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Chapter 2

Multi-Centered Black Holes and

Refined Microstate Counting

As explained in the Introduction, BPS indices for Calabi-Yau threefolds can be defined in

several different ways. The most physically intuitive approach uses bound states of multi-

centered black holes in four-dimensional N = 2 supergravity. This approach was developed

in a series of papers by F. Denef and others [16, 57, 20], and we will follow it here to give

precise definitions of BPS indices (Section 2.1) and to obtain primitive and semi-primitive

wall-crossing formulas in both unrefined and refined cases (Section 2.2).

The D-brane interpretation of BPS states, and its inevitable relation to the moduli spaces

of quiver representations, is still of great importance in connecting the BPS invariants of

supergravity to Gromov-Witten/Donaldson-Thomas invariants and more generally to the

topological invariants of Kontsevich and Soibelman [15]. It forms the basic connection

between physics and mathematics. We therefore describe this interpretation, at least on a

conceptual level, in Section 2.3.

We finish in Section 2.4 by exploring one of the more interesting unanswered questions

about refined invariants: can they see walls in moduli spaces that are invisible to unrefined

indices? We give an explicit example using internal rearrangements of multi-center black

hole systems, where the naive answer is “yes,” but a number of factors conspire to eliminate

the presence of such walls. We conjecture that in fact the answer is always “no.”

The derivation of refined wall-crossing formulas is based on our work in [1] (though it is

not a far jump from the careful descriptions of wall crossing in [20]). The work on invisible
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walls was done in conjunction with S. Gukov and D. Jafferis and will appear in [4].

2.1 BPS states in N = 2 supergravity

Type II compactifications and supergravity

Generally, N = 2 supergravity in four dimensions contains some number nV of vector

multiplets and some number nH of (ungauged) hypermultiplets. Each vector multiplet con-

sists of a U(1) vector boson, a complex scalar, and two gauginos; while each hypermultiplet

consists of two complex scalars and their spin-1/2 superpartners. Of course, N = 2 super-

gravity also has a supergravity multiplet, consisting of the graviton, the gravitinos, and the

graviphoton — another U(1) vector boson.

Such a supergravity theory can be obtained by compactifying 10-dimensional type II

string theory on a Calabi-Yau 3-fold X. The SU(3) holonomy group of the Calabi-Yau en-

sures that exactly two supersymmetries survive the compactification. Moreover, reducing

the metric, the B-field, the dilaton, and the Ramond-Ramond form fields of 10-dimensional

type II supergravity via the various harmonic forms of the Calabi-Yau produces the bosonic

particle content of four-dimensional supergravity. Specifically,1 the reduction of type IIA

theory results in nV = h1,1(X) vector multiplets whose scalar components describe Kähler

structure deformations of X; and nH = h2,1(X) + 1 hypermultiplets describing complex

structure deformations, including the “universal hypermultiplet” that contains the 10-

dimensional dilaton. In a type IIB compactification, the situation is reversed: there are

nV = h2,1(X) vector multiplets and nH = h1,1(X) + 1 hypermultiplets, again including the

universal hypermultiplet that contains the dilaton.

The complex scalars of the vector multiplets and hypermultiplets are moduli of the 4-

dimensional theory. Indeed, due to N = 2 supersymmetry, the full moduli space factors

exactly into vector and hyper components,

M =MV ×MH , (2.1.1)

where

dimCMV = nV , dimCMH = 2nH . (2.1.2)
1See e.g. [58] and Section 9.7 of [59] for a review of type II string compactifications.
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The metrics on MV and MH multiply the kinetic terms in the 4-dimensional Lagrangian.

The hypermultiplet moduli space MH is a quaternionic Kähler manifold, while the vector

multiplet moduli space MV , which we are primarily interested in here, has special Kähler

geometry [60, 61]. Thus, the geometry of MV can (locally) be described using nV + 1

pairs of complex special coordinates {XI , FI}nV +1
I=1 , in terms of which the Kähler potential

is written as

K = − log i(X̄IFI −XI F̄I) . (2.1.3)

The XI and FI are implicitly functions of the nV actual complex coordinates ofMV ; locally

both {XI} and {FI} form complete sets of homogeneous projective coordinates.

In a type IIB compactification, the XI and FI are periods of the holomorphic 3-form

Ω ∈ H3,0(X; C),

XI =
∫

αI

Ω , FI =
∫

βI

Ω , (2.1.4)

where αI and βI are a symplectic basis for H3(X; R). In a type IIA compactification,

relation (2.1.4) still holds if αI and βI are taken to be a symplectic basis for even homology

Heven(X,R), and Ω is interpreted as the even form

Ω = e−(B+iJ) ∈ Heven(X; C) , (2.1.5)

where B is the B-field on X and J is the Kähler class of X.

It is often useful to consider the actual metrics on MV and MH as “corrected” forms

of much simpler metrics that are obtained in the large volume (or α′ → 0) and weak string

coupling (gs → 0) limits.2 Because the dilaton always belongs to a hypermultiplet, onlyMH

ever receives gs corrections (i.e. quantum string corrections). Similarly, because the overall

volume modulus of X is a Kähler modulus, onlyMV receives α′ corrections (or worldsheet

instanton corrections) in a IIA compactification, and only MH receives α′ corrections in

a IIB compactification. Therefore, the “tree-level” geometry of MV is exact in IIB string

theory. Moreover, mirror symmetry relates the geometry of MV in a IIA compactification

on X to the geometry of MV in a IIB compactification on the mirror X̃, and can thus be

used to obtain exact metrics in type IIA as well.
2In fact, (2.1.5) is only true at large volume, and otherwise receives α′ corrections that can be

computed via mirror symmetry.
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BPS states

Now consider states in N = 2 supergravity. Their quantum numbers include their

charges under the nV +1 U(1) vector fields (i.e. from the vector multiplets plus the gravipho-

ton) and their spin. For a massive state, the spin is a half-integer describing its weight as

part of a representation of the 4-dimensional massive little group Spin(3) = SU(2). The

electric and magnetic U(1) charges can be grouped into a 2(nV + 1)-dimensional vector γ

of integers:

γ = (p0, pA, qA, q0) A = 1, ..., nV

mag. elec. (2.1.6)

D6 D4 D2 D0 [IIA] or all D3 [IIB]

∈ H0 H2 H4 H6(X; Z) [IIA] or H3(X; Z) [IIB]

We are particularly interested in BPS states that preserve half of the N = 2 super-

symmetry algebra. In 4-dimensional supergravity, such states are realized as “microstates”

of charged and possibly multicentered (but bound) black holes. Alternatively, in a string

theory picture, these states describe D-branes wrapped on various cycles in the three-fold X

and extending only along the time direction in 4-dimensional spacetime R3,1. The charges

are then interpreted as D-brane charges, associated to the cycles that the D-branes wrap,

as indicated in (2.1.6). By dualizing cycles to forms, the charge vector γ can also be written

as a cohomology class indicated on the last line of (2.1.6). We will say more about the

D-brane interpretation of BPS states in Section 2.3.

There is a natural symplectic product on charges γ in the “charge lattice” Γ ' Heven(X; Z)

or H3(X; Z), simply given by multiplying magnetic charges times electric charges:

〈γ, γ′〉 = −p0q′0 − pAq′A + q0p
0′ + qAp

A′ . (2.1.7)

Thinking of charges γ as differential forms, this can also be written as

〈γ, γ′〉 =
∫

X
γ ∧ (γ′)∗ , (2.1.8)

where the ‘∗’ is trivial in a type IIB picture, and changes the signs of 2-form and 6-form

components in a IIA picture.
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Attractor equations and multicentered states

The Hilbert space of BPS states, HBPS , is a piecewise-constant “function” of the vector

and hypermultiplet moduli. In the particular case of vector multiplet moduli — let us denote

them generically as “t” — one is free to choose any value t∞ of moduli at spatial infinity in

R3,1. Given a collection of particles (i.e. black holes) in R3,1, the attractor equations then

fix the values of t everywhere else [16]. Therefore, we should write

HBPS = HBPS(t∞) . (2.1.9)

The central charge of a state of charge γ, defined as

Z(γ; t) = e
1
2
K〈γ,Ω(t)〉 = e

1
2
K〈γ, (XI(t), FI(t))〉 , (2.1.10)

also depends on vector multiplet moduli t. (The second equality of (2.1.10) expresses Z as

the product of a vector of integer charges and the vector of periods of Ω, which implicitly

depend on t.) A BPS state satisfies the condition that its mass is related to the absolute

value of its central charge evaluated at moduli t∞,3

M =
(
m

(4d)
P

)
|Z(γ, t∞)| =

√
Vol(X)/`6s
gs`s

|Z(γ; t∞)| . (2.1.11)

The phase of this central charge describes which N = 1 subalgebra of the N = 2 supersym-

metry algebra the BPS state preserves. For comparison, the leading contribution (at large

charge) to the entropy of a single-centered black hole of charge γ is related to its central

charge when evaluated at the values of moduli t∗(γ) at its horizon,

S ∼ π|Z(γ; t∗)|2 . (2.1.12)

These “attractor values” t∗(γ) depend only on γ and not on t∞; by the attractor equations,

they minimize the central charge as a function of t.

The Hilbert spaceHBPS can jump across real codimension-1 walls inMV , so-called walls

of marginal stability. (It can also jump at codimension-2 loci inMH ; this will be discussed

further in Sections 2.2-2.4.) In order to understand such a transition in supergravity, one

needs to consider not only single-centered black holes, but also multi-centered bound states

3We will henceforth set the 4-dimensional Planck mass m(4d)
P → 1, but remind the reader of its

value in (2.1.11).
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of black holes. It was shown in [16] that such stationary but non-static bound states can

form from two or more black holes with mutually nonlocal charges.

To be more specific, the spherically-symmetric, static metric ansatz

ds2 = −e2Udt2 + e−2Ud~x2 (U = U(~x)) (2.1.13)

in R3,1 leads to attractor equations (or BPS equations) for a single-centered black hole,

∂τU = −eU |Z| ,

∂τ t
a = −2 eUgab̄∂̄b̄|Z| ,

or more compactly

2 ∂τ Im(e−Ue−iαΩ̂) = −γ . (2.1.14)

Here, τ = 1/r is the inverse of the radial coordinate in spatial R3, α = argZ(γ; t) is the

argument of the central charge, gab̄ = ∂a∂̄b̄K is the metric on MV , and Ω̂(t) = eK/2Ω(t).

In (2.1.14), one thinks of both Ω̂ and γ as differential forms, or, taking period integrals, as

vector-valued functions. The attractor equation (2.1.14) integrates to

2 Im(e−Ue−iαΩ̂) = −γ
r

+ 2 Im(e−Ue−iαΩ̂)|t∞ . (2.1.15)

The resulting solution flows to a minimum of |Z| as r → 0.

Being slightly more careful, (2.1.15) is really only valid and describes a massive BPS

black hole if |Z(γ; t)| attains a nonzero minimum in moduli space MV . If |Z| vanishes at

a singular point in MV , the minimum |Z| = 0 can be reached at a positive radius r = r0

in R3, and for r < r0 the moduli t(~x) are finite constants [62, 16]. This solution is called

an “empty hole.” If |Z| vanishes at a regular point inMV , the attractor equations have no

solution at all.

To generalize to the multi-centered case, following [16], one replaces the metric ansatz

(2.1.13) with a more general stationary metric that contains angular momentum,

ds2 = −e2U (dt+ ω)2 + e−2Ud~x2 (U = U(~x), ω = ω(~x)) . (2.1.16)

The BPS equations for a multi-centered solution with n charges γi at centers ~xi become

2 e−U Im(e−iαΩ) = H (2.1.17)

∗0dω = 〈dH,H〉 , (2.1.18)
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where d is the exterior derivative on R3, ∗0 is the Hodge dual with respect to the flat metric

on R3, α is the argument of the total central charge Z(γ) = Z(γ1) + Z(γ2) + ... + Z(γn),

and

H = −
n∑

i=1

γi

|~x− ~xi|
+ 2 Im(e−iαΩ̂)|t∞ . (2.1.19)

This is not so easy to integrate directly; however, (2.1.18) implies that 〈∆H,H〉 = 0, which

does lead to integrability conditions

n∑
j=1

〈γi, γj〉
|~xi − ~xj |

= 2 Im(e−iαZ(γi))|t∞ ∀ i . (2.1.20)

Conditions (2.1.20) fix n − 1 independent center-to-center radii. In particular, in the

2-centered case, the distance between black holes is completely fixed:

r12 =
1
2
〈γ1, γ2〉

|Z1 + Z2|
Im(Z1Z̄2)

∣∣∣∣
t∞

, Zi ≡ Z(γi) . (2.1.21)

The resulting multi-centered black holes have an intrinsic electro-magnetic angular mo-

mentum that can simply be calculated by the Poynting vector4; in the 2-centered case, its

magnitude is just

J12 =
1
2
|〈γ1, γ2〉| −

1
2
. (2.1.22)

Note that multi-centered bound states can only form if charges of constituents are mutu-

ally nonlocal, i.e. 〈γi, γj〉 6= 0. Otherwise, the attractive force between BPS centers will

completely vanish.

The supergravity picture of wall crossing, i.e. jumps in HBPS , involves constituents of

a multi-centered bound state coming unbound, causing the state to disappear from the

single-particle spectrum. From (2.1.20) or (2.1.21), it is clear that this happens when the

central charges of two constituents or groups of constituents align,5 causing a center-to-

center radius to diverge. Equivalently, conservation of energy during a split of BPS states

γ → γ1 + γ2 requires central charges to be aligned, so that

|Z(γ1 + γ2)| = |Z(γ1) + Z(γ2)| = |Z(γ1)|+ |Z(γ2)| (2.1.23)

: M = M1 +M2 .

4Up to a quantum correction that manifests itself as the shift by −1/2 in (2.1.22); see [16, 57] for

details.
5From these equations alone, it looks like anti-aligned central charges will also correspond to

splits, but anti-alignment is not compatible with mass conservation.
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Also observe that the alignment of central charges implies that two BPS states preserve the

same N = 1 supersymmetry subalgebra, and from basic supersymmetry considerations it

is then clear that the force between them must vanish.

Indices and refinement

A useful quantity to consider in supersymmetric theories is an index of BPS states. In

the present situation, the second helicity supertrace

Ω(t∞) = −2 TrHBPS(t∞)(−1)2J3J3
2 (2.1.24)

is a good index to use. The quantum number J3 is the half-integer SU(2) spin of a given

state. Ω(t∞) counts short BPS multiplets, and evaluates to zero on long multiplets. In

particular, Ω(t∞) is completely invariant under a transition where short BPS multiplets

combine into long multiplets and leave the BPS spectrum. Such a transition is the only

type expected to occur in the moduli spaceMH (cf. [21]), so the index Ω(t∞) is independent

of hypermultiplet moduli. Of course, Ω(t∞) can jump across walls of marginal stability in

MV as described on page 19, where states actually disappear from the (BPS and non-BPS)

single-particle spectrum.

One can actually do somewhat better than (2.1.24). The BPS Hilbert space is graded

by charge, so one can fix a charge γ and let

Ω(γ; t∞) = −2TrH(γ;t∞)(−1)2J3J3
2 , (2.1.25)

where H(γ; t∞) is the subspace of HBPS containing states of charge γ. Moreover, due to

quantization of center-of-mass degrees of freedom (and their superpartners), all states in

HBPS have a half-hypermultiplet contribution to their spin (cf. [57, 11, 12, 63]). Denoting

the (2j+1)-dimensional SU(2) representation as [j], this means that there is a factorization

HBPS =
([

1
2

]
+ 2[0]

)
⊗H′ . (2.1.26)

In terms of the reduced Hilbert space H′, the index can be written much more simply as

Ω(γ; t∞) = TrH′(γ;t∞)(−1)2J3 , (2.1.27)

where J3 is now the spin in H′. Note, for example, that in the reduced Hilbert space a
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(half)hypermultiplet is just written as [0] and a (half) vector multiplet as
[

1
2

]
, so

Ω(hyper) = 1 , (2.1.28)

Ω(vector) = −2 . (2.1.29)

The indices Ω(γ; t∞) have the same continuity (and discontinuity) properties as Ω(t∞).

