certain kind of modularity behavior under the action of SL(2,Z) on

Q [101]. A better understanding of this phenomenon and its interpretation is a subject of

ongoing research.

5.4 Examples

In this section, we explicitly calculate the perturbative SL(2,C) invariants S(geom)
n for the

simplest hyperbolic knot complements in S3, i.e. for M = S3\K. It was conjectured in [40]

that such invariants can be extracted from the asymptotic expansion of knot invariants

computed by Chern-Simons theory with compact gauge group G = SU(2) in a double-

scaling limit

k →∞ , ~ =
iπ

N
→ 0 ,

N

k + 2
≡ 1 . (5.4.1)

Here, k is the (unnormalized) level of the SU(2) theory, and N is the dimension of an

SU(2) representation associated to a Wilson loop in S3 supported on the given knot K.

(This will be explained in much greater detail in Sections 6.2 and 7.4.) The relevant SU(2)

knot invariant is

J (K;N) =
JN

(
K; q

)
JN

(
unknot; q

) , q = e2~ = e
2πi
N , (5.4.2)

where JN (K; q) is the “N -colored Jones polynomial” of K, normalized such that

JN (unknot; q) =
qN/2 − q−N/2

q1/2 − q−1/2
(5.4.3)
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is the “quantum dimension” of the N -dimensional representation of SU(2).

According to the Generalized Volume Conjecture [40], the invariant J (K;N) should

have the asymptotics

J (K;N) ∼ Z(geom)(M ; iπ/N)
Z(S1 ×D2; iπ/N)

∼ N3/2 exp

( ∞∑
n=0

sn

(
2πi
N

)n−1
)

(5.4.4)

as N →∞, where

S(geom)
n = sn · 2n−1 (n 6= 1) (5.4.5)

S
(geom)
1 = s1 +

1
2

log 2 (n = 1)

are the perturbative SL(2,C) invariants of M = S3 r K. (Here, we view the solid torus,

S1 ×D2, as the complement of the unknot in the 3-sphere.) Specifically, one has

s0 = i
(
Vol(M) + iCS(M)

)
(5.4.6)

(Volume Conjecture) and s1 is the Ray-Singer torsion of M twisted by a flat connection,

cf. eq. (5.2.3). The Arithmeticity Conjecture of Section 5.3 predicts that

s1 ∈ Q · log K , sn ∈ K (n ≥ 2), (5.4.7)

where K is the trace field of the knot. We will present numerical computations supporting

this conjecture for the two simplest hyperbolic knots 41 and 52, following our work in [3].

The formulas for J (K;N) in both cases are known explicitly, see e.g. [102]. One has

J (41;N) =
N−1∑
m=0

(q)m(q−1)m , (5.4.8)

J (52;N) =
N−1∑
m=0

m∑
k=0

q−(m+1)k(q)2m/(q
−1)k , (5.4.9)

where (q)m = (1− q) · · · (1− qm) is the q-Pochhammer symbol as in Section 8.3. The first
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few values of these invariants are

N J (41;N) J (52;N)

1 1 1

2 5 7

3 13 18− 5q

4 27 40− 23q

5 44− 4q2 − 4q3 46− 55q − 31q2 + q3

6 89 120− 187q

7 100− 14q2 − 25q3 − 25q4 − 14q5 −154q − 88q2 + 47q3 + 58q4 + 77q5

8 187− 45q − 45q3 −84− 407q − 150q2 + 96q3

Using formula (5.4.8) for N of the order of 5000 and the numerical interpolation method

explained in [103] and [104], the values of sn for 0 ≤ n ≤ 27 were computed to very high

precision, resulting in

s0 =
1

2π2i
D
(
eπi/3

)
, s1 = −1

4
log 3 , (5.4.10)

the first in accordance with the volume conjecture and the second in accordance with the

first statement of (5.4.7), since K = Q
(√
−3
)

in this case. Moreover the numbers

s′n = sn ·
(
6
√
−3
)n−1 (n ≥ 2) (5.4.11)

are very close to rational numbers with relatively small and highly factored denominators:

n 2 3 4 5 6 7 8 9

s′n
11
12 2 1081

90 98 110011
105

207892
15

32729683
150

139418294
35

n 10 . . . 27

s′n
860118209659

10395 . . . 240605060980290369529478710291172763261781986098552
814172781296875

confirming the second prediction in (5.4.7). Here D(z) is the Bloch-Wigner dilogarithm

(8.1.3), cf. Section 8.1. (That sn is a rational multiple of (
√
−3)n−1, and not merely an

element of Q(
√
−3) is a consequence of (5.4.4) and the fact that J (41;N) is real.)
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Actually, in this case one can prove the correctness of the expansion rigorously: the

two formulas in (5.4.10) were proved in [105] and the rationality of the numbers s′n defined

by (5.4.11) in [106, 107] and [108], and can therefore check that the numerically determined

values are the true ones (see also [101] for a generalization of this analysis). In the case of

52, such an analysis has not been done, and the numerical interpolation method is therefore

needed. If one tries to do this directly using eq. (5.4.9), the process is very time-consuming

because, unlike the figure-8 case, there are now O(N2) terms. To get around this difficulty,

we use the formula
m∑

k=0

q(m+1)k

(q)k
= (q)m

m∑
k=0

qk2

(q)2k
, (5.4.12)

which is proved by observing that both sides vanish for m = −1 and satisfy the recursion

tm = (1 − qm)tm−1 + qm2
/(q)m . This proof gives a way to successively compute each tm

in O(1) steps (compute y = qm as q times the previous y, (q)m as 1− y times its previous

value, and then tm by the recursion) and hence to compute the whole sum in (5.4.9) in

only O(N) steps. The interpolation method can therefore be carried out to just as high

precision as in the figure-eight (41) case.

The results are as follows. The first coefficient is given to high precision by

s0 = − 3
2π
(
Li2(α) +

1
2

log(α) log(1− α)
)

+
π

3
, (5.4.13)

in accordance with the prediction (5.4.6), where α = 0.87743 · · · − 0.74486 . . . i is the root

of

α3 − α2 + 1 = 0 (5.4.14)

with negative imaginary part. The next four values are (again numerically to very high

precision)

s1 =
1
4

log
1 + 3α

23
, s2 =

198α2 + 1452α− 1999
24 · 232

,

s3 =
465α2 − 465α+ 54

2 · 233
, s4 =

−2103302α2 + 55115α+ 5481271
240 · 235

,

in accordance with the arithmeticity conjecture since K = Q(α) in this case.

These coefficients are already quite complicated, and the next values even more so. We

can simplify them by making the rescaling

s′n = sn λ
n−1 (5.4.15)
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(i.e., by expanding in powers of 2πi/λN instead of 2πi/N), where

λ = α5(3α− 2)3 = α−1(α2 − 3)3 . (5.4.16)

(This number is a generator of p3, where p = (3α − 2) = (α2 − 3) is the unique ramified

prime ideal of K, of norm 23.) We then find

s′2 = − 1
24

(
12α2 − 19α+ 86

)
,

s′3 = −3
2

(
2α2 + 5α− 4

)
,

s′4 = 1
240

(
494α2 + 12431α+ 1926

)
,

s′5 = −1
8

(
577α2 − 842α+ 1497

)
,

s′6 = 1
10080

(
176530333α2 − 80229954α− 18058879

)
,

s′7 = − 1
240

(
99281740α2 + 40494555α+ 63284429

)
,

s′8 = − 1
403200

(
3270153377244α2 − 4926985303821α− 8792961648103

)
,

s′9 = 1
13440

(
9875382391800α2 − 939631794912α− 7973863388897

)
,

s′10 = − 1
15966720

(
188477928956464660α2 + 213430022592301436α+ 61086306651454303

)
,

s′11 = − 1
1209600

(
517421716298434577α2 − 286061854126193276α− 701171308042539352

)
,

with much simpler coefficients than before, and with each denominator dividing (n + 2)! .

These highly nontrivial numbers give a strong experimental confirmation of the conjecture.

We observe that in both of the examples treated here the first statement of the conjec-

ture (5.4.7) can be strengthened to

exp(4s1) ∈ K . (5.4.17)

It would be interesting to know if the same statement holds for all hyperbolic knot com-

plements (or even all hyperbolic 3-manifolds). Another comment in this vein is that (5.4.6)

also has an arithmetic content: one knows that the right-hand side of this equation is in the

image under the extended regulator map of an element in the Bloch group (or, equivalently,

the third algebraic K-group) of the number field K.



Chapter 6

Geometric quantization

In Chapter 5, we introduced Chern-Simons perturbation theory and described the tradi-

tional approach to computing perturbative partition functions via Feynman diagrams. Now

we want to consider another approach, based on the quantization of moduli space spaces

of flat connections. Combined with the existence of a perturbative expansions (5.1.9), it

will yield a powerful method for calculating perturbative invariants (Section 6.3). We will

also find that quantization of Chern-Simons theory with complex gauge group GC is closely

related to quantization for compact group G, justifying a third approach to computing GC

invariants: “analytic continuation” (Section 6.2). Here, we mainly use analytic continu-

ation to find the operators Âi that annihilate GC partition functions, as explained in the

introduction. In Chapter 9, we will revisit analytic continuation, employing it more directly

to find classical integral expressions for partition functions.

Most of the results in this section follow [3]. We also include a short discussion of “brane

quantization” for Chern-Simons theory with complex gauge group from [3], as it is closely

related to geometric quantization.

6.1 Quantization of Mflat(GC, Σ)

As a TQFT, Chern-Simons gauge theory (with any gauge group) associates a Hilbert

space HΣ to a closed Riemann surface Σ and a vector in HΣ to every 3-manifold M with

boundary Σ. We denote this vector as |M〉 ∈ HΣ. If there are two such manifolds, M+ and

M−, glued along a common boundary Σ (with matching orientation), then the quantum

95
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invariant Z(M) that Chern-Simons theory associates to the closed 3-manifold M = M+ ∪Σ

M− is given by the inner product of two vectors |M+〉 and |M−〉 in HΣ

Z(M) = 〈M+|M−〉 . (6.1.1)

Therefore, in what follows, our goal will be to understand Chern-Simons gauge theory on

manifolds with boundary, from which invariants of closed manifolds without boundary can

be obtained via (6.1.1).

Since the Chern-Simons action (5.1.1) is first order in derivatives, the Hilbert spaceHΣ is

obtained by quantizing the classical phase space, which is the space of classical solutions on

the 3-manifold R×Σ. Such classical solutions are given precisely by the flat connections on

the Riemann surface Σ. Therefore, in a theory with complex gauge group GC, the classical

phase space is the moduli space of flat GC connections on Σ, modulo gauge equivalence,

Mflat(GC,Σ) = Hom(π1(Σ), GC)/conj. (6.1.2)

As a classical phase space, Mflat(GC,Σ) comes equipped with a symplectic structure ω,

which can also be deduced from the classical Chern-Simons action (5.1.1). Since we are

interested only in the “holomorphic” sector of the theory, we shall look only at the ki-

netic term for the field A (and not Ā); it leads to a holomorphic symplectic 2-form on

Mflat(GC,Σ):

ω =
i

4~

∫
Σ

Tr δA ∧ δA . (6.1.3)

We note that this symplectic structure does not depend on the complex structure of Σ,

in accord with the topological nature of the theory. Then, in Chern-Simons theory with

complex gauge group GC, the Hilbert space HΣ is obtained by quantizing the moduli space

of flat GC connections on Σ with symplectic structure (6.1.3):

quantization of (Mflat(GC,Σ), ω)  HΣ . (6.1.4)

Now, let us consider a closed 3-manifold M with boundary Σ = ∂M , and its associated

state |M〉 ∈ HΣ. In a (semi-)classical theory, quantum states correspond to Lagrangian sub-

manifolds of the classical phase space. Recall that, by definition, a Lagrangian submanifold

L is a middle-dimensional submanifold such that the restriction of ω to L vanishes,

ω|L = 0 . (6.1.5)
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For the problem at hand, the phase space isMflat(GC,Σ) and the Lagrangian submanifold

L associated to a 3-manifold M with boundary Σ = ∂M consists of flat connections on Σ

that can be extended to classical solutions on all of M [40]. Since the space of classical

solutions on M is the moduli space of flat GC connections on M ,

Mflat(GC,M) = Hom(π1(M), GC)/conj. , (6.1.6)

it follows that

L = ι
(
Mflat(GC,M)

)
(6.1.7)

is the image of Mflat(GC,M) under the map

ι :Mflat(GC,M)→Mflat(GC,Σ) (6.1.8)

induced by the natural inclusion π1(Σ)→ π1(M). One can show that L ⊂ Mflat(GC,Σ) is

indeed Lagrangian with respect to the symplectic structure (6.1.3).

Much of what we described so far is very general and has an obvious analogue in Chern-

Simons theory with arbitrary gauge group. However, quantization of Chern-Simons theory

with complex gauge group has a number of good properties. In this case the classical phase

space Mflat(GC,Σ) is an algebraic variety; it admits a complete hyper-Kähler metric [109],

and the Lagrangian submanifold L is a holomorphic subvariety ofMflat(GC,Σ). The hyper-

Kähler structure on Mflat(GC,Σ) can be obtained by interpreting it as the moduli space

MH(G,Σ) of solutions to Hitchin’s equations on Σ. Note that this requires a choice of com-

plex structure on Σ, whereas Mflat(GC,Σ) ∼=MH(G,Σ) as a complex symplectic manifold

does not. Existence of a hyper-Kähler structure onMflat(GC,Σ) considerably simplifies the

quantization problem in any of the existing frameworks, such as geometric quantization [45],

deformation quantization [46, 47], or “brane quantization” [48].

The hyper-Kähler moduli spaceMH(G,Σ) has three complex structures that we denote

as I, J , and K = IJ , and three corresponding Kähler forms, ωI , ωJ , and ωK (cf. [110]). In

the complex structure usually denoted by J ,MH(G,Σ) can be identified withMflat(GC,Σ)

as a complex symplectic manifold with the holomorphic symplectic form (6.1.3),

ω =
1
~

(ωK + iωI) . (6.1.9)

Moreover, in this complex structure, L is an algebraic subvariety of Mflat(GC,Σ). To be

more precise, it is a (finite) union of algebraic subvarieties, each of which is defined by
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polynomial equations Ai = 0. In the quantum theory, these equations are replaced by

corresponding operators Âi acting on HΣ that annihilate the state |M〉.

Now, let us consider in more detail the simple but important case when Σ is of genus 1,

that is Σ = T 2. In this case, π1(Σ) ∼= Z× Z is abelian, and

Mflat(GC, T
2) = (TC × TC)/W , (6.1.10)

where TC is the maximal torus of GC and W is the Weyl group. We parametrize each copy

of TC by complex variables l = (l1, . . . , lr) and m = (m1, . . . ,mr), respectively. Here, r is

the rank of the gauge group GC. The values of l and m are eigenvalues of the holonomies

of the flat GC connection over the two basic 1-cycles of Σ = T 2. They are defined up to

Weyl transformations, which act diagonally on TC × TC.

The moduli space of flat GC connections on a 3-manifold M with a single toral boundary,

∂M = T 2, defines a complex Lagrangian submanifold

L ⊂ (TC × TC)/W . (6.1.11)

(More precisely, this Lagrangian submanifold comprises the top-dimensional (stable) com-

ponents of the moduli space of flat GC connections on Σ.) In particular, a generic irreducible

component of L is defined by r polynomial equations

Ai(l,m) = 0 , i = 1, . . . , r , (6.1.12)

which must be invariant under the action of the Weyl group W (which simultaneously acts

on the eigenvalues l1, . . . , lr and m1, . . . ,mr).

In the quantum theory, the equations (6.1.12) are replaced by the operator equations,

Âi(l̂, m̂) Z(M) = 0 , i = 1, . . . , r . (6.1.13)

For Σ = T 2 the complex symplectic structure (6.1.3) takes a very simple form

ω =
i

~

r∑
i=1

dui ∧ dvi , (6.1.14)

where we introduce new variables u and v (defined modulo elements of the cocharacter

lattice Λcochar = Hom(U(1),T)), such that l = −ev and m = eu. In the quantum theory,

u and v are replaced by operators û and v̂ that obey the canonical commutation relations

[ûi, v̂j ] = −~ δij . (6.1.15)
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As one usually does in quantum mechanics, we can introduce a complete set of states |u〉

on which û acts by multiplication, ûi|u〉 = ui|u〉. Similarly, we let |v〉 be a complete basis,

such that v̂i|v〉 = vi|v〉. Then, we can define the wave function associated to a 3-manifold

M either in the u-space or v-space representation, respectively, as 〈u|M〉 or 〈v|M〉. We will

mostly work with the former and let Z(M ;u) := 〈u|M〉.

We note that a generic value of u does not uniquely specify a flat GC connection on

M or, equivalently, a unique point on the representation variety (6.1.7). Indeed, for a

generic value of u, equations (6.1.12) may have several solutions that we label by a discrete

parameter α. Therefore, in the u-space representation, flatGC connections onM (previously

labeled by the homomorphism ρ ∈ L) are now labeled by a set of continuous parameters

u = (u1, . . . , ur) and a discrete parameter α:

ρ ←→ (u, α) . (6.1.16)

The perturbativeGC invariant Z(ρ)(M ; ~) can then be written in this notation as Z(α)(M ; ~, u) =

〈u, α|M〉. Similarly, the coefficients S(ρ)
n in the ~-expansion can be written as S(α)

n (u).

To summarize, in the approach based on quantization ofMflat(GC,Σ) the calculation of

Z(ρ)(M ; ~) reduces to two main steps: i) the construction of quantum operators Âi(l̂, m̂),

and ii) the solution of Schrödinger-like equations (6.1.13). Below we explain how to imple-

ment each of these steps.

6.2 Analytic continuation and the Volume Conjecture

For a generic 3-manifold M with boundary Σ = T 2, constructing the quantum operators

Âi(l̂, m̂) may be a difficult task. However, when M is the complement of a knot K in the

3-sphere,

M = S3 rK , (6.2.1)

there is a simple way to find the Âi’s. Indeed, as anticipated in the introduction, these

operators also annihilate the polynomial knot invariants PG,R(K; q), which are defined in

terms of Chern-Simons theory with compact gauge group G,

Âi(l̂, m̂) PG,R(K; q) = 0 . (6.2.2)
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The operator l̂i acts on the set of polynomial invariants {PG,R(K; q)} by shifting the highest

weight λ = (λ1, . . . , λr) of the representation R by the i-th basis elements of the weight

lattice Λwt, while the operator m̂j acts simply as multiplication by qλj/2. Let us briefly

explain how this comes about.

In general, the moduli space Mflat(GC,Σ) is a complexification of Mflat(G,Σ). The

latter is the classical phase space in Chern-Simons theory with compact gauge group G and

can be obtained from Mflat(GC,Σ) by requiring all the holonomies to be “real,” i.e. in G.

Similarly, restricting to real holonomies in the definition of L produces a Lagrangian sub-

manifold in Mflat(G,Σ) that corresponds to a quantum state |M〉 in Chern-Simons theory

with compact gauge group G. In the present example of knot complements, restricting to

such “real” holonomies means replacing TC by T in (6.1.10) and taking purely imaginary

values of ui and vi in equations (6.1.12). Apart from this, the quantization problem is

essentially the same for gauge groups G and GC. In particular, the symplectic structure

(6.1.14) has the same form (with imaginary ui and vi in the theory with gauge group G) and

the quantum operators Âi(l̂, m̂) annihilate both PG,R(K; q) and Z(α)(M ; ~, u) computed,

respectively, by Chern-Simons theories with gauge groups G and GC.

In order to understand the precise relation between the parameters in these theories, let

us consider a Wilson loop operator, WR(K), supported on K ⊂ S3 in Chern-Simons theory

with compact gauge group G. It is labeled by a representation R = Rλ of the gauge group

G, which we assume to be an irreducible representation with highest weight λ ∈ t∨. The

path integral in Chern-Simons theory on S3 with a Wilson loop operator WR(K) computes

the polynomial knot invariant PG,R(K; q), with q = e2~. Using (6.1.1), we can represent

this path integral as 〈R|M〉, where |R〉 is the result of the path integral on a solid torus

containing a Wilson loop WR(K), and |M〉 is the path integral on its complement, M .

