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Abstract

In this thesis, we consider two main subjects: the refined BPS invariants of Calabi-Yau

threefolds, and three-dimensional Chern-Simons theory with complex gauge group. We

study the wall-crossing behavior of refined BPS invariants using a variety of techniques,

including a four-dimensional supergravity analysis, statistical-mechanical melting crystal

models, and relations to new mathematical invariants. We conjecture an equivalence be-

tween refined invariants and the motivic Donaldson-Thomas invariants of Kontsevich and

Soibelman. We then consider perturbative Chern-Simons theory with complex gauge group,

combining traditional and novel approaches to the theory (including a new state integral

model) to obtain exact results for perturbative partition functions. We thus obtain a new

class of topological invariants, which are not of finite type, defined in the background of

genuinely nonabelian flat connections. The two main topics, BPS invariants and Chern-

Simons theory, are connected at both a formal and (we believe) deeper conceptual level by

the striking central role that the quantum dilogarithm function plays in each.

This thesis is based on the publications [1, 2, 3], as well as [4] and [5], which are in

preparation. Some aspects of Chern-Simons theory appear additionally in the conference

proceedings [6]. The author’s graduate work also included [7], which is not directly related

to the present topics.
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Chapter 1

Introduction and Overview

During the past thirty years, dualities have been a cornerstone of progress in theoretical

physics, and have motivated some of the most interesting and nontrivial new relations

between physics and mathematics. Almost all such dualities have proven to have some basis

in string theory. Prominent examples include the AdS/CFT correspondence [8] and mirror

symmetry. More related to the present thesis is the Gromov-Witten/Donaldson-Thomas

correspondence [9, 10, 11, 12], which related (via M-theory) the spaces of holomorphic

maps into a Calabi-Yau threefold to the spaces of holomorphic curves on the threefold

itself. In a somewhat different context, Chern-Simons theory with compact gauge group

provided the first intrinsically three-dimensional interpretation of knot polynomials [13];

different descriptions of the theory then related the finite-type Vassiliev invariants with the

Kontsevich integral [14].

Along these lines, this thesis is about developing new connections: between physical

theories, between mathematical theories, and most importantly between physics and mathe-

matics. We will begin by studying so-called refined Bogomol’nyi-Prasad-Sommerfield (BPS)

invariants of Calabi-Yau threefolds and their wall-crossing behavior. We show that they

can be described and calculated in many ways, including via melting crystal models, and we

will conjecture that they are related to the motivic Donaldson-Thomas invariants of Kont-

sevich and Soibelman [15]. We will then turn to Chern-Simons theory with noncompact

gauge group, a theory intrinsically different from the compact Chern-Simons theory that

computes Jones polynomials. We use a multitude of approaches to understand the rela-

tion between the compact and noncompact theories, to calculate exact partition functions

1
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and new knot invariants, and to relate noncompact Chern-Simons theory to “quantum”

hyperbolic geometry.

Refined BPS invariants

The BPS invariants of a Calabi-Yau threefold X can be thought of in several different

ways. Physically, they describe the states of 1/2-BPS D-branes in type II string theory

that is compactified on a product of X and four-dimensional Minkowski space, X × R3,1.

Equivalently, the same BPS invariants describe the bound states of supersymmetric point-

like black holes in the low-energy supergravity theory on R3,1 [16]. Or, in a mathematical

setting, BPS invariants describe objects in the derived category of coherent sheaves on X

[17].

The actual Hilbert space of BPS states HBPS in any of these descriptions depends on

stability conditions, which in turn depend (say, in a type IIA duality frame) on the values

of the Kähler moduli or “size parameters” of X [16, 17, 18]. In terms of D-branes, the

stability conditions ensure roughly that a brane wraps a cycle of minimal volume, and that

it cannot decay into a sum of noninteracting branes. Since HBPS is a discrete object, it

must be locally constant as a function of moduli. However, it can jump at special values of

moduli where the stability conditions change. This happens at real codimension-1 wall in

moduli space, and is a phenomenon known as wall crossing.

To study the properties of the space HBPS , it is useful to construct well-behaved super-

symmetric indices that count its states. Often, such indices are sufficient for applications

like approximating the entropy of black holes in string theory [19]. The simplest option for

constructing an index is to observe that the Hilbert space HBPS is graded by charge — in a

string theory picture, this is the charge of the D-branes that make up various states. Then

one can define an unrefined index Ω(γ) to be the signed count of charge-γ states in HBPS .

For special values of Kähler moduli, the generating function of these unrefined indices is just

the partition function of the well-known Gromov-Witten or Donaldson-Thomas invariants

[20]. Indeed, as mentioned above, this is the context in which BPS invariants first became

important in mathematics.

The refined BPS indices that play a main role in this thesis are defined by summing

states in the Hilbert space HBPS with an extra weight (−y)2J3 that keeps track of their spin
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content. In terms of four-dimensional supergravity, this spin is just the physical S̃O(3) '

SU(2) spin of massive point-like particles. The resulting index Ωref (γ; y) retains much more

of the information in HBPS and reduces to the unrefined Ω(γ) when y → 1. Alternatively,

in situations where HBPS has a description as the cohomology of a classical D-brane moduli

space M (cf. [21]), the refined index is associated to the Poincaré polynomial of M, while

the unrefined index is its Euler characteristic.

Refined indices were first introduced in the special case of Gromov-Witten/Donaldson-

Thomas theory. They allowed topological strings (i.e. Gromov-Witten theory) to compute

equivariant instanton sums in four-dimensional gauge theory [22, 23]. For toric Calabi-Yau’s,

ordinary Gromov-Witten/Donaldson-Thomas generating functions could be calculated us-

ing the topological vertex of [24, 25], and a refined vertex was constructed to compute

the corresponding refined generating functions [26]. Moreover, using large-N duality [27]

and the relation between topological strings and compact Chern-Simons theory [28], it was

realized that the refined partition functions should be related to homological invariants of

knots (which categorify Jones, etc., polynomials) [29, 30].

All these previous applications of refined BPS invariants were restricted exclusively

to the Gromov-Witten/Donaldson-Thomas chamber of Calabi-Yau moduli space (i.e. the

special choice of moduli for which Ωref (γ) are refined Donaldson-Thomas invariants). In this

thesis, we want to move beyond Gromov-Witten/Donaldson-Thomas theory and analyze

refined BPS invariants in all chambers of Kähler moduli space, focusing in particular on

their wall-crossing behavior.

In Chapter 2, we define refined indices more carefully, and generalize the wall-crossing

formulas derived by Denef and Moore [20] from the unrefined to the refined case. There are

some important differences between unrefined and refined invariants, such as a dependence

of Ωref (γ) on complex structure (or hypermultiplet) moduli as well as the potential existence

of new walls in Kähler moduli space where Ωref (γ) could jump. We give a (non)example

of the latter in Section 2.4. In Chapter 3, we apply refined wall crossing to the resolved

conifold geometryO(−1,−1)→ P1, and derive a picture of refined generating functions in an

infinite set of chambers, analogous to an unrefined description presented by [31]. Moreover,

we relate the generating function in each chamber to a statistical melting crystal model of

refined “pyramid partitions” with varying boundary conditions, which generalize the refined

topological vertex. These models will suggested a new combinatorial interpretation of wall
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crossing in [1], which has since been extended beyond the conifold [32, 33].

In Chapter 4, we arrive at our main mathematical conjecture: that refined invariants are

equivalent to the motivic Donaldson-Thomas invariants of Kontsevich and Soibelman [15].

Kontsevich and Soibelman defined a version of Donaldson-Thomas invariants for Calabi-

Yau categories that depend on a stability condition (just like physical BPS invariants),

and obey a very general wall-crossing formula. It has previously been argued [34] that the

“classical” or unrefined versions of motivic Donaldson-Thomas invariants are equivalent to

physical unrefined BPS invariants. Motivic invariants, however, naturally depend on an

extra parameter ‘L’ or ‘q’ (the motive of the affine line), which we argue is to be identified

with the refined spin variable y. We substantiate our claim both theoretically, by matching

refined and motivic wall-crossing formulas, and with direct examples from SU(2) Seiberg-

Witten theory.

The ultimate goal of the present program would be to study not the refined indices

Ωref (γ) but the entire Hilbert space HBPS , its full dependence on all moduli, and its

homological properties. We have by now come quite close to doing this, and hope it will be

the subject of future interesting work.

Chern-Simons theory

In the second part of this thesis, we shift our focus to three-dimensional Chern-Simons

gauge theory with complex, noncompact gauge group. Chern-Simons theory is a preeminent

example of a topological quantum field theory (TQFT). By now, Chern-Simons theory with

compact gauge group G is a mature subject with a history going back to the 1980’s (see e.g.

[35, 14] for excellent reviews), and has a wide range of applications, ranging from invariants

of knots and 3-manifolds [13] on one hand, to condensed matter physics [36, 37] and to

string theory [38] on the other.

We will specifically be interested in a version of Chern-Simons gauge theory with complex

gauge group GC. Although at first it may appear merely as a variation on the subject,

the physics of this theory is qualitatively different from that of Chern-Simons theory with

compact gauge group. For example, one important difference is that to a compact Riemann

surface Σ Chern-Simons theory with compact gauge group associates a finite-dimensional

Hilbert spaceHΣ, whereas in a theory with non-compact (and, in particular, complex) gauge
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group the Hilbert space is infinite-dimensional. Due to this and other important differences

that will be explained in further detail below, Chern-Simons gauge theory with complex

gauge group remains a rather mysterious subject. The first steps toward understanding this

theory were made in [39] and, more recently, in [40, 41].

As in a theory with a compact gauge group, the classical action of Chern-Simons gauge

theory with complex gauge group GC is purely topological — that is, independent of the

metric on the underlying 3-manifold M . However, since the gauge field A (a gC-valued

1-form on M) is now complex, one can write two topological terms in the action, involving

A and Ā:

S =
t

8π

∫
M

Tr
(
A ∧ dA+

2
3
A ∧A ∧A

)
(1.0.1)

+
t̄

8π

∫
M

Tr
(
Ā ∧ dĀ+

2
3
Ā ∧ Ā ∧ Ā

)
.

Although in general the complex coefficients (“coupling constants”) t and t̄ need not be

complex conjugate to each other, they are not entirely arbitrary. Thus, if we write t = k+σ

and t̄ = k − σ, then consistency of the quantum theory requires the “level” k to be an

integer, k ∈ Z, whereas unitarity requires σ to be either real, σ ∈ R, or purely imaginary,

σ ∈ iR [39].

Given a 3-manifold M (possibly with boundary), Chern-Simons theory associates to

M a “quantum GC invariant” that we denote as Z(M). Physically, Z(M) is the partition

function of the Chern-Simons gauge theory on M , defined as a Feynman path integral

Z(M) =
∫
DA eiS (1.0.2)

with the classical action (1.0.1). Since the action (1.0.1) is independent of the choice of

metric on M , one might expect that the quantum GC invariant Z(M) is a topological

invariant of M . This is essentially correct even though independence of metric is less

obvious in the quantum theory, and Z(M) does turn out to be an interesting invariant.

How then does one compute Z(M)?

One approach is to use the topological invariance of the theory. In Chern-Simons theory

with compact gauge group G, the partition function Z(M) can be efficiently computed

by cutting M into simple “pieces,” on which the path integral (1.0.2) is easy to evaluate.

Then, via “gluing rules,” the answers for individual pieces are assembled together to produce
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Z(M). In practice, there may exist many different ways to decompose M into basic building

blocks, resulting in different ways of computing Z(M).

Although a similar set of gluing rules should exist in a theory with complex gauge group

GC, they are expected to be more involved than in the compact case. The underlying

reason for this was already mentioned: in Chern-Simons theory with complex gauge group

the Hilbert space is infinite dimensional (as opposed to a finite-dimensional Hilbert space in

the case of compact gauge group G). One consequence of this fact is that finite sums which

appear in gluing rules for Chern-Simons theory with compact group G turn into integrals

over continuous parameters in a theory with non-compact gauge group. This is one of the

difficulties one needs to face in computing Z(M) non-perturbatively, i.e. as a closed-form

function of complex parameters t and t̄.

A somewhat more modest goal is to compute Z(M) perturbatively, by expanding the

integral (1.0.2) in inverse powers of t and t̄ around a saddle point (a classical solution). In

Chern-Simons theory, classical solutions are flat gauge connections, that is gauge connec-

tions A which obey

dA+A ∧A = 0 , (1.0.3)

and similarly for Ā. A flat connection on M is determined by its holonomies, that is by a

homomorphism

ρ : π1(M)→ GC , (1.0.4)

modulo gauge transformations, which act via conjugation by elements in GC.

Given a gauge equivalence class of the flat connection A, or, equivalently, a conjugacy

class of the homomorphism ρ, one can define a “perturbative partition function” Z(ρ)(M)

by expanding the integral (1.0.2) in inverse powers of t and t̄. Since the classical action

(1.0.1) is a sum of two terms, the perturbation theory for the fields A and Ā is independent.

As a result, to all orders in perturbation theory, the partition function Z(ρ)(M) factorizes

into a product of “holomorphic” and “antiholomorphic” terms:

Z(ρ)(M) = Z(ρ)(M ; t)Z(ρ)(M ; t̄) . (1.0.5)

This holomorphic factorization is only a property of the perturbative partition function.

The exact, non-perturbative partition function Z(M) depends in a non-trivial way on both
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t and t̄, and the best one can hope for is that it can be written in the form (cf. [40, 41])

Z(M) =
∑

ρ

Z(ρ)(M ; t)Z(ρ)(M ; t̄) , (1.0.6)

where the sum is over classical solutions (1.0.3) or, equivalently, conjugacy classes of homo-

morphisms (1.0.4).

In the greater part of this thesis, we study the perturbative partition function Z(ρ)(M).

Due to the factorization (1.0.5), it suffices to consider only the holomorphic part Z(ρ)(M ; t).

Moreover, since the perturbative expansion is in the inverse powers of t, it is convenient to

introduce a new expansion parameter ~ = 2πi/t , which plays the role of Planck’s constant

(the semiclassical limit corresponds to ~ → 0). In general, the perturbative partition

function Z(ρ)(M ; ~) is an asymptotic power series in ~. To find its general form one applies

the stationary phase approximation to the integral (1.0.2):

Z(ρ)(M ; ~) = exp

(
1
~
S

(ρ)
0 − 1

2
δ(ρ) log ~ +

∞∑
n=0

S
(ρ)
n+1~

n

)
. (1.0.7)

This is the general form of the perturbative partition function in Chern-Simons gauge theory

with any gauge group, compact or otherwise, computed with standard rules of perturbation

theory [13, 42, 43, 44] that will be discussed in more detail below. Roughly speaking,

S
(ρ)
0 is the value of the Chern-Simons functional evaluated on a flat gauge connection A(ρ)

associated with the homomorphism ρ, and each subleading coefficient S(ρ)
n is obtained by

summing over Feynman diagrams with n loops.

In Chern-Simons theory with compact gauge group, perturbation theory is often devel-

oped in the background of a trivial (or reducible) flat connection A(ρ). As a result, the

perturbative coefficients S(ρ)
n have a fairly simple structure; they factorize into a product of

topological invariants of M — the finite type (Vassiliev) invariants and variations thereof

— and group-theory factors [14]. In particular, they are rational numbers. In contrast,

Chern-Simons theory with complex gauge group naturally involves perturbation theory in

the background of genuinely non-abelian (non-reducible) flat connections. Physically, this

is a novelty that has not been properly addressed in previous literature. We shall see that

the information about a non-abelian flat connection and the 3-manifold M is mixed within

the S(ρ)
n (M) in a non-trivial way, and results in S(ρ)

n (M)’s that are not finite type invariants

and are typically not valued in Q.
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A primary example of non-abelian representations in the complex case comes from con-

sidering hyperbolic 3-manifolds, which, in a sense, constitute the richest and the most inter-

esting class of 3-manifolds. A hyperbolic structure on a 3-manifold M corresponds to a dis-

crete faithful representation of the fundamental group π1(M) into Isom+(H3) ∼= PSL(2,C),

the group of orientation-preserving isometries of 3-dimensional hyperbolic space H3. Adding

a choice of spin structure, this lifts to a representation ρ : π1(M) → SL(2,C), which can

then be composed with a morphism φ to any larger algebraic group GC to obtain a repre-

sentation ρ : π1(M)→ GC. The flat connection associated to such a ρ is non-reducible (in

fact, for a complete hyperbolic structure the holonomies of the connection are parabolic),

and the corresponding perturbative coefficients S(ρ)
n are interesting new invariants of the

hyperbolic 3-manifold M . See Table 6.3 on page 117 for the simplest example of this type.

A direct computation of the perturbative invariants S
(ρ)
n via Feynman diagrams is

straightforward in principle, but quickly becomes unwieldy as the number of loops n grows.

Thus, it is useful to look for alternative methods of defining and computing these invariants.

Altogether, different physical descriptions and quantizations of Chern-Simons theory lead

us to the following four approaches:

1. Feynman diagrams, as already mentioned.

2. Geometric quantization of Mflat(GC; Σ), the moduli space of flat connections on

the boundary Σ of a three-manifold M , which serves as the classical phase space of

Chern-Simons theory.

3. “Analytic continuation” from Chern-Simons theory with compact gauge group G

to its complexification GC.

4. State sum model obtained by decomposing M into tetrahedra, assigning a simple

partition function to each tetrahedron, and integrating out boundary conditions as

the tetrahedra are glued back together.

The first three have been previously employed to tackle Chern-Simons theory with complex

gauge group, while the fourth is completely new. Used in conjunction, these methods lead

to very powerful results, mathematically and physically.

We will begin by describing the “traditional” approach of Feynman diagrams in Chapter

5. They will lead us to define the concept of an Arithmetic TQFT, and conjecture that
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Chern-Simons theory with complex gauge group belongs to this special class. For hyperbolic

M , the arithmeticity of Chern-Simons theory will be very closely related to the arithmeticity

of hyperbolic invariants.

In Chapter 6, we then consider the geometric quantization of Chern-Simons theory with

complex gauge group on a three-manifold M with boundary Σ. One advantage of Chern-

Simons theory with complex gauge group is that the classical phase spaceMflat(GC,Σ) is a

hyper-Kähler manifold, a fact that considerably simplifies the quantization problem in any of

the existing frameworks (such as geometric quantization [45], deformation quantization [46,

47], or “brane quantization” [48]). We will see that the partition functions Z(ρ)(M ; ~) obey

a system of Schrödinger-like equations ÂiZ
(ρ)(M ; ~) = 0, which, together with appropriate

boundary conditions, uniquely determine Z(ρ)(M ; ~).

Combining geometric quantization with “analytic continuation” will lead to a very ef-

ficient computation of the operators Âi, since it will turn out that they also act on and

annihilate partition functions of Chern-Simons theory with compact gauge group. Mathe-

matically, perhaps the most interesting consequence of combining “analytic continuation”

with geometric quantization is (almost) a physical proof of the volume conjecture. We will

discuss this in Chapter 6 as well. Note that “analytic continuation” involves a very subtle

limit of the compact Chern-Simons invariants, and, in particular, does not contradict the

fact that the complex Chern-Simons invariants turn out to be qualitatively different from

compact ones.

Our main examples throughout this work involve knot or link complements in closed

three-manifolds. (In particular, all hyperbolic manifolds are of this type.) In Chern-Simons

theory with compact gauge group, however, knot invariants are typically associated with the

expectation values of Wilson loops in closed manifolds. In Chapter 7, we define Wilson loops

also that carry infinite-dimensional irreducible representations of complex-gauge group, and

explain how their expectation values are equivalent to partition functions on knot/link

complements. The discussion will also clarify the limiting process involved in “analytic

continuation.”

In Chapter 8, we finally proceed to the fourth approach: the state sum model for

Chern-Simons theory with complex gauge group. This involves cutting a manifold M into

tetrahedra, assigning to each tetrahedron a partition function — specifically, an element of

a Hilbert space H associated to the tetrahedron boundary — and taking inner products in
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these boundary Hilbert spaces to glue the tetrahedra back together. Conceptually, such a

cutting and gluing procedure should always be possible in TQFT; it was often employed

to study Chern-Simons theory with compact gauge group, where boundary Hilbert spaces

are finite-dimensional (cf.. [49, 50, 51]). In the complex case, boundary Hilbert spaces are

infinite-dimensional, so that what one seeks is really a state integral model. We construct

such a model for the case GC = SL(2,C) and for M hyperbolic based on the work of K.

Hikami [52, 53]. Extensions to completely general M and GC should be possible, though

they have not yet been fully developed.

Chapter 9 is then devoted to examples of computations in the state integral model.

Schematically, the state integral model expresses Z(ρ)(M ; ~) as a multi-dimensional integral

of a product of quantum dilogarithm functions, on which classical saddle-point methods can

be used to extract the invariants S(ρ)
n (M). We consider in detail the complements of the

figure-eight knot 41 and the knot 52, computing S(ρ)
n (M) to high order. We also compare

the integrals of the state integral model to similar expressions obtained by direct analytic

continuation of compact G-invariants in some special cases, showing that the latter can also

be used to find S
(ρ)
n (M)’s.

Future directions and the quantum dilogarithm

There are many directions in which to continue the studies of refined BPS invariants

and complex Chern-Simons theory that have begun here. They are both still relatively

unexplored fields. In the case of BPS invariants, it would be very exciting to find a proof

of refined = motivic directly in physics, extending the proof of the classical Kontsevich-

Soibelman formula in gauge theory given by [34]. Some progress along these lines was

recently made in [54]. There is also much yet to be understood about the wall-crossing (or

“locus-crossing”) behavior of refined invariants in hypermultiplet moduli space, and about

the existence of potential new walls in the vector multiplet moduli space. Ultimately, one

would like to describe the full “categorical” dependence of the Hilbert space HBPS itself on

moduli.

In the case of Chern-Simons theory with complex gauge group, an immediate goal

(and a subject of current research) is to generalize the state integral model to arbitrary

manifolds and gauge groups. It is also not fully understood how to obtain the Schrödinger-
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like operators Â directly in geometric quantization. Perhaps more importantly, all the

results that appear in this work describe Chern-Simons theory and knot invariants in the

perturbative regime, and it would be exciting to move beyond this and understand Chern-

Simons theory with complex gauge group nonperturbatively. The first steps in this direction

were made in [41]. It is quite possible that a fully developed state integral model will be

able to complete the program.

A final related direction concerns an intriguing connection between BPS invariants and

the Chern-Simons state integral model. At the most rudimentary level, one find the same

special function — a quantum dilogarithm — appearing in both. The simplest definition

for the quantum dilogarithm is via the infinite product

Eq(x) =
∞∏

r=1

(
1 + qr−1/2x

)−1
, |q| < 1 . (1.0.8)

It obeys a remarkable “pentagon” identity: if operators x1 and x2 are such that x1x2 =

qx2x2, then

Eq(x1) Eq(x2) = Eq(x2) Eq(q−
1
2x1x2) Eq(x1) . (1.0.9)

The central role of the quantum dilogarithm and (1.0.9) throughout this thesis (see especially

Chapters 2, 4, 8, and 9) has motivated its presence in the title.

Elsewhere in physics, the quantum dilogarithm appears as the generating function of a

gas of free (charged) bosons. In a more specialized context, it also features as an ingredient

in open topological string partition functions. In mathematics, the quantum dilogarithm is

ubiquitous in representation theory of quantum groups and (noncompact) affine Lie alge-

bras.

In the context of both BPS invariants and Chern-Simons theory, the quantum diloga-

rithm function really signals the presence of an entire structural apparatus involving quan-

tizations of complex tori and cluster transformations [55] acting on triangulated surfaces.

These triangulated surfaces were recently given physical meaning in terms of BPS wall

crossing by [56]. In Chern-Simons theory, the quantization of triangulated surfaces is the

quantization of boundary moduli spaces. It would be truly interesting to connect these two

pictures via a physical duality — this will hopefully be the subject of future work.
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Refined Wall-Crossing
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Chapter 2

Multi-Centered Black Holes and

Refined Microstate Counting

As explained in the Introduction, BPS indices for Calabi-Yau threefolds can be defined in

several different ways. The most physically intuitive approach uses bound states of multi-

centered black holes in four-dimensional N = 2 supergravity. This approach was developed

in a series of papers by F. Denef and others [16, 57, 20], and we will follow it here to give

precise definitions of BPS indices (Section 2.1) and to obtain primitive and semi-primitive

wall-crossing formulas in both unrefined and refined cases (Section 2.2).

The D-brane interpretation of BPS states, and its inevitable relation to the moduli spaces

of quiver representations, is still of great importance in connecting the BPS invariants of

supergravity to Gromov-Witten/Donaldson-Thomas invariants and more generally to the

topological invariants of Kontsevich and Soibelman [15]. It forms the basic connection

between physics and mathematics. We therefore describe this interpretation, at least on a

conceptual level, in Section 2.3.

We finish in Section 2.4 by exploring one of the more interesting unanswered questions

about refined invariants: can they see walls in moduli spaces that are invisible to unrefined

indices? We give an explicit example using internal rearrangements of multi-center black

hole systems, where the naive answer is “yes,” but a number of factors conspire to eliminate

the presence of such walls. We conjecture that in fact the answer is always “no.”

The derivation of refined wall-crossing formulas is based on our work in [1] (though it is

not a far jump from the careful descriptions of wall crossing in [20]). The work on invisible

13
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walls was done in conjunction with S. Gukov and D. Jafferis and will appear in [4].

2.1 BPS states in N = 2 supergravity

Type II compactifications and supergravity

Generally, N = 2 supergravity in four dimensions contains some number nV of vector

multiplets and some number nH of (ungauged) hypermultiplets. Each vector multiplet con-

sists of a U(1) vector boson, a complex scalar, and two gauginos; while each hypermultiplet

consists of two complex scalars and their spin-1/2 superpartners. Of course, N = 2 super-

gravity also has a supergravity multiplet, consisting of the graviton, the gravitinos, and the

graviphoton — another U(1) vector boson.

Such a supergravity theory can be obtained by compactifying 10-dimensional type II

string theory on a Calabi-Yau 3-fold X. The SU(3) holonomy group of the Calabi-Yau en-

sures that exactly two supersymmetries survive the compactification. Moreover, reducing

the metric, the B-field, the dilaton, and the Ramond-Ramond form fields of 10-dimensional

type II supergravity via the various harmonic forms of the Calabi-Yau produces the bosonic

particle content of four-dimensional supergravity. Specifically,1 the reduction of type IIA

theory results in nV = h1,1(X) vector multiplets whose scalar components describe Kähler

structure deformations of X; and nH = h2,1(X) + 1 hypermultiplets describing complex

structure deformations, including the “universal hypermultiplet” that contains the 10-

dimensional dilaton. In a type IIB compactification, the situation is reversed: there are

nV = h2,1(X) vector multiplets and nH = h1,1(X) + 1 hypermultiplets, again including the

universal hypermultiplet that contains the dilaton.

The complex scalars of the vector multiplets and hypermultiplets are moduli of the 4-

dimensional theory. Indeed, due to N = 2 supersymmetry, the full moduli space factors

exactly into vector and hyper components,

M =MV ×MH , (2.1.1)

where

dimCMV = nV , dimCMH = 2nH . (2.1.2)
1See e.g. [58] and Section 9.7 of [59] for a review of type II string compactifications.
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The metrics on MV and MH multiply the kinetic terms in the 4-dimensional Lagrangian.

The hypermultiplet moduli space MH is a quaternionic Kähler manifold, while the vector

multiplet moduli space MV , which we are primarily interested in here, has special Kähler

geometry [60, 61]. Thus, the geometry of MV can (locally) be described using nV + 1

pairs of complex special coordinates {XI , FI}nV +1
I=1 , in terms of which the Kähler potential

is written as

K = − log i(X̄IFI −XI F̄I) . (2.1.3)

The XI and FI are implicitly functions of the nV actual complex coordinates ofMV ; locally

both {XI} and {FI} form complete sets of homogeneous projective coordinates.

In a type IIB compactification, the XI and FI are periods of the holomorphic 3-form

Ω ∈ H3,0(X; C),

XI =
∫

αI

Ω , FI =
∫

βI

Ω , (2.1.4)

where αI and βI are a symplectic basis for H3(X; R). In a type IIA compactification,

relation (2.1.4) still holds if αI and βI are taken to be a symplectic basis for even homology

Heven(X,R), and Ω is interpreted as the even form

Ω = e−(B+iJ) ∈ Heven(X; C) , (2.1.5)

where B is the B-field on X and J is the Kähler class of X.

It is often useful to consider the actual metrics on MV and MH as “corrected” forms

of much simpler metrics that are obtained in the large volume (or α′ → 0) and weak string

coupling (gs → 0) limits.2 Because the dilaton always belongs to a hypermultiplet, onlyMH

ever receives gs corrections (i.e. quantum string corrections). Similarly, because the overall

volume modulus of X is a Kähler modulus, onlyMV receives α′ corrections (or worldsheet

instanton corrections) in a IIA compactification, and only MH receives α′ corrections in

a IIB compactification. Therefore, the “tree-level” geometry of MV is exact in IIB string

theory. Moreover, mirror symmetry relates the geometry of MV in a IIA compactification

on X to the geometry of MV in a IIB compactification on the mirror X̃, and can thus be

used to obtain exact metrics in type IIA as well.
2In fact, (2.1.5) is only true at large volume, and otherwise receives α′ corrections that can be

computed via mirror symmetry.
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BPS states

Now consider states in N = 2 supergravity. Their quantum numbers include their

charges under the nV +1 U(1) vector fields (i.e. from the vector multiplets plus the gravipho-

ton) and their spin. For a massive state, the spin is a half-integer describing its weight as

part of a representation of the 4-dimensional massive little group Spin(3) = SU(2). The

electric and magnetic U(1) charges can be grouped into a 2(nV + 1)-dimensional vector γ

of integers:

γ = (p0, pA, qA, q0) A = 1, ..., nV

mag. elec. (2.1.6)

D6 D4 D2 D0 [IIA] or all D3 [IIB]

∈ H0 H2 H4 H6(X; Z) [IIA] or H3(X; Z) [IIB]

We are particularly interested in BPS states that preserve half of the N = 2 super-

symmetry algebra. In 4-dimensional supergravity, such states are realized as “microstates”

of charged and possibly multicentered (but bound) black holes. Alternatively, in a string

theory picture, these states describe D-branes wrapped on various cycles in the three-fold X

and extending only along the time direction in 4-dimensional spacetime R3,1. The charges

are then interpreted as D-brane charges, associated to the cycles that the D-branes wrap,

as indicated in (2.1.6). By dualizing cycles to forms, the charge vector γ can also be written

as a cohomology class indicated on the last line of (2.1.6). We will say more about the

D-brane interpretation of BPS states in Section 2.3.

There is a natural symplectic product on charges γ in the “charge lattice” Γ ' Heven(X; Z)

or H3(X; Z), simply given by multiplying magnetic charges times electric charges:

〈γ, γ′〉 = −p0q′0 − pAq′A + q0p
0′ + qAp

A′ . (2.1.7)

Thinking of charges γ as differential forms, this can also be written as

〈γ, γ′〉 =
∫

X
γ ∧ (γ′)∗ , (2.1.8)

where the ‘∗’ is trivial in a type IIB picture, and changes the signs of 2-form and 6-form

components in a IIA picture.
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Attractor equations and multicentered states

The Hilbert space of BPS states, HBPS , is a piecewise-constant “function” of the vector

and hypermultiplet moduli. In the particular case of vector multiplet moduli — let us denote

them generically as “t” — one is free to choose any value t∞ of moduli at spatial infinity in

R3,1. Given a collection of particles (i.e. black holes) in R3,1, the attractor equations then

fix the values of t everywhere else [16]. Therefore, we should write

HBPS = HBPS(t∞) . (2.1.9)

The central charge of a state of charge γ, defined as

Z(γ; t) = e
1
2
K〈γ,Ω(t)〉 = e

1
2
K〈γ, (XI(t), FI(t))〉 , (2.1.10)

also depends on vector multiplet moduli t. (The second equality of (2.1.10) expresses Z as

the product of a vector of integer charges and the vector of periods of Ω, which implicitly

depend on t.) A BPS state satisfies the condition that its mass is related to the absolute

value of its central charge evaluated at moduli t∞,3

M =
(
m

(4d)
P

)
|Z(γ, t∞)| =

√
Vol(X)/`6s
gs`s

|Z(γ; t∞)| . (2.1.11)

The phase of this central charge describes which N = 1 subalgebra of the N = 2 supersym-

metry algebra the BPS state preserves. For comparison, the leading contribution (at large

charge) to the entropy of a single-centered black hole of charge γ is related to its central

charge when evaluated at the values of moduli t∗(γ) at its horizon,

S ∼ π|Z(γ; t∗)|2 . (2.1.12)

These “attractor values” t∗(γ) depend only on γ and not on t∞; by the attractor equations,

they minimize the central charge as a function of t.

The Hilbert spaceHBPS can jump across real codimension-1 walls inMV , so-called walls

of marginal stability. (It can also jump at codimension-2 loci inMH ; this will be discussed

further in Sections 2.2-2.4.) In order to understand such a transition in supergravity, one

needs to consider not only single-centered black holes, but also multi-centered bound states

3We will henceforth set the 4-dimensional Planck mass m(4d)
P → 1, but remind the reader of its

value in (2.1.11).
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of black holes. It was shown in [16] that such stationary but non-static bound states can

form from two or more black holes with mutually nonlocal charges.

To be more specific, the spherically-symmetric, static metric ansatz

ds2 = −e2Udt2 + e−2Ud~x2 (U = U(~x)) (2.1.13)

in R3,1 leads to attractor equations (or BPS equations) for a single-centered black hole,

∂τU = −eU |Z| ,

∂τ t
a = −2 eUgab̄∂̄b̄|Z| ,

or more compactly

2 ∂τ Im(e−Ue−iαΩ̂) = −γ . (2.1.14)

Here, τ = 1/r is the inverse of the radial coordinate in spatial R3, α = argZ(γ; t) is the

argument of the central charge, gab̄ = ∂a∂̄b̄K is the metric on MV , and Ω̂(t) = eK/2Ω(t).

In (2.1.14), one thinks of both Ω̂ and γ as differential forms, or, taking period integrals, as

vector-valued functions. The attractor equation (2.1.14) integrates to

2 Im(e−Ue−iαΩ̂) = −γ
r

+ 2 Im(e−Ue−iαΩ̂)|t∞ . (2.1.15)

The resulting solution flows to a minimum of |Z| as r → 0.

Being slightly more careful, (2.1.15) is really only valid and describes a massive BPS

black hole if |Z(γ; t)| attains a nonzero minimum in moduli space MV . If |Z| vanishes at

a singular point in MV , the minimum |Z| = 0 can be reached at a positive radius r = r0

in R3, and for r < r0 the moduli t(~x) are finite constants [62, 16]. This solution is called

an “empty hole.” If |Z| vanishes at a regular point inMV , the attractor equations have no

solution at all.

To generalize to the multi-centered case, following [16], one replaces the metric ansatz

(2.1.13) with a more general stationary metric that contains angular momentum,

ds2 = −e2U (dt+ ω)2 + e−2Ud~x2 (U = U(~x), ω = ω(~x)) . (2.1.16)

The BPS equations for a multi-centered solution with n charges γi at centers ~xi become

2 e−U Im(e−iαΩ) = H (2.1.17)

∗0dω = 〈dH,H〉 , (2.1.18)
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where d is the exterior derivative on R3, ∗0 is the Hodge dual with respect to the flat metric

on R3, α is the argument of the total central charge Z(γ) = Z(γ1) + Z(γ2) + ... + Z(γn),

and

H = −
n∑

i=1

γi

|~x− ~xi|
+ 2 Im(e−iαΩ̂)|t∞ . (2.1.19)

This is not so easy to integrate directly; however, (2.1.18) implies that 〈∆H,H〉 = 0, which

does lead to integrability conditions

n∑
j=1

〈γi, γj〉
|~xi − ~xj |

= 2 Im(e−iαZ(γi))|t∞ ∀ i . (2.1.20)

Conditions (2.1.20) fix n − 1 independent center-to-center radii. In particular, in the

2-centered case, the distance between black holes is completely fixed:

r12 =
1
2
〈γ1, γ2〉

|Z1 + Z2|
Im(Z1Z̄2)

∣∣∣∣
t∞

, Zi ≡ Z(γi) . (2.1.21)

The resulting multi-centered black holes have an intrinsic electro-magnetic angular mo-

mentum that can simply be calculated by the Poynting vector4; in the 2-centered case, its

magnitude is just

J12 =
1
2
|〈γ1, γ2〉| −

1
2
. (2.1.22)

Note that multi-centered bound states can only form if charges of constituents are mutu-

ally nonlocal, i.e. 〈γi, γj〉 6= 0. Otherwise, the attractive force between BPS centers will

completely vanish.

The supergravity picture of wall crossing, i.e. jumps in HBPS , involves constituents of

a multi-centered bound state coming unbound, causing the state to disappear from the

single-particle spectrum. From (2.1.20) or (2.1.21), it is clear that this happens when the

central charges of two constituents or groups of constituents align,5 causing a center-to-

center radius to diverge. Equivalently, conservation of energy during a split of BPS states

γ → γ1 + γ2 requires central charges to be aligned, so that

|Z(γ1 + γ2)| = |Z(γ1) + Z(γ2)| = |Z(γ1)|+ |Z(γ2)| (2.1.23)

: M = M1 +M2 .

4Up to a quantum correction that manifests itself as the shift by −1/2 in (2.1.22); see [16, 57] for

details.
5From these equations alone, it looks like anti-aligned central charges will also correspond to

splits, but anti-alignment is not compatible with mass conservation.
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Also observe that the alignment of central charges implies that two BPS states preserve the

same N = 1 supersymmetry subalgebra, and from basic supersymmetry considerations it

is then clear that the force between them must vanish.

Indices and refinement

A useful quantity to consider in supersymmetric theories is an index of BPS states. In

the present situation, the second helicity supertrace

Ω(t∞) = −2 TrHBPS(t∞)(−1)2J3J3
2 (2.1.24)

is a good index to use. The quantum number J3 is the half-integer SU(2) spin of a given

state. Ω(t∞) counts short BPS multiplets, and evaluates to zero on long multiplets. In

particular, Ω(t∞) is completely invariant under a transition where short BPS multiplets

combine into long multiplets and leave the BPS spectrum. Such a transition is the only

type expected to occur in the moduli spaceMH (cf. [21]), so the index Ω(t∞) is independent

of hypermultiplet moduli. Of course, Ω(t∞) can jump across walls of marginal stability in

MV as described on page 19, where states actually disappear from the (BPS and non-BPS)

single-particle spectrum.

One can actually do somewhat better than (2.1.24). The BPS Hilbert space is graded

by charge, so one can fix a charge γ and let

Ω(γ; t∞) = −2TrH(γ;t∞)(−1)2J3J3
2 , (2.1.25)

where H(γ; t∞) is the subspace of HBPS containing states of charge γ. Moreover, due to

quantization of center-of-mass degrees of freedom (and their superpartners), all states in

HBPS have a half-hypermultiplet contribution to their spin (cf. [57, 11, 12, 63]). Denoting

the (2j+1)-dimensional SU(2) representation as [j], this means that there is a factorization

HBPS =
([

1
2

]
+ 2[0]

)
⊗H′ . (2.1.26)

In terms of the reduced Hilbert space H′, the index can be written much more simply as

Ω(γ; t∞) = TrH′(γ;t∞)(−1)2J3 , (2.1.27)

where J3 is now the spin in H′. Note, for example, that in the reduced Hilbert space a
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(half)hypermultiplet is just written as [0] and a (half) vector multiplet as
[

1
2

]
, so

Ω(hyper) = 1 , (2.1.28)

Ω(vector) = −2 . (2.1.29)

The indices Ω(γ; t∞) have the same continuity (and discontinuity) properties as Ω(t∞).

The overarching goal of Part I of this thesis is to examine the implications of refining

this index. In other words, instead of (2.1.27), we want to take spin into account and

consider

Ωref (γ; t∞; y) = TrH′(γ;t∞)(−y)2J3 . (2.1.30)

The resulting refined index is a Laurent polynomial in y; it is also convenient to define its

(positive integer) coefficients Ωn as

Ωref (γ; t∞; y) =
∑
n∈Z

Ωn(γ; t∞) (−y)n . (2.1.31)

Note that Ωref (γ; t∞; y = 1) = Ω(γ; t∞). The refined index encodes much of the infor-

mation present in the Hilbert space HBPS . The integers Ωn(γ; t∞) jump across walls of

marginal stability in MV just as Ω(γ; t∞) does. However, they may also jump whenever

BPS states pair up into non-BPS multiplets. We call the locations of these discontinuities

“invisible walls.” In the hypermultiplet moduli space they only occur at codimension-2

loci,6 and so are not terribly offensive. Nevertheless, to be absolutely sure that the Ωn are

constant on MH , we should restrict ourselves to rigid Calabi-Yau manifolds (in type IIA

compactifications). We investigate the possibility of encountering codimension-1 invisible

walls in MV in Section 2.4.