The overarching goal of Part I of this thesis is to examine the implications of refining

this index. In other words, instead of (2.1.27), we want to take spin into account and

consider

Ωref (γ; t∞; y) = TrH′(γ;t∞)(−y)2J3 . (2.1.30)

The resulting refined index is a Laurent polynomial in y; it is also convenient to define its

(positive integer) coefficients Ωn as

Ωref (γ; t∞; y) =
∑
n∈Z

Ωn(γ; t∞) (−y)n . (2.1.31)

Note that Ωref (γ; t∞; y = 1) = Ω(γ; t∞). The refined index encodes much of the infor-

mation present in the Hilbert space HBPS . The integers Ωn(γ; t∞) jump across walls of

marginal stability in MV just as Ω(γ; t∞) does. However, they may also jump whenever

BPS states pair up into non-BPS multiplets. We call the locations of these discontinuities

“invisible walls.” In the hypermultiplet moduli space they only occur at codimension-2

loci,6 and so are not terribly offensive. Nevertheless, to be absolutely sure that the Ωn are

constant on MH , we should restrict ourselves to rigid Calabi-Yau manifolds (in type IIA

compactifications). We investigate the possibility of encountering codimension-1 invisible

walls in MV in Section 2.4.

To compare to the unrefined indices (2.1.28)-(2.1.29), note that

Ωref (hyper; y) = 1 , (2.1.32)

Ωref (vector; y) = −y − y−1 . (2.1.33)

6The fact that jumps in MH occur at (real) codimension-2 loci rather than codimension-1 walls

is related to the fact that the superpotentials in supersymmetric quantum mechanics descriptions

of low-energy D-brane dynamics (cf. Section 2.3) are holomorphic functions of the hypermultiplet

moduli — thus the BPS spectrum can only jump in complex codimension ≥ 1. Physically, these

arguments also arose in the study of enhanced gauge symmetries and geometric engineering, cf. [21].
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Topological invariants

The refined and unrefined indices of BPS states are closely related to various topological

invariants of the Calabi-Yau X. Let us assume that we are in a type IIA duality frame.

For a distinguished choice of t∞ corresponding roughly to the location of the wall near

large volume where D0 states bind to a D6 state, the generating function of states with

D6-D2-D0 charges,

ZD6−D2−D0(q,Q; t∞) =
∑

m∈Z, β∈H2(X;Z)

Ω
(
γ = (1, 0, β,m); t∞

)
(−q)mQβ , (2.1.34)

is the Donaldson-Thomas/Gopakumar-Vafa partition function for X [20]. Or, more specifi-

cally, on one side of this D6−D0 wall (2.1.34) is the “reduced” Donaldson-Thomas partition

function Z ′DT , and on the other side it is the “unreduced” Donaldson-Thomas partition

function

ZDT = M(q)χ(X)Z ′DT , (2.1.35)

which is multiplied by an extra factor of the MacMahon function.

Similarly, the refined generating function

ZD6−D2−D0(q,Q, y; t∞) =
∑

m∈Z, β∈H2(X;Z)

Ωref
(
γ = (1, 0, β,m); t∞; y

)
(−q)mQβ (2.1.36)

turns out to be equivalent to the refined Donaldson-Thomas partition functions defined

in [23, 26] — or to Nekrasov’s partition function for N = 2 gauge theory in an Omega-

background [22]. We shall see an explicit example of this in Section 3.1.

In another chamber of moduli space MV with strong B-field, the partition functions

(2.1.34) and (2.1.36), respectively, reproduce the “noncommutative Donaldson-Thomas”

invariants of Szendröi [64] and a refined version thereof.

The relation between BPS indices and (e.g.) topological string invariants is based on

the D-brane picture of BPS states that we describe further in Section 2.3 — combined with

an argument relating D-brane states with Donaldson-Thomas/Gopakumar-Vafa theory as

in [20, 65]. More generally, the unrefined indices Ω(γ; t∞) in any chamber of MV should

correspond to the “classical” version of Kontsevich and Soibelman’s invariants for Calabi-

Yau categories [15], where t∞ parametrizes the choice of stability condition in the category.

As we explain in Chapter 4, one of our main discoveries [1] is that the refined indices
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Ωref (γ; t∞; y) in turn coincide to Kontsevich and Soibelman’s motivic Donaldson-Thomas

invariants [15].

Note that all the relations we describe here are of the form ZBH ∼ Ztop, in contrast

with the famed OSV conjecture ZBH ∼ |Ztop|2 [19]. This is not inconsistent. As described

in [20], the OSV relation occurs in a very special limit corresponding to highly “polar”

2-center split attractor flows which causes the BPS generating functions to factorize.

2.2 Physical wall-crossing formulas

We now proceed to take a closer look at stability conditions for BPS states, largely in a

supergravity context. Following [20] (and [1]), we use physical intuition from supergravity

to derive “wall-crossing formulas” that describe how refined and unrefined indices jump

across walls of marginal stability in MV .

Stability conditions and attractor flow trees

Let us begin by considering stability of black hole states more carefully. A minimal

requirement for the multi-center attractor equations (2.1.17)-(2.1.18) to have a solution is

that all the radii rij = |~xi−~xj | appearing in the integrability condition (2.1.20) are positive.

Indeed, for a bound state of two black holes (or two clusters of black holes) with charges γ1

and γ2, positivity of the center-to-center radius (2.1.21) shows that the (potentially) stable

side of a wall of marginal stability must satisfy the Denef stability condition

〈γ1, γ2〉 Im
[
Z(γ1, t)Z(γ2, t)

]
> 0 . (2.2.1)

The codimension-1 wall of marginal stability itself is defined by the equation

argZ(γ1, tms) = argZ(γ2, tms) (2.2.2)

: Im
[
Z(γ1, tms)Z(γ2, tms)

]
= 0 .

On its “unstable” side, the quantity appearing in equation (2.2.1) is negative.

While condition (2.2.1) is necessary for the formation of a stable bound state, it is

not sufficient. It was conjectured in [16] (see also [66, 20]) that the multi-center attractor

equations have a physically reasonable solution if and only if it is possible to draw a split
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attractor flow tree in moduli space MV starting at t∞ and ending on “good” attractor

points, i.e. on minima of |Z| that correspond to genuine single-center black holes or empty

holes. Each segment of such a tree follows a single-center attractor flow trajectory, and

the flows can split at walls of marginal stability that are crossed in the stable → unstable

direction. For example, single-center, two-center, and three-center flows are shown in Figure

2.1.

tinfty

tms

t*( )

tinfty tinfty

γ

γ

γ

γ1 γ2

γ1

γ

γ1 γ2

γ3

γ4
t*( ) γ2t*( ) γ1t*( )

t*( )

t*( )

tms tms

tms
’

Figure 2.1: Split attractor flows in supergravity. The walls of marginal stability shown

correspond to γ → γ1 + γ + 2 and γ2 → γ3 + γ4.

Note that flows do not need to split at walls of marginal stability. For example, suppose

that regular positive minima (i.e. honest black hole solutions) exist for charges γ1 and γ2

on the “unstable” side of a γ → γ1 + γ2 marginal stability wall, as in Figure 2.2. If a good

attractor point for the total charge γ = γ1 + γ2 also exists on the same, unstable, side of

the wall, then when t∞ is on the stable side both single-center and 2-center bound states of

total charge γ exist; whereas when t∞ is on the unstable side only a single-center state of

charge γ is in the spectrum. In contrast, in the case that the attractor point for γ = γ1 +γ2

is not a good minimum (e.g. if this is a regular point of moduli space with Z(γ) = 0 there),

then the only possible state of total charge γ is a 2-center state that is in the spectrum on

the stable side of the wall.
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tinfty

γ

γ1 γ2

γ1t*( ) γ2t*( )

tms

tinfty

γ

γ1t*( ) γ2t*( )

tms
vs.

γt*( ) γt*( )

Figure 2.2: Possiblities when t∞ is on the “stable” (LHS) and “unstable” (RHS) side of the

wall.

Primitive wall crossing

We now return to the supergravity viewpoint and use physical intuition to derive wall-

crossing formulas: formulas that describe the jumps in HBPS and in the indices Ω and Ωref

across walls of marginal stability. Many of these formulas were derived in [20]; the refined

versions were also described in [67] and [1].

The simplest wall crossing scenario involves a bound state of total charge γ decomposing

into two primitive states of charges γ1 and γ2 at a wall of marginal stability. Primitive means

that γ1 and γ2 cannot be written as multiples of any smaller charge. Let the wall be at tms,

and let t+ and t− be moduli on the stable and unstable sides of the wall, respectively. In a

generic situation, H(γ1) and H(γ2) (and H for any charge that is not γ) will be continuous

at tms; we may thus assume that

H(γ1; t−) = H(γ1; t+) = H(γ1; tms) ,

H(γ2; t−) = H(γ2; t+) = H(γ2; tms) .

The separation of the bound state of charge γ into two infinitely separated black holes (or

cluster of black holes) of charges γ1 and γ2 at tms then suggests that

H′(γ; t+) = [J12]⊗H′(γ1; tms)⊗H′(γ2; tms) . (2.2.3)

This is the basis of the primitive wall-crossing formulas: the (reduced) Hilbert space on
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the stable side of the wall is a product of Hilbert spaces for the components, times an

electromagnetic angular momentum multiplet. Recall that the angular momentum is given

by (2.1.22):

J12 =
I12 − 1

2
, I12 ≡ |〈γ1, γ2〉| . (2.2.4)

Calculating the unrefined index using (2.1.27) is straightforward [20]:

Ω(γ; t+) = (−1)I12−1I12 Ω(γ1; tms) Ω(γ2; tms) . (2.2.5)

Of course, there may be states of total charge γ in the BPS spectrum that do not split at

the γ → γ1 + γ2 wall; if so, then one should really write

∆Ω(γ) ≡ Ω(γ; t+)− Ω(γ; t−) = (−1)I12−1I12 Ω(γ1; tms) Ω(γ2; tms) . (2.2.6)

Similarly, one sees from the definition (2.1.30) that (cf. [67])

∆Ωref (γ; y) = [I12]−y Ωref (γ1; tms; y) Ωref (γ2; tms; y) , (2.2.7)

where [I12]−y denotes the “quantum dimension”

[I12]−y =
(−y)I12 − (−y)I12

(−y)− (−y)−1
= (−y)−I12+1 + (−y)−I12+3 + ...+ (−y)I12−1 . (2.2.8)

As expected, this reduces to (2.2.6) upon setting y → 1.

Semi-primitive wall crossing

Now, let us view the above γ → γ1 +γ2 split in reverse. As the wall of marginal stability

is crossed, black holes or clusters of black holes with total charges γ1 and γ2 will bind to

form states of total charge γ. However, the wall for γ → γ1 + γ2 splits is also a wall for

all Mγ1 + Nγ2 splits, with M, N ≥ 1, and its stable and unstable sides are the same.

Therefore, by the split attractor flow conjecture, bound states of any and all total charges

Mγ1 +Nγ2 , M, N ≥ 1 (2.2.9)

should also form and be part of the BPS spectrum on the stable side of the wall. The

case M = 1, N ≥ 1 is called semi-primitive wall crossing, and can also be analyzed in the

supergravity context. The general case M, N ≥ 1 is harder to consider in supergravity, and
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is most easily handled via the general Kontsevich-Soibelman wall-crossing formula that is

described in Chapter 4.

During the semi-primitive splits γ → γ1 +Nγ2, the decomposition of the Hilbert spaces

can be written as [20]

∞⊕
N=0

H′(γ1 +Nγ2; t+)xN = H′(γ1; tms)⊗
∞⊗

k=0

F
(
xk [Jγ1,kγ2 ]⊗H′(kγ2; tms)

)
. (2.2.10)

On the LHS, we have grouped all the Hilbert spaces H′(γ1 + Nγ2; t+) into a generating

function. On the RHS, we consider all possible ways to bind arbitrary numbers of bound

clusters of total charges γ2, 2γ2, etc. to a γ1 center at marginal stability (see the schematic

in Figure 2.3). For each k, what is essentially a free gas of particles with charges kγ2 are

bound; F(· · · ) is a Fock space that describes the Hilbert space of this gas, taking into

account the angular momentum contribution

Jγ1,kγ2 =
k I12 − 1

2
, I12 = |〈γ1, γ2〉| , (2.2.11)

and keeping track of total charge by weighing each particle with a variable xk.

γ2

γ2

γ2

γ1

2γ2
2γ2

2γ2
2γ2

3γ2

Figure 2.3: A “gas” of black holes with charges kγ2 binding to a γ1 center in physical space.

The resulting wall-crossing formula for unrefined indices is [20]

Ω(γ1; tms)+
∞∑

N=1

Ω(γ1+Nγ2; t+)xN = Ω(γ1; tms)
∞∏

k=1

(
1−(−1)kI12xk

)kI12Ω(kγ2;tms) . (2.2.12)

The product on the RHS corresponds directly to the free gasses of particles mentioned

above; the particles can be bosonic or fermionic, according to the sign of the exponent
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Ω(kγ2; tms). In the refined case, the formula reads [1]

Ωref (γ1; y) +
∞∑

N=1

Ωref (γ1 +Nγ2; t+; y)xN

= Ωref (γ1; y)
∞∏

k=1

kI12∏
j=1

∏
n∈Z

(
1 + (−1)n(−y)2j−kI12−1+nxk

)(−1)nΩn(kγ2)
, (2.2.13)

where the unambiguous moduli tms of Ωref (γ1; tms; y) and Ωref (kγ2; tms; y) have been sup-

pressed. In the refined formula, the spin content has simply been distributed over the factors

on the RHS.

Similarly to the unrefined case, formulas (2.2.12) and (2.2.13) are strictly only valid

when H′(γ1 + Nγ2; t−) is trivial for all N ≥ 1 on the unstable side of the wall. If states

with total charge γ1 +Nγ2 already exist on the unstable side of the wall, they will also bind

gasses of kγ2 particles. Then, for example, the unrefined formula reads

Ω(γ1) +
∞∑

N=1

Ω(γ1 +Nγ2; t+)xN

=
[
Ω(γ1) +

∞∑
N=1

Ω(γ1 +Nγ2; t−)xN

]
×
∞∏

k=1

(
1− (−1)kI12xk

)kI12Ω(kγ2)
, (2.2.14)

and the refined formula generalized in an analogous fashion.

Derivation

For completeness, we finish this section by providing a derivation of the slightly non-

trivial formula (2.2.13) (from which (2.2.12) also follows by setting y → 1). The derivation

utilizes standard techniques from statistical mechanics. It is easy to see that tracing over

the LHS of (2.2.10) with weight (−y)2J3 gives

Ωref (γ1; y) +
∞∑

N=1

Ωref (γ1 +Nγ2; t+; y)xN , (2.2.15)

and tracing over the RHS gives

Ωref (γ1; y)
∞∏

k=1

TrF(k)(−y)2J
(k)
3 xkN , (2.2.16)

where each operator J (k)
3 measures spin in the Fock space F (k) ≡ F

(
xk[Jγ1,kγ2 ]⊗H′(kγ2)

)
and N is the excitation number in this Fock space. We introduce quantum numbers nj =
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−kI12−1
2 , ..., kI12−1

2 and n ∈ Z, respectively, to keep track of the electromagnetic angular

momentum and the internal spin of a state in the Hilbert space [Jγ1,kγ2 ]⊗H′(kγ2). For fixed

nj and n, the degeneracy of such a state is Ωn(kγ2), so we can introduce a third quantum

number m = 1, ...,Ωn(kγ2) to keep track of this. The total spin is J (k)
3 (nj , n,m) = nj + n

2 .

Note that states with odd n are bosonic and states with even n are fermionic [20]. States

in the Fock space F (k) are described by entire sets of occupation numbers {dnj ,n,m}, where

dnj ,n,m ∈ {0, 1} if the state is fermionic and dnj ,n,m ∈ {0, 1, ...,∞} if the state is bosonic.

