
Algorithms for Nucleic Acid Sequence Design

Thesis by

Joseph N. Zadeh

In Partial Fulfillment of the Requirements

for the Degree of

Doctor of Philosophy

California Institute of Technology

Pasadena, California

2010

(Defended December 8, 2009)

ii

© 2010

Joseph N. Zadeh

All Rights Reserved

iii

Acknowledgements

First and foremost, I thank Professor Niles Pierce for his mentorship and dedication to this work. He always

goes to great lengths to make time for each member of his research group and ensures we have the best

resources available. Professor Pierce has fostered a creative environment of learning, discussion, and curiosity

with a particular emphasis on quality. I am grateful for the tremendously positive influence he has had on my

life.

I am fortunate to have had access to Professor Erik Winfree and his group. They have been very helpful

in pushing the limits of our software and providing fun test cases. I am also honored to have two other

distinguished researchers on my thesis committee: Stephen Mayo and Paul Rothemund.

All of the work presented in this thesis is the result of collaboration with extremely talented individuals.

Brian Wolfe and I codeveloped the multiobjective design algorithm (Chapter 3). Brian has also been instru-

mental in finessing details of the single-complex algorithm (Chapter 2) and contributing to the parallelization

of NUPACK’s core routines. I would also like to thank Conrad Steenberg, the NUPACK software engineer

(Chapter 4), who has significantly improved the performance of the site and developed robust secondary

structure drawing code. Another codeveloper on NUPACK, Justin Bois, has been a good friend, mentor, and

reliable coding partner. Besides creating many of NUPACK’s back-end compute programs and graphics, he

is also responsible for developing the analysis algorithms with Robert Dirks. Robert, who is also a formidable

speed-chess opponent, laid the groundwork for NUPACK’s compute engine.

I would like to thank Marshall Pierce for helping launch NUPACK. I also owe much gratitude to Asif

Khan, who was instrumental in parallelizing NUPACK, and Miles O’Connell, who provided helpful front-end

programming support. Our talented system administrators also deserve special mention: Chad Schmutzer,

Will Yardley, and Naveed Near-Ansari who have constantly honored our endless lists of esoteric requests.

All of the members of the Pierce Lab have been especially helpful in beta testing NUPACK and providing

useful feedback and discussion. I would also like to recognize Melinda Kirk, who helps keep the lab running

extremely smoothly.

Special thanks are in order to my friends who have provided support and endless laughs along the way:

Elijah Sansom, Neil King, Kevin McHale, Steven Rozenski, Graham Ruby, Victor Beck, Joseph Schramm,

Jane Khudyakov, Jonathan Sternberg, Suvir Venkataraman, Harry Choi, Jennifer Padilla, the Jones family,

and many others.

iv

I would especially like to thank my entire family. My aunts Lisa and Faye Majlessi are always encour-

aging. My sister Neda Zadeh, and my brother-in-law Jason Knudson, have provided an endless amount of

moral support. My extremely dedicated and loving parents have cheered me on every step of the way. My

mother, Touran, is always an inspirational figure to me. My father, Khalil, taught me how to program when I

was eight years old, for which I am eternally grateful.

My wonderfully supportive girlfriend, Becca Jones, is a creative inspiration and a bright source of energy

in my life. Her sense of humor makes each day an adventure.

Finally, I would like to dedicate this thesis to my grandfather, the late Mehdi Majlessipour, in memory of

his long life devoted to educating others.

v

Abstract

Motivated by a growing field of research focused on programming function into biomolecules, we seek to de-

crease the cost of high-quality rational nucleic acid sequence design while increasing its versatility and avail-

ability. We begin by describing an algorithm for designing the sequence of one or more interacting nucleic

acid strands intended to adopt a target secondary structure at equilibrium. Using ensemble defect optimiza-

tion, we seek to minimize the average number of incorrectly paired nucleotides at equilibrium, calculated over

the entire ensemble of unpseudoknotted secondary structures. Empirically, the algorithm exhibits asymptotic

optimality and costs 4/3 the time of a single objective function evaluation for large structures. We then extend

this algorithm to design multi-state systems with an arbitrary number of linked targets and demonstrate its

efficacy on systems invented by molecular engineers. To improve the ease of use and availability of nucleic

acid analysis and design tools, we present NUPACK, a web application already in wide use that allows the

international research community to share a high-performance compute cluster for the analysis and design of

systems of interacting nucleic acids.