To compare to the unrefined indices (2.1.28)-(2.1.29), note that

Ωref (hyper; y) = 1 , (2.1.32)

Ωref (vector; y) = −y − y−1 . (2.1.33)

6The fact that jumps in MH occur at (real) codimension-2 loci rather than codimension-1 walls

is related to the fact that the superpotentials in supersymmetric quantum mechanics descriptions

of low-energy D-brane dynamics (cf. Section 2.3) are holomorphic functions of the hypermultiplet

moduli — thus the BPS spectrum can only jump in complex codimension ≥ 1. Physically, these

arguments also arose in the study of enhanced gauge symmetries and geometric engineering, cf. [21].
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Topological invariants

The refined and unrefined indices of BPS states are closely related to various topological

invariants of the Calabi-Yau X. Let us assume that we are in a type IIA duality frame.

For a distinguished choice of t∞ corresponding roughly to the location of the wall near

large volume where D0 states bind to a D6 state, the generating function of states with

D6-D2-D0 charges,

ZD6−D2−D0(q,Q; t∞) =
∑

m∈Z, β∈H2(X;Z)

Ω
(
γ = (1, 0, β,m); t∞

)
(−q)mQβ , (2.1.34)

is the Donaldson-Thomas/Gopakumar-Vafa partition function for X [20]. Or, more specifi-

cally, on one side of this D6−D0 wall (2.1.34) is the “reduced” Donaldson-Thomas partition

function Z ′DT , and on the other side it is the “unreduced” Donaldson-Thomas partition

function

ZDT = M(q)χ(X)Z ′DT , (2.1.35)

which is multiplied by an extra factor of the MacMahon function.

Similarly, the refined generating function

ZD6−D2−D0(q,Q, y; t∞) =
∑

m∈Z, β∈H2(X;Z)

Ωref
(
γ = (1, 0, β,m); t∞; y

)
(−q)mQβ (2.1.36)

turns out to be equivalent to the refined Donaldson-Thomas partition functions defined

in [23, 26] — or to Nekrasov’s partition function for N = 2 gauge theory in an Omega-

background [22]. We shall see an explicit example of this in Section 3.1.

In another chamber of moduli space MV with strong B-field, the partition functions

(2.1.34) and (2.1.36), respectively, reproduce the “noncommutative Donaldson-Thomas”

invariants of Szendröi [64] and a refined version thereof.

The relation between BPS indices and (e.g.) topological string invariants is based on

the D-brane picture of BPS states that we describe further in Section 2.3 — combined with

an argument relating D-brane states with Donaldson-Thomas/Gopakumar-Vafa theory as

in [20, 65]. More generally, the unrefined indices Ω(γ; t∞) in any chamber of MV should

correspond to the “classical” version of Kontsevich and Soibelman’s invariants for Calabi-

Yau categories [15], where t∞ parametrizes the choice of stability condition in the category.

As we explain in Chapter 4, one of our main discoveries [1] is that the refined indices



23

Ωref (γ; t∞; y) in turn coincide to Kontsevich and Soibelman’s motivic Donaldson-Thomas

invariants [15].

Note that all the relations we describe here are of the form ZBH ∼ Ztop, in contrast

with the famed OSV conjecture ZBH ∼ |Ztop|2 [19]. This is not inconsistent. As described

in [20], the OSV relation occurs in a very special limit corresponding to highly “polar”

2-center split attractor flows which causes the BPS generating functions to factorize.

2.2 Physical wall-crossing formulas

We now proceed to take a closer look at stability conditions for BPS states, largely in a

supergravity context. Following [20] (and [1]), we use physical intuition from supergravity

to derive “wall-crossing formulas” that describe how refined and unrefined indices jump

across walls of marginal stability in MV .

Stability conditions and attractor flow trees

Let us begin by considering stability of black hole states more carefully. A minimal

requirement for the multi-center attractor equations (2.1.17)-(2.1.18) to have a solution is

that all the radii rij = |~xi−~xj | appearing in the integrability condition (2.1.20) are positive.

Indeed, for a bound state of two black holes (or two clusters of black holes) with charges γ1

and γ2, positivity of the center-to-center radius (2.1.21) shows that the (potentially) stable

side of a wall of marginal stability must satisfy the Denef stability condition

〈γ1, γ2〉 Im
[
Z(γ1, t)Z(γ2, t)

]
> 0 . (2.2.1)

The codimension-1 wall of marginal stability itself is defined by the equation

argZ(γ1, tms) = argZ(γ2, tms) (2.2.2)

: Im
[
Z(γ1, tms)Z(γ2, tms)

]
= 0 .

On its “unstable” side, the quantity appearing in equation (2.2.1) is negative.

While condition (2.2.1) is necessary for the formation of a stable bound state, it is

not sufficient. It was conjectured in [16] (see also [66, 20]) that the multi-center attractor

equations have a physically reasonable solution if and only if it is possible to draw a split
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attractor flow tree in moduli space MV starting at t∞ and ending on “good” attractor

points, i.e. on minima of |Z| that correspond to genuine single-center black holes or empty

holes. Each segment of such a tree follows a single-center attractor flow trajectory, and

the flows can split at walls of marginal stability that are crossed in the stable → unstable

direction. For example, single-center, two-center, and three-center flows are shown in Figure

2.1.

tinfty

tms

t*( )

tinfty tinfty

γ

γ

γ

γ1 γ2

γ1

γ

γ1 γ2

γ3

γ4
t*( ) γ2t*( ) γ1t*( )

t*( )

t*( )

tms tms

tms
’

Figure 2.1: Split attractor flows in supergravity. The walls of marginal stability shown

correspond to γ → γ1 + γ + 2 and γ2 → γ3 + γ4.

Note that flows do not need to split at walls of marginal stability. For example, suppose

that regular positive minima (i.e. honest black hole solutions) exist for charges γ1 and γ2

on the “unstable” side of a γ → γ1 + γ2 marginal stability wall, as in Figure 2.2. If a good

attractor point for the total charge γ = γ1 + γ2 also exists on the same, unstable, side of

the wall, then when t∞ is on the stable side both single-center and 2-center bound states of

total charge γ exist; whereas when t∞ is on the unstable side only a single-center state of

charge γ is in the spectrum. In contrast, in the case that the attractor point for γ = γ1 +γ2

is not a good minimum (e.g. if this is a regular point of moduli space with Z(γ) = 0 there),

then the only possible state of total charge γ is a 2-center state that is in the spectrum on

the stable side of the wall.
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Figure 2.2: Possiblities when t∞ is on the “stable” (LHS) and “unstable” (RHS) side of the

wall.

Primitive wall crossing

We now return to the supergravity viewpoint and use physical intuition to derive wall-

crossing formulas: formulas that describe the jumps in HBPS and in the indices Ω and Ωref

across walls of marginal stability. Many of these formulas were derived in [20]; the refined

versions were also described in [67] and [1].

The simplest wall crossing scenario involves a bound state of total charge γ decomposing

into two primitive states of charges γ1 and γ2 at a wall of marginal stability. Primitive means

that γ1 and γ2 cannot be written as multiples of any smaller charge. Let the wall be at tms,

and let t+ and t− be moduli on the stable and unstable sides of the wall, respectively. In a

generic situation, H(γ1) and H(γ2) (and H for any charge that is not γ) will be continuous

at tms; we may thus assume that

H(γ1; t−) = H(γ1; t+) = H(γ1; tms) ,

H(γ2; t−) = H(γ2; t+) = H(γ2; tms) .

The separation of the bound state of charge γ into two infinitely separated black holes (or

cluster of black holes) of charges γ1 and γ2 at tms then suggests that

H′(γ; t+) = [J12]⊗H′(γ1; tms)⊗H′(γ2; tms) . (2.2.3)

This is the basis of the primitive wall-crossing formulas: the (reduced) Hilbert space on
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the stable side of the wall is a product of Hilbert spaces for the components, times an

electromagnetic angular momentum multiplet. Recall that the angular momentum is given

by (2.1.22):

J12 =
I12 − 1

2
, I12 ≡ |〈γ1, γ2〉| . (2.2.4)

Calculating the unrefined index using (2.1.27) is straightforward [20]:

Ω(γ; t+) = (−1)I12−1I12 Ω(γ1; tms) Ω(γ2; tms) . (2.2.5)

Of course, there may be states of total charge γ in the BPS spectrum that do not split at

the γ → γ1 + γ2 wall; if so, then one should really write

∆Ω(γ) ≡ Ω(γ; t+)− Ω(γ; t−) = (−1)I12−1I12 Ω(γ1; tms) Ω(γ2; tms) . (2.2.6)

Similarly, one sees from the definition (2.1.30) that (cf. [67])

∆Ωref (γ; y) = [I12]−y Ωref (γ1; tms; y) Ωref (γ2; tms; y) , (2.2.7)

where [I12]−y denotes the “quantum dimension”

[I12]−y =
(−y)I12 − (−y)I12

(−y)− (−y)−1
= (−y)−I12+1 + (−y)−I12+3 + ...+ (−y)I12−1 . (2.2.8)

As expected, this reduces to (2.2.6) upon setting y → 1.

Semi-primitive wall crossing

Now, let us view the above γ → γ1 +γ2 split in reverse. As the wall of marginal stability

is crossed, black holes or clusters of black holes with total charges γ1 and γ2 will bind to

form states of total charge γ. However, the wall for γ → γ1 + γ2 splits is also a wall for

all Mγ1 + Nγ2 splits, with M, N ≥ 1, and its stable and unstable sides are the same.

Therefore, by the split attractor flow conjecture, bound states of any and all total charges

Mγ1 +Nγ2 , M, N ≥ 1 (2.2.9)

should also form and be part of the BPS spectrum on the stable side of the wall. The

case M = 1, N ≥ 1 is called semi-primitive wall crossing, and can also be analyzed in the

supergravity context. The general case M, N ≥ 1 is harder to consider in supergravity, and



27

is most easily handled via the general Kontsevich-Soibelman wall-crossing formula that is

described in Chapter 4.

During the semi-primitive splits γ → γ1 +Nγ2, the decomposition of the Hilbert spaces

can be written as [20]

∞⊕
N=0

H′(γ1 +Nγ2; t+)xN = H′(γ1; tms)⊗
∞⊗

k=0

F
(
xk [Jγ1,kγ2 ]⊗H′(kγ2; tms)

)
. (2.2.10)

On the LHS, we have grouped all the Hilbert spaces H′(γ1 + Nγ2; t+) into a generating

function. On the RHS, we consider all possible ways to bind arbitrary numbers of bound

clusters of total charges γ2, 2γ2, etc. to a γ1 center at marginal stability (see the schematic

in Figure 2.3). For each k, what is essentially a free gas of particles with charges kγ2 are

bound; F(· · · ) is a Fock space that describes the Hilbert space of this gas, taking into

account the angular momentum contribution

Jγ1,kγ2 =
k I12 − 1

2
, I12 = |〈γ1, γ2〉| , (2.2.11)

and keeping track of total charge by weighing each particle with a variable xk.

γ2

γ2

γ2

γ1

2γ2
2γ2

2γ2
2γ2

3γ2

Figure 2.3: A “gas” of black holes with charges kγ2 binding to a γ1 center in physical space.

The resulting wall-crossing formula for unrefined indices is [20]

Ω(γ1; tms)+
∞∑

N=1

Ω(γ1+Nγ2; t+)xN = Ω(γ1; tms)
∞∏

k=1

(
1−(−1)kI12xk

)kI12Ω(kγ2;tms) . (2.2.12)

The product on the RHS corresponds directly to the free gasses of particles mentioned

above; the particles can be bosonic or fermionic, according to the sign of the exponent
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Ω(kγ2; tms). In the refined case, the formula reads [1]

Ωref (γ1; y) +
∞∑

N=1

Ωref (γ1 +Nγ2; t+; y)xN

= Ωref (γ1; y)
∞∏

k=1

kI12∏
j=1

∏
n∈Z

(
1 + (−1)n(−y)2j−kI12−1+nxk

)(−1)nΩn(kγ2)
, (2.2.13)

where the unambiguous moduli tms of Ωref (γ1; tms; y) and Ωref (kγ2; tms; y) have been sup-

pressed. In the refined formula, the spin content has simply been distributed over the factors

on the RHS.

Similarly to the unrefined case, formulas (2.2.12) and (2.2.13) are strictly only valid

when H′(γ1 + Nγ2; t−) is trivial for all N ≥ 1 on the unstable side of the wall. If states

with total charge γ1 +Nγ2 already exist on the unstable side of the wall, they will also bind

gasses of kγ2 particles. Then, for example, the unrefined formula reads

Ω(γ1) +
∞∑

N=1

Ω(γ1 +Nγ2; t+)xN

=
[
Ω(γ1) +

∞∑
N=1

Ω(γ1 +Nγ2; t−)xN

]
×
∞∏

k=1

(
1− (−1)kI12xk

)kI12Ω(kγ2)
, (2.2.14)

and the refined formula generalized in an analogous fashion.

Derivation

For completeness, we finish this section by providing a derivation of the slightly non-

trivial formula (2.2.13) (from which (2.2.12) also follows by setting y → 1). The derivation

utilizes standard techniques from statistical mechanics. It is easy to see that tracing over

the LHS of (2.2.10) with weight (−y)2J3 gives

Ωref (γ1; y) +
∞∑

N=1

Ωref (γ1 +Nγ2; t+; y)xN , (2.2.15)

and tracing over the RHS gives

Ωref (γ1; y)
∞∏

k=1

TrF(k)(−y)2J
(k)
3 xkN , (2.2.16)

where each operator J (k)
3 measures spin in the Fock space F (k) ≡ F

(
xk[Jγ1,kγ2 ]⊗H′(kγ2)

)
and N is the excitation number in this Fock space. We introduce quantum numbers nj =
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−kI12−1
2 , ..., kI12−1

2 and n ∈ Z, respectively, to keep track of the electromagnetic angular

momentum and the internal spin of a state in the Hilbert space [Jγ1,kγ2 ]⊗H′(kγ2). For fixed

nj and n, the degeneracy of such a state is Ωn(kγ2), so we can introduce a third quantum

number m = 1, ...,Ωn(kγ2) to keep track of this. The total spin is J (k)
3 (nj , n,m) = nj + n

2 .

Note that states with odd n are bosonic and states with even n are fermionic [20]. States

in the Fock space F (k) are described by entire sets of occupation numbers {dnj ,n,m}, where

dnj ,n,m ∈ {0, 1} if the state is fermionic and dnj ,n,m ∈ {0, 1, ...,∞} if the state is bosonic.

Thus, we have

TrF(k)(−y)2J
(k)
3 xkN =

∑
sets {dnj,n,m}

(−y)
P

nj,n,m dnj,n,m(2nj+n)
x

k
P

nj,n,m dnj,n,m

=
∏

nj ,n,m

∑
dnj,n,m

(−y)dnj,n,m(2nj+n)xkd

=
( ∏

nj ,n even,m

1∑
d=0

(−y)d(2nj+n)xkd

)
×
( ∏

nj ,n odd,m

∞∑
d=0

(−y)d(2nj+n)xkd

)

=
( ∏

nj ,n even,m

(
1 + (−y)2nj+nxk

))
×
( ∏

nj ,n odd,m

(
1− (−y)2nj+nxk

)−1
)

=
∏

nj ,n,m

(
1 + (−1)n(−y)2nj+nxk

)(−1)n

=
∏
nj ,n

(
1 + (−1)n(−y)2nj+nxk

)(−1)nΩn(kγ2)

=
kI12∏
j=1

∏
n∈Z

(
1 + (−1)n(−y)2j−kI12−1+nxk

)(−1)nΩn(kγ2)
.

In the last step, we replaced nj with the integral summation variable j = 1 + kI12−1
2 + nj

to obtain the final answer.

2.3 BPS states of D-branes

The Hilbert space H′BPS also has a description in terms of D-brane states, which is per-

haps more common in the literature, and more intuitive in a string theory picture. More-

over, this description connects the supergravity picture that we have used heretofore with

topological string invariants, melting crystals (Chapter 3), and the Kontsevich-Soibelman

wall-crossing formulas (Chapter 4).
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Roughly speaking, H′BPS(γ) can be obtained in string theory compactified on a Calabi-

Yau threefold X the following way. As explained in Section 2.1, charges γ ∈ Γ can be

naturally interpreted as charges of D-branes that wrap cycles of X and fill only the time

direction of R3,1. In the case of type IIA theory, these are even-dimensional (holomorphic)

cycles, while in type IIB theory they are odd dimensional (special Lagrangian) cycles. Fixing

γ, one constructs the classical moduli space M(γ) of D-branes with this charge γ. M(γ)

describes (e.g.) deformations of the D-branes and Wilson loop degrees of freedom on the

branes. The quantum Hilbert space H′BPS(γ), then, is just generated by the cohomology

H∗(M(γ)) as long as this cohomology makes sense7 (cf. [21]). In particular, the unrefined

index is an Euler characteristic and the refined index is a Poincaré polynomial:

Ω(γ) = χ(M(γ)) , (2.3.1)

Ωref (γ) = (−y)−
dim(M)

2 Poincaré(M(γ);−y) . (2.3.2)

Note that M(γ) is always Kähler, so H∗(M(γ)) is organized into representations of an

SU(2) Lefschetz action. These coincide with the SU(2) spin representations of states in R3,1,

so that cohomological degree becomes identified with spin (see, for example, [57, 20, 65]).

The middle cohomology (spin zero) actually corresponds to fermionic states in R3,1 once

center-of-mass degrees of freedom are included; then Hdim(M)/2+2n(M), n ∈ Z, is fermionic

and Hdim(M)/2+2n+1(M) is bosonic. Of course, M(γ) and all related quantities depend on

vector multiplet moduli, because these affect the stability condition for BPS branes.

We proceed to discuss some aspects of the D-brane ↔ supergravity correspondence,

including the inevitable realization of D-brane moduli spaces by quiver representations. We

maintain the discussion at a conceptual level; for precise details we refer the reader to the

references cited herein.

Quiver representations

The moduli spaceM(γ) of D-branes can often be described as a moduli space of quiver

representations. Let us take a moment to explain what this means mathematically (see e.g.
7Generically, M(γ) is highly singular and H∗M(γ) is not well-defined. This is where motivic

invariants become important, as described in Chapter 4. This “subtlety” is irrelevant for the present

discussion, however.
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[68] for a more thorough description).

Figure 2.4: An example of a quiver with four nodes.

A quiver, as in Figure 2.4, is a collection of nodes labelled by i ∈ I with a collection

A of arrows connecting them. A representation of the quiver — or more precisely a repre-

sentation of the path algebra generated by the arrows — is a collection of complex vector

spaces {Vi}i∈I and a collection of homomorphisms from Vi to Vj for each arrow going from

node i to node j. A quiver with closed loops can also have a superpotential W , which is

a polynomial in the noncommutative arrow variables a ∈ A. A representation must then

obey the condition that the homomorphism corresponding to ∂aW vanishes for any a ∈ A;

in other words, it is a representation of the quotient of the path algebra A/dW . There are

fairly obvious notions of subrepresentations and isomorphism of representations for quivers.

The latter is generated by a collection of automorphisms gi ∈ GL(Vi), one for each node Vi.

There is also a notion of stability for quivers called θ-stability [69]. For a given repre-

sentation V of a quiver, let n = (ni)i∈I be its dimension vector, such that ni = dimVi.

Let θ = (θi)i∈I be a collection of real numbers. Then a representation is θ-stable if every

nontrivial proper subrepresentation Ṽ with dimension vector ñ satisfies

θ · ñ < θ · n . (2.3.3)

For a given choice of θ, we letMs(n; θ) be the moduli space of stable representations with

dimension vector n, modulo isomorphism — i.e. a quotient of all possible representations

by the isomorphism group
∏

iGL(Vi).

Quivers, D-branes, and supergravity

The relation between quivers, D-branes, and BPS states in supergravity is nicely de-

scribed by Denef in [57]. The transition between a D-brane description and a supergravity
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description is a smooth one, induced by varying the string coupling gs. At large gs|γ|,

a BPS state of charge γ is best described as a backreacting, multi-center, solitonic black

hole in supergravity, whereas at small gs|γ| this state is best described as a bound state of

D-branes living at a single point in R3. There is no contradiction between the multi-center

supergravity state and the single-center D-brane bound state: the 4-dimensional Planck

length

`
(4)
P =

`sgs√
Vol(X)/`6s

, (2.3.4)

which sets the separation between black hole centers, becomes smaller than the string length

at small gs, so that the centers effectively fuse together.

The resulting single-center collection of bound D-branes is held together by open strings

stretched between the branes. Suppose that each distinct D-brane (say Di) supports a

rank-ni vector bundle. The low-energy dynamics of this collection can be described in

nice cases by a (0+1)-dimensional supersymmetric
∏

i U(ni) gauge theory (reduced to the

common noncompact worldvolume of the branes), whose matrix-valued fields describe the

open string excitations between pairs of branes. The classical moduli space of this gauge

theory,MQM , is equivalent to the classical moduli space of the D-branes. MQM is obtained

by solving the F -term equations dW = 0 as well as one D-term equation for every distinct

D-brane involved in the bound state. Each D-term equation depends on a FI parameter

θi, and the values of these parameters are a reflection in the gauge theory of the stability

condition in supergravity.

It was shown by [69] that the moduli space of such a supersymmetric gauge theory is

equivalent (for generic choices of θ) to the moduli space of θ-stable quiver representations

with θ set equal to the FI parameters. The relevant quiver is simply constructed by as-

sociating a node i to every U(ni) gauge field, and arrows from node i to node j to every

bifundamental field representing string states from brane Di to brane Dj . The net number

of arrows between i and j is the same as the intersection number between the corresponding

D-brane charges, 〈γi, γj〉.8 The superpotential for the quiver is the same as the superpo-

tential in the gauge theory. One then looks for θ-stable representations of the quiver with
8It is easy to see that this should be the case in a IIB compactification, where all branes are

special Lagrangian, and open strings live at the intersections between pairs of branes. At least if

all intersections have the same sign, there are 〈γi, γj〉 of them, and this must also be the number of

U(ni)− U(nj) bifundamental fields in the gauge theory.
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dimension vector n = (ni) to describe the D-brane state. An isomorphism of representations

is just a gauge transformation.

Such quiver descriptions of D-brane moduli spaces are known to be accurate for frac-

tional D-branes on orbifolds [70]. They also exist for some non-compact Calabi-Yau models

(like the conifold) in which D-brane central charges can have almost equal arguments [71, 68].

For a compact Calabi-Yau, however, a quiver gives at best a local description of the moduli

space of D-branes near a wall of marginal stability.

As gs → 0, a bound collection of D-branes can undergo tachyon condensation due to

tachyonic modes acquired by open string states between pairs of branes. Indeed, if the bound

collection of D-branes is to be stable, it must undergo tachyon condensation, “decaying”

to a single, potentially complicated, D-brane state at very small gs. It was argued in [57]

that near a wall of marginal stability, the Denef stability condition (2.2.1) is equivalent to

θ-stability for a quiver or gauge theory, and equivalent to the physical requirement of having

tachyonic open string states present.

Categories of branes

Mathematically, D-branes are described by objects in the Fukaya category (in type IIB

compactification) or the derived category of coherent sheaves Dbcoh(X) (in type IIA com-

pactification).9 In each case, BPS branes must satisfy a stability condition — respectively,

Joyce stability [73] and Π-stability [18] — to ensure that they are stable objects that cannot

decay (in a physical type II theory) into independent constituent branes. These stability

conditions depend on the vector multiplet moduli t∞ of the Calabi-Yau compactification,

and are equivalent to Denef stability near walls of marginal stability. Moreover, for quiver

quantum mechanics, they should be equivalent to θ-stability. To summarize, there is a (still

conjectural!) equivalence of stable moduli spaces

MFuk

(
γ̃; Joyce(t∞)

) mirror= MDbcoh

(
γ; Π(t∞)

)
=Ms

(
γ =

∑
niγi; θ(t∞)

)
(2.3.5)

=M(D-brane bound state of charge γ at t∞) ,

and a corresponding equivalence of Hilbert spaces

H′brane
BPS (γ; t∞) = H′sugra

BPS (γ; t∞) . (2.3.6)
9There is a large body of literature on this topic; see [72] for an excellent review.
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As a final comment, note that there exists a general construction of quivers directly

from the categorical description of branes. Suppose that we are in a IIA compactification,

so the relevant category is Dbcoh(X). Given a collection of branes that form a basis for the

associated K-theory on X — i.e. branes whose charges γi generate the charge lattice Γ —

one can form a quiver by associating a node to each such brane, arrows to each Ext1 group

between pairs of branes, and a superpotential computed from the Ext2 groups. Then quiver

representations of dimension vector n such that
∑

i niγi = γ (such a dimension vector can

be found for any γ) should describe D-brane states of total charge γ. Unfortunately, if some

of the branes in the chosen K-theory basis are not rigid, the resulting quiver can have closed

loops (from a node to itself) that are not “obstructed” by the superpotential. In this case,

the moduli space of quiver representations is noncompact, and only describes the D-brane

moduli spaceM(γ) locally. As it is not known how to compactifyM(γ), it is not clear how

to compute the respective H′BPS(γ). A rigid, complete basis for the quiver can be found

in the situations mentioned above: orbifolds and some non-compact Calabi-Yau’s. In some

cases, it is possible to consider a sublattice of Γ′ ⊂ Γ that has a rigid basis of branes, and

to obtain compact moduli spaces for γ ∈ Γ′.

2.4 Invisible walls

In this final section, we examine the “invisible walls” introduced in Section 2.1. We

defined these to be walls in moduli space across which the unrefined index Ω(γ) is continuous,

but the refined index Ωref (γ; y) jumps. The basic mechanism for how this happens can be

understood in a simple situation where HBPS(γ) admits a description as the cohomology

of a brane moduli space M(γ). As t∞ (say) crosses an invisible wall, M(γ) can develop a

singularity and undergo a topology-changing transition, so that the Poincaré polynomial of

M changes while the Euler characteristic does not.

In the vector multiplet moduli space MV , one tempting place to look for such invisible

walls is in internal rearrangements of multi-center black holes that were first considered in

[20] (Section 5.2.3 therein). The basic idea is that as t∞ varies the components of a multi-

center state can change their binding structure, and presumably change the spin structure

of the overall configuration, without ever undergoing a marginal stability transition. We

focus here on this example — and find, amazingly, that multiple factors conspire to assure
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that the refined index remains unchanged.

Multi-center rearrangements

The simplest scenario, involving a 3-center bound state of total charge γ = γ1 + γ2 + γ3

with all component charges primitive, is depicted in Figure 2.5. For one value of moduli

t∞ = t0, an attractor flow first encounters a argZ(γ2) = argZ(γ1 + γ3) wall. If the flow

splits, it eventually forms attractor flow tree (A). If it crosses this wall without splitting, it

forms attractor flow tree (B). However, for a slightly different value of moduli t∞ = t1, the

flow hits a argZ(γ3) = argZ(γ1 + γ2) wall first and must split there to form attractor flow

tree (C). Note that there is no marginal stability wall between t0 and t1.

1 2 3 1 2 3 1 2 3

t0 t0 t1A) B) C)

vs.+

Figure 2.5: A three-center rearrangement.

This scenario may seem somewhat contrived, but it can actually happen in a physical

context: the example given in [20] involves a 3-centered D6−D6−D6 bound state (where

the two D6’s have nontrivial worldvolume flux). Generally, a necessary condition for this

transition is that the three quantities

a = 〈γ2, γ3〉 b = 〈γ3, γ1〉 c = 〈γ1, γ2〉 (2.4.1)

all have the same sign. Assuming (WLOG) they are all positive, it is also necessary that

a > b > c . (2.4.2)

Since the transition does not involve crossing a wall of marginal stability, the unrefined

index Ω(γ) should not change. To see that this is indeed the case, one can use repeated
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applications of the primitive wall-crossing formula (2.2.6). Since H(γ; t0) = H(A)(γ; t0) ⊕

H(B)(γ; t0), the index at t0 is

Ω(γ; t0) = (−1)a−c+b(a− c)bΩ(γ1)Ω(γ2)Ω(γ3) + (−1)c−b+a(c− b)aΩ(γ1)Ω(γ2)Ω(γ3)

= (−1)a+b+c
[
(a− c)b+ (c− b)a

]
Ω(γ1)Ω(γ2)Ω(γ3) . (2.4.3)

The index at t1 is similarly given by

Ω(γ; t1) = (−1)a−b+c(a− b)cΩ(γ1)Ω(γ2)Ω(γ3) , (2.4.4)

and Ω(γ; t0) = Ω(γ; t1) results from the simple fact that (a− c)b+ (c− b)a = (a− b)c.

In the refined case, we can similarly iterate the refined primitive wall-crossing formula

(2.2.7) to find that

Ωref (γ; t0; y)− Ωref (γ; t1; y) (2.4.5)

=
(
[a− c]−y[b]−y + [c− b]−y[a]−y − [a− b]−y[c]−y

)
Ωref (γ1; y)Ωref (γ2; y)Ωref (γ3; y) .

It is a surprising fact that the quantity in parentheses actually vanishes, due to an algebraic

identity of quantum dimensions. Therefore, in this case, there is no change in the refined

index either: although the internal configuration of the bound state is rearranged, the total

structure of the spin is unmodified!

Although the scenario just described is a rather simple example, it forms the basis for

an argument that no invisible walls exist for rearrangements of any multi-center states, at

least when the component black holes have primitive charges. Observe first that if there had

existed an invisible wall in the 3-center rearrangement, it would correspond to all moduli

tinv such that the attractor flow for charge γ from tinv would hit the codimension-2 locus

Y where

argZ(γ1) = argZ(γ2) = argZ(γ3) . (2.4.6)

This is shown schematically in Figure 2.6. The (non-generic!) attractor flow tree from

moduli t∞ on this putative wall undergoes a triple split, serving as a transition between

trees (A) and (B) and tree (C).

Now imagine a general (primitive) multi-center rearrangement, where for some value

of starting moduli t∞ = t0 a certain set T0 of tree topologies are possible; and for some

other value t∞ = t1 some other set T1 of topologies are achieved. A path in moduli space

from t0 to t1 encounters putative invisible walls at some set of moduli t(1), t(2), t(3), ... whose
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1 2 3

t0

1 2 3

t0

1 2 3

t1

+

1 2 3

tinv
invisible wall

Figure 2.6: An invisible wall located at a three-way split.

attractor flows hit points where the arguments of three or more central charges align — at

these points topologies in the set T0 can merge and split, so they eventually transition to

the topologies of T1. However, since a locus where n central charges align is generically of

real codimension (n− 1) inMV , it should be possible to adjust the path from t0 to t1 such

that all the putative invisible walls it encounters correspond to the arguments of just three

central charges aligning. Then the transition between sets T0 and T1 factors completely into

a sequence of 3-center transitions that locally look just like the one in Figure 2.6. Since the

refined index does not change in the 3-center case, it cannot change in the multi-center case

either.

Non-primitive rearrangements

The above analysis can be extended to non-primitive rearrangements, though the rel-

evant scenarios quickly increase in complexity. For example, consider the formation of a

bound state with total charge

γ = γ1 + γ2 + 2γ3 . (2.4.7)

In addition to the three basic tree topologies corresponding to Figure 2.5, there are three

additional options as shown below in Figure 2.7. In a physical scenario like the D6–D6–D6

bound states of [20], only a subset of the potential tree topologies will be realized. Exactly

which ones appear depends on the relative magnitudes of a = 〈γ2, γ3〉, b = 〈γ3, γ1〉, and

c = 〈γ1, γ2〉. Unlike the primitive case, where (2.4.2) was the only nontrivial possibility,

there are multiple parameter regimes for which topology transitions can take place.
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All these regimes, and even more complicated non-primitive examples, are analyzed in

[4]. The astonishing result is that the refined index never changes from one side of a puta-

tive invisible wall to the other. This suggests a

Conjecture: In the vector multiplet moduli space, the refined index can only jump at true

walls of marginal stability.

In other words, we expect that continuity of the unrefined index implies continuity of the

refined index. This conjecture is pleasingly consistent with the general quantum/motivic

wall-crossing formula that will be discussed in Chapter 4. Indeed, if motivic Donaldson-

Thomas invariants are a completely accurate mathematical realization of refined physical

BPS invariants — and so far we have no reason to think otherwise — then motivic wall

crossing predicts the absence of invisible walls.

1 2 33 1 2 33 1 2 33 1 2 33 1 2 331 2 33

A) B) C) D) E) F)

Figure 2.7: Possible multi-center tree topologies in the simplest non-primitive case. Here

we draw two separate γ3 attractor points just to distinguish flows of charge γ3 and 2γ3;

physically, they are the same point in moduli space.

As an explicit illustration of a non-primitive rearrangement, let us take a > b > c > 0,

as in (2.4.2). Then physical considerations predict that (A) and (D) will be realized on one

side of the putative invisible wall, while (B) and (C) will be realized on the other. The

refined semi-primitive wall-crossing formula (2.2.13) predicts in general that

Ωref (γ + 2η; y) = Ωref (γ; y)
(

1
2

[I]2yΩref (η; y)2 − 1
2

[I]y2Ωref (η; y2)− [2I]yΩref (2η; y)
)
,

(2.4.8)

where I = |〈γ, η〉|, and we have suppressed the dependence on moduli t± in Ωref . Using

this formula to work out the total degeneracy Ωref (γ1 +γ2 + 2γ3) for each tree topology, we

find that Ωref
A + Ωref

D = Ωref
B + Ωref

C can only hold in general if each of the following three
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relations is satisfied:

[2a− c]y[2b]y = [c]y[2a− 2b]y + [2b− c]y[2a]y (2.4.9a)

[2a− c]y[b]y2 = [c]y[a− b]y2 + [2b− c]y[a]y2 (2.4.9b)

[2a− c]y[b]2y + 2[a− b]y[a− c]y[b]y = [c]y[a− b]2y + [2b− c]y[a]2y . (2.4.9c)

These are all identities for the quantum dimension.



Chapter 3

Refined Wall Crossing via Melting

Crystals

In this chapter, we specialize to type IIA “compactifications” on the resolved conifold X =

O(−1)⊕O(−1)→ P1. This is a noncompact Calabi-Yau, but can be thought of as the local

(or decompactification) limit of a compact Calabi-Yau into which the conifold is embedded.

In this decompactification limit, all Kähler classes except the class of a distinguished P1

become large. The resolved conifold is a rigid Calabi-Yau, in the sense that it has no

complex structure deformations. Thus MH is trivial and the refined BPS index (2.1.30) is

a well-defined function on the Kähler moduli space MV . (Noncompact toric Calabi-Yau’s

generally have this property.)

The conifold provides an excellent example of the wall-crossing formulas of Section 2.2,

and the relation between BPS indices and standard topological string invariants. In Section

3.1, following [31], we describe the picture of walls, chambers, and unrefined generating

functions for the conifold. We then generalize this picture to our refined invariants, and use

refined wall crossing to produce refined generating functions in all chambers (following our

work in [1]).

The latter part of this chapter is devoted to the study of melting crystal models for coni-

fold invariants and their connection to refined and unrefined wall crossing. The idea that

melting crystals can encode topological invariants of Calabi-Yau threefolds (and describe

topological strings in such backgrounds) goes back to [25] and [74]. There, the topological

vertex, the building block of Gromov-Witten/Gopakumar-Vafa/Donaldson-Thomas parti-

40
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tion functions for noncompact toric Calabi-Yau’s, is reinterpreted as the generating function

of plane partitions — or cubic crystals melting in the corner of a room. However, another

set of crystal models, based more closely on the toric web of a noncompact Calabi-Yau,is

also discussed in this literature. For a conifold, this “other model” consists of pyramid

partitions.

More recently, B. Szendröi [64] used pyramid partitions to describe the representations

of the noncommutative path algebra generated by the conifold quiver (or by a noncommu-

tative resolution of the conifold). This path algebra defined “noncommutative Donaldson-

Thomas theory.” The generating function for pyramid partitions computes the noncom-

mutative Donaldson-Thomas partition function. Jafferis and Chaung [75] then generalized

this approach to the generating function of D6-D2-D0 bound states in all chambers for

the resolved conifold: in each chamber, the meltings of a pyramid crystal with different

boundary conditions determine the corresponding generating function.

In Section 3.3, we very briefly describe the approach used by [75] to identify crystal

boundary conditions with stability conditions. It requires the study of quiver represen-

tations at different choices of θ-stability. In Section 3.3, we then review a mathematical

proof by B. Young [76] that crystals with differing boundary conditions actually reproduce

the generating functions for the resolved conifold, and argue that an algorithm called dimer

shuffling provides a combinatorial realization of wall crossing. Moreover, we use dimer shuf-

fling/wall crossing to relate a limit of pyramid partitions to the topological vertex. Finally,

in Section 3.4, we show that the everything can be refined. By splitting pyramid partitions

on diagonals and thereby modifying the weights assigned to their atoms, we obtain refined

partition functions in all chambers; and we related refined pyramid partitions to the refined

topological vertex. Sections 3.3 and 3.4 are based on our work in [1].

Although we focus mainly on the example of the conifold here, many results should

generalize to more complicated noncompact Calabi-Yau manifolds. Indeed, since [1] was

published, some partial generalizations have appeared in [32, 33].
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3.1 Wall crossing for the conifold

The picture of walls and chambers for the resolved conifold X = O(−1)⊕O(−1)→ P1

was developed in [31]. In order to analyze wall crossing this non-compact Calabi-Yau

properly, one must embed it in a compact global geometry and then look at the subset of

walls and BPS states that survive in the local limit — the limit where all Kähler classes

except that of the P1 become large.

To be more specific, let β be the generator of H4(X; Z), dual to the rigid cycle on

P1 ∈ X. Then, the Kähler parameter in the compact geometry is taken to be

t = z P + Λeiϕ P ′ ∈ H2(X,C) , (3.1.1)

where P · β = 1, P ′ · β = 0, and (P ′)3 > 0. Here, z is a complex number parametrizing

B + iJ on P1, and Λeiϕ is a complex number parametrizing all the other Kähler classes,

whose magnitude Λ one takes to be very large. In the limit Λ → ∞, the phase ϕ still

survives as a finite parameter, and effectively enlarges the Kähler parameter space of the

resolved conifold to have real dimension three.

In the notation of [31], charge of a bound state of a D6 brane, M D2 branes, and N D0

branes can be written as a cohomology class

γ1,M,N = 1−Mβ +NdV ∈ Heven(X; Z), (3.1.2)

where dV is the volume element on X, normalized so that
∫
X dV = 1 (in any compact

approximation). In the local limit Λ → ∞, the central charge of a D6 brane with any

number of bound D2 and D0 branes becomes

Z(1− . . .) ∼ Λ3e3iϕ , (3.1.3)

while the central charge of a D2-D0 bound state (with no D6) is

Z(−Mβ +NdV ) = −Mz −N . (3.1.4)

Thus the parameter ϕ can also be interpreted as the phase of the central charge of the D6

brane. It is fairly easy to see that in the local limit

• The only single-center (single attractor flow) state is a pure D6.
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• The only possible walls of marginal stability correspond to primitive or semi-primitive

splits

1−Mβ +NdV → (1−M ′β +N ′dV ) + (M ′′β +N ′′dV ) . (3.1.5)

In particular, no D6-D6 bound states ever form.

As ϕ is varied while keeping z constant, what effectively happens is that the central charge

of a D6 brane sweeps across moduli space, binding MD2+ND0 fragments whenever walls

of marginal stability

arg e3iϕ = arg(−Mz −N) (3.1.6)

are encountered.

Since the fragments −Mβ + nDV undergo no wall crossings throughout the local-limit

moduli space, one can obtain their unrefined indices from the Gopakumar-Vafa invariants

for the conifold [11, 12]:

Ω(±β +NdV ) = 1 ,

Ω(NdV ) = −2 , (3.1.7)

Ω(−Mβ +NdV ) = 0 otherwise .

This results in the picture of walls and chambers shown in Figure 3.1, covering a large

section of moduli space. There is a core region C̃0, corresponding to Kähler moduli near

the attractor point for the D6 brane, where only the pure D6 brane is stable. Varying ϕ

away from this region, one encounters first a D2+D0 wall, then a D2+2D0 wall, then a

D2+3D0 wall, etc.; at each transition, the D6 brane binds with an arbitrary number of

D2+ND0 particles, à la semi-primitive wall crossing. After crossing all D2+ND0 walls,

at finite distance in moduli space, one encounters the D0 wall, where any number of D0

particles bind to the D6. Then D2 + ND0 particles begin to bind until, after crossing a

D2 +D0 wall, one ends up in the Szendröi region of moduli space.

Generating functions

In the core region of moduli space, the partition function of D6-D2-D0 bound states

Z(q,Q; t∞) =
∑

M,N∈Z
Ω(1−Mβ +NdV ; t∞)(−q)NQM (3.1.8)
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Figure 3.1: Walls and chambers for the refined conifold.

simply takes the value Z(q,Q; C̃0) = 1. By the semi-primitive wall-crossing formula (2.2.14),1

the partition function in chamber C̃n is then

Z(q,Q; C̃n) =
N∏

j=1

(1− qjQ)j , (3.1.9)

which converges to the reduced Donaldson-Thomas partition function immediately before

the D0 wall,

Z(q,Q; C̃∞) = Z ′DT (q,Q) =
∞∏

j=1

(1− qjQ)j . (3.1.10)

On the other side of the wall, the binding of a gas of D0’s (and 2D0’s, 3D0’s, etc.) multiplies

the partition function by the MacMahon function, resulting in the unreduced Donaldson-

Thomas partition function

Z(q,Q;C∞) = ZDT (q,Q) = M(q)2
∞∏

j=1

(1− qjQ)j . (3.1.11)

This is a general phenomenon: when crossing the D6-D0 wall, which exists generically in

the large-volume moduli space of Calabi-Yau’s, the D6-D2-D0 partition function acquires a

factor of M(q)χ(X).