Thus, we have

TrF(k)(−y)2J
(k)
3 xkN =

∑
sets {dnj,n,m}

(−y)
P

nj,n,m dnj,n,m(2nj+n)
x

k
P

nj,n,m dnj,n,m

=
∏

nj ,n,m

∑
dnj,n,m

(−y)dnj,n,m(2nj+n)xkd

=
( ∏

nj ,n even,m

1∑
d=0

(−y)d(2nj+n)xkd

)
×
( ∏

nj ,n odd,m

∞∑
d=0

(−y)d(2nj+n)xkd

)

=
( ∏

nj ,n even,m

(
1 + (−y)2nj+nxk

))
×
( ∏

nj ,n odd,m

(
1− (−y)2nj+nxk

)−1
)

=
∏

nj ,n,m

(
1 + (−1)n(−y)2nj+nxk

)(−1)n

=
∏
nj ,n

(
1 + (−1)n(−y)2nj+nxk

)(−1)nΩn(kγ2)

=
kI12∏
j=1

∏
n∈Z

(
1 + (−1)n(−y)2j−kI12−1+nxk

)(−1)nΩn(kγ2)
.

In the last step, we replaced nj with the integral summation variable j = 1 + kI12−1
2 + nj

to obtain the final answer.

2.3 BPS states of D-branes

The Hilbert space H′BPS also has a description in terms of D-brane states, which is per-

haps more common in the literature, and more intuitive in a string theory picture. More-

over, this description connects the supergravity picture that we have used heretofore with

topological string invariants, melting crystals (Chapter 3), and the Kontsevich-Soibelman

wall-crossing formulas (Chapter 4).



30

Roughly speaking, H′BPS(γ) can be obtained in string theory compactified on a Calabi-

Yau threefold X the following way. As explained in Section 2.1, charges γ ∈ Γ can be

naturally interpreted as charges of D-branes that wrap cycles of X and fill only the time

direction of R3,1. In the case of type IIA theory, these are even-dimensional (holomorphic)

cycles, while in type IIB theory they are odd dimensional (special Lagrangian) cycles. Fixing

γ, one constructs the classical moduli space M(γ) of D-branes with this charge γ. M(γ)

describes (e.g.) deformations of the D-branes and Wilson loop degrees of freedom on the

branes. The quantum Hilbert space H′BPS(γ), then, is just generated by the cohomology

H∗(M(γ)) as long as this cohomology makes sense7 (cf. [21]). In particular, the unrefined

index is an Euler characteristic and the refined index is a Poincaré polynomial:

Ω(γ) = χ(M(γ)) , (2.3.1)

Ωref (γ) = (−y)−
dim(M)

2 Poincaré(M(γ);−y) . (2.3.2)

Note that M(γ) is always Kähler, so H∗(M(γ)) is organized into representations of an

SU(2) Lefschetz action. These coincide with the SU(2) spin representations of states in R3,1,

so that cohomological degree becomes identified with spin (see, for example, [57, 20, 65]).

The middle cohomology (spin zero) actually corresponds to fermionic states in R3,1 once

center-of-mass degrees of freedom are included; then Hdim(M)/2+2n(M), n ∈ Z, is fermionic

and Hdim(M)/2+2n+1(M) is bosonic. Of course, M(γ) and all related quantities depend on

vector multiplet moduli, because these affect the stability condition for BPS branes.

We proceed to discuss some aspects of the D-brane ↔ supergravity correspondence,

including the inevitable realization of D-brane moduli spaces by quiver representations. We

maintain the discussion at a conceptual level; for precise details we refer the reader to the

references cited herein.

Quiver representations

The moduli spaceM(γ) of D-branes can often be described as a moduli space of quiver

representations. Let us take a moment to explain what this means mathematically (see e.g.
7Generically, M(γ) is highly singular and H∗M(γ) is not well-defined. This is where motivic

invariants become important, as described in Chapter 4. This “subtlety” is irrelevant for the present

discussion, however.
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[68] for a more thorough description).

Figure 2.4: An example of a quiver with four nodes.

A quiver, as in Figure 2.4, is a collection of nodes labelled by i ∈ I with a collection

A of arrows connecting them. A representation of the quiver — or more precisely a repre-

sentation of the path algebra generated by the arrows — is a collection of complex vector

spaces {Vi}i∈I and a collection of homomorphisms from Vi to Vj for each arrow going from

node i to node j. A quiver with closed loops can also have a superpotential W , which is

a polynomial in the noncommutative arrow variables a ∈ A. A representation must then

obey the condition that the homomorphism corresponding to ∂aW vanishes for any a ∈ A;

in other words, it is a representation of the quotient of the path algebra A/dW . There are

fairly obvious notions of subrepresentations and isomorphism of representations for quivers.

The latter is generated by a collection of automorphisms gi ∈ GL(Vi), one for each node Vi.

There is also a notion of stability for quivers called θ-stability [69]. For a given repre-

sentation V of a quiver, let n = (ni)i∈I be its dimension vector, such that ni = dimVi.

Let θ = (θi)i∈I be a collection of real numbers. Then a representation is θ-stable if every

nontrivial proper subrepresentation Ṽ with dimension vector ñ satisfies

θ · ñ < θ · n . (2.3.3)

For a given choice of θ, we letMs(n; θ) be the moduli space of stable representations with

dimension vector n, modulo isomorphism — i.e. a quotient of all possible representations

by the isomorphism group
∏

iGL(Vi).

Quivers, D-branes, and supergravity

The relation between quivers, D-branes, and BPS states in supergravity is nicely de-

scribed by Denef in [57]. The transition between a D-brane description and a supergravity
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description is a smooth one, induced by varying the string coupling gs. At large gs|γ|,

a BPS state of charge γ is best described as a backreacting, multi-center, solitonic black

hole in supergravity, whereas at small gs|γ| this state is best described as a bound state of

D-branes living at a single point in R3. There is no contradiction between the multi-center

supergravity state and the single-center D-brane bound state: the 4-dimensional Planck

length

`
(4)
P =

`sgs√
Vol(X)/`6s

, (2.3.4)

which sets the separation between black hole centers, becomes smaller than the string length

at small gs, so that the centers effectively fuse together.

The resulting single-center collection of bound D-branes is held together by open strings

stretched between the branes. Suppose that each distinct D-brane (say Di) supports a

rank-ni vector bundle. The low-energy dynamics of this collection can be described in

nice cases by a (0+1)-dimensional supersymmetric
∏

i U(ni) gauge theory (reduced to the

common noncompact worldvolume of the branes), whose matrix-valued fields describe the

open string excitations between pairs of branes. The classical moduli space of this gauge

theory,MQM , is equivalent to the classical moduli space of the D-branes. MQM is obtained

by solving the F -term equations dW = 0 as well as one D-term equation for every distinct

D-brane involved in the bound state. Each D-term equation depends on a FI parameter

θi, and the values of these parameters are a reflection in the gauge theory of the stability

condition in supergravity.

It was shown by [69] that the moduli space of such a supersymmetric gauge theory is

equivalent (for generic choices of θ) to the moduli space of θ-stable quiver representations

with θ set equal to the FI parameters. The relevant quiver is simply constructed by as-

sociating a node i to every U(ni) gauge field, and arrows from node i to node j to every

bifundamental field representing string states from brane Di to brane Dj . The net number

of arrows between i and j is the same as the intersection number between the corresponding

D-brane charges, 〈γi, γj〉.8 The superpotential for the quiver is the same as the superpo-

tential in the gauge theory. One then looks for θ-stable representations of the quiver with
8It is easy to see that this should be the case in a IIB compactification, where all branes are

special Lagrangian, and open strings live at the intersections between pairs of branes. At least if

all intersections have the same sign, there are 〈γi, γj〉 of them, and this must also be the number of

U(ni)− U(nj) bifundamental fields in the gauge theory.



33

dimension vector n = (ni) to describe the D-brane state. An isomorphism of representations

is just a gauge transformation.

Such quiver descriptions of D-brane moduli spaces are known to be accurate for frac-

tional D-branes on orbifolds [70]. They also exist for some non-compact Calabi-Yau models

(like the conifold) in which D-brane central charges can have almost equal arguments [71, 68].

For a compact Calabi-Yau, however, a quiver gives at best a local description of the moduli

space of D-branes near a wall of marginal stability.

As gs → 0, a bound collection of D-branes can undergo tachyon condensation due to

tachyonic modes acquired by open string states between pairs of branes. Indeed, if the bound

collection of D-branes is to be stable, it must undergo tachyon condensation, “decaying”

to a single, potentially complicated, D-brane state at very small gs. It was argued in [57]

that near a wall of marginal stability, the Denef stability condition (2.2.1) is equivalent to

θ-stability for a quiver or gauge theory, and equivalent to the physical requirement of having

tachyonic open string states present.

Categories of branes

Mathematically, D-branes are described by objects in the Fukaya category (in type IIB

compactification) or the derived category of coherent sheaves Dbcoh(X) (in type IIA com-

pactification).9 In each case, BPS branes must satisfy a stability condition — respectively,

Joyce stability [73] and Π-stability [18] — to ensure that they are stable objects that cannot

decay (in a physical type II theory) into independent constituent branes. These stability

conditions depend on the vector multiplet moduli t∞ of the Calabi-Yau compactification,

and are equivalent to Denef stability near walls of marginal stability. Moreover, for quiver

quantum mechanics, they should be equivalent to θ-stability. To summarize, there is a (still

conjectural!) equivalence of stable moduli spaces

MFuk

(
γ̃; Joyce(t∞)

) mirror= MDbcoh

(
γ; Π(t∞)

)
=Ms

(
γ =

∑
niγi; θ(t∞)

)
(2.3.5)

=M(D-brane bound state of charge γ at t∞) ,

and a corresponding equivalence of Hilbert spaces

H′brane
BPS (γ; t∞) = H′sugra

BPS (γ; t∞) . (2.3.6)
9There is a large body of literature on this topic; see [72] for an excellent review.
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As a final comment, note that there exists a general construction of quivers directly

from the categorical description of branes. Suppose that we are in a IIA compactification,

so the relevant category is Dbcoh(X). Given a collection of branes that form a basis for the

associated K-theory on X — i.e. branes whose charges γi generate the charge lattice Γ —

one can form a quiver by associating a node to each such brane, arrows to each Ext1 group

between pairs of branes, and a superpotential computed from the Ext2 groups. Then quiver

representations of dimension vector n such that
∑

i niγi = γ (such a dimension vector can

be found for any γ) should describe D-brane states of total charge γ. Unfortunately, if some

of the branes in the chosen K-theory basis are not rigid, the resulting quiver can have closed

loops (from a node to itself) that are not “obstructed” by the superpotential. In this case,

the moduli space of quiver representations is noncompact, and only describes the D-brane

moduli spaceM(γ) locally. As it is not known how to compactifyM(γ), it is not clear how

to compute the respective H′BPS(γ). A rigid, complete basis for the quiver can be found

in the situations mentioned above: orbifolds and some non-compact Calabi-Yau’s. In some

cases, it is possible to consider a sublattice of Γ′ ⊂ Γ that has a rigid basis of branes, and

to obtain compact moduli spaces for γ ∈ Γ′.

2.4 Invisible walls

In this final section, we examine the “invisible walls” introduced in Section 2.1. We

defined these to be walls in moduli space across which the unrefined index Ω(γ) is continuous,

but the refined index Ωref (γ; y) jumps. The basic mechanism for how this happens can be

understood in a simple situation where HBPS(γ) admits a description as the cohomology

of a brane moduli space M(γ). As t∞ (say) crosses an invisible wall, M(γ) can develop a

singularity and undergo a topology-changing transition, so that the Poincaré polynomial of

M changes while the Euler characteristic does not.

In the vector multiplet moduli space MV , one tempting place to look for such invisible

walls is in internal rearrangements of multi-center black holes that were first considered in

[20] (Section 5.2.3 therein). The basic idea is that as t∞ varies the components of a multi-

center state can change their binding structure, and presumably change the spin structure

of the overall configuration, without ever undergoing a marginal stability transition. We

focus here on this example — and find, amazingly, that multiple factors conspire to assure
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that the refined index remains unchanged.

Multi-center rearrangements

The simplest scenario, involving a 3-center bound state of total charge γ = γ1 + γ2 + γ3

with all component charges primitive, is depicted in Figure 2.5. For one value of moduli

t∞ = t0, an attractor flow first encounters a argZ(γ2) = argZ(γ1 + γ3) wall. If the flow

splits, it eventually forms attractor flow tree (A). If it crosses this wall without splitting, it

forms attractor flow tree (B). However, for a slightly different value of moduli t∞ = t1, the

flow hits a argZ(γ3) = argZ(γ1 + γ2) wall first and must split there to form attractor flow

tree (C). Note that there is no marginal stability wall between t0 and t1.

1 2 3 1 2 3 1 2 3

t0 t0 t1A) B) C)

vs.+

Figure 2.5: A three-center rearrangement.

This scenario may seem somewhat contrived, but it can actually happen in a physical

context: the example given in [20] involves a 3-centered D6−D6−D6 bound state (where

the two D6’s have nontrivial worldvolume flux). Generally, a necessary condition for this

transition is that the three quantities

a = 〈γ2, γ3〉 b = 〈γ3, γ1〉 c = 〈γ1, γ2〉 (2.4.1)

all have the same sign. Assuming (WLOG) they are all positive, it is also necessary that

a > b > c . (2.4.2)

Since the transition does not involve crossing a wall of marginal stability, the unrefined

index Ω(γ) should not change. To see that this is indeed the case, one can use repeated
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applications of the primitive wall-crossing formula (2.2.6). Since H(γ; t0) = H(A)(γ; t0) ⊕

H(B)(γ; t0), the index at t0 is

Ω(γ; t0) = (−1)a−c+b(a− c)bΩ(γ1)Ω(γ2)Ω(γ3) + (−1)c−b+a(c− b)aΩ(γ1)Ω(γ2)Ω(γ3)

= (−1)a+b+c
[
(a− c)b+ (c− b)a

]
Ω(γ1)Ω(γ2)Ω(γ3) . (2.4.3)

The index at t1 is similarly given by

Ω(γ; t1) = (−1)a−b+c(a− b)cΩ(γ1)Ω(γ2)Ω(γ3) , (2.4.4)

and Ω(γ; t0) = Ω(γ; t1) results from the simple fact that (a− c)b+ (c− b)a = (a− b)c.

In the refined case, we can similarly iterate the refined primitive wall-crossing formula

(2.2.7) to find that

Ωref (γ; t0; y)− Ωref (γ; t1; y) (2.4.5)

=
(
[a− c]−y[b]−y + [c− b]−y[a]−y − [a− b]−y[c]−y

)
Ωref (γ1; y)Ωref (γ2; y)Ωref (γ3; y) .

It is a surprising fact that the quantity in parentheses actually vanishes, due to an algebraic

identity of quantum dimensions. Therefore, in this case, there is no change in the refined

index either: although the internal configuration of the bound state is rearranged, the total

structure of the spin is unmodified!

Although the scenario just described is a rather simple example, it forms the basis for

an argument that no invisible walls exist for rearrangements of any multi-center states, at

least when the component black holes have primitive charges. Observe first that if there had

existed an invisible wall in the 3-center rearrangement, it would correspond to all moduli

tinv such that the attractor flow for charge γ from tinv would hit the codimension-2 locus

Y where

argZ(γ1) = argZ(γ2) = argZ(γ3) . (2.4.6)

This is shown schematically in Figure 2.6. The (non-generic!) attractor flow tree from

moduli t∞ on this putative wall undergoes a triple split, serving as a transition between

trees (A) and (B) and tree (C).

Now imagine a general (primitive) multi-center rearrangement, where for some value

of starting moduli t∞ = t0 a certain set T0 of tree topologies are possible; and for some

other value t∞ = t1 some other set T1 of topologies are achieved. A path in moduli space

from t0 to t1 encounters putative invisible walls at some set of moduli t(1), t(2), t(3), ... whose
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1 2 3

t0

1 2 3

t0

1 2 3

t1

+

1 2 3

tinv
invisible wall

Figure 2.6: An invisible wall located at a three-way split.

attractor flows hit points where the arguments of three or more central charges align — at

these points topologies in the set T0 can merge and split, so they eventually transition to

the topologies of T1. However, since a locus where n central charges align is generically of

real codimension (n− 1) inMV , it should be possible to adjust the path from t0 to t1 such

that all the putative invisible walls it encounters correspond to the arguments of just three

central charges aligning. Then the transition between sets T0 and T1 factors completely into

a sequence of 3-center transitions that locally look just like the one in Figure 2.6. Since the

refined index does not change in the 3-center case, it cannot change in the multi-center case

either.