vi

Contents

Acknowledgements iii

Abstract v

List of Figures ix

List of Tables xi

List of Algorithms xii

1 Introduction 1

1.1 Thermodynamic analysis of interacting nucleic acids . 2

1.1.1 Secondary structure model . 2

1.1.2 Characterizing equilibrium secondary structure . 2

1.2 Thermodynamic sequence design . 4

1.2.1 Objective functions . 4

1.2.2 Prior optimization algorithms . 6

1.3 Thesis outline . 6

2 Nucleic acid sequence design via efficient ensemble defect optimization 8

2.1 Introduction . 8

2.2 Algorithm description . 8

2.2.1 Hierarchical structure decomposition . 8

2.2.2 Leaf optimization with weighted mutation sampling 10

2.2.3 Subsequence merging and reoptimization . 10

2.2.4 Optimality bound and time complexity . 11

2.3 Methods . 11

2.3.1 Structure test sets . 11

2.3.2 Other algorithms . 13

2.3.3 Implementation . 14

vii

2.4 Computational design studies . 14

2.4.1 Algorithm performance and asymptotic optimality 14

2.4.2 Leaf independence and emergent defects . 15

2.4.3 Contributions of algorithmic ingredients . 17

2.4.4 Sequence initialization . 17

2.4.5 Stop condition stringency . 17

2.4.6 Multi-stranded target structures . 20

2.4.7 Design material . 20

2.4.8 Sequence constraints and pattern prevention . 23

2.4.9 Parallel efficiency and speedup . 23

2.4.10 Comparison to previous methods . 24

2.5 Discussion . 27

3 Sequence design for multi-state nucleic acid systems 29

3.1 Objective function . 29

3.2 Sequence linkages . 30

3.3 Optimality bound and time complexity . 30

3.4 Multiobjective ensemble defect optimization algorithm . 30

3.4.1 Synchronizing linkages . 30

3.4.2 Multi-state hierarchical decomposition . 30

3.4.3 Multi-leaf optimization with weighted mutation sampling 31

3.4.4 Subsequence merging and reoptimization . 32

3.4.5 Language . 32

3.4.6 Implementation and comparison to single-complex design 34

3.5 Computational studies . 35

3.6 Discussion . 41

4 The NUPACK web server: analysis and design of nucleic acid systems 42

4.1 Introduction . 42

4.2 Application organization . 43

4.3 Publication-quality graphics . 45

4.4 Module details . 47

4.4.1 Thermodynamic analysis . 47

4.4.2 Thermodynamic design . 49

4.4.3 Utilities . 51

4.5 Example of single-complex design calculation . 51

4.6 Example of multiobjective design calculation . 54

viii

4.7 Infrastructure and implementation . 54

5 Summary and outlook 61

5.1 Computational cost . 61

5.2 Design versatility . 62

5.3 Availability . 62

5.4 A compiler for biomolecular function . 63

Bibliography 64

A Computing resources, languages, and software dependencies 69

A.1 Cluster hardware resources . 69

A.2 Languages . 70

A.3 Software dependencies . 70

B Design test sets 73

B.1 Single-complex design test sets . 73

B.2 Multiobjective design test suite . 74

C Pseudocode for other single-complex design algorithms 79

D Notation for specifying nucleic acid secondary structures 84

E NUPACK usage statistics 85

ix

List of Figures

1.1 Secondary structure model and loop classification for a single nucleic acid strand 3

2.1 Comparison of test set structural features . 13

2.2 Algorithm performance and asymptotic optimality . 15

2.3 Computational cost of a single ensemble defect evaluation. 16

2.4 Leaf independence and emergent defects . 16

2.5 Contributions of hierarchical structure decomposition and defect-weighted sampling to algo-

rithm performance. 18

2.6 Effect of sequence initialization on algorithm performance. 19

2.7 Effect of stop condition stringency on algorithm performance 20

2.8 Algorithm performance on single-stranded and multi-stranded target structures 21

2.9 Effect of design material on algorithm performance . 22

2.10 Effect of pattern prevention on algorithm performance . 23

2.11 Parallel algorithm performance. 24

2.12 Comparison to algorithms inspired by previous publications for the engineered test set 25

2.13 Comparison to algorithms inspired by previous publications for the random test set 26

3.1 Example of multiobjective decomposition trees . 33

3.2 Code for programmable in situ amplification . 35

3.3 Multiobjective algorithm run on engineered single-complex input 37

3.4 Multiobjective algorithm run on random single-complex input 38

3.5 Multiobjective performance on systems specified by molecular engineers 39

3.6 Multiobjective design results for a programmable in situ amplification system 40

4.1 Organizational structure of NUPACK . 44

4.2 NUPACK navigation bar . 45

4.3 NUPACK help popups . 45

4.4 Using the NUPACK secondary structure drawing editor to fix overlapping structures 46

4.5 NUPACK secondary structure drawing variations . 47

4.6 Depiction of secondary structures with ideal helical geometry 48

x

4.7 NUPACK design input page for single-complex design . 52

4.8 NUPACK design execution graph . 53

4.9 NUPACK design progress page . 54

4.10 NUPACK single-complex design results page . 55