As one progresses to the Szendöi region, the partition function becomes

Z(q,Q;Cn) = M(q)2
∞∏

j=1

(1− qjQ)j
∞∏

k=N

(1− qkQ−1)k . (3.1.12)

1Note that the D2-D0 states are fermionic, whereas the D0 states are bosonic. Thus, the wall-

crossing formula at D2-D0 walls tends to be much simpler than at the D0 wall.
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In the Szendröi region itself, this finally becomes Szendröi’s “noncommutative Donaldson-

Thomas” partition function [64]

Z(q,Q;C1) = ZSz(q,Q) = M(q)2
∞∏

j=1

(1− qjQ)j
∞∏

k=1

(1− qkQ−1)k . (3.1.13)

Refined generating functions

It is not too difficult to generalize the above story, summarized from [31], to our un-

refined invariants. There do not seem to be any invisible walls in the region of moduli

space depicted in Figure 3.1, so we only need worry about marginal stability transitions.

Furthermore, it is clear from an analysis of the moduli space of D0 and D2-D0 branes on

the conifold (or from refined Gopakumar-Vafa invariants [23, 26]) that D2+ND0 states be-

long to fermionic hypermultiplets and ND0 states belong to bosonic vector multiplets —

“bosonic” and “fermionic” referring to their statistics in the internal Hilbert space H′, with

center-of-mass degrees of freedom factored out. Therefore (cf. (2.1.32)-(2.1.33)),

Ωref (±β +NdV ; y) = 1 ,

Ωref (NdV ; y) = −y − y−1 , (3.1.14)

Ωref (−Mβ +NdV ; y) = 0 otherwise .

As in Section 2.1, let us define the refined generating function of D6-D2-D0 states as

Z(q,Q, y; t∞) =
∑

M,N∈Z
Ωref (1−Mβ +NdV ; t∞; y)(−q)NQM . (3.1.15)

It is also convenient to change variables from y and q to q1 and q2, which are more standard

in the literature on topological string invariants, cf. [22, 23, 26, 29]:

q1 = qy , q2 =
q

y
. (3.1.16)
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Then we have

Z(q1, q2, Q; C̃0) = 1 , (3.1.17)

Z(q1, q2, Q; C̃n) =
∏
i,j≥1

i+j≤N+1

(
1 + q

i− 1
2

1 q
j− 1

2
2 Q

)
, (3.1.18)

Z(q1, q2, Q; C̃∞) =
∏

i,j≥1

(
1 + q

i− 1
2

1 q
j− 1

2
2 Q

)
= Zref

DT

′
(q1, q2, Q) , (3.1.19)

Z(q1, q2, Q;C∞) = M(q1, q2)2
∏

i,j≥1

(
1 + q

i− 1
2

1 q
j− 1

2
2 Q

)
= Zref

DT (q1, q2, Q) , (3.1.20)

Z(q1, q2, Q;CN ) = M(q1, q2)2
∏

i,j≥1

(
1 + q

i− 1
2

1 q
j− 1

2
2 Q

) ∏
k,l≥1

k+l≥N

(
1 + q

k− 1
2

1 q
l− 1

2
2 Q−1

)
, (3.1.21)

Z(q1, q2, Q;C1) = M(q1, q2)2
∏

i,j≥1

(
1 + q

i− 1
2

1 q
j− 1

2
2 Q

)(
1 + q

i− 1
2

1 q
j− 1

2
2 Q−1

)
= Zref

Sz (q1, q2, Q) .

(3.1.22)

These generating functions all follow by applying the semi-primitive wall-crossing formula

(2.2.13) at each D2-D0, D0, and D2-D0 wall, starting from the core region C̃0. Of course,

in the core region both refined and unrefined generating functions are trivial, since the only

state in the spectrum is the pure D6.

Observe that on either side of the D0 wall the refined generating function reproduces the

refined Donaldson-Thomas/Gopakumar-Vafa partition function for the resolved conifold, as

calculated with the refined topological vertex [26]. This should be no great surprise: the

stability conditions near the D0 wall are such that all D2-D0 fragments can bind to the

D6, but no D2 − D0 fragments can bind, which appropriately describes the ideal sheaves

in Donaldson-Thomas theory [65]. The extra spin content of the present BPS invariants is

equivalent to the extra SU(2) Lefschetz action used in defining refined Donaldson-Thomas

invariants.

The two sides of the D0 wall are related by a refined MacMahon function, which we

have normalized symmetrically here to be M(q1, q2) =
∏

i,j≥1

(
1 − qi− 1

2
1 q

j− 1
2

2

)
. In general,

when studying BPS invariants one encounters a family of refinements

Mδ(q1, q2) =
∏

i,j≥1

(
1− qi− 1

2
+ δ

2
1 q

j− 1
2
− δ

2
2

)
, (3.1.23)

which all reduce to the ordinary MacMahon function M(q) in the limit y → 1. (In the

“opposite” opposite y → −1, the functions (3.1.23) specialize to M(−q), which describes

the contribution of the 0-dimensional subschemes to the D̂T-invariants of [77].)
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In the Szendröi chamber C1, the generating function (3.1.22) refines Szendröi’s parti-

tion function for noncommutative Donaldson-Thomas theory on the conifold. The answer

here, derived via wall-crossing, agrees with a more rigorous mathematical calculation for an

appropriately refined noncommutative Donaldson-Thomas partition function.2

3.2 Crystals and quivers

In the final two sections of this chapter, we will discuss refined and unrefined crystal-

melting models and “combinatorial wall crossing” for the D6-D2-D0 BPS generating func-

tions of the refined conifold. In order to maintain continuity of ideas, we presently take a

moment to very briefly review the general connection between crystal models, quivers, and

BPS states.

Crystal-melting models were first used to describe BPS states in the Gromov-Witten/

Donaldson-Thomas chamber of noncompact toric Calabi-Yau’s in [25], where it was real-

ized that the topological vertex [24] was a generating function of three-dimensional plane

partitions (or boxes stacked in the corner of a room). In terms of Donaldson-Thomas the-

ory, plane partitions describe fixed points under a torus action in the moduli space of ideal

sheaves on C3 [9, 10]. In the topological vertex formalism, the full toric Calabi-Yau X is

glued together from copies of C3, and the moduli space M of ideal sheaves on X is glued

together from moduli spaces on C3. The Euler characteristic or cohomology of M (hence

Donaldson-Thomas invariants) can then be related to the plane partitions that describe

local fixed points, by standard localization theorems (cf. [78]). The topological vertex was

generalized to a refined vertex (with refined plane partitions) in [26], to describe refined

Gromov-Witten/Donaldson-Thomas invariants.

Szendröi [64] recently described a very different melting crystal model for the noncom-

mutative Donaldson-Thomas chamber C1 of the conifold. In this special, extreme chamber

of MV , the classical moduli spaces M(γ) of BPS states (i.e. the moduli spaces whose

“quantization” give HBPS(γ)) correspond to cyclic representations of the conifold quiver

algebra. All the vector spaces Vi (cf. Section 2.3) of a cyclic representation of a quiver are
2We thank B. Szendröi for discussions on this topic.
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generated by a single basis element e in the vector space Vi′ of some distinguished vertex

i′. The resulting moduli spaces Mγ have a toric action, whose fixed points again describe

partitions, or molten crystal configurations. However, the relevant pyramid crystal, shown

on the left-hand side of Figure 3.4 on page 50, looks very different from the plane partitions

of the topological vertex. Such Szendröi-chamber melting crystal models were generalized

to other noncompact toric Calabi-Yau’s in [79] (see also [80]), but they have not yet been

refined. (We will present a refinement in Section 3.4.)

Of course, there are many more chambers of moduli space, and one would like to have

a crystal model in each one. Jafferis and Chuang [75] realized how to accomplish this by

relating cyclic quiver representations — which lead directly to crystals — with θ-stable rep-

resentations. In the case of noncompact toric Calabi-Yau’s with a good quiver description,

the moduli spaces M(γ; t) at different moduli t ∈ MV correspond to stable quiver repre-

sentations with different θ parameters. Jafferis and Chaung showed that by appropriately

choosing a different basis of coherent sheaves to generate the quiver in each chamber MV ,

θ-stability could always reduce to cyclicity.

As an example of this construction, consider the conifold in the Szendröi chamber C1.

The appropriate representation of the conifold quiver in this chamber is shown in Figure

3.2. The basis of coherent sheaves consists of the D6-brane OX [1], the D2+D0 brane

OP1(−2)[1], and the D2 brane OP1(−1). In the Szendröi chamber, the θ-parameters for the

three corresponding vertices satisfy θ1 > 0, θ2 < 0, and θ3 < 0, respectively. The stable

representations with dimension vector n = (1, N,M +N), corresponding to bound states of

D6+MD2+ND0 branes, then become completely equivalent to the cyclic representations

generated by the D6 vertex.

It is also fairly easy to see in this simple example how pyramid partitions (meltings

of the C1 crystal in Figure 3.4) are identified with representations corresponding to fixed

points of the full moduli space of stable/cyclic representations. Consider a set of atoms

that have been removed in a melting configuration, such as in Figure 3.3. Suppose there

are N white atoms and M + N black atoms. This corresponds to a quiver representation

of dimension n = (dimV1,dimV2,dimV3) = (1, N,M + N), where each white atom is

associated to a basis element of V2 and each black atom to a basis element of V3. To

determine the homomorphisms represented by the arrows A1, A2, B1, B2, draw four arrows

from each white atom to the layer of black atoms below it (and vice verse) as shown on the
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A1,A2

B1,B2

D6

D2+D0
__

D2

θ1>0

θ2<0 θ3<0

Figure 3.2: The conifold quiver for the C1 chamber, with charges of nodes and θ-parameters

as indicated. The superpotential is W = Tr(A1B1A2B2 −A1B2A2B1) .

right side of Figure 3.3. Each A1 arrow connecting two atoms in the finite removed/melted

set corresponds to a ‘1’ entry in the homomorphism matrix representing A1, a mapping

between the basis elements associated to the atoms. All other entries in the matrix A1

are set to zero. Likewise, A2, B1, and B2 are constructed, completing the representation.

It is argued in [64] that every fixed point in the moduli space of cyclic representations is

identified uniquely with a melting configuration like this. Note that the “distinguished”

vector that generates these cyclic representations is basis of the one-dimensional space V1,

which maps to the basis element of V2 corresponding to the single white atom at the top

of the crystal (present in every crystal melting), and maps subsequently to the rest of the

melted atoms. The superpotential conditions dW = 0 for a good quiver representation

simply state that different paths connecting a black or white atom to any atom three layers

under it are equivalent.

3.3 Pyramid crystals and wall crossing

We now consider the (unrefined) melting crystal descriptions of the conifold partition

functions in chambers C̃n and C̃n more carefully. After summarizing the basic result from

[75] in all chambers, we review Young’s mathematical proof that the infinite crystals corre-

sponding to chambers Cn actually give the right answers. Moreover, we argue that dimer

shuffling, to be defined below, provides a combinatorial realization of wall crossing that,

in the limit n → ∞ (the DT chamber), causes pyramid partitions to reduce to the usual
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A1

A2

B1 B2

etc.

Figure 3.3: A set of atoms melted from the C1 crystal (right); and assignment of arrows

A1, A2, B1, B2 to atoms (left).

topological vertex model for the conifold.

nn
qw

qb

C1 Cn Cn
~

Figure 3.4: The “empty room configurations” for the crystals that count BPS states in

chambers Cn and C̃n.

In the chamber Cn, the unrefined generating function of BPS states is obtained by

counting the melting configurations of an infinite pyramid-shaped crystal whose top row

of atoms has length n (sometimes also called an empty room configuration, or ERC, of

length n) [64, 75]. As shown in Figure 3.4, this crystal has two different types of atoms,

corresponding to the two vertices of the Klebanov-Witten quiver. The top edge of the

pyramid always consists of n white atoms. The remainder of the pyramid is then constructed

by placing two black atoms underneath each white atom, oriented vertically, and two white
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atoms underneath each black one, oriented horizontally.3 In order for an atom to be removed

during crystal melting, all atoms lying above it must be removed as well. The partition

function is defined as a sum over all melting configurations (i.e. pyramid partitions) π,

Z(qw, qb;Cn) =
∑
π

qww(π)
w q

wb(π)
b , (3.3.1)

where ww(π) and wb(π), respectively, are the numbers of white and black atoms removed.

It was proven in [76] that this agrees with the partition function (3.1.12),

Z(qw, qb;Cn) = Z(q,Q;Cn) = M(q)2
∞∏

j=1

(1− qjQ)j
∞∏

k=n

(1− qkQ−1)k , (3.3.2)

provided that one makes an n-dependent identification as in [75],

Cn : qw = −qnQ−1 , qb = −q−(n−1)Q . (3.3.3)

Similarly, it was argued in [75] that to obtain the unrefined partition function in the

chamber C̃n one must sum over the melting configurations of a finite crystal configuration

of length n, also shown in Figure 3.4. Then

Z(q,Q; C̃n) =
n∏

j=1

(1− qjQ)j =
∑
π

qww(π)
w q

wb(π)
b (3.3.4)

if one identifies

C̃n : qw = −qnQ , qb = −q−(n+1)Q−1 . (3.3.5)

To proceed further, let us translate the above partition functions into the language of

dimers. The partitions of a length-n pyramid correspond bijectively to the states of a dimer

model on a square lattice with prescribed asymptotic boundary conditions. (We will refer

to these states as partitions as well.) An intuitive way to visualize the correspondence (see

also [76]) is to actually draw dimers on the black and white atoms, as in Figure 3.5. Then

the dimer state corresponding to a given crystal automatically appears when viewing the

crystal from above.

As in [76], we have included an extra decoration on the lattices in these figures: lattice

points are colored with alternating black and white dots. This canonical decoration carries

no extra information, but is very useful in describing weights and wall crossing. We will
3In nature, such a crystal structure, very similar to that of diamond, occurs in moissanite (silicon

carbide) and the semiconductor gallium arsenide.
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~

Figure 3.5: The relation between pyramid partitions and dimer states, illustrated for n = 2.

odd boxes: even boxes:

Figure 3.6: Even and odd boxes of dimers.

also call squares in the dimer lattice even or odd depending on their vertex decorations. As

shown in Figure 3.6, we call two dimers lying on the edges of an even (resp. odd) square

an even (resp. odd) box; an even (resp. odd) box with two horizontal (resp. vertial) dimers

corresponds to a fully uncovered black (resp. white) atom in the crystal.

One can assign weights to each edge in the dimer lattice so that the total weight of a

dimer partition π, defined as4

w(π) =
product of weights of dimerized edges inπ

product of weights of dimerized edges in the ground state of the lattice
, (3.3.6)

agrees with the pyramid partition weight qww(π)
w q

wb(π)
b . To implement such a weighting, it

is sufficient to ensure that the ratio of horizontal to vertical edges in every odd and even

square, respectively, equals qw and q−1
b — corresponding to white atoms being removed and

black atoms being replaced.

Here, it is most convenient to use a weighting that is n-dependent. Vertical edges

are always assigned weight 1. For the horizontal edges, we draw two diagonals on the

dimer lattice, which pass through the lowermost and uppermost odd blocks in the ground
4Technically, both the numerator and denominator in this definition must be “regularized.” For a

given state π, one fixes a large box in the dimer lattice so that all dimers outside the box match the

ground state (corresponding to an unmelted pyramid of length n); then one only multiplies together

the weights of dimers inside this box.
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Figure 3.7: The weights assigned to edges of the dimer lattice of “length n,” for n = 2. (The

n = 2 ground state has been shaded in.) All vertical edges have weight 1 and all horizontal

edges have an additional factor of (−Q)−1/2.

state dimer (i.e. the lowermost and uppermost uncovered white atoms in the unmelted

pyramid). For positive integers a, the horizontal edges 2a − 1 units above and 2a units

below the lower diagonal are assigned weights q(2a−1)/2(−Q)−1/2 and q−(2a−1)/2(−Q)−1/2,

respectively, where a = 0 means that an edge is touching the diagonal. Likewise the

horizontal edges 2a − 1 units below and 2a units above the upper diagonal are assigned

weights q(2a−1)/2(−Q)−1/2 and q−(2a−1)/2(−Q)−1/2, respectively. An example is shown in

Figure 3.7. For a dimer model corresponding to a length-n crystal, one can check that the

ratios of horizontal to vertical edges in every odd block is indeed −qnQ−1 = qw, and in

every even block the ratio is −qn−1Q−1 = q−1
b . Since the resulting weight function itself is

n-dependent in terms of variables q and Q, let us call it wn rather than w.

We let the weight wn be a function acting linearly on formal sums of partitions, and

define Θ(n) to be the formal sum of all possible partitions of a dimer lattice with asymptotic

boundary conditions corresponding to the length-n crystal. Then

Z(qa, qb;Cn) =
∑
π

qww(π)
w q

wb(π)
b = wn(Θ(n)) . (3.3.7)

The operation that we claim is the combinatorial equivalent of wall crossing is described

in [76] as dimer shuffling. It maps partitions of length n to partitions of length n + 1. To

define it, first consider an operation S̃, which maps a dimer state π̃(n), all of whose odd
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S~

Figure 3.8: The directions in which dimers move under the shuffle S̃, and an example of

shuffling a partition of length n = 2 with odd boxes deleted.

blocks have been deleted, to a dimer state π̃(n+1), all of whose even blocks are deleted. By

“deleted” we mean that any dimers forming odd (resp. even) blocks are removed. The

operation S̃ simply moves every non-deleted dimer one unit to the left, right, up, or down,

according to the rules on the left side of Figure 3.8. We show an example of such a shuffling

in Figure 3.8 as well; note that dimers carry their vertex decorations with them when they

move. As a function from the set of {dimer partitions with odd blocks deleted} to the set

of {dimer partitions with even blocks deleted}, S̃ is bijective [76, 81]. The actual dimer

shuffling operation S can then be defined to act on finite “subsums” in Θ(n). It maps each

formal sum5 of 2m dimer states with a fixed set of m odd blocks (for any m) to the finite

formal sum of all dimer states with a fixed set of even blocks in the obvious way: by deleting

odd blocks, applying S̃, and filling in the missing even blocks in all possible combinations.

Letting S act linearly on all such formal sub-sums of Θ(n), it must, because S̃ is bijective,

send Θ(n) precisely to Θ(n+1).

What happens to weights under dimer shuffling? We defined our weight function above

so that the dimers in a partition π̃ of a length-n model with odd boxes deleted do not

change weight at all under the action of S̃. In other words, wn(π̃) = wn+1(S̃(π̃)). The only

change in weights of a genuine dimer state π under the action of S arises from the deletion

of odd blocks and the subsequent creation of new even blocks after shuffling. An important
5We could also define shuffling, as in [76], to act on individual π’s, but this is unnecessary.
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lemma in [76] (which we will refine later in this section) is that the difference between the

number of deleted odd blocks in π̃ and the missing even blocks in S̃(π̃) is always exactly n.

Then a quick exercise shows that for a fixed π̃ with m deleted odd blocks,

wn(sum of π s.t. π agrees with π̃) = (1− qnQ−1)m · wn(π̃) , (3.3.8)

wn+1(sum of π s.t. π agrees with S̃(π̃)) = (1− qnQ−1)m−n · wn+1(S̃(π̃)) . (3.3.9)

(By “agrees with,” we mean aside from deleted blocks.) The ratio of these quantities is

independent of m, immediately proving that

wn(Θ(n)) = (1− qnQ−1)nwn+1(Θ(n+1)) . (3.3.10)

This is precisely the wall-crossing formula between chambers Cn for the conifold.

Formula (3.3.10) suggests (correctly) that we can write the crystal or dimer partition

function for a model of length n as

wn(Θ(n)) =
∞∏

j=n

(1− qjQ−1)j · w∞(Θ(∞)) . (3.3.11)

Of course, the quantity w∞(Θ(∞)) must be the Donaldson-Thomas partition function of the

conifold, and this relation holds because pyramid partitions of length n → ∞ effectively

reduce to the topological vertex formalism of [24, 25] (see also [74, 9, 10]).
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Figure 3.9: The brick-like lattices around the upper and lower vertices as n → ∞. The

ground state state of the dimer is shaded in. As before, each horizontal edge also carries a

weight of (−Q)−1/2

To understand this relation, consider the n-dependent weighting system of Figure 3.7.

In the limit n→∞, the weights of half the edges around the lower vertex (of the pyramid,
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or of the dimer model) acquire infinitely large, positive powers of q and cease to contribute

to the partition function. Likewise for half the edges around the upper vertex. Therefore,

the only dimer partitions around these vertices that can contribute to the length-infinity

partition function involve dimers on edges of the brick-like lattices of Figure 3.9. These

brick-like lattices, however, are equivalent to hexagonal dimer lattices, which correspond to

the three-dimensional cubic partitions that arise in the topological vertex.

~

q2

q1

(q1q2)1/2

q2

q1
(q1q2)1/2

λ=(3,1)

λt=(2,1,1)

Figure 3.10: The map between the length-infinity dimer model and a pair of topological

vertices. (The extra q1 and q2 notations are for the refined case in Section 3.4.)

As argued more carefully in [76], any (nontrivial) configuration of the length-infinity

dimer model can be constructed via a series of moves that amount to 1) cutting out a Young

diagram λ simultaneously from the upper and lower vertices, 2) stacking up individual boxes

to form a cubic partition π−λ around the lower vertex, and 3) stacking up boxes to form

a partition π+
λ around the upper vertex. An example of such a dimer configuration and

its corresponding topological vertex partitions is shown in Figure 3.10. By observing how

dimers shift in these three steps and using our n → ∞ weighting, it is not too hard to
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see that the contributions to the partition function are (−Q)|λ|q
1
2
||λ||2q

1
2
||λt||2 from step (1),

q|π
−
λ | from step (2), and q|π

+

λt | from step (3).6 Therefore, the total partition function is

w∞(Θ(∞)) =
∑

λ

∑
π+

λt , π−λ

(−Q)|λ|q
1
2
||λ||2+ 1

2
||λt||2q|π

+

λt |+|π
−
λ | , (3.3.12)

which is precisely the topological vertex expression for the (unreduced) partition function

of the conifold [24, 25]. In terms of Schur functions, the generating function for three-

dimensional cubic partitions with a single nontrivial asymptotic boundary condition λ

is
∑

πλ
q|πλ| = M(q) q−

1
2
||λ||2sλt(q−ρ) = M(q) q−

1
2
||λ||2sλt(q1/2, q3/2, q5/2, ...). Thus, as ex-

pected,

w∞(Θ(∞)) = Z(q,Q;C∞)

= M(q)2
∑

λ

(−Q)λsλ(q−ρ)sλt(q−ρ) (3.3.13)

= M(q)2
∞∏

j,k=1

(1− qj−1/2qk−1/2Q) (3.3.14)

= M(q)2
∞∏

j=1

(1− qjQ)j .

3.4 Refined crystals

We finally come to the crystal-melting models for refined invariants. We will first de-

scribe the models that compute the refined partition functions in all chambers Cn and C̃n

for the conifold. Then, generalizing Section 3.3, we will prove the formulas in chambers

Cn by showing that a refined version of dimer shuffling leads to refined wall crossing. We

also show that as n→∞ refined pyramid partitions reduce to a pair of refined topological

vertices.

At the level of crystal models, one must draw a series of diagonals on the pyramid

partition, and interpolate weights between the variable q1 on one side of the diagonals and

q2 on the other. To be more specific, consider the pyramid of length n = 1, corresponding

to the Szendröi chamber C1. On this crystal model, we draw a single diagonal as shown in
6We use conventional notation for Young diagrams and three-dimensional cubic partitions; λt is

the transpose of the diagram λ, the rows of λ have lengths λi, |λ| =
∑
λi is the number of boxes in

λ, ||λ||2 =
∑
λ2

i , and |π| is the number of boxes in a three-dimensional partition.
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Figure 3.11; we assign white atoms above the diagonal a weight q+w , white atoms below the

diagonal a weight q−w , and white atoms on the diagonal itself a weight (q+wq
−
w )1/2. All black

atoms are assigned weight qb. Letting w+
w (π), w−w (π), and w0

w(π) be the numbers of white

atoms above, below, and on the diagonal, respectively, in the partition π, and identifying

q+w = −q1Q−1, q−w = −q2Q−1, and qb = −Q, we find

Z(q+w , q
−
w , q

b;C1) =
∑
π

(q+w )w+
w(π)(q−w )w−w (π)(q+wq

−
w )

1
2
w0

w(π)q
wb(π)
b

= Zref (q1, q2, Q;C1) (3.4.1)

= M(q1, q2)2
∞∏

i,j=1

(1− qi− 1
2

1 q
j− 1

2
2 Q)(1− qi− 1

2
1 q

j− 1
2

2 Q−1) .

qw

qb

(qwqw)1/2

qw
-

+

+

-

Figure 3.11: Weights of atoms for the refined partition function in chamber C1.

To generalize to the length-n pyramid, we draw n diagonals, as in the left half of Figure

3.12. It is more natural to work directly in terms of the variables q1, q2, and Q. We

assign weights −qn
1Q
−1 (resp. −q−(n−1)

1 Q) to the white (resp. black) atoms above all the

diagonals and weights −qn
2Q
−1 (resp. −q−(n−1)

2 Q) to the white (resp. black) atoms below

all the diagonals. The diagonals themselves intersect white atoms; we assign the same

weight to all the white atoms on a single diagonal, interpolating between −qn− 1
2

1 q
1
2
2 Q
−1

on the uppermost diagonal and −q
1
2
1 q

n− 1
2

2 Q−1 on the lowermost (multiplying by q11q
−1
2 in

each intermediate step). Similarly, black atoms lie between diagonals, and we assign them

weights ranging from −q−n+ 3
2

1 q
− 1

2
2 Q directly below the upper diagonal to −q−

1
2

1 q
−n+ 3

2
2 Q

directly above the lower diagonal. Multiplying together the weights of all atoms removed in
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a given partition π and summing these quantities over partitions, we obtain the expected

Zref (q1, q2, Q;Cn) = M(q1, q2)2
∞∏

i,j=1

(1− qi− 1
2

1 q
j− 1

2
2 Q)

∏
i≥1, j≥1
i+j>n

(1− qi− 1
2

1 q
j− 1

2
2 Q−1) . (3.4.2)
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Figure 3.12: Refined weights of atoms for chambers Cn and C̃n, with n = 3.

For chambers C̃n, the finite pyramid of length n can also be split by n diagonals, as

shown in the right half of Figure 3.12. If one assigns weights such that (1) when q1 → q

and q2 → q white atoms have weight −qnQ and black atoms have weight −q−(n+1)Q−1; (2)

when moving up one step, either on or inbetween diagonals, the absolute value of the power

of q2 (resp. q1) decreases (resp. increases) by 1; and (3) the assignment is symmetric about

the middle diagonal(s) of the crystal, the resulting partition function is precisely

Zref (q1, q2, Q; C̃n) = M(q1, q2)2
∏

i≥1, j≥1
i+j≤n+1

(1− qi− 1
2

1 q
j− 1

2
2 Q) .

For the remainder of the section we return to the infinite pyramid of length n, gener-

alizing the previous unrefined discussion to refine the connection between shuffling, wall

crossing, and the refined topological vertex (and to prove formula (3.4.2)). We first observe

that in order to equate refined pyramid partitions and their weights with states (configura-

tions) of a dimer lattice, we can use almost the same n-dependent weighting described in

Figure 3.7. Now, for positive integers a, the horizontal edges 2a−1 units above and 2a units

below the lower diagonal are assigned weights q(2a−1)/2
1 (−Q)−1/2 and q

−(2a−1)/2
2 (−Q)−1/2,
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respectively. Likewise the horizontal edges 2a−1 units below and 2a units above the upper

diagonal are assigned weights q(2a−1)/2
2 (−Q)−1/2 and q

−(2a−1)/2
1 (−Q)−1/2. See the example

in Figure 3.13.
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Figure 3.13: Refined weighting of the length-n dimer, for n = 2.

As in the unrefined case, the weights of dimers which are not part of deleted odd or even

blocks do not change during dimer shuffling S̃, due to our n-dependent weighting. In order

to understand the behavior of the deleted blocks, we observe that the shuffling S̃ removes

exactly one (deleted) odd block from each of the n diagonals of a dimer configuration of

length n. Moreover, the remaining (deleted) odd blocks are mapped to deleted even blocks

with exactly the same weights — if (for instance) they were above all the diagonals, then

they remain above all the diagonals. These statements can be proved with careful counting

arguments, considering the number of dimers on and around each diagonal in an arbitrary

configuration before and after shuffling. The result is that when the actual shuffling S maps

a formal sum of states π agreeing with a fixed odd-deleted state π̃ on all but their odd blocks

to a formal sum of states agreeing on all but their even blocks, the weight of this formal

sum changes by exactly
∏

i+j=n+1(1− qi− 1
2

1 q
j− 1

2
2 Q−1); therefore,

wn(Θ(n)) =
∏

i≥1, j≥1
i+j=n+1

(1− qi− 1
2

1 q
j− 1

2
2 Q−1) · wn+1(Θ(n+1)) . (3.4.3)

This, of course, is the refined wall-crossing formula for chambers Cn.
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The crystal-melting or dimer partition function of length n can now be written as

wn(Θ(n)) =
∞∏

i,j=1

(1− qi− 1
2

1 q
j− 1

2
2 Q−1) · w∞(Θ(∞)) . (3.4.4)

The last term, w∞(Θ(∞)), is obtained from a slightly modified version of the refined topo-

logical vertex of [26]. To see this, observe that as n → ∞ the neighborhoods of the upper

and lower vertices of the dimer lattice still reduce to effective brick-like lattices, now shown

in Figure 3.14. In terms of three-dimensional cubic partitions, states of the length-infinity

dimer are again created by 1) cutting out a Young diagram λ simultaneously from the upper

and lower vertices, 2) stacking up individual boxes to form a cubic partition π−λ around the

lower vertex, and 3) stacking up boxes to form a partition π+
λ around the upper vertex. The

creation of the Young diagram λ comes with a fairly simple weight (−Q)|λ|q
1
2
||λ||2

1 q
1
2
||λt||2

2 .

However, both the upper and lower “room corners” are now split along a diagonal, as shown

in Figure 3.10. In the case of the lower corner, boxes stacked below the diagonal come with
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Figure 3.14: Neighborhoods of the refined upper and lower vertices as n→∞.

weight q2, those above the diagonal with weight q1, and those that the diagonal intersects

have weight (q1q2)
1
2 . The situation is reversed for the upper vertex. The generating function

for such three-dimensional cubic partitions with one asymptotic boundary condition λ is

(for example, at the lower vertex)

∑
πλ

q
|πλ|(q1)

1 q
|πλ|(q2)

2 (q1q2)
1
2
|πλ|(0) = M(q1, q2) q

− 1
2
||λt||2

2 sλ(q−ρ
2 ) , (3.4.5)

with M(q1, q2) =
∏∞

i,j=1(1− qi− 1
2

1 q
j− 1

2
2 )−1. Therefore, the length-infinity pyramid partition
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function is

w∞(Θ(∞)) =
∑

λ

∑
π+

λt ,π−λ

(−Q)|λ| q
1
2
||λ||2

1 q
1
2
||λt||2

2

× q|π
−
λ |

(q1)

1 q
|π−λ |

(q2)

2 (q1q2)
1
2
|π−λ |

(0)
q
|π+

λt |(q2)

2 q
|π+

λt |(q1)

1 (q1q2)
1
2
|π+

λt |(0)

= M(q1, q2)2
∑

λ

(−Q)|λ|sλ(q−ρ
2 )sλt(q−ρ

1 )

= M(q1, q2)2
∞∏

i,j=1

(1− qi− 1
2

1 q
j− 1

2
2 Q) . (3.4.6)

Note that expression (3.4.5) differs very slightly from the refined topological vertex used

in [26] (with the boundary condition λ placed along an “unpreferred” direction). The dif-

ference comes from our symmetric choice of normalization, as discussed in Section 3.1. In

[26] the diagonal is assigned to q2 rather than (q1q2)
1
2 , resulting in the fact that the refined

MacMahon function appearing in the analogue of (3.4.5) is not M(q1, q2) =
∏∞

i,j=1(1 −

q
i− 1

2
1 q

j− 1
2

2 )−1, but rather M−1(q1, q2) =
∏
i, j = 1∞(1 − qi−1

1 qj
2)−1 (cf. (3.1.23)). The re-

fined A-model (Gromov-Witten/Gopakumar-Vafa) partition functions calculated with the

refined vertex are always normalized by the prefactor M(q1, q2)χ(X), so in many previous

calculations this has made no difference.



Chapter 4

Refined = Motivic

Despite its obvious conceptual advantages, the direct interpretation of HBPS as the coho-

mology of a moduli space of D-branes or representations of a quiver discussed in Section

2.3 does not generally work. Thinking in terms of quiver representations, and even putting

aside the issue of noncompact moduli spaces (working, for example, with nice rigid noncom-

pact toric Calabi-Yau’s), the general problem is that the moduli spaces M(γ) are highly

singular. In particular, M(γ) is defined as the quotient of an algebraic variety by a “gauge

group”
∏

iGL(ni), so it is mathematically a moduli stack (not a variety). It is often not

clear how to compute its cohomology, or even its Euler characteristic.

Kontsevich and Soibelman address this problem in both unrefined and (we argue) refined

cases in [15]. They work with quiver descriptions of Calabi-Yau’s and D-branes, using

a stability condition very similar to Π-stability1 to define generalized Donaldson-Thomas

invariants. These invariants should reproduce physical BPS indices Ω(γ; t∞) in all chambers

of Kähler moduli spaceMV , in a type IIA duality frame. In [34], it was proven that this is

indeed the case in a rigid limit of 4-dimensional supergravity.

Kontsevich and Soibelman also define a “q-deformed” version of the generalized Donaldson-

Thomas invariants: the motivic Donaldson-Thomas invariants. They essentially use motivic

integration as a well-defined alternative to calculating the cohomology of moduli spaces.

Note, however, that motivic integration can be thought of (from one point of view) as

cutting up a space into copies of the noncompact affine line L, the affine plane L2, the
1I.e. a stability condition based on comparing arguments of central charges of states, also similar

to Denef stability (2.2.1).
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affine space L3, etc. The motivic DT invariants are functions of L1/2, the square root of

the motive of the affine line. One can also use the Schur functor to pass from motivic to

“quantum” invariants, replacing L1/2 with the quantum variable −q1/2. As q1/2 → −1, the

motivic invariants reduce to the classical generalized Donaldson-Thomas invariants. Our

main conjecture is that motivic DT invariants are equivalent to refined invariants in any

chamber of moduli space, with

L1/2 ←→ −q1/2 ←→ y . (4.0.1)

Why should this be true? Besides the potentially naive fact that both motivic and

refined invariants are fairly natural deformations of the classical BPS indices/invariants, we

will argue in this chapter that motivic and refined invariants have identical wall crossing

behavior. In Section 4.1, we will review the classical and motivic wall-crossing formulas

from [15], and then show in Section 4.2 that motivic wall crossing implies primitive and

semi-primitive refined wall crossing. In Section 4.3, we will provide several very explicit

examples of the equivalence between refined and motivic invariants in the context of SU(2)

Seiberg-Witten theory with Nf = 0, 1, 2, 3 flavors — using geometric engineering [82] to view

Seiberg-Witten theory as a rigid limit of string theory compactified on a local Calabi-Yau.

The results of this chapter are based on work in [1, 2].

There also exists direct evidence for the equivalence of refined and motivic invariants

coming from knot theory and the interpretation of knot homologies via BPS invariants of

Calabi-Yau threefolds, as in [29, 30]. In [83], motivic invariants were related to knot Floer

homology. We hope to investigate the motivic nature of knot homologies further in the

future.

4.1 Classical and motivic KS wall crossing

We begin by reviewing the classical (or unrefined) and motivic wall-crossing formulas of

Kontsevich and Soibelman [15]. In the classical case, we borrow some of the notation and

formalism of [34].
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Classical

The classical wall-crossing formula generalizes both the primitive (2.2.6) and semiprim-

itive (2.2.12) cases derived physically in Section 2.2. It encodes the degeneracies of BPS

states in a given chamber of moduli space MV in terms of a non-commuting product of

symplectomorphisms acting on a complexified charge lattice.

Specifically, let Γ be the lattice of D-brane charges (as above), let Γ∨ be its dual, and

let

TΓ = Γ∨ ⊗ C∗ (4.1.1)

be an r-dimensional complex torus, where r is the rank of Γ. One can define functions Xγ on

this complex torus corresponding to any γ ∈ Γ, acting as Xγ :
∑
Caγ

∨
a 7→ exp

∑
Caγ

∨
a (γ).

These satisfy XγXγ′ = Xγ+γ′ , and if {γi} is any basis of Γ, the corresponding Xi = Xγi

will be coordinates on TΓ. The complex torus can moreover be endowed with a natural

symplectic structure

ω =
1
2
〈γi, γj〉−1 dXi

Xi
∧ dXj

Xj
, (4.1.2)

where 〈γi, γj〉−1 is the inverse of the intersection form on Γ (in any chosen basis).

Under this symplectic structure, the family of maps {Uγ}γ∈Γ,

TΓ → TΓ

Uγ : Xγ′ 7→ Xγ′(1− σ(γ)Xγ)〈γ
′,γ〉 . (4.1.3)

are classical symplectomorphisms. The coefficient σ(γ) is just a sign ±1; choosing an

electric-magnetic duality frame (or symplectic splitting)2 for Γ and writing γ = γe + γm,

this coefficient equals (−1)〈γe,γm〉. If one defines vector fields eγ to be the infinitesimal

symplectomorphisms generated by the Hamiltonians σ(γ)Xγ , then the eγ ’s generate a Lie

algebra with relations

[eγ1 , eγ2 ] = (−1)〈γ1,γ2〉〈γ1, γ2〉eγ1+γ2 , (4.1.4)

and the symplectomorphism Uγ can be expressed as

Uγ = exp Li2(eγ) . (4.1.5)
2Technically, one needs to take the charge lattice Γ and the corresponding torus TΓ to be fibered

over the moduli space MV , and an electric-magnetic split only works locally. However, this issue is

relatively unimportant for the present discussion — it would only be relevant if one were interested

in crossing walls all the way around a singularity in MV . See [15] and [34] for further discussion.
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Here, Li2(x) =
∑∞

n=1
xn

n2 is the classical Euler dilogarithm function.

Now, for a given Calabi-Yau, a point t (i.e. t∞) in Kähler moduli space MV , and

a ray in the charge lattice generated by a primitive charge γ, one forms the composite

symplectomorphism

Aγ(t) =
∏

γ′∈ray

U
Ω(γ′;t)
γ′ =

∏
k≥1

U
Ω(kγ;t)
kγ . (4.1.6)

The BPS indices Ω(γ; t) are exactly as in (2.1.27), and this product is over all stable BPS

states in the ray (otherwise Ω(γ; t) obviously vanishes). Notice that Udγ and Ud′γ commute

for any d, d′. The statement of wall crossing is that the product over all rays of states whose

central charges become aligned at a wall of marginal stability,

A(t) =
y∏

rays γ

Aγ(t) =
y∏

states γ′

U
Ω(γ′;t)
γ′ , (4.1.7)

taken in order of increasing phase of the central charge Z(γ, t), is the same on both sides of

the wall.3 In other words, going from t = t+ on one side of the wall to t = t− on the other,

both the BPS indices and the ordering will change but the overall product will remain the

same:
y∏
γ

U
Ω(γ′,t+)
γ′ =

y∏
γ′

U
Ω(γ,t−)
γ′ . (4.1.8)

Motivic

To simplify the description of motivic invariants, we use the Serre functor to pass from

the motive L1/2 to the quantum variable −q1/2, as explained in [15]. The motivic DT

invariants can then be defined as automorphisms of a quantum torus.

The quantum torus T̂Γ in question is simply the quantization of (4.1.1), using the

symplectic structure (4.1.2). The Lie algebra (4.1.4) is q-deformed to an associative algebra

generated by operators {êγ}γ∈Γ, such that

êγ1 êγ2 = q
1
2
〈γ1,γ2〉 êγ1+γ2 (4.1.9)

and ê0 = 1. In particular, these generators obey the commutation relations

[êγ1 , êγ2 ] =
(
q

1
2
〈γ1,γ2〉 − q−

1
2
〈γ1,γ2〉

)
êγ1+γ2 . (4.1.10)

3Being more careful, one must make a choice of “particles” vs. “antiparticles” and only include

the former in this product; so exactly half the rays that align really contribute. This will become

clear in the examples of Sections 4.2 and 4.3.
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In the “classical limit” q1/2 → −1, one finds that

lim
q1/2→−1

(q − 1)−1
(
q

1
2
〈γ1,γ2〉 − q−

1
2
〈γ1,γ2〉

)
= (−1)〈γ1,γ2〉〈γ1, γ2〉 , (4.1.11)

so that the elements

eγ := lim
q1/2→−1

êγ
q − 1

. (4.1.12)

satisfy (4.1.4).