Non-primitive rearrangements

The above analysis can be extended to non-primitive rearrangements, though the rel-

evant scenarios quickly increase in complexity. For example, consider the formation of a

bound state with total charge

γ = γ1 + γ2 + 2γ3 . (2.4.7)

In addition to the three basic tree topologies corresponding to Figure 2.5, there are three

additional options as shown below in Figure 2.7. In a physical scenario like the D6–D6–D6

bound states of [20], only a subset of the potential tree topologies will be realized. Exactly

which ones appear depends on the relative magnitudes of a = 〈γ2, γ3〉, b = 〈γ3, γ1〉, and

c = 〈γ1, γ2〉. Unlike the primitive case, where (2.4.2) was the only nontrivial possibility,

there are multiple parameter regimes for which topology transitions can take place.
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All these regimes, and even more complicated non-primitive examples, are analyzed in

[4]. The astonishing result is that the refined index never changes from one side of a puta-

tive invisible wall to the other. This suggests a

Conjecture: In the vector multiplet moduli space, the refined index can only jump at true

walls of marginal stability.

In other words, we expect that continuity of the unrefined index implies continuity of the

refined index. This conjecture is pleasingly consistent with the general quantum/motivic

wall-crossing formula that will be discussed in Chapter 4. Indeed, if motivic Donaldson-

Thomas invariants are a completely accurate mathematical realization of refined physical

BPS invariants — and so far we have no reason to think otherwise — then motivic wall

crossing predicts the absence of invisible walls.

1 2 33 1 2 33 1 2 33 1 2 33 1 2 331 2 33

A) B) C) D) E) F)

Figure 2.7: Possible multi-center tree topologies in the simplest non-primitive case. Here

we draw two separate γ3 attractor points just to distinguish flows of charge γ3 and 2γ3;

physically, they are the same point in moduli space.

As an explicit illustration of a non-primitive rearrangement, let us take a > b > c > 0,

as in (2.4.2). Then physical considerations predict that (A) and (D) will be realized on one

side of the putative invisible wall, while (B) and (C) will be realized on the other. The

refined semi-primitive wall-crossing formula (2.2.13) predicts in general that

Ωref (γ + 2η; y) = Ωref (γ; y)
(

1
2

[I]2yΩref (η; y)2 − 1
2

[I]y2Ωref (η; y2)− [2I]yΩref (2η; y)
)
,

(2.4.8)

where I = |〈γ, η〉|, and we have suppressed the dependence on moduli t± in Ωref . Using

this formula to work out the total degeneracy Ωref (γ1 +γ2 + 2γ3) for each tree topology, we

find that Ωref
A + Ωref

D = Ωref
B + Ωref

C can only hold in general if each of the following three
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relations is satisfied:

[2a− c]y[2b]y = [c]y[2a− 2b]y + [2b− c]y[2a]y (2.4.9a)

[2a− c]y[b]y2 = [c]y[a− b]y2 + [2b− c]y[a]y2 (2.4.9b)

[2a− c]y[b]2y + 2[a− b]y[a− c]y[b]y = [c]y[a− b]2y + [2b− c]y[a]2y . (2.4.9c)

These are all identities for the quantum dimension.



Chapter 3

Refined Wall Crossing via Melting

Crystals

In this chapter, we specialize to type IIA “compactifications” on the resolved conifold X =

O(−1)⊕O(−1)→ P1. This is a noncompact Calabi-Yau, but can be thought of as the local

(or decompactification) limit of a compact Calabi-Yau into which the conifold is embedded.

In this decompactification limit, all Kähler classes except the class of a distinguished P1

become large. The resolved conifold is a rigid Calabi-Yau, in the sense that it has no

complex structure deformations. Thus MH is trivial and the refined BPS index (2.1.30) is

a well-defined function on the Kähler moduli space MV . (Noncompact toric Calabi-Yau’s

generally have this property.)

The conifold provides an excellent example of the wall-crossing formulas of Section 2.2,

and the relation between BPS indices and standard topological string invariants. In Section

3.1, following [31], we describe the picture of walls, chambers, and unrefined generating

functions for the conifold. We then generalize this picture to our refined invariants, and use

refined wall crossing to produce refined generating functions in all chambers (following our

work in [1]).

The latter part of this chapter is devoted to the study of melting crystal models for coni-

fold invariants and their connection to refined and unrefined wall crossing. The idea that

melting crystals can encode topological invariants of Calabi-Yau threefolds (and describe

topological strings in such backgrounds) goes back to [25] and [74]. There, the topological

vertex, the building block of Gromov-Witten/Gopakumar-Vafa/Donaldson-Thomas parti-

40
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tion functions for noncompact toric Calabi-Yau’s, is reinterpreted as the generating function

of plane partitions — or cubic crystals melting in the corner of a room. However, another

set of crystal models, based more closely on the toric web of a noncompact Calabi-Yau,is

also discussed in this literature. For a conifold, this “other model” consists of pyramid

partitions.

More recently, B. Szendröi [64] used pyramid partitions to describe the representations

of the noncommutative path algebra generated by the conifold quiver (or by a noncommu-

tative resolution of the conifold). This path algebra defined “noncommutative Donaldson-

Thomas theory.” The generating function for pyramid partitions computes the noncom-

mutative Donaldson-Thomas partition function. Jafferis and Chaung [75] then generalized

this approach to the generating function of D6-D2-D0 bound states in all chambers for

the resolved conifold: in each chamber, the meltings of a pyramid crystal with different

boundary conditions determine the corresponding generating function.

In Section 3.3, we very briefly describe the approach used by [75] to identify crystal

boundary conditions with stability conditions. It requires the study of quiver represen-

tations at different choices of θ-stability. In Section 3.3, we then review a mathematical

proof by B. Young [76] that crystals with differing boundary conditions actually reproduce

the generating functions for the resolved conifold, and argue that an algorithm called dimer

shuffling provides a combinatorial realization of wall crossing. Moreover, we use dimer shuf-

fling/wall crossing to relate a limit of pyramid partitions to the topological vertex. Finally,

in Section 3.4, we show that the everything can be refined. By splitting pyramid partitions

on diagonals and thereby modifying the weights assigned to their atoms, we obtain refined

partition functions in all chambers; and we related refined pyramid partitions to the refined

topological vertex. Sections 3.3 and 3.4 are based on our work in [1].

Although we focus mainly on the example of the conifold here, many results should

generalize to more complicated noncompact Calabi-Yau manifolds. Indeed, since [1] was

published, some partial generalizations have appeared in [32, 33].
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3.1 Wall crossing for the conifold

The picture of walls and chambers for the resolved conifold X = O(−1)⊕O(−1)→ P1

was developed in [31]. In order to analyze wall crossing this non-compact Calabi-Yau

properly, one must embed it in a compact global geometry and then look at the subset of

walls and BPS states that survive in the local limit — the limit where all Kähler classes

except that of the P1 become large.

To be more specific, let β be the generator of H4(X; Z), dual to the rigid cycle on

P1 ∈ X. Then, the Kähler parameter in the compact geometry is taken to be

t = z P + Λeiϕ P ′ ∈ H2(X,C) , (3.1.1)

where P · β = 1, P ′ · β = 0, and (P ′)3 > 0. Here, z is a complex number parametrizing

B + iJ on P1, and Λeiϕ is a complex number parametrizing all the other Kähler classes,

whose magnitude Λ one takes to be very large. In the limit Λ → ∞, the phase ϕ still

survives as a finite parameter, and effectively enlarges the Kähler parameter space of the

resolved conifold to have real dimension three.

In the notation of [31], charge of a bound state of a D6 brane, M D2 branes, and N D0

branes can be written as a cohomology class

γ1,M,N = 1−Mβ +NdV ∈ Heven(X; Z), (3.1.2)

where dV is the volume element on X, normalized so that
∫
X dV = 1 (in any compact

approximation). In the local limit Λ → ∞, the central charge of a D6 brane with any

number of bound D2 and D0 branes becomes

Z(1− . . .) ∼ Λ3e3iϕ , (3.1.3)

while the central charge of a D2-D0 bound state (with no D6) is

Z(−Mβ +NdV ) = −Mz −N . (3.1.4)

Thus the parameter ϕ can also be interpreted as the phase of the central charge of the D6

brane. It is fairly easy to see that in the local limit

• The only single-center (single attractor flow) state is a pure D6.
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• The only possible walls of marginal stability correspond to primitive or semi-primitive

splits

1−Mβ +NdV → (1−M ′β +N ′dV ) + (M ′′β +N ′′dV ) . (3.1.5)

In particular, no D6-D6 bound states ever form.

As ϕ is varied while keeping z constant, what effectively happens is that the central charge

of a D6 brane sweeps across moduli space, binding MD2+ND0 fragments whenever walls

of marginal stability

arg e3iϕ = arg(−Mz −N) (3.1.6)

are encountered.

Since the fragments −Mβ + nDV undergo no wall crossings throughout the local-limit

moduli space, one can obtain their unrefined indices from the Gopakumar-Vafa invariants

for the conifold [11, 12]:

Ω(±β +NdV ) = 1 ,

Ω(NdV ) = −2 , (3.1.7)

Ω(−Mβ +NdV ) = 0 otherwise .

This results in the picture of walls and chambers shown in Figure 3.1, covering a large

section of moduli space. There is a core region C̃0, corresponding to Kähler moduli near

the attractor point for the D6 brane, where only the pure D6 brane is stable. Varying ϕ

away from this region, one encounters first a D2+D0 wall, then a D2+2D0 wall, then a

D2+3D0 wall, etc.; at each transition, the D6 brane binds with an arbitrary number of

D2+ND0 particles, à la semi-primitive wall crossing. After crossing all D2+ND0 walls,

at finite distance in moduli space, one encounters the D0 wall, where any number of D0

particles bind to the D6. Then D2 + ND0 particles begin to bind until, after crossing a

D2 +D0 wall, one ends up in the Szendröi region of moduli space.

Generating functions

In the core region of moduli space, the partition function of D6-D2-D0 bound states

Z(q,Q; t∞) =
∑

M,N∈Z
Ω(1−Mβ +NdV ; t∞)(−q)NQM (3.1.8)
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Figure 3.1: Walls and chambers for the refined conifold.

simply takes the value Z(q,Q; C̃0) = 1. By the semi-primitive wall-crossing formula (2.2.14),1

the partition function in chamber C̃n is then

Z(q,Q; C̃n) =
N∏

j=1

(1− qjQ)j , (3.1.9)

which converges to the reduced Donaldson-Thomas partition function immediately before

the D0 wall,

Z(q,Q; C̃∞) = Z ′DT (q,Q) =
∞∏

j=1

(1− qjQ)j . (3.1.10)

On the other side of the wall, the binding of a gas of D0’s (and 2D0’s, 3D0’s, etc.) multiplies

the partition function by the MacMahon function, resulting in the unreduced Donaldson-

Thomas partition function

Z(q,Q;C∞) = ZDT (q,Q) = M(q)2
∞∏

j=1

(1− qjQ)j . (3.1.11)

This is a general phenomenon: when crossing the D6-D0 wall, which exists generically in

the large-volume moduli space of Calabi-Yau’s, the D6-D2-D0 partition function acquires a

factor of M(q)χ(X).

As one progresses to the Szendöi region, the partition function becomes

Z(q,Q;Cn) = M(q)2
∞∏

j=1

(1− qjQ)j
∞∏

k=N

(1− qkQ−1)k . (3.1.12)

1Note that the D2-D0 states are fermionic, whereas the D0 states are bosonic. Thus, the wall-

crossing formula at D2-D0 walls tends to be much simpler than at the D0 wall.
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In the Szendröi region itself, this finally becomes Szendröi’s “noncommutative Donaldson-

Thomas” partition function [64]

Z(q,Q;C1) = ZSz(q,Q) = M(q)2
∞∏

j=1

(1− qjQ)j
∞∏

k=1

(1− qkQ−1)k . (3.1.13)

Refined generating functions

It is not too difficult to generalize the above story, summarized from [31], to our un-

refined invariants. There do not seem to be any invisible walls in the region of moduli

space depicted in Figure 3.1, so we only need worry about marginal stability transitions.

Furthermore, it is clear from an analysis of the moduli space of D0 and D2-D0 branes on

the conifold (or from refined Gopakumar-Vafa invariants [23, 26]) that D2+ND0 states be-

long to fermionic hypermultiplets and ND0 states belong to bosonic vector multiplets —

“bosonic” and “fermionic” referring to their statistics in the internal Hilbert space H′, with

center-of-mass degrees of freedom factored out. Therefore (cf. (2.1.32)-(2.1.33)),

Ωref (±β +NdV ; y) = 1 ,

Ωref (NdV ; y) = −y − y−1 , (3.1.14)

Ωref (−Mβ +NdV ; y) = 0 otherwise .

As in Section 2.1, let us define the refined generating function of D6-D2-D0 states as

Z(q,Q, y; t∞) =
∑

M,N∈Z
Ωref (1−Mβ +NdV ; t∞; y)(−q)NQM . (3.1.15)

It is also convenient to change variables from y and q to q1 and q2, which are more standard

in the literature on topological string invariants, cf. [22, 23, 26, 29]:

q1 = qy , q2 =
q

y
. (3.1.16)
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Then we have

Z(q1, q2, Q; C̃0) = 1 , (3.1.17)

Z(q1, q2, Q; C̃n) =
∏
i,j≥1

i+j≤N+1

(
1 + q

i− 1
2

1 q
j− 1

2
2 Q

)
, (3.1.18)

Z(q1, q2, Q; C̃∞) =
∏

i,j≥1

(
1 + q

i− 1
2

1 q
j− 1

2
2 Q

)
= Zref

DT

′
(q1, q2, Q) , (3.1.19)

Z(q1, q2, Q;C∞) = M(q1, q2)2
∏

i,j≥1

(
1 + q

i− 1
2

1 q
j− 1

2
2 Q

)
= Zref

DT (q1, q2, Q) , (3.1.20)

Z(q1, q2, Q;CN ) = M(q1, q2)2
∏

i,j≥1

(
1 + q

i− 1
2

1 q
j− 1

2
2 Q

) ∏
k,l≥1

k+l≥N

(
1 + q

k− 1
2

1 q
l− 1

2
2 Q−1

)
, (3.1.21)

Z(q1, q2, Q;C1) = M(q1, q2)2
∏

i,j≥1

(
1 + q

i− 1
2

1 q
j− 1

2
2 Q

)(
1 + q

i− 1
2

1 q
j− 1

2
2 Q−1

)
= Zref

Sz (q1, q2, Q) .

(3.1.22)

These generating functions all follow by applying the semi-primitive wall-crossing formula

(2.2.13) at each D2-D0, D0, and D2-D0 wall, starting from the core region C̃0. Of course,

in the core region both refined and unrefined generating functions are trivial, since the only

state in the spectrum is the pure D6.

Observe that on either side of the D0 wall the refined generating function reproduces the

refined Donaldson-Thomas/Gopakumar-Vafa partition function for the resolved conifold, as

calculated with the refined topological vertex [26]. This should be no great surprise: the

stability conditions near the D0 wall are such that all D2-D0 fragments can bind to the

D6, but no D2 − D0 fragments can bind, which appropriately describes the ideal sheaves

in Donaldson-Thomas theory [65]. The extra spin content of the present BPS invariants is

equivalent to the extra SU(2) Lefschetz action used in defining refined Donaldson-Thomas

invariants.