In the semi-classical limit, the state |R〉 corresponds to a Lagrangian submanifold of

Mflat(G,T 2) = (T × T)/W defined by the fixed value of the holonomy m = eu on a small

loop around the knot. The relation between m = eu, which is an element of the maximal

torus T of G, and the representation Rλ is given by the invariant quadratic form −Tr

(restricted to t). Specifically,

m = exp ~(λ∗ + ρ∗) ∈ T , (6.2.3)

where λ∗ is the unique element of t such that λ∗(x) = −Trλx for all x ∈ t, and ρ∗ is the
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analogous dual of the Weyl vector (half the sum of positive weights of G). For example,

for the N -colored Jones polynomial, corresponding to the N -dimensional representation of

SU(2), (6.2.3) looks like m = exp ~N . In “analytic continuation,” we analytically continue

this relation to m ∈ TC. A perturbative partition function arises as

~→ 0 , λ∗ →∞ for u = ~(λ∗ + ρ∗) fixed . (6.2.4)

A more detailed explanation of the limit (6.2.3), will appear in Chapter 7, where we discuss

Wilson loops for complex as well as compact groups.

For a given value of m = eu, equations (6.1.12) have a finite set of solutions lα, labeled

by α. Only for one particular value of α is the perturbative GC invariant Z(α)(M ; ~, u)

related to the asymptotic behavior of PG,R(K; q). This is the value of α which maximizes

Re
(
S

(α)
0 (M ;u)

)
. For this α, we have:

Z(α)(M ; ~, u)
Z(S3; ~)

= asymptotic expansion of PG,R(K; q) . (6.2.5)

For hyperbolic knots and u sufficiently close to 0, this “maximal” value of α is always

α = geom.

It should nevertheless be noted that the analytic continuation described here is not as

“analytic” as it sounds. In particular, the limit (6.2.4) is very subtle and requires much

care. As explained in [40], in taking this limit it is important that values of q = e2~ avoid

roots of unity. If one takes the limit with ~−1 ∈ 1
iπZ, which corresponds to the allowed

values of the coupling constant in Chern-Simons theory with compact gauge group G, then

one can never see the exponential asymptotics (5.1.9) with Im(S(ρ)
0 ) > 0. The exponential

growth characteristic to Chern-Simons theory with complex gauge group emerges only in

the limit with ~ = u/(λ∗ + ρ∗) and u generic.1

6.3 Hierarchy of differential equations

The system of Schrödinger-like equations (6.1.13) determines the perturbative GC in-

variant Z(α)(M ; ~, u) up to multiplication by an overall function of ~, which can be fixed

by suitable boundary conditions.
1The subtle behavior of the compact Chern-Simons partition function as the level k = iπ/~ and

the representation λ∗ are continued away from integers has recently been analyzed carefully in [41].

In particular, the transition from polynomial to exponential growth is explained there.
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In order to see in detail how the perturbative coefficients S(α)
n (u) may be calculated and

to avoid cluttering, let us assume that the rank r = 1. (A generalization to arbitrary values

of r is straightforward.) In this case, A(l,m) is the so-called A-polynomial of M , originally

introduced in [111], and the system (6.1.13) consists of a single equation

Â(l̂, m̂)Z(α)(M ; ~, u) = 0 . (6.3.1)

In the u-space representation the operator m̂ = exp(û) acts on functions of u simply via

multiplication by eu, whereas l̂ = exp(v̂ + iπ) = exp(~ d
du) acts as a “shift operator”:

m̂f(u) = euf(u) , l̂f(u) = f(u+ ~) . (6.3.2)

In particular, the operators l̂ and m̂ obey the relation

l̂m̂ = q
1
2 m̂l̂ , (6.3.3)

which follows directly from the commutation relation (6.1.15) for û and v̂, with

q = e2~ . (6.3.4)

We would like to recast eq. (6.3.1) as an infinite hierarchy of differential equations that

can be solved recursively for the perturbative coefficients S(α)
n (u). Just like its classical limit

A(l,m), the operator Â(l̂, m̂) is a polynomial in l̂. Therefore, pushing all operators l̂ to the

right, we can write it as

Â(l̂, m̂) =
d∑

j=0

aj(m̂, ~) l̂j (6.3.5)

for some functions aj(m, ~) and some integer d. Using (6.3.2), we can write eq. (6.3.1) as

d∑
j=0

aj(m, ~)Z(α)(M ; ~, u+ j~) = 0 . (6.3.6)

Then, substituting the general form (5.1.9) of Z(α)(M ; ~, u), we obtain the equation

d∑
j=0

aj(m, ~) exp

[
1
~
S

(α)
0 (u+ j~)− 1

2
δ(α) log ~ +

∞∑
n=0

~nS
(α)
n+1(u+ j~)

]
= 0 . (6.3.7)

Since δ(α) is independent of u, we can just factor out the −1
2δ

(α) log ~ term and remove it

from the exponent. Now we expand everything in ~. Let

aj(m, ~) =
∞∑

p=0

aj,p(m)~p (6.3.8)
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and
∞∑

n=−1

~nSn+1(u+ j~) =
∞∑

r=−1

r∑
m=−1

jr−m

(r −m)!
~rS

(r−m)
m+1 (u) , (6.3.9)

suppressing the index α to simplify notation. We can substitute (6.3.8) and (6.3.9) into

(6.3.7) and divide the entire expression by exp(
∑

n ~nSn+1(u) ). The hierarchy of equations

then follows by expanding the exponential in the resulting expression as a series in ~ and

requiring that the coefficient of every term in this series vanishes (see also [112]). The first

four equations are shown in Table 6.1.

d∑
j=0

ejS′0aj,0 = 0

d∑
j=0

ejS′0

(
aj,1 + aj,0

(1
2
j2S′′0 + jS′1

))
= 0

d∑
j=0

ejS′0

(
aj,2 + aj,1

(1
2
j2S′′0 + jS′1

)
+ aj,0

(
1
2
(1

2
j2S′′0 + jS′1

)2 +
j3

6
S′′′0 +

j2

2
S′′1 + jS′2

))
= 0

d∑
j=0

ejS′0

(
aj,3 + aj,2

(1
2
j2S′′0 + jS′1

)
+ aj,1

(
1
2
(1

2
j2S′′0 + jS′1

)2 +
j3

6
S′′′0 +

j2

2
S′′1 + jS′2

)

+ aj,0

(
1
6
(1

2
j2S′′0 + jS′1

)3 +
(1

2
j2S′′0 + jS′1

)(j3
6
S′′′0 +

j2

2
S′′1 + jS′2

)
+
j4

24
S

(4)
0 +

j3

6
S′′′1 +

j2

2
S′′2 + jS′3

))
= 0

. . .

Table 6.1: Hierarchy of differential equations derived from Â(l̂, m̂) Z(α)(M ; ~, u) = 0.

The equations in Table 6.1 can be solved recursively for the Sn(u)’s, since each Sn first

appears in the (n+ 1)st equation, differentiated only once. Indeed, after S0 is obtained, the

remaining equations feature the Sn≥1 linearly the first time they occur, and so determine

these coefficients uniquely up to an additive constant of integration.

The first equation, however, is somewhat special. Since aj,0(m) is precisely the coefficient

of lj in the classical A-polynomial A(l,m), we can rewrite this equation as

A(eS
′
0(u), eu) = 0 . (6.3.10)

This is exactly the classical constraint A(ev+iπ, eu) = 0 that defines the complex Lagrangian

submanifold L, with S′0(u) = v + iπ. Therefore, we can integrate along a branch (lα =
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evα+iπ,m = eu) of L to get the value of the classical Chern-Simons action (5.2.1) [40]

S
(α)
0 (u) = const +

∫ u

θ|L , (6.3.11)

where θ|L denotes a restriction to L of the Liouville 1-form on Mflat(GC,Σ),

θ = vdu+ iπdu . (6.3.12)

The expression (6.3.11) is precisely the semi-classical approximation to the wave function

Z(α)(M ; ~, u) supported on the Lagrangian submanifold L, obtained in the WKB quantiza-

tion of the classical phase spaceMflat(GC,Σ). By definition, the Liouville form θ (associated

with a symplectic structure ω) obeys dθ = i~ω, and it is easy to check that this is indeed the

case for the forms ω and θ onMflat(GC,Σ) given by eqs. (6.1.14) and (6.3.12), respectively.

The semi-classical expression (6.3.11) gives the value of the classical Chern-Simons func-

tional (5.1.1) evaluated on a flat gauge connection A(ρ), labeled by a homomorphism ρ. As

we explained in (6.1.16), the dependence on ρ is encoded in the dependence on a continuous

holonomy parameter u, as well as a discrete parameter α that labels different solutions vα(u)

to A(ev+iπ, eu) = 0, at a fixed value of u. In other words, α labels different branches of the

Riemann surface A(l,m) = 0, regarded as a cover of the complex plane C parametrized by

m = eu,

A(lα,m) = 0 . (6.3.13)

Since A(l,m) is a polynomial in both l and m, the set of values of α is finite (in fact, its

cardinality is equal to the degree of A(l,m) in l). Note, however, that for a given choice

of α there are infinitely many ways to lift a solution lα(u) to vα(u); namely, one can add

to vα(u) any integer multiple of 2πi. This ambiguity implies that the integral (6.3.11) is

defined only up to integer multiples of 2πiu,

S
(α)
0 (u)− const =

∫ u

log lα(u′) du′ =
∫ u

vα(u′) du′ + iπu (mod 2πiu) . (6.3.14)

In practice, this ambiguity can always be fixed by imposing suitable boundary conditions

on S
(α)
0 (u), and it never affects the higher-order terms S(α)

n (u). Therefore, since our main

goal is to solve the quantum theory (to all orders in perturbation theory) we shall not worry

about this ambiguity in the classical term. As we illustrate later (see Section 6.6), it will

always be easy to fix this ambiguity in concrete examples.

Before we proceed, let us remark that if M is a hyperbolic 3-manifold with a single torus

boundary Σ = ∂M and A(geom) is the “geometric” flat SL(2,C) connection associated with
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a hyperbolic metric on M (not necessarily geodesically complete), then the integral (6.3.14)

is essentially the complexified volume function, i(Vol(M ;u) + iCS(M ;u)), which combines

the (real) hyperbolic volume and Chern-Simons invariants2 of M . Specifically, the relation

is [40, 114]:

S
(geom)
0 (u) =

i

2

[
Vol(M ;u) + iCS(M ;u)

]
+ vgeom(u) Re(u) + iπu , (6.3.15)

modulo the integration constant and multiples of 2πiu.

6.4 Classical and quantum symmetries

A vast supply of 3-manifolds with a single toral boundary can be obtained by considering

knot complements as in (6.2.1); our main examples throughout this thesis are of this type.

As discussed above, the Lagrangian subvariety L ∈Mflat(GC,Σ) for any knot complement

M is defined by polynomial equations (6.1.12). Such an L contains multiple branches,

indexed by α, corresponding to the different solutions to {Ai(l,m) = 0} for fixed m. In this

section, we describe relationships among these branches and the corresponding perturbative

invariants Z(α)(M ; ~, u) by using the symmetries of Chern-Simons theory with complex

gauge group GC.

Before we begin, it is useful to summarize what we already know about the branches

of L. As mentioned in the previous discussion, there always exists a geometric branch —

or in the case of rank r > 1 several geometric branches — when M is a hyperbolic knot

complement. Like the geometric branch, most other branches of L correspond to genuinely

nonabelian representations ρ : π1(Σ) → GC. However, for any knot complement M there

also exists an “abelian” component of L, described by the equations

l1 = . . . = lr = 1 . (6.4.1)

Indeed, sinceH1(M) is the abelianization of π1(M), the representation variety (6.1.6) always
2Here u describes the cusp of a hyperbolic metric on M . For example, imaginary u parametrizes

a conical singularity. See, e.g. [113, 114, 115] and our discussion in Section 8.1 for more detailed

descriptions of Vol(M ;u) and CS(M ;u). In part of the literature (e.g. in [114]), the parameters

(u, v) are related to those used here by 2uhere = uthere and 2(vhere + iπ) = vthere. We include a shift

of iπ in our definition of v so that the complete hyperbolic structure arises at (u, v) = (0, 0).
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has a component corresponding to abelian representations that factor through H1(M) ∼= Z,

π1(M)→ H1(M)→ GC . (6.4.2)

The corresponding flat connection, A(abel), is characterized by the trivial holonomy around

a 1-cycle of Σ = T 2 which is trivial in homology H1(M); choosing it to be the 1-cycle whose

holonomy was denoted by l = (l1, . . . , lr) we obtain (6.4.1). Note that, under projection to

the u-space, the abelian component of L corresponds to a single branch that we denote by

α = abel.

The first relevant symmetry of Chern-Simons theory with complex gauge group GC is

conjugation. We observe that for every flat connection A(ρ) on M , with ρ = (u, α), there is

a conjugate flat connection A(ρ̄) := A(ρ) corresponding to a homomorphism ρ̄ = (ū, ᾱ). We

use ᾱ to denote the branch of L “conjugate” to branch α; the fact that branches of L come

in conjugate pairs is reflected in the fact that eqs. (6.1.12) have real (in fact, integer) coef-

ficients. The perturbative expansions around Aρ and Aρ̄ are very simply related. Namely,

by directly conjugating the perturbative path integral and noting that the Chern-Simons

action has real coefficients, we find3 Zα(M ; ~, u) = Z(ᾱ)(M ; ~̄, ū). The latter partition func-

tion is actually in the antiholomorphic sector of the Chern-Simons theory, but we can just

rename (~̄, ū) 7→ (~, u) (and use analyticity) to obtain a perturbative partition function for

the conjugate branch in the holomorphic sector,

Z(ᾱ)(M ; ~, u) = Z(α)(M ; ~, u) . (6.4.3)

Here, for any function f(z) we define f̄(z) := f(z̄). In particular, if f is analytic, f(z) =∑
fnz

n, then f̄ denotes a similar function with conjugate coefficients, f̄(z) =
∑
f̄nz

n.

In the case r = 1, the symmetry (6.4.3) implies that branches of the classical SL(2,C)

A-polynomial come in conjugate pairs vα and vᾱ(u) = vα(u). Again, these pairs arise

algebraically because the A-polynomial has integer coefficients. (See e.g. [111, 116] for a

detailed discussion of properties of A(l,m).) Some branches, like the abelian branch, may

be self-conjugate. For the abelian branch, this is consistent with S(abel)
0 = 0. The geometric

3More explicitly, letting ICS(~,A) = − 1
4~
∫

M
Tr
(
A ∧A+ 2

3A ∧A ∧A
)
, we have

Zα(M ; ~, u) =

(∫
(u,α)

DA eICS(~,A)

)∗
=
∫

(ū,ᾱ)

DĀ eICS(~̄,Ā) = Z(ᾱ)(M ; ~̄, ū) .
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branch, on the other hand, has a distinct conjugate because Vol(M ; 0) > 0 ; from (6.3.15)

we see that its leading perturbative coefficient obeys

S
(conj)
0 (u) =

i

2

[
−Vol(M ; ū) + iCS(M ; ū)

]
+ vgeom(u)Re(u)− iπu . (6.4.4)

In general, we have

S
(ᾱ)
0 (u) = S

(α)
0 (u) (mod 2πu) . (6.4.5)

Now, let us consider symmetries that originate from geometry, i.e. symmetries that

involve involutions of M ,

τ : M →M . (6.4.6)

Every such involution restricts to a self-map of Σ = ∂M ,

τ |Σ : Σ→ Σ , (6.4.7)

which, in turn, induces an endomorphism on homology, Hi(Σ). Specifically, let us con-

sider an orientation-preserving involution τ which induces an endomorphism (−1,−1) on

H1(Σ) ∼= Z×Z. This involution is a homeomorphism of M ; it changes our definition of the

holonomies,

mi →
1
mi

and li →
1
li
, (6.4.8)

leaving the symplectic form (6.1.14) invariant. Therefore, it preserves both the symplectic

phase space Mflat(GC,Σ) and the Lagrangian submanifold L (possibly permuting some of

its branches).

In the basic case of rank r = 1, the symmetry (6.4.8) corresponds to the simple, well-

known relation A(l−1,m−1) = A(l,m), up to overall powers of l and m. Similarly, at the

quantum level, Â(l̂−1, m̂−1) = Â(l̂, m̂) when Â(l̂, m̂) is properly normalized. Branches of the

A-polynomial are individually preserved, implying that the perturbative partition functions

(and the coefficients S(α)
n ) are all even:

Z(α)(M ; ~,−u) = Z(α)(M ; ~, u) , (6.4.9)

modulo factors of e2πu/~ that are related to the ambiguity in S
(α)
0 (u). Note that in the

r = 1 case one can also think of the symmetry (6.4.8) as the Weyl reflection. Since, by

definition, holonomies that differ by an element of the Weyl group define the same point in

the moduli space (6.1.10), it is clear that bothMflat(GC,Σ) and L are manifestly invariant
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under this symmetry. (For r > 1, Weyl transformations on the variables l and m lead to

new, independent relations among the branches of L.)

Finally, let us consider a more interesting “parity” symmetry, an orientation-reversing

involution

P : M →M (6.4.10)

P |Σ : Σ→ Σ (6.4.11)

that induces a map (1,−1) on H1(Σ) ∼= Z×Z. This operation by itself cannot be a symmetry

of the theory because it does not preserve the symplectic form (6.1.14). We can try, however,

to combine it with the transformation ~ → −~ to get a symmetry of the symplectic phase

space (Mflat(GC,Σ), ω). We are still not done because this combined operation changes

the orientation of both Σ and M , and unless M ∼= M the state |M〉 assigned to M will be

mapped to a different state |M〉. But if M is an amphicheiral4 manifold, then both mi → 1
mi

and li → 1
li

(independently) become symmetries of the theory, once combined with ~→ −~.

This now implies that solutions come in signed pairs, vα(u) and vα̂(u) = −vα(u), such that

the corresponding perturbative GC invariants satisfy

Z(α̂)(M ; ~, u) = Z(α)(M ;−~, u) . (6.4.12)

For the perturbative coefficients, this leads to the relations

S
(α̂)
0 (u) = −S(α)

0 (u) (mod 2πu) , (6.4.13)

S(α̂)
n (u) = (−1)n+1S(α)

n (u) n ≥ 1 . (6.4.14)

Assuming that the ∼ ± i
2Vol(M ;u) behavior of the geometric and conjugate branches

is unique, their signed and conjugate pairs must coincide for amphicheiral 3-manifolds.

S
(geom)
0 , then, is an even analytic function of u with strictly real series coefficients; at

u ∈ iR, the Chern-Simons invariant CS(M ;u) will vanish.

6.5 Brane quantization

Now, let us briefly describe how a new approach to quantization based on D-branes in

the topological A-model [48] can be applied to the problem of quantizing the moduli space
4A manifold is called chiral or amphicheiral according to whether the orientation cannot or can

be reversed by a self-map.
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of flat connections,Mflat(GC,Σ). This discussion is not crucial for the rest of the chapter —

although it can be useful for obtaining a better understanding of Chern-Simons theory with

complex gauge group — and the reader not interested in this approach may skip directly

to Section 6.6.

In the approach of [48], the problem of quantizing a symplectic manifold N with sym-

plectic structure ω is solved by complexifying (N,ω) into a new space (Y,Ω) and studying

the A-model of Y with symplectic structure ωY = ImΩ. Here, Y is a complexification of

N , i.e. a complex manifold with complex structure I and an antiholomorphic involution

τ : Y → Y , (6.5.1)

such that N is contained in the fixed point set of τ and τ∗I = −I. The 2-form Ω on Y is

holomorphic in complex structure I and obeys

τ∗Ω = Ω (6.5.2)

and

Ω|N = ω . (6.5.3)

In addition, one needs to pick a unitary line bundle L→ Y (extending the “prequantum line

bundle” L → N) with a connection of curvature ReΩ. This choice needs to be consistent

with the action of the involution τ , meaning that τ : Y → Y lifts to an action on L, such

that τ |N = id. To summarize, in brane quantization the starting point involves the choice

of Y , Ω, L, and τ .