In the original work of Kontsevich and Soibelman, the motivic DT invariants were

composite operators Aγ(t) associated to entire rays. These operators had Taylor expansions

Aγ(t) = 1 +
Ωmot(γ; t; q)
q1/2 − q−1/2

êγ +
( )

ê2γ + . . . , (4.1.13)

with coefficients given by motivic integrals. It has since become clear, however, that these

operators have a factorization property just as in the classical case, cf. [84, 2]. We shall see

that physically, this factorization is both necessary and natural. As in [15], let us introduce

the quantum dilogarithm function

E(x) =
∞∑

n=0

(
− q

1
2x
)n

(1− q) . . . (1− qn)
, (4.1.14)

and define operators

Uγ(êγ) = E(êγ) . (4.1.15)

Then, for a ray of BPS states in Γ generated by a charge γ, we have

Aγ(t) =
∏

γ′∈ ray

∏
n∈Z

Uγ′
(
(−q1/2)nêγ′

)(−1)nΩmot
n (γ′;t)

. (4.1.16)

=
∏
k≥1

∏
n∈Z

Ukγ

(
(−q1/2)nê k

γ

)(−1)nΩmot
n (kγ;t)

. (4.1.17)

for (positive) integral motivic invariants Ωmot
n (γ; t). Of course, we want to claim that

Ωmot
n (γ; t) = Ωn(γ; t) as defined in (2.1.31).

The statement of motivic wall crossing is that the product over all rays of states whose

central charges become aligned at a wall of marginal stability,

A(t) =
y∏

rays γ

Aγ(t) =
y∏

states γ′

∏
n∈Z

Uγ′
(
(−q1/2)nêγ′

)(−1)nΩmot
n (γ′;t)

, (4.1.18)

taking the product in order of increasing phase of central charges, is constant as the wall is

crossed. Or, as in (4.1.8),

y∏
states γ′

∏
n∈Z

Uγ′
(
(−q1/2)nêγ′

)(−1)nΩmot
n (γ′;t+) =

y∏
states γ′

∏
n∈Z

Uγ′
(
(−q1/2)nêγ′

)(−1)nΩmot
n (γ′;t−)

.

(4.1.19)
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Note that the operators Uγ and their products generate q-deformed symplectomorphisms

on the quantum torus with coordinates {êγ} via the conjugation action Ad Uγ .

The quantum dilogarithm will be of central importance in Part II of this thesis, and we

will examine many of its properties further in Section 8.3. For now, however, let us note

that in the classical limit q1/2 → −1 it has the asymptotic expansion

E(x) = exp
(
− 1

2~
Li2(x) +

x~
12(1− x)

+ . . .

)
(4.1.20)

where q1/2 = −e~, thereby relating (conjugation by) Uγ with the classical Uγ . Moreover,

the function obeys a fundamental “pentagon” identity

E(x1)E(x2) = E(x2)E(x12)E(x1) (4.1.21)

when x1x2 = qx2x1 and x12 = q−1/2x1x2 = q1/2x2x1. This will provide the simplest example

of motivic/refined wall crossing in Section 4.2. Finally, it will be useful to note that there

exists an infinite product expansion

E(x) =
∞∏

r=0

(1 + qr+ 1
2x)−1 , (4.1.22)

equivalent to the sum (4.1.14).

4.2 Refined = Motivic

We now show that the motivic wall-crossing formula (4.1.19) is equivalent to the refined

physical formulas (2.2.7)-(2.2.13) in primitive and semi-primitive cases, with −q1/2 = y .

Since the motivic formula reduces to the classical formula (4.1.8) in the limit q1/2 → −1,

this also constitutes an alternative proof that the classical KS formula agrees with unrefined

physical wall crossing. The primitive and semi-primitive arguments given here appear in

our work [1, 2].

Warmup

We begin with the pentagon identity (4.1.21). This can be interpreted as crossing a wall

where two primitive hypermultiplets with charges γ1 and γ2, satisfying

〈γ1, γ2〉 = 1 (4.2.1)
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form a bound state. The corresponding local quiver for this wall is shown in Figure 4.1.

Since êγ1 êγ2 = q êγ1 êγ2 , the pentagon identity implies a wall-crossing formula

Uγ1(êγ1) Uγ2(êγ2) = Uγ2(êγ2) Uγ1+γ2(êγ1+γ2) Uγ1(êγ1) . (4.2.2)

Since these two products are taken in order of increasing argument of the central charge,

this predicts that the bound state of charge γ1 + γ2 is stable on the side of the wall where

argZ(γ2) < argZ(γ1), which is equivalent to the Denef stability condition (2.2.1). More-

over, this formula predicts that the bound state will also be a hypermultiplet, since the

refined index for a hypermultiplet is Ωref (γ; t; y) =
∑

n Ωny
n = 1 (and all exponents here

are 1); this is in agreement with primitive wall crossing (2.2.7).

K1

W=0

t- t+

Z(γ1) Z(γ1)

Z(γ2) Z(γ2)

Z(γ1+γ2)

Figure 4.1: Left: the K1 quiver. Right: the BPS rays of states γ1, γ2, and γ1 + γ2 in the

central charge plane for stable (t+) and unstable (t−) values of moduli.

Note that only states whose central charges actually align at a wall enter the KS wall-

crossing formulas.4 Generically, the charges of these states lie on a 2-dimensional sublattice

of Γ. In the present simple example, this sublattice is generated by charges γ1 and γ2.

Primitive wall crossing

The pentagon-identity example can easily be generalized to an arbitrary primitive wall

crossing. Again, we want to consider two states of charges γ1 and γ2 forming a bound state
4One could consider other states too, but their corresponding operators would just appear at one

side or the other of the product
∏

Uγ and their order would not change.
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as a wall is crossed, but now 〈γ1, γ2〉 can be an arbitrary integer. WLOG, we assume

〈γ1, γ2〉 = I12 > 0 . (4.2.3)

Then the motivic wall-crossing formula looks like

Aγ1(t−) Aγ1+γ2(t−) Aγ2(t−) = Aγ2(t+) Aγ1+γ2(t+) Aγ1(t+) . (4.2.4)

We expect that argZ(γ1) < argZ(γ2) on the unstable side of the wall, and so label the LHS

of the above formula with the parameter t−. Let us also assume that the primitive states

of charges γ1 and γ2 are stable across the wall, so that

Aγ1(t−) = Aγ1(t+) = Aγ1(tms) ,

Aγ2(t−) = Aγ2(t+) = Aγ2(tms) .

The key to understanding this wall-crossing formula (and, indeed, any motivic wall-

crossing formula) is to observe that the associative algebra A generated by êγ1 and êγ2

with

êγ1 êγ2 = qI12/2êγ1+γ2 = qI12 êγ2 êγ1 (4.2.5)

has filtrations of the form

{1} ⊂ A1,0 ⊂ A1,1 ⊂ A2,1 ⊂ . . . ⊂ A∞,∞ = A , (4.2.6)

where at level Am,n one includes q-polynomials in êγ1 and êγ2 of degrees no more than m

and n, respectively. For practical purposes, this means that we can consistently expand

a formula like (4.2.4) as a series in êγ1 and êγ2 , keeping any degree we want in these two

generators. After commuting all products êm
′

γ1
ên
′

γ2
in a uniform manner, we can relate the

indices Ωmot
n (γ; t) on both sides by simply equating coefficients of like powers.

In this case, let us define

Ωmot(γ; t; q) =
∑
n∈Z

(−q1/2)nΩmot
n (γ; t) , (4.2.7)

in analogy to (2.1.31) in the refined case. It is then fairly clear from (4.1.14)-(4.1.17) that

for a primitive ray, such that only k = 1 contributes to (4.1.17), we have

Aγ(t) = 1 +
Ωmot(γ; t; q)
q1/2 − q−1/2

êγ + . . . . (4.2.8)
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Substituting this for γ = γ1, γ2, γ1 + γ2 on the two sides of (4.2.4) and keeping only terms

of first order in êγ1 and êγ2 , we find that the coefficients of 1, êγ1 , and êγ2 agree trivially,

whereas the terms of order êγ1 êγ2 are

Ωmot(γ1; tms; q)Ωmot(γ2; tms; q)
(q1/2 − q−1/2)2

êγ1 êγ2 +
Ωmot(γ1 + γ2; t−; q)

q1/2 − q−1/2
êγ1+γ2

=
Ωmot(γ1; tms; q)Ωmot(γ2; tms; q)

(q1/2 − q−1/2)2
êγ2 êγ1 +

Ωmot(γ1 + γ2; t+; q)
q1/2 − q−1/2

êγ1+γ2 (4.2.9)

Using the commutation relations (4.2.5) to (say) push êγ2 all the way to the left in each

term, this immediately implies that

∆Ωmot(γ1 + γ2; t− → t+; q) = −q
I12/2 − q−I12/2

q1/2 − q−1/2
Ωmot(γ1; tms; q) Ωmot(γ2; tms; q) , (4.2.10)

which is equivalent to the refined primitive formula (2.2.7) upon identifying Ωmot(γ; t; q) =

Ωref (γ; t; y). We can write the prefactor in (4.2.10) as the quantum dimension [I12]q1/2 .

Semi-primitive wall crossing

To obtain the refined semi-primitive formula (2.2.13), suppose again that states with

primitive charges γ1 and γ2, satisfying 〈γ1, γ2〉 = I12 ≥ 0, bind as a wall is crossed at

t = tms. This time, however, consider bound states of all charges γ1 + Nγ2 with N ≥ 1.5

Also assume, for simplicity, that no states of charge γ1 +Nγ2 exist in the spectrum on the

unstable side of the wall. Adding in such states is possible, and results in a derivation of

the refined version of (2.2.14) rather than (2.2.13), but it demonstrates no new features.

The resulting motivic wall-crossing formula must take the form

Aγ1(t−) Aγ2(t−) = Aγ2(t+)× · · ·Aγ1+3γ2(t+) Aγ1+2γ2(t+) Aγ1+γ2(t+) Aγ1(t+) . (4.2.11)

As in the primitive case, we assume that

Aγ1(t−) = Aγ1(t+) = Aγ1(tms) ,

Aγ2(t−) = Aγ2(t+) = Aγ2(tms) ,

5Note that it is not physically possible to have both γ1 + Nγ2 and γ1 − Nγ2 bound states. We

choose one or the other, and for KS formulas the choices are related by the particle-antiparticle split

of the charge lattice.
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and will suppress the parameter t in these operators. We want to expand each operator,

keeping first-order terms in êγ1 and all orders in êγ2 . In fact, êγ2 shall become the generating

function variable x. We have:

Aγ1 = 1 +
Ωmot(γ1; q)
q1/2 − q−1/2

êγ1 + . . . , (4.2.12)

and
←∏

N≥0

Aγ1+Nγ2(t+) = 1 +
∞∑

N=0

Ωmot(γ1 +Nγ2; t+; q)
q1/2 − q−1/2

êγ1+Nγ2 + . . .

= 1 +
∞∑

N=0

Ωmot(γ1 +Nγ2; t+; q)
q1/2 − q−1/2

q
NI12

2 êNγ2
êγ1 + . . . . (4.2.13)

For Aγ2 , we keep all k terms in (4.1.17) and use the infinite product formula (4.1.22) to

write

Aγ2 =
∞∏

k=1

∏
n∈Z

E
(
(−q1/2)nê k

γ2

)Ωmot
n (kγ2)

. (4.2.14)

Now, observe that for any two charges γ, η with I = 〈γ, η〉 > 0, the quantum dilogarithm

satisfies the commutation relation

êγ E(êη) = êγ

∞∏
r=0

(1 + qr+ 1
2 êη)−1 =

∞∏
r=0

(1 + qr+ 1
2
+I êη)−1êγ =

[ I−1∏
r=0

(1 + qr+ 1
2 êη)

]
E(êη) êγ ,

and similarly for any q-shifted versions of its argument êη. Therefore, the LHS of (4.2.11)

can be written as

LHS :
(

1 +
Ωmot(γ1; q)

q
1
2 − q−

1
2

êγ1 + ...

)
Aγ2

= Aγ2

(
1 +

Ωmot(γ1; q)

q
1
2 − q−

1
2

( ∞∏
k=1

∏
n∈Z

kI12−1∏
r=0

(
1 + (−q

1
2 )nqr+ 1

2 êkγ2

)Ωmot
n (kγ2)

)
êγ1 + ...

)
,

and the RHS as

RHS : Aγ2

(
1 +

1

q
1
2 − q−

1
2

∞∑
N=0

Ωmot(γ1 +Nγ2; t+; q)q
NI12

2 êNγ2
êγ1 + ...

)
.

Setting these two sides equal and matching the coefficients of êγ1 leads to

∞∑
N=0

Ωmot(γ1 +Nγ2; t+; q)xN = Ωmot(γ1; q)
∞∏

k=1

∏
n∈Z

kI12−1∏
r=0

(
1 + (−q

1
2 )nqr+ 1

2
− I12

2 xk
)Ωmot

n (kγ2)
,

(4.2.15)

where

x = q
I12
2 êγ2 . (4.2.16)
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After a shift in the product in r and the identifications −q1/2 = y and Ωmot = Ωref , formula

(4.2.15) becomes identical to the refined semi-primitive wall-crossing formula (2.2.13).

The careful reader may have wondered why it was consistent to simply declare that

there were no γ1 + Nγ2 states (with N ≥ 2) when deriving the primitive wall-crossing

formula earlier in this section. The answer should now be clear: the primitive formula

(4.2.4) can simply be though of as the part of the semi-primitive formula (4.2.11) that is

at most first-order in êγ2 . (Or, more properly, this would be true had we added γ1 + Nγ2

states to the unstable side of the semi-primitive formula.) So there could have been higher

γ1 + Nγ2 states in the primitive formula, but we would not have seen them at first order.

Likewise, the semi-primitive formula is best thought of as a consistent truncation of the full

wall-crossing formula, in a theory with all possible combinations of bound BPS states.

4.3 Examples: SU(2) Seiberg-Witten theory

In this final section, we provide several examples of semi-primitive and non-semi-primitive(!)

refined/motivic wall crossing using 4-dimensional N = 2 gauge theory with gauge group

SU(2) and Nf < 4 flavors of fundamental matter [85, 86]. We first begin with a review

of geometric engineering of these theories and their physical moduli spaces and spectra. A

much more thorough analysis of physical and motivic wall crossing in N = 2 gauge theory

is found in [2].

Gauge theory via string compactification

The construction of 4-dimensional N = 2 gauge theories in the context of string theory

compactifications has come to be known as geometric engineering [82]. To obtain SU(N)

gauge theory in a type IIA compactification, one begins with a non-compact Calabi-Yau

threefold XN that is a fibration of a 2-complex-dimensional AN−1 ADE singularity over P1.

This geometry can arise from a compact K3 fibration over P1 — dual to heterotic string

theory on K3× T 2 [87] — in the limit of K3 moduli space where the K3 fibers develop an

AN−1 singularity and all Kähler moduli not associated with the singularity become large.

This results in an SU(N) supergravity theory. As the ADE singularity is blown up it
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turns into a string of N − 1 P1’s fibered over the base P1, whose sizes correspond to the

eigenvalues of the scalar Higgs field of the SU(N) vector multiplet, and break the gauge

group generically to U(1)N−1. To decouple gravity while keeping the W -boson masses and

the four-dimensional gauge coupling constant, one takes the size of the base P1 to infinity

and the overall size of the fiber P1’s to zero [82]. This finally produces N = 2 SU(N)

super-Yang-Mills theory on the Coulomb branch.

The resolved local Calabi-Yau XN has 2N compact even-dimensional cycles. Of these,

2N−2 survive the rigid limit and generate the lattice of electric and magnetic charges in the

gauge theory. For example, for SU(2) theory, X2 can simply be taken as the total space of

the canonical line bundle over P1
(fiber)×P1

(base). The dimensions of its compact homology are

(b0, b2, b4, b6) = (1, 2, 1, 0). Electric charges, such as the charge of the W -boson, correspond

to D2 branes wrapped on the fiber P1, while magnetic charges of solitons correspond to

D4 branes wrapped on the entire P1 × P1, cf. [71]. The low-energy theory of the D-branes

and the resulting BPS states in the gauge theory can be described by representations of a

“subquiver” of the quiver of the Calabi-Yau. In the case of pure SU(2) theory, it is the K2

Krönecker quiver of Figure 4.2 [71, 88].

K2

W=0

Figure 4.2: The K2 Krönecker quiver.

To add matter to the SU(N) theories, similar local Calabi-Yau’s with extra base P1’s

can be used [89, 90]. The states of the gauge theory are still described by a 2N−2 sublattice

of independent D-brane charges, but the relevant quivers are somewhat more complicated.

Note that there exist type IIB mirrors of these IIA compactifications that encode the

Seiberg-Witten curves and the electric-magnetic duality of the gauge theories in a much

more explicit manner — though we are less interested in them here because we seek a

direct connection with the IIA formalism of Kontsevich-Soibelman. The mirrors of the

noncompact Calabi-Yau’s XN ’s are given by equations of the form

xy = H(z, w) , (4.3.1)
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where H(z, w) = 0 is a Riemann surface whose complex structure corresponds to the Kähler

parameters of XN . In a certain limit of the complex structure (corresponding to decoupling

supergravity from the gauge theory) this becomes the Seiberg-Witten curve [82] (see also

[63]). BPS states are given by compact D3-branes, which descend to non-critical strings on

the Riemann surface [91, 92]. It is then easy to identify which branes generate electric and

magnetic charges from the corresponding electric and magnetic cycles on the Seiberg-Witten

curve.

Moduli spaces and spectra

The moduli space of the Coulomb branch of SU(2) Seiberg-Witten theory is a limit,

or slice, of the Kähler moduli space MV for the Calabi-Yau X2 (or the corresponding

Calabi-Yau’s that include fundamental matter). This moduli space is parametrized by the

complex-valued Casimir u of the Higgs field [85, 86]. We draw its structure for theories with

Nf = 0, 1, 2, and 3 flavors of matter in Figure 4.3, following [93]. When Nf < 4, the gauge

theory is asymptotically free. The large-|u| region corresponds to weak coupling, while the

small-u region corresponds to strong coupling, and the two regions are separated by a wall

of marginal stability W. The central charge of a state with electric charge q and magnetic

charge p is given by

Z(p, q;u) = a(u)q + aD(u)p , (4.3.2)

where a(u) and aD(u) can be identified as period integrals on the Seiberg-Witten curve or,

more relevantly for us, central charges of D2 and D4 branes in X2. The wall of marginal

stability is then defined by the condition

arg a(u) = arg aD(u) , or
a(u)
aD(u)

∈ R . (4.3.3)

Since the charge lattice is two-dimensional, the central charges of all states align on W.

In each case Nf = 0, 1, 2, 3, there are magnetically-charged states that become massless

at singular points on W. The BPS spectrum at any point in the weak coupling region can

be represented in terms of single-center attractor flows that end on one of these singular

points, as well as multi-center attractor flows that split on W into sums of flows to the

singular points [16]. This leads to an infinite spectrum. In contrast, the strong-coupling
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strong

weak

strong

weak

R+

R-

R0

R+

R-

Nf=0,2,3 Nf=1

Figure 4.3: The approximate structure of the wall of marginal stability separating weak and

strong coupling in the u-plane of Seiberg-Witten theories. We also indicate different local

regions within the strong-coupling chamber. For Nf = 0, 2, 3, there are BPS states of two

different charges that become massless at singularities in the moduli space (the dots here),

and for Nf = 1 there are three.

spectrum at points inside the wall of marginal stability is simply represented by the finite

number of single-center flows to the singularities. Note that the Coulomb branch of an

N = 2 gauge theory only possesses a global version of special geometry, as opposed to

the local special geometry of supergravity that was described in Section 2.1; nevertheless,

a simplified version of the attractor mechanism still functions and BPS states can still be

described in terms of attractor flow trees [94].

The spectra of Nf = 0, 1, 2, 3 SU(2) theories was carefully derived in [93] using field-

theory methods and global properties of the moduli space (see also [91] for an alternative

approach). The fundamental electric charge q = 1 is half the charge of the W -boson. The

weak-coupling spectra include the W±-bosons with (q, p) = ±(2, 0) and the fundamental

quarks with (q, p) = ±(1, 0). They also contain the monopole and dyons that become mass-

less at singularities on the Coulomb branch and all their conjugates under the monodromy

around u =∞ (which must be a symmetry of the weakly-coupled theory). This monodromy

acts as

M∞ : (q, p)→ (q +Nf p, p) (4.3.4)
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on the charge lattice. Altogether, one finds weak-coupling spectra

Nf = 0 : (2, 0) , (2n, 1) n ∈ Z , (4.3.5)

Nf = 1 : (2, 0) , (1, 0)2 , (n, 1) n ∈ Z , (4.3.6)

Nf = 2 : (2, 0) , (1, 0)4 , (n, 1)2 n ∈ Z , (4.3.7)

Nf = 3 : (2, 0) , (1, 0)6 , (n, 1)4 (2n+ 1, 2) , n ∈ Z . (4.3.8)

We have suppressed ± signs for antiparticles, and the subscripts here denote nontrivial

multiplicities. At strong-coupling, inside the wall of marginal stability, the spectrum has

no single canonical description, due to the nontrivial fibration of the charge lattice over the

moduli space. In some of the regions indicated in Figure 4.3, the spectra can be described

as

Nf = 0 : [R+] (2, 1) , (0, 1) [R−] (−2, 1) , (0, 1) (4.3.9)

Nf = 1 : [R0] (0, 1) , (−1, 1) , (1, 0) [R+] (2,−1) , (−1, 1) , (1, 0)

[R−] (0, 1) , (1, 1) , (1, 0) (4.3.10)

Nf = 2 : [R+] (1,−1)2 , (0, 1)2 [R−] (1, 1)2 , (0, 1)2 (4.3.11)

Nf = 3 : [R+] (−1, 2) , (1,−1)4 [R−] (−1, 2) , (0, 1)4 . (4.3.12)

It is also possible to generate the spectra from stable quiver representations. For exam-

ple, the Nf = 0 case is derived from the K2 quiver of Figure 4.2 in [71] (see also [95]). The

Nf = 1 case appears in [2].

Refined/motivic wall crossing

We now show that the above physically-determined spectra agree perfectly with motivic

wall crossing.

Consider the case Nf = 0. Let us choose a basis {γ1, γ2} of the charge lattice related to

electric and magnetic charges (q, p) by

γ1 = (1,−1) , γ2 = (0, 1) (4.3.13)

with 〈γ1, γ2〉 = 1 (this is not necessary but will be convenient later). We also choose

“particles” (as opposed to antiparticles) to have q > 0 for any p, or q = 0 and q > 0. All



78

states except the W boson come in hypermultiplets, and should be represented by operators

Um,n := Emγ1+nγ2(êγ1+γ2) ∼ charge (m,n−m) (4.3.14)

in the motivic wall-crossing formula. The W -boson comes in a vector multiplet and should

be represented by an operator

Uvect
2,2 := E2γ1+2γ2(−q1/2ê2γ1+2γ2)−1 E2γ1+2γ2(−q−1/2ê2γ1+2γ2)−1 . (4.3.15)

Near the wall of marginal stability, the central charges of γ1 and γ2 coincide. Slightly away

from this wall, we either have argZ(2γ1 + γ2) < argZ(γ2) or argZ(2γ1 + γ2) > argZ(γ2).

Identifying the former with strong coupling and the latter with weak coupling, the BPS

spectra (4.3.5) and (4.3.9) (in region R−) lead to a predicted motivic wall-crossing formula

U2,1 U0,1
?= U0,1 U2,3 U4,5 U6,7 · · ·Uvect

2,2 · · ·U6,5 U4,3 U2,1 . (4.3.16)

This formula is in fact true. It can be checked algebraically, order by order in êγ1 and

êγ2 . (This is in fact one reason for our choice of basis (4.3.13) — so no negative powers of

ê’s appear, making it possible to easily truncate series at any degree.) It is also possible

to prove (4.3.16) directly by deriving motivic invariants from the K2 quiver [2]. After the

arguments in Section 4.2, it may not be too surprising that this formula works; however, in

our research it preceded the proof of refined wall crossing from motivic wall crossing, and

provided the first hint that the factorization property (4.1.16) should hold.

Using the same basis (4.3.13) and choice of particles vs. antiparticles, the BPS spectra

for Nf = 1 and Nf = 2 theories predict motivic wall-crossing formulas

Nf = 1 : U1,0 U1,1 U0,1 = U0,1 U1,2 U2,3 U3,4 · · ·U2
1,1 Uvect

2,2 · · ·U3,2 U2,1 U1,0 (4.3.17)

Nf = 2 : U2
1,0 U2

0,1 = U2
0,1 U2

1,2 U2
2,3 U2

3,4 · · ·U4
1,1 Uvect

2,2 · · ·U2
3,2 U2

2,1 U2
1,0 . (4.3.18)

With a slightly different choice of particles vs. antiparticles, the following is obtained,

Nf = 3 : U1,−1 U4
0,1 = U4

0,1 U1,3 U4
1,2 U3,5 U4

2,3 · · ·U6
1,1 Uvect

2,2 · · ·U4
2,1 U3,1 U4

1,0 U1,−1 .

(4.3.19)

Algebraically, the validity of all these formulas follows directly from the validity of (4.3.16).

They can be derived by commuting operators U1,1 through the infinite products on the

RHS using the pentagon relation; a sample proof for Nf = 1 appears at the end of this

section.
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Formulas (4.3.17), (4.3.18), and (4.3.19) correspond to the strong-coupling spectra in

regions R0, R+, and R−, respectively. This choice of regions is correlated to the choice of

split between particles and antiparticles. For example, for Nf = 1 the following formulas

also hold:

Nf = 1 [R+] : U2,1 U1,1 U−1,0 = U−1,0 U0,1 U1,2 U2,3 U3,4 · · ·U2
1,1 Uvect

2,2 · · ·U3,2 U2,1

Nf = 1 [R−] : U0,−1 U1,1 U1,2 = U1,2 U2,3 U3,4 · · ·U2
1,1 Uvect

2,2 · · ·U3,2 U2,1 U1,0 U0,−1 .

Altogether, we find that the physical derivations of refined BPS spectra agree perfectly with

mathematical motivic formulas.

Proving Nf = 0 : Nf = 1, 2, 3

The key to deriving (4.3.17), (4.3.18), (4.3.19) from (4.3.16) is to observe that all terms

on the RHS are of the form Uk,k+1 or Uk+1,k, and that, due to the pentagon identity

(4.1.21),

U1,1 Uk,k+1 = Uk,k+1 Uk+1,k+2 U1,1 , Uk+1,k U1,1 = U1,1 Uk+2,k+1 Uk+1,k . (4.3.20)

Therefore, fundamental quark operators U1,1 can be commuted through the semi-infinite

products on the RHS of (4.3.16) in pairs to obtain the other formulas. For example, for

Nf = 1 we have

U0,1 U1,2 U2,3 U3,4 U4,5 · · ·U2
1,1 Uvect

2,2 · · ·U5,4 U4,3 U3,2 U2,1 U1,0

= U1,1

[
U0,1 U2,3 U4,5 · · ·Uvect

2,2 · · ·U6,5 U4,3 U2,1

]
U1,1 U1,0

Nf=0
= U1,1

[
U2,1 U0,1

]
U1,1 U1,0

= U1,1 U2,1 U1,0 U0,1

= U1,0 U1,1 U0,1 .

The last two lines follow by further applications of the pentagon identity (4.1.21).
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Chern-Simons Theory with

Complex Gauge Group
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Chapter 5

Perturbation theory around a

nontrivial flat connection

We now change focus to consider Chern-Simons theory with noncompact, complex gauge

group, and in particular the various approaches to computing its perturbative partition

functions that were outlined in the Introduction.

We begin here by reviewing some basic features of Chern-Simons theory with complex

gauge group and its perturbative expansion, following mainly [39] and [40]. The notations

we introduce will be used throughout Part II. We then pursue the most traditional approach

to Chern-Simons theory, based on the evaluation of Feynman diagrams. This analysis will

show that the perturbative coefficients in the Chern-Simons partition functions have a very

special structure, motivating the definition of “arithmetic TQFT.” We define a “geometric”

flat SL(2,C) Chern-Simons connection that is related to the hyperbolic structure on a

hyperbolic three-manifold M , and conjecture that in the background of this connection

SL(2,C) Chern-Simons theory is such an arithmetic TQFT. In the last section of the

chapter, we substantiate this claim with explicit computations for the knots 41 and 52.

The discussions of Feynman diagrams and arithmeticity follow [3].

Starting in Section 5.2, some understanding of hyperbolic geometry will be helpful. We

will introduce several basic concepts as needed, but also refer the reader to Section 8.1 for

a more thorough treatment of hyperbolic three-manifolds. Similarly, the computations in

Section 5.4 will require some familiarity with the Volume Conjecture, which is described

much more fully in Sections 6.2 and 7.4.

81
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5.1 Basics

Let us denote a compact gauge group by G, its noncompact complexification by GC,

and the respective Lie algebras of these groups as g and gC. We can assume that G, GC are

reductive. As noted in the Introduction, the Chern-Simons action for a complex gauge field

A can be written as a sum of two (classically) topological terms, one for A and one for Ā:

S =
t

8π

∫
M

Tr
(
A ∧ dA+

2
3
A ∧A ∧A

)
(5.1.1)

+
t̄

8π

∫
M

Tr
(
Ā ∧ dĀ+

2
3
Ā ∧ Ā ∧ Ā

)
.

The field A here is a locally-defined gC-valued one-form on the euclidean three-manifold M .

The two coupling constant t and t̄ can be written as

t = k + σ , t = k − σ , (5.1.2)

and different physical unitarity structures force the “level” k to be an integer and σ to be

either real or imaginary [39]. For example, in the case GC = SL(2,C), the above action can

be recast as the action for euclidean gravity with negative cosmological constant by writing

A as a vielbein and a spin connection, A = −(w+ ie) [96], and under the resulting unitarity

structure the coupling σ must be real. Unlike in the case of compact gauge group, the level

k does not undergo a shift in the quantum theory [44].

It is explained in [39] that introducing a noncompact gauge group is a perfectly accept-

able option in Chern-Simons theory. In Yang-Mills theories, a noncompact gauge group

would lead to a kinetic term that is not positive definite, and hence to unbounded energy

(or an ill-defined path integral). In Chern-Simons theory with complex gauge group the

kinetic term is indefinite, but this is no problem: the Hamiltonian of the theory vanishes

due to topological invariance, so the “energy” is always exactly zero.

The classical solutions, or extrema of the action (5.1.1), are flat connections, i.e. con-

nections that obey

A+A ∧A = 0 , Ā+ Ā ∧ Ā = 0 . (5.1.3)

Flat GC-connections on a three-manifold M are completely determined by their holonomies,

i.e. by a homomorphism

ρ : π1(M)→ GC , (5.1.4)
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up to conjugacy (i.e. up to gauge transformations). Thus the moduli space of classical

solutions can be written as

Mflat(GC;M) = Hom(π1(M), GC)//GC . (5.1.5)

As discussed in the introduction, one can then consider perturbation theory around a given

flat connection A(ρ) ∈ Mflat(GC;M) corresponding to the homomorphism ρ. Since the

classical action is a sum of terms for A and Ā, the perturbative expansion of the partition

function around A(ρ) will factorize as (cf. [40, 41])

Z(ρ)(M) = Z(ρ)(M ; t)Z(ρ)(M ; t̄) . (5.1.6)

One may hope that the full non-perturbative path integral obeys a relation of the form

Z(M) =
∫
DA eiS =

∑
ρ

Z(ρ)(M ; t)Z(ρ)(M ; t̄) , (5.1.7)

summing over all flat connections. Here, however, we merely focus on the perturbative

pieces Z(ρ)(M ; t).

By standard methods of quantum field theory — essentially a stationary phase approx-

imation to the path integral — each component Z(ρ)(M ; t) can be expanded in inverse

powers of t. Explicitly, let us define Planck’s constant

~ =
2πi
t

(5.1.8)

and expand

Z(ρ)(M ; ~) = exp

(
1
~
S

(ρ)
0 − 1

2
δ(ρ) log ~ +

∞∑
n=0

S
(ρ)
n+1~

n

)
. (5.1.9)

The coefficients S(ρ)
n (and δ(ρ)) completely characterize Z(ρ)(M ; t) to all orders in pertur-

bation theory.

5.2 Coefficients and Feynman diagrams

Let us examine each term in the expansion (5.1.9) more carefully. As already mentioned

in the introduction, the leading term S
(ρ)
0 is the value of the classical holomorphic Chern-

Simons functional
1
4

∫
M

Tr
(
A ∧ dA+

2
3
A ∧A ∧A

)
(5.2.1)
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evaluated on a flat gauge connection A(ρ) that corresponds to a homomorphism ρ. It is also

easy to understand the integer coefficient δ(ρ) in (5.1.9). The homomorphism ρ defines a

flat GC bundle over M , which we denote as Eρ. Letting H i(M ;Eρ) be the i-th cohomology

group of M with coefficients in the flat bundle Eρ, the coefficient δ(ρ) is given by

δ(ρ) = h1 − h0 , (5.2.2)

where hi := dimH i(M ;Eρ). Both this term and S(ρ)
1 come from the “one-loop” contribution

to the path integral (1.0.2); S(ρ)
1 can be expressed in terms of the Ray-Singer torsion [97] of

M with respect to the flat bundle Eρ (cf. [13, 44, 98]),

S
(ρ)
1 =

1
2

log
(
T (M ;Eρ)

2

)
. (5.2.3)

b)a)

Figure 5.1: Two kinds of 2-loop Feynman diagrams that contribute to S(ρ)
2 .

The geometric interpretation of the higher-order terms S(ρ)
n with n > 1 is more interest-

ing, yet less obvious. To understand it better, we note that the saddle-point approximation

to the path integral (1.0.2) gives an expression for S(ρ)
n as a sum of Feynman diagrams

with n loops. For example, the relevant diagrams for n = 2 are shown schematically in

Figure 5.1. Since the Chern-Simons action (5.1.1) is cubic, all vacuum diagrams (that is,

Feynman diagrams with no external lines) are closed trivalent graphs; lines in such graphs

have no open end-points. Therefore, a Feynman diagram with n loops (n > 1) has 3(n− 1)

line segments with end-points meeting at 2(n − 1) trivalent vertices. Each such diagram

contributes an integral of the form (cf. [42])∫
M2n−2

L3n−3 , (5.2.4)

where M2n−2 denotes a product of 2n− 2 copies of M and L3n−3 denotes a wedge product

of a 2-form L(x, y) ∈ Ω2(Mx ×My; gC ⊗ gC). The 2-form L(x, y), called the “propagator,”
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is a solution to the first-order PDE,

dA(ρ)L(x, y) = δ3(x, y) , (5.2.5)

where δ3(x, y) is a δ-function 3-form supported on the diagonal in Mx ×My and dA(ρ) is

the exterior derivative twisted by a flat connection A(ρ) on the GC bundle Eρ.

For example, suppose that M is a geodesically complete hyperbolic 3-manifold of finite

volume. As we pointed out in the Introduction, such 3-manifolds provide some of the most

interesting examples for Chern-Simons theory with complex gauge group. Every such M

can be represented as a quotient

M = H3/Γ (5.2.6)

of the hyperbolic space H3 by a discrete, torsion-free subgroup Γ ⊂ PSL(2,C), which is

a holonomy representation of the fundamental group π1(M) into Isom+(H3) = PSL(2,C).

Furthermore, one can always choose a spin structure on M such that this holonomy repre-

sentation lifts to a map from π1(M) to SL(2,C). In what follows, we call this representation

“geometric” and denote the corresponding flat SL(2,C) connection as A(geom).

In order to explicitly describe the flat connection A(geom), recall that H3 can be defined

as the upper half-space with the standard hyperbolic metric

ds2 =
1
x2

3

(dx2
1 + dx2

2 + dx2
3) , x3 > 0 . (5.2.7)

The components of the vielbein and spin connection corresponding to this metric can be

written as

e1 =
dx1

x3
w1=

dx2

x3

e2 =
dx2

x3
w2=− dx1

x3

e3 =
dx3

x3
w3=0 .

These satisfy dea + εabcwb ∧ ec = 0. It is easy to check that the corresponding (P )SL(2,C)

connection

A(geom) = −(w + ie) =
1

2x3

dx3 2dx1 − 2idx2

0 −dx3

 (5.2.8)

is flat, i.e. obeys (1.0.3) on page 6. In Chern-Simons theory with gauge group GC =

(P )SL(2,C), this gives an explicit expression for the flat gauge connection that corresponds
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to the hyperbolic structure on M . In a theory with a larger gauge group, one can also define

a geometric connectionA(geom) by embedding (5.2.8) into a larger matrix. We note, however,

that A(geom) constructed in this way is not unique and depends on the choice of embedding.

Nevertheless, we will continue to use the notation A(geom) even in the higher-rank case

whenever the choice of embedding introduces no confusion.

The action of Γ on H3 can be conveniently expressed by identifying a point (x1, x2, x3) ∈

H3 with a quaternion q = x1 + x2i+ x3j and defining

γ : q 7→ (aq + b)/(cq + d) , γ =

 a b

c d

 ∈ PSL(2,C) . (5.2.9)

Explicitly, setting z = x1 + ix2, we find

γ(z + x3j) = z′ + x′3j , (5.2.10)

where

z′ =
(az + b)(c̄z̄ + d̄) + ac̄x2

3

|cz + d|2 + |c|2x2
3

, x′3 =
x3

|cz + d|2 + |c|2x2
3

. (5.2.11)

Let L0(x, y) be the propagator for H3, i.e. a solution to equation (5.2.5) on H3 × H3

with the non-trivial flat connection A(geom). Then, for a hyperbolic quotient space (5.2.6),

the propagator L(x, y) can simply be obtained by summing over images:

L(x, y) =
∑
γ∈Γ

L0(x, γy) . (5.2.12)

5.3 Arithmeticity

Now, we would like to consider what kind of values the perturbative invariants S(ρ)
n

can take. For n ≥ 1, the S(ρ)
n ’s are given by sums over Feynman diagrams, each of which

contributes an integral of the form (5.2.4). A priori the value of every such integral can

be an arbitrary complex number (complex because we are studying Chern-Simons theory

with complex gauge group) that depends on the 3-manifold M , the gauge group GC, and

the classical solution ρ. However, for a hyperbolic 3-manifold M = H3/Γ and for the flat

connection A(geom) associated with the hyperbolic structure on M , we find that the S(geom)
n ’s

are significantly more restricted.

Most basically, one might expect that the values of S(geom)
n ’s are periods [99]

S(geom)
n ∈ P. (5.3.1)
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Here P is the set of all periods, satisfying

Q ⊂ Q ⊂ P ⊂ C. (5.3.2)

By definition, a period is a complex number whose real and imaginary parts are (absolutely

convergent) integrals of rational functions with rational coefficients, over domains in Rn

defined by polynomial inequalities with rational coefficients [99]. Examples of periods are

powers of π, special values of L-functions, and logarithmic Mahler measures of polynomials

with integer coefficients. Thus, periods can be transcendental numbers, but they form a

countable set, P. Moreover, P is an algebra; a sum or a product of two periods is also a

period.

Although the formulation of the perturbative invariants S(geom)
n≥1 in terms of Feynman

diagrams naturally leads to integrals of the form (5.2.4), which have the set of periods, P,

as their natural home, here we make a stronger claim and conjecture that for n > 1 the

S
(geom)
n ’s are algebraic numbers, i.e. they take values in Q. As we indicated in (5.3.2), the

field Q is contained in P, but leads to a much stronger condition on the arithmetic nature

of the perturbative invariants S(geom)
n . In order to formulate a more precise conjecture, we

introduce the following definition:

Definition: A perturbative quantum field theory is called arithmetic if, for all n > 1, the

perturbative coefficients S(ρ)
n take values in some algebraic number field K,

S(ρ)
n ∈ K , (5.3.3)

and S
(ρ)
1 ∈ Q · log K .

Therefore, to a manifold M and a classical solution ρ an arithmetic topological quantum

field theory (arithmetic TQFT for short) associates an algebraic number field K,

(M,ρ) K . (5.3.4)

This is very reminiscent of arithmetic topology, a program proposed in the sixties by

D. Mumford, B. Mazur, and Yu. Manin, based on striking analogies between number theory

and low-dimensional topology. For instance, in arithmetic topology, 3-manifolds correspond

to algebraic number fields and knots correspond to primes.



88

Usually, in perturbative quantum field theory the normalization of the expansion pa-

rameter is a matter of choice. Thus, in the notations of the present paper, a rescaling

of the coupling constant ~ → λ~ by a numerical factor λ is equivalent to a redefnition

S
(ρ)
n → λ1−nS

(ρ)
n . While this transformation does not affect the physics of the perturbative

expansion, it certainly is important for the arithmetic aspects discussed here. In particular,

the above definition of arithmetic QFT is preserved by such a transformation only if λ ∈ Q.

In a theory with no canonical scale of ~, it is natural to choose it in such a way that makes

the arithmetic nature of the perturbative coefficients S(ρ)
n as simple as possible. However,

in some cases (which include Chern-Simons gauge theory), the coupling constant must obey

certain quantization conditions, which, therefore, can lead to a “preferred” normalization

of ~ up to irrelevant Q-valued factors.

We emphasize that our definition of arithmetic QFT is perturbative. In particular, it

depends on the choice of the classical solution ρ. In the present context of Chern-Simons

gauge theory with complex gauge group GC, there is a natural choice of ρ when M is a

geodesically complete hyperbolic 3-manifold, namely the geometric representation that cor-

responds to A(geom). In this case, we conjecture:

Arithmeticity conjecture: As in (5.2.6), let M be a geodesically complete hyperbolic

3-manifold of finite volume, and let ρ = geom be the corresponding discrete faithful rep-

resentation of π1(M) into PSL(2,C). Then the perturbative Chern-Simons theory with

complex gauge group GC = PSL(2,C) (or its double cover, SL(2,C)) in the background of

a non-trivial flat connection A(geom) is arithmetic on M .