The two sides of the D0 wall are related by a refined MacMahon function, which we

have normalized symmetrically here to be M(q1, q2) =
∏

i,j≥1

(
1 − qi− 1

2
1 q

j− 1
2

2

)
. In general,

when studying BPS invariants one encounters a family of refinements

Mδ(q1, q2) =
∏

i,j≥1

(
1− qi− 1

2
+ δ

2
1 q

j− 1
2
− δ

2
2

)
, (3.1.23)

which all reduce to the ordinary MacMahon function M(q) in the limit y → 1. (In the

“opposite” opposite y → −1, the functions (3.1.23) specialize to M(−q), which describes

the contribution of the 0-dimensional subschemes to the D̂T-invariants of [77].)
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In the Szendröi chamber C1, the generating function (3.1.22) refines Szendröi’s parti-

tion function for noncommutative Donaldson-Thomas theory on the conifold. The answer

here, derived via wall-crossing, agrees with a more rigorous mathematical calculation for an

appropriately refined noncommutative Donaldson-Thomas partition function.2

3.2 Crystals and quivers

In the final two sections of this chapter, we will discuss refined and unrefined crystal-

melting models and “combinatorial wall crossing” for the D6-D2-D0 BPS generating func-

tions of the refined conifold. In order to maintain continuity of ideas, we presently take a

moment to very briefly review the general connection between crystal models, quivers, and

BPS states.

Crystal-melting models were first used to describe BPS states in the Gromov-Witten/

Donaldson-Thomas chamber of noncompact toric Calabi-Yau’s in [25], where it was real-

ized that the topological vertex [24] was a generating function of three-dimensional plane

partitions (or boxes stacked in the corner of a room). In terms of Donaldson-Thomas the-

ory, plane partitions describe fixed points under a torus action in the moduli space of ideal

sheaves on C3 [9, 10]. In the topological vertex formalism, the full toric Calabi-Yau X is

glued together from copies of C3, and the moduli space M of ideal sheaves on X is glued

together from moduli spaces on C3. The Euler characteristic or cohomology of M (hence

Donaldson-Thomas invariants) can then be related to the plane partitions that describe

local fixed points, by standard localization theorems (cf. [78]). The topological vertex was

generalized to a refined vertex (with refined plane partitions) in [26], to describe refined

Gromov-Witten/Donaldson-Thomas invariants.

Szendröi [64] recently described a very different melting crystal model for the noncom-

mutative Donaldson-Thomas chamber C1 of the conifold. In this special, extreme chamber

of MV , the classical moduli spaces M(γ) of BPS states (i.e. the moduli spaces whose

“quantization” give HBPS(γ)) correspond to cyclic representations of the conifold quiver

algebra. All the vector spaces Vi (cf. Section 2.3) of a cyclic representation of a quiver are
2We thank B. Szendröi for discussions on this topic.
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generated by a single basis element e in the vector space Vi′ of some distinguished vertex

i′. The resulting moduli spaces Mγ have a toric action, whose fixed points again describe

partitions, or molten crystal configurations. However, the relevant pyramid crystal, shown

on the left-hand side of Figure 3.4 on page 50, looks very different from the plane partitions

of the topological vertex. Such Szendröi-chamber melting crystal models were generalized

to other noncompact toric Calabi-Yau’s in [79] (see also [80]), but they have not yet been

refined. (We will present a refinement in Section 3.4.)

Of course, there are many more chambers of moduli space, and one would like to have

a crystal model in each one. Jafferis and Chuang [75] realized how to accomplish this by

relating cyclic quiver representations — which lead directly to crystals — with θ-stable rep-

resentations. In the case of noncompact toric Calabi-Yau’s with a good quiver description,

the moduli spaces M(γ; t) at different moduli t ∈ MV correspond to stable quiver repre-

sentations with different θ parameters. Jafferis and Chaung showed that by appropriately

choosing a different basis of coherent sheaves to generate the quiver in each chamber MV ,

θ-stability could always reduce to cyclicity.

As an example of this construction, consider the conifold in the Szendröi chamber C1.

The appropriate representation of the conifold quiver in this chamber is shown in Figure

3.2. The basis of coherent sheaves consists of the D6-brane OX [1], the D2+D0 brane

OP1(−2)[1], and the D2 brane OP1(−1). In the Szendröi chamber, the θ-parameters for the

three corresponding vertices satisfy θ1 > 0, θ2 < 0, and θ3 < 0, respectively. The stable

representations with dimension vector n = (1, N,M +N), corresponding to bound states of

D6+MD2+ND0 branes, then become completely equivalent to the cyclic representations

generated by the D6 vertex.

It is also fairly easy to see in this simple example how pyramid partitions (meltings

of the C1 crystal in Figure 3.4) are identified with representations corresponding to fixed

points of the full moduli space of stable/cyclic representations. Consider a set of atoms

that have been removed in a melting configuration, such as in Figure 3.3. Suppose there

are N white atoms and M + N black atoms. This corresponds to a quiver representation

of dimension n = (dimV1,dimV2,dimV3) = (1, N,M + N), where each white atom is

associated to a basis element of V2 and each black atom to a basis element of V3. To

determine the homomorphisms represented by the arrows A1, A2, B1, B2, draw four arrows

from each white atom to the layer of black atoms below it (and vice verse) as shown on the
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A1,A2

B1,B2

D6

D2+D0
__

D2

θ1>0

θ2<0 θ3<0

Figure 3.2: The conifold quiver for the C1 chamber, with charges of nodes and θ-parameters

as indicated. The superpotential is W = Tr(A1B1A2B2 −A1B2A2B1) .

right side of Figure 3.3. Each A1 arrow connecting two atoms in the finite removed/melted

set corresponds to a ‘1’ entry in the homomorphism matrix representing A1, a mapping

between the basis elements associated to the atoms. All other entries in the matrix A1

are set to zero. Likewise, A2, B1, and B2 are constructed, completing the representation.

It is argued in [64] that every fixed point in the moduli space of cyclic representations is

identified uniquely with a melting configuration like this. Note that the “distinguished”

vector that generates these cyclic representations is basis of the one-dimensional space V1,

which maps to the basis element of V2 corresponding to the single white atom at the top

of the crystal (present in every crystal melting), and maps subsequently to the rest of the

melted atoms. The superpotential conditions dW = 0 for a good quiver representation

simply state that different paths connecting a black or white atom to any atom three layers

under it are equivalent.

3.3 Pyramid crystals and wall crossing

We now consider the (unrefined) melting crystal descriptions of the conifold partition

functions in chambers C̃n and C̃n more carefully. After summarizing the basic result from

[75] in all chambers, we review Young’s mathematical proof that the infinite crystals corre-

sponding to chambers Cn actually give the right answers. Moreover, we argue that dimer

shuffling, to be defined below, provides a combinatorial realization of wall crossing that,

in the limit n → ∞ (the DT chamber), causes pyramid partitions to reduce to the usual



50

A1

A2

B1 B2

etc.

Figure 3.3: A set of atoms melted from the C1 crystal (right); and assignment of arrows

A1, A2, B1, B2 to atoms (left).

topological vertex model for the conifold.

nn
qw

qb

C1 Cn Cn
~

Figure 3.4: The “empty room configurations” for the crystals that count BPS states in

chambers Cn and C̃n.

In the chamber Cn, the unrefined generating function of BPS states is obtained by

counting the melting configurations of an infinite pyramid-shaped crystal whose top row

of atoms has length n (sometimes also called an empty room configuration, or ERC, of

length n) [64, 75]. As shown in Figure 3.4, this crystal has two different types of atoms,

corresponding to the two vertices of the Klebanov-Witten quiver. The top edge of the

pyramid always consists of n white atoms. The remainder of the pyramid is then constructed

by placing two black atoms underneath each white atom, oriented vertically, and two white
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atoms underneath each black one, oriented horizontally.3 In order for an atom to be removed

during crystal melting, all atoms lying above it must be removed as well. The partition

function is defined as a sum over all melting configurations (i.e. pyramid partitions) π,

Z(qw, qb;Cn) =
∑
π

qww(π)
w q

wb(π)
b , (3.3.1)

where ww(π) and wb(π), respectively, are the numbers of white and black atoms removed.

It was proven in [76] that this agrees with the partition function (3.1.12),

Z(qw, qb;Cn) = Z(q,Q;Cn) = M(q)2
∞∏

j=1

(1− qjQ)j
∞∏

k=n

(1− qkQ−1)k , (3.3.2)

provided that one makes an n-dependent identification as in [75],

Cn : qw = −qnQ−1 , qb = −q−(n−1)Q . (3.3.3)

Similarly, it was argued in [75] that to obtain the unrefined partition function in the

chamber C̃n one must sum over the melting configurations of a finite crystal configuration

of length n, also shown in Figure 3.4. Then

Z(q,Q; C̃n) =
n∏

j=1

(1− qjQ)j =
∑
π

qww(π)
w q

wb(π)
b (3.3.4)

if one identifies

C̃n : qw = −qnQ , qb = −q−(n+1)Q−1 . (3.3.5)

To proceed further, let us translate the above partition functions into the language of

dimers. The partitions of a length-n pyramid correspond bijectively to the states of a dimer

model on a square lattice with prescribed asymptotic boundary conditions. (We will refer

to these states as partitions as well.) An intuitive way to visualize the correspondence (see

also [76]) is to actually draw dimers on the black and white atoms, as in Figure 3.5. Then

the dimer state corresponding to a given crystal automatically appears when viewing the

crystal from above.

As in [76], we have included an extra decoration on the lattices in these figures: lattice

points are colored with alternating black and white dots. This canonical decoration carries

no extra information, but is very useful in describing weights and wall crossing. We will
3In nature, such a crystal structure, very similar to that of diamond, occurs in moissanite (silicon

carbide) and the semiconductor gallium arsenide.
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~

Figure 3.5: The relation between pyramid partitions and dimer states, illustrated for n = 2.

odd boxes: even boxes:

Figure 3.6: Even and odd boxes of dimers.

also call squares in the dimer lattice even or odd depending on their vertex decorations. As

shown in Figure 3.6, we call two dimers lying on the edges of an even (resp. odd) square

an even (resp. odd) box; an even (resp. odd) box with two horizontal (resp. vertial) dimers

corresponds to a fully uncovered black (resp. white) atom in the crystal.

One can assign weights to each edge in the dimer lattice so that the total weight of a

dimer partition π, defined as4

w(π) =
product of weights of dimerized edges inπ

product of weights of dimerized edges in the ground state of the lattice
, (3.3.6)

agrees with the pyramid partition weight qww(π)
w q

wb(π)
b . To implement such a weighting, it

is sufficient to ensure that the ratio of horizontal to vertical edges in every odd and even

square, respectively, equals qw and q−1
b — corresponding to white atoms being removed and

black atoms being replaced.

Here, it is most convenient to use a weighting that is n-dependent. Vertical edges

are always assigned weight 1. For the horizontal edges, we draw two diagonals on the

dimer lattice, which pass through the lowermost and uppermost odd blocks in the ground
4Technically, both the numerator and denominator in this definition must be “regularized.” For a

given state π, one fixes a large box in the dimer lattice so that all dimers outside the box match the

ground state (corresponding to an unmelted pyramid of length n); then one only multiplies together

the weights of dimers inside this box.
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Figure 3.7: The weights assigned to edges of the dimer lattice of “length n,” for n = 2. (The

n = 2 ground state has been shaded in.) All vertical edges have weight 1 and all horizontal

edges have an additional factor of (−Q)−1/2.

state dimer (i.e. the lowermost and uppermost uncovered white atoms in the unmelted

pyramid). For positive integers a, the horizontal edges 2a − 1 units above and 2a units

below the lower diagonal are assigned weights q(2a−1)/2(−Q)−1/2 and q−(2a−1)/2(−Q)−1/2,

respectively, where a = 0 means that an edge is touching the diagonal. Likewise the

horizontal edges 2a − 1 units below and 2a units above the upper diagonal are assigned

weights q(2a−1)/2(−Q)−1/2 and q−(2a−1)/2(−Q)−1/2, respectively. An example is shown in

Figure 3.7. For a dimer model corresponding to a length-n crystal, one can check that the

ratios of horizontal to vertical edges in every odd block is indeed −qnQ−1 = qw, and in

every even block the ratio is −qn−1Q−1 = q−1
b . Since the resulting weight function itself is

n-dependent in terms of variables q and Q, let us call it wn rather than w.

We let the weight wn be a function acting linearly on formal sums of partitions, and

define Θ(n) to be the formal sum of all possible partitions of a dimer lattice with asymptotic

boundary conditions corresponding to the length-n crystal. Then

Z(qa, qb;Cn) =
∑
π

qww(π)
w q

wb(π)
b = wn(Θ(n)) . (3.3.7)

The operation that we claim is the combinatorial equivalent of wall crossing is described

in [76] as dimer shuffling. It maps partitions of length n to partitions of length n + 1. To

define it, first consider an operation S̃, which maps a dimer state π̃(n), all of whose odd
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S~

Figure 3.8: The directions in which dimers move under the shuffle S̃, and an example of

shuffling a partition of length n = 2 with odd boxes deleted.

blocks have been deleted, to a dimer state π̃(n+1), all of whose even blocks are deleted. By

“deleted” we mean that any dimers forming odd (resp. even) blocks are removed. The

operation S̃ simply moves every non-deleted dimer one unit to the left, right, up, or down,

according to the rules on the left side of Figure 3.8. We show an example of such a shuffling

in Figure 3.8 as well; note that dimers carry their vertex decorations with them when they

move. As a function from the set of {dimer partitions with odd blocks deleted} to the set

of {dimer partitions with even blocks deleted}, S̃ is bijective [76, 81]. The actual dimer

shuffling operation S can then be defined to act on finite “subsums” in Θ(n). It maps each

formal sum5 of 2m dimer states with a fixed set of m odd blocks (for any m) to the finite

formal sum of all dimer states with a fixed set of even blocks in the obvious way: by deleting

odd blocks, applying S̃, and filling in the missing even blocks in all possible combinations.

Letting S act linearly on all such formal sub-sums of Θ(n), it must, because S̃ is bijective,

send Θ(n) precisely to Θ(n+1).

What happens to weights under dimer shuffling? We defined our weight function above

so that the dimers in a partition π̃ of a length-n model with odd boxes deleted do not

change weight at all under the action of S̃. In other words, wn(π̃) = wn+1(S̃(π̃)). The only

change in weights of a genuine dimer state π under the action of S arises from the deletion

of odd blocks and the subsequent creation of new even blocks after shuffling. An important
5We could also define shuffling, as in [76], to act on individual π’s, but this is unnecessary.
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lemma in [76] (which we will refine later in this section) is that the difference between the

number of deleted odd blocks in π̃ and the missing even blocks in S̃(π̃) is always exactly n.

Then a quick exercise shows that for a fixed π̃ with m deleted odd blocks,

wn(sum of π s.t. π agrees with π̃) = (1− qnQ−1)m · wn(π̃) , (3.3.8)

wn+1(sum of π s.t. π agrees with S̃(π̃)) = (1− qnQ−1)m−n · wn+1(S̃(π̃)) . (3.3.9)

(By “agrees with,” we mean aside from deleted blocks.) The ratio of these quantities is

independent of m, immediately proving that

wn(Θ(n)) = (1− qnQ−1)nwn+1(Θ(n+1)) . (3.3.10)

This is precisely the wall-crossing formula between chambers Cn for the conifold.

Formula (3.3.10) suggests (correctly) that we can write the crystal or dimer partition

function for a model of length n as

wn(Θ(n)) =
∞∏

j=n

(1− qjQ−1)j · w∞(Θ(∞)) . (3.3.11)

Of course, the quantity w∞(Θ(∞)) must be the Donaldson-Thomas partition function of the

conifold, and this relation holds because pyramid partitions of length n → ∞ effectively

reduce to the topological vertex formalism of [24, 25] (see also [74, 9, 10]).
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Figure 3.9: The brick-like lattices around the upper and lower vertices as n → ∞. The

ground state state of the dimer is shaded in. As before, each horizontal edge also carries a

weight of (−Q)−1/2

To understand this relation, consider the n-dependent weighting system of Figure 3.7.

In the limit n→∞, the weights of half the edges around the lower vertex (of the pyramid,
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or of the dimer model) acquire infinitely large, positive powers of q and cease to contribute

to the partition function. Likewise for half the edges around the upper vertex. Therefore,

the only dimer partitions around these vertices that can contribute to the length-infinity

partition function involve dimers on edges of the brick-like lattices of Figure 3.9. These

brick-like lattices, however, are equivalent to hexagonal dimer lattices, which correspond to

the three-dimensional cubic partitions that arise in the topological vertex.