In our problem, the space N = Mflat(GC,Σ) that we wish to quantize is already a

complex manifold. Indeed, as we noted earlier, it comes equipped with the complex structure

J (that does not depend on the complex structure on Σ). Therefore, its complexification5

is Y = N ×N with the complex structure on N being prescribed by −J and the complex

structure on Y being I = (J,−J). The tangent bundle TY = TN ⊕ TN is identified

with the complexified tangent bundle of N , which has the usual decomposition CTN =

T 1,0N ⊕ T 0,1N . Then, the “real slice” N is embedded in Y as the diagonal

N 3 x 7→ (x, x) ∈ N ×N . (6.5.4)
5Note that, since in our problem we start with a hyper-Kähler manifold Mflat(GC,Σ), its com-

plexification Y admits many complex structures. In fact, Y has holonomy group Sp(n) × Sp(n),

where n is the quaternionic dimension of Mflat(GC,Σ).
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In particular, N is the fixed point set of the antiholomorphic involution τ : Y → Y which

acts on (x, y) ∈ Y as τ : (x, y) 7→ (y, x).

Our next goal is to describe the holomorphic 2-form Ω that obeys (6.5.2) and (6.5.3)

with6

ω =
t

2πi
(ωK + iωI)− t̄

2πi
(ωK − iωI) (6.5.5)

Note, that (ωK + iωI) is holomorphic on N =Mflat(GC,Σ) and (ωK − iωI) is holomorphic

on N . Moreover, if we take t̄ to be a complex conjugate of t, the antiholomorphic involution

τ maps t(ωK + iωI) to t̄(ωK − iωI), so that τ∗ω = ω. Therefore, we can simply take

Ω =
t

2πi
(ω(1)

K + iω
(1)
I )− t̄

2πi
(ω(2)

K − iω
(2)
I ) (6.5.6)

where the superscript i = 1, 2 refers to the first (resp. second) factor in Y = N × N . It

is easy to verify that the 2-form Ω defined in this way indeed obeys (ImΩ)−1ReΩ = I.

Moreover, one can also check that if t̄ is a complex conjugate of t then the restriction of

ωY = ImΩ to the diagonal (6.5.4) vanishes, so that the “real slice” N ⊂ Y , as expected, is

a Lagrangian submanifold in (Y, ωY ).

Now, the quantization problem can be realized in the A-model of Y with symplectic

structure ωY = ImΩ. In particular, the Hilbert space HΣ is obtained as the space of

(Bcc,B′) strings,

HΣ = space of (Bcc,B′) strings (6.5.7)

where Bcc and B′ are A-branes on Y (with respect to the symplectic structure ωY ). The

brane B′ is the ordinary Lagrangian brane supported on the “real slice” N ⊂ Y . The

other A-brane, Bcc, is the so-called canonical coisotropic brane supported on all of Y . It

carries a Chan-Paton line bundle of curvature F = ReΩ. Note that for [F ] to be an integral

cohomology class we need Re(t) ∈ Z. Since in the present case the involution τ fixes the

“real slice” pointwise, it defines a hermitian inner product on HΣ which is positive definite.
6Notice that while elsewhere we consider only the “holomorphic” sector of the theory (which is

sufficient in the perturbative approach), here we write the complete symplectic form onMflat(GC,Σ)

that follows from the classical Chern-Simons action (5.1.1), including the contributions of both fields

A and Ā.
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6.6 Examples

To conclude this chapter, we give several examples of explicit computations using the

hierarchy of differential equations described in Section 6.3. We focus on the gauge group

SL(2,C). We will begin with the trefoil, whose higher-order perturbative invariants on the

non-abelian branch of flat connections actually vanish. This behavior was also noticed by

direct analytic continuation of the colored Jones polynomial in [117]. We then consider

figure-eight knot 41, the simplest hyperbolic knot, which has new, interesting, non-trivial

perturbative invariants to all orders. It is quite possible to apply the hierarchy of differential

equations to other knots as well (for example, explicit operators Â for twist knots appear

in [118]), but computations start to become somewhat inefficient. In Chapter 9, we will

employ a different method (the state integral model) to find perturbative invariants for

knots like 41 and 52 and to verify that they satisfy Â · Z = 0.

31 41 52

Figure 6.1: Recurrent examples: the trefoil knot 31, figure-eight knot 41, and “three-twist”

knot 52, courtesy of KnotPlot.

6.6.1 Trefoil

The classical SL(2,C) A-polynomial for the trefoil knot is

A(l,m) = (l − 1)(l +m6) . (6.6.1)

It is a special case of the A-polynomial for (p, q) torus knots, which takes the form (l −

1)(lmpq + 1). This A-polynomial has two branches of solutions, an

abelian branch : label = 1 , (6.6.2)
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and a

non-abelian branch : lna = −m6 . (6.6.3)

Since the trefoil is a chiral knot, the A-polynomial is not invariant under the transformation

m→ m−1, which takes the right-handed trefoil to the left-handed trefoil. (It was explained

in Section 6.4 how the quantum partition function must change under this mirror action.)

As explained earlier, cf. (6.2.2), a simple way to find the operator Â(l̂, m̂) is to note that

it also annihilates the polynomial invariants of the knot K computed by Chern-Simons the-

ory with compact gauge group G. In the present case, G = SU(2) and the equation (6.2.2)

takes the form of a recursion relation on the set of colored Jones polynomials, {Jn(K; q)}.

Specifically, using the fact that l̂ acts by shifting the value of the highest weight of the

representation and writing Â(l̂, m̂) =
∑d

j=0 aj(m̂, q)l̂j as in (6.3.5), we obtain

d∑
j=0

aj(qn/2, q)Jn+j(K; q) = 0 . (6.6.4)

It is easy to verify that the colored Jones polynomials of the trefoil knot indeed satisfy such

a recursion relation, with the coefficients (see also7 [119, 120]):

a0(m̂, q) = q2m6(q3m4 − 1) , (6.6.5a)

a1(m̂, q) =
√
q(−q5m10 + q4m6 + q3m4 − 1) , (6.6.5b)

a2(m̂, q) = 1− qm4 . (6.6.5c)

Note that in the classical limit q = e2~ → 1, we have

Â(l̂, m̂) −→
~→0

(1−m4)A(l,m) . (6.6.6)

We could divide all the aj ’s by the extra factor (1 − m4) in(6.6.6) (or a q-deformation

thereof) to obtain a more direct correspondence between Â(l̂, m̂) and A(l,m), but this does

not affect any of the following calculations.

To find the exact perturbative invariant Z(α)(M ; ~, u) for each α, we reduce m̂ to a

classical variable m (since in the u-space representation the operator m̂ just acts via ordinary
7Note that [119, 120] look at asymptotics of the colored Jones polynomial normalized by its

value at the unknot, while the SL(2,C) Chern-Simons partition function should agree with the

unnormalized colored Jones polynomial. Hence, we must divide the expressions for aj given there

by (m2qj/2 − q−j/2) to account for the difference, introducing a few factors of q1/2 in our formulas.
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multiplication), expand each of the above aj ’s as aj(m, q) =
∑∞

p=0 aj,p(m)~p, and substitute

the aj,p into the hierarchy of differential equations derived in Section 6.1 and displayed in

Table 6.1. The equations are then solved recursively on each branch α of the A-polynomial

to determine the coefficients S(α)
n (u).

Non-abelian branch

For the non-abelian branch, which one would naively expect to be the more non-trivial

one, all higher-order perturbative invariants actually vanish. It is easy to check directly

that

Z(na)(31; ~;u) = exp
(

3u2 + iπu

~

)
(6.6.7)

is an exact solution to Â(l̂, m̂) · Z = 0. This implies that

S
(na)
0 (u) = 3u2 + iπu (mod 2πiu) , (6.6.8)

and agrees with the fact that the volume of the (non-hyperbolic) trefoil knot complement

is zero.

Moreover, all higher-order invariants S(na)
n (u) must be constants. In [117, 121], it is

independently argued (via direct analytic continuation of the colored Jones polynomial)

that this is indeed the correct behavior, and that S(na)
1 is a nonzero constant, while all

other S(na)
n vanish.

Abelian branch

The abelian branch, surprisingly, is non-trivial. It senses the fact that the operator Â

does contain more information than the classical A-polynomial. Setting S0(u) = 0 to single

out the abelian branch, we find that

S1(u) = log
m
(
m2 − 1

)
m4 −m2 + 1

,

S2(u) =
2m4

(m4 −m2 + 1)2
,

S3(u) = −
2
(
m12 − 4m8 +m4

)
(m4 −m2 + 1)4

,
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S4(u) =
4m4

(
m16 + 2m14 − 23m12 − 4m10 + 60m8 − 4m6 − 23m4 + 2m2 + 1

)
3 (m4 −m2 + 1)6

,

S5(u) = − 2m4

3 (m4 −m2 + 1)8
(
m24 + 8m22 − 84m20 − 144m18 + 868m16 + 200m14 − 1832m12

+200m10 + 868m8 − 144m6 − 84m4 + 8m2 + 1
)
,

. . . .

Since the abelian branch is self-conjugate (in the language of Section 6.4), the powers of m

appearing here are all balanced; for u ∈ iR or u ∈ R the coefficients are real. Unfortunately,

since this is an abelian branch, all the perturbative invariants at u = 0 are uninteresting

rational numbers.

6.6.2 Figure-eight knot

The classical A-polynomial of the figure-eight knot is

A(l,m) = (l − 1)(m4 − (1−m2 − 2m4 −m6 +m8)l +m4l2) . (6.6.9)

Observe that A(l−1,m−1) ∼ A(l,m) and that A(l−1,m) ∼ A(l,m), the latter reflecting the

fact that the figure-eight knot is amphicheiral. The zero locus of this A-polynomial has

three branches: the abelian branch label = 1 (or vabel = −iπ) from the first factor, and two

other branches from the second, given explicitly by

lgeom,conj(m) =
1−m2 − 2m4 −m6 +m8

2m4
± 1−m4

2m2
∆(m) (6.6.10)

or

vgeom,conj(u) = log(−lgeom,conj(eu)) , (6.6.11)

where we have defined

∆(m) = i
√
−m−4 + 2m−2 + 1 + 2m2 −m4 . (6.6.12)

Note that ∆(m) is an analytic function of m = eu around u = 0, as are l(m) and v(u). In

particular, ∆(1) =
√
−3 is the generator of the trace field K = Q(trΓ) for the figure-eight

knot.

Since there are only two non-abelian branches, they must (as indicated in Section 6.4)

be the geometric and conjugate ones. By looking at the behavior of these two branches in
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the neighborhood of the point (l,m) = (−1, 1) that corresponds to the complete hyperbolic

structure, where the geometric branch must have maximal volume, and using (6.3.15), one

can check that the identification in (6.6.10) is the correct one. (It is also possible to check this

directly once the hyperbolic structure of the figure-eight knot complement is understood,

cf. Section 8.1.1.)

The quantum A-polynomial Â(l̂, m̂) =
∑3

j=0 aj(m̂, q)l̂j for the figure-eight knot has

coefficients

a0(m̂, q) =
qm̂2

(1 + qm̂2)(−1 + qm̂4)
, (6.6.13a)

a1(m̂, q) =
1 + (q2 − 2q)m̂2 − (q3 − q2 + q)m̂4 − (2q3 − q2)m̂6 + q4m̂8

q1/2m̂2(1 + q2m̂2 − qm̂4 − q3m̂6)
, (6.6.13b)

a2(m̂, q) = −1− (2q2 − q)m̂2 − (q5 − q4 + q3)m̂4 + (q7 − 2q6)m̂6 + q8m̂8

qm̂2(1 + qm̂2 − q5m̂4 − q6m̂6)
, (6.6.13c)

a3(m̂, q) = − q4m̂2

q1/2(1 + q2m̂2)(−1 + q5m̂4)
. (6.6.13d)

In the classical limit q = e2~ → 1, we have

Â(l̂, m̂) −→
~→0

A(l,m)
m2(m2 − 1)(m2 + 1)2

. (6.6.14)

Again, we could multiply all the aj ’s by the denominator of (6.6.14) (or a q-deformation

thereof) to obtain a more direct correspondence between Â(l̂, m̂) and A(l,m).

Geometric branch

For the geometric branch, the solution to the first equation in Table 6.1 is chosen to be

S
(geom)
0 (u) =

i

2
Vol(41; 0) +

∫ u

0
du vgeom(u) + iπu , (6.6.15)

with vgeom(u) as in (6.6.11). The integration constant i(Vol(0) + iCS(0)) is not important

for determining the remaining coefficients (since only derivatives of S0 appear in the equa-

tions), but we have fixed it by requiring that S(geom)
0 (0) = i

2(Vol(41; 0) + iCS(41; 0)) =
i
2Vol(41; 0) = (1.01494 . . .)i, as expected for the classical action of Chern-Simons theory.

Substituting the above S(geom)
0 (u) into the hierarchy of equations, the rest are readily

solved8 for the subleading coefficients. The first eight functions S(geom)
n (u) appear below:

8It is computationally advantageous to express everything in terms of m = eu and m d
dm = d

du ,

etc., when implementing this on a computer.



116

S1(u) = −1
2

log
(
−i∆(m)

2

)
,

S2(u) =
−1

12∆(m)3m6

(
1−m2 − 2m4 + 15m6 − 2m8 −m10 +m12

)
,

S3(u) =
2

∆(m)6m6

(
1−m2 − 2m4 + 5m6 − 2m8 −m10 +m12

)
,

S4(u) =
1

90∆(m)9m16

(
1− 4m2 − 128m4 + 36m6

+1074m8 − 5630m10 + 5782m12 + 7484m14 − 18311m16 + 7484m18

+5782m20 − 5630m22 + 1074m24 + 36m26 − 128m28 − 4m30 +m32
)
,

S5(u) =
2

3∆(m)12m18

(
1 + 5m2 − 35m4 + 240m6 − 282m8 − 978m10

+3914m12 − 3496m14 − 4205m16 + 9819m18 − 4205m20 − 3496m22

+3914m24 − 978m26 − 282m28 + 240m30 − 35m32 + 5m34 +m36
)
,

S6(u) =
−1

945∆(m)15m28

(
1 + 2m2 + 169m4 + 4834m6

−24460m8 + 241472m10 − 65355m12 − 3040056m14 + 13729993m16

−15693080m18 − 36091774m20 + 129092600m22 − 103336363m24

−119715716m26 + 270785565m28 − 119715716m30 − 103336363m32

+129092600m34 − 36091774m36 − 15693080m38 + 13729993m40 − 3040056m42

−65355m44 + 241472m46 − 24460m48 + 4834m50 + 169m52 + 2m54 +m56
)
,

S7(u) =
4

45∆(m)18m30

(
1 + 47m2 − 176m4 + 3373m6 + 9683m8

−116636m10 + 562249m12 − 515145m14 − 3761442m16 + 14939871m18

−15523117m20 − 29061458m22 + 96455335m24 − 71522261m26

−80929522m28 + 179074315m30 − 80929522m32 − 71522261m34

+96455335m36 − 29061458m38 − 15523117m40 + 14939871m42

−3761442m44 − 515145m46 + 562249m48 − 116636m50

+9683m52 + 3373m54 − 176m56 + 47m58 +m60
)
,

S8(u) =
1

9450∆(m)21m40

(
1 + 44m2 − 686m4

−25756m6 + 25339m8 − 2848194m10 − 28212360m12
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+216407820m14 − 1122018175m16 − 266877530m18

+19134044852m20 − 76571532502m22 + 75899475728m24

+324454438828m26 − 1206206901182m28 + 1153211096310m30

+1903970421177m32 − 5957756639958m34 + 4180507070492m36

+4649717451712m38 − 10132372721949m40 + 4649717451712m42

+4180507070492m44 − 5957756639958m46 + 1903970421177m48

+1153211096310m50 − 1206206901182m52 + 324454438828m54

+75899475728m56 − 76571532502m58 + 19134044852m60

−266877530m62 − 1122018175m64 + 216407820m66 − 28212360m68

−2848194m70 + 25339m72 − 25756m74 − 686m76 + 44m78 +m80
)
.

Table 6.3: Perturbative invariants S
(geom)
n (u) up to eight

loops.

According to (5.2.3), the coefficient S(geom)
1 (u) in the perturbative Chern-Simons par-

tition function should be related to the Reidemeister-Ray-Singer torsion of M twisted by

A(geom), which has been independently computed. Our function matches9 that appearing in

e.g. [98], up to a shift by − log π. The constants of integration for the remaining coefficients

have been fixed by comparison to the asymptotics of the colored Jones polynomial, using

(5.4.5) and the results of Section 5.4. Note that at u = 0, the arithmetic invariants of

Section 5.4 at the complete hyperbolic structure should be reproduced.

Conjugate branch

For the “conjugate” branch, the solution for S0(u) is now chosen to be

S
(conj)
0 (u) = − i

2
Vol(41; 0) +

∫ u

0
du vconj(u) + iπu (mod 2πu), (6.6.16)

so that S(conj)
0 (u) = −S(geom)

0 (u). As for the geometric branch, this is then substituted

into remainder of the hierarchy of equations. Calculating the subleading coefficients, the
9To compare with [98], note that kthere = khere = iπ/~, and uthere = 2uhere. The shift by − log(π)

is directly related to a jump in the asymptotics of the colored Jones polynomial at u = 0.
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constants of integration can all be fixed so that

S(conj)
n (u) = (−1)n+1S

(geom)
n+1 (u), (6.6.17)

This is precisely what one expects for an amphicheiral knot when a conjugate pair of

branches coincides with a “signed” pair, as discussed in Section 6.4.

Abelian branch

For completeness, we can also mention perturbation theory around an abelian flat connec-

tion A(abel) on M , although it has no obvious counterpart in the state integral model.

For an abelian flat connection A(abel), the classical Chern-Simons action (5.2.1) vanishes.

This is exactly what one finds from (6.3.14):

S
(abel)
0 (u) =

∫ u

0
du vabel(u) + iπu = 0 (mod 2πiu) , (6.6.18)

fixing the constant of integration so that S(abel)
0 (0) = 0. From the hierarchy of differential

equations, the first few subleading coefficients are

S
(abel)
1 (u) = log

m(m2 − 1)
1− 3m2 +m4

,

S
(abel)
2 (u) = 0

S
(abel)
3 (u) =

4(m2 − 1)2

(1− 3m2 +m4)3
(
1− 7m2 + 16m4 − 7m6 +m8

)
,

S
(abel)
4 (u) = 0

S
(abel)
5 (u) =

4(m2 − 1)2

3(1− 3m2 +m4)6
(
41− 656m2 + 4427m4 − 16334m6 + 35417m8 − 46266m10

+35417m12 − 16334m14 + 4427m16 − 656m18 + 41m20
)

S
(abel)
6 (u) = 0 . . . .

Table 6.4: Perturbative invariants S(abel)
n (u) up to six loops.

In the language of Section 6.4, the abelian branch must be its own “signed pair,” guaran-

teeing that all even S
(abel)
2k (u) vanish.



Chapter 7

Wilson loops for complex gauge

groups

The goal of this chapter is to explain the relationship between Chern-Simons theory with

Wilson loops and Chern-Simons theory on knot complements, and to use this relationship to

elucidate the limit taken in “analytic continuation” of Chern-Simons theory with compact

gauge group G to Chern-Simons theory with complex gauge group GC.

For compact gauge groups, the relation between Wilson loops and knot complements

have been understood for a long time [13, 122]. Part of our discussion here reviews and

explains these results in greater detail, as they provide the groundwork for the complex

case. The main idea of the approach in (e.g.) [122] is to rewrite a Wilson loop as a

new path integral for quantum mechanics of particles moving along the loop. This has

two advantages: it allows a generalization to complex gauge group (taking the trace of

a holonomy in a given representation does not); and it most directly connects boundary

conditions and representations.

Unfortunately, the generalization to complex gauge group requires a certain number of

mathematical preliminaries. Thus, we spend the first part of the chapter reviewing prin-

cipal series representations of complex groups and their realizations via the orbit method,

following [123, 124, 125]. In the second part of the chapter, we incorporate these results

into Wilson loops and Chern-Simons theory.