In fact, we can be a little bit more specific. In all the examples that we studied, we find

that, for M as in (5.2.6) and for all values of n > 1, the perturbative invariants S(geom)
n take

values in the trace field of Γ,

S(geom)
n ∈ Q(trΓ) , (5.3.5)

where, by definition, Q(trΓ) is the minimal extension of Q containing trγ for all γ ∈ Γ. We

conjecture that this is the case in general, namely that the SL(2,C) Chern-Simons theory

on a hyperbolic 3-manifold M = H3/Γ is arithmetic with K = Q(trΓ). This should be

contrasted with the case of a compact gauge group, where one usually develops perturbation

theory in the background of a trivial flat connection, and the perturbative invariants S(ρ)
n
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turn out to be rational numbers.

Of course, in this conjecture it is important that the representation ρ is fixed, e.g. by

the hyperbolic geometry of M as in the case at hand. As we shall see below, in many cases

the representation ρ admits continuous deformations or, put differently, comes in a family.

For geometric representations, this does not contradict the famous rigidity of hyperbolic

structures because the deformations correspond to incomplete hyperbolic structures on M .

In a sense, the second part of this section is devoted to studying such deformations. As

we shall see, the perturbative GC invariant Z(ρ)(M ; ~) is a function of the deformation

parameters, which on the geometric branch1 can be interpreted as shape parameters of the

associated hyperbolic structure.

In general, one might expect the perturbative coefficients S(ρ)
n>1 to be rational functions of

these shape parameters. Note that, if true, this statement would imply the above conjecture,

since at the point corresponding to the complete hyperbolic structure the shape parameters

take values in the trace field Q(trΓ). This indeed appears to be the case, at least for several

simple examples of hyperbolic 3-manifolds that we have studied.

For the arithmeticity conjecture to hold, it is important that ~ is defined (up to Q-valued

factors) as in (5.1.8) on page 83, so that the leading term S
(ρ)
0 is a rational multiple of the

classical Chern-Simons functional. This normalization is natural for a number of reasons.

For example, it makes the arithmetic nature of the perturbative coefficients S(ρ)
n as clear

as possible. Namely, according to the above arithmeticity conjecture, in this normalization

S
(geom)
1 is a period, whereas S(geom)

n>1 take values in Q. However, although we are not going

to use it here, we note that another natural normalization of ~ could be obtained by a

redefinition ~ → λ~ with λ ∈ (2πi)−1 · Q. As we shall see below, this normalization

is especially natural from the viewpoint of the analytic continuation approach. In this

normalization, the arithmeticity conjecture says that all S(geom)
n>1 are expected to be periods.

More specifically, it says that S(ρ)
n ∈ (2πi)n−1 · Q, suggesting that the n-loop perturbative

invariants S(geom)
n are periods of (framed) mixed Tate motives Q(n − 1). In this form, the

arithmeticity of perturbative Chern-Simons invariants discussed here is very similar to the

motivic interpretation of Feynman integrals in [100].

Finally, we note that, for some applications, it may be convenient to normalize the path

integral (1.0.2) by dividing the right-hand side by Z(S3; ~). (Since π1(S3) is trivial, we have
1i.e. on the branch containing the discrete faithful representation.
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Z(S3; ~) = Z(0)(S3; ~).) This normalization does not affect the arithmetic nature of the

perturbative coefficients S(geom)
n because, for M = S3, all the S(0)

n ’s are rational numbers.

Specifically,

Z(S3; ~) =
(

~
iπ

)r/2(VolΛwt

VolΛrt

)1/2 ∏
α∈Λ+

rt

2 sinh (~(α · %)) , (5.3.6)

where the product is over positive roots α ∈ Λ+
rt, r is the rank of the gauge group, and % is

half the sum of the positive roots, familiar from the Weyl character formula. Therefore, in

the above conjecture and in eq. (5.3.5) we can use the perturbative invariants of M with

either normalization.

The arithmeticity conjecture discussed here is a part of a richer structure: the quantum

GC invariants are only the special case x = 0 of a collection of functions indexed by rational

numbers x which each have asymptotic expansions in ~ satisfying the arithmeticity conjec-

ture and which have a certain kind of modularity behavior under the action of SL(2,Z) on

Q [101]. A better understanding of this phenomenon and its interpretation is a subject of

ongoing research.

5.4 Examples

In this section, we explicitly calculate the perturbative SL(2,C) invariants S(geom)
n for the

simplest hyperbolic knot complements in S3, i.e. for M = S3\K. It was conjectured in [40]

that such invariants can be extracted from the asymptotic expansion of knot invariants

computed by Chern-Simons theory with compact gauge group G = SU(2) in a double-

scaling limit

k →∞ , ~ =
iπ

N
→ 0 ,

N

k + 2
≡ 1 . (5.4.1)

Here, k is the (unnormalized) level of the SU(2) theory, and N is the dimension of an

SU(2) representation associated to a Wilson loop in S3 supported on the given knot K.

(This will be explained in much greater detail in Sections 6.2 and 7.4.) The relevant SU(2)

knot invariant is

J (K;N) =
JN

(
K; q

)
JN

(
unknot; q

) , q = e2~ = e
2πi
N , (5.4.2)

where JN (K; q) is the “N -colored Jones polynomial” of K, normalized such that

JN (unknot; q) =
qN/2 − q−N/2

q1/2 − q−1/2
(5.4.3)
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is the “quantum dimension” of the N -dimensional representation of SU(2).

According to the Generalized Volume Conjecture [40], the invariant J (K;N) should

have the asymptotics

J (K;N) ∼ Z(geom)(M ; iπ/N)
Z(S1 ×D2; iπ/N)

∼ N3/2 exp

( ∞∑
n=0

sn

(
2πi
N

)n−1
)

(5.4.4)

as N →∞, where

S(geom)
n = sn · 2n−1 (n 6= 1) (5.4.5)

S
(geom)
1 = s1 +

1
2

log 2 (n = 1)

are the perturbative SL(2,C) invariants of M = S3 r K. (Here, we view the solid torus,

S1 ×D2, as the complement of the unknot in the 3-sphere.) Specifically, one has

s0 = i
(
Vol(M) + iCS(M)

)
(5.4.6)

(Volume Conjecture) and s1 is the Ray-Singer torsion of M twisted by a flat connection,

cf. eq. (5.2.3). The Arithmeticity Conjecture of Section 5.3 predicts that

s1 ∈ Q · log K , sn ∈ K (n ≥ 2), (5.4.7)

where K is the trace field of the knot. We will present numerical computations supporting

this conjecture for the two simplest hyperbolic knots 41 and 52, following our work in [3].

The formulas for J (K;N) in both cases are known explicitly, see e.g. [102]. One has

J (41;N) =
N−1∑
m=0

(q)m(q−1)m , (5.4.8)

J (52;N) =
N−1∑
m=0

m∑
k=0

q−(m+1)k(q)2m/(q
−1)k , (5.4.9)

where (q)m = (1− q) · · · (1− qm) is the q-Pochhammer symbol as in Section 8.3. The first
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few values of these invariants are

N J (41;N) J (52;N)

1 1 1

2 5 7

3 13 18− 5q

4 27 40− 23q

5 44− 4q2 − 4q3 46− 55q − 31q2 + q3

6 89 120− 187q

7 100− 14q2 − 25q3 − 25q4 − 14q5 −154q − 88q2 + 47q3 + 58q4 + 77q5

8 187− 45q − 45q3 −84− 407q − 150q2 + 96q3

Using formula (5.4.8) for N of the order of 5000 and the numerical interpolation method

explained in [103] and [104], the values of sn for 0 ≤ n ≤ 27 were computed to very high

precision, resulting in

s0 =
1

2π2i
D
(
eπi/3

)
, s1 = −1

4
log 3 , (5.4.10)

the first in accordance with the volume conjecture and the second in accordance with the

first statement of (5.4.7), since K = Q
(√
−3
)

in this case. Moreover the numbers

s′n = sn ·
(
6
√
−3
)n−1 (n ≥ 2) (5.4.11)

are very close to rational numbers with relatively small and highly factored denominators:

n 2 3 4 5 6 7 8 9

s′n
11
12 2 1081

90 98 110011
105

207892
15

32729683
150

139418294
35

n 10 . . . 27

s′n
860118209659

10395 . . . 240605060980290369529478710291172763261781986098552
814172781296875

confirming the second prediction in (5.4.7). Here D(z) is the Bloch-Wigner dilogarithm

(8.1.3), cf. Section 8.1. (That sn is a rational multiple of (
√
−3)n−1, and not merely an

element of Q(
√
−3) is a consequence of (5.4.4) and the fact that J (41;N) is real.)



93

Actually, in this case one can prove the correctness of the expansion rigorously: the

two formulas in (5.4.10) were proved in [105] and the rationality of the numbers s′n defined

by (5.4.11) in [106, 107] and [108], and can therefore check that the numerically determined

values are the true ones (see also [101] for a generalization of this analysis). In the case of

52, such an analysis has not been done, and the numerical interpolation method is therefore

needed. If one tries to do this directly using eq. (5.4.9), the process is very time-consuming

because, unlike the figure-8 case, there are now O(N2) terms. To get around this difficulty,

we use the formula
m∑

k=0

q(m+1)k

(q)k
= (q)m

m∑
k=0

qk2

(q)2k
, (5.4.12)

which is proved by observing that both sides vanish for m = −1 and satisfy the recursion

tm = (1 − qm)tm−1 + qm2
/(q)m . This proof gives a way to successively compute each tm

in O(1) steps (compute y = qm as q times the previous y, (q)m as 1− y times its previous

value, and then tm by the recursion) and hence to compute the whole sum in (5.4.9) in

only O(N) steps. The interpolation method can therefore be carried out to just as high

precision as in the figure-eight (41) case.

The results are as follows. The first coefficient is given to high precision by

s0 = − 3
2π
(
Li2(α) +

1
2

log(α) log(1− α)
)

+
π

3
, (5.4.13)

in accordance with the prediction (5.4.6), where α = 0.87743 · · · − 0.74486 . . . i is the root

of

α3 − α2 + 1 = 0 (5.4.14)

with negative imaginary part. The next four values are (again numerically to very high

precision)

s1 =
1
4

log
1 + 3α

23
, s2 =

198α2 + 1452α− 1999
24 · 232

,

s3 =
465α2 − 465α+ 54

2 · 233
, s4 =

−2103302α2 + 55115α+ 5481271
240 · 235

,

in accordance with the arithmeticity conjecture since K = Q(α) in this case.

These coefficients are already quite complicated, and the next values even more so. We

can simplify them by making the rescaling

s′n = sn λ
n−1 (5.4.15)
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(i.e., by expanding in powers of 2πi/λN instead of 2πi/N), where

λ = α5(3α− 2)3 = α−1(α2 − 3)3 . (5.4.16)

(This number is a generator of p3, where p = (3α − 2) = (α2 − 3) is the unique ramified

prime ideal of K, of norm 23.) We then find

s′2 = − 1
24

(
12α2 − 19α+ 86

)
,

s′3 = −3
2

(
2α2 + 5α− 4

)
,

s′4 = 1
240

(
494α2 + 12431α+ 1926

)
,

s′5 = −1
8

(
577α2 − 842α+ 1497

)
,

s′6 = 1
10080

(
176530333α2 − 80229954α− 18058879

)
,

s′7 = − 1
240

(
99281740α2 + 40494555α+ 63284429

)
,

s′8 = − 1
403200

(
3270153377244α2 − 4926985303821α− 8792961648103

)
,

s′9 = 1
13440

(
9875382391800α2 − 939631794912α− 7973863388897

)
,

s′10 = − 1
15966720

(
188477928956464660α2 + 213430022592301436α+ 61086306651454303

)
,

s′11 = − 1
1209600

(
517421716298434577α2 − 286061854126193276α− 701171308042539352

)
,

with much simpler coefficients than before, and with each denominator dividing (n + 2)! .

These highly nontrivial numbers give a strong experimental confirmation of the conjecture.

We observe that in both of the examples treated here the first statement of the conjec-

ture (5.4.7) can be strengthened to

exp(4s1) ∈ K . (5.4.17)

It would be interesting to know if the same statement holds for all hyperbolic knot com-

plements (or even all hyperbolic 3-manifolds). Another comment in this vein is that (5.4.6)

also has an arithmetic content: one knows that the right-hand side of this equation is in the

image under the extended regulator map of an element in the Bloch group (or, equivalently,

the third algebraic K-group) of the number field K.



Chapter 6

Geometric quantization

In Chapter 5, we introduced Chern-Simons perturbation theory and described the tradi-

tional approach to computing perturbative partition functions via Feynman diagrams. Now

we want to consider another approach, based on the quantization of moduli space spaces

of flat connections. Combined with the existence of a perturbative expansions (5.1.9), it

will yield a powerful method for calculating perturbative invariants (Section 6.3). We will

also find that quantization of Chern-Simons theory with complex gauge group GC is closely

related to quantization for compact group G, justifying a third approach to computing GC

invariants: “analytic continuation” (Section 6.2). Here, we mainly use analytic continu-

ation to find the operators Âi that annihilate GC partition functions, as explained in the

introduction. In Chapter 9, we will revisit analytic continuation, employing it more directly

to find classical integral expressions for partition functions.

Most of the results in this section follow [3]. We also include a short discussion of “brane

quantization” for Chern-Simons theory with complex gauge group from [3], as it is closely

related to geometric quantization.

6.1 Quantization of Mflat(GC, Σ)

As a TQFT, Chern-Simons gauge theory (with any gauge group) associates a Hilbert

space HΣ to a closed Riemann surface Σ and a vector in HΣ to every 3-manifold M with

boundary Σ. We denote this vector as |M〉 ∈ HΣ. If there are two such manifolds, M+ and

M−, glued along a common boundary Σ (with matching orientation), then the quantum

95
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invariant Z(M) that Chern-Simons theory associates to the closed 3-manifold M = M+ ∪Σ

M− is given by the inner product of two vectors |M+〉 and |M−〉 in HΣ

Z(M) = 〈M+|M−〉 . (6.1.1)

Therefore, in what follows, our goal will be to understand Chern-Simons gauge theory on

manifolds with boundary, from which invariants of closed manifolds without boundary can

be obtained via (6.1.1).

Since the Chern-Simons action (5.1.1) is first order in derivatives, the Hilbert spaceHΣ is

obtained by quantizing the classical phase space, which is the space of classical solutions on

the 3-manifold R×Σ. Such classical solutions are given precisely by the flat connections on

the Riemann surface Σ. Therefore, in a theory with complex gauge group GC, the classical

phase space is the moduli space of flat GC connections on Σ, modulo gauge equivalence,

Mflat(GC,Σ) = Hom(π1(Σ), GC)/conj. (6.1.2)

As a classical phase space, Mflat(GC,Σ) comes equipped with a symplectic structure ω,

which can also be deduced from the classical Chern-Simons action (5.1.1). Since we are

interested only in the “holomorphic” sector of the theory, we shall look only at the ki-

netic term for the field A (and not Ā); it leads to a holomorphic symplectic 2-form on

Mflat(GC,Σ):

ω =
i

4~

∫
Σ

Tr δA ∧ δA . (6.1.3)

We note that this symplectic structure does not depend on the complex structure of Σ,

in accord with the topological nature of the theory. Then, in Chern-Simons theory with

complex gauge group GC, the Hilbert space HΣ is obtained by quantizing the moduli space

of flat GC connections on Σ with symplectic structure (6.1.3):

quantization of (Mflat(GC,Σ), ω)  HΣ . (6.1.4)

Now, let us consider a closed 3-manifold M with boundary Σ = ∂M , and its associated

state |M〉 ∈ HΣ. In a (semi-)classical theory, quantum states correspond to Lagrangian sub-

manifolds of the classical phase space. Recall that, by definition, a Lagrangian submanifold

L is a middle-dimensional submanifold such that the restriction of ω to L vanishes,

ω|L = 0 . (6.1.5)
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For the problem at hand, the phase space isMflat(GC,Σ) and the Lagrangian submanifold

L associated to a 3-manifold M with boundary Σ = ∂M consists of flat connections on Σ

that can be extended to classical solutions on all of M [40]. Since the space of classical

solutions on M is the moduli space of flat GC connections on M ,

Mflat(GC,M) = Hom(π1(M), GC)/conj. , (6.1.6)

it follows that

L = ι
(
Mflat(GC,M)

)
(6.1.7)

is the image of Mflat(GC,M) under the map

ι :Mflat(GC,M)→Mflat(GC,Σ) (6.1.8)

induced by the natural inclusion π1(Σ)→ π1(M). One can show that L ⊂ Mflat(GC,Σ) is

indeed Lagrangian with respect to the symplectic structure (6.1.3).

Much of what we described so far is very general and has an obvious analogue in Chern-

Simons theory with arbitrary gauge group. However, quantization of Chern-Simons theory

with complex gauge group has a number of good properties. In this case the classical phase

space Mflat(GC,Σ) is an algebraic variety; it admits a complete hyper-Kähler metric [109],

and the Lagrangian submanifold L is a holomorphic subvariety ofMflat(GC,Σ). The hyper-

Kähler structure on Mflat(GC,Σ) can be obtained by interpreting it as the moduli space

MH(G,Σ) of solutions to Hitchin’s equations on Σ. Note that this requires a choice of com-

plex structure on Σ, whereas Mflat(GC,Σ) ∼=MH(G,Σ) as a complex symplectic manifold

does not. Existence of a hyper-Kähler structure onMflat(GC,Σ) considerably simplifies the

quantization problem in any of the existing frameworks, such as geometric quantization [45],

deformation quantization [46, 47], or “brane quantization” [48].

The hyper-Kähler moduli spaceMH(G,Σ) has three complex structures that we denote

as I, J , and K = IJ , and three corresponding Kähler forms, ωI , ωJ , and ωK (cf. [110]). In

the complex structure usually denoted by J ,MH(G,Σ) can be identified withMflat(GC,Σ)

as a complex symplectic manifold with the holomorphic symplectic form (6.1.3),

ω =
1
~

(ωK + iωI) . (6.1.9)

Moreover, in this complex structure, L is an algebraic subvariety of Mflat(GC,Σ). To be

more precise, it is a (finite) union of algebraic subvarieties, each of which is defined by
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polynomial equations Ai = 0. In the quantum theory, these equations are replaced by

corresponding operators Âi acting on HΣ that annihilate the state |M〉.

Now, let us consider in more detail the simple but important case when Σ is of genus 1,

that is Σ = T 2. In this case, π1(Σ) ∼= Z× Z is abelian, and

Mflat(GC, T
2) = (TC × TC)/W , (6.1.10)

where TC is the maximal torus of GC and W is the Weyl group. We parametrize each copy

of TC by complex variables l = (l1, . . . , lr) and m = (m1, . . . ,mr), respectively. Here, r is

the rank of the gauge group GC. The values of l and m are eigenvalues of the holonomies

of the flat GC connection over the two basic 1-cycles of Σ = T 2. They are defined up to

Weyl transformations, which act diagonally on TC × TC.

The moduli space of flat GC connections on a 3-manifold M with a single toral boundary,

∂M = T 2, defines a complex Lagrangian submanifold

L ⊂ (TC × TC)/W . (6.1.11)

(More precisely, this Lagrangian submanifold comprises the top-dimensional (stable) com-

ponents of the moduli space of flat GC connections on Σ.) In particular, a generic irreducible

component of L is defined by r polynomial equations

Ai(l,m) = 0 , i = 1, . . . , r , (6.1.12)

which must be invariant under the action of the Weyl group W (which simultaneously acts

on the eigenvalues l1, . . . , lr and m1, . . . ,mr).

In the quantum theory, the equations (6.1.12) are replaced by the operator equations,

Âi(l̂, m̂) Z(M) = 0 , i = 1, . . . , r . (6.1.13)

For Σ = T 2 the complex symplectic structure (6.1.3) takes a very simple form

ω =
i

~

r∑
i=1

dui ∧ dvi , (6.1.14)

where we introduce new variables u and v (defined modulo elements of the cocharacter

lattice Λcochar = Hom(U(1),T)), such that l = −ev and m = eu. In the quantum theory,

u and v are replaced by operators û and v̂ that obey the canonical commutation relations

[ûi, v̂j ] = −~ δij . (6.1.15)
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As one usually does in quantum mechanics, we can introduce a complete set of states |u〉

on which û acts by multiplication, ûi|u〉 = ui|u〉. Similarly, we let |v〉 be a complete basis,

such that v̂i|v〉 = vi|v〉. Then, we can define the wave function associated to a 3-manifold

M either in the u-space or v-space representation, respectively, as 〈u|M〉 or 〈v|M〉. We will

mostly work with the former and let Z(M ;u) := 〈u|M〉.

We note that a generic value of u does not uniquely specify a flat GC connection on

M or, equivalently, a unique point on the representation variety (6.1.7). Indeed, for a

generic value of u, equations (6.1.12) may have several solutions that we label by a discrete

parameter α. Therefore, in the u-space representation, flatGC connections onM (previously

labeled by the homomorphism ρ ∈ L) are now labeled by a set of continuous parameters

u = (u1, . . . , ur) and a discrete parameter α:

ρ ←→ (u, α) . (6.1.16)

The perturbativeGC invariant Z(ρ)(M ; ~) can then be written in this notation as Z(α)(M ; ~, u) =

〈u, α|M〉. Similarly, the coefficients S(ρ)
n in the ~-expansion can be written as S(α)

n (u).

To summarize, in the approach based on quantization ofMflat(GC,Σ) the calculation of

Z(ρ)(M ; ~) reduces to two main steps: i) the construction of quantum operators Âi(l̂, m̂),

and ii) the solution of Schrödinger-like equations (6.1.13). Below we explain how to imple-

ment each of these steps.

6.2 Analytic continuation and the Volume Conjecture

For a generic 3-manifold M with boundary Σ = T 2, constructing the quantum operators

Âi(l̂, m̂) may be a difficult task. However, when M is the complement of a knot K in the

3-sphere,

M = S3 rK , (6.2.1)

there is a simple way to find the Âi’s. Indeed, as anticipated in the introduction, these

operators also annihilate the polynomial knot invariants PG,R(K; q), which are defined in

terms of Chern-Simons theory with compact gauge group G,

Âi(l̂, m̂) PG,R(K; q) = 0 . (6.2.2)
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The operator l̂i acts on the set of polynomial invariants {PG,R(K; q)} by shifting the highest

weight λ = (λ1, . . . , λr) of the representation R by the i-th basis elements of the weight

lattice Λwt, while the operator m̂j acts simply as multiplication by qλj/2. Let us briefly

explain how this comes about.

In general, the moduli space Mflat(GC,Σ) is a complexification of Mflat(G,Σ). The

latter is the classical phase space in Chern-Simons theory with compact gauge group G and

can be obtained from Mflat(GC,Σ) by requiring all the holonomies to be “real,” i.e. in G.

Similarly, restricting to real holonomies in the definition of L produces a Lagrangian sub-

manifold in Mflat(G,Σ) that corresponds to a quantum state |M〉 in Chern-Simons theory

with compact gauge group G. In the present example of knot complements, restricting to

such “real” holonomies means replacing TC by T in (6.1.10) and taking purely imaginary

values of ui and vi in equations (6.1.12). Apart from this, the quantization problem is

essentially the same for gauge groups G and GC. In particular, the symplectic structure

(6.1.14) has the same form (with imaginary ui and vi in the theory with gauge group G) and

the quantum operators Âi(l̂, m̂) annihilate both PG,R(K; q) and Z(α)(M ; ~, u) computed,

respectively, by Chern-Simons theories with gauge groups G and GC.

In order to understand the precise relation between the parameters in these theories, let

us consider a Wilson loop operator, WR(K), supported on K ⊂ S3 in Chern-Simons theory

with compact gauge group G. It is labeled by a representation R = Rλ of the gauge group

G, which we assume to be an irreducible representation with highest weight λ ∈ t∨. The

path integral in Chern-Simons theory on S3 with a Wilson loop operator WR(K) computes

the polynomial knot invariant PG,R(K; q), with q = e2~. Using (6.1.1), we can represent

this path integral as 〈R|M〉, where |R〉 is the result of the path integral on a solid torus

containing a Wilson loop WR(K), and |M〉 is the path integral on its complement, M .

In the semi-classical limit, the state |R〉 corresponds to a Lagrangian submanifold of

Mflat(G,T 2) = (T × T)/W defined by the fixed value of the holonomy m = eu on a small

loop around the knot. The relation between m = eu, which is an element of the maximal

torus T of G, and the representation Rλ is given by the invariant quadratic form −Tr

(restricted to t). Specifically,

m = exp ~(λ∗ + ρ∗) ∈ T , (6.2.3)

where λ∗ is the unique element of t such that λ∗(x) = −Trλx for all x ∈ t, and ρ∗ is the
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analogous dual of the Weyl vector (half the sum of positive weights of G). For example,

for the N -colored Jones polynomial, corresponding to the N -dimensional representation of

SU(2), (6.2.3) looks like m = exp ~N . In “analytic continuation,” we analytically continue

this relation to m ∈ TC. A perturbative partition function arises as

~→ 0 , λ∗ →∞ for u = ~(λ∗ + ρ∗) fixed . (6.2.4)

A more detailed explanation of the limit (6.2.3), will appear in Chapter 7, where we discuss

Wilson loops for complex as well as compact groups.

For a given value of m = eu, equations (6.1.12) have a finite set of solutions lα, labeled

by α. Only for one particular value of α is the perturbative GC invariant Z(α)(M ; ~, u)

related to the asymptotic behavior of PG,R(K; q). This is the value of α which maximizes

Re
(
S

(α)
0 (M ;u)

)
. For this α, we have:

Z(α)(M ; ~, u)
Z(S3; ~)

= asymptotic expansion of PG,R(K; q) . (6.2.5)

For hyperbolic knots and u sufficiently close to 0, this “maximal” value of α is always

α = geom.

It should nevertheless be noted that the analytic continuation described here is not as

“analytic” as it sounds. In particular, the limit (6.2.4) is very subtle and requires much

care. As explained in [40], in taking this limit it is important that values of q = e2~ avoid

roots of unity. If one takes the limit with ~−1 ∈ 1
iπZ, which corresponds to the allowed

values of the coupling constant in Chern-Simons theory with compact gauge group G, then

one can never see the exponential asymptotics (5.1.9) with Im(S(ρ)
0 ) > 0. The exponential

growth characteristic to Chern-Simons theory with complex gauge group emerges only in

the limit with ~ = u/(λ∗ + ρ∗) and u generic.1

6.3 Hierarchy of differential equations

The system of Schrödinger-like equations (6.1.13) determines the perturbative GC in-

variant Z(α)(M ; ~, u) up to multiplication by an overall function of ~, which can be fixed

by suitable boundary conditions.
1The subtle behavior of the compact Chern-Simons partition function as the level k = iπ/~ and

the representation λ∗ are continued away from integers has recently been analyzed carefully in [41].

In particular, the transition from polynomial to exponential growth is explained there.
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In order to see in detail how the perturbative coefficients S(α)
n (u) may be calculated and

to avoid cluttering, let us assume that the rank r = 1. (A generalization to arbitrary values

of r is straightforward.) In this case, A(l,m) is the so-called A-polynomial of M , originally

introduced in [111], and the system (6.1.13) consists of a single equation

Â(l̂, m̂)Z(α)(M ; ~, u) = 0 . (6.3.1)

In the u-space representation the operator m̂ = exp(û) acts on functions of u simply via

multiplication by eu, whereas l̂ = exp(v̂ + iπ) = exp(~ d
du) acts as a “shift operator”:

m̂f(u) = euf(u) , l̂f(u) = f(u+ ~) . (6.3.2)

In particular, the operators l̂ and m̂ obey the relation

l̂m̂ = q
1
2 m̂l̂ , (6.3.3)

which follows directly from the commutation relation (6.1.15) for û and v̂, with

q = e2~ . (6.3.4)

We would like to recast eq. (6.3.1) as an infinite hierarchy of differential equations that

can be solved recursively for the perturbative coefficients S(α)
n (u). Just like its classical limit

A(l,m), the operator Â(l̂, m̂) is a polynomial in l̂. Therefore, pushing all operators l̂ to the

right, we can write it as

Â(l̂, m̂) =
d∑

j=0

aj(m̂, ~) l̂j (6.3.5)

for some functions aj(m, ~) and some integer d. Using (6.3.2), we can write eq. (6.3.1) as

d∑
j=0

aj(m, ~)Z(α)(M ; ~, u+ j~) = 0 . (6.3.6)

Then, substituting the general form (5.1.9) of Z(α)(M ; ~, u), we obtain the equation

d∑
j=0

aj(m, ~) exp

[
1
~
S

(α)
0 (u+ j~)− 1

2
δ(α) log ~ +

∞∑
n=0

~nS
(α)
n+1(u+ j~)

]
= 0 . (6.3.7)

Since δ(α) is independent of u, we can just factor out the −1
2δ

(α) log ~ term and remove it

from the exponent. Now we expand everything in ~. Let

aj(m, ~) =
∞∑

p=0

aj,p(m)~p (6.3.8)
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and
∞∑

n=−1

~nSn+1(u+ j~) =
∞∑

r=−1

r∑
m=−1

jr−m

(r −m)!
~rS

(r−m)
m+1 (u) , (6.3.9)

suppressing the index α to simplify notation. We can substitute (6.3.8) and (6.3.9) into

(6.3.7) and divide the entire expression by exp(
∑

n ~nSn+1(u) ). The hierarchy of equations

then follows by expanding the exponential in the resulting expression as a series in ~ and

requiring that the coefficient of every term in this series vanishes (see also [112]). The first

four equations are shown in Table 6.1.

d∑
j=0

ejS′0aj,0 = 0

d∑
j=0

ejS′0

(
aj,1 + aj,0

(1
2
j2S′′0 + jS′1

))
= 0

d∑
j=0

ejS′0

(
aj,2 + aj,1

(1
2
j2S′′0 + jS′1

)
+ aj,0

(
1
2
(1

2
j2S′′0 + jS′1

)2 +
j3

6
S′′′0 +

j2

2
S′′1 + jS′2

))
= 0

d∑
j=0

ejS′0

(
aj,3 + aj,2

(1
2
j2S′′0 + jS′1

)
+ aj,1

(
1
2
(1

2
j2S′′0 + jS′1

)2 +
j3

6
S′′′0 +

j2

2
S′′1 + jS′2

)

+ aj,0

(
1
6
(1

2
j2S′′0 + jS′1

)3 +
(1

2
j2S′′0 + jS′1

)(j3
6
S′′′0 +

j2

2
S′′1 + jS′2

)
+
j4

24
S

(4)
0 +

j3

6
S′′′1 +

j2

2
S′′2 + jS′3

))
= 0

. . .

Table 6.1: Hierarchy of differential equations derived from Â(l̂, m̂) Z(α)(M ; ~, u) = 0.

The equations in Table 6.1 can be solved recursively for the Sn(u)’s, since each Sn first

appears in the (n+ 1)st equation, differentiated only once. Indeed, after S0 is obtained, the

remaining equations feature the Sn≥1 linearly the first time they occur, and so determine

these coefficients uniquely up to an additive constant of integration.

The first equation, however, is somewhat special. Since aj,0(m) is precisely the coefficient

of lj in the classical A-polynomial A(l,m), we can rewrite this equation as

A(eS
′
0(u), eu) = 0 . (6.3.10)

This is exactly the classical constraint A(ev+iπ, eu) = 0 that defines the complex Lagrangian

submanifold L, with S′0(u) = v + iπ. Therefore, we can integrate along a branch (lα =
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evα+iπ,m = eu) of L to get the value of the classical Chern-Simons action (5.2.1) [40]

S
(α)
0 (u) = const +

∫ u

θ|L , (6.3.11)

where θ|L denotes a restriction to L of the Liouville 1-form on Mflat(GC,Σ),

θ = vdu+ iπdu . (6.3.12)

The expression (6.3.11) is precisely the semi-classical approximation to the wave function

Z(α)(M ; ~, u) supported on the Lagrangian submanifold L, obtained in the WKB quantiza-

tion of the classical phase spaceMflat(GC,Σ). By definition, the Liouville form θ (associated

with a symplectic structure ω) obeys dθ = i~ω, and it is easy to check that this is indeed the

case for the forms ω and θ onMflat(GC,Σ) given by eqs. (6.1.14) and (6.3.12), respectively.

The semi-classical expression (6.3.11) gives the value of the classical Chern-Simons func-

tional (5.1.1) evaluated on a flat gauge connection A(ρ), labeled by a homomorphism ρ. As

we explained in (6.1.16), the dependence on ρ is encoded in the dependence on a continuous

holonomy parameter u, as well as a discrete parameter α that labels different solutions vα(u)

to A(ev+iπ, eu) = 0, at a fixed value of u. In other words, α labels different branches of the

Riemann surface A(l,m) = 0, regarded as a cover of the complex plane C parametrized by

m = eu,

A(lα,m) = 0 . (6.3.13)

Since A(l,m) is a polynomial in both l and m, the set of values of α is finite (in fact, its

cardinality is equal to the degree of A(l,m) in l). Note, however, that for a given choice

of α there are infinitely many ways to lift a solution lα(u) to vα(u); namely, one can add

to vα(u) any integer multiple of 2πi. This ambiguity implies that the integral (6.3.11) is

defined only up to integer multiples of 2πiu,

S
(α)
0 (u)− const =

∫ u

log lα(u′) du′ =
∫ u

vα(u′) du′ + iπu (mod 2πiu) . (6.3.14)

In practice, this ambiguity can always be fixed by imposing suitable boundary conditions

on S
(α)
0 (u), and it never affects the higher-order terms S(α)

n (u). Therefore, since our main

goal is to solve the quantum theory (to all orders in perturbation theory) we shall not worry

about this ambiguity in the classical term. As we illustrate later (see Section 6.6), it will

always be easy to fix this ambiguity in concrete examples.

Before we proceed, let us remark that if M is a hyperbolic 3-manifold with a single torus

boundary Σ = ∂M and A(geom) is the “geometric” flat SL(2,C) connection associated with
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a hyperbolic metric on M (not necessarily geodesically complete), then the integral (6.3.14)

is essentially the complexified volume function, i(Vol(M ;u) + iCS(M ;u)), which combines

the (real) hyperbolic volume and Chern-Simons invariants2 of M . Specifically, the relation

is [40, 114]:

S
(geom)
0 (u) =

i

2

[
Vol(M ;u) + iCS(M ;u)

]
+ vgeom(u) Re(u) + iπu , (6.3.15)

modulo the integration constant and multiples of 2πiu.

6.4 Classical and quantum symmetries

A vast supply of 3-manifolds with a single toral boundary can be obtained by considering

knot complements as in (6.2.1); our main examples throughout this thesis are of this type.

As discussed above, the Lagrangian subvariety L ∈Mflat(GC,Σ) for any knot complement

M is defined by polynomial equations (6.1.12). Such an L contains multiple branches,

indexed by α, corresponding to the different solutions to {Ai(l,m) = 0} for fixed m. In this

section, we describe relationships among these branches and the corresponding perturbative

invariants Z(α)(M ; ~, u) by using the symmetries of Chern-Simons theory with complex

gauge group GC.

Before we begin, it is useful to summarize what we already know about the branches

of L. As mentioned in the previous discussion, there always exists a geometric branch —

or in the case of rank r > 1 several geometric branches — when M is a hyperbolic knot

complement. Like the geometric branch, most other branches of L correspond to genuinely

nonabelian representations ρ : π1(Σ) → GC. However, for any knot complement M there

also exists an “abelian” component of L, described by the equations

l1 = . . . = lr = 1 . (6.4.1)

Indeed, sinceH1(M) is the abelianization of π1(M), the representation variety (6.1.6) always
2Here u describes the cusp of a hyperbolic metric on M . For example, imaginary u parametrizes

a conical singularity. See, e.g. [113, 114, 115] and our discussion in Section 8.1 for more detailed

descriptions of Vol(M ;u) and CS(M ;u). In part of the literature (e.g. in [114]), the parameters

(u, v) are related to those used here by 2uhere = uthere and 2(vhere + iπ) = vthere. We include a shift

of iπ in our definition of v so that the complete hyperbolic structure arises at (u, v) = (0, 0).
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has a component corresponding to abelian representations that factor through H1(M) ∼= Z,

π1(M)→ H1(M)→ GC . (6.4.2)

The corresponding flat connection, A(abel), is characterized by the trivial holonomy around

a 1-cycle of Σ = T 2 which is trivial in homology H1(M); choosing it to be the 1-cycle whose

holonomy was denoted by l = (l1, . . . , lr) we obtain (6.4.1). Note that, under projection to

the u-space, the abelian component of L corresponds to a single branch that we denote by

α = abel.

The first relevant symmetry of Chern-Simons theory with complex gauge group GC is

conjugation. We observe that for every flat connection A(ρ) on M , with ρ = (u, α), there is

a conjugate flat connection A(ρ̄) := A(ρ) corresponding to a homomorphism ρ̄ = (ū, ᾱ). We

use ᾱ to denote the branch of L “conjugate” to branch α; the fact that branches of L come

in conjugate pairs is reflected in the fact that eqs. (6.1.12) have real (in fact, integer) coef-

ficients. The perturbative expansions around Aρ and Aρ̄ are very simply related. Namely,

by directly conjugating the perturbative path integral and noting that the Chern-Simons

action has real coefficients, we find3 Zα(M ; ~, u) = Z(ᾱ)(M ; ~̄, ū). The latter partition func-

tion is actually in the antiholomorphic sector of the Chern-Simons theory, but we can just

rename (~̄, ū) 7→ (~, u) (and use analyticity) to obtain a perturbative partition function for

the conjugate branch in the holomorphic sector,

Z(ᾱ)(M ; ~, u) = Z(α)(M ; ~, u) . (6.4.3)

Here, for any function f(z) we define f̄(z) := f(z̄). In particular, if f is analytic, f(z) =∑
fnz

n, then f̄ denotes a similar function with conjugate coefficients, f̄(z) =
∑
f̄nz

n.

In the case r = 1, the symmetry (6.4.3) implies that branches of the classical SL(2,C)

A-polynomial come in conjugate pairs vα and vᾱ(u) = vα(u). Again, these pairs arise

algebraically because the A-polynomial has integer coefficients. (See e.g. [111, 116] for a

detailed discussion of properties of A(l,m).) Some branches, like the abelian branch, may

be self-conjugate. For the abelian branch, this is consistent with S(abel)
0 = 0. The geometric

3More explicitly, letting ICS(~,A) = − 1
4~
∫

M
Tr
(
A ∧A+ 2

3A ∧A ∧A
)
, we have

Zα(M ; ~, u) =

(∫
(u,α)

DA eICS(~,A)

)∗
=
∫

(ū,ᾱ)

DĀ eICS(~̄,Ā) = Z(ᾱ)(M ; ~̄, ū) .
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branch, on the other hand, has a distinct conjugate because Vol(M ; 0) > 0 ; from (6.3.15)

we see that its leading perturbative coefficient obeys

S
(conj)
0 (u) =

i

2

[
−Vol(M ; ū) + iCS(M ; ū)

]
+ vgeom(u)Re(u)− iπu . (6.4.4)

In general, we have

S
(ᾱ)
0 (u) = S

(α)
0 (u) (mod 2πu) . (6.4.5)

Now, let us consider symmetries that originate from geometry, i.e. symmetries that

involve involutions of M ,

τ : M →M . (6.4.6)

Every such involution restricts to a self-map of Σ = ∂M ,

τ |Σ : Σ→ Σ , (6.4.7)

which, in turn, induces an endomorphism on homology, Hi(Σ). Specifically, let us con-

sider an orientation-preserving involution τ which induces an endomorphism (−1,−1) on

H1(Σ) ∼= Z×Z. This involution is a homeomorphism of M ; it changes our definition of the

holonomies,

mi →
1
mi

and li →
1
li
, (6.4.8)

leaving the symplectic form (6.1.14) invariant. Therefore, it preserves both the symplectic

phase space Mflat(GC,Σ) and the Lagrangian submanifold L (possibly permuting some of

its branches).

In the basic case of rank r = 1, the symmetry (6.4.8) corresponds to the simple, well-

known relation A(l−1,m−1) = A(l,m), up to overall powers of l and m. Similarly, at the

quantum level, Â(l̂−1, m̂−1) = Â(l̂, m̂) when Â(l̂, m̂) is properly normalized. Branches of the

A-polynomial are individually preserved, implying that the perturbative partition functions

(and the coefficients S(α)
n ) are all even:

Z(α)(M ; ~,−u) = Z(α)(M ; ~, u) , (6.4.9)

modulo factors of e2πu/~ that are related to the ambiguity in S
(α)
0 (u). Note that in the

r = 1 case one can also think of the symmetry (6.4.8) as the Weyl reflection. Since, by

definition, holonomies that differ by an element of the Weyl group define the same point in

the moduli space (6.1.10), it is clear that bothMflat(GC,Σ) and L are manifestly invariant
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under this symmetry. (For r > 1, Weyl transformations on the variables l and m lead to

new, independent relations among the branches of L.)

Finally, let us consider a more interesting “parity” symmetry, an orientation-reversing

involution

P : M →M (6.4.10)

P |Σ : Σ→ Σ (6.4.11)

that induces a map (1,−1) on H1(Σ) ∼= Z×Z. This operation by itself cannot be a symmetry

of the theory because it does not preserve the symplectic form (6.1.14). We can try, however,

to combine it with the transformation ~ → −~ to get a symmetry of the symplectic phase

space (Mflat(GC,Σ), ω). We are still not done because this combined operation changes

the orientation of both Σ and M , and unless M ∼= M the state |M〉 assigned to M will be

mapped to a different state |M〉. But if M is an amphicheiral4 manifold, then both mi → 1
mi

and li → 1
li

(independently) become symmetries of the theory, once combined with ~→ −~.