~

q2

q1

(q1q2)1/2

q2

q1
(q1q2)1/2

λ=(3,1)

λt=(2,1,1)

Figure 3.10: The map between the length-infinity dimer model and a pair of topological

vertices. (The extra q1 and q2 notations are for the refined case in Section 3.4.)

As argued more carefully in [76], any (nontrivial) configuration of the length-infinity

dimer model can be constructed via a series of moves that amount to 1) cutting out a Young

diagram λ simultaneously from the upper and lower vertices, 2) stacking up individual boxes

to form a cubic partition π−λ around the lower vertex, and 3) stacking up boxes to form

a partition π+
λ around the upper vertex. An example of such a dimer configuration and

its corresponding topological vertex partitions is shown in Figure 3.10. By observing how

dimers shift in these three steps and using our n → ∞ weighting, it is not too hard to
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see that the contributions to the partition function are (−Q)|λ|q
1
2
||λ||2q

1
2
||λt||2 from step (1),

q|π
−
λ | from step (2), and q|π

+

λt | from step (3).6 Therefore, the total partition function is

w∞(Θ(∞)) =
∑

λ

∑
π+

λt , π−λ

(−Q)|λ|q
1
2
||λ||2+ 1

2
||λt||2q|π

+

λt |+|π
−
λ | , (3.3.12)

which is precisely the topological vertex expression for the (unreduced) partition function

of the conifold [24, 25]. In terms of Schur functions, the generating function for three-

dimensional cubic partitions with a single nontrivial asymptotic boundary condition λ

is
∑

πλ
q|πλ| = M(q) q−

1
2
||λ||2sλt(q−ρ) = M(q) q−

1
2
||λ||2sλt(q1/2, q3/2, q5/2, ...). Thus, as ex-

pected,

w∞(Θ(∞)) = Z(q,Q;C∞)

= M(q)2
∑

λ

(−Q)λsλ(q−ρ)sλt(q−ρ) (3.3.13)

= M(q)2
∞∏

j,k=1

(1− qj−1/2qk−1/2Q) (3.3.14)

= M(q)2
∞∏

j=1

(1− qjQ)j .

3.4 Refined crystals

We finally come to the crystal-melting models for refined invariants. We will first de-

scribe the models that compute the refined partition functions in all chambers Cn and C̃n

for the conifold. Then, generalizing Section 3.3, we will prove the formulas in chambers

Cn by showing that a refined version of dimer shuffling leads to refined wall crossing. We

also show that as n→∞ refined pyramid partitions reduce to a pair of refined topological

vertices.

At the level of crystal models, one must draw a series of diagonals on the pyramid

partition, and interpolate weights between the variable q1 on one side of the diagonals and

q2 on the other. To be more specific, consider the pyramid of length n = 1, corresponding

to the Szendröi chamber C1. On this crystal model, we draw a single diagonal as shown in
6We use conventional notation for Young diagrams and three-dimensional cubic partitions; λt is

the transpose of the diagram λ, the rows of λ have lengths λi, |λ| =
∑
λi is the number of boxes in

λ, ||λ||2 =
∑
λ2

i , and |π| is the number of boxes in a three-dimensional partition.
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Figure 3.11; we assign white atoms above the diagonal a weight q+w , white atoms below the

diagonal a weight q−w , and white atoms on the diagonal itself a weight (q+wq
−
w )1/2. All black

atoms are assigned weight qb. Letting w+
w (π), w−w (π), and w0

w(π) be the numbers of white

atoms above, below, and on the diagonal, respectively, in the partition π, and identifying

q+w = −q1Q−1, q−w = −q2Q−1, and qb = −Q, we find

Z(q+w , q
−
w , q

b;C1) =
∑
π

(q+w )w+
w(π)(q−w )w−w (π)(q+wq

−
w )

1
2
w0

w(π)q
wb(π)
b

= Zref (q1, q2, Q;C1) (3.4.1)

= M(q1, q2)2
∞∏

i,j=1

(1− qi− 1
2

1 q
j− 1

2
2 Q)(1− qi− 1

2
1 q

j− 1
2

2 Q−1) .

qw

qb

(qwqw)1/2

qw
-

+

+

-

Figure 3.11: Weights of atoms for the refined partition function in chamber C1.

To generalize to the length-n pyramid, we draw n diagonals, as in the left half of Figure

3.12. It is more natural to work directly in terms of the variables q1, q2, and Q. We

assign weights −qn
1Q
−1 (resp. −q−(n−1)

1 Q) to the white (resp. black) atoms above all the

diagonals and weights −qn
2Q
−1 (resp. −q−(n−1)

2 Q) to the white (resp. black) atoms below

all the diagonals. The diagonals themselves intersect white atoms; we assign the same

weight to all the white atoms on a single diagonal, interpolating between −qn− 1
2

1 q
1
2
2 Q
−1

on the uppermost diagonal and −q
1
2
1 q

n− 1
2

2 Q−1 on the lowermost (multiplying by q11q
−1
2 in

each intermediate step). Similarly, black atoms lie between diagonals, and we assign them

weights ranging from −q−n+ 3
2

1 q
− 1

2
2 Q directly below the upper diagonal to −q−

1
2

1 q
−n+ 3

2
2 Q

directly above the lower diagonal. Multiplying together the weights of all atoms removed in
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a given partition π and summing these quantities over partitions, we obtain the expected

Zref (q1, q2, Q;Cn) = M(q1, q2)2
∞∏

i,j=1

(1− qi− 1
2

1 q
j− 1

2
2 Q)

∏
i≥1, j≥1
i+j>n

(1− qi− 1
2

1 q
j− 1

2
2 Q−1) . (3.4.2)
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Figure 3.12: Refined weights of atoms for chambers Cn and C̃n, with n = 3.

For chambers C̃n, the finite pyramid of length n can also be split by n diagonals, as

shown in the right half of Figure 3.12. If one assigns weights such that (1) when q1 → q

and q2 → q white atoms have weight −qnQ and black atoms have weight −q−(n+1)Q−1; (2)

when moving up one step, either on or inbetween diagonals, the absolute value of the power

of q2 (resp. q1) decreases (resp. increases) by 1; and (3) the assignment is symmetric about

the middle diagonal(s) of the crystal, the resulting partition function is precisely

Zref (q1, q2, Q; C̃n) = M(q1, q2)2
∏

i≥1, j≥1
i+j≤n+1

(1− qi− 1
2

1 q
j− 1

2
2 Q) .

For the remainder of the section we return to the infinite pyramid of length n, gener-

alizing the previous unrefined discussion to refine the connection between shuffling, wall

crossing, and the refined topological vertex (and to prove formula (3.4.2)). We first observe

that in order to equate refined pyramid partitions and their weights with states (configura-

tions) of a dimer lattice, we can use almost the same n-dependent weighting described in

Figure 3.7. Now, for positive integers a, the horizontal edges 2a−1 units above and 2a units

below the lower diagonal are assigned weights q(2a−1)/2
1 (−Q)−1/2 and q

−(2a−1)/2
2 (−Q)−1/2,
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respectively. Likewise the horizontal edges 2a−1 units below and 2a units above the upper

diagonal are assigned weights q(2a−1)/2
2 (−Q)−1/2 and q

−(2a−1)/2
1 (−Q)−1/2. See the example

in Figure 3.13.
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Figure 3.13: Refined weighting of the length-n dimer, for n = 2.

As in the unrefined case, the weights of dimers which are not part of deleted odd or even

blocks do not change during dimer shuffling S̃, due to our n-dependent weighting. In order

to understand the behavior of the deleted blocks, we observe that the shuffling S̃ removes

exactly one (deleted) odd block from each of the n diagonals of a dimer configuration of

length n. Moreover, the remaining (deleted) odd blocks are mapped to deleted even blocks

with exactly the same weights — if (for instance) they were above all the diagonals, then

they remain above all the diagonals. These statements can be proved with careful counting

arguments, considering the number of dimers on and around each diagonal in an arbitrary

configuration before and after shuffling. The result is that when the actual shuffling S maps

a formal sum of states π agreeing with a fixed odd-deleted state π̃ on all but their odd blocks

to a formal sum of states agreeing on all but their even blocks, the weight of this formal

sum changes by exactly
∏

i+j=n+1(1− qi− 1
2

1 q
j− 1

2
2 Q−1); therefore,

wn(Θ(n)) =
∏

i≥1, j≥1
i+j=n+1

(1− qi− 1
2

1 q
j− 1

2
2 Q−1) · wn+1(Θ(n+1)) . (3.4.3)

This, of course, is the refined wall-crossing formula for chambers Cn.
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The crystal-melting or dimer partition function of length n can now be written as

wn(Θ(n)) =
∞∏

i,j=1

(1− qi− 1
2

1 q
j− 1

2
2 Q−1) · w∞(Θ(∞)) . (3.4.4)

The last term, w∞(Θ(∞)), is obtained from a slightly modified version of the refined topo-

logical vertex of [26]. To see this, observe that as n → ∞ the neighborhoods of the upper

and lower vertices of the dimer lattice still reduce to effective brick-like lattices, now shown

in Figure 3.14. In terms of three-dimensional cubic partitions, states of the length-infinity

dimer are again created by 1) cutting out a Young diagram λ simultaneously from the upper

and lower vertices, 2) stacking up individual boxes to form a cubic partition π−λ around the

lower vertex, and 3) stacking up boxes to form a partition π+
λ around the upper vertex. The

creation of the Young diagram λ comes with a fairly simple weight (−Q)|λ|q
1
2
||λ||2

1 q
1
2
||λt||2

2 .

However, both the upper and lower “room corners” are now split along a diagonal, as shown

in Figure 3.10. In the case of the lower corner, boxes stacked below the diagonal come with
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Figure 3.14: Neighborhoods of the refined upper and lower vertices as n→∞.

weight q2, those above the diagonal with weight q1, and those that the diagonal intersects

have weight (q1q2)
1
2 . The situation is reversed for the upper vertex. The generating function

for such three-dimensional cubic partitions with one asymptotic boundary condition λ is

(for example, at the lower vertex)

∑
πλ

q
|πλ|(q1)

1 q
|πλ|(q2)

2 (q1q2)
1
2
|πλ|(0) = M(q1, q2) q

− 1
2
||λt||2

2 sλ(q−ρ
2 ) , (3.4.5)

with M(q1, q2) =
∏∞

i,j=1(1− qi− 1
2

1 q
j− 1

2
2 )−1. Therefore, the length-infinity pyramid partition
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function is

w∞(Θ(∞)) =
∑

λ

∑
π+

λt ,π−λ

(−Q)|λ| q
1
2
||λ||2

1 q
1
2
||λt||2

2

× q|π
−
λ |

(q1)

1 q
|π−λ |

(q2)

2 (q1q2)
1
2
|π−λ |

(0)
q
|π+

λt |(q2)

2 q
|π+

λt |(q1)

1 (q1q2)
1
2
|π+

λt |(0)

= M(q1, q2)2
∑

λ

(−Q)|λ|sλ(q−ρ
2 )sλt(q−ρ

1 )

= M(q1, q2)2
∞∏

i,j=1

(1− qi− 1
2

1 q
j− 1

2
2 Q) . (3.4.6)

Note that expression (3.4.5) differs very slightly from the refined topological vertex used

in [26] (with the boundary condition λ placed along an “unpreferred” direction). The dif-

ference comes from our symmetric choice of normalization, as discussed in Section 3.1. In

[26] the diagonal is assigned to q2 rather than (q1q2)
1
2 , resulting in the fact that the refined

MacMahon function appearing in the analogue of (3.4.5) is not M(q1, q2) =
∏∞

i,j=1(1 −

q
i− 1

2
1 q

j− 1
2

2 )−1, but rather M−1(q1, q2) =
∏
i, j = 1∞(1 − qi−1

1 qj
2)−1 (cf. (3.1.23)). The re-

fined A-model (Gromov-Witten/Gopakumar-Vafa) partition functions calculated with the

refined vertex are always normalized by the prefactor M(q1, q2)χ(X), so in many previous

calculations this has made no difference.



Chapter 4

Refined = Motivic

Despite its obvious conceptual advantages, the direct interpretation of HBPS as the coho-

mology of a moduli space of D-branes or representations of a quiver discussed in Section

2.3 does not generally work. Thinking in terms of quiver representations, and even putting

aside the issue of noncompact moduli spaces (working, for example, with nice rigid noncom-

pact toric Calabi-Yau’s), the general problem is that the moduli spaces M(γ) are highly

singular. In particular, M(γ) is defined as the quotient of an algebraic variety by a “gauge

group”
∏

iGL(ni), so it is mathematically a moduli stack (not a variety). It is often not

clear how to compute its cohomology, or even its Euler characteristic.

Kontsevich and Soibelman address this problem in both unrefined and (we argue) refined

cases in [15]. They work with quiver descriptions of Calabi-Yau’s and D-branes, using

a stability condition very similar to Π-stability1 to define generalized Donaldson-Thomas

invariants. These invariants should reproduce physical BPS indices Ω(γ; t∞) in all chambers

of Kähler moduli spaceMV , in a type IIA duality frame. In [34], it was proven that this is

indeed the case in a rigid limit of 4-dimensional supergravity.

Kontsevich and Soibelman also define a “q-deformed” version of the generalized Donaldson-

Thomas invariants: the motivic Donaldson-Thomas invariants. They essentially use motivic

integration as a well-defined alternative to calculating the cohomology of moduli spaces.

Note, however, that motivic integration can be thought of (from one point of view) as

cutting up a space into copies of the noncompact affine line L, the affine plane L2, the
1I.e. a stability condition based on comparing arguments of central charges of states, also similar

to Denef stability (2.2.1).
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affine space L3, etc. The motivic DT invariants are functions of L1/2, the square root of

the motive of the affine line. One can also use the Schur functor to pass from motivic to

“quantum” invariants, replacing L1/2 with the quantum variable −q1/2. As q1/2 → −1, the

motivic invariants reduce to the classical generalized Donaldson-Thomas invariants. Our

main conjecture is that motivic DT invariants are equivalent to refined invariants in any

chamber of moduli space, with

L1/2 ←→ −q1/2 ←→ y . (4.0.1)

Why should this be true? Besides the potentially naive fact that both motivic and

refined invariants are fairly natural deformations of the classical BPS indices/invariants, we

will argue in this chapter that motivic and refined invariants have identical wall crossing

behavior. In Section 4.1, we will review the classical and motivic wall-crossing formulas

from [15], and then show in Section 4.2 that motivic wall crossing implies primitive and

semi-primitive refined wall crossing. In Section 4.3, we will provide several very explicit

examples of the equivalence between refined and motivic invariants in the context of SU(2)

Seiberg-Witten theory with Nf = 0, 1, 2, 3 flavors — using geometric engineering [82] to view

Seiberg-Witten theory as a rigid limit of string theory compactified on a local Calabi-Yau.

The results of this chapter are based on work in [1, 2].

There also exists direct evidence for the equivalence of refined and motivic invariants

coming from knot theory and the interpretation of knot homologies via BPS invariants of

Calabi-Yau threefolds, as in [29, 30]. In [83], motivic invariants were related to knot Floer

homology. We hope to investigate the motivic nature of knot homologies further in the

future.

4.1 Classical and motivic KS wall crossing

We begin by reviewing the classical (or unrefined) and motivic wall-crossing formulas of

Kontsevich and Soibelman [15]. In the classical case, we borrow some of the notation and

formalism of [34].
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Classical

The classical wall-crossing formula generalizes both the primitive (2.2.6) and semiprim-

itive (2.2.12) cases derived physically in Section 2.2. It encodes the degeneracies of BPS

states in a given chamber of moduli space MV in terms of a non-commuting product of

symplectomorphisms acting on a complexified charge lattice.