4.11 NUPACK single-complex design results detail page . 56

4.12 NUPACK multiobjective design input page . 57

4.13 NUPACK multiobjective design results page . 58

4.14 NUPACK design results detail page for multiobjective design 59

B.1 Structural features of the engineered and random test sets . 73

B.2 Code for hybridization chain reaction . 74

B.3 Code for synthetic molecular motor . 75

B.4 Code for And logic gate . 75

B.5 Code for Or logic gate . 76

B.6 Code for logic gate single displacement reaction . 76

B.7 Code for pair displacement reaction . 77

B.8 Code for test tube Dicer system . 78

D.1 Example of secondary structure drawing for HU+ notation 84

E.1 NUPACK visits trend . 85

E.2 NUPACK views trend . 85

xi

List of Tables

2.1 Default parameter values used in evaluating algorithm performance for RNA design. 13

A.1 CPU details . 69

A.2 Summary of compute cluster resources . 69

xii

List of Algorithms

2.1 Pseudocode for hierarchical ensemble defect optimization with defect-weighted sampling. . . 12

3.1 Pseudocode for multiobjective, hierarchical ensemble optimization with weighted mutation

sampling. 36

C.1 Single-scale ensemble defect optimization with uniform mutation sampling. 79

C.2 Single-scale ensemble defect optimization with defect-weighted mutation sampling. 80

C.3 Hierarchical ensemble defect optimization with uniform sampling. 81

C.4 Single-scale probability defect optimization with uniform mutation sampling. 82

C.5 Hierarchical MFE defect optimization with defect-weighted sampling. 83

1

Chapter 1

Introduction

Nucleic acids are essential to the survival and proliferation of every living organism. In addition to encoding

genetic information, they have roles in regulation, catalysis, and synthesis [1]. Nucleic acids are also an

attractive nanoscale construction material: besides being intrinsically biocompatible, their synthesis can be

automated [2] and they can be manipulated by a large repertoire of molecular biology techniques developed

over the past half century.

Nucleic acids are linear polymers whose structural unit, the nucleotide, consists of a negatively charged

phosphate group, a sugar, and one of four bases. Each base is capable of pairing with other bases to form

a base pair. This base-pairing mechanism gives nucleic acids a programmable quality and serves as the

foundation for the growing field of nucleic acid nanotechnology.

By exploiting pairing specificity, one can rationally design sequences of strands such that hybridization

energies will drive programmed self-assembly of prescribed molecular structures [3]. This has produced a

wide array of engineered nucleic acid systems [4–7] including self-assembling two- and three-dimensional

structures, triggered self-assembly mechanisms, computational devices, machines, scaffolds, and catalysts.

Despite the different approaches and applications of all these nucleic acid systems, they have an important

commonality: they all require the selection of specific sequences that encode the desired structure and func-

tion into the system. We refer to this selection process as sequence design.

This thesis focuses on algorithms that encode equilibrium secondary structure into nucleic acid primary

sequences. Our goals are to achieve high-quality, low cost sequence design for both single structures (possibly

multi-stranded) and systems of multiple linked structures. In order to improve the ease of use and accessibility

of these algorithms, we aim to develop a web application for both the design and analysis of nucleic acid

systems.

2

1.1 Thermodynamic analysis of interacting nucleic acids

1.1.1 Secondary structure model

For an RNA strand with N nucleotides, the sequence, φ, is specified by base identities φi ∈ {A, C, G, U} for

i = 1, . . . , N (T replaces U for DNA). The secondary structure of one or more interacting RNA strands [8]

is defined by a set of base pairs (each a Watson Crick pair [A − U or C − G] or wobble pair [G − U]). By

convention, i ·j denotes that base i is paired to base j. Strands have directionality (the beginning of the strand

denoted by 5′ and the end by 3′), with base-pairing occurring in an antiparallel fashion (e.g., 5′− GCUCA− 3′

is fully complementary to 5′ − UGAGC− 3′).

A polymer graph for a secondary structure is constructed by ordering the strands around a circle, drawing

the backbones in succession from 5′ to 3′ around the circumference with a nick between each strand, and

drawing straight lines connecting paired bases. A secondary structure is pseudoknotted if every strand order-

ing corresponds to a polymer graph with crossing lines. A secondary structure is connected if no subset of the

strands is free of the others. An ordered complex corresponds to the unpseudoknotted structural ensemble, Γ,

comprising all connected polymer graphs with no crossing lines for a particular ordering of a set of strands.1

For a secondary structure, s ∈