This now implies that solutions come in signed pairs, vα(u) and vα̂(u) = −vα(u), such that

the corresponding perturbative GC invariants satisfy

Z(α̂)(M ; ~, u) = Z(α)(M ;−~, u) . (6.4.12)

For the perturbative coefficients, this leads to the relations

S
(α̂)
0 (u) = −S(α)

0 (u) (mod 2πu) , (6.4.13)

S(α̂)
n (u) = (−1)n+1S(α)

n (u) n ≥ 1 . (6.4.14)

Assuming that the ∼ ± i
2Vol(M ;u) behavior of the geometric and conjugate branches

is unique, their signed and conjugate pairs must coincide for amphicheiral 3-manifolds.

S
(geom)
0 , then, is an even analytic function of u with strictly real series coefficients; at

u ∈ iR, the Chern-Simons invariant CS(M ;u) will vanish.

6.5 Brane quantization

Now, let us briefly describe how a new approach to quantization based on D-branes in

the topological A-model [48] can be applied to the problem of quantizing the moduli space
4A manifold is called chiral or amphicheiral according to whether the orientation cannot or can

be reversed by a self-map.
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of flat connections,Mflat(GC,Σ). This discussion is not crucial for the rest of the chapter —

although it can be useful for obtaining a better understanding of Chern-Simons theory with

complex gauge group — and the reader not interested in this approach may skip directly

to Section 6.6.

In the approach of [48], the problem of quantizing a symplectic manifold N with sym-

plectic structure ω is solved by complexifying (N,ω) into a new space (Y,Ω) and studying

the A-model of Y with symplectic structure ωY = ImΩ. Here, Y is a complexification of

N , i.e. a complex manifold with complex structure I and an antiholomorphic involution

τ : Y → Y , (6.5.1)

such that N is contained in the fixed point set of τ and τ∗I = −I. The 2-form Ω on Y is

holomorphic in complex structure I and obeys

τ∗Ω = Ω (6.5.2)

and

Ω|N = ω . (6.5.3)

In addition, one needs to pick a unitary line bundle L→ Y (extending the “prequantum line

bundle” L → N) with a connection of curvature ReΩ. This choice needs to be consistent

with the action of the involution τ , meaning that τ : Y → Y lifts to an action on L, such

that τ |N = id. To summarize, in brane quantization the starting point involves the choice

of Y , Ω, L, and τ .

In our problem, the space N = Mflat(GC,Σ) that we wish to quantize is already a

complex manifold. Indeed, as we noted earlier, it comes equipped with the complex structure

J (that does not depend on the complex structure on Σ). Therefore, its complexification5

is Y = N ×N with the complex structure on N being prescribed by −J and the complex

structure on Y being I = (J,−J). The tangent bundle TY = TN ⊕ TN is identified

with the complexified tangent bundle of N , which has the usual decomposition CTN =

T 1,0N ⊕ T 0,1N . Then, the “real slice” N is embedded in Y as the diagonal

N 3 x 7→ (x, x) ∈ N ×N . (6.5.4)
5Note that, since in our problem we start with a hyper-Kähler manifold Mflat(GC,Σ), its com-

plexification Y admits many complex structures. In fact, Y has holonomy group Sp(n) × Sp(n),

where n is the quaternionic dimension of Mflat(GC,Σ).
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In particular, N is the fixed point set of the antiholomorphic involution τ : Y → Y which

acts on (x, y) ∈ Y as τ : (x, y) 7→ (y, x).

Our next goal is to describe the holomorphic 2-form Ω that obeys (6.5.2) and (6.5.3)

with6

ω =
t

2πi
(ωK + iωI)− t̄

2πi
(ωK − iωI) (6.5.5)

Note, that (ωK + iωI) is holomorphic on N =Mflat(GC,Σ) and (ωK − iωI) is holomorphic

on N . Moreover, if we take t̄ to be a complex conjugate of t, the antiholomorphic involution

τ maps t(ωK + iωI) to t̄(ωK − iωI), so that τ∗ω = ω. Therefore, we can simply take

Ω =
t

2πi
(ω(1)

K + iω
(1)
I )− t̄

2πi
(ω(2)

K − iω
(2)
I ) (6.5.6)

where the superscript i = 1, 2 refers to the first (resp. second) factor in Y = N × N . It

is easy to verify that the 2-form Ω defined in this way indeed obeys (ImΩ)−1ReΩ = I.

Moreover, one can also check that if t̄ is a complex conjugate of t then the restriction of

ωY = ImΩ to the diagonal (6.5.4) vanishes, so that the “real slice” N ⊂ Y , as expected, is

a Lagrangian submanifold in (Y, ωY ).

Now, the quantization problem can be realized in the A-model of Y with symplectic

structure ωY = ImΩ. In particular, the Hilbert space HΣ is obtained as the space of

(Bcc,B′) strings,

HΣ = space of (Bcc,B′) strings (6.5.7)

where Bcc and B′ are A-branes on Y (with respect to the symplectic structure ωY ). The

brane B′ is the ordinary Lagrangian brane supported on the “real slice” N ⊂ Y . The

other A-brane, Bcc, is the so-called canonical coisotropic brane supported on all of Y . It

carries a Chan-Paton line bundle of curvature F = ReΩ. Note that for [F ] to be an integral

cohomology class we need Re(t) ∈ Z. Since in the present case the involution τ fixes the

“real slice” pointwise, it defines a hermitian inner product on HΣ which is positive definite.
6Notice that while elsewhere we consider only the “holomorphic” sector of the theory (which is

sufficient in the perturbative approach), here we write the complete symplectic form onMflat(GC,Σ)

that follows from the classical Chern-Simons action (5.1.1), including the contributions of both fields

A and Ā.
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6.6 Examples

To conclude this chapter, we give several examples of explicit computations using the

hierarchy of differential equations described in Section 6.3. We focus on the gauge group

SL(2,C). We will begin with the trefoil, whose higher-order perturbative invariants on the

non-abelian branch of flat connections actually vanish. This behavior was also noticed by

direct analytic continuation of the colored Jones polynomial in [117]. We then consider

figure-eight knot 41, the simplest hyperbolic knot, which has new, interesting, non-trivial

perturbative invariants to all orders. It is quite possible to apply the hierarchy of differential

equations to other knots as well (for example, explicit operators Â for twist knots appear

in [118]), but computations start to become somewhat inefficient. In Chapter 9, we will

employ a different method (the state integral model) to find perturbative invariants for

knots like 41 and 52 and to verify that they satisfy Â · Z = 0.

31 41 52

Figure 6.1: Recurrent examples: the trefoil knot 31, figure-eight knot 41, and “three-twist”

knot 52, courtesy of KnotPlot.

6.6.1 Trefoil

The classical SL(2,C) A-polynomial for the trefoil knot is

A(l,m) = (l − 1)(l +m6) . (6.6.1)

It is a special case of the A-polynomial for (p, q) torus knots, which takes the form (l −

1)(lmpq + 1). This A-polynomial has two branches of solutions, an

abelian branch : label = 1 , (6.6.2)
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and a

non-abelian branch : lna = −m6 . (6.6.3)

Since the trefoil is a chiral knot, the A-polynomial is not invariant under the transformation

m→ m−1, which takes the right-handed trefoil to the left-handed trefoil. (It was explained

in Section 6.4 how the quantum partition function must change under this mirror action.)

As explained earlier, cf. (6.2.2), a simple way to find the operator Â(l̂, m̂) is to note that

it also annihilates the polynomial invariants of the knot K computed by Chern-Simons the-

ory with compact gauge group G. In the present case, G = SU(2) and the equation (6.2.2)

takes the form of a recursion relation on the set of colored Jones polynomials, {Jn(K; q)}.

Specifically, using the fact that l̂ acts by shifting the value of the highest weight of the

representation and writing Â(l̂, m̂) =
∑d

j=0 aj(m̂, q)l̂j as in (6.3.5), we obtain

d∑
j=0

aj(qn/2, q)Jn+j(K; q) = 0 . (6.6.4)

It is easy to verify that the colored Jones polynomials of the trefoil knot indeed satisfy such

a recursion relation, with the coefficients (see also7 [119, 120]):

a0(m̂, q) = q2m6(q3m4 − 1) , (6.6.5a)

a1(m̂, q) =
√
q(−q5m10 + q4m6 + q3m4 − 1) , (6.6.5b)

a2(m̂, q) = 1− qm4 . (6.6.5c)

Note that in the classical limit q = e2~ → 1, we have

Â(l̂, m̂) −→
~→0

(1−m4)A(l,m) . (6.6.6)

We could divide all the aj ’s by the extra factor (1 − m4) in(6.6.6) (or a q-deformation

thereof) to obtain a more direct correspondence between Â(l̂, m̂) and A(l,m), but this does

not affect any of the following calculations.

To find the exact perturbative invariant Z(α)(M ; ~, u) for each α, we reduce m̂ to a

classical variable m (since in the u-space representation the operator m̂ just acts via ordinary
7Note that [119, 120] look at asymptotics of the colored Jones polynomial normalized by its

value at the unknot, while the SL(2,C) Chern-Simons partition function should agree with the

unnormalized colored Jones polynomial. Hence, we must divide the expressions for aj given there

by (m2qj/2 − q−j/2) to account for the difference, introducing a few factors of q1/2 in our formulas.
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multiplication), expand each of the above aj ’s as aj(m, q) =
∑∞

p=0 aj,p(m)~p, and substitute

the aj,p into the hierarchy of differential equations derived in Section 6.1 and displayed in

Table 6.1. The equations are then solved recursively on each branch α of the A-polynomial

to determine the coefficients S(α)
n (u).

Non-abelian branch

For the non-abelian branch, which one would naively expect to be the more non-trivial

one, all higher-order perturbative invariants actually vanish. It is easy to check directly

that

Z(na)(31; ~;u) = exp
(

3u2 + iπu

~

)
(6.6.7)

is an exact solution to Â(l̂, m̂) · Z = 0. This implies that

S
(na)
0 (u) = 3u2 + iπu (mod 2πiu) , (6.6.8)

and agrees with the fact that the volume of the (non-hyperbolic) trefoil knot complement

is zero.

Moreover, all higher-order invariants S(na)
n (u) must be constants. In [117, 121], it is

independently argued (via direct analytic continuation of the colored Jones polynomial)

that this is indeed the correct behavior, and that S(na)
1 is a nonzero constant, while all

other S(na)
n vanish.

Abelian branch

The abelian branch, surprisingly, is non-trivial. It senses the fact that the operator Â

does contain more information than the classical A-polynomial. Setting S0(u) = 0 to single

out the abelian branch, we find that

S1(u) = log
m
(
m2 − 1

)
m4 −m2 + 1

,

S2(u) =
2m4

(m4 −m2 + 1)2
,

S3(u) = −
2
(
m12 − 4m8 +m4

)
(m4 −m2 + 1)4

,
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S4(u) =
4m4

(
m16 + 2m14 − 23m12 − 4m10 + 60m8 − 4m6 − 23m4 + 2m2 + 1

)
3 (m4 −m2 + 1)6

,

S5(u) = − 2m4

3 (m4 −m2 + 1)8
(
m24 + 8m22 − 84m20 − 144m18 + 868m16 + 200m14 − 1832m12

+200m10 + 868m8 − 144m6 − 84m4 + 8m2 + 1
)
,

. . . .

Since the abelian branch is self-conjugate (in the language of Section 6.4), the powers of m

appearing here are all balanced; for u ∈ iR or u ∈ R the coefficients are real. Unfortunately,

since this is an abelian branch, all the perturbative invariants at u = 0 are uninteresting

rational numbers.

6.6.2 Figure-eight knot

The classical A-polynomial of the figure-eight knot is

A(l,m) = (l − 1)(m4 − (1−m2 − 2m4 −m6 +m8)l +m4l2) . (6.6.9)

Observe that A(l−1,m−1) ∼ A(l,m) and that A(l−1,m) ∼ A(l,m), the latter reflecting the

fact that the figure-eight knot is amphicheiral. The zero locus of this A-polynomial has

three branches: the abelian branch label = 1 (or vabel = −iπ) from the first factor, and two

other branches from the second, given explicitly by

lgeom,conj(m) =
1−m2 − 2m4 −m6 +m8

2m4
± 1−m4

2m2
∆(m) (6.6.10)

or

vgeom,conj(u) = log(−lgeom,conj(eu)) , (6.6.11)

where we have defined

∆(m) = i
√
−m−4 + 2m−2 + 1 + 2m2 −m4 . (6.6.12)

Note that ∆(m) is an analytic function of m = eu around u = 0, as are l(m) and v(u). In

particular, ∆(1) =
√
−3 is the generator of the trace field K = Q(trΓ) for the figure-eight

knot.

Since there are only two non-abelian branches, they must (as indicated in Section 6.4)

be the geometric and conjugate ones. By looking at the behavior of these two branches in
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the neighborhood of the point (l,m) = (−1, 1) that corresponds to the complete hyperbolic

structure, where the geometric branch must have maximal volume, and using (6.3.15), one

can check that the identification in (6.6.10) is the correct one. (It is also possible to check this

directly once the hyperbolic structure of the figure-eight knot complement is understood,

cf. Section 8.1.1.)

The quantum A-polynomial Â(l̂, m̂) =
∑3

j=0 aj(m̂, q)l̂j for the figure-eight knot has

coefficients

a0(m̂, q) =
qm̂2

(1 + qm̂2)(−1 + qm̂4)
, (6.6.13a)

a1(m̂, q) =
1 + (q2 − 2q)m̂2 − (q3 − q2 + q)m̂4 − (2q3 − q2)m̂6 + q4m̂8

q1/2m̂2(1 + q2m̂2 − qm̂4 − q3m̂6)
, (6.6.13b)

a2(m̂, q) = −1− (2q2 − q)m̂2 − (q5 − q4 + q3)m̂4 + (q7 − 2q6)m̂6 + q8m̂8

qm̂2(1 + qm̂2 − q5m̂4 − q6m̂6)
, (6.6.13c)

a3(m̂, q) = − q4m̂2

q1/2(1 + q2m̂2)(−1 + q5m̂4)
. (6.6.13d)

In the classical limit q = e2~ → 1, we have

Â(l̂, m̂) −→
~→0

A(l,m)
m2(m2 − 1)(m2 + 1)2

. (6.6.14)

Again, we could multiply all the aj ’s by the denominator of (6.6.14) (or a q-deformation

thereof) to obtain a more direct correspondence between Â(l̂, m̂) and A(l,m).

Geometric branch

For the geometric branch, the solution to the first equation in Table 6.1 is chosen to be

S
(geom)
0 (u) =

i

2
Vol(41; 0) +

∫ u

0
du vgeom(u) + iπu , (6.6.15)

with vgeom(u) as in (6.6.11). The integration constant i(Vol(0) + iCS(0)) is not important

for determining the remaining coefficients (since only derivatives of S0 appear in the equa-

tions), but we have fixed it by requiring that S(geom)
0 (0) = i

2(Vol(41; 0) + iCS(41; 0)) =
i
2Vol(41; 0) = (1.01494 . . .)i, as expected for the classical action of Chern-Simons theory.

Substituting the above S(geom)
0 (u) into the hierarchy of equations, the rest are readily

solved8 for the subleading coefficients. The first eight functions S(geom)
n (u) appear below:

8It is computationally advantageous to express everything in terms of m = eu and m d
dm = d

du ,

etc., when implementing this on a computer.
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S1(u) = −1
2

log
(
−i∆(m)

2

)
,

S2(u) =
−1

12∆(m)3m6

(
1−m2 − 2m4 + 15m6 − 2m8 −m10 +m12

)
,

S3(u) =
2

∆(m)6m6

(
1−m2 − 2m4 + 5m6 − 2m8 −m10 +m12

)
,

S4(u) =
1

90∆(m)9m16

(
1− 4m2 − 128m4 + 36m6

+1074m8 − 5630m10 + 5782m12 + 7484m14 − 18311m16 + 7484m18

+5782m20 − 5630m22 + 1074m24 + 36m26 − 128m28 − 4m30 +m32
)
,

S5(u) =
2

3∆(m)12m18

(
1 + 5m2 − 35m4 + 240m6 − 282m8 − 978m10

+3914m12 − 3496m14 − 4205m16 + 9819m18 − 4205m20 − 3496m22

+3914m24 − 978m26 − 282m28 + 240m30 − 35m32 + 5m34 +m36
)
,

S6(u) =
−1

945∆(m)15m28

(
1 + 2m2 + 169m4 + 4834m6

−24460m8 + 241472m10 − 65355m12 − 3040056m14 + 13729993m16

−15693080m18 − 36091774m20 + 129092600m22 − 103336363m24

−119715716m26 + 270785565m28 − 119715716m30 − 103336363m32

+129092600m34 − 36091774m36 − 15693080m38 + 13729993m40 − 3040056m42

−65355m44 + 241472m46 − 24460m48 + 4834m50 + 169m52 + 2m54 +m56
)
,

S7(u) =
4

45∆(m)18m30

(
1 + 47m2 − 176m4 + 3373m6 + 9683m8

−116636m10 + 562249m12 − 515145m14 − 3761442m16 + 14939871m18

−15523117m20 − 29061458m22 + 96455335m24 − 71522261m26

−80929522m28 + 179074315m30 − 80929522m32 − 71522261m34

+96455335m36 − 29061458m38 − 15523117m40 + 14939871m42

−3761442m44 − 515145m46 + 562249m48 − 116636m50

+9683m52 + 3373m54 − 176m56 + 47m58 +m60
)
,

S8(u) =
1

9450∆(m)21m40

(
1 + 44m2 − 686m4

−25756m6 + 25339m8 − 2848194m10 − 28212360m12
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+216407820m14 − 1122018175m16 − 266877530m18

+19134044852m20 − 76571532502m22 + 75899475728m24

+324454438828m26 − 1206206901182m28 + 1153211096310m30

+1903970421177m32 − 5957756639958m34 + 4180507070492m36

+4649717451712m38 − 10132372721949m40 + 4649717451712m42

+4180507070492m44 − 5957756639958m46 + 1903970421177m48

+1153211096310m50 − 1206206901182m52 + 324454438828m54

+75899475728m56 − 76571532502m58 + 19134044852m60

−266877530m62 − 1122018175m64 + 216407820m66 − 28212360m68

−2848194m70 + 25339m72 − 25756m74 − 686m76 + 44m78 +m80
)
.

Table 6.3: Perturbative invariants S
(geom)
n (u) up to eight

loops.

According to (5.2.3), the coefficient S(geom)
1 (u) in the perturbative Chern-Simons par-

tition function should be related to the Reidemeister-Ray-Singer torsion of M twisted by

A(geom), which has been independently computed. Our function matches9 that appearing in

e.g. [98], up to a shift by − log π. The constants of integration for the remaining coefficients

have been fixed by comparison to the asymptotics of the colored Jones polynomial, using

(5.4.5) and the results of Section 5.4. Note that at u = 0, the arithmetic invariants of

Section 5.4 at the complete hyperbolic structure should be reproduced.

Conjugate branch

For the “conjugate” branch, the solution for S0(u) is now chosen to be

S
(conj)
0 (u) = − i

2
Vol(41; 0) +

∫ u

0
du vconj(u) + iπu (mod 2πu), (6.6.16)

so that S(conj)
0 (u) = −S(geom)

0 (u). As for the geometric branch, this is then substituted

into remainder of the hierarchy of equations. Calculating the subleading coefficients, the
9To compare with [98], note that kthere = khere = iπ/~, and uthere = 2uhere. The shift by − log(π)

is directly related to a jump in the asymptotics of the colored Jones polynomial at u = 0.
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constants of integration can all be fixed so that

S(conj)
n (u) = (−1)n+1S

(geom)
n+1 (u), (6.6.17)

This is precisely what one expects for an amphicheiral knot when a conjugate pair of

branches coincides with a “signed” pair, as discussed in Section 6.4.

Abelian branch

For completeness, we can also mention perturbation theory around an abelian flat connec-

tion A(abel) on M , although it has no obvious counterpart in the state integral model.

For an abelian flat connection A(abel), the classical Chern-Simons action (5.2.1) vanishes.

This is exactly what one finds from (6.3.14):

S
(abel)
0 (u) =

∫ u

0
du vabel(u) + iπu = 0 (mod 2πiu) , (6.6.18)

fixing the constant of integration so that S(abel)
0 (0) = 0. From the hierarchy of differential

equations, the first few subleading coefficients are

S
(abel)
1 (u) = log

m(m2 − 1)
1− 3m2 +m4

,

S
(abel)
2 (u) = 0

S
(abel)
3 (u) =

4(m2 − 1)2

(1− 3m2 +m4)3
(
1− 7m2 + 16m4 − 7m6 +m8

)
,

S
(abel)
4 (u) = 0

S
(abel)
5 (u) =

4(m2 − 1)2

3(1− 3m2 +m4)6
(
41− 656m2 + 4427m4 − 16334m6 + 35417m8 − 46266m10

+35417m12 − 16334m14 + 4427m16 − 656m18 + 41m20
)

S
(abel)
6 (u) = 0 . . . .

Table 6.4: Perturbative invariants S(abel)
n (u) up to six loops.

In the language of Section 6.4, the abelian branch must be its own “signed pair,” guaran-

teeing that all even S
(abel)
2k (u) vanish.



Chapter 7

Wilson loops for complex gauge

groups

The goal of this chapter is to explain the relationship between Chern-Simons theory with

Wilson loops and Chern-Simons theory on knot complements, and to use this relationship to

elucidate the limit taken in “analytic continuation” of Chern-Simons theory with compact

gauge group G to Chern-Simons theory with complex gauge group GC.

For compact gauge groups, the relation between Wilson loops and knot complements

have been understood for a long time [13, 122]. Part of our discussion here reviews and

explains these results in greater detail, as they provide the groundwork for the complex

case. The main idea of the approach in (e.g.) [122] is to rewrite a Wilson loop as a

new path integral for quantum mechanics of particles moving along the loop. This has

two advantages: it allows a generalization to complex gauge group (taking the trace of

a holonomy in a given representation does not); and it most directly connects boundary

conditions and representations.

Unfortunately, the generalization to complex gauge group requires a certain number of

mathematical preliminaries. Thus, we spend the first part of the chapter reviewing prin-

cipal series representations of complex groups and their realizations via the orbit method,

following [123, 124, 125]. In the second part of the chapter, we incorporate these results

into Wilson loops and Chern-Simons theory.

119
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7.1 Some representation theory

Finite and infinite-dimensional representations

The Lie algebra sl(2,C) is generated as a complex vector space by the elements E,F,H

satisfying

[E,F ] = H , [H,E] = 2E , [H,F ] = −2F . (7.1.1)

In the defining representation, these elements correspond to the matrices

H =

 1 0

0 −1

, E =

 0 1

0 0

, F =

 0 0

1 0

 . (7.1.2)

One exponentiates (with no i’s) to obtain the group SL(2,C). The compact subgroup SU(2)

of SL(2,C) has a Lie algebra su(2) generated as a real vector space over anti-Hermitian

generators (a.k.a. Pauli matrices):

su(2) = 〈iH,E − F, i(E + F )〉R . (7.1.3)

All representations of su(2) can be extended to be holomorphic representations of

sl(2,C). They act most generally as

ρλ(E) = −λz + z2∂z ,

ρλ(F ) = −∂z , (7.1.4)

ρλ(H) = −λ+ 2z∂z

on holomorphic functions f(z) of a single complex variable. Here, ρ is a complex-linear

homomorphism on the generators of the Lie algebra. The quadratic Casimir of this repre-

sentation is

C2(λ) = ρλ

(
1
2
H2 + EF + FE

)
=

1
2
λ(λ+ 2) . (7.1.5)

While representation (7.1.4) is a perfectly good representation of sl(2,C) or its sub-

algebras for any λ ∈ C, it is not always integrable to representations of SL(2,C) or its

subgroups. If ρλ is integrable, then it integrates generically to

ρλ

 a b

c d

 · f(z) = (−bz + d)λf

(
az − c
−bz + d

)
. (7.1.6)



121

For SU(2) and SL(2,C), it is sufficient to check that this is well-defined on the maximal

tori generated by H, and in particular that ρ(I) = ρλ(e2πiH) := e2πiρλ(H) = 1. This forces

λ to be an integer. Indeed, when λ ∈ Z≥0, ρλ can be restricted to a finite-dimensional rep-

resentation acting on polynomials in z of degree ≤ λ. The dimension of this representation

is N = λ+ 1.

In the case of SU(2), these finite-dimensional representations are unitary. For SL(2,C)

however, they are not. In order to find unitary representations of SL(2,C), one must break

its complex structure. That is, consider sl(2,C) to be a real Lie algebra1 generated over the

basis {E, F, H, Ẽ := iE, F̃ := iF, H̃ := iH}. We seek representations ρ with ρ(T̃ ) 6= iρ(T )

for T = E,F,H.

It is convenient to complexify the Lie algebra sl(2,C) (a second time), and to extend

ρ complex-linearly under this second complexification. Working over C, we then redefine

generators

2EL = E − iẼ, 2ER = E + iẼ ,

2FL = F − iF̃ , 2FR = F + iF̃ , (7.1.7)

2HL = H − iH̃, 2HR = H + iH̃ .

Each (EL, FL,HL) and (ER, FR,HR) generate independent (commuting) sl(2,C) subalge-

bras, and we obtain an isomorphism sl(2,C)C ' sl(2,C)L × sl(2,C)R. Now, generic non-

holomorphic representations of sl(2,C) should be given as ρλL,λR
= ρλL

×ρλR
, using (7.1.4)

for each of the two factors sl(2,C)L,R. The representation space consists of nonholomorphic

functions f(z, z̄), with ρλL
acting on z and ρλR

acting on z̄. The corresponding quadratic

Casimir is

C2(λL, λR) = λL(λL + 2) + λR(λR + 2) . (7.1.8)

When naively integrating the representation ρλL,λR
described above, one obtains

ρλL,λR

 a b

c d

 · f(z, z̄) = (−bz + d)λL(−bz + d)
λR
f

(
az − c
−bz + d

,
āz̄ − c̄
−b̄z̄ + d̄

)
. (7.1.9)

This expression is well-defined only when λL − λR ∈ Z . This condition can be seen by

writing the multiplicative factor above as

| − bz + d|λL+λR

(
−bz + d

| − bz + d|

)λL−λR

.

1In this description, we have sl(2,C) = spin(3, 1).
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Then, for ρλ(e2πH̃) = 1 the exponent of the phase must be an integer. It is clear from

(7.1.9) that when λR = 0 we just obtain the old holomorphic representations, with λ = λL.

For a pair λL, λR ∈ C satisfying λL−λR ∈ Z, the expression (7.1.9) defines a generalized

principal series representation of SL(2,C). This infinite-dimensional representation is more

commonly labelled as Pk ,w (cf. [123]), with

w = −(λL + 1)− (λR + 1) ∈ C, k = −(λL − λR) ∈ Z . (7.1.10)

For w imaginary and arbitrary k , the principal series representations are unitary under the

standard inner product on L2(C). For real 0 < w < 2 and k = 0, the representations are

unitary under a non-standard inner product, and are called the complementary series. In

terms of k and w, the quadratic Casimir is

1
4

(w2 + k 2)− 1 . (7.1.11)

Representations related by (w, k ) ↔ (−w,−k ) are isomorphic, and this is the only equiv-

alence in the series. The unitary principal series and complementary series are the only

unitary representations of SL(2,C). They are irreducible unless w ∈ Z, |k| < |w|, and

k ≡ w mod 2 [123].

Induction

Given a group G, a subgroup H ⊂ G, and a representation σ of H, one can form an

induced representation indG
H(σ). This acts on the space of functions on G valued in the

vector space of the representation σ that satisfy

f(xh) = σ(h−1)f(x) (7.1.12)

for h ∈ H, x ∈ G. This space, formally C∞c (H\G;σ), can equivalently be thought of as

sections of a bundle on the coset space G/H. The action of G on f ∈ C∞c (H\G;σ) is by

the left-regular representation

indG
H(σ)(g) · f(x) := f(g−1x) . (7.1.13)

For a general semi-simple reductive group, all so-called admissible representations are

generated by the operation of induction from simpler representations of parabolic subgroups,
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and then by taking quotients to obtain irreducible representations. In the case of SL(2,C),

the story is very simple. The only nontrivial parabolic subgroup is the Borel subgroup

B of upper-triangular matrices. It has a decomposition B = MAN corresponding to the

decomposition b = a⊕m⊕ n with

a = 〈H〉, A = {exp tH} (t ∈ R) ,

m = 〈iH〉, M = {exp tiH} ' U(1) , (7.1.14)

n = 〈E, iE〉, N = {exp(tE + t′iE)} .

Then, letting ν ∈ (a∗)C and κ ∈ m∗ be (real) linear functionals defined by

ν(H) = −iw , κ(iH) = k ; ν(iH) = κ(H) = 0 , (7.1.15)

and letting ρ be the half-sum of positive restricted roots satisfying

ρ(H) = 2 , ρ(iH) = 0 , (7.1.16)

the principal series representation Pk ,w is induced from the representation exp(iν + ρ) ⊗

exp iκ⊗ id of B = MAN :

Pk ,w = indGC
B (eiν+iκ+ρ) . (7.1.17)

Observe that the defining data here is a pair of linear functionals κ and ν, corresponding

to the parameters k and w, that act on the maximal torus TC ' GL(1) of the group GC. The

functional acting on the compact part of TC is quantized. This is true in general for maximal

parabolic subgroups: principal series representations are induced from representations of

the maximal torus that act trivially on the off-diagonal part of the parabolic subgroup. The

representation TC (here eiν+iκ+ρ) is called the quasi-character of the induced representation.

7.2 Representations as coadjoint orbits

The mathematical machinery that connects representations with conjugacy classes (and

for us Wilson loops with boundary conditions) is the Borel-Weil-Bott theorem [126] and

generalizations thereof to noncompact groups (developed by Kirillov and others). The

basic idea is that irreducible representations a group G(C) can be obtained by the geometric

quantization of its coadjoint orbits. Excellent reviews of the topic can be found in [124] or
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[125] (see also [127] and [48] in the physics literature). Here, we will give a brief overview

of the general procedure, stating necessary results, and then specializing to the example of

SU(2) and SL(2,C).

The adjoint action of G on g can be written as g : X → gXg−1. Likewise, there is a

coadjoint action of G on the dual space g∗. Since g∗ and g can be identified for reductive

groups by a non-degenerate trace form, we can write weights λ ∈ g∗ as matrices; then the

coadjoint action is g : X → gλg−1. The coadjoint orbit

Ωλ = {gλg−1}g∈G (7.2.1)

through a point λ has the geometry of the coset G/Hλ (or sometimes a quotient thereof),

where Hλ is the stabilizer of λ:

Hλ = {h ∈ G | hλh−1 = λ} . (7.2.2)

In the case of compact or complex G, Hλ is conjugate to the maximal torus of G for generic

λ. The left-regular G-action on G/Hλ is equivalent to the coadjoint action on Ωλ, and is

the action used for representations.

The coadjoint orbit Ωλ ' Hλ has a natural G-invariant symplectic structure. The

symplectic form can be written as

ω = −Tr(λ g−1dg ∧ g−1dg) (7.2.3)

for g ∈ G/Hλ. To geometrically quantize Ωλ one must form a line bundle L → Ωλ with

curvature ω, choose a polarization that effectively cuts out half the degrees of freedom (half

the coordinates) on Ωλ, and construct a Hilbert space V as the space of square-integrable

polarization-invariant sections of L. Considering λ again to be a linear functional λ ∈ g∗,

the line bundle L can is obtained as a quotient of C × G by the representation eiλ of

Hλ ∈ G acting on C; in other words, it is essentially the space C∞(G, eiλ) of the induced

representation indG
Hλ

(eiλ) described in Section 7.1. The line bundle exists if and only if the

representation eiλ is integrable.

In the case of compact group G, where Hλ ' T is a maximal torus, one can induce a

complex structure on G/Hλ via the equivalence

G/Hλ ' GC/B , (7.2.4)
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where B is the upper-triangular Borel subgroup of GC containing Hλ. Then, to obtain

the unitary finite-dimensional representations, one must choose a holomorphic polarization.

Specifically, if −λ is the dominant weight of a sought representation R, then the space

H0
∂̄
(G/Hλ; eiλ) of holomorphic sections of the bundle L is finite dimensional and G acts on

it in the left-regular representation to furnish R.

In the case of complex group GC, principal series representations are obtained by consid-

ering real polarizations on the line bundle over GC/Hλ, where λ is now a non-complex-linear

element of the dual g∗C. The set of all sections of this line bundle is the representation space

of a representation induced from Hλ by eiλ. To get the desired representation induced

from the Borel subgroup B = HλN by eiλ ⊗ id, the polarization is chosen precisely such

that sections are independent of coordinates in N . (This process can also be extended to

describe induction from generic non-maximal parabolic subgroups, e.g. by choosing λ such

that its isotropy group Hλ is non-minimal.)

In both compact and complex cases, the representations of the group G(C) end up being

described by choices of coadjoint orbits. Since a coadjoint orbit is defined by an element

λ ∈ g∗(C) ' g(C) up to conjugacy, this establishes an equivalence between representations

and conjugacy classes of g(C).

Example: SU(2)

In the simplest case of SU(2), let us write a matrix g ∈ SU(2) as

g =

 w −z̄

z w̄

, w, z ∈ C. (7.2.5)

with |w|2 + |z|2 = 1. The right action of a diagonal matrix diag(eiθ, e−iθ) in the maximal

torus H = T acts by sending (w, z) 7→ (eiθw, eiθz). From this, we immediately see that

SU(2) has the geometry of S3, and the H action is just rotation in the S1 fiber of the Hopf

bundle S1 → S3 → S2. Therefore, a generic coadjoint orbit looks like

Ω ' SU(2)/T = S2 ' P1 . (7.2.6)

We already know what all holomorphic bundles on P1 look like: they are tensor powers

of the canonical line bundle, O(λ̃) for −̃λ ∈ Z. These have curvature

ω = −Tr(λg−1dg ∧ g−1dg) , (7.2.7)
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where λ is the matrix

λ =
λ̃

2i

 1 0

0 −1

 , (7.2.8)

or equivalently the corresponding element of (g∗)C acting as Tr[λ, · ]. Moreover, for λ̃ < 0,

the bundle O(−λ̃) has an (|λ̃| + 1)-dimensional space of square-integrable holomorphic

sections. A basis of this space is given by the polynomials {1, z, ..., z−λ̃} in local coordinates

on SU(2)/H where w 6= 0; this is precisely the (|λ̃| + 1)-dimensional representation of

SU(2). It is easy to see that the generators of the Lie algebra su(2) act on local functions

f(z) exactly as in (7.1.4).

By using the symplectic form (7.2.6), and working in projective coordinates (w : z) on

P1, it is also possible to show that the variables w̄ and z̄ become identified after quantization

with the conjugate momenta

λ̃w̄ ∼ −∂w, λ̃z̄ ∼ −∂z. (7.2.9)

Example: SL(2,C)

Let us write an element of SL(2,C) in complex coordinates as

g =

 w −x

z y

, wy + zx = 1, z, w, x, y ∈ C . (7.2.10)

We can also put w = b+ic, y = b−ic, z = d+ie, x = d−ie (four new complex coordinates);

then SL(2,C) = {b2 + c2 + d2 + e2 = 1} ' T ∗S3 ' T ∗(SU(2)).

There is a single Cartan subgroup (or maximal torus) H = TC, and almost all of

SL(2,C) is conjugate to it. In the coadjoint orbit SL(2,C)/TC, there is a rescaling symmetry

(w, z, x, y) 7→ (aw, az, a−1x, a−1y) for a ∈ C∗. A slightly nontrivial argument shows that

SL(2,C)/TC is isomorphic to {b2 + c2 + f2 = 1} ∈ C3 (we have essentially set f2 = zx and

used the scaling to set x = 1 or z = 1, or both, except at a point). Therefore, a genetic

coadjoint orbit looks like

Ω ' SL(2,C)/TC ' T ∗S2. (7.2.11)

Unlike the case of SU(2), this is a noncompact manifold, and will lead to infinite-dimensional

Hilbert spaces (representations) upon geometric quantization.

In the case of SU(2), we implicitly extended the isomorphism g∗ ' g to an isomorphism

(g∗)C ' g by complex linearity. We need do the same for the Lie algebra sl(2,C), viewed as
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a real Lie algebra in order to access principal series representations. To simplify notation,

let g = sl(2,C) (rather than using gC). Then, as in Section 7.1, the complexification of this

real Lie algebra satisfies gC ' g× g. An appropriate complexification of the nondegenerate

trace form ReTr is given by 〈 , 〉 : gC × g ' (g× g)× g→ C, such that

〈(XL, XR), Y 〉 =
1
2

Tr(XL Y ) +
1
2

Tr(XR Ȳ , (7.2.12)

where Ȳ denotes the usual complex conjugation in the (“broken”) complex structure on

sl(2,C). This leads to an identification of linear functionals and matrices

ν ∈ (a∗)C ↔ ν = − iw
2

 1 0

0 −1

, κ ∈ (m∗)C ↔ κ = − ik
2

 1 0

0 −1

 . (7.2.13)

The pair ν ⊕ κ ∈ (m∗ ⊕ a∗)C ⊂ (g∗)C is identified with

ν ⊕ κ ↔ (XL, XR) = (ν + κ, ν − κ) ∈ sl(2,C)C ' sl(2,C)× sl(2,C) . (7.2.14)

The natural symplectic form resulting from the above isomorphism is

ων,κ =
1
2

Tr((ν + κ)g−1dg ∧ g−1dg) +
1
2

Tr((ν − κ)g−1dg ∧ g−1dg). (7.2.15)

Due to the compact cycle S2 in the coadjoint orbit Ω ' T ∗S2, this form can is the curvature

of a line bundle L if and only if k ∈ Z. Moreover, when the line bundle L exists, it will

be unique (since T ∗S2 is simply-connected). Using a polarization in which sections of L

depend only on a single complex projective coordinate (w : z), we see that the sections

induced from eiν+iκ+ρ will transform as

f(aw, az, āw̄, āz̄) = a−
1
2
(w+k )−1ā−

1
2
(w−k )−1f(w, z, w̄, z̄), a ∈ C∗. (7.2.16)

This, of course, is precisely the right transformation for the principal series representation

Pk ,w.

The conjugate momenta to the complex projective coordinates (w : z) and (w̄ : z̄) are

x ∼ −2
w + k

∂z, y ∼ −2
w + k

∂w, x̄ ∼ −2
w − k

∂̄z, ȳ ∼ −2
w − k

∂̄w . (7.2.17)

On sections of L, one has that

z∂z + w∂w = −1
2

(w + k )− 1, z̄∂̄z + w̄∂̄w = −1
2

(w − k )− 1. (7.2.18)
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7.3 Quantum mechanics for Wilson loops

For compact gauge groups, Wilson loops in a representation R supported on a curve C

are typically written as

WR(C;A) = TrR HolCA = TrR

[
P

∮
C
eA
]
. (7.3.1)

Unfortunately, “TrR” does not entirely make sense for infinite-dimensional representations

of complex gauge groups. It may be possible to replace this trace with a distributional

character from the mathematical theory of reductive Lie groups in order to define infinite-

dimensional Wilson loops. However, a better approach was suggested during the early

development of Chern-Simons theory with compact gauge group: Wilson loops as in (7.3.1)

can alternatively be written as path integrals in a quantum mechanical theory of particles

moving along the loop [122, 128, 28]. Specifically, one has

WR(K;A) =
∫

LG/LH
Dg eiS[g], S[g] =

∫
C

Tr(λg−1(d+A)g) , (7.3.2)

For compact groups, λ is the highest weight of the finite-dimensional representation R,

identified with an element of g via Tr. In this section, we will explain why (7.3.2) makes

sense for compact groups (a thorough discussion seems absent from the literature). Then

we will show that a version of this formula works perfectly for noncompact groups when λ

is identified with the quasi-character of an induced representation.

In the path integral (7.3.2), we let 0 ≥ t < 2π be the time coordinate along the loop

C. The path integral goes over maps g : C → G, in other words over the loop group LG.

There is, however, a gauge symmetry: any right-translation g 7→ gh, with h belonging to

the isotropy group Hλ of λ for all t, leaves the integrand eiS invariant. (This holds for

compact or noncompact G.) Thus one really integrates over the space LG/LH.

Let Atdt be the component of A along the loop C. The Lagrangian of the action in

(7.3.2) is L = Tr(λg−1(∂tg −Atg)). If we somewhat naively take gij to be our coordinates,

we find that canonical momenta are

pij =
∂L

∂(∂tgij)
= (λg−1)ji.

We can then construct a (local) symplectic form for this system as

ω = dpij ∧ dgij = Tr(λdg−1 ∧ dg) = Tr((−λ)g−1dg ∧ g−1dg). (7.3.3)
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Finally, to find the (classical) Hamiltonian, we calculate

H = pij∂tgij − L = −Tr(λg−1Atg). (7.3.4)

In order to justify (7.3.2), we will proceed to quantize the path integral in a Hamiltonian

formalism, and rewrite the partition function as a trace over an appropriate Hilbert space.