Specifically, let Γ be the lattice of D-brane charges (as above), let Γ∨ be its dual, and

let

TΓ = Γ∨ ⊗ C∗ (4.1.1)

be an r-dimensional complex torus, where r is the rank of Γ. One can define functions Xγ on

this complex torus corresponding to any γ ∈ Γ, acting as Xγ :
∑
Caγ

∨
a 7→ exp

∑
Caγ

∨
a (γ).

These satisfy XγXγ′ = Xγ+γ′ , and if {γi} is any basis of Γ, the corresponding Xi = Xγi

will be coordinates on TΓ. The complex torus can moreover be endowed with a natural

symplectic structure

ω =
1
2
〈γi, γj〉−1 dXi

Xi
∧ dXj

Xj
, (4.1.2)

where 〈γi, γj〉−1 is the inverse of the intersection form on Γ (in any chosen basis).

Under this symplectic structure, the family of maps {Uγ}γ∈Γ,

TΓ → TΓ

Uγ : Xγ′ 7→ Xγ′(1− σ(γ)Xγ)〈γ
′,γ〉 . (4.1.3)

are classical symplectomorphisms. The coefficient σ(γ) is just a sign ±1; choosing an

electric-magnetic duality frame (or symplectic splitting)2 for Γ and writing γ = γe + γm,

this coefficient equals (−1)〈γe,γm〉. If one defines vector fields eγ to be the infinitesimal

symplectomorphisms generated by the Hamiltonians σ(γ)Xγ , then the eγ ’s generate a Lie

algebra with relations

[eγ1 , eγ2 ] = (−1)〈γ1,γ2〉〈γ1, γ2〉eγ1+γ2 , (4.1.4)

and the symplectomorphism Uγ can be expressed as

Uγ = exp Li2(eγ) . (4.1.5)
2Technically, one needs to take the charge lattice Γ and the corresponding torus TΓ to be fibered

over the moduli space MV , and an electric-magnetic split only works locally. However, this issue is

relatively unimportant for the present discussion — it would only be relevant if one were interested

in crossing walls all the way around a singularity in MV . See [15] and [34] for further discussion.
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Here, Li2(x) =
∑∞

n=1
xn

n2 is the classical Euler dilogarithm function.

Now, for a given Calabi-Yau, a point t (i.e. t∞) in Kähler moduli space MV , and

a ray in the charge lattice generated by a primitive charge γ, one forms the composite

symplectomorphism

Aγ(t) =
∏

γ′∈ray

U
Ω(γ′;t)
γ′ =

∏
k≥1

U
Ω(kγ;t)
kγ . (4.1.6)

The BPS indices Ω(γ; t) are exactly as in (2.1.27), and this product is over all stable BPS

states in the ray (otherwise Ω(γ; t) obviously vanishes). Notice that Udγ and Ud′γ commute

for any d, d′. The statement of wall crossing is that the product over all rays of states whose

central charges become aligned at a wall of marginal stability,

A(t) =
y∏

rays γ

Aγ(t) =
y∏

states γ′

U
Ω(γ′;t)
γ′ , (4.1.7)

taken in order of increasing phase of the central charge Z(γ, t), is the same on both sides of

the wall.3 In other words, going from t = t+ on one side of the wall to t = t− on the other,

both the BPS indices and the ordering will change but the overall product will remain the

same:
y∏
γ

U
Ω(γ′,t+)
γ′ =

y∏
γ′

U
Ω(γ,t−)
γ′ . (4.1.8)

Motivic

To simplify the description of motivic invariants, we use the Serre functor to pass from

the motive L1/2 to the quantum variable −q1/2, as explained in [15]. The motivic DT

invariants can then be defined as automorphisms of a quantum torus.

The quantum torus T̂Γ in question is simply the quantization of (4.1.1), using the

symplectic structure (4.1.2). The Lie algebra (4.1.4) is q-deformed to an associative algebra

generated by operators {êγ}γ∈Γ, such that

êγ1 êγ2 = q
1
2
〈γ1,γ2〉 êγ1+γ2 (4.1.9)

and ê0 = 1. In particular, these generators obey the commutation relations

[êγ1 , êγ2 ] =
(
q

1
2
〈γ1,γ2〉 − q−

1
2
〈γ1,γ2〉

)
êγ1+γ2 . (4.1.10)

3Being more careful, one must make a choice of “particles” vs. “antiparticles” and only include

the former in this product; so exactly half the rays that align really contribute. This will become

clear in the examples of Sections 4.2 and 4.3.
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In the “classical limit” q1/2 → −1, one finds that

lim
q1/2→−1

(q − 1)−1
(
q

1
2
〈γ1,γ2〉 − q−

1
2
〈γ1,γ2〉

)
= (−1)〈γ1,γ2〉〈γ1, γ2〉 , (4.1.11)

so that the elements

eγ := lim
q1/2→−1

êγ
q − 1

. (4.1.12)

satisfy (4.1.4).

In the original work of Kontsevich and Soibelman, the motivic DT invariants were

composite operators Aγ(t) associated to entire rays. These operators had Taylor expansions

Aγ(t) = 1 +
Ωmot(γ; t; q)
q1/2 − q−1/2

êγ +
( )

ê2γ + . . . , (4.1.13)

with coefficients given by motivic integrals. It has since become clear, however, that these

operators have a factorization property just as in the classical case, cf. [84, 2]. We shall see

that physically, this factorization is both necessary and natural. As in [15], let us introduce

the quantum dilogarithm function

E(x) =
∞∑

n=0

(
− q

1
2x
)n

(1− q) . . . (1− qn)
, (4.1.14)

and define operators

Uγ(êγ) = E(êγ) . (4.1.15)

Then, for a ray of BPS states in Γ generated by a charge γ, we have

Aγ(t) =
∏

γ′∈ ray

∏
n∈Z

Uγ′
(
(−q1/2)nêγ′

)(−1)nΩmot
n (γ′;t)

. (4.1.16)

=
∏
k≥1

∏
n∈Z

Ukγ

(
(−q1/2)nê k

γ

)(−1)nΩmot
n (kγ;t)

. (4.1.17)

for (positive) integral motivic invariants Ωmot
n (γ; t). Of course, we want to claim that

Ωmot
n (γ; t) = Ωn(γ; t) as defined in (2.1.31).

The statement of motivic wall crossing is that the product over all rays of states whose

central charges become aligned at a wall of marginal stability,

A(t) =
y∏

rays γ

Aγ(t) =
y∏

states γ′

∏
n∈Z

Uγ′
(
(−q1/2)nêγ′

)(−1)nΩmot
n (γ′;t)

, (4.1.18)

taking the product in order of increasing phase of central charges, is constant as the wall is

crossed. Or, as in (4.1.8),

y∏
states γ′

∏
n∈Z

Uγ′
(
(−q1/2)nêγ′

)(−1)nΩmot
n (γ′;t+) =

y∏
states γ′

∏
n∈Z

Uγ′
(
(−q1/2)nêγ′

)(−1)nΩmot
n (γ′;t−)

.

(4.1.19)
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Note that the operators Uγ and their products generate q-deformed symplectomorphisms

on the quantum torus with coordinates {êγ} via the conjugation action Ad Uγ .

The quantum dilogarithm will be of central importance in Part II of this thesis, and we

will examine many of its properties further in Section 8.3. For now, however, let us note

that in the classical limit q1/2 → −1 it has the asymptotic expansion

E(x) = exp
(
− 1

2~
Li2(x) +

x~
12(1− x)

+ . . .

)
(4.1.20)

where q1/2 = −e~, thereby relating (conjugation by) Uγ with the classical Uγ . Moreover,

the function obeys a fundamental “pentagon” identity

E(x1)E(x2) = E(x2)E(x12)E(x1) (4.1.21)

when x1x2 = qx2x1 and x12 = q−1/2x1x2 = q1/2x2x1. This will provide the simplest example

of motivic/refined wall crossing in Section 4.2. Finally, it will be useful to note that there

exists an infinite product expansion

E(x) =
∞∏

r=0

(1 + qr+ 1
2x)−1 , (4.1.22)

equivalent to the sum (4.1.14).

4.2 Refined = Motivic

We now show that the motivic wall-crossing formula (4.1.19) is equivalent to the refined

physical formulas (2.2.7)-(2.2.13) in primitive and semi-primitive cases, with −q1/2 = y .

Since the motivic formula reduces to the classical formula (4.1.8) in the limit q1/2 → −1,

this also constitutes an alternative proof that the classical KS formula agrees with unrefined

physical wall crossing. The primitive and semi-primitive arguments given here appear in

our work [1, 2].

Warmup

We begin with the pentagon identity (4.1.21). This can be interpreted as crossing a wall

where two primitive hypermultiplets with charges γ1 and γ2, satisfying

〈γ1, γ2〉 = 1 (4.2.1)
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form a bound state. The corresponding local quiver for this wall is shown in Figure 4.1.

Since êγ1 êγ2 = q êγ1 êγ2 , the pentagon identity implies a wall-crossing formula

Uγ1(êγ1) Uγ2(êγ2) = Uγ2(êγ2) Uγ1+γ2(êγ1+γ2) Uγ1(êγ1) . (4.2.2)

Since these two products are taken in order of increasing argument of the central charge,

this predicts that the bound state of charge γ1 + γ2 is stable on the side of the wall where

argZ(γ2) < argZ(γ1), which is equivalent to the Denef stability condition (2.2.1). More-

over, this formula predicts that the bound state will also be a hypermultiplet, since the

refined index for a hypermultiplet is Ωref (γ; t; y) =
∑

n Ωny
n = 1 (and all exponents here

are 1); this is in agreement with primitive wall crossing (2.2.7).

K1

W=0

t- t+

Z(γ1) Z(γ1)

Z(γ2) Z(γ2)

Z(γ1+γ2)

Figure 4.1: Left: the K1 quiver. Right: the BPS rays of states γ1, γ2, and γ1 + γ2 in the

central charge plane for stable (t+) and unstable (t−) values of moduli.

Note that only states whose central charges actually align at a wall enter the KS wall-

crossing formulas.4 Generically, the charges of these states lie on a 2-dimensional sublattice

of Γ. In the present simple example, this sublattice is generated by charges γ1 and γ2.

Primitive wall crossing

The pentagon-identity example can easily be generalized to an arbitrary primitive wall

crossing. Again, we want to consider two states of charges γ1 and γ2 forming a bound state
4One could consider other states too, but their corresponding operators would just appear at one

side or the other of the product
∏

Uγ and their order would not change.
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as a wall is crossed, but now 〈γ1, γ2〉 can be an arbitrary integer. WLOG, we assume

〈γ1, γ2〉 = I12 > 0 . (4.2.3)

Then the motivic wall-crossing formula looks like

Aγ1(t−) Aγ1+γ2(t−) Aγ2(t−) = Aγ2(t+) Aγ1+γ2(t+) Aγ1(t+) . (4.2.4)

We expect that argZ(γ1) < argZ(γ2) on the unstable side of the wall, and so label the LHS

of the above formula with the parameter t−. Let us also assume that the primitive states

of charges γ1 and γ2 are stable across the wall, so that

Aγ1(t−) = Aγ1(t+) = Aγ1(tms) ,

Aγ2(t−) = Aγ2(t+) = Aγ2(tms) .

The key to understanding this wall-crossing formula (and, indeed, any motivic wall-

crossing formula) is to observe that the associative algebra A generated by êγ1 and êγ2

with

êγ1 êγ2 = qI12/2êγ1+γ2 = qI12 êγ2 êγ1 (4.2.5)

has filtrations of the form

{1} ⊂ A1,0 ⊂ A1,1 ⊂ A2,1 ⊂ . . . ⊂ A∞,∞ = A , (4.2.6)

where at level Am,n one includes q-polynomials in êγ1 and êγ2 of degrees no more than m

and n, respectively. For practical purposes, this means that we can consistently expand

a formula like (4.2.4) as a series in êγ1 and êγ2 , keeping any degree we want in these two

generators. After commuting all products êm
′

γ1
ên
′

γ2
in a uniform manner, we can relate the

indices Ωmot
n (γ; t) on both sides by simply equating coefficients of like powers.

In this case, let us define

Ωmot(γ; t; q) =
∑
n∈Z

(−q1/2)nΩmot
n (γ; t) , (4.2.7)

in analogy to (2.1.31) in the refined case. It is then fairly clear from (4.1.14)-(4.1.17) that

for a primitive ray, such that only k = 1 contributes to (4.1.17), we have

Aγ(t) = 1 +
Ωmot(γ; t; q)
q1/2 − q−1/2

êγ + . . . . (4.2.8)
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Substituting this for γ = γ1, γ2, γ1 + γ2 on the two sides of (4.2.4) and keeping only terms

of first order in êγ1 and êγ2 , we find that the coefficients of 1, êγ1 , and êγ2 agree trivially,

whereas the terms of order êγ1 êγ2 are

Ωmot(γ1; tms; q)Ωmot(γ2; tms; q)
(q1/2 − q−1/2)2

êγ1 êγ2 +
Ωmot(γ1 + γ2; t−; q)

q1/2 − q−1/2
êγ1+γ2

=
Ωmot(γ1; tms; q)Ωmot(γ2; tms; q)

(q1/2 − q−1/2)2
êγ2 êγ1 +

Ωmot(γ1 + γ2; t+; q)
q1/2 − q−1/2

êγ1+γ2 (4.2.9)

Using the commutation relations (4.2.5) to (say) push êγ2 all the way to the left in each

term, this immediately implies that

∆Ωmot(γ1 + γ2; t− → t+; q) = −q
I12/2 − q−I12/2

q1/2 − q−1/2
Ωmot(γ1; tms; q) Ωmot(γ2; tms; q) , (4.2.10)

which is equivalent to the refined primitive formula (2.2.7) upon identifying Ωmot(γ; t; q) =

Ωref (γ; t; y). We can write the prefactor in (4.2.10) as the quantum dimension [I12]q1/2 .

Semi-primitive wall crossing

To obtain the refined semi-primitive formula (2.2.13), suppose again that states with

primitive charges γ1 and γ2, satisfying 〈γ1, γ2〉 = I12 ≥ 0, bind as a wall is crossed at

t = tms. This time, however, consider bound states of all charges γ1 + Nγ2 with N ≥ 1.5

Also assume, for simplicity, that no states of charge γ1 +Nγ2 exist in the spectrum on the

unstable side of the wall. Adding in such states is possible, and results in a derivation of

the refined version of (2.2.14) rather than (2.2.13), but it demonstrates no new features.

The resulting motivic wall-crossing formula must take the form

Aγ1(t−) Aγ2(t−) = Aγ2(t+)× · · ·Aγ1+3γ2(t+) Aγ1+2γ2(t+) Aγ1+γ2(t+) Aγ1(t+) . (4.2.11)

As in the primitive case, we assume that

Aγ1(t−) = Aγ1(t+) = Aγ1(tms) ,

Aγ2(t−) = Aγ2(t+) = Aγ2(tms) ,

5Note that it is not physically possible to have both γ1 + Nγ2 and γ1 − Nγ2 bound states. We

choose one or the other, and for KS formulas the choices are related by the particle-antiparticle split

of the charge lattice.
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and will suppress the parameter t in these operators. We want to expand each operator,

keeping first-order terms in êγ1 and all orders in êγ2 . In fact, êγ2 shall become the generating

function variable x. We have:

Aγ1 = 1 +
Ωmot(γ1; q)
q1/2 − q−1/2

êγ1 + . . . , (4.2.12)

and
←∏

N≥0

Aγ1+Nγ2(t+) = 1 +
∞∑

N=0

Ωmot(γ1 +Nγ2; t+; q)
q1/2 − q−1/2

êγ1+Nγ2 + . . .

= 1 +
∞∑

N=0

Ωmot(γ1 +Nγ2; t+; q)
q1/2 − q−1/2

q
NI12

2 êNγ2
êγ1 + . . . . (4.2.13)

For Aγ2 , we keep all k terms in (4.1.17) and use the infinite product formula (4.1.22) to

write

Aγ2 =
∞∏

k=1

∏
n∈Z

E
(
(−q1/2)nê k

γ2

)Ωmot
n (kγ2)

. (4.2.14)

Now, observe that for any two charges γ, η with I = 〈γ, η〉 > 0, the quantum dilogarithm

satisfies the commutation relation

êγ E(êη) = êγ

∞∏
r=0

(1 + qr+ 1
2 êη)−1 =

∞∏
r=0

(1 + qr+ 1
2
+I êη)−1êγ =

[ I−1∏
r=0

(1 + qr+ 1
2 êη)

]
E(êη) êγ ,

and similarly for any q-shifted versions of its argument êη. Therefore, the LHS of (4.2.11)

can be written as

LHS :
(

1 +
Ωmot(γ1; q)

q
1
2 − q−

1
2

êγ1 + ...