119
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7.1 Some representation theory

Finite and infinite-dimensional representations

The Lie algebra sl(2,C) is generated as a complex vector space by the elements E,F,H

satisfying

[E,F ] = H , [H,E] = 2E , [H,F ] = −2F . (7.1.1)

In the defining representation, these elements correspond to the matrices

H =

 1 0

0 −1

, E =

 0 1

0 0

, F =

 0 0

1 0

 . (7.1.2)

One exponentiates (with no i’s) to obtain the group SL(2,C). The compact subgroup SU(2)

of SL(2,C) has a Lie algebra su(2) generated as a real vector space over anti-Hermitian

generators (a.k.a. Pauli matrices):

su(2) = 〈iH,E − F, i(E + F )〉R . (7.1.3)

All representations of su(2) can be extended to be holomorphic representations of

sl(2,C). They act most generally as

ρλ(E) = −λz + z2∂z ,

ρλ(F ) = −∂z , (7.1.4)

ρλ(H) = −λ+ 2z∂z

on holomorphic functions f(z) of a single complex variable. Here, ρ is a complex-linear

homomorphism on the generators of the Lie algebra. The quadratic Casimir of this repre-

sentation is

C2(λ) = ρλ

(
1
2
H2 + EF + FE

)
=

1
2
λ(λ+ 2) . (7.1.5)

While representation (7.1.4) is a perfectly good representation of sl(2,C) or its sub-

algebras for any λ ∈ C, it is not always integrable to representations of SL(2,C) or its

subgroups. If ρλ is integrable, then it integrates generically to

ρλ

 a b

c d

 · f(z) = (−bz + d)λf

(
az − c
−bz + d

)
. (7.1.6)
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For SU(2) and SL(2,C), it is sufficient to check that this is well-defined on the maximal

tori generated by H, and in particular that ρ(I) = ρλ(e2πiH) := e2πiρλ(H) = 1. This forces

λ to be an integer. Indeed, when λ ∈ Z≥0, ρλ can be restricted to a finite-dimensional rep-

resentation acting on polynomials in z of degree ≤ λ. The dimension of this representation

is N = λ+ 1.

In the case of SU(2), these finite-dimensional representations are unitary. For SL(2,C)

however, they are not. In order to find unitary representations of SL(2,C), one must break

its complex structure. That is, consider sl(2,C) to be a real Lie algebra1 generated over the

basis {E, F, H, Ẽ := iE, F̃ := iF, H̃ := iH}. We seek representations ρ with ρ(T̃ ) 6= iρ(T )

for T = E,F,H.

It is convenient to complexify the Lie algebra sl(2,C) (a second time), and to extend

ρ complex-linearly under this second complexification. Working over C, we then redefine

generators

2EL = E − iẼ, 2ER = E + iẼ ,

2FL = F − iF̃ , 2FR = F + iF̃ , (7.1.7)

2HL = H − iH̃, 2HR = H + iH̃ .

Each (EL, FL,HL) and (ER, FR,HR) generate independent (commuting) sl(2,C) subalge-

bras, and we obtain an isomorphism sl(2,C)C ' sl(2,C)L × sl(2,C)R. Now, generic non-

holomorphic representations of sl(2,C) should be given as ρλL,λR
= ρλL

×ρλR
, using (7.1.4)

for each of the two factors sl(2,C)L,R. The representation space consists of nonholomorphic

functions f(z, z̄), with ρλL
acting on z and ρλR

acting on z̄. The corresponding quadratic

Casimir is

C2(λL, λR) = λL(λL + 2) + λR(λR + 2) . (7.1.8)

When naively integrating the representation ρλL,λR
described above, one obtains

ρλL,λR

 a b

c d

 · f(z, z̄) = (−bz + d)λL(−bz + d)
λR
f

(
az − c
−bz + d

,
āz̄ − c̄
−b̄z̄ + d̄

)
. (7.1.9)

This expression is well-defined only when λL − λR ∈ Z . This condition can be seen by

writing the multiplicative factor above as

| − bz + d|λL+λR

(
−bz + d

| − bz + d|

)λL−λR

.

1In this description, we have sl(2,C) = spin(3, 1).
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Then, for ρλ(e2πH̃) = 1 the exponent of the phase must be an integer. It is clear from

(7.1.9) that when λR = 0 we just obtain the old holomorphic representations, with λ = λL.

For a pair λL, λR ∈ C satisfying λL−λR ∈ Z, the expression (7.1.9) defines a generalized

principal series representation of SL(2,C). This infinite-dimensional representation is more

commonly labelled as Pk ,w (cf. [123]), with

w = −(λL + 1)− (λR + 1) ∈ C, k = −(λL − λR) ∈ Z . (7.1.10)

For w imaginary and arbitrary k , the principal series representations are unitary under the

standard inner product on L2(C). For real 0 < w < 2 and k = 0, the representations are

unitary under a non-standard inner product, and are called the complementary series. In

terms of k and w, the quadratic Casimir is

1
4

(w2 + k 2)− 1 . (7.1.11)

Representations related by (w, k ) ↔ (−w,−k ) are isomorphic, and this is the only equiv-

alence in the series. The unitary principal series and complementary series are the only

unitary representations of SL(2,C). They are irreducible unless w ∈ Z, |k| < |w|, and

k ≡ w mod 2 [123].

Induction

Given a group G, a subgroup H ⊂ G, and a representation σ of H, one can form an

induced representation indG
H(σ). This acts on the space of functions on G valued in the

vector space of the representation σ that satisfy

f(xh) = σ(h−1)f(x) (7.1.12)

for h ∈ H, x ∈ G. This space, formally C∞c (H\G;σ), can equivalently be thought of as

sections of a bundle on the coset space G/H. The action of G on f ∈ C∞c (H\G;σ) is by

the left-regular representation

indG
H(σ)(g) · f(x) := f(g−1x) . (7.1.13)

For a general semi-simple reductive group, all so-called admissible representations are

generated by the operation of induction from simpler representations of parabolic subgroups,
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and then by taking quotients to obtain irreducible representations. In the case of SL(2,C),

the story is very simple. The only nontrivial parabolic subgroup is the Borel subgroup

B of upper-triangular matrices. It has a decomposition B = MAN corresponding to the

decomposition b = a⊕m⊕ n with

a = 〈H〉, A = {exp tH} (t ∈ R) ,

m = 〈iH〉, M = {exp tiH} ' U(1) , (7.1.14)

n = 〈E, iE〉, N = {exp(tE + t′iE)} .

Then, letting ν ∈ (a∗)C and κ ∈ m∗ be (real) linear functionals defined by

ν(H) = −iw , κ(iH) = k ; ν(iH) = κ(H) = 0 , (7.1.15)

and letting ρ be the half-sum of positive restricted roots satisfying

ρ(H) = 2 , ρ(iH) = 0 , (7.1.16)

the principal series representation Pk ,w is induced from the representation exp(iν + ρ) ⊗

exp iκ⊗ id of B = MAN :

Pk ,w = indGC
B (eiν+iκ+ρ) . (7.1.17)

Observe that the defining data here is a pair of linear functionals κ and ν, corresponding

to the parameters k and w, that act on the maximal torus TC ' GL(1) of the group GC. The

functional acting on the compact part of TC is quantized. This is true in general for maximal

parabolic subgroups: principal series representations are induced from representations of

the maximal torus that act trivially on the off-diagonal part of the parabolic subgroup. The

representation TC (here eiν+iκ+ρ) is called the quasi-character of the induced representation.

7.2 Representations as coadjoint orbits

The mathematical machinery that connects representations with conjugacy classes (and

for us Wilson loops with boundary conditions) is the Borel-Weil-Bott theorem [126] and

generalizations thereof to noncompact groups (developed by Kirillov and others). The

basic idea is that irreducible representations a group G(C) can be obtained by the geometric

quantization of its coadjoint orbits. Excellent reviews of the topic can be found in [124] or
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[125] (see also [127] and [48] in the physics literature). Here, we will give a brief overview

of the general procedure, stating necessary results, and then specializing to the example of

SU(2) and SL(2,C).

The adjoint action of G on g can be written as g : X → gXg−1. Likewise, there is a

coadjoint action of G on the dual space g∗. Since g∗ and g can be identified for reductive

groups by a non-degenerate trace form, we can write weights λ ∈ g∗ as matrices; then the

coadjoint action is g : X → gλg−1. The coadjoint orbit

Ωλ = {gλg−1}g∈G (7.2.1)

through a point λ has the geometry of the coset G/Hλ (or sometimes a quotient thereof),

where Hλ is the stabilizer of λ:

Hλ = {h ∈ G | hλh−1 = λ} . (7.2.2)

In the case of compact or complex G, Hλ is conjugate to the maximal torus of G for generic

λ. The left-regular G-action on G/Hλ is equivalent to the coadjoint action on Ωλ, and is

the action used for representations.

The coadjoint orbit Ωλ ' Hλ has a natural G-invariant symplectic structure. The

symplectic form can be written as

ω = −Tr(λ g−1dg ∧ g−1dg) (7.2.3)

for g ∈ G/Hλ. To geometrically quantize Ωλ one must form a line bundle L → Ωλ with

curvature ω, choose a polarization that effectively cuts out half the degrees of freedom (half

the coordinates) on Ωλ, and construct a Hilbert space V as the space of square-integrable

polarization-invariant sections of L. Considering λ again to be a linear functional λ ∈ g∗,

the line bundle L can is obtained as a quotient of C × G by the representation eiλ of

Hλ ∈ G acting on C; in other words, it is essentially the space C∞(G, eiλ) of the induced

representation indG
Hλ

(eiλ) described in Section 7.1. The line bundle exists if and only if the

representation eiλ is integrable.

In the case of compact group G, where Hλ ' T is a maximal torus, one can induce a

complex structure on G/Hλ via the equivalence

G/Hλ ' GC/B , (7.2.4)
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where B is the upper-triangular Borel subgroup of GC containing Hλ. Then, to obtain

the unitary finite-dimensional representations, one must choose a holomorphic polarization.

Specifically, if −λ is the dominant weight of a sought representation R, then the space

H0
∂̄
(G/Hλ; eiλ) of holomorphic sections of the bundle L is finite dimensional and G acts on

it in the left-regular representation to furnish R.

In the case of complex group GC, principal series representations are obtained by consid-

ering real polarizations on the line bundle over GC/Hλ, where λ is now a non-complex-linear

element of the dual g∗C. The set of all sections of this line bundle is the representation space

of a representation induced from Hλ by eiλ. To get the desired representation induced

from the Borel subgroup B = HλN by eiλ ⊗ id, the polarization is chosen precisely such

that sections are independent of coordinates in N . (This process can also be extended to

describe induction from generic non-maximal parabolic subgroups, e.g. by choosing λ such

that its isotropy group Hλ is non-minimal.)

In both compact and complex cases, the representations of the group G(C) end up being

described by choices of coadjoint orbits. Since a coadjoint orbit is defined by an element

λ ∈ g∗(C) ' g(C) up to conjugacy, this establishes an equivalence between representations

and conjugacy classes of g(C).

Example: SU(2)

In the simplest case of SU(2), let us write a matrix g ∈ SU(2) as

g =

 w −z̄

z w̄

, w, z ∈ C. (7.2.5)

with |w|2 + |z|2 = 1. The right action of a diagonal matrix diag(eiθ, e−iθ) in the maximal

torus H = T acts by sending (w, z) 7→ (eiθw, eiθz). From this, we immediately see that

SU(2) has the geometry of S3, and the H action is just rotation in the S1 fiber of the Hopf

bundle S1 → S3 → S2. Therefore, a generic coadjoint orbit looks like

Ω ' SU(2)/T = S2 ' P1 . (7.2.6)

We already know what all holomorphic bundles on P1 look like: they are tensor powers

of the canonical line bundle, O(λ̃) for −̃λ ∈ Z. These have curvature

ω = −Tr(λg−1dg ∧ g−1dg) , (7.2.7)
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where λ is the matrix

λ =
λ̃

2i

 1 0

0 −1

 , (7.2.8)

or equivalently the corresponding element of (g∗)C acting as Tr[λ, · ]. Moreover, for λ̃ < 0,

the bundle O(−λ̃) has an (|λ̃| + 1)-dimensional space of square-integrable holomorphic

sections. A basis of this space is given by the polynomials {1, z, ..., z−λ̃} in local coordinates

on SU(2)/H where w 6= 0; this is precisely the (|λ̃| + 1)-dimensional representation of

SU(2). It is easy to see that the generators of the Lie algebra su(2) act on local functions

f(z) exactly as in (7.1.4).

By using the symplectic form (7.2.6), and working in projective coordinates (w : z) on

P1, it is also possible to show that the variables w̄ and z̄ become identified after quantization

with the conjugate momenta

λ̃w̄ ∼ −∂w, λ̃z̄ ∼ −∂z. (7.2.9)

Example: SL(2,C)

Let us write an element of SL(2,C) in complex coordinates as

g =

 w −x

z y

, wy + zx = 1, z, w, x, y ∈ C . (7.2.10)

We can also put w = b+ic, y = b−ic, z = d+ie, x = d−ie (four new complex coordinates);

then SL(2,C) = {b2 + c2 + d2 + e2 = 1} ' T ∗S3 ' T ∗(SU(2)).

There is a single Cartan subgroup (or maximal torus) H = TC, and almost all of

SL(2,C) is conjugate to it. In the coadjoint orbit SL(2,C)/TC, there is a rescaling symmetry

(w, z, x, y) 7→ (aw, az, a−1x, a−1y) for a ∈ C∗. A slightly nontrivial argument shows that

SL(2,C)/TC is isomorphic to {b2 + c2 + f2 = 1} ∈ C3 (we have essentially set f2 = zx and

used the scaling to set x = 1 or z = 1, or both, except at a point). Therefore, a genetic

coadjoint orbit looks like

Ω ' SL(2,C)/TC ' T ∗S2. (7.2.11)

Unlike the case of SU(2), this is a noncompact manifold, and will lead to infinite-dimensional

Hilbert spaces (representations) upon geometric quantization.

In the case of SU(2), we implicitly extended the isomorphism g∗ ' g to an isomorphism

(g∗)C ' g by complex linearity. We need do the same for the Lie algebra sl(2,C), viewed as
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a real Lie algebra in order to access principal series representations. To simplify notation,

let g = sl(2,C) (rather than using gC). Then, as in Section 7.1, the complexification of this

real Lie algebra satisfies gC ' g× g. An appropriate complexification of the nondegenerate

trace form ReTr is given by 〈 , 〉 : gC × g ' (g× g)× g→ C, such that

〈(XL, XR), Y 〉 =
1
2

Tr(XL Y ) +
1
2

Tr(XR Ȳ , (7.2.12)

where Ȳ denotes the usual complex conjugation in the (“broken”) complex structure on

sl(2,C). This leads to an identification of linear functionals and matrices

ν ∈ (a∗)C ↔ ν = − iw
2

 1 0

0 −1

, κ ∈ (m∗)C ↔ κ = − ik
2

 1 0

0 −1

 . (7.2.13)

The pair ν ⊕ κ ∈ (m∗ ⊕ a∗)C ⊂ (g∗)C is identified with

ν ⊕ κ ↔ (XL, XR) = (ν + κ, ν − κ) ∈ sl(2,C)C ' sl(2,C)× sl(2,C) . (7.2.14)

The natural symplectic form resulting from the above isomorphism is

ων,κ =
1
2

Tr((ν + κ)g−1dg ∧ g−1dg) +
1
2

Tr((ν − κ)g−1dg ∧ g−1dg). (7.2.15)

Due to the compact cycle S2 in the coadjoint orbit Ω ' T ∗S2, this form can is the curvature

of a line bundle L if and only if k ∈ Z. Moreover, when the line bundle L exists, it will

be unique (since T ∗S2 is simply-connected). Using a polarization in which sections of L

depend only on a single complex projective coordinate (w : z), we see that the sections

induced from eiν+iκ+ρ will transform as

f(aw, az, āw̄, āz̄) = a−
1
2
(w+k )−1ā−

1
2
(w−k )−1f(w, z, w̄, z̄), a ∈ C∗. (7.2.16)

This, of course, is precisely the right transformation for the principal series representation

Pk ,w.

The conjugate momenta to the complex projective coordinates (w : z) and (w̄ : z̄) are

x ∼ −2
w + k

∂z, y ∼ −2
w + k

∂w, x̄ ∼ −2
w − k

∂̄z, ȳ ∼ −2
w − k

∂̄w . (7.2.17)

On sections of L, one has that

z∂z + w∂w = −1
2

(w + k )− 1, z̄∂̄z + w̄∂̄w = −1
2

(w − k )− 1. (7.2.18)
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7.3 Quantum mechanics for Wilson loops

For compact gauge groups, Wilson loops in a representation R supported on a curve C

are typically written as

WR(C;A) = TrR HolCA = TrR

[
P

∮
C
eA
]
. (7.3.1)

Unfortunately, “TrR” does not entirely make sense for infinite-dimensional representations

of complex gauge groups. It may be possible to replace this trace with a distributional

character from the mathematical theory of reductive Lie groups in order to define infinite-

dimensional Wilson loops. However, a better approach was suggested during the early

development of Chern-Simons theory with compact gauge group: Wilson loops as in (7.3.1)

can alternatively be written as path integrals in a quantum mechanical theory of particles

moving along the loop [122, 128, 28]. Specifically, one has

WR(K;A) =
∫

LG/LH
Dg eiS[g], S[g] =

∫
C

Tr(λg−1(d+A)g) , (7.3.2)

For compact groups, λ is the highest weight of the finite-dimensional representation R,

identified with an element of g via Tr. In this section, we will explain why (7.3.2) makes

sense for compact groups (a thorough discussion seems absent from the literature). Then

we will show that a version of this formula works perfectly for noncompact groups when λ

is identified with the quasi-character of an induced representation.

In the path integral (7.3.2), we let 0 ≥ t < 2π be the time coordinate along the loop

C. The path integral goes over maps g : C → G, in other words over the loop group LG.

There is, however, a gauge symmetry: any right-translation g 7→ gh, with h belonging to

the isotropy group Hλ of λ for all t, leaves the integrand eiS invariant. (This holds for

compact or noncompact G.) Thus one really integrates over the space LG/LH.

Let Atdt be the component of A along the loop C. The Lagrangian of the action in

(7.3.2) is L = Tr(λg−1(∂tg −Atg)). If we somewhat naively take gij to be our coordinates,

we find that canonical momenta are

pij =
∂L

∂(∂tgij)
= (λg−1)ji.

We can then construct a (local) symplectic form for this system as

ω = dpij ∧ dgij = Tr(λdg−1 ∧ dg) = Tr((−λ)g−1dg ∧ g−1dg). (7.3.3)
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Finally, to find the (classical) Hamiltonian, we calculate

H = pij∂tgij − L = −Tr(λg−1Atg). (7.3.4)

In order to justify (7.3.2), we will proceed to quantize the path integral in a Hamiltonian

formalism, and rewrite the partition function as a trace over an appropriate Hilbert space.

To this end, consider the system at some fixed time t. The classical phase space of the system

is just G/Hλ, since all elements of presumed canonical momenta λg−1 are just algebraic

functions of the elements of g. (Put another way, this is a first-order Lagrangian, so both

momenta and coordinates are contained in g.) But then the symplectic form (7.3.3) on

G/Hλ is nothing but the canonical symplectic form (7.2.3) on the coadjoint orbit of weight

−λ ∈ g∗, at least if G is compact. Therefore, we immediately conclude that the Hilbert

space of this quantum mechanical system is the space of the representation with highest

weight λ.

Somewhat less trivially, we claim that the quantization of the Hamiltonian iH = −iTr(λg−1Atg)

is precisely the matrix At acting on the Hilbert space in the representation with highest

weight λ. In other words, conjugation by a quantum operator g effectively converts matrices

into the right coadjoint orbit representation! Then we can simply “cut” the Wilson loop in

the path integral at time t = 0 and use to Hamiltonian formalism to see that∫
Dg eiS[g] = TrHilbert space T exp

(∫ 2π

0
iH(t) dt

)
, (7.3.5)

becomes precisely the holonomy of the gauge connection A (where T is a time ordering that

because the Wilson loop path ordering).

For G = SU(2), the claim that the Hamiltonian is just the matrix A acting on the

Hilbert space can be proven explicitly by writing At = aH+ bE+cF and simply expressing

−iTr(λg−1 · g) in terms of quantum operators for each generator H,E, F . For example,

with λ as in (7.2.8) and operators as in (7.2.9) we find

−iTr(λg−1Eg) = − λ̃
2

Tr
[ w̄ z̄

z −w

 0 1

0 0

 w −z̄

z w̄

]

= −λ̃zw̄

= −z∂w

' −λ̃z + z2∂z ,
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and similarly −iTr(λg−1Hg) = −λ̃+ 2z∂z and −iTr(λg−1Fg) = −∂z.