To this end, consider the system at some fixed time t. The classical phase space of the system

is just G/Hλ, since all elements of presumed canonical momenta λg−1 are just algebraic

functions of the elements of g. (Put another way, this is a first-order Lagrangian, so both

momenta and coordinates are contained in g.) But then the symplectic form (7.3.3) on

G/Hλ is nothing but the canonical symplectic form (7.2.3) on the coadjoint orbit of weight

−λ ∈ g∗, at least if G is compact. Therefore, we immediately conclude that the Hilbert

space of this quantum mechanical system is the space of the representation with highest

weight λ.

Somewhat less trivially, we claim that the quantization of the Hamiltonian iH = −iTr(λg−1Atg)

is precisely the matrix At acting on the Hilbert space in the representation with highest

weight λ. In other words, conjugation by a quantum operator g effectively converts matrices

into the right coadjoint orbit representation! Then we can simply “cut” the Wilson loop in

the path integral at time t = 0 and use to Hamiltonian formalism to see that∫
Dg eiS[g] = TrHilbert space T exp

(∫ 2π

0
iH(t) dt

)
, (7.3.5)

becomes precisely the holonomy of the gauge connection A (where T is a time ordering that

because the Wilson loop path ordering).

For G = SU(2), the claim that the Hamiltonian is just the matrix A acting on the

Hilbert space can be proven explicitly by writing At = aH+ bE+cF and simply expressing

−iTr(λg−1 · g) in terms of quantum operators for each generator H,E, F . For example,

with λ as in (7.2.8) and operators as in (7.2.9) we find

−iTr(λg−1Eg) = − λ̃
2

Tr
[ w̄ z̄

z −w

 0 1

0 0

 w −z̄

z w̄

]

= −λ̃zw̄

= −z∂w

' −λ̃z + z2∂z ,
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and similarly −iTr(λg−1Hg) = −λ̃+ 2z∂z and −iTr(λg−1Fg) = −∂z.

Wilson loops for complex groups

In the case of GC = SL(2,C), we propose that a Wilson loop in representation Pk ,w be

defined by the path integral (7.3.2), but with an action

S = −1
2

∫
C

Tr[(ν + κ)g−1(d+A)g + (ν − κ)g−1(d+A)g], (7.3.6)

This modified action will lead exactly to the symplectic form (7.2.15) relevant for construct-

ing principal series representations from coadjoint orbits.

To show that the resulting Hamiltonian iH = i
2Tr[(ν + κ)g−1Ag + (ν − κ)ḡ−1Āḡ] is

again just A in the Pk ,w representation, we can use the operator expressions (7.2.17) and

explicitly derive the operators for basis elements A = H, H̃,E, Ẽ, F, F̃ just as in the SU(2)

case.

For other complex gauge groups, this procedure can be easily generalized. The action

(7.3.6) will still involve a sum of two terms, but ν and κ need to be replaced by the relevant

linear functionals that induce the desired principal series representation.

7.4 Wilson loops vs. boundary conditions

As a culmination of the above theory and proposal for defining Wilson loops with infinite-

dimensional representations, we can finally derive the relation between a partition function

on a knot complement and a partition function with a knot in Chern-Simons theory with

complex gauge group. We obtain a map between boundary conditions and representations,

and use it to explain the limits used in the “analytic continuation” of Chapter 6.

As a starting point, for arbitrary gauge group G and a Euclidean 3-manifold M , consider

the action

ICS [A] =
1

4π

∫
M

Tr
(
A ∧ dA+

2
3
A ∧ A ∧A

)
. (7.4.1)

If we put the theory on a manifold of topology R×Σ (or S1×Σ), where Σ is some 2-surface,

we can split the gauge field into a component At along “time” R, and a “spatial” component
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A⊥. With suitable boundary conditions on At at ∂M , we can integrate by parts and rewrite

ICS [A] =
1

4π

∫
M

Tr(A⊥ ∧ dA⊥) +
1

2π

∫
M
F⊥ ∧ At , (7.4.2)

where F⊥ = dA⊥ + A⊥ ∧ A⊥ is the curvature of A⊥. Then the field At becomes nondy-

namical, and we can integrate it out to obtain a condition

F⊥ = 0 (7.4.3)

which the new path integral in A⊥ must obey. This is the origin of the reasoning that

we restrict to moduli spaces of flat connections in geometric quantization: the classical

phase space of the theory consists of flat connections A⊥ on Σ (at fixed t), modulo gauge

transformations.

We want to specialize the theory to compact and complex gauge groups, and to show

how condition (7.4.3) is altered by Wilson loops. The compact case was considered in (e.g.)

[122], but we review it because it will be relevant for analytic continuation.

Representations and boundary conditions for compact groups

Chern-Simons theory with compact gauge group (say SU(N)) has an action S = kICS .

Gauge-invariance under large gauge transformations on M force the constant k to be an

integer. By fixing orientation on M , one usually takes k to be a positive integer – the level

of the theory.

Now put the theory on S1 × Σ and add a Wilson loop in representation λ parallel to

the S1. Let t be the coordinate on S1 as before, and let (x1, x2) be local coordinates on Σ,

so that the Wilson loop goes through (x1, x2) = 0. From Section 7.3, we know that we can

write the path integral of the theory with the Wilson loop insertion as
∫
DADg eiS , where

the full effective action is

S = kICS +
∫

C
Tr(λg−1(d+A)g)

= kICS +
∫

M
δ(x)dx1 ∧ dx2 ∧ Tr(λg−1(d+At)g) . (7.4.4)

Therefore, we can again integrate out At. However, instead of complete flatness in the

perpendicular directions, we now obtain the constraint2

k + h∨

2π
F⊥ + g(λ+ ρ)g−1δ(x)dx1 ∧ dx2 = 0. (7.4.5)

2When performing this integration in the full quantum theory for compact gauge groups, two
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In other words, A⊥ must be flat everywhere on Σ except at the point x = 0. At fixed time

t0, we can take a small disc D ⊂ Σ around x = 0 and integrate F⊥ on it to find

k + h∨

2π

∫
D
F⊥ = −g(t0)(λ+ ρ)g−1(t0) =

k

2π
log Hol∂D(A⊥).

For SU(2) (for example), this argument shows that the holonomy of A⊥ linking the

Wilson loop is always conjugate to

Hol∂D(A⊥)
conj∼

 e
iπ

k+2
N 0

0 e−
iπ

k+2
N

, (7.4.6)

where N = λ̃+ 1 ∼ λ+ ρ is the dimension of a given representation.

Representations and boundary conditions for complex groups

Let us consider SL(2,C) theory. The Chern-Simons action is (5.1.1) is t
2ICS [A] +

t̄
2ICS [Ā]. The appropriate Wilson loop action is given by (7.3.6). Treating A and Ā as

independent fields, we can separately integrate out both At and Āt, yielding two constraints:

t

4π
F⊥ − 1

2
g(ν + κ)g−1 δ(x)dx1 ∧ dx2 = 0, (7.4.7a)

t̄

4π
F̄⊥ − 1

2
ḡ(ν − κ)ḡ−1 δ(x)dx1 ∧ dx2 = 0. (7.4.7b)

These only makes sense if F and F̄ obey conjugate equations.

We can also look at restrictions imposed by unitarity. As explained in Section 5.1,

there are two possible unitarity structures for Chern-Simons theory with complex gauge

group. In both structures, constraints (7.4.7) become compatible if unitary principal series

representations (w ∈ iR, k ∈ Z) are used for the Wilson loop. In the Chern-Simons unitarity

structure relevant for Euclidean quantum gravity, with t, t̄ ∈ R, representations with w ∈ R

are also allowed. Therefore, it may be possible to have Wilson loops with complementary

series representations as well.3

matching shifts of “coupling constants” happen: the Chern-Simons level k is shifted to k + h∨

(where h∨ is the dual Coxeter number of G), and the weight λ is shifted to λ + ρ (where ρ is half

the sum of positive roots). Neither of these happen in the complex case [48].
3This may explain a short remark by Witten in [39] that the unitarity structure relevant for

Euclidean quantum gravity is related to complementary series representations.
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The holonomy of A is given generically by

Hol∂D(A⊥)
conj∼

 e−
iπ
t

(w+k ) 0

0 e
iπ
t̄

(w+k )

 . (7.4.8)

Again, for more general complex gauge group this expression will simply be generalized to

contain various eigenvalues of the linear functionals or quasi-characters that characterize

principal series representations.

TQFT

The above arguments relate representations and conjugacy classes of the holonomy of A.

Another way of phrasing the results is that the Chern-Simons path integral on a solid torus

D2×S1 with a knot in its center is always an exact delta-function that forces the holonomy

of A around the (contractible) cycle on the boundary of this torus to be determined by the

representation on the knot. By cutting solid neighborhoods of knots out of three-manifolds,

this then shows that a partition function with a Wilson loop is equivalent to a partition

function on the loop’s complement with fixed boundary conditions. A somewhat longer

discussion of this relation appears in the review [6].

Analytic continuation

Let us finally use these results to motivate the limit used in the analytic continuation of

Chern-Simons theory with compact group G to Chern-Simons theory with complex group

GC.

In Chapter 6, we considered SL(2,C) (say) Chern-Simons theory on a knot complement,

with a boundary condition that the holomony of A on a small loop linking the knot was

Holbdy(A)
conj∼

 eu 0

0 e−u

 . (7.4.9)

Comparing this to the holonomy (7.4.6) of SU(2) theory, we see that

u ≡ iπN

k + 2
= N~ . (7.4.10)

Thus, one must “analytically continue” at this fixed value of N/(k+ 2). For general groups
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G and GC, the relation will be

u ≡ iπ(λ+ ρ)
k + h∨

= (λ+ ρ)~ . (7.4.11)

From the relation (7.4.8), we also finally see that u is related to a principal series SL(2,C)

representation Pk ,w via

u = (−)
iπ(w + k )

t
. (7.4.12)



Chapter 8

The state integral model

In this chapter, we introduce a “state integral” model for Z(ρ)(M ; ~) in the simplest case

of GC = SL(2,C). Our construction will rely heavily on the work of Hikami [52, 53], where

a new invariant of hyperbolic 3-manifolds was introduced using ideal triangulations. The

resulting invariant is very close to the state integral model we are looking for. However,

in order to make it into a useful tool for computing Z(ρ)(M ; ~) we will need to understand

Hikami’s construction better and make a number of important modifications. In particular,

as we explain below, Hikami’s invariant is written as a certain integral along a path in

the complex plane (or, more generally, over a hypersurface in complex space) which was

ill-defined1 in the original work [52, 53]. Another issue that we need to address is how to

incorporate in Hikami’s construction a choice of the homomorphisms (5.1.4) (page 82),

ρ : π1(M)→ SL(2,C) . (8.0.1)

(The original construction assumes very special choices of ρ that we called “geometric”

in Section 5.2.) It turns out that these two questions are not unrelated and can be ad-

dressed simultaneously, so that Hikami’s invariant can be extended to a state sum model

for Z(ρ)(M ; ~) with an arbitrary ρ.

To properly describe the state integral model, we will need a more thorough review of

the properties of hyperbolic manifolds and hyperbolic triangulations, presented in Section
1The choice mentioned in [52, 53] is to integrate over the real axis (resp. real subspace) of the

complex parameter space. While this choice is in some sense natural, it encounters some very bad

singularities and a closer look shows that it cannot be correct.

135
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8.1. The state integral model that we give here depends on ideal hyperbolic triangulations.2

We will also take a small digression in Section 8.3 to define and discuss the main properties

of the quantum dilogarithm. This function is central to the state integral model, and has

also appeared previously in the description of motivic BPS invariants, back in Chapter 4.

Throughout this chapter, we work in the u-space representation for SL(2,C) partition

functions. In particular, we use the identification (6.1.16) and denote the perturbative

SL(2,C) invariant as Z(α)(M ; ~, u). The discussion here follows [3].

8.1 Hyperbolic geometry

The construction of a state integral model described in the rest of this chapter applies to

orientable hyperbolic 3-manifolds of finite volume (possibly with boundary) and uses ideal

triangulations in a crucial way. Therefore, we begin this section by reviewing some relevant

facts from hyperbolic geometry (more details can be found in [113, 129, 130]).

Recall that hyperbolic 3-space H3 can be represented as the upper half-space {(x1, x2, x3)|

x3 > 0} with metric (5.2.7) of constant curvature −1. The boundary ∂H3, topologically an

S2, consists of the plane x3 = 0 together with the point at infinity. The group of isometries

of H3 is PSL(2,C), which acts on the boundary via the usual Möbius transformations. In

this picture, geodesic surfaces are spheres of any radius which intersect ∂H3 orthogonally.

An ideal tetrahedron ∆ in H3 has by definition all its faces along geodesic surfaces, and

all its vertices in ∂H3 — such vertices are called ideal points. After Möbius transformations,

one can fix three of the vertices at (0, 0, 0), (1, 0, 0), and infinity. The coordinate of the

fourth vertex (x1, x2, 0), with x2 ≥ 0, defines a complex number z = x1 + ix2 called the

shape parameter (sometimes also called edge parameter). At various edges, the faces of the

tetrahedron ∆ form dihedral angles arg zj (j = 1, 2, 3) as indicated in Figure 8.1, with

z1 = z , z2 = 1− 1
z
, z3 =

1
1− z

. (8.1.1)

The ideal tetrahedron is noncompact, but has finite volume given by

Vol(∆z) = D(z) , (8.1.2)
2It is nevertheless fairly clear that it should work for general three-manifolds, in part because

any three-manifold with boundary has an ideal topological triangulation even when its hyperbolic

volume is zero. A description of the state sum model for torus knots will appear in [5].
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where D(z) is the Bloch-Wigner dilogarithm function, related to the usual dilogarithm Li2

(see Section 8.3) by

D(z) = Im
(
Li2(z)

)
+ arg(1− z) log |z| . (8.1.3)

Note that any of the zj can be taken to be the shape parameter of ∆, and that D(zj) =

Vol(∆z) for each j. We will allow shape parameters to be any complex numbers in C−{0, 1},

noting that for z ∈ R an ideal tetrahedron is degenerate and that for Im z < 0 it technically

has negative volume due to its orientation.

x1

x2

x3

z

10

z1

z3
z2

z3

10
z1 z2 x1

x2

(projection to boundary plane)

z1

z1

z2

z3

z2
z3

Figure 8.1: An ideal tetrahedron in H3.

A hyperbolic structure on a 3-manifold is a metric that is locally isometric to H3. A 3-

manifold is called hyperbolic if it admits a hyperbolic structure that is geodesically complete

and has finite volume. Most 3-manifolds are hyperbolic, including the vast majority of knot

and link complements in S3. Specifically, a knot complement is hyperbolic as long as the

knot is not a torus or satellite knot [131]. Every closed 3-manifold can be obtained via Dehn

surgery on a knot in S3, and for hyperbolic knots all but finitely many such surgeries yield

hyperbolic manifolds [113].

By the Mostow rigidity theorem [132, 133], the complete hyperbolic structure on a hy-

perbolic manifold is unique. Therefore, geometric invariants like the hyperbolic volume

are actually topological invariants. For the large class of hyperbolic knot complements in

S3, the unique complete hyperbolic structure has a parabolic holonomy with unit eigenval-

ues around the knot. In SL(2,C) Chern-Simons theory, this structure corresponds to the

“geometric” flat connection A(geom) with u = 0. As discussed in Section 5.2, hyperbolic

manifolds with complete hyperbolic structures can also be described as quotients H3/Γ.

Given a hyperbolic knot complement, one can deform the hyperbolic metric in such a

way that the holonomy u is not zero. Such deformed metrics are unique in a neighborhood
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of u = 0, but they are not geodesically complete. For a discrete set of values of u, one can

add in the “missing” geodesic, and the deformed metrics coincide with the unique complete

hyperbolic structures on closed 3-manifolds obtained via appropriate Dehn surgeries on

the knot in S3. For other values of u, the knot complement can be completed by adding

either a circle S1 or a single point, but the resulting hyperbolic metric will be singular.

For example, if u ∈ iR one adds a circle and the resulting metric has a conical singularity.

These descriptions can easily be extended to link complements (i.e. multiple cusps), using

multiple parameters uk, one for each link component.

Any orientable hyperbolic manifold M is homeomorphic to the interior of a compact

3-manifold M̄ with boundary consisting of finitely many tori. (The manifold M itself can

also be thought of as the union of M̄ with neighborhoods of the cusps, each of the latter

being homeomorphic to T 2 × [0,∞).) All hyperbolic manifolds therefore arise as knot or

link complements in closed 3-manifolds. Moreover, every hyperbolic manifold has an ideal

triangulation, i.e a finite decomposition into (possibly degenerate3) ideal tetrahedra; see

e.g. [113, 134].

To reconstruct a hyperbolic 3-manifold M from its ideal triangulation {∆i}Ni=1, faces

of tetrahedra are glued together in pairs. One must remember, however, that vertices of

tetrahedra are not part of M , and that the combined boundaries of their neighborhoods

in M are not spheres, but tori. (Thus, some intuition from simplicial triangulations no

longer holds.) There always exists a triangulation of M whose edges can all be oriented in

such a way that the boundary of every face (shared between two tetrahedra) has two edges

oriented in the same direction (clockwise or counterclockwise) and one opposite. Then the

vertices of each tetrahedron can be canonically labeled 0, 1, 2, 3 according to the number

of edges entering the vertex, so that the tetrahedron can be identified in a unique way with

one of the two numbered tetrahedra shown in Figure 8.3 of the next subsection. This at

the same time orients the tetrahedron. The orientation of a given tetrahedron ∆i may not

agree with that of M ; one defines εi = 1 if the orientations agree and εi = −1 otherwise.

The edges of each tetrahedron can then be given shape parameters (z(i)
1 , z

(i)
2 , z

(i)
3 ), running

counterclockwise around each vertex (viewed from outside the tetrahedron) if εi = 1 and

clockwise if εi = −1.

For a given M with cusps or conical singularities specified by holonomy parameters uk,
3It is conjectured and widely believed that nondegenerate tetrahedra alone are always sufficient.
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the shape parameters z(i)
j of the tetrahedra ∆i in its triangulation are fixed by two sets of

conditions. First, the product of the shape parameters z(i)
j at every edge in the triangulation

must be equal to 1, in order for the hyperbolic structures of adjacent tetrahedra to match.

More precisely, the sum of some chosen branches of log z(i)
j (equal to the standard branch

if one is near the complete structure) should equal 2πi, so that the total dihedral angle

at each edge is 2π. Second, one can compute holonomy eigenvalues around each torus

boundary in M as a product of z(i)
j ’s by mapping out the neighborhood of each vertex in

the triangulation in a so-called developing map, and following a procedure illustrated in,

e.g., [114]. There is one distinct vertex “inside” each boundary torus. One then requires

that the eigenvalues of the holonomy around the kth boundary are equal to e±uk . These

two conditions will be referred to, respectively, as edge and cusp relations.

Every hyperbolic 3-manifold has a well-defined class in the Bloch group [135]. This is a

subgroup4 of the quotient of the free Z-module Z[C− {0, 1}] by the relations

[x]− [y] + [
y

x
]− [

1− x−1

1− y−1
] + [

1− x
1− y

] = 0 . (8.1.4)

This five-term or pentagon relation accounts for the fact that a polyhedron with five ideal

vertices can be decomposed into ideal tetrahedra in multiple ways. The five ideal tetrahedra

in this polyhedron (each obtained by deleting an ideal vertex) can be given the five shape

parameters x, y, y/x, ... appearing above. The signs of the different terms correspond to

orientations. Geometrically, an instance of the five-term relation can be visualized as the

2-3 Pachner move, illustrated in Figure 8.2.

2 3

Figure 8.2: The 2-3 Pachner move.

The class [M ] of a hyperbolic 3-manifold M in the Bloch group can be computed by

summing (with orientation) the shape parameters [z] of any ideal triangulation, but it
4Namely, the kernel of the map [z] 7→ 2z ∧ (1− z) ∈ C∗ ∧Z C∗ acting on this quotient module.
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is independent of the triangulation. Thus, hyperbolic invariants of 3-manifolds may be

obtained by functions on the Bloch group — i.e. functions compatible with (8.1.4). For

example, the Bloch-Wigner function (8.1.3) satisfies

D(x)−D(y) +D
(y
x

)
−D

(1− x−1

1− y−1

)
+D

(1− x
1− y

)
= 0 , (8.1.5)

and the hyperbolic volume of a manifold M triangulated by ideal tetrahedra {∆i}Ni=1 can

be calculated as

Vol(M) =
N∑

i=1

εiD(z(i)) . (8.1.6)

The symbols εi here could be removed if shape parameters were assigned to tetrahedra in a

manner independent of orientation, noting that reversing the orientation of a tetrahedron

corresponds to sending z 7→ 1/z and that D(1/z) = −D(z). This is sometimes seen in the

literature.

The complexified volume i(Vol(M) + iCS(M)) is trickier to evaluate. For a hyperbolic

manifold with a spin structure, corresponding to full SL(2,C) holonomies, this invariant is

defined modulo 4π2. Here, we will outline a computation of the complexified volume modulo

π2, following [136]; for the complete invariant modulo 4π2, see [137]. To proceed, one must

first make sure that the three shape parameters z(i) = z
(i)
1 , z(i)

2 , and z
(i)
3 are specifically

assigned to edges [v(i)
1 , v

(i)
2 ], [v(i)

1 , v
(i)
3 ], and [v(i)

1 , v
(i)
2 ] (respectively) in each tetrahedron ∆i

of an oriented triangulation of M , where [v(i)
a , v

(i)
b ] denotes the edge going from numbered

vertex v
(i)
a to numbered vertex v

(i)
b . One also chooses logarithms (w(i)

1 , w
(i)
2 , w

(i)
3 ) of the

shape parameters such that

ew
(i)
1 = ±z(i)

1 , ew
(i)
2 = ±z(i)

2 , ew
(i)
3 = ±z(i)

3 , (8.1.7a)

w
(i)
1 + w

(i)
2 + w

(i)
3 = 0 ∀ i , (8.1.7b)

and defines integers (q(i), r(i)) by

w
(i)
1 = Log(z(i)) + πiq(i) , w

(i)
2 = −Log(1− z(i)) + πir(i) , (8.1.8)

where Log denotes the principal branch of the logarithm, with a cut from 0 to −∞. For a

consistent labeling of the triangulation, called a “combinatorial flattening,” the sum of log-

parameters w(i)
j around every edge must vanish, and the (signed5) sum of log-parameters

5Signs arise from tetrahedron orientations and the sense in which a path winds around edges; see [136], Def. 4.2.
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along the two paths generating π1(T 2) = Z2 for any boundary (cusp) T 2 must equal twice

the logarithm of the SL(2,C) holonomies around these paths.6 The complexified volume is

then given, modulo π2, as

i(Vol(M) + iCS(M)) =
N∑

i=1

εiL(z(i); q(i), r(i))−
∑

cusps k

(vkuk + iπuk) , (8.1.9)

with

L(z; q, r) = Li2(z) +
1
2

(Log(z) + πiq)(Log(1− z) + πir) +
π2qr

2
− π2

6
. (8.1.10)

The function L(z; q, r), a modified version of the Rogers dilogarithm, satisfies a five-term

relation in an extended Bloch group that lifts (8.1.4) in a natural way to the space of

log-parameters.7

8.1.1 Example: figure-eight knot complement

Let K be the figure-eight knot (shown in Figure 6.1) and let M be its complement

in the 3-sphere. In order to compute the perturbative invariants S(ρ)
n for an arbitrary

ρ : π1(M) → SL(2,C) we first need to review the classical geometry of M in more detail

and, in particular, to describe the moduli space of flat SL(2,C) connections on M . As we

already mentioned earlier, the knot group π1(M) is generated by two elements, a and b,

such that a−1bab−1a = ba−1bab−1. The corresponding representation into SL(2,C) is given

by

ρ(a) =

 1 1

0 1

 , ρ(b) =

 1 0

ζ 1

 , (8.1.11)

where ζ = (−1 +
√
−3)/2 is the cube root of unity, ζ3 = 1.

The complement of the figure-eight knot can be also represented as a quotient space H3/Γ

(5.2.6), where the holonomy group Γ is generated by the above two matrices. Specifically,
6Explicitly, in the notation of Section 6.1 and above, the sum of log-parameters along the two

paths in the neighborhood of the kth cusp must equal 2uk and 2vk + 2πi, respectively.
7The branch of Li2 in (8.1.10) is taken to be the standard one, with a cut from 1 to +∞. Note,

however, that we could also take care of ambiguities arising from the choice of dilogarithm branch

by rewriting (8.1.10) in terms of the function L̃(w) =
∫ w

−∞
t dt

1−e−t . This is a well-defined holomorphic

function : C → C/4π2Z because all the residues of t/(1 − et) are integer multiplies of 2πi, and it

coincides with a branch of the function Li2(ew) + w log(1− ew).
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we have

Γ ∼= PSL(2,OK) , (8.1.12)

where OK is the ring of integers in the imaginary quadratic field K = Q(
√
−3). The

fundamental domain, F , for Γ is described by a geodesic pyramid in H3 with one vertex at

infinity and the other four vertices at the points:

v1 = j

v2 =
1
2
−
√

3
6
i+

√
2
3
j (8.1.13)

v3 =
1
2

+
√

3
6
i+

√
2
3
j

v4 =
1√
3
i+

√
2
3
j .

Explicitly, we have

F = {z + x3j ∈ H3 | z ∈ Fz, x
2
3 + |z|2 ≥ 1} , (8.1.14)

where z = x1 + ix2 and

Fz = {z ∈ C | 0 ≤ Re(z),
1√
3

Re(z) ≤ Im(z), Im(z) ≤ 1√
3

(1− Re(z))}

∪ {z ∈ C | 0 ≤ Re(z) ≤ 1
2
, − 1√

3
Re(z) ≤ Im(z) ≤ 1√

3
Re(z)} (8.1.15)

is the fundamental domain of a 2-torus with modular parameter τ = ζ. The region of

large values of x3 in F corresponds to the region near the cusp of the figure-eight knot

complement M .

The standard triangulation of the figure eight knot complement comprises two ideal

tetrahedra of opposite simplicial orientations, as in Figure 8.3, glued together in the only

nontrivial consistent manner possible,

M = ∆z ∪∆w . (8.1.16)

Here, z and w are complex numbers, representing the shapes of the ideal tetrahedra; we take

∆z to be positively oriented and ∆w to be negatively oriented. As explained in Section 8.1,

the shape parameters z and w must obey edge relations, which in the case of the figure-

eight knot reduce to a single algebraic relation (see e.g. Chapter 4 of [113] and Section 15

of [136]):

(z − 1)(w − 1) = z2w2 . (8.1.17)
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The shape parameters z and w are related to the SL(2,C) holonomy eigenvalue, l, along

the longitude8 of the knot in the following way

z2

z − 1
= −l , w2

w − 1
= −l−1 , (8.1.18)

which automatically solves the edge condition (8.1.17). Similarly, the holonomy eigenvalue

m = eu around the noncontractible meridian of the torus is given by

zw = m2. (8.1.19)

By eliminating z and w from (8.1.17), (8.1.18), and (8.1.19), one obtains the non-abelian

irreducible component of the A-polynomial for the figure-eight knot from (6.6.9),

m4 − (1−m2 − 2m4 −m6 +m8)l +m4l2 = 0 . (8.1.20)

Given the decomposition (8.1.16) of the 3-manifold M into two tetrahedra, we can find

its volume by adding the (signed) volumes of ∆z and ∆w,

Vol(M ;u) = Vol(∆z)−Vol(∆w) = D(z)−D(w) , (8.1.21)

where the volume of an ideal tetrahedron is given by (8.1.2). Similarly, following the

prescription in Section 8.1, the complexified volume can be given by9

i(Vol(M ;u) + iCS(M ;u)) = L(z; 0, 0)− L(w; 0, 0)− vū− iπu . (8.1.22)

Notice that due to the edge relation (8.1.17) the total volumes (8.1.21), (8.1.22) are functions

of one complex parameter, or, equivalently, a point on the zero locus of the A-polynomial,

A(l,m) = A(−ev, eu) = 0.

From the relation (8.1.18) we find that the point (l,m) = (−1, 1) corresponding to the

complete hyperbolic structure on M is characterized by the values of z and w which solve

the equation

z2 − z + 1 = 0 . (8.1.23)

In order to obtain tetrahedra of positive (signed) volume, we must choose z to be the root

of this equation with a positive imaginary part, and w its inverse:

z =
1 + i

√
3

2
, w =

1− i
√

3
2

. (8.1.24)

8A 1-cycle on Σ = T 2 which is contractible in the knot complement M .
9This expression differs slightly from the one given in [136], because we use 2v + 2πi rather than

2v as the logarithm of the “longitudinal” holonomy, as mentioned in Footnote 6 of Section 8.1.
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These value correspond to regular ideal tetrahedra, and maximize (respectively, minimize)

the Bloch-Wigner dilogarithm function D(z).

8.2 Hikami’s invariant

We can now describe Hikami’s geometric construction. Roughly speaking, to compute

the invariant for a hyperbolic manifold M , one chooses an ideal triangulation of M , assigns

an infinite-dimensional vector space V or V ∗ to each tetrahedron face, and assigns a matrix

element in V ⊗V ⊗V ∗⊗V ∗ to each tetrahedron. These matrix elements depend on a small

parameter ~, and in the classical ~ → 0 limit they capture the hyperbolic structure of the

tetrahedra. The invariant of M is obtained by taking inner products of matrix elements

on every pair of identified faces (gluing the tetrahedra back together), subject to the cusp

conditions described above in the classical limit.

To describe the process in greater detail, we begin with an orientable hyperbolic manifold

that has an oriented ideal triangulation {∆i}Ni=1, and initially forget about the hyperbolic

structures of these tetrahedra. As discussed in Section 8.1 and indicated in Figure 8.3,

each tetrahedron comes with one of two possible orientations of its edges, which induces

an ordering of its vertices v(i)
j (the subscript j here is not to be confused with the shape

parameter subscript in (8.1.1)), an ordering of its faces, and orientations on each face. The

latter can be indicated by inward or outward-pointing normal vectors. The faces (or their

normal vectors) are labelled by p(i)
j , in correspondence with opposing vertices. The normal

face-vectors of adjacent tetrahedra match up head-to-tail (and actually define an oriented

dual decomposition) when tetrahedra are glued to form M .

v1

v3
v2

v4

p3

p4

p2

p1

v1

v2
v3

v4

p2

p4

p3

p1

z = ep4-p3 z = ep4-p3
ε = +1 ε = -1

Figure 8.3: Oriented tetrahedra, to which matrix elements 〈p1, p3|S|p2, p4〉 (left) and

〈p2, p4|S−1|p1, p3〉 (right) are assigned.
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Given such an oriented triangulation, one associates a vector space V to each inward-

oriented face, and the dual space V ∗ to each outward-oriented face. (Physicists should think

of these spaces as “Hilbert” spaces obtained by quantizing the theory on a manifold with

boundary.) The elements of V are represented by complex-valued functions in one variable,

with adjoints given by conjugation and inner products given by integration. Abusing the

notation, but following the very natural set of conventions of [52, 53], we denote these

complex variables by p
(i)
j , which we used earlier to label the corresponding faces of the

tetrahedra. As a result, to the boundary of every tetrahedron ∆i one associates a vector

space V ⊗V ⊗V ∗⊗V ∗, represented by functions of its four face labels, p(i)
1 , p(i)

2 , p(i)
3 , and p(i)

4 .

To each tetrahedron one assigns a matrix element 〈p1, p3|S|p2, p4〉 or 〈p2, p4|S−1|p1, p3〉,

depending on orientation as indicated in Figure 8.3. Here, the matrix S acts on functions

f(p1, p2) ∈ V ⊗ V as

S = eq̂1p̂2/2~ Φ~(p̂1 + q̂2 − p̂2) , (8.2.1)

where p̂if = pif and q̂if = 2~ ∂
∂pi
f . The function Φ~ is the quantum dilogarithm, to

be described in the next subsection. Assuming that
∫ idq

4π~ |q〉〈q| =
∫
dp |p〉〈p| = 1 and

〈p|q〉 = e
pq
2i~ (the exact normalizations are not important for the final invariant), one obtains

via Fourier transform

〈p1, p3|S|p2, p4〉 =
δ(p1 + p3 − p2)√

−4πi~
Φ~(p4 − p3 + iπ + ~) e

1
2~

“
p1(p4−p3)+

iπ~
2 −π2−~2

6

”
, (8.2.2)

〈p2, p4|S−1|p1, p3〉 =
δ(p1 + p3 − p2)√

−4πi~
1

Φ~(p4 − p3 − iπ − ~)
e

1
2~

“
p1(p3−p4)− iπ~

2 + π2−~2
6

”
. (8.2.3)

In the classical limit ~→ 0, the quantum dilogarithm has the asymptotic Φ~(p) ∼ 1
2~Li2(−ep).

One therefore sees that the classical limits of the above matrix elements look very much like

exponentials of 1
2~ times the complexified hyperbolic volumes of tetrahedra. For example,

the asymptotic of (8.2.2) coincides with exp(L(z; ·, ·)/(2~)) if we identify ep4−p3 with z and

e−2p1 with 1/(1− z). For building a quantum invariant, however, only half of the variables

pj really “belong” to a single tetrahedron. Hikami’s claim [52, 53] is that if we only identify

a shape parameter

z(i) = ep
(i)
4 −p

(i)
3 , (8.2.4)

for every tetrahedron ∆i, the classical limit of the resulting quantum invariant will com-

pletely reproduce the hyperbolic structure and complexified hyperbolic volume on M .10

10Eqn. (8.2.4) is a little different from the relation appearing in [52, 53], because our convention

for assigning shape parameters to edges based on orientation differs from that of [52, 53].
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To finish calculating the invariant of M , one glues the tetrahedra back together and takes

inner products in every pair V and V ∗ corresponding to identified faces. This amounts to

multiplying together all the matrix elements (8.2.2) or (8.2.3), identifying the p(i)
j variables

on identified faces (with matching head-to-tail normal vectors), and integrating over the

2N remaining p’s. To account for possible toral boundaries of M , however, one must revert

back to the hyperbolic structure. This allows one to write the holonomy eigenvalues {euk}

as products of shape parameters (z(i), 1 − 1/z(i), 1/(1 − z(i))), and, using (8.2.4), to turn

every cusp condition into a linear relation of the form
∑
p’s = 2uk. These relations are

then inserted as delta functions in the inner product integral, enforcing global boundary

conditions. In the end, noting that each matrix element (8.2.2)-(8.2.3) also contains a

delta function, one is left with N − b0(Σ) nontrivial integrals, where b0(Σ) is the number

of connected components of Σ = ∂M . For example, specializing to hyperbolic 3-manifolds

with a single torus boundary Σ = T 2, the integration variables can be relabeled so that

Hikami’s invariant takes the form

H(M ; ~, u) =
1

(4π~)N/2

∫ N∏
i=1

Φ~
(
gi(p, 2u) + εi(iπ + ~)

)εi ef(p,2u,~)/2~ dp1 . . . dpN−1 .

(8.2.5)

The gi are linear combinations of (p1, . . . , pN−1, 2u) with integer coefficients, and f is a

quadratic polynomial, also with integer coefficients for all terms involving pk’s or u. In the

classical limit, this integral can naively be evaluated in a saddle-point approximation, and

Hikami’s claim is that the saddle-point relations coincide precisely with the edge conditions

for the triangulation on M . There is more to this story, however, as we will see in Section

8.4.

8.3 Quantum dilogarithm

Since quantum dilogarithms play a key role here, we take a little time to discuss some

of their most important properties.

Somewhat confusingly, there are at least three distinct—though related—functions which

have occurred in the literature under the name “quantum dilogarithm”:
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i) The function Li2(x; q) is defined for x, q ∈ C with |x|, |q| < 1 by

Li2(x; q) =
∞∑

n=1

xn

n (1− qn)
; (8.3.1)

its relation to the classical dilogarithm function Li2(x) =
∞∑

n=1

xn

n2
is that

Li2
(
x; e2~) ∼ − 1

2~
Li2(x) as ~→ 0 . (8.3.2)

ii) The function (x; q)∞ is defined for |q| < 1 and all x ∈ C by

(x; q)∞ =
∞∏

r=0

(
1− qrx) , (8.3.3)

and is related to Li2(x; q) for |x| < 1 by

(x; q)∞ = exp
(
−Li2(x; q)

)
. (8.3.4)

It is also related to the function E(x) of Chapter 4 as

E(x) =
(
− q

1
2x; q

)−1
. (8.3.5)

Finally,

iii) the function Φ(z; τ) is defined for Re(τ) > 0 and 2|Re(z)| < 1 + Re(τ) by

Φ(z; τ) = exp
(

1
4

∫
R(+)

e2xz

sinhx sinh τx
dx

x

)
(8.3.6)

(here R(+) denotes a path from −∞ to ∞ along the real line but deformed to pass over the

singularity at zero). It is related to (x; q)∞ by

Φ(z; τ) =



(
− e(z + τ/2); e(τ)

)
∞(

− e((z − 1/2)/τ); e(−1/τ)
)
∞

if Im(τ) > 0 ,(
− e((z + 1/2)/τ); e(1/τ)

)
∞(

− e(z − τ/2); e(−τ)
)
∞

if Im(τ) < 0 .

(8.3.7)

(Here and in future we use the abbreviation e(x) = e2πix.)

It is the third of these functions, in the normalization

Φ~(z) = Φ
( z

2πi
;

~
iπ

)
, (8.3.8)

which occurs in our “state integral” and which we will take as our basic “quantum dilog-

arithm,” but all three functions play a role in the analysis, so we will describe the main
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properties of all three here. We give complete proofs, but only sketchily since none of this

material is new. For further discussion and proofs, see, e.g., [138, 139, 140, 141, 142], and

[143] (subsection II.1.D).

1. The asymptotic formula (8.3.2) can be refined to the asymptotic expansion

Li2
(
x; e2~) ∼ − 1

2~
Li2(x)− 1

2
log(1− x)− x

1− x
~
6

+ 0~2 +
x+ x2

(1− x)3
~3

90
+ · · · (8.3.9)

as ~→ 0 with x fixed, in which the coefficient of ~n−1 for n ≥ 2 is the product of−2n−1Bn/n!

(here Bn is the nth Bernoulli number) with the negative-index polylogarithm Li2−n(x) ∈

Q
[

1
1−x

]
. More generally, one has the asymptotic formula

Li2
(
xe2λ~; e2~) ∼ − ∞∑

n=0

2n−1Bn(λ)
n!

Li2−n(x) ~n−1 (8.3.10)

as ~→ 0 with λ fixed, where Bn(t) denotes the nth Bernoulli polynomial.11 Both formulas

are easy consequences of the Euler-Maclaurin summation formula. By combining (8.3.7),

(8.3.4), and (8.3.10), one also obtains an asymptotic expansion

Φ~(z + 2λ~) = exp

( ∞∑
n=0

2n−1Bn(1/2 + λ)
n!

~n−1Li2−n(−ez)

)
. (8.3.11)

(To derive this, note that in (8.3.7) (−e(z ± 1/2)/τ ; e(±1/τ))∞ ∼ 1 to all orders in ~ as

~→ 0.)

2. The function (x; q)∞ and its reciprocal have the Taylor expansions (cf. (4.1.14))

(x; q)∞ =
∞∑

n=0

(−1)n

(q)n
q

n(n−1)
2 xn ,

1
(x; q)∞

=
∞∑

n=0

1
(q)n

xn (8.3.12)

around x = 0, where

(q)n =

(
q; q
)
∞(

qn+1; q
)
∞

= (1− q)(1− q2) · · · (1− qn) (8.3.13)

is the nth q-Pochhammer symbol. These, as well as formula (8.3.4), can be proved easily

from the recursion formula (x; q)∞ = (1− x)(qx; q)∞, which together with the initial value

(0; q)∞ = 1 determines the power series (x; q)∞ uniquely. (Of course, (8.3.4) can also be

proved directly by expanding each term in
∑

r log(1− qrx) as a power series in x.) Another

11This is the unique polynomial satisfying
∫ x+1

x
Bn(t)dt = xn, and is a monic polynomial of degree

n with constant term Bn.
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Figure 8.4: The complex z-plane, showing poles (X’s) and zeroes (O’s) of Φ~(z) at ~ =
3
4e

iπ/3.

famous result, easily deduced from (8.3.12) using the identity
∑

m−n=k

qmn

(q)m(q)n
=

1
(q)∞

for

all k ∈ Z, is the Jacobi triple product formula

(q; q)∞ (x; q)∞ (qx−1; q)∞ =
∑
k∈Z

(−1)kq
k(k−1)

2 xk , (8.3.14)

relating the function (x; q)∞ to the classical Jacobi theta function.

3. The function Φ(z; τ) defined (initially for Re(τ) > 0 and |Re(z)| < 1
2 + 1

2Re(τ)) by (8.3.6)

has several functional equations. Denote by I(z; τ) the integral appearing in this formula.