)
Aγ2

= Aγ2

(
1 +

Ωmot(γ1; q)

q
1
2 − q−

1
2

( ∞∏
k=1

∏
n∈Z

kI12−1∏
r=0

(
1 + (−q

1
2 )nqr+ 1

2 êkγ2

)Ωmot
n (kγ2)

)
êγ1 + ...

)
,

and the RHS as

RHS : Aγ2

(
1 +

1

q
1
2 − q−

1
2

∞∑
N=0

Ωmot(γ1 +Nγ2; t+; q)q
NI12

2 êNγ2
êγ1 + ...

)
.

Setting these two sides equal and matching the coefficients of êγ1 leads to

∞∑
N=0

Ωmot(γ1 +Nγ2; t+; q)xN = Ωmot(γ1; q)
∞∏

k=1

∏
n∈Z

kI12−1∏
r=0

(
1 + (−q

1
2 )nqr+ 1

2
− I12

2 xk
)Ωmot

n (kγ2)
,

(4.2.15)

where

x = q
I12
2 êγ2 . (4.2.16)
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After a shift in the product in r and the identifications −q1/2 = y and Ωmot = Ωref , formula

(4.2.15) becomes identical to the refined semi-primitive wall-crossing formula (2.2.13).

The careful reader may have wondered why it was consistent to simply declare that

there were no γ1 + Nγ2 states (with N ≥ 2) when deriving the primitive wall-crossing

formula earlier in this section. The answer should now be clear: the primitive formula

(4.2.4) can simply be though of as the part of the semi-primitive formula (4.2.11) that is

at most first-order in êγ2 . (Or, more properly, this would be true had we added γ1 + Nγ2

states to the unstable side of the semi-primitive formula.) So there could have been higher

γ1 + Nγ2 states in the primitive formula, but we would not have seen them at first order.

Likewise, the semi-primitive formula is best thought of as a consistent truncation of the full

wall-crossing formula, in a theory with all possible combinations of bound BPS states.

4.3 Examples: SU(2) Seiberg-Witten theory

In this final section, we provide several examples of semi-primitive and non-semi-primitive(!)

refined/motivic wall crossing using 4-dimensional N = 2 gauge theory with gauge group

SU(2) and Nf < 4 flavors of fundamental matter [85, 86]. We first begin with a review

of geometric engineering of these theories and their physical moduli spaces and spectra. A

much more thorough analysis of physical and motivic wall crossing in N = 2 gauge theory

is found in [2].

Gauge theory via string compactification

The construction of 4-dimensional N = 2 gauge theories in the context of string theory

compactifications has come to be known as geometric engineering [82]. To obtain SU(N)

gauge theory in a type IIA compactification, one begins with a non-compact Calabi-Yau

threefold XN that is a fibration of a 2-complex-dimensional AN−1 ADE singularity over P1.

This geometry can arise from a compact K3 fibration over P1 — dual to heterotic string

theory on K3× T 2 [87] — in the limit of K3 moduli space where the K3 fibers develop an

AN−1 singularity and all Kähler moduli not associated with the singularity become large.

This results in an SU(N) supergravity theory. As the ADE singularity is blown up it
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turns into a string of N − 1 P1’s fibered over the base P1, whose sizes correspond to the

eigenvalues of the scalar Higgs field of the SU(N) vector multiplet, and break the gauge

group generically to U(1)N−1. To decouple gravity while keeping the W -boson masses and

the four-dimensional gauge coupling constant, one takes the size of the base P1 to infinity

and the overall size of the fiber P1’s to zero [82]. This finally produces N = 2 SU(N)

super-Yang-Mills theory on the Coulomb branch.

The resolved local Calabi-Yau XN has 2N compact even-dimensional cycles. Of these,

2N−2 survive the rigid limit and generate the lattice of electric and magnetic charges in the

gauge theory. For example, for SU(2) theory, X2 can simply be taken as the total space of

the canonical line bundle over P1
(fiber)×P1

(base). The dimensions of its compact homology are

(b0, b2, b4, b6) = (1, 2, 1, 0). Electric charges, such as the charge of the W -boson, correspond

to D2 branes wrapped on the fiber P1, while magnetic charges of solitons correspond to

D4 branes wrapped on the entire P1 × P1, cf. [71]. The low-energy theory of the D-branes

and the resulting BPS states in the gauge theory can be described by representations of a

“subquiver” of the quiver of the Calabi-Yau. In the case of pure SU(2) theory, it is the K2

Krönecker quiver of Figure 4.2 [71, 88].

K2

W=0

Figure 4.2: The K2 Krönecker quiver.

To add matter to the SU(N) theories, similar local Calabi-Yau’s with extra base P1’s

can be used [89, 90]. The states of the gauge theory are still described by a 2N−2 sublattice

of independent D-brane charges, but the relevant quivers are somewhat more complicated.

Note that there exist type IIB mirrors of these IIA compactifications that encode the

Seiberg-Witten curves and the electric-magnetic duality of the gauge theories in a much

more explicit manner — though we are less interested in them here because we seek a

direct connection with the IIA formalism of Kontsevich-Soibelman. The mirrors of the

noncompact Calabi-Yau’s XN ’s are given by equations of the form

xy = H(z, w) , (4.3.1)



75

where H(z, w) = 0 is a Riemann surface whose complex structure corresponds to the Kähler

parameters of XN . In a certain limit of the complex structure (corresponding to decoupling

supergravity from the gauge theory) this becomes the Seiberg-Witten curve [82] (see also

[63]). BPS states are given by compact D3-branes, which descend to non-critical strings on

the Riemann surface [91, 92]. It is then easy to identify which branes generate electric and

magnetic charges from the corresponding electric and magnetic cycles on the Seiberg-Witten

curve.

Moduli spaces and spectra

The moduli space of the Coulomb branch of SU(2) Seiberg-Witten theory is a limit,

or slice, of the Kähler moduli space MV for the Calabi-Yau X2 (or the corresponding

Calabi-Yau’s that include fundamental matter). This moduli space is parametrized by the

complex-valued Casimir u of the Higgs field [85, 86]. We draw its structure for theories with

Nf = 0, 1, 2, and 3 flavors of matter in Figure 4.3, following [93]. When Nf < 4, the gauge

theory is asymptotically free. The large-|u| region corresponds to weak coupling, while the

small-u region corresponds to strong coupling, and the two regions are separated by a wall

of marginal stability W. The central charge of a state with electric charge q and magnetic

charge p is given by

Z(p, q;u) = a(u)q + aD(u)p , (4.3.2)

where a(u) and aD(u) can be identified as period integrals on the Seiberg-Witten curve or,

more relevantly for us, central charges of D2 and D4 branes in X2. The wall of marginal

stability is then defined by the condition

arg a(u) = arg aD(u) , or
a(u)
aD(u)

∈ R . (4.3.3)

Since the charge lattice is two-dimensional, the central charges of all states align on W.

In each case Nf = 0, 1, 2, 3, there are magnetically-charged states that become massless

at singular points on W. The BPS spectrum at any point in the weak coupling region can

be represented in terms of single-center attractor flows that end on one of these singular

points, as well as multi-center attractor flows that split on W into sums of flows to the

singular points [16]. This leads to an infinite spectrum. In contrast, the strong-coupling
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Nf=0,2,3 Nf=1

Figure 4.3: The approximate structure of the wall of marginal stability separating weak and

strong coupling in the u-plane of Seiberg-Witten theories. We also indicate different local

regions within the strong-coupling chamber. For Nf = 0, 2, 3, there are BPS states of two

different charges that become massless at singularities in the moduli space (the dots here),

and for Nf = 1 there are three.

spectrum at points inside the wall of marginal stability is simply represented by the finite

number of single-center flows to the singularities. Note that the Coulomb branch of an

N = 2 gauge theory only possesses a global version of special geometry, as opposed to

the local special geometry of supergravity that was described in Section 2.1; nevertheless,

a simplified version of the attractor mechanism still functions and BPS states can still be

described in terms of attractor flow trees [94].

The spectra of Nf = 0, 1, 2, 3 SU(2) theories was carefully derived in [93] using field-

theory methods and global properties of the moduli space (see also [91] for an alternative

approach). The fundamental electric charge q = 1 is half the charge of the W -boson. The

weak-coupling spectra include the W±-bosons with (q, p) = ±(2, 0) and the fundamental

quarks with (q, p) = ±(1, 0). They also contain the monopole and dyons that become mass-

less at singularities on the Coulomb branch and all their conjugates under the monodromy

around u =∞ (which must be a symmetry of the weakly-coupled theory). This monodromy

acts as

M∞ : (q, p)→ (q +Nf p, p) (4.3.4)
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on the charge lattice. Altogether, one finds weak-coupling spectra

Nf = 0 : (2, 0) , (2n, 1) n ∈ Z , (4.3.5)

Nf = 1 : (2, 0) , (1, 0)2 , (n, 1) n ∈ Z , (4.3.6)

Nf = 2 : (2, 0) , (1, 0)4 , (n, 1)2 n ∈ Z , (4.3.7)

Nf = 3 : (2, 0) , (1, 0)6 , (n, 1)4 (2n+ 1, 2) , n ∈ Z . (4.3.8)

We have suppressed ± signs for antiparticles, and the subscripts here denote nontrivial

multiplicities. At strong-coupling, inside the wall of marginal stability, the spectrum has

no single canonical description, due to the nontrivial fibration of the charge lattice over the

moduli space. In some of the regions indicated in Figure 4.3, the spectra can be described

as

Nf = 0 : [R+] (2, 1) , (0, 1) [R−] (−2, 1) , (0, 1) (4.3.9)

Nf = 1 : [R0] (0, 1) , (−1, 1) , (1, 0) [R+] (2,−1) , (−1, 1) , (1, 0)

[R−] (0, 1) , (1, 1) , (1, 0) (4.3.10)

Nf = 2 : [R+] (1,−1)2 , (0, 1)2 [R−] (1, 1)2 , (0, 1)2 (4.3.11)

Nf = 3 : [R+] (−1, 2) , (1,−1)4 [R−] (−1, 2) , (0, 1)4 . (4.3.12)

It is also possible to generate the spectra from stable quiver representations. For exam-

ple, the Nf = 0 case is derived from the K2 quiver of Figure 4.2 in [71] (see also [95]). The

Nf = 1 case appears in [2].

Refined/motivic wall crossing

We now show that the above physically-determined spectra agree perfectly with motivic

wall crossing.

Consider the case Nf = 0. Let us choose a basis {γ1, γ2} of the charge lattice related to

electric and magnetic charges (q, p) by

γ1 = (1,−1) , γ2 = (0, 1) (4.3.13)

with 〈γ1, γ2〉 = 1 (this is not necessary but will be convenient later). We also choose

“particles” (as opposed to antiparticles) to have q > 0 for any p, or q = 0 and q > 0. All
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states except the W boson come in hypermultiplets, and should be represented by operators

Um,n := Emγ1+nγ2(êγ1+γ2) ∼ charge (m,n−m) (4.3.14)

in the motivic wall-crossing formula. The W -boson comes in a vector multiplet and should

be represented by an operator

Uvect
2,2 := E2γ1+2γ2(−q1/2ê2γ1+2γ2)−1 E2γ1+2γ2(−q−1/2ê2γ1+2γ2)−1 . (4.3.15)

Near the wall of marginal stability, the central charges of γ1 and γ2 coincide. Slightly away

from this wall, we either have argZ(2γ1 + γ2) < argZ(γ2) or argZ(2γ1 + γ2) > argZ(γ2).

Identifying the former with strong coupling and the latter with weak coupling, the BPS

spectra (4.3.5) and (4.3.9) (in region R−) lead to a predicted motivic wall-crossing formula

U2,1 U0,1
?= U0,1 U2,3 U4,5 U6,7 · · ·Uvect

2,2 · · ·U6,5 U4,3 U2,1 . (4.3.16)

This formula is in fact true. It can be checked algebraically, order by order in êγ1 and

êγ2 . (This is in fact one reason for our choice of basis (4.3.13) — so no negative powers of

ê’s appear, making it possible to easily truncate series at any degree.) It is also possible

to prove (4.3.16) directly by deriving motivic invariants from the K2 quiver [2]. After the

arguments in Section 4.2, it may not be too surprising that this formula works; however, in

our research it preceded the proof of refined wall crossing from motivic wall crossing, and

provided the first hint that the factorization property (4.1.16) should hold.

Using the same basis (4.3.13) and choice of particles vs. antiparticles, the BPS spectra

for Nf = 1 and Nf = 2 theories predict motivic wall-crossing formulas

Nf = 1 : U1,0 U1,1 U0,1 = U0,1 U1,2 U2,3 U3,4 · · ·U2
1,1 Uvect

2,2 · · ·U3,2 U2,1 U1,0 (4.3.17)

Nf = 2 : U2
1,0 U2

0,1 = U2
0,1 U2

1,2 U2
2,3 U2

3,4 · · ·U4
1,1 Uvect

2,2 · · ·U2
3,2 U2

2,1 U2
1,0 . (4.3.18)

With a slightly different choice of particles vs. antiparticles, the following is obtained,

Nf = 3 : U1,−1 U4
0,1 = U4

0,1 U1,3 U4
1,2 U3,5 U4

2,3 · · ·U6
1,1 Uvect

2,2 · · ·U4
2,1 U3,1 U4

1,0 U1,−1 .

(4.3.19)

Algebraically, the validity of all these formulas follows directly from the validity of (4.3.16).

They can be derived by commuting operators U1,1 through the infinite products on the

RHS using the pentagon relation; a sample proof for Nf = 1 appears at the end of this

section.
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Formulas (4.3.17), (4.3.18), and (4.3.19) correspond to the strong-coupling spectra in

regions R0, R+, and R−, respectively. This choice of regions is correlated to the choice of

split between particles and antiparticles. For example, for Nf = 1 the following formulas

also hold:

Nf = 1 [R+] : U2,1 U1,1 U−1,0 = U−1,0 U0,1 U1,2 U2,3 U3,4 · · ·U2
1,1 Uvect

2,2 · · ·U3,2 U2,1

Nf = 1 [R−] : U0,−1 U1,1 U1,2 = U1,2 U2,3 U3,4 · · ·U2
1,1 Uvect

2,2 · · ·U3,2 U2,1 U1,0 U0,−1 .

Altogether, we find that the physical derivations of refined BPS spectra agree perfectly with

mathematical motivic formulas.

Proving Nf = 0 : Nf = 1, 2, 3

The key to deriving (4.3.17), (4.3.18), (4.3.19) from (4.3.16) is to observe that all terms

on the RHS are of the form Uk,k+1 or Uk+1,k, and that, due to the pentagon identity

(4.1.21),

U1,1 Uk,k+1 = Uk,k+1 Uk+1,k+2 U1,1 , Uk+1,k U1,1 = U1,1 Uk+2,k+1 Uk+1,k . (4.3.20)

Therefore, fundamental quark operators U1,1 can be commuted through the semi-infinite

products on the RHS of (4.3.16) in pairs to obtain the other formulas. For example, for

Nf = 1 we have

U0,1 U1,2 U2,3 U3,4 U4,5 · · ·U2
1,1 Uvect

2,2 · · ·U5,4 U4,3 U3,2 U2,1 U1,0

= U1,1

[
U0,1 U2,3 U4,5 · · ·Uvect

2,2 · · ·U6,5 U4,3 U2,1

]
U1,1 U1,0

Nf=0
= U1,1

[
U2,1 U0,1

]
U1,1 U1,0

= U1,1 U2,1 U1,0 U0,1

= U1,0 U1,1 U0,1 .

The last two lines follow by further applications of the pentagon identity (4.1.21).