Wilson loops for complex groups

In the case of GC = SL(2,C), we propose that a Wilson loop in representation Pk ,w be

defined by the path integral (7.3.2), but with an action

S = −1
2

∫
C

Tr[(ν + κ)g−1(d+A)g + (ν − κ)g−1(d+A)g], (7.3.6)

This modified action will lead exactly to the symplectic form (7.2.15) relevant for construct-

ing principal series representations from coadjoint orbits.

To show that the resulting Hamiltonian iH = i
2Tr[(ν + κ)g−1Ag + (ν − κ)ḡ−1Āḡ] is

again just A in the Pk ,w representation, we can use the operator expressions (7.2.17) and

explicitly derive the operators for basis elements A = H, H̃,E, Ẽ, F, F̃ just as in the SU(2)

case.

For other complex gauge groups, this procedure can be easily generalized. The action

(7.3.6) will still involve a sum of two terms, but ν and κ need to be replaced by the relevant

linear functionals that induce the desired principal series representation.

7.4 Wilson loops vs. boundary conditions

As a culmination of the above theory and proposal for defining Wilson loops with infinite-

dimensional representations, we can finally derive the relation between a partition function

on a knot complement and a partition function with a knot in Chern-Simons theory with

complex gauge group. We obtain a map between boundary conditions and representations,

and use it to explain the limits used in the “analytic continuation” of Chapter 6.

As a starting point, for arbitrary gauge group G and a Euclidean 3-manifold M , consider

the action

ICS [A] =
1

4π

∫
M

Tr
(
A ∧ dA+

2
3
A ∧ A ∧A

)
. (7.4.1)

If we put the theory on a manifold of topology R×Σ (or S1×Σ), where Σ is some 2-surface,

we can split the gauge field into a component At along “time” R, and a “spatial” component
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A⊥. With suitable boundary conditions on At at ∂M , we can integrate by parts and rewrite

ICS [A] =
1

4π

∫
M

Tr(A⊥ ∧ dA⊥) +
1

2π

∫
M
F⊥ ∧ At , (7.4.2)

where F⊥ = dA⊥ + A⊥ ∧ A⊥ is the curvature of A⊥. Then the field At becomes nondy-

namical, and we can integrate it out to obtain a condition

F⊥ = 0 (7.4.3)

which the new path integral in A⊥ must obey. This is the origin of the reasoning that

we restrict to moduli spaces of flat connections in geometric quantization: the classical

phase space of the theory consists of flat connections A⊥ on Σ (at fixed t), modulo gauge

transformations.

We want to specialize the theory to compact and complex gauge groups, and to show

how condition (7.4.3) is altered by Wilson loops. The compact case was considered in (e.g.)

[122], but we review it because it will be relevant for analytic continuation.

Representations and boundary conditions for compact groups

Chern-Simons theory with compact gauge group (say SU(N)) has an action S = kICS .

Gauge-invariance under large gauge transformations on M force the constant k to be an

integer. By fixing orientation on M , one usually takes k to be a positive integer – the level

of the theory.

Now put the theory on S1 × Σ and add a Wilson loop in representation λ parallel to

the S1. Let t be the coordinate on S1 as before, and let (x1, x2) be local coordinates on Σ,

so that the Wilson loop goes through (x1, x2) = 0. From Section 7.3, we know that we can

write the path integral of the theory with the Wilson loop insertion as
∫
DADg eiS , where

the full effective action is

S = kICS +
∫

C
Tr(λg−1(d+A)g)

= kICS +
∫

M
δ(x)dx1 ∧ dx2 ∧ Tr(λg−1(d+At)g) . (7.4.4)

Therefore, we can again integrate out At. However, instead of complete flatness in the

perpendicular directions, we now obtain the constraint2

k + h∨

2π
F⊥ + g(λ+ ρ)g−1δ(x)dx1 ∧ dx2 = 0. (7.4.5)

2When performing this integration in the full quantum theory for compact gauge groups, two
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In other words, A⊥ must be flat everywhere on Σ except at the point x = 0. At fixed time

t0, we can take a small disc D ⊂ Σ around x = 0 and integrate F⊥ on it to find

k + h∨

2π

∫
D
F⊥ = −g(t0)(λ+ ρ)g−1(t0) =

k

2π
log Hol∂D(A⊥).

For SU(2) (for example), this argument shows that the holonomy of A⊥ linking the

Wilson loop is always conjugate to

Hol∂D(A⊥)
conj∼

 e
iπ

k+2
N 0

0 e−
iπ

k+2
N

, (7.4.6)

where N = λ̃+ 1 ∼ λ+ ρ is the dimension of a given representation.

Representations and boundary conditions for complex groups

Let us consider SL(2,C) theory. The Chern-Simons action is (5.1.1) is t
2ICS [A] +

t̄
2ICS [Ā]. The appropriate Wilson loop action is given by (7.3.6). Treating A and Ā as

independent fields, we can separately integrate out both At and Āt, yielding two constraints:

t

4π
F⊥ − 1

2
g(ν + κ)g−1 δ(x)dx1 ∧ dx2 = 0, (7.4.7a)

t̄

4π
F̄⊥ − 1

2
ḡ(ν − κ)ḡ−1 δ(x)dx1 ∧ dx2 = 0. (7.4.7b)

These only makes sense if F and F̄ obey conjugate equations.

We can also look at restrictions imposed by unitarity. As explained in Section 5.1,

there are two possible unitarity structures for Chern-Simons theory with complex gauge

group. In both structures, constraints (7.4.7) become compatible if unitary principal series

representations (w ∈ iR, k ∈ Z) are used for the Wilson loop. In the Chern-Simons unitarity

structure relevant for Euclidean quantum gravity, with t, t̄ ∈ R, representations with w ∈ R

are also allowed. Therefore, it may be possible to have Wilson loops with complementary

series representations as well.3

matching shifts of “coupling constants” happen: the Chern-Simons level k is shifted to k + h∨

(where h∨ is the dual Coxeter number of G), and the weight λ is shifted to λ + ρ (where ρ is half

the sum of positive roots). Neither of these happen in the complex case [48].
3This may explain a short remark by Witten in [39] that the unitarity structure relevant for

Euclidean quantum gravity is related to complementary series representations.
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The holonomy of A is given generically by

Hol∂D(A⊥)
conj∼

 e−
iπ
t

(w+k ) 0

0 e
iπ
t̄

(w+k )

 . (7.4.8)

Again, for more general complex gauge group this expression will simply be generalized to

contain various eigenvalues of the linear functionals or quasi-characters that characterize

principal series representations.

TQFT

The above arguments relate representations and conjugacy classes of the holonomy of A.

Another way of phrasing the results is that the Chern-Simons path integral on a solid torus

D2×S1 with a knot in its center is always an exact delta-function that forces the holonomy

of A around the (contractible) cycle on the boundary of this torus to be determined by the

representation on the knot. By cutting solid neighborhoods of knots out of three-manifolds,

this then shows that a partition function with a Wilson loop is equivalent to a partition

function on the loop’s complement with fixed boundary conditions. A somewhat longer

discussion of this relation appears in the review [6].

Analytic continuation

Let us finally use these results to motivate the limit used in the analytic continuation of

Chern-Simons theory with compact group G to Chern-Simons theory with complex group

GC.

In Chapter 6, we considered SL(2,C) (say) Chern-Simons theory on a knot complement,

with a boundary condition that the holomony of A on a small loop linking the knot was

Holbdy(A)
conj∼

 eu 0

0 e−u

 . (7.4.9)

Comparing this to the holonomy (7.4.6) of SU(2) theory, we see that

u ≡ iπN

k + 2
= N~ . (7.4.10)

Thus, one must “analytically continue” at this fixed value of N/(k+ 2). For general groups
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G and GC, the relation will be

u ≡ iπ(λ+ ρ)
k + h∨

= (λ+ ρ)~ . (7.4.11)

From the relation (7.4.8), we also finally see that u is related to a principal series SL(2,C)

representation Pk ,w via

u = (−)
iπ(w + k )

t
. (7.4.12)



Chapter 8

The state integral model

In this chapter, we introduce a “state integral” model for Z(ρ)(M ; ~) in the simplest case

of GC = SL(2,C). Our construction will rely heavily on the work of Hikami [52, 53], where

a new invariant of hyperbolic 3-manifolds was introduced using ideal triangulations. The

resulting invariant is very close to the state integral model we are looking for. However,

in order to make it into a useful tool for computing Z(ρ)(M ; ~) we will need to understand

Hikami’s construction better and make a number of important modifications. In particular,

as we explain below, Hikami’s invariant is written as a certain integral along a path in

the complex plane (or, more generally, over a hypersurface in complex space) which was

ill-defined1 in the original work [52, 53]. Another issue that we need to address is how to

incorporate in Hikami’s construction a choice of the homomorphisms (5.1.4) (page 82),

ρ : π1(M)→ SL(2,C) . (8.0.1)

(The original construction assumes very special choices of ρ that we called “geometric”

in Section 5.2.) It turns out that these two questions are not unrelated and can be ad-

dressed simultaneously, so that Hikami’s invariant can be extended to a state sum model

for Z(ρ)(M ; ~) with an arbitrary ρ.

To properly describe the state integral model, we will need a more thorough review of

the properties of hyperbolic manifolds and hyperbolic triangulations, presented in Section
1The choice mentioned in [52, 53] is to integrate over the real axis (resp. real subspace) of the

complex parameter space. While this choice is in some sense natural, it encounters some very bad

singularities and a closer look shows that it cannot be correct.

135
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8.1. The state integral model that we give here depends on ideal hyperbolic triangulations.2

We will also take a small digression in Section 8.3 to define and discuss the main properties

of the quantum dilogarithm. This function is central to the state integral model, and has

also appeared previously in the description of motivic BPS invariants, back in Chapter 4.

Throughout this chapter, we work in the u-space representation for SL(2,C) partition

functions. In particular, we use the identification (6.1.16) and denote the perturbative

SL(2,C) invariant as Z(α)(M ; ~, u). The discussion here follows [3].

8.1 Hyperbolic geometry

The construction of a state integral model described in the rest of this chapter applies to

orientable hyperbolic 3-manifolds of finite volume (possibly with boundary) and uses ideal

triangulations in a crucial way. Therefore, we begin this section by reviewing some relevant

facts from hyperbolic geometry (more details can be found in [113, 129, 130]).

Recall that hyperbolic 3-space H3 can be represented as the upper half-space {(x1, x2, x3)|

x3 > 0} with metric (5.2.7) of constant curvature −1. The boundary ∂H3, topologically an

S2, consists of the plane x3 = 0 together with the point at infinity. The group of isometries

of H3 is PSL(2,C), which acts on the boundary via the usual Möbius transformations. In

this picture, geodesic surfaces are spheres of any radius which intersect ∂H3 orthogonally.

An ideal tetrahedron ∆ in H3 has by definition all its faces along geodesic surfaces, and

all its vertices in ∂H3 — such vertices are called ideal points. After Möbius transformations,

one can fix three of the vertices at (0, 0, 0), (1, 0, 0), and infinity. The coordinate of the

fourth vertex (x1, x2, 0), with x2 ≥ 0, defines a complex number z = x1 + ix2 called the

shape parameter (sometimes also called edge parameter). At various edges, the faces of the

tetrahedron ∆ form dihedral angles arg zj (j = 1, 2, 3) as indicated in Figure 8.1, with

z1 = z , z2 = 1− 1
z
, z3 =

1
1− z

. (8.1.1)

The ideal tetrahedron is noncompact, but has finite volume given by

Vol(∆z) = D(z) , (8.1.2)
2It is nevertheless fairly clear that it should work for general three-manifolds, in part because

any three-manifold with boundary has an ideal topological triangulation even when its hyperbolic

volume is zero. A description of the state sum model for torus knots will appear in [5].
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where D(z) is the Bloch-Wigner dilogarithm function, related to the usual dilogarithm Li2

(see Section 8.3) by

D(z) = Im
(
Li2(z)

)
+ arg(1− z) log |z| . (8.1.3)

Note that any of the zj can be taken to be the shape parameter of ∆, and that D(zj) =

Vol(∆z) for each j. We will allow shape parameters to be any complex numbers in C−{0, 1},

noting that for z ∈ R an ideal tetrahedron is degenerate and that for Im z < 0 it technically

has negative volume due to its orientation.

x1

x2

x3

z

10

z1

z3
z2

z3

10
z1 z2 x1

x2

(projection to boundary plane)

z1

z1

z2

z3

z2
z3

Figure 8.1: An ideal tetrahedron in H3.

A hyperbolic structure on a 3-manifold is a metric that is locally isometric to H3. A 3-

manifold is called hyperbolic if it admits a hyperbolic structure that is geodesically complete

and has finite volume. Most 3-manifolds are hyperbolic, including the vast majority of knot

and link complements in S3. Specifically, a knot complement is hyperbolic as long as the

knot is not a torus or satellite knot [131]. Every closed 3-manifold can be obtained via Dehn

surgery on a knot in S3, and for hyperbolic knots all but finitely many such surgeries yield

hyperbolic manifolds [113].

By the Mostow rigidity theorem [132, 133], the complete hyperbolic structure on a hy-

perbolic manifold is unique. Therefore, geometric invariants like the hyperbolic volume

are actually topological invariants. For the large class of hyperbolic knot complements in

S3, the unique complete hyperbolic structure has a parabolic holonomy with unit eigenval-

ues around the knot. In SL(2,C) Chern-Simons theory, this structure corresponds to the

“geometric” flat connection A(geom) with u = 0. As discussed in Section 5.2, hyperbolic

manifolds with complete hyperbolic structures can also be described as quotients H3/Γ.

Given a hyperbolic knot complement, one can deform the hyperbolic metric in such a

way that the holonomy u is not zero. Such deformed metrics are unique in a neighborhood
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of u = 0, but they are not geodesically complete. For a discrete set of values of u, one can

add in the “missing” geodesic, and the deformed metrics coincide with the unique complete

hyperbolic structures on closed 3-manifolds obtained via appropriate Dehn surgeries on

the knot in S3. For other values of u, the knot complement can be completed by adding

either a circle S1 or a single point, but the resulting hyperbolic metric will be singular.

For example, if u ∈ iR one adds a circle and the resulting metric has a conical singularity.

These descriptions can easily be extended to link complements (i.e. multiple cusps), using

multiple parameters uk, one for each link component.

Any orientable hyperbolic manifold M is homeomorphic to the interior of a compact

3-manifold M̄ with boundary consisting of finitely many tori. (The manifold M itself can

also be thought of as the union of M̄ with neighborhoods of the cusps, each of the latter

being homeomorphic to T 2 × [0,∞).) All hyperbolic manifolds therefore arise as knot or

link complements in closed 3-manifolds. Moreover, every hyperbolic manifold has an ideal

triangulation, i.e a finite decomposition into (possibly degenerate3) ideal tetrahedra; see

e.g. [113, 134].

To reconstruct a hyperbolic 3-manifold M from its ideal triangulation {∆i}Ni=1, faces

of tetrahedra are glued together in pairs. One must remember, however, that vertices of

tetrahedra are not part of M , and that the combined boundaries of their neighborhoods

in M are not spheres, but tori. (Thus, some intuition from simplicial triangulations no

longer holds.) There always exists a triangulation of M whose edges can all be oriented in

such a way that the boundary of every face (shared between two tetrahedra) has two edges

oriented in the same direction (clockwise or counterclockwise) and one opposite. Then the

vertices of each tetrahedron can be canonically labeled 0, 1, 2, 3 according to the number

of edges entering the vertex, so that the tetrahedron can be identified in a unique way with

one of the two numbered tetrahedra shown in Figure 8.3 of the next subsection. This at

the same time orients the tetrahedron. The orientation of a given tetrahedron ∆i may not

agree with that of M ; one defines εi = 1 if the orientations agree and εi = −1 otherwise.

The edges of each tetrahedron can then be given shape parameters (z(i)
1 , z

(i)
2 , z

(i)
3 ), running

counterclockwise around each vertex (viewed from outside the tetrahedron) if εi = 1 and

clockwise if εi = −1.

For a given M with cusps or conical singularities specified by holonomy parameters uk,
3It is conjectured and widely believed that nondegenerate tetrahedra alone are always sufficient.
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the shape parameters z(i)
j of the tetrahedra ∆i in its triangulation are fixed by two sets of

conditions. First, the product of the shape parameters z(i)
j at every edge in the triangulation

must be equal to 1, in order for the hyperbolic structures of adjacent tetrahedra to match.

More precisely, the sum of some chosen branches of log z(i)
j (equal to the standard branch

if one is near the complete structure) should equal 2πi, so that the total dihedral angle

at each edge is 2π. Second, one can compute holonomy eigenvalues around each torus

boundary in M as a product of z(i)
j ’s by mapping out the neighborhood of each vertex in

the triangulation in a so-called developing map, and following a procedure illustrated in,

e.g., [114]. There is one distinct vertex “inside” each boundary torus. One then requires

that the eigenvalues of the holonomy around the kth boundary are equal to e±uk . These

two conditions will be referred to, respectively, as edge and cusp relations.

Every hyperbolic 3-manifold has a well-defined class in the Bloch group [135]. This is a

subgroup4 of the quotient of the free Z-module Z[C− {0, 1}] by the relations

[x]− [y] + [
y

x
]− [

1− x−1

1− y−1
] + [

1− x
1− y

] = 0 . (8.1.4)

This five-term or pentagon relation accounts for the fact that a polyhedron with five ideal

vertices can be decomposed into ideal tetrahedra in multiple ways. The five ideal tetrahedra

in this polyhedron (each obtained by deleting an ideal vertex) can be given the five shape

parameters x, y, y/x, ... appearing above. The signs of the different terms correspond to

orientations. Geometrically, an instance of the five-term relation can be visualized as the

2-3 Pachner move, illustrated in Figure 8.2.

2 3

Figure 8.2: The 2-3 Pachner move.

The class [M ] of a hyperbolic 3-manifold M in the Bloch group can be computed by

summing (with orientation) the shape parameters [z] of any ideal triangulation, but it
4Namely, the kernel of the map [z] 7→ 2z ∧ (1− z) ∈ C∗ ∧Z C∗ acting on this quotient module.
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is independent of the triangulation. Thus, hyperbolic invariants of 3-manifolds may be

obtained by functions on the Bloch group — i.e. functions compatible with (8.1.4). For

example, the Bloch-Wigner function (8.1.3) satisfies

D(x)−D(y) +D
(y
x

)
−D

(1− x−1

1− y−1

)
+D

(1− x
1− y

)
= 0 , (8.1.5)

and the hyperbolic volume of a manifold M triangulated by ideal tetrahedra {∆i}Ni=1 can

be calculated as

Vol(M) =
N∑

i=1

εiD(z(i)) . (8.1.6)

The symbols εi here could be removed if shape parameters were assigned to tetrahedra in a

manner independent of orientation, noting that reversing the orientation of a tetrahedron

corresponds to sending z 7→ 1/z and that D(1/z) = −D(z). This is sometimes seen in the

literature.