Choosing for R(+) the path (−∞,−ε] ∪ ε exp([iπ, 0]) ∪ [ε,∞) and letting ε→ 0, we find

I(z; τ) =
2πi
τ

(
1 + τ2

12
− z2

)
+ 2

∫ ∞
0

(
sinh 2xz

sinhx sinh τx
− 2z

τx

)
dx

x
. (8.3.15)

Since the second term is an even function of z, this gives

Φ(z; τ) Φ(−z; τ) = e
(τ2 − 12z2 + 1

24τ
)
. (8.3.16)

From (8.3.15) we also get

I(z + 1/2; τ) − I(z − 1/2; τ) = −4πiz
τ

+ 4
∫ ∞

0

(
cosh 2xz
sinh τx

− 1
τx

)
dx

x
. (8.3.17)

The integral equals − log(2 cos(πz/τ)) (proof left as an exercise). Dividing by 4 and expo-

nentiating we get the first of the two functional equations

Φ(z − 1/2; τ)
Φ(z + 1/2; τ)

= 1 + e
(
z/τ
)
,

Φ(z − τ/2; τ)
Φ(z + τ/2; τ)

= 1 + e
(
z
)
, (8.3.18)
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and the second can be proved in the same way or deduced from the first using the obvious

symmetry property

Φ(z; τ) = Φ(z/τ ; 1/τ) , (8.3.19)

of the function Φ. (Replace x by x/τ in (8.3.6).)

4. The functional equations (8.3.18) show that Φ(z; τ), which in its initial domain of defi-

nition clearly has no zeros or poles, extends (for fixed τ with Re(τ) > 0) to a meromorphic

function of z with simple poles at z ∈ Ξ(τ) and simple zeros at z ∈ −Ξ(τ), where

Ξ(τ) =
(
Z≥0 + 1

2

)
τ +

(
Z≥0 + 1

2

)
⊂ C . (8.3.20)

In terms of the normalization (8.3.8), this says that Φ~(z) has simple poles at z ∈ Ξ̃(~) and

simple zeroes at z ∈ −Ξ̃(~), where

Ξ̃(~) = (2Z≥0 + 1)iπ + (2Z≥0 + 1)~ . (8.3.21)

This is illustrated in Figure 8.4. Equation (8.3.7) expressing Φ in terms of the function

(x; q)∞ also follows, because the quotient of its left- and right-hand sides is a doubly periodic

function of z with no zeros or poles and hence constant, and the constant can only be ±1

(and can then be checked to be +1 in several ways, e.g., by evaluating numerically at one

point) because the right-hand side of (8.3.7) satisfies the same functional equation (8.3.16) as

Φ(z; τ) by virtue of the Jacobi triple product formula (8.3.14) and the well-known modular

transformation properties of the Jacobi theta function.

5. From (8.3.15) we also find the Taylor expansion of I(z; τ) at z = 0,

I(z; τ) = 4
∞∑

k=0

Ck(τ) zk ,

with coefficients Ck(τ) = τ−kCk(1/τ) given by

C0(τ) =
πi

24
(
τ + τ−1

)
, C1(τ) =

∫ ∞
0

(
1

sinhx sinh τx
− 1
τx2

)
dx ,

C2(τ) = −πi
2τ

, Ck(τ) = 0 for k ≥ 4 even,

Ck(τ) =
2k−1

k!

∫ ∞
0

xk−1 dx

sinhx sinh τx
for k ≥ 3 odd.

By expanding 1/ sinh(x) and 1/ sinh(τx) as power series in e−x and e−τx we can evaluate

the last of these expressions to get

Ck(τ) =
2k+1

k!

∑
m,n>0, odd

∫ ∞
0

e−mx−nτx xk−1 dx =
2
k

∑
s∈Ξ(τ)

s−k (k ≥ 3 odd)
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with Ξ(τ) as in (8.3.20). Dividing by 4 and exponentiating gives the Weierstrass product

expansion

Φ(z; τ) = exp
(
πi

24
(
τ + τ−1

)
+ C1(τ) z − πiz2

2τ

) ∏
s∈Ξ(τ)

(
s+ z

s− z
e−2z/s

)
(8.3.22)

of Φ(z; τ). From this expansion, one finds that Φ(z; τ) extends meromorphically to C ×(
C r (−∞, 0]

)
with simple poles and simple zeros for z ∈ Ξ(τ) and z ∈ −Ξ(τ) and no other

zeros or poles. (This analytic continuation can also be deduced by rotating the path of

integration in (8.3.6), e.g. by replacing
∫

R(+) by
∫

R(+)/
√

τ for z sufficiently small.)

6. The quantum dilogarithm is related via the Jacobi triple product formula to the Jacobi

theta function, which is a Jacobi form, i.e., it has transformation properties not only with

respect to the lattice translations z 7→ z + 1 and z 7→ z + τ but also with respect to the

modular transformations τ 7→ τ + 1 and τ 7→ −1/τ . The function Φ(z; τ) has the lattice

transformation properties (8.3.18) and maps to its inverse under (z, τ) 7→ (z/τ, −1/τ), but

it does not transform in a simple way with respect to τ 7→ τ + 1. Nevertheless, it has

an interesting modularity property of a different kind (cocycle property) which is worth

mentioning here even though no use of it will be made in the remainder of this thesis.

Write (8.3.7) as

Φ(z; τ) =
S(z; τ)

S(z/τ ;−1/τ)
, S(z; τ) =


∏

n > 0 odd

(
1 + qn/2e(z)

)
if Im(τ) > 0,∏

n < 0 odd

(
1 + qn/2e(z)

)−1 if Im(τ) < 0,

where q = e(τ). The function S(z; τ) has the transformation properties

S(z; τ) = S(z + 1; τ) = (1 + q1/2e(z))S(z + τ ; τ) = S(z + 1
2 ; τ + 1) = S(z; τ + 2)

amd from these we deduce by a short calculation the two three-term functional equations

Φ(z; τ) = Φ
(
z ± 1

2
, τ + 1

)
Φ
(z ∓ τ/2
τ + 1

,
τ

τ + 1
)

(8.3.23)

of Φ. This is highly reminiscent of the fact (cf. [144]) that the holomorphic function

ψ(τ) = f(τ)− τ−2sf(−1/τ) , f(τ) =


∑

n>0 anq
n if Im(τ) > 0,

−
∑

n<0 anq
n if Im(τ) < 0

associated to a Maass cusp form u(τ) on SL(2,Z) with spectral parameter s, where an are

the normalized coefficients in the Fourier-Bessel expansion of u, satisfies the Lewis functional
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equation ψ(τ) = ψ(τ + 1) + (τ + 1)−2sψ
(

τ
τ+1

)
and extends holomorphically from its initial

domain of definition C r R to C r (−∞, 0] .

7. Finally, the quantum dilogarithm functions satisfy various five-term relations, of which

the classical five-term functional equation of Li2(x) is a limiting case, when the arguments

are non-commuting variables. The simplest and oldest is the identity

(Y ; q)∞ (X; q)∞ = (X; q)∞ (−Y X; q)∞ (Y ; q)∞ (8.3.24)

for operators X and Y satisfying XY = qY X (cf. Eqn. (4.1.21) for E(x)). From this one

deduces the “quantum pentagon relation”

Φ~(p̂) Φ~(q̂) = Φ~(q̂) Φ~(p̂+ q̂) Φ~(p̂) (8.3.25)

for operators p̂ and q̂ satisfying [q̂, p̂] = 2~. Letting Sij be a copy, acting on the ith and jth

factors of V ⊗ V ⊗ V , of the S-matrix introduced in (8.2.1), we deduce from (8.3.25) the

operator identity

S23S12 = S12S13S23 . (8.3.26)

It is this very special property which guarantees that the gluing procedure used in the

definition of (8.2.5) is invariant under 2-3 Pachner moves on the underlying triangulations

and produces a true hyperbolic invariant [52, 53, 145]. This identity is also related to the

interesting fact that the fifth power of the operator which maps a nicely behaved function

to the Fourier transform of its product with Φ~(z) (suitably normalized) is a multiple of

the identity [142].

8.4 A state integral model for Z(ρ)(M ; ~)

Now, let us return to the analysis of the integral (8.2.5) and compare it with the per-

turbative SL(2,C) invariant Z(α)(M ; ~, u). Both invariants compute quantum (i.e. ~ -

deformed) topological invariants of hyperbolic 3-manifolds and, thus, are expected to be

closely related. However, in order to establish a precise relation, we need to face two prob-

lems mentioned in the beginning of this section:

i) the integration contour is not specified in (8.2.5), and

ii) the integral (8.2.5) does not depend on the choice of the classical solution α.
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These two problems are related, and can be addressed by studying the integral (8.2.5) in var-

ious saddle-point approximations. Using the leading term in (8.3.11), we can approximate

it to leading order as

H(M ; ~, u) ∼
~→0

∫
e

1
~ V (p1,...,pN−1,u) dp1 . . . dpN−1 , (8.4.1)

with the “potential”

V (p, u) =
1
2

N∑
i=1

εiLi2(− exp(gi(p, 2u) + iπεi)) +
1
2
f(p, 2u, ~ = 0) . (8.4.2)

As explained below (8.3.11), the branches of Li2 must be chosen appropriately to coincide

with the half-lines of poles and zeroes of the quantum dilogarithms in (8.2.5). The leading

contribution to H(M ; ~, u) will then come from the highest-lying critical point through

which a given contour can be deformed.

It was the observation of [53] that the potential V always has one critical point that

reproduces the classical Chern-Simons action on the “geometric” branch, that is a critical

point p(geom)(u) such that

lgeom(u) = exp
[

d
duV (p(geom)(u), u)

]
(8.4.3)

and

S
(geom)
0 (u) = V (p(geom)(u), u) . (8.4.4)

This identification follows from the fact that both S
(geom)
0 (u) and matrix elements (8.2.2)-

(8.2.3) in the limit ~ → 0 are related to the complexified volume function i(Vol(M ;u) +

iCS(M ;u)). We want to argue presently that in fact every critical point of V corresponds

to a classical solution in Chern-Simons theory (that is, to a branch of A(l,m) = 0) in this

manner, with similar relations

lα(u) = e
d

du
V (p(α)(u),u) (8.4.5)

and

S
(α)
0 (u) = V (p(α)(u), u) (8.4.6)

for some α. In particular, lα(u) as given by (8.4.5) and m = eu obey (6.3.13).

To analyze generic critical points of V , observe that the critical point equations take

the form

2
∂

∂pj
V (p, u) = −

N∑
i=1

εiGji log(1+exp(gi(p, 2u)+iπεi))+
∂

∂pj
f(p, 2u, 0) = 0 ∀ j , (8.4.7)
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where Gji = ∂
∂pj

gi(p, 2u) are some constants and the functions ∂
∂pj

f(p, 2u, 0) are linear.

Again, the cuts of the logarithm must match the singularities of the quantum dilogarithm.

Exponentiating (8.4.7), we obtain another set of conditions

rj(x,m) = 1 ∀ j , (8.4.8)

where

rj(x,m) = exp
(

2
∂

∂pj
V (p, u)

)
=
∏

i

(1− egi)−εiGji exp
( ∂

∂pj
f
)

(8.4.9)

are all rational functions of the variables xj = epj and m = eu. Note that an entire family

of points {p + 2πin |n ∈ ZN−1} maps to a single x, and that all branch cut ambiguities

disappear in the simpler equations (8.4.8). Depending on arg(~) and the precise form of f ,

solutions to (8.4.8) either “lift” uniquely to critical points of the potential V , or they lift to

a family of critical points at which V differs only by integer multiples of 2πiu.

Now, the system (8.4.8) is algebraic, so its set of solutions defines a complex affine

variety

R = {(x1, . . . , xN−1,m) ∈ CN | rj(x1, . . . , xN−1,m) = 0 ∀ j} , (8.4.10)

which is closely related to the representation variety L given by A(l,m) = 0. Both gener-

ically have complex dimension one. Noting that s(x1, . . . , xN−1,m) = exp
(

∂
∂uV

)
is also a

rational function, we can define a rational map φ : CN → C2 by

φ(x1, . . . , xN−1,m) = (s(x1, . . . , xN−1,m),m) . (8.4.11)

The claim in [53] that one critical point of V always corresponds to the geometric branch

of L means that φ(R) (taking an algebraic closure) always intersects L nontrivially, along

a subvariety of dimension 1. Thus, some irreducible component of φ(R), coming from an

irreducible component of R, must coincide with the entire irreducible component of L con-

taining the geometric branch. Every solution x = x(m) in this component of R corresponds

to a branch of the A-polynomial. Moreover, if such a solution x(α) (corresponding to branch

α) can be lifted to a real critical point p(α)(u) of V , then one must have relations (8.4.5)

and (8.4.6).

This simple algebraic analysis shows that some solutions of (8.4.8) will cover an entire

irreducible component of the curve L defined by A(l,m) = 0. We cannot push the general

argument further without knowing more about the reducibility of R. However, we can look
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at some actual examples. Computing V (p, u) for thirteen hyperbolic manifolds with a single

torus boundary,12 we found in every case that solutions of (8.4.8) completely covered all

non-abelian branches α 6= abel; in other words, φ(R) = L′, with L′ = {A(l,m)/(l−1) = 0}.

For six of these manifolds, we found unique critical points p(u) corresponding to every

non-abelian branch of L at arg(~) = iπ. Motivated by these examples, it is natural to state

the following conjecture:

Conjecture 2: Every critical point of V corresponds to some branch α, and all α 6= abel

are obtained in this way. Moreover, for every critical point p(α)(u) (corresponding to some

branch α) we have (8.4.5)-(8.4.6) and to all orders in perturbation theory:

Z(α)(M ; ~, u) =
√

2
∫

Cα

N∏
i=1

Φ~
(
gi(p, 2u) + εi(iπ+ ~)

)εi e
1
2~ f(p,2u,~)−u

N−1∏
j=1

dpj√
4π~

, (8.4.12)

where Cα is an arbitrary contour with fixed endpoints which passes through p(α)(u) and no

other critical point.

A slightly more conservative version of this conjecture might state that only those α

that belong to the same irreducible component of L as the geometric branch, α = geom, are

covered by critical points of V . Indeed, the “abelian” branch with label = 1 is not covered

by the critical points of V and it belongs to the separate component (l − 1) of the curve

A(l,m) = 0. It would be interesting to study the relation between critical points of V and

irreducible components of L further, in particular by looking at examples with reducible

A-polynomials aside from the universal (l − 1) factor.

The right-hand side of (8.4.12) is the proposed state integral model for the exact pertur-

bative partition function of SL(2,C) Chern-Simons theory on a hyperbolic 3-manifold M

with a single torus boundary Σ = T 2. (A generalization to 3-manifolds with an arbitrary

number of boundary components is straightforward.) This state integral model is a mod-

ified version of Hikami’s invariant (8.2.5). Just like its predecessor, eq. (8.4.12) is based

on an ideal triangulation {∆i}Ni=1 of a hyperbolic 3-manifold M and inherits topological

12Namely, the complements of hyperbolic knots 41(k21), 52(k32), 12n242 (31, (-2,3,7)-

pretzel knot), 61(k41), 63(k643), 72(k42), 73(k520), 74(k628), 10132(K59), 10139(K522), and

11n38(K513), as well as the one-punctured torus bundles L2R and LR3 over S1 (also knot comple-

ments, but in a manifold other than S3).
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invariance from the pentagon identity (8.3.25) of the quantum dilogarithm.

However, in writing (8.4.12) we made two important modifications to Hikami’s invariant

(8.2.5). First, we introduced contours Cα running across the sadle points pα, which now

encode the choice of a classical solution in Chern-Simons theory. Second, in (8.4.12) we

introduced an extra factor of
√

8π~e−u, which is needed to reproduce the correct asymptotic

behavior of Z(α)(M ; ~, u). To understand this correction factor, we must look at the higher-

order terms in the expansion of Z(α)(M ; ~, u). By using (8.3.11), one can continue the

saddle-point approximations described above to arbitrary order in ~. The result has the

expected form (5.1.9),

Z(α)(M ; ~, u) = exp

(
1
~
S

(α)
0 (u)− 1

2
δ(α) log ~ +

∞∑
n=0

S
(α)
n+1(u)~n

)
, (8.4.13)

with the correct leading term S
(α)
0 (u) that we already analyzed above, cf. eq. (8.4.6).

Let us examine the next-leading logarithmic term. Its coefficient δ(α) receives contribu-

tions from two places: from the prefactor (4π~)−(N−1)/2 in (8.4.12), and from the standard

Gaussian determinant. The former depends on the total number of tetrahedra, N , in the

triangulation of M and therefore must be cancelled (at least partially) since the total in-

tegral (8.4.12) is a topological invariant and cannot depend on N . This is indeed what

happens. For example, in a saddle-point approximation around a nondegenerate critical

point p(α)(u), the contribution of the Gaussian determinant goes like ∼ ~(N−1)/2 and ex-

actly cancels the contribution of the prefactor ∼ ~−(N−1)/2. An example of such critical

point is the critical point p(geom)(u) corresponding to the geometric branch. Therefore, the

asymptotic expansion of the integral (8.4.12) around the critical point p(geom)(u) has the

form (8.4.13) with

δ(geom) = 0 , (8.4.14)

which is the expected result.13 Indeed, as explained e.g. in [40, 98], the rigidity of the flat

connection A(geom) associated with a hyperbolic structure on M implies h0 = h1 = 0, so

that (5.2.2) gives δ(geom) = 0.

13Recall that throughout this work Z(ρ)(M ; ~) (resp. Z(α)(M ; ~, u)) stands for the unnormalized

perturbative GC invariant. A normalized version, obtained by dividing by Z(S3), has an asymptotic

expansion of the same form (5.1.9) (resp. (8.4.13)) with the value of δ(α) shifted by dim(G) for every

α. This is easy to see from (5.3.6).
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Using (8.3.11) , one can also calculate the higher-order perturbative coefficients S(α)
n (u),

with n ≥ 1. In the following section, we carry out this analysis to high order for the figure-

8 knot complement and find perfect agreement with the results obtained by methods of

Section 6.6. (Other interesting examples and further checks will appear elsewhere [5].)

Note that the S(α)
n (u)’s do not depend on the details of the contours Cα. The only part

of (8.4.12) which actually depends on the details of Cα is exponentially suppressed and is

not part of the perturbative series (8.4.13). Finally, we also note that we use only those

critical points of the full integrand (8.4.12) which correspond to critical points of V in the

limit ~→ 0. For any fixed ~ > 0, the actual integrand has many other critical points which

become trapped in the half-line singularities of quantum dilogarithms as ~ → 0, so the

integrals over them do not have a well-behaved limit.

We conclude this section by observing that Conjecture 2 implies Conjecture 1. From

(8.3.11), we can write an asymptotic double series expansion (for very small p):

Φ~(p0 + p) = exp

( ∞∑
n=0

Bn

(1
2

+
p

2~
)

Li2−n

(
−ep0

) (2~)n−1

n!

)

= exp

 ∞∑
k=−1

∞∑
j=0

Bk+1(1/2) 2k

(k + 1)!j!
Li1−j−k(−ep0) ~kpj

 . (8.4.15)

Using this formula and taking into account the shifts by ±(iπ+~), we expand every quantum

dilogarithm appearing in the integrand of (8.4.12) around a critical point p(α). At each

order in ~, the state integral model then reduces to an integral of a polynomial in p with a

Gaussian weight. Due to the fact that Lik is a rational function for k ≤ 0, the coefficients

of these polynomials are all rational functions of the variables x(α) = exp(p(α)) and m.

Therefore, the resulting coefficients S(α)
n (m), for n > 1, will also be rational functions of

x(α) and m. At m = 1, the solutions x(α)(m) to the rational equations (8.4.8) all belong

to some algebraic number field K ⊂ Q, leading immediately to Conjecture 1. In particular,

for the geometric branch α = geom, the field K is nothing but the trace field Q(tr Γ).
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Saddle points and new invariants

In this chapter, we begin by performing explicit computations with the state integral model

of Chapter 8, using the algorithm outlined very briefly at the end of Section 8.4. We use

the hyperbolic figure-eight knot 41 and the knot 52 (or rather their complements in the

three-sphere) as our main examples. In both cases, we how the equations of geometric

quantization Â · Z = 0 can be easily verified directly within the state integral model. Of

course, for 41 our coefficients Sn(u) will agree with those obtained in Section 6.6 directly

from geometric quantization. Unlike geometric quantization, however, the state integral

model fixes (almost) all potentially undetermined constants in the invariants Sn(u); one

can check that for 41 and 52, these invariants reduce to the arithmetic invariants found in

Section 5.4 at u = 0.

The knot 52 is not amphicheiral, and its perturbative invariants display several novel

features. In particular, the 52 knot complement has three branches of non-abelian flat

connections, two of which are conjugate to each other (but are not a signed pair), and one

which is a real self-conjugate branch. Unlike the case of self-conjugate abelian branches, the

non-abelian real branch here has interesting arithmetic properties. Moreover, the conjugate

branches have a non-vanishing Chern-Simons invariant.

In Section 9.3, we will then use functional equations for the quantum dilogarithm to

obtain direct (though unrigorous) analytic continuations of the colored Jones polynomi-

als of knots 41 and 52, as well as the non-hyperbolic trefoil 31. The resulting analytic

continuations become integrals of products of quantum dilogarithms just like the partition

functions of the state integral model. In some cases, the integrals are identical. Saddle-point

158
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approximations can be applied in this case as well, leading to the same perturbative GC

invariants.

The figure-eight example appeared first in our work [3]. The 52 example, verification of

Â · Z = 0, and direct analytic continuation will appear in [5]. The integral for the trefoil

obtained by analytic continuation suggests the existence of a non-hyperbolic state integral

model.

9.1 Figure-eight knot 41

The state integral model (8.4.12) for the figure-eight knot complement gives:

Z(α)(M ; ~, u) =
1√
2π~

∫
Cα

dp
Φ~(p+ iπ + ~)

Φ~(−p− 2u− iπ − ~)
e−

2
~ u(u+p)−u . (9.1.1)

There are two tetrahedra (N = 2) in the standard triangulation of M , and so two quantum

dilogarithms in the integral. There is a single integration variable p, and we can identify

g1(p, u) = p, g2(p, u) = −p− 2u, and f(p, 2u, ~) = −4u(u+ p).

It will be convenient here to actually change variables p 7→ p− u− iπ− ~, removing the

(iπ + ~) terms in the quantum dilogarithms, and obtaining the somewhat more symmetric

expression

Z(α)(M ; ~, u) =
1√
2π~

e
2πiu

~ +u

∫
Cα

dp
Φ~(p− u)

Φ~(−p− u)
e−

2pu
~ (9.1.2)

=
1√
2π~

e
2πiu

~ +u

∫
Cα

dp eΥ(~,p,u) . (9.1.3)

We define eΥ(~,p,u) = Φ~(p−u)
Φ~(−p−u)e

− 2pu
~ . Figures 9.1 and 9.2 show plots of |eΥ(~,p,u)| and

log |eΥ(~,p,u)| = Re Υ(~, p, u) at ~ = i/3 and two values of u. The half-lines of poles and

zeroes of the two quantum dilogarithms combine into similar singularities for Υ(~, p, u), as

is depicted in Figure 9.3; note the splitting of these poles and zeroes by an amount 2u.

After our change of variables, the “potential” function V (p, u) as in (8.4.2) is now seen

to be

V (p, u) =
1
2
[
Li2(−ep−u)− Li2(−e−p−u)− 4pu+ 4πiu

]
. (9.1.4)

Instead of looking directly at ∂
∂pV = 0 to find its critical points, we consider the simpler

equation

r(x,m) = e
2 ∂

∂p
V =

x

m2(m+ x)(1 +mx)
= 1 , (9.1.5)
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Figure 9.1: Plots of |eΥ(~,p,u)| and its logarithm at u = 0 and ~ = i
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Figure 9.2: Plots of |eΥ(~,p,u)| and its logarithm at u = 1
2 i and ~ = i

3 .

in terms of x = ep and m = eu. This clearly has two branches of solutions, which both lift

to true critical points of V , given by

p(geom,conj)(u) = log
[

1−m2 −m4 ∓m2∆(m)
2m3

]
, (9.1.6)

with ∆(m) defined as in (6.6.12):

∆(m) = i
√
−m−4 + 2m−2 + 1 + 2m2 −m4 . (9.1.7)

The lift is unique if (say) ~ ∈ iR>0. We claim that these correspond to the geometric

and conjugate branches of the A-polynomial described in Section 6.6, which can be ver-

ified by calculating1 s(x,m) = exp
(

∂
∂uV (p, u)

)
=
[

m+x
x3+mx4

]1/2, and checking indeed that

s(x(geom,conj)(m),m) = lgeom,conj(m).
1Here s(x,m) is the square root of a rational function rather than a rational function itself due

to our redefined variables. Using (9.1.1) directly, we would have gotten a pure rational expression.
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Figure 9.3: Poles, zeroes, and critical points of eΥ(~,p,u) for u = 1
2 i and ~ = 3

4e
iπ/6.

The two critical points of Λ~ which correspond to the critical points of V (as ~ → 0)

are indicated in Figures 9.1 and 9.2. As mentioned at the end of Section 8.4, at any fixed

~ 6= 0 there exist many other critical points of Λ~ that can be seen between consecutive

pairs of poles and zeroes in Figures 9.1 and 9.2; however, these other critical points become

trapped in half-line singularities as ~ → 0, and their saddle-point approximations are not

well-defined.

We now calculate the perturbative invariants S(geom)
n (u) and S

(conj)
n (u) by doing a full

saddle-point approximation of the integral (9.1.2) on (dummy) contours passing through

the two critical points. We begin by formally expanding Υ(~, p, u) = log Λ~(p, u) as a series

in both ~ and p around some fixed point p0:

Υ(~, p0 + p, u) =
∞∑

j=0

∞∑
k=−1

Υj,k(p0, u) pj~k . (9.1.8)

Our potential V (p, u) is identified with Υ0,−1(p, u) + 2πiu, and critical points of V are

defined by Υ1,−1(p, u) = ∂
∂pV (p, u) = 0. Let us also define

b(p, u) := −2Υ2,−1(p, u) = − ∂2

∂p2
V (p, u) . (9.1.9)
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Then at a critical point p0 = p(α)(u), the integral (9.1.2) becomes2

Z(α)(M ; ~, u) =
eu+ 1

~ V (α)(u)

√
2π~

∫
Cα

dp e−
b(α)(u)

2~ p2
exp

1
~

∞∑
j=3

Υ(α)
j,−1(u) pj +

∞∑
j=0

∞∑
k=1

Υ(α)
j,k (u) pj~k

 ,
(9.1.10)

where V (α)(u) = V (p(α)(u), u), b(α)(u) = b(p(α)(u), u), and Υ(α)
j,k (u) = Υj,k(p(α)(u), u) are

implicitly functions of u alone.

We can expand the exponential in (9.1.10), integrate each term using

∫
dp e−

b
2~ p2

pn =

 (n− 1)!!
(~

b

)n/2
√

2π~
b n even

0 n odd
, (9.1.11)

and re-exponentiate the answer to get a final result. The integrals in (9.1.11) are accurate

up to corrections of order O(e−const/~), which depend on a specific choice of contour and

are ignored. Following this process, we obtain

Z(α)(M ; ~, u) =
1√
2π~

√
2π~
b(α)

eu+ 1
~ V (α)(u)eS

(α)
2 ~+S

(α)
3 ~2+... (9.1.12)

= exp
[

1
~
V (α)(u)− 1

2
log b(α) + u+ S

(α)
2 ~ + S

(α)
3 ~2 + . . .

]
, (9.1.13)

where the coefficients Sn can be straightforwardly computed in terms of b and the Υ’s. For

example, S(α)
2 = 15

2(b(α))3
Υ(α)

3,−1 + 3
(b(α))2

Υ(α)
4,−1 + Υ(α)

0,1 and S
(α)
3 = 3465

8(b(α))6
(Υ(α)

3,−1)4+ (sixteen

other terms). In addition, we clearly have

S
(α)
0 (u) = V (α)(u) , (9.1.14)

δ(α) = 0 , (9.1.15)

S
(α)
1 (u) = −1

2
log

b(α)

m2
. (9.1.16)

To actually evaluate the coefficients Υi,j(p, u), we refer back to the expansion (8.4.15) of

the quantum dilogarithm in Section 8.4. We find

Υj,k(p, u) =
Bk+1(1/2) 2k

(k + 1)!j!
[
Li1−j−k(−ep−u)− (−1)jLi1−j−k(−e−p−u)

]
(9.1.17)

when j ≥ 2 or k ≥ 0, and that all Υj,2k vanish.

Therefore: to calculate the expansion coefficients S(α)
n (u) around a given critical point,

we substitute p(α)(u) from (9.1.6) into equations (9.1.4) and (9.1.17) to obtain V (α), b(α),
2This expression assumes that Υj,k = 0 when k is even, a fact that shall be explained momentarily.
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and Υ(α)
j,k ; then we substitute these functions into expressions for the Sn and simplify. At

the geometric critical point p(geom)(u), we obtain

V (geom)(u) =
1
2

[
Li2(−ep(geom)(u)−u)− Li2(−e−p(geom)(u)−u)− 4p(geom)(u)u+ 4πiu

]
,

(9.1.18)

b(geom)(u) =
im2

2
∆(m) , (9.1.19)

and it is easy to check with a little algebra that all the expansion coefficients S(geom)
n (u)

reproduce exactly3 what we found in Table 6.3 of Section 6.6 by quantizing the moduli space

of flat connections. (This has been verified to eight-loop order.) Moreover, the present state

integral model completely fixed all the constants of the S(geom)
n (u), which had to be fixed

in Table 6.3 by comparison to analytic continuation of the Jones polynomial.

Similarly, at the conjugate critical point p(conj)(u), we have

V (conj)(u) = −V (geom)(u) , b(conj)(u) = − im
2

2
∆(m) , (9.1.20)

and more generally S(conj)
n = (−1)n−1S

(geom)
n . It is not hard to actually prove this relation

between the geomtric and conjugate critical points to all orders by inspecting the symmetries

of eΥ(~,p,u). Thus, we find complete agreement with the results of Section 6.6.

9.1.1 Checking Â · Z = 0

An alternative and more convenient way to check that the quantum A-polynomial an-

nihilates the perturbative partition functions of the state integral model (more convenient

than computing Sn(u)’s independently in both approaches) is to apply the operator Â(l̂, m̂)

directly to the state integral.

Let us write, as usual,

Â(l̂, m̂) =
∑

j

aj(m̂, q)l̂j . (9.1.21)

By virtue of the functional relation

Φ~(p− ~) = (1 + ep)Φ~(p+ ~) , (9.1.22)

3There appears to be a small “correction” of 1
2 log(−1) = log(±i) in S

(geom)
1 , comparing (9.1.16)

with the value in Table 6.3. This merely multiplies the partition function by i and can be attributed

to the orientation of the stationary-phase contour passing through the geometric critical point. We

also allow the usual modulo 2πiu ambiguity in matching S0.
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the operator l̂ has a very simple action on quantum dilogarithms. In the case of the figure-

eight knot, shifts of u and relabeling of the integration variable p can be combined to show

that

Z(u+ j~) =
1√
2π~

e
2πiu

~

∫
dp e

(u+j~)(2ip+(2j−1)~)
~

Φ~(p− u)
Φ~(−p− u)

(
− ep−u−(2j−1)~; q

)
j
, (9.1.23)

where (x; q)j denotes the finite q-Pochhammer symbol (x; q)j =
∏j−1

r=0(1 − qrx). Then we

have

Â · Z(u) =
1√
2π~

e
2πiu

~

∫
dp

Φ~(p− u)
Φ~(−p− u)

3∑
j=0

aj(eu, q)
(
− ep−u−(2j−1)~; q

)
j
e

(u+j~)(2ip+(2j−1)~)
~ .

(9.1.24)

The classical saddle point of this integral is unchanged from the original case (9.1.2), and

the very same saddle point methods used above to find the perturbative coefficients of Z(u)

can be applied to the integral here to show that it vanishes perturbatively to all orders.

This is actually somewhat easier than computing Z(u) itself, because the terms S0 and S1,

appearing multiplicatively in front of (9.1.12) can be completely ignored, and there are no

branch cut ambiguities to worry about.

It may be possible that the integral (9.1.24) can be shown to vanish identically, without

using any perturbative expansions (although, as written, the integrand is certainly not zero).

It would be interesting to explore this further.

9.2 Three-twist knot 52

The complement knot 52 can be divided into three hyperbolic tetrahedra. They can be

chosen to all have negative orientation; at the complete hyperbolic structure, they all have

equal (negative) volumes. See, e.g., [137] for a full description of the hyperbolic structure.

The resulting state sum model can be written as a two-dimensional integral

Z(u) =
1

2
√

2π~
e−u

∫
dpx dpy

e

1
2~

[
(px+4u+iπ+~)(py+2u+iπ+~)− 3

2
iπ~+π2−~2

2

]
Φ~(py)Φ~(px + 2u)Φ~(px)

. (9.2.1)

As in the case of the figure-eight knot, each quantum dilogarithm only involves a single

integration variable, making the asymptotic expansions of the quantum dilogarithms very

simple.
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The A-polynomial for the knot 52 is

A(l,m) = (l−1)(m14l3+(−m14+2m12+2m10−m6+m4)l2+(m10−m8+2m4+2m2−1)l+1) .

(9.2.2)

There are three non-abelian branches, two conjugate to each other and one real. Since this

knot is chiral, there is no symmetry A(l,m−1) ∼ A(l,m).

Since the A-polynomial has three non-abelian branches, one expects to find three saddle

points in the integrand of (9.2.1). In terms of the “downstairs” variables x = epx and

y = epy , the saddle points are given by the equations

m4x(y + 1) = −1 , m2(x+ 1)y
(
m2x+ 1

)
= −1 . (9.2.3)

It is easy to solve for y = m4(−x)−1
m4x

, but the subsequent equation for x is (as expected) a

third-degree irreducible polynomial:

m6x3 +m6x2 +m4x2 +m4x+m2x2 + x+ 1 = 0 . (9.2.4)

The solutions to this polynomial have the same arithmetic structure as the solutions to

the A-polynomial. It is most convenient to leave an algebraic dependence on x in the

perturbative invariants S(α)
n (u), reducing them as much as possible with the equation (9.2.4).

The resulting general expressions for S(α)
n (u) can then be specialized to various branches α

by substituting in the three actual solutions of (9.2.4).

The leading coefficient S(α)
0 (u) is given by

S
(α)
0 (u) =

1
2

[
−Li2(−epx)− Li2(−epx+2u)− Li2(−epy) + (py + 2u)(px + 4u) + iπ(px + py + 6u)− π2

2

]
,

(9.2.5)

and specializes as expected to Vol+ iCS, its conjugate, and a nonzero real quantity (for real

or imaginary u) when an appropriate lift of the solution to is used.

The other coefficients quickly become more complicated, but the present saddle-point

methods can still calculate them easily up to about sixth order. For example, one has

S1 = −1
2

log
[
−3m6x2 + 2m6x+ 2m4x+m4 + 2m2x+ 1

2m2

]
, (9.2.6)
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and

S
(α)
2 (m) =

1
12 (m16 − 6m14 + 11m12 − 12m10 − 11m8 − 12m6 + 11m4 − 6m2 + 1)2

(9.2.7)

×
(
− 2m34x2 − 2m34x+ 16m32x2 + 12m32x− 3m32 − 106m30x2 − 68m30x

+ 30m30 + 254m28x2 + 112m28x− 148m28 − 182m26x2 − 78m26x+ 384m26

− 370m24x2 − 148m24x− 641m24 + 392m22x2 − 280m22x+ 410m22

− 1654m20x2 − 336m20x+ 250m20 + 392m18x2 − 1922m18x− 1116m18

− 370m16x2 − 336m16x− 529m16 − 182m14x2 − 280m14x− 1116m14

+ 254m12x2 − 148m12x+ 250m12 − 106m10x2 − 78m10x+ 410m10

+ 16m8x2 + 112m8x− 641m8 − 2m6x2 − 68m6x+ 384m6 + 12m4x− 148m4

− 2m2x+ 30m2 − 3
)
.

The same approach of applying the quantum A-polynomial directly to the state integral

can be used to show that these expressions are fully compatible with geometric quantization.

The quantum A-polynomial for 52 appears in [118].

9.3 Direct analytic continuation

Let us finally describe the approach of direct analytic continuation from the colored

Jones polynomial. This works in a few special cases where the colored Jones polynomial

has a closed form expression as a sum of products, or more precisely a sum of finite q-

Pochhammer symbols. The trick is to use the functional identity (9.1.22) for the quantum

dilogarithm to write each q-Pochhammer symbol as a ratio of quantum dilogarithms, and

to approximate the sum by an integral as ~ → 0 (this was also done in [102]). Then

perturbative invariants S(α)
n (u) can then be derived via our now standard methods of saddle-

point approximation.

The analytic continuations involved here have not been made rigorous, but they certainly

seem to work for practical computations. Moreover, unlike the current formulation of the

state integral model, they work just as well for non-hyperbolic knots as for hyperbolic ones.
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Figure-eight 41

Normalized (as explained in Section 5.4) to agree with the Chern-Simons partition func-

tion, the SU(2) colored Jones polynomial for the figure-eight knot is [146]

JN (q) = −
√

2i~
π

sinhu
N−1∑
j=0

qNj
j∏

k=1

(1− q−Nq−k)(1− q−Nqk) (9.3.1)

= −
√

2~
π

sinhu
N−1∑
j=0

qNj Φ~(−2u+ iπ + ~)
Φ~(−2u− iπ − ~)

Φ~(−2i− iπ − ~− 2j~)
Φ~(−2u+ iπ + ~ + 2j~)

(9.3.2)

= −
√

2~
π
eu(1− e

−2πiu
~ )

N−1∑
j=0

qNj Φ~(−2i− iπ − ~− 2j~)
Φ~(−2u+ iπ + ~ + 2j~)

. (9.3.3)

As usual, q = e2~, and in analytic continuation u = ~N (cf. (6.2.4)). Equating −iπ−~+2j~

with a new integration variable p, and letting dp = 2~, this sum is approximated by an

integral in the limit ~→ 0. Specifically,

JN (q)→ 1√
2πi~

(
e

iπu
~ − e−

iπu
~
) ∫ iπ−i~

−iπ+~−2u
dp e−

up
~

Φ~(p− 2u)
Φ~(−p− 2u)

. (9.3.4)

This expression looks very similar to the state integral model (9.1.2), though it has

not been possible yet to prove their equivalence. It has several nice properties, including

a more manifest symmetry under u → −u and a preferred choice of contour. It turns

out that (9.3.4) has exactly two saddle points, and doing abstract saddle point expansions

around them yields exactly the same perturbative invariants S(geom,conj)
n (u) obtained from

the state integral model. The preferred contour indicated here crosses the geometric saddle

— perhaps this is not a surprise, since it is the saddle that should govern the leading

asymptotics of the colored Jones.

Note that the two nonperturbative terms in the prefactor
(
e

iπu
~ − e−i πu

~
)

are related

by a difference of 2πiu/~ in the exponent, which has always been an ambiguity in the

partition function. Also note that when u~ = N is an integer (i.e. the dimension of an

SU(2) representation), the prefactor
(
e

iπu
~ − e−i πu

~
)

vanishes. This is a general feature of

the subtle analytic continuation of compact Chern-Simons partition functions, and (partly)

explains why exponential growth only appears when N /∈ Z (cf. [41]).
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Three-twist 52

There is a sum-of-products expression for the colored Jones polynomial of the knot 52

at the complete hyperbolic structure u = 0. It is given by [102]

JN (q) = −
√

2i~
π

∑
0≤k≤l<N

(q; q)2l
(q−1; q−1)k

q−k(l+1) . (9.3.5)

In the analytic continuation limit ~ → 0 (and u = N~ fixed), letting the two summation

indices be identified with integration variables px and py, this formally becomes exactly the

same expression as the state integral model (9.2.1) at u = 0.

Trefoil 31

The analogous expression for the trefoil can be evaluated exactly, in accordance with

fact that higher-order invariants vanish on the non-abelian branch (cf. Section 6.6). The

colored Jones polynomial is

JN (q) = −
√

2i~
π

sinhuq1−N
N−1∑
j=0

q−jN
j∏

k=1

(1− qk−N ) (9.3.6)

→
√

2i~
π

(eu − e−u)Φ~(−2u+ ~− iπ)
∫ 2πi+2u

0

e−
1
2~ (p(2u+2πi)−2u+2~)

Φ~(p− 2u− iπ + ~)
. (9.3.7)

After a formal shift of countour, this is just a Fourier transform of the quantum dilogarithm.

The Fourier transform of Φ~(x)±1, described in [140], is just another quantum dilogarithm

Φ~(x)±1. In fact, the result of the integral in(9.3.7) is a quantum dilogarithm that almost

exactly cancels the prefactor Φ~(−2u+ ~− iπ), resulting in an expression that involves no

quantum dilogarithms at all. We find

JN (q) ∼ e
3u2+iπu

~ , (9.3.8)

up to some additional constants, just as in the geometric quantization analysis of Section

6.6.

The form of the expression (9.3.7) suggests that the SL(2,C) Chern-Simons partition

function for the trefoil knot complement might have a state integral model despite the fact

that the trefoil is not a hyperbolic knot. Indeed, it is known that the trefoil knot comple-

ment does have topological ideal triangulation consisting of two tetrahedra, the same as the
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number of quantum dilogarithms appearing in (9.3.7). A topological ideal triangulation of

a three-manifold is similar to a geometric one, with all vertices of the triangulation being

located on the manifold’s boundary. For a torus knot such as the trefoil, the “problem”

with imposing a hyperbolic geometric structure on this triangulation is that gluing condi-

tions require all tetrahedra to be flat when u = 0. However, this should be no problem for

Chern-Simons theory: an SL(2,C) structure does not care whether tetrahedra are “flat.”

These ideas are explained further in [5].

´
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