The complexified volume i(Vol(M) + iCS(M)) is trickier to evaluate. For a hyperbolic

manifold with a spin structure, corresponding to full SL(2,C) holonomies, this invariant is

defined modulo 4π2. Here, we will outline a computation of the complexified volume modulo

π2, following [136]; for the complete invariant modulo 4π2, see [137]. To proceed, one must

first make sure that the three shape parameters z(i) = z
(i)
1 , z(i)

2 , and z
(i)
3 are specifically

assigned to edges [v(i)
1 , v

(i)
2 ], [v(i)

1 , v
(i)
3 ], and [v(i)

1 , v
(i)
2 ] (respectively) in each tetrahedron ∆i

of an oriented triangulation of M , where [v(i)
a , v

(i)
b ] denotes the edge going from numbered

vertex v
(i)
a to numbered vertex v

(i)
b . One also chooses logarithms (w(i)

1 , w
(i)
2 , w

(i)
3 ) of the

shape parameters such that

ew
(i)
1 = ±z(i)

1 , ew
(i)
2 = ±z(i)

2 , ew
(i)
3 = ±z(i)

3 , (8.1.7a)

w
(i)
1 + w

(i)
2 + w

(i)
3 = 0 ∀ i , (8.1.7b)

and defines integers (q(i), r(i)) by

w
(i)
1 = Log(z(i)) + πiq(i) , w

(i)
2 = −Log(1− z(i)) + πir(i) , (8.1.8)

where Log denotes the principal branch of the logarithm, with a cut from 0 to −∞. For a

consistent labeling of the triangulation, called a “combinatorial flattening,” the sum of log-

parameters w(i)
j around every edge must vanish, and the (signed5) sum of log-parameters

5Signs arise from tetrahedron orientations and the sense in which a path winds around edges; see [136], Def. 4.2.
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along the two paths generating π1(T 2) = Z2 for any boundary (cusp) T 2 must equal twice

the logarithm of the SL(2,C) holonomies around these paths.6 The complexified volume is

then given, modulo π2, as

i(Vol(M) + iCS(M)) =
N∑

i=1

εiL(z(i); q(i), r(i))−
∑

cusps k

(vkuk + iπuk) , (8.1.9)

with

L(z; q, r) = Li2(z) +
1
2

(Log(z) + πiq)(Log(1− z) + πir) +
π2qr

2
− π2

6
. (8.1.10)

The function L(z; q, r), a modified version of the Rogers dilogarithm, satisfies a five-term

relation in an extended Bloch group that lifts (8.1.4) in a natural way to the space of

log-parameters.7

8.1.1 Example: figure-eight knot complement

Let K be the figure-eight knot (shown in Figure 6.1) and let M be its complement

in the 3-sphere. In order to compute the perturbative invariants S(ρ)
n for an arbitrary

ρ : π1(M) → SL(2,C) we first need to review the classical geometry of M in more detail

and, in particular, to describe the moduli space of flat SL(2,C) connections on M . As we

already mentioned earlier, the knot group π1(M) is generated by two elements, a and b,

such that a−1bab−1a = ba−1bab−1. The corresponding representation into SL(2,C) is given

by

ρ(a) =

 1 1

0 1

 , ρ(b) =

 1 0

ζ 1

 , (8.1.11)

where ζ = (−1 +
√
−3)/2 is the cube root of unity, ζ3 = 1.

The complement of the figure-eight knot can be also represented as a quotient space H3/Γ

(5.2.6), where the holonomy group Γ is generated by the above two matrices. Specifically,
6Explicitly, in the notation of Section 6.1 and above, the sum of log-parameters along the two

paths in the neighborhood of the kth cusp must equal 2uk and 2vk + 2πi, respectively.
7The branch of Li2 in (8.1.10) is taken to be the standard one, with a cut from 1 to +∞. Note,

however, that we could also take care of ambiguities arising from the choice of dilogarithm branch

by rewriting (8.1.10) in terms of the function L̃(w) =
∫ w

−∞
t dt

1−e−t . This is a well-defined holomorphic

function : C → C/4π2Z because all the residues of t/(1 − et) are integer multiplies of 2πi, and it

coincides with a branch of the function Li2(ew) + w log(1− ew).
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we have

Γ ∼= PSL(2,OK) , (8.1.12)

where OK is the ring of integers in the imaginary quadratic field K = Q(
√
−3). The

fundamental domain, F , for Γ is described by a geodesic pyramid in H3 with one vertex at

infinity and the other four vertices at the points:

v1 = j

v2 =
1
2
−
√

3
6
i+

√
2
3
j (8.1.13)

v3 =
1
2

+
√

3
6
i+

√
2
3
j

v4 =
1√
3
i+

√
2
3
j .

Explicitly, we have

F = {z + x3j ∈ H3 | z ∈ Fz, x
2
3 + |z|2 ≥ 1} , (8.1.14)

where z = x1 + ix2 and

Fz = {z ∈ C | 0 ≤ Re(z),
1√
3

Re(z) ≤ Im(z), Im(z) ≤ 1√
3

(1− Re(z))}

∪ {z ∈ C | 0 ≤ Re(z) ≤ 1
2
, − 1√

3
Re(z) ≤ Im(z) ≤ 1√

3
Re(z)} (8.1.15)

is the fundamental domain of a 2-torus with modular parameter τ = ζ. The region of

large values of x3 in F corresponds to the region near the cusp of the figure-eight knot

complement M .

The standard triangulation of the figure eight knot complement comprises two ideal

tetrahedra of opposite simplicial orientations, as in Figure 8.3, glued together in the only

nontrivial consistent manner possible,

M = ∆z ∪∆w . (8.1.16)

Here, z and w are complex numbers, representing the shapes of the ideal tetrahedra; we take

∆z to be positively oriented and ∆w to be negatively oriented. As explained in Section 8.1,

the shape parameters z and w must obey edge relations, which in the case of the figure-

eight knot reduce to a single algebraic relation (see e.g. Chapter 4 of [113] and Section 15

of [136]):

(z − 1)(w − 1) = z2w2 . (8.1.17)
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The shape parameters z and w are related to the SL(2,C) holonomy eigenvalue, l, along

the longitude8 of the knot in the following way

z2

z − 1
= −l , w2

w − 1
= −l−1 , (8.1.18)

which automatically solves the edge condition (8.1.17). Similarly, the holonomy eigenvalue

m = eu around the noncontractible meridian of the torus is given by

zw = m2. (8.1.19)

By eliminating z and w from (8.1.17), (8.1.18), and (8.1.19), one obtains the non-abelian

irreducible component of the A-polynomial for the figure-eight knot from (6.6.9),

m4 − (1−m2 − 2m4 −m6 +m8)l +m4l2 = 0 . (8.1.20)

Given the decomposition (8.1.16) of the 3-manifold M into two tetrahedra, we can find

its volume by adding the (signed) volumes of ∆z and ∆w,

Vol(M ;u) = Vol(∆z)−Vol(∆w) = D(z)−D(w) , (8.1.21)

where the volume of an ideal tetrahedron is given by (8.1.2). Similarly, following the

prescription in Section 8.1, the complexified volume can be given by9

i(Vol(M ;u) + iCS(M ;u)) = L(z; 0, 0)− L(w; 0, 0)− vū− iπu . (8.1.22)

Notice that due to the edge relation (8.1.17) the total volumes (8.1.21), (8.1.22) are functions

of one complex parameter, or, equivalently, a point on the zero locus of the A-polynomial,

A(l,m) = A(−ev, eu) = 0.

From the relation (8.1.18) we find that the point (l,m) = (−1, 1) corresponding to the

complete hyperbolic structure on M is characterized by the values of z and w which solve

the equation

z2 − z + 1 = 0 . (8.1.23)

In order to obtain tetrahedra of positive (signed) volume, we must choose z to be the root

of this equation with a positive imaginary part, and w its inverse:

z =
1 + i

√
3

2
, w =

1− i
√

3
2

. (8.1.24)

8A 1-cycle on Σ = T 2 which is contractible in the knot complement M .
9This expression differs slightly from the one given in [136], because we use 2v + 2πi rather than

2v as the logarithm of the “longitudinal” holonomy, as mentioned in Footnote 6 of Section 8.1.
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These value correspond to regular ideal tetrahedra, and maximize (respectively, minimize)

the Bloch-Wigner dilogarithm function D(z).

8.2 Hikami’s invariant

We can now describe Hikami’s geometric construction. Roughly speaking, to compute

the invariant for a hyperbolic manifold M , one chooses an ideal triangulation of M , assigns

an infinite-dimensional vector space V or V ∗ to each tetrahedron face, and assigns a matrix

element in V ⊗V ⊗V ∗⊗V ∗ to each tetrahedron. These matrix elements depend on a small

parameter ~, and in the classical ~ → 0 limit they capture the hyperbolic structure of the

tetrahedra. The invariant of M is obtained by taking inner products of matrix elements

on every pair of identified faces (gluing the tetrahedra back together), subject to the cusp

conditions described above in the classical limit.

To describe the process in greater detail, we begin with an orientable hyperbolic manifold

that has an oriented ideal triangulation {∆i}Ni=1, and initially forget about the hyperbolic

structures of these tetrahedra. As discussed in Section 8.1 and indicated in Figure 8.3,

each tetrahedron comes with one of two possible orientations of its edges, which induces

an ordering of its vertices v(i)
j (the subscript j here is not to be confused with the shape

parameter subscript in (8.1.1)), an ordering of its faces, and orientations on each face. The

latter can be indicated by inward or outward-pointing normal vectors. The faces (or their

normal vectors) are labelled by p(i)
j , in correspondence with opposing vertices. The normal

face-vectors of adjacent tetrahedra match up head-to-tail (and actually define an oriented

dual decomposition) when tetrahedra are glued to form M .

v1

v3
v2

v4

p3

p4

p2

p1

v1

v2
v3

v4

p2

p4

p3

p1

z = ep4-p3 z = ep4-p3
ε = +1 ε = -1

Figure 8.3: Oriented tetrahedra, to which matrix elements 〈p1, p3|S|p2, p4〉 (left) and

〈p2, p4|S−1|p1, p3〉 (right) are assigned.
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Given such an oriented triangulation, one associates a vector space V to each inward-

oriented face, and the dual space V ∗ to each outward-oriented face. (Physicists should think

of these spaces as “Hilbert” spaces obtained by quantizing the theory on a manifold with

boundary.) The elements of V are represented by complex-valued functions in one variable,

with adjoints given by conjugation and inner products given by integration. Abusing the

notation, but following the very natural set of conventions of [52, 53], we denote these

complex variables by p
(i)
j , which we used earlier to label the corresponding faces of the

tetrahedra. As a result, to the boundary of every tetrahedron ∆i one associates a vector

space V ⊗V ⊗V ∗⊗V ∗, represented by functions of its four face labels, p(i)
1 , p(i)

2 , p(i)
3 , and p(i)

4 .

To each tetrahedron one assigns a matrix element 〈p1, p3|S|p2, p4〉 or 〈p2, p4|S−1|p1, p3〉,

depending on orientation as indicated in Figure 8.3. Here, the matrix S acts on functions

f(p1, p2) ∈ V ⊗ V as

S = eq̂1p̂2/2~ Φ~(p̂1 + q̂2 − p̂2) , (8.2.1)

where p̂if = pif and q̂if = 2~ ∂
∂pi
f . The function Φ~ is the quantum dilogarithm, to

be described in the next subsection. Assuming that
∫ idq

4π~ |q〉〈q| =
∫
dp |p〉〈p| = 1 and

〈p|q〉 = e
pq
2i~ (the exact normalizations are not important for the final invariant), one obtains

via Fourier transform

〈p1, p3|S|p2, p4〉 =
δ(p1 + p3 − p2)√

−4πi~
Φ~(p4 − p3 + iπ + ~) e

1
2~

“
p1(p4−p3)+

iπ~
2 −π2−~2

6

”
, (8.2.2)

〈p2, p4|S−1|p1, p3〉 =
δ(p1 + p3 − p2)√

−4πi~
1

Φ~(p4 − p3 − iπ − ~)
e

1
2~

“
p1(p3−p4)− iπ~

2 + π2−~2
6

”
. (8.2.3)

In the classical limit ~→ 0, the quantum dilogarithm has the asymptotic Φ~(p) ∼ 1
2~Li2(−ep).

One therefore sees that the classical limits of the above matrix elements look very much like

exponentials of 1
2~ times the complexified hyperbolic volumes of tetrahedra. For example,

the asymptotic of (8.2.2) coincides with exp(L(z; ·, ·)/(2~)) if we identify ep4−p3 with z and

e−2p1 with 1/(1− z). For building a quantum invariant, however, only half of the variables

pj really “belong” to a single tetrahedron. Hikami’s claim [52, 53] is that if we only identify

a shape parameter

z(i) = ep
(i)
4 −p

(i)
3 , (8.2.4)

for every tetrahedron ∆i, the classical limit of the resulting quantum invariant will com-

pletely reproduce the hyperbolic structure and complexified hyperbolic volume on M .10

10Eqn. (8.2.4) is a little different from the relation appearing in [52, 53], because our convention

for assigning shape parameters to edges based on orientation differs from that of [52, 53].
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To finish calculating the invariant of M , one glues the tetrahedra back together and takes

inner products in every pair V and V ∗ corresponding to identified faces. This amounts to

multiplying together all the matrix elements (8.2.2) or (8.2.3), identifying the p(i)
j variables

on identified faces (with matching head-to-tail normal vectors), and integrating over the

2N remaining p’s. To account for possible toral boundaries of M , however, one must revert

back to the hyperbolic structure. This allows one to write the holonomy eigenvalues {euk}

as products of shape parameters (z(i), 1 − 1/z(i), 1/(1 − z(i))), and, using (8.2.4), to turn

every cusp condition into a linear relation of the form
∑
p’s = 2uk. These relations are

then inserted as delta functions in the inner product integral, enforcing global boundary

conditions. In the end, noting that each matrix element (8.2.2)-(8.2.3) also contains a

delta function, one is left with N − b0(Σ) nontrivial integrals, where b0(Σ) is the number

of connected components of Σ = ∂M . For example, specializing to hyperbolic 3-manifolds

with a single torus boundary Σ = T 2, the integration variables can be relabeled so that

Hikami’s invariant takes the form

H(M ; ~, u) =
1

(4π~)N/2

∫ N∏
i=1

Φ~
(
gi(p, 2u) + εi(iπ + ~)

)εi ef(p,2u,~)/2~ dp1 . . . dpN−1 .

(8.2.5)

The gi are linear combinations of (p1, . . . , pN−1, 2u) with integer coefficients, and f is a

quadratic polynomial, also with integer coefficients for all terms involving pk’s or u. In the

classical limit, this integral can naively be evaluated in a saddle-point approximation, and

Hikami’s claim is that the saddle-point relations coincide precisely with the edge conditions

for the triangulation on M . There is more to this story, however, as we will see in Section

8.4.

8.3 Quantum dilogarithm

Since quantum dilogarithms play a key role here, we take a little time to discuss some

of their most important properties.

Somewhat confusingly, there are at least three distinct—though related—functions which

have occurred in the literature under the name “quantum dilogarithm”:
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i) The function Li2(x; q) is defined for x, q ∈ C with |x|, |q| < 1 by

Li2(x; q) =
∞∑

n=1

xn

n (1− qn)
; (8.3.1)

its relation to the classical dilogarithm function Li2(x) =
∞∑

n=1

xn

n2
is that

Li2
(
x; e2~) ∼ − 1

2~
Li2(x) as ~→ 0 . (8.3.2)

ii) The function (x; q)∞ is defined for |q| < 1 and all x ∈ C by

(x; q)∞ =
∞∏

r=0

(
1− qrx) , (8.3.3)

and is related to Li2(x; q) for |x| < 1 by

(x; q)∞ = exp
(
−Li2(x; q)

)
. (8.3.4)

It is also related to the function E(x) of Chapter 4 as

E(x) =
(
− q

1
2x; q

)−1
. (8.3.5)

Finally,

iii) the function Φ(z; τ) is defined for Re(τ) > 0 and 2|Re(z)| < 1 + Re(τ) by

Φ(z; τ) = exp
(

1
4

∫
R(+)

e2xz

sinhx sinh τx
dx

x

)
(8.3.6)

(here R(+) denotes a path from −∞ to ∞ along the real line but deformed to pass over the

singularity at zero). It is related to (x; q)∞ by

Φ(z; τ) =



(
− e(z + τ/2); e(τ)

)
∞(

− e((z − 1/2)/τ); e(−1/τ)
)
∞

if Im(τ) > 0 ,(
− e((z + 1/2)/τ); e(1/τ)

)
∞(

− e(z − τ/2); e(−τ)
)
∞

if Im(τ) < 0 .

(8.3.7)

(Here and in future we use the abbreviation e(x) = e2πix.)

It is the third of these functions, in the normalization

Φ~(z) = Φ
( z

2πi
;

~
iπ

)
, (8.3.8)

which occurs in our “state integral” and which we will take as our basic “quantum dilog-

arithm,” but all three functions play a role in the analysis, so we will describe the main
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properties of all three here. We give complete proofs, but only sketchily since none of this

material is new. For further discussion and proofs, see, e.g., [138, 139, 140, 141, 142], and

[143] (subsection II.1.D).

1. The asymptotic formula (8.3.2) can be refined to the asymptotic expansion

Li2
(
x; e2~) ∼ − 1

2~
Li2(x)− 1

2
log(1− x)− x

1− x
~
6

+ 0~2 +
x+ x2

(1− x)3
~3

90
+ · · · (8.3.9)

as ~→ 0 with x fixed, in which the coefficient of ~n−1 for n ≥ 2 is the product of−2n−1Bn/n!

(here Bn is the nth Bernoulli number) with the negative-index polylogarithm Li2−n(x) ∈

Q
[

1
1−x

]
. More generally, one has the asymptotic formula

Li2
(
xe2λ~; e2~) ∼ − ∞∑

n=0

2n−1Bn(λ)
n!

Li2−n(x) ~n−1 (8.3.10)

as ~→ 0 with λ fixed, where Bn(t) denotes the nth Bernoulli polynomial.11 Both formulas

are easy consequences of the Euler-Maclaurin summation formula. By combining (8.3.7),

(8.3.4), and (8.3.10), one also obtains an asymptotic expansion

Φ~(z + 2λ~) = exp

( ∞∑
n=0

2n−1Bn(1/2 + λ)
n!

~n−1Li2−n(−ez)

)
. (8.3.11)

(To derive this, note that in (8.3.7) (−e(z ± 1/2)/τ ; e(±1/τ))∞ ∼ 1 to all orders in ~ as

~→ 0.)

2. The function (x; q)∞ and its reciprocal have the Taylor expansions (cf. (4.1.14))

(x; q)∞ =
∞∑

n=0

(−1)n

(q)n
q

n(n−1)
2 xn ,

1
(x; q)∞

=
∞∑

n=0

1
(q)n

xn (8.3.12)

around x = 0, where

(q)n =

(
q; q
)
∞(

qn+1; q
)
∞

= (1− q)(1− q2) · · · (1− qn) (8.3.13)

is the nth q-Pochhammer symbol. These, as well as formula (8.3.4), can be proved easily

from the recursion formula (x; q)∞ = (1− x)(qx; q)∞, which together with the initial value

(0; q)∞ = 1 determines the power series (x; q)∞ uniquely. (Of course, (8.3.4) can also be

proved directly by expanding each term in
∑

r log(1− qrx) as a power series in x.) Another

11This is the unique polynomial satisfying
∫ x+1

x
Bn(t)dt = xn, and is a monic polynomial of degree

n with constant term Bn.
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Figure 8.4: The complex z-plane, showing poles (X’s) and zeroes (O’s) of Φ~(z) at ~ =
3
4e

iπ/3.

famous result, easily deduced from (8.3.12) using the identity
∑

m−n=k

qmn

(q)m(q)n
=

1
(q)∞

for

all k ∈ Z, is the Jacobi triple product formula

(q; q)∞ (x; q)∞ (qx−1; q)∞ =
∑
k∈Z

(−1)kq
k(k−1)

2 xk , (8.3.14)

relating the function (x; q)∞ to the classical Jacobi theta function.

3. The function Φ(z; τ) defined (initially for Re(τ) > 0 and |Re(z)| < 1
2 + 1

2Re(τ)) by (8.3.6)

has several functional equations. Denote by I(z; τ) the integral appearing in this formula.

Choosing for R(+) the path (−∞,−ε] ∪ ε exp([iπ, 0]) ∪ [ε,∞) and letting ε→ 0, we find

I(z; τ) =
2πi
τ

(
1 + τ2

12
− z2

)
+ 2

∫ ∞
0

(
sinh 2xz

sinhx sinh τx
− 2z

τx

)
dx

x
. (8.3.15)

Since the second term is an even function of z, this gives

Φ(z; τ) Φ(−z; τ) = e
(τ2 − 12z2 + 1

24τ
)
. (8.3.16)

From (8.3.15) we also get

I(z + 1/2; τ) − I(z − 1/2; τ) = −4πiz
τ

+ 4
∫ ∞

0

(
cosh 2xz
sinh τx

− 1
τx

)
dx

x
. (8.3.17)

The integral equals − log(2 cos(πz/τ)) (proof left as an exercise). Dividing by 4 and expo-

nentiating we get the first of the two functional equations

Φ(z − 1/2; τ)
Φ(z + 1/2; τ)

= 1 + e
(
z/τ
)
,

Φ(z − τ/2; τ)
Φ(z + τ/2; τ)

= 1 + e
(
z
)
, (8.3.18)
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and the second can be proved in the same way or deduced from the first using the obvious

symmetry property

Φ(z; τ) = Φ(z/τ ; 1/τ) , (8.3.19)

of the function Φ. (Replace x by x/τ in (8.3.6).)

4. The functional equations (8.3.18) show that Φ(z; τ), which in its initial domain of defi-

nition clearly has no zeros or poles, extends (for fixed τ with Re(τ) > 0) to a meromorphic

function of z with simple poles at z ∈ Ξ(τ) and simple zeros at z ∈ −Ξ(τ), where

Ξ(τ) =
(
Z≥0 + 1

2

)
τ +

(
Z≥0 + 1

2

)
⊂ C . (8.3.20)

In terms of the normalization (8.3.8), this says that Φ~(z) has simple poles at z ∈ Ξ̃(~) and

simple zeroes at z ∈ −Ξ̃(~), where

Ξ̃(~) = (2Z≥0 + 1)iπ + (2Z≥0 + 1)~ . (8.3.21)

This is illustrated in Figure 8.4. Equation (8.3.7) expressing Φ in terms of the function

(x; q)∞ also follows, because the quotient of its left- and right-hand sides is a doubly periodic

function of z with no zeros or poles and hence constant, and the constant can only be ±1

(and can then be checked to be +1 in several ways, e.g., by evaluating numerically at one

point) because the right-hand side of (8.3.7) satisfies the same functional equation (8.3.16) as

Φ(z; τ) by virtue of the Jacobi triple product formula (8.3.14) and the well-known modular

transformation properties of the Jacobi theta function.

5. From (8.3.15) we also find the Taylor expansion of I(z; τ) at z = 0,

I(z; τ) = 4
∞∑

k=0

Ck(τ) zk ,

with coefficients Ck(τ) = τ−kCk(1/τ) given by

C0(τ) =
πi

24
(
τ + τ−1

)
, C1(τ) =

∫ ∞
0

(
1

sinhx sinh τx
− 1
τx2

)
dx ,

C2(τ) = −πi
2τ

, Ck(τ) = 0 for k ≥ 4 even,

Ck(τ) =
2k−1

k!

∫ ∞
0

xk−1 dx

sinhx sinh τx
for k ≥ 3 odd.

By expanding 1/ sinh(x) and 1/ sinh(τx) as power series in e−x and e−τx we can evaluate

the last of these expressions to get

Ck(τ) =
2k+1

k!

∑
m,n>0, odd

∫ ∞
0

e−mx−nτx xk−1 dx =
2
k

∑
s∈Ξ(τ)

s−k (k ≥ 3 odd)
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with Ξ(τ) as in (8.3.20). Dividing by 4 and exponentiating gives the Weierstrass product

expansion

Φ(z; τ) = exp
(
πi

24
(
τ + τ−1

)
+ C1(τ) z − πiz2

2τ

) ∏
s∈Ξ(τ)

(
s+ z

s− z
e−2z/s

)
(8.3.22)

of Φ(z; τ). From this expansion, one finds that Φ(z; τ) extends meromorphically to C ×(
C r (−∞, 0]

)
with simple poles and simple zeros for z ∈ Ξ(τ) and z ∈ −Ξ(τ) and no other

zeros or poles. (This analytic continuation can also be deduced by rotating the path of

integration in (8.3.6), e.g. by replacing
∫

R(+) by
∫

R(+)/
√

τ for z sufficiently small.)

6. The quantum dilogarithm is related via the Jacobi triple product formula to the Jacobi

theta function, which is a Jacobi form, i.e., it has transformation properties not only with

respect to the lattice translations z 7→ z + 1 and z 7→ z + τ but also with respect to the

modular transformations τ 7→ τ + 1 and τ 7→ −1/τ . The function Φ(z; τ) has the lattice

transformation properties (8.3.18) and maps to its inverse under (z, τ) 7→ (z/τ, −1/τ), but

it does not transform in a simple way with respect to τ 7→ τ + 1. Nevertheless, it has

an interesting modularity property of a different kind (cocycle property) which is worth

mentioning here even though no use of it will be made in the remainder of this thesis.

Write (8.3.7) as

Φ(z; τ) =
S(z; τ)

S(z/τ ;−1/τ)
, S(z; τ) =


∏

n > 0 odd

(
1 + qn/2e(z)

)
if Im(τ) > 0,∏

n < 0 odd

(
1 + qn/2e(z)

)−1 if Im(τ) < 0,

where q = e(τ). The function S(z; τ) has the transformation properties

S(z; τ) = S(z + 1; τ) = (1 + q1/2e(z))S(z + τ ; τ) = S(z + 1
2 ; τ + 1) = S(z; τ + 2)

amd from these we deduce by a short calculation the two three-term functional equations

Φ(z; τ) = Φ
(
z ± 1

2
, τ + 1

)
Φ
(z ∓ τ/2
τ + 1

,
τ

τ + 1
)

(8.3.23)

of Φ. This is highly reminiscent of the fact (cf. [144]) that the holomorphic function

ψ(τ) = f(τ)− τ−2sf(−1/τ) , f(τ) =


∑

n>0 anq
n if Im(τ) > 0,

−
∑

n<0 anq
n if Im(τ) < 0

associated to a Maass cusp form u(τ) on SL(2,Z) with spectral parameter s, where an are

the normalized coefficients in the Fourier-Bessel expansion of u, satisfies the Lewis functional
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equation ψ(τ) = ψ(τ + 1) + (τ + 1)−2sψ
(

τ
τ+1

)
and extends holomorphically from its initial

domain of definition C r R to C r (−∞, 0] .

7. Finally, the quantum dilogarithm functions satisfy various five-term relations, of which

the classical five-term functional equation of Li2(x) is a limiting case, when the arguments

are non-commuting variables. The simplest and oldest is the identity

(Y ; q)∞ (X; q)∞ = (X; q)∞ (−Y X; q)∞ (Y ; q)∞ (8.3.24)

for operators X and Y satisfying XY = qY X (cf. Eqn. (4.1.21) for E(x)). From this one

deduces the “quantum pentagon relation”

Φ~(p̂) Φ~(q̂) = Φ~(q̂) Φ~(p̂+ q̂) Φ~(p̂) (8.3.25)

for operators p̂ and q̂ satisfying [q̂, p̂] = 2~. Letting Sij be a copy, acting on the ith and jth

factors of V ⊗ V ⊗ V , of the S-matrix introduced in (8.2.1), we deduce from (8.3.25) the

operator identity

S23S12 = S12S13S23 . (8.3.26)

It is this very special property which guarantees that the gluing procedure used in the

definition of (8.2.5) is invariant under 2-3 Pachner moves on the underlying triangulations

and produces a true hyperbolic invariant [52, 53, 145]. This identity is also related to the

interesting fact that the fifth power of the operator which maps a nicely behaved function

to the Fourier transform of its product with Φ~(z) (suitably normalized) is a multiple of

the identity [142].

8.4 A state integral model for Z(ρ)(M ; ~)

Now, let us return to the analysis of the integral (8.2.5) and compare it with the per-

turbative SL(2,C) invariant Z(α)(M ; ~, u). Both invariants compute quantum (i.e. ~ -

deformed) topological invariants of hyperbolic 3-manifolds and, thus, are expected to be

closely related. However, in order to establish a precise relation, we need to face two prob-

lems mentioned in the beginning of this section:

i) the integration contour is not specified in (8.2.5), and

ii) the integral (8.2.5) does not depend on the choice of the classical solution α.
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These two problems are related, and can be addressed by studying the integral (8.2.5) in var-

ious saddle-point approximations. Using the leading term in (8.3.11), we can approximate

it to leading order as

H(M ; ~, u) ∼
~→0

∫
e

1
~ V (p1,...,pN−1,u) dp1 . . . dpN−1 , (8.4.1)

with the “potential”

V (p, u) =
1
2

N∑
i=1

εiLi2(− exp(gi(p, 2u) + iπεi)) +
1
2
f(p, 2u, ~ = 0) . (8.4.2)

As explained below (8.3.11), the branches of Li2 must be chosen appropriately to coincide

with the half-lines of poles and zeroes of the quantum dilogarithms in (8.2.5). The leading

contribution to H(M ; ~, u) will then come from the highest-lying critical point through

which a given contour can be deformed.

It was the observation of [53] that the potential V always has one critical point that

reproduces the classical Chern-Simons action on the “geometric” branch, that is a critical

point p(geom)(u) such that

lgeom(u) = exp
[

d
duV (p(geom)(u), u)

]
(8.4.3)

and

S
(geom)
0 (u) = V (p(geom)(u), u) . (8.4.4)

This identification follows from the fact that both S
(geom)
0 (u) and matrix elements (8.2.2)-

(8.2.3) in the limit ~ → 0 are related to the complexified volume function i(Vol(M ;u) +

iCS(M ;u)). We want to argue presently that in fact every critical point of V corresponds

to a classical solution in Chern-Simons theory (that is, to a branch of A(l,m) = 0) in this

manner, with similar relations

lα(u) = e
d

du
V (p(α)(u),u) (8.4.5)

and

S
(α)
0 (u) = V (p(α)(u), u) (8.4.6)

for some α. In particular, lα(u) as given by (8.4.5) and m = eu obey (6.3.13).

To analyze generic critical points of V , observe that the critical point equations take

the form

2
∂

∂pj
V (p, u) = −

N∑
i=1

εiGji log(1+exp(gi(p, 2u)+iπεi))+
∂

∂pj
f(p, 2u, 0) = 0 ∀ j , (8.4.7)
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where Gji = ∂
∂pj

gi(p, 2u) are some constants and the functions ∂
∂pj

f(p, 2u, 0) are linear.

Again, the cuts of the logarithm must match the singularities of the quantum dilogarithm.

Exponentiating (8.4.7), we obtain another set of conditions

rj(x,m) = 1 ∀ j , (8.4.8)

where

rj(x,m) = exp
(

2
∂

∂pj
V (p, u)

)
=
∏

i

(1− egi)−εiGji exp
( ∂

∂pj
f
)

(8.4.9)

are all rational functions of the variables xj = epj and m = eu. Note that an entire family

of points {p + 2πin |n ∈ ZN−1} maps to a single x, and that all branch cut ambiguities

disappear in the simpler equations (8.4.8). Depending on arg(~) and the precise form of f ,

solutions to (8.4.8) either “lift” uniquely to critical points of the potential V , or they lift to

a family of critical points at which V differs only by integer multiples of 2πiu.

Now, the system (8.4.8) is algebraic, so its set of solutions defines a complex affine

variety

R = {(x1, . . . , xN−1,m) ∈ CN | rj(x1, . . . , xN−1,m) = 0 ∀ j} , (8.4.10)

which is closely related to the representation variety L given by A(l,m) = 0. Both gener-

ically have complex dimension one. Noting that s(x1, . . . , xN−1,m) = exp
(

∂
∂uV

)
is also a

rational function, we can define a rational map φ : CN → C2 by

φ(x1, . . . , xN−1,m) = (s(x1, . . . , xN−1,m),m) . (8.4.11)

The claim in [53] that one critical point of V always corresponds to the geometric branch

of L means that φ(R) (taking an algebraic closure) always intersects L nontrivially, along

a subvariety of dimension 1. Thus, some irreducible component of φ(R), coming from an

irreducible component of R, must coincide with the entire irreducible component of L con-

taining the geometric branch. Every solution x = x(m) in this component of R corresponds

to a branch of the A-polynomial. Moreover, if such a solution x(α) (corresponding to branch

α) can be lifted to a real critical point p(α)(u) of V , then one must have relations (8.4.5)

and (8.4.6).

This simple algebraic analysis shows that some solutions of (8.4.8) will cover an entire

irreducible component of the curve L defined by A(l,m) = 0. We cannot push the general

argument further without knowing more about the reducibility of R. However, we can look
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at some actual examples. Computing V (p, u) for thirteen hyperbolic manifolds with a single

torus boundary,12 we found in every case that solutions of (8.4.8) completely covered all

non-abelian branches α 6= abel; in other words, φ(R) = L′, with L′ = {A(l,m)/(l−1) = 0}.

For six of these manifolds, we found unique critical points p(u) corresponding to every

non-abelian branch of L at arg(~) = iπ. Motivated by these examples, it is natural to state

the following conjecture:

Conjecture 2: Every critical point of V corresponds to some branch α, and all α 6= abel

are obtained in this way. Moreover, for every critical point p(α)(u) (corresponding to some

branch α) we have (8.4.5)-(8.4.6) and to all orders in perturbation theory:

Z(α)(M ; ~, u) =
√

2
∫

Cα

N∏
i=1

Φ~
(
gi(p, 2u) + εi(iπ+ ~)

)εi e
1
2~ f(p,2u,~)−u

N−1∏
j=1

dpj√
4π~

, (8.4.12)

where Cα is an arbitrary contour with fixed endpoints which passes through p(α)(u) and no

other critical point.

A slightly more conservative version of this conjecture might state that only those α

that belong to the same irreducible component of L as the geometric branch, α = geom, are

covered by critical points of V . Indeed, the “abelian” branch with label = 1 is not covered

by the critical points of V and it belongs to the separate component (l − 1) of the curve

A(l,m) = 0. It would be interesting to study the relation between critical points of V and

irreducible components of L further, in particular by looking at examples with reducible

A-polynomials aside from the universal (l − 1) factor.

The right-hand side of (8.4.12) is the proposed state integral model for the exact pertur-

bative partition function of SL(2,C) Chern-Simons theory on a hyperbolic 3-manifold M

with a single torus boundary Σ = T 2. (A generalization to 3-manifolds with an arbitrary

number of boundary components is straightforward.) This state integral model is a mod-

ified version of Hikami’s invariant (8.2.5). Just like its predecessor, eq. (8.4.12) is based

on an ideal triangulation {∆i}Ni=1 of a hyperbolic 3-manifold M and inherits topological

12Namely, the complements of hyperbolic knots 41(k21), 52(k32), 12n242 (31, (-2,3,7)-

pretzel knot), 61(k41), 63(k643), 72(k42), 73(k520), 74(k628), 10132(K59), 10139(K522), and

11n38(K513), as well as the one-punctured torus bundles L2R and LR3 over S1 (also knot comple-

ments, but in a manifold other than S3).
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invariance from the pentagon identity (8.3.25) of the quantum dilogarithm.

However, in writing (8.4.12) we made two important modifications to Hikami’s invariant

(8.2.5). First, we introduced contours Cα running across the sadle points pα, which now

encode the choice of a classical solution in Chern-Simons theory. Second, in (8.4.12) we

introduced an extra factor of
√

8π~e−u, which is needed to reproduce the correct asymptotic

behavior of Z(α)(M ; ~, u). To understand this correction factor, we must look at the higher-

order terms in the expansion of Z(α)(M ; ~, u). By using (8.3.11), one can continue the

saddle-point approximations described above to arbitrary order in ~. The result has the

expected form (5.1.9),

Z(α)(M ; ~, u) = exp

(
1
~
S

(α)
0 (u)− 1

2
δ(α) log ~ +

∞∑
n=0

S
(α)
n+1(u)~n

)
, (8.4.13)

with the correct leading term S
(α)
0 (u) that we already analyzed above, cf. eq. (8.4.6).

Let us examine the next-leading logarithmic term. Its coefficient δ(α) receives contribu-

tions from two places: from the prefactor (4π~)−(N−1)/2 in (8.4.12), and from the standard

Gaussian determinant. The former depends on the total number of tetrahedra, N , in the

triangulation of M and therefore must be cancelled (at least partially) since the total in-

tegral (8.4.12) is a topological invariant and cannot depend on N . This is indeed what

happens. For example, in a saddle-point approximation around a nondegenerate critical

point p(α)(u), the contribution of the Gaussian determinant goes like ∼ ~(N−1)/2 and ex-

actly cancels the contribution of the prefactor ∼ ~−(N−1)/2. An example of such critical

point is the critical point p(geom)(u) corresponding to the geometric branch. Therefore, the

asymptotic expansion of the integral (8.4.12) around the critical point p(geom)(u) has the

form (8.4.13) with

δ(geom) = 0 , (8.4.14)

which is the expected result.13 Indeed, as explained e.g. in [40, 98], the rigidity of the flat

connection A(geom) associated with a hyperbolic structure on M implies h0 = h1 = 0, so

that (5.2.2) gives δ(geom) = 0.

13Recall that throughout this work Z(ρ)(M ; ~) (resp. Z(α)(M ; ~, u)) stands for the unnormalized

perturbative GC invariant. A normalized version, obtained by dividing by Z(S3), has an asymptotic

expansion of the same form (5.1.9) (resp. (8.4.13)) with the value of δ(α) shifted by dim(G) for every

α. This is easy to see from (5.3.6).
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Using (8.3.11) , one can also calculate the higher-order perturbative coefficients S(α)
n (u),

with n ≥ 1. In the following section, we carry out this analysis to high order for the figure-

8 knot complement and find perfect agreement with the results obtained by methods of

Section 6.6. (Other interesting examples and further checks will appear elsewhere [5].)

Note that the S(α)
n (u)’s do not depend on the details of the contours Cα. The only part

of (8.4.12) which actually depends on the details of Cα is exponentially suppressed and is

not part of the perturbative series (8.4.13). Finally, we also note that we use only those

critical points of the full integrand (8.4.12) which correspond to critical points of V in the

limit ~→ 0. For any fixed ~ > 0, the actual integrand has many other critical points which

become trapped in the half-line singularities of quantum dilogarithms as ~ → 0, so the

integrals over them do not have a well-behaved limit.

We conclude this section by observing that Conjecture 2 implies Conjecture 1. From

(8.3.11), we can write an asymptotic double series expansion (for very small p):

Φ~(p0 + p) = exp

( ∞∑
n=0

Bn

(1
2

+
p

2~
)

Li2−n

(
−ep0

) (2~)n−1

n!

)

= exp

 ∞∑
k=−1

∞∑
j=0

Bk+1(1/2) 2k

(k + 1)!j!
Li1−j−k(−ep0) ~kpj

 . (8.4.15)

Using this formula and taking into account the shifts by ±(iπ+~), we expand every quantum

dilogarithm appearing in the integrand of (8.4.12) around a critical point p(α). At each

order in ~, the state integral model then reduces to an integral of a polynomial in p with a

Gaussian weight. Due to the fact that Lik is a rational function for k ≤ 0, the coefficients

of these polynomials are all rational functions of the variables x(α) = exp(p(α)) and m.

Therefore, the resulting coefficients S(α)
n (m), for n > 1, will also be rational functions of

x(α) and m. At m = 1, the solutions x(α)(m) to the rational equations (8.4.8) all belong

to some algebraic number field K ⊂ Q, leading immediately to Conjecture 1. In particular,

for the geometric branch α = geom, the field K is nothing but the trace field Q(tr Γ).
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Saddle points and new invariants

In this chapter, we begin by performing explicit computations with the state integral model

of Chapter 8, using the algorithm outlined very briefly at the end of Section 8.4. We use

the hyperbolic figure-eight knot 41 and the knot 52 (or rather their complements in the

three-sphere) as our main examples. In both cases, we how the equations of geometric

quantization Â · Z = 0 can be easily verified directly within the state integral model. Of

course, for 41 our coefficients Sn(u) will agree with those obtained in Section 6.6 directly

from geometric quantization. Unlike geometric quantization, however, the state integral

model fixes (almost) all potentially undetermined constants in the invariants Sn(u); one

can check that for 41 and 52, these invariants reduce to the arithmetic invariants found in

Section 5.4 at u = 0.

The knot 52 is not amphicheiral, and its perturbative invariants display several novel

features. In particular, the 52 knot complement has three branches of non-abelian flat

connections, two of which are conjugate to each other (but are not a signed pair), and one

which is a real self-conjugate branch. Unlike the case of self-conjugate abelian branches, the

non-abelian real branch here has interesting arithmetic properties. Moreover, the conjugate

branches have a non-vanishing Chern-Simons invariant.

In Section 9.3, we will then use functional equations for the quantum dilogarithm to

obtain direct (though unrigorous) analytic continuations of the colored Jones polynomi-

als of knots 41 and 52, as well as the non-hyperbolic trefoil 31. The resulting analytic

continuations become integrals of products of quantum dilogarithms just like the partition

functions of the state integral model. In some cases, the integrals are identical. Saddle-point

158
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approximations can be applied in this case as well, leading to the same perturbative GC

invariants.

The figure-eight example appeared first in our work [3]. The 52 example, verification of

Â · Z = 0, and direct analytic continuation will appear in [5]. The integral for the trefoil

obtained by analytic continuation suggests the existence of a non-hyperbolic state integral

model.

9.1 Figure-eight knot 41

The state integral model (8.4.12) for the figure-eight knot complement gives:

Z(α)(M ; ~, u) =
1√
2π~

∫
Cα

dp
Φ~(p+ iπ + ~)

Φ~(−p− 2u− iπ − ~)
e−

2
~ u(u+p)−u . (9.1.1)

There are two tetrahedra (N = 2) in the standard triangulation of M , and so two quantum

dilogarithms in the integral. There is a single integration variable p, and we can identify

g1(p, u) = p, g2(p, u) = −p− 2u, and f(p, 2u, ~) = −4u(u+ p).

It will be convenient here to actually change variables p 7→ p− u− iπ− ~, removing the

(iπ + ~) terms in the quantum dilogarithms, and obtaining the somewhat more symmetric

expression

Z(α)(M ; ~, u) =
1√
2π~

e
2πiu

~ +u

∫
Cα

dp
Φ~(p− u)

Φ~(−p− u)
e−

2pu
~ (9.1.2)

=
1√
2π~

e
2πiu

~ +u

∫
Cα

dp eΥ(~,p,u) . (9.1.3)

We define eΥ(~,p,u) = Φ~(p−u)
Φ~(−p−u)e

− 2pu
~ . Figures 9.1 and 9.2 show plots of |eΥ(~,p,u)| and

log |eΥ(~,p,u)| = Re Υ(~, p, u) at ~ = i/3 and two values of u. The half-lines of poles and

zeroes of the two quantum dilogarithms combine into similar singularities for Υ(~, p, u), as

is depicted in Figure 9.3; note the splitting of these poles and zeroes by an amount 2u.

After our change of variables, the “potential” function V (p, u) as in (8.4.2) is now seen

to be

V (p, u) =
1
2
[
Li2(−ep−u)− Li2(−e−p−u)− 4pu+ 4πiu

]
. (9.1.4)

Instead of looking directly at ∂
∂pV = 0 to find its critical points, we consider the simpler

equation

r(x,m) = e
2 ∂

∂p
V =

x

m2(m+ x)(1 +mx)
= 1 , (9.1.5)
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Figure 9.1: Plots of |eΥ(~,p,u)| and its logarithm at u = 0 and ~ = i
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Figure 9.2: Plots of |eΥ(~,p,u)| and its logarithm at u = 1
2 i and ~ = i

3 .

in terms of x = ep and m = eu. This clearly has two branches of solutions, which both lift

to true critical points of V , given by

p(geom,conj)(u) = log
[

1−m2 −m4 ∓m2∆(m)
2m3

]
, (9.1.6)

with ∆(m) defined as in (6.6.12):

∆(m) = i
√
−m−4 + 2m−2 + 1 + 2m2 −m4 . (9.1.7)

The lift is unique if (say) ~ ∈ iR>0. We claim that these correspond to the geometric

and conjugate branches of the A-polynomial described in Section 6.6, which can be ver-

ified by calculating1 s(x,m) = exp
(

∂
∂uV (p, u)

)
=
[

m+x
x3+mx4

]1/2, and checking indeed that

s(x(geom,conj)(m),m) = lgeom,conj(m).
1Here s(x,m) is the square root of a rational function rather than a rational function itself due

to our redefined variables. Using (9.1.1) directly, we would have gotten a pure rational expression.
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Figure 9.3: Poles, zeroes, and critical points of eΥ(~,p,u) for u = 1
2 i and ~ = 3

4e
iπ/6.

The two critical points of Λ~ which correspond to the critical points of V (as ~ → 0)

are indicated in Figures 9.1 and 9.2. As mentioned at the end of Section 8.4, at any fixed

~ 6= 0 there exist many other critical points of Λ~ that can be seen between consecutive

pairs of poles and zeroes in Figures 9.1 and 9.2; however, these other critical points become

trapped in half-line singularities as ~ → 0, and their saddle-point approximations are not

well-defined.

We now calculate the perturbative invariants S(geom)
n (u) and S

(conj)
n (u) by doing a full

saddle-point approximation of the integral (9.1.2) on (dummy) contours passing through

the two critical points. We begin by formally expanding Υ(~, p, u) = log Λ~(p, u) as a series

in both ~ and p around some fixed point p0:

Υ(~, p0 + p, u) =
∞∑

j=0

∞∑
k=−1

Υj,k(p0, u) pj~k . (9.1.8)

Our potential V (p, u) is identified with Υ0,−1(p, u) + 2πiu, and critical points of V are

defined by Υ1,−1(p, u) = ∂
∂pV (p, u) = 0. Let us also define

b(p, u) := −2Υ2,−1(p, u) = − ∂2

∂p2
V (p, u) . (9.1.9)
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Then at a critical point p0 = p(α)(u), the integral (9.1.2) becomes2

Z(α)(M ; ~, u) =
eu+ 1

~ V (α)(u)

√
2π~

∫
Cα

dp e−
b(α)(u)

2~ p2
exp

1
~

∞∑
j=3

Υ(α)
j,−1(u) pj +

∞∑
j=0

∞∑
k=1

Υ(α)
j,k (u) pj~k

 ,
(9.1.10)

where V (α)(u) = V (p(α)(u), u), b(α)(u) = b(p(α)(u), u), and Υ(α)
j,k (u) = Υj,k(p(α)(u), u) are

implicitly functions of u alone.

We can expand the exponential in (9.1.10), integrate each term using

∫
dp e−

b
2~ p2

pn =

 (n− 1)!!
(~

b

)n/2
√

2π~
b n even

0 n odd
, (9.1.11)

and re-exponentiate the answer to get a final result. The integrals in (9.1.11) are accurate

up to corrections of order O(e−const/~), which depend on a specific choice of contour and

are ignored. Following this process, we obtain

Z(α)(M ; ~, u) =
1√
2π~

√
2π~
b(α)

eu+ 1
~ V (α)(u)eS

(α)
2 ~+S

(α)
3 ~2+... (9.1.12)

= exp
[

1
~
V (α)(u)− 1

2
log b(α) + u+ S

(α)
2 ~ + S

(α)
3 ~2 + . . .

]
, (9.1.13)

where the coefficients Sn can be straightforwardly computed in terms of b and the Υ’s. For

example, S(α)
2 = 15

2(b(α))3
Υ(α)

3,−1 + 3
(b(α))2

Υ(α)
4,−1 + Υ(α)

0,1 and S
(α)
3 = 3465

8(b(α))6
(Υ(α)

3,−1)4+ (sixteen

other terms). In addition, we clearly have

S
(α)
0 (u) = V (α)(u) , (9.1.14)

δ(α) = 0 , (9.1.15)

S
(α)
1 (u) = −1

2
log

b(α)

m2
. (9.1.16)

To actually evaluate the coefficients Υi,j(p, u), we refer back to the expansion (8.4.15) of

the quantum dilogarithm in Section 8.4. We find

Υj,k(p, u) =
Bk+1(1/2) 2k

(k + 1)!j!
[
Li1−j−k(−ep−u)− (−1)jLi1−j−k(−e−p−u)

]
(9.1.17)

when j ≥ 2 or k ≥ 0, and that all Υj,2k vanish.

Therefore: to calculate the expansion coefficients S(α)
n (u) around a given critical point,

we substitute p(α)(u) from (9.1.6) into equations (9.1.4) and (9.1.17) to obtain V (α), b(α),
2This expression assumes that Υj,k = 0 when k is even, a fact that shall be explained momentarily.
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and Υ(α)
j,k ; then we substitute these functions into expressions for the Sn and simplify. At

the geometric critical point p(geom)(u), we obtain

V (geom)(u) =
1
2

[
Li2(−ep(geom)(u)−u)− Li2(−e−p(geom)(u)−u)− 4p(geom)(u)u+ 4πiu

]
,

(9.1.18)

b(geom)(u) =
im2

2
∆(m) , (9.1.19)

and it is easy to check with a little algebra that all the expansion coefficients S(geom)
n (u)

reproduce exactly3 what we found in Table 6.3 of Section 6.6 by quantizing the moduli space

of flat connections. (This has been verified to eight-loop order.) Moreover, the present state

integral model completely fixed all the constants of the S(geom)
n (u), which had to be fixed

in Table 6.3 by comparison to analytic continuation of the Jones polynomial.

Similarly, at the conjugate critical point p(conj)(u), we have

V (conj)(u) = −V (geom)(u) , b(conj)(u) = − im
2

2
∆(m) , (9.1.20)

and more generally S(conj)
n = (−1)n−1S

(geom)
n . It is not hard to actually prove this relation

between the geomtric and conjugate critical points to all orders by inspecting the symmetries

of eΥ(~,p,u). Thus, we find complete agreement with the results of Section 6.6.

9.1.1 Checking Â · Z = 0

An alternative and more convenient way to check that the quantum A-polynomial an-

nihilates the perturbative partition functions of the state integral model (more convenient

than computing Sn(u)’s independently in both approaches) is to apply the operator Â(l̂, m̂)

directly to the state integral.

Let us write, as usual,

Â(l̂, m̂) =
∑

j

aj(m̂, q)l̂j . (9.1.21)

By virtue of the functional relation

Φ~(p− ~) = (1 + ep)Φ~(p+ ~) , (9.1.22)

3There appears to be a small “correction” of 1
2 log(−1) = log(±i) in S

(geom)
1 , comparing (9.1.16)

with the value in Table 6.3. This merely multiplies the partition function by i and can be attributed

to the orientation of the stationary-phase contour passing through the geometric critical point. We

also allow the usual modulo 2πiu ambiguity in matching S0.
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the operator l̂ has a very simple action on quantum dilogarithms. In the case of the figure-

eight knot, shifts of u and relabeling of the integration variable p can be combined to show

that

Z(u+ j~) =
1√
2π~

e
2πiu

~

∫
dp e

(u+j~)(2ip+(2j−1)~)
~

Φ~(p− u)
Φ~(−p− u)

(
− ep−u−(2j−1)~; q

)
j
, (9.1.23)

where (x; q)j denotes the finite q-Pochhammer symbol (x; q)j =
∏j−1

r=0(1 − qrx). Then we

have

Â · Z(u) =
1√
2π~

e
2πiu

~

∫
dp

Φ~(p− u)
Φ~(−p− u)

3∑
j=0

aj(eu, q)
(
− ep−u−(2j−1)~; q

)
j
e

(u+j~)(2ip+(2j−1)~)
~ .

(9.1.24)

The classical saddle point of this integral is unchanged from the original case (9.1.2), and

the very same saddle point methods used above to find the perturbative coefficients of Z(u)

can be applied to the integral here to show that it vanishes perturbatively to all orders.

This is actually somewhat easier than computing Z(u) itself, because the terms S0 and S1,

appearing multiplicatively in front of (9.1.12) can be completely ignored, and there are no

branch cut ambiguities to worry about.

It may be possible that the integral (9.1.24) can be shown to vanish identically, without

using any perturbative expansions (although, as written, the integrand is certainly not zero).

It would be interesting to explore this further.

9.2 Three-twist knot 52

The complement knot 52 can be divided into three hyperbolic tetrahedra. They can be

chosen to all have negative orientation; at the complete hyperbolic structure, they all have

equal (negative) volumes. See, e.g., [137] for a full description of the hyperbolic structure.

The resulting state sum model can be written as a two-dimensional integral

Z(u) =
1

2
√

2π~
e−u

∫
dpx dpy

e

1
2~

[
(px+4u+iπ+~)(py+2u+iπ+~)− 3

2
iπ~+π2−~2

2

]
Φ~(py)Φ~(px + 2u)Φ~(px)

. (9.2.1)

As in the case of the figure-eight knot, each quantum dilogarithm only involves a single

integration variable, making the asymptotic expansions of the quantum dilogarithms very

simple.
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The A-polynomial for the knot 52 is

A(l,m) = (l−1)(m14l3+(−m14+2m12+2m10−m6+m4)l2+(m10−m8+2m4+2m2−1)l+1) .

(9.2.2)

There are three non-abelian branches, two conjugate to each other and one real. Since this

knot is chiral, there is no symmetry A(l,m−1) ∼ A(l,m).

Since the A-polynomial has three non-abelian branches, one expects to find three saddle

points in the integrand of (9.2.1). In terms of the “downstairs” variables x = epx and

y = epy , the saddle points are given by the equations

m4x(y + 1) = −1 , m2(x+ 1)y
(
m2x+ 1

)
= −1 . (9.2.3)

It is easy to solve for y = m4(−x)−1
m4x

, but the subsequent equation for x is (as expected) a

third-degree irreducible polynomial:

m6x3 +m6x2 +m4x2 +m4x+m2x2 + x+ 1 = 0 . (9.2.4)

The solutions to this polynomial have the same arithmetic structure as the solutions to

the A-polynomial. It is most convenient to leave an algebraic dependence on x in the

perturbative invariants S(α)
n (u), reducing them as much as possible with the equation (9.2.4).

The resulting general expressions for S(α)
n (u) can then be specialized to various branches α

by substituting in the three actual solutions of (9.2.4).

The leading coefficient S(α)
0 (u) is given by

S
(α)
0 (u) =

1
2

[
−Li2(−epx)− Li2(−epx+2u)− Li2(−epy) + (py + 2u)(px + 4u) + iπ(px + py + 6u)− π2

2

]
,

(9.2.5)

and specializes as expected to Vol+ iCS, its conjugate, and a nonzero real quantity (for real

or imaginary u) when an appropriate lift of the solution to is used.

The other coefficients quickly become more complicated, but the present saddle-point

methods can still calculate them easily up to about sixth order. For example, one has

S1 = −1
2

log
[
−3m6x2 + 2m6x+ 2m4x+m4 + 2m2x+ 1

2m2

]
, (9.2.6)
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and

S
(α)
2 (m) =

1
12 (m16 − 6m14 + 11m12 − 12m10 − 11m8 − 12m6 + 11m4 − 6m2 + 1)2

(9.2.7)

×
(
− 2m34x2 − 2m34x+ 16m32x2 + 12m32x− 3m32 − 106m30x2 − 68m30x

+ 30m30 + 254m28x2 + 112m28x− 148m28 − 182m26x2 − 78m26x+ 384m26

− 370m24x2 − 148m24x− 641m24 + 392m22x2 − 280m22x+ 410m22

− 1654m20x2 − 336m20x+ 250m20 + 392m18x2 − 1922m18x− 1116m18

− 370m16x2 − 336m16x− 529m16 − 182m14x2 − 280m14x− 1116m14

+ 254m12x2 − 148m12x+ 250m12 − 106m10x2 − 78m10x+ 410m10

+ 16m8x2 + 112m8x− 641m8 − 2m6x2 − 68m6x+ 384m6 + 12m4x− 148m4

− 2m2x+ 30m2 − 3
)
.

The same approach of applying the quantum A-polynomial directly to the state integral

can be used to show that these expressions are fully compatible with geometric quantization.

The quantum A-polynomial for 52 appears in [118].

9.3 Direct analytic continuation

Let us finally describe the approach of direct analytic continuation from the colored

Jones polynomial. This works in a few special cases where the colored Jones polynomial

has a closed form expression as a sum of products, or more precisely a sum of finite q-

Pochhammer symbols. The trick is to use the functional identity (9.1.22) for the quantum

dilogarithm to write each q-Pochhammer symbol as a ratio of quantum dilogarithms, and

to approximate the sum by an integral as ~ → 0 (this was also done in [102]). Then

perturbative invariants S(α)
n (u) can then be derived via our now standard methods of saddle-

point approximation.

The analytic continuations involved here have not been made rigorous, but they certainly

seem to work for practical computations. Moreover, unlike the current formulation of the

state integral model, they work just as well for non-hyperbolic knots as for hyperbolic ones.
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Figure-eight 41

Normalized (as explained in Section 5.4) to agree with the Chern-Simons partition func-

tion, the SU(2) colored Jones polynomial for the figure-eight knot is [146]

JN (q) = −
√

2i~
π

sinhu
N−1∑
j=0

qNj
j∏

k=1

(1− q−Nq−k)(1− q−Nqk) (9.3.1)

= −
√

2~
π

sinhu
N−1∑
j=0

qNj Φ~(−2u+ iπ + ~)
Φ~(−2u− iπ − ~)

Φ~(−2i− iπ − ~− 2j~)
Φ~(−2u+ iπ + ~ + 2j~)

(9.3.2)

= −
√

2~
π
eu(1− e

−2πiu
~ )

N−1∑
j=0

qNj Φ~(−2i− iπ − ~− 2j~)
Φ~(−2u+ iπ + ~ + 2j~)

. (9.3.3)

As usual, q = e2~, and in analytic continuation u = ~N (cf. (6.2.4)). Equating −iπ−~+2j~

with a new integration variable p, and letting dp = 2~, this sum is approximated by an

integral in the limit ~→ 0. Specifically,

JN (q)→ 1√
2πi~

(
e

iπu
~ − e−

iπu
~
) ∫ iπ−i~

−iπ+~−2u
dp e−

up
~

Φ~(p− 2u)
Φ~(−p− 2u)

. (9.3.4)

This expression looks very similar to the state integral model (9.1.2), though it has

not been possible yet to prove their equivalence. It has several nice properties, including

a more manifest symmetry under u → −u and a preferred choice of contour. It turns

out that (9.3.4) has exactly two saddle points, and doing abstract saddle point expansions

around them yields exactly the same perturbative invariants S(geom,conj)
n (u) obtained from

the state integral model. The preferred contour indicated here crosses the geometric saddle

— perhaps this is not a surprise, since it is the saddle that should govern the leading

asymptotics of the colored Jones.

Note that the two nonperturbative terms in the prefactor
(
e

iπu
~ − e−i πu

~
)

are related

by a difference of 2πiu/~ in the exponent, which has always been an ambiguity in the

partition function. Also note that when u~ = N is an integer (i.e. the dimension of an

SU(2) representation), the prefactor
(
e

iπu
~ − e−i πu

~
)

vanishes. This is a general feature of

the subtle analytic continuation of compact Chern-Simons partition functions, and (partly)

explains why exponential growth only appears when N /∈ Z (cf. [41]).
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Three-twist 52

There is a sum-of-products expression for the colored Jones polynomial of the knot 52

at the complete hyperbolic structure u = 0. It is given by [102]

JN (q) = −
√

2i~
π

∑
0≤k≤l<N

(q; q)2l
(q−1; q−1)k

q−k(l+1) . (9.3.5)

In the analytic continuation limit ~ → 0 (and u = N~ fixed), letting the two summation

indices be identified with integration variables px and py, this formally becomes exactly the

same expression as the state integral model (9.2.1) at u = 0.

Trefoil 31

The analogous expression for the trefoil can be evaluated exactly, in accordance with

fact that higher-order invariants vanish on the non-abelian branch (cf. Section 6.6). The

colored Jones polynomial is

JN (q) = −
√

2i~
π

sinhuq1−N
N−1∑
j=0

q−jN
j∏

k=1

(1− qk−N ) (9.3.6)

→
√

2i~
π

(eu − e−u)Φ~(−2u+ ~− iπ)
∫ 2πi+2u

0

e−
1
2~ (p(2u+2πi)−2u+2~)

Φ~(p− 2u− iπ + ~)
. (9.3.7)

After a formal shift of countour, this is just a Fourier transform of the quantum dilogarithm.

The Fourier transform of Φ~(x)±1, described in [140], is just another quantum dilogarithm

Φ~(x)±1. In fact, the result of the integral in(9.3.7) is a quantum dilogarithm that almost

exactly cancels the prefactor Φ~(−2u+ ~− iπ), resulting in an expression that involves no

quantum dilogarithms at all. We find

JN (q) ∼ e
3u2+iπu

~ , (9.3.8)

up to some additional constants, just as in the geometric quantization analysis of Section

6.6.

The form of the expression (9.3.7) suggests that the SL(2,C) Chern-Simons partition

function for the trefoil knot complement might have a state integral model despite the fact

that the trefoil is not a hyperbolic knot. Indeed, it is known that the trefoil knot comple-

ment does have topological ideal triangulation consisting of two tetrahedra, the same as the
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number of quantum dilogarithms appearing in (9.3.7). A topological ideal triangulation of

a three-manifold is similar to a geometric one, with all vertices of the triangulation being

located on the manifold’s boundary. For a torus knot such as the trefoil, the “problem”

with imposing a hyperbolic geometric structure on this triangulation is that gluing condi-

tions require all tetrahedra to be flat when u = 0. However, this should be no problem for

Chern-Simons theory: an SL(2,C) structure does not care whether tetrahedra are “flat.”

These ideas are explained further in [5].

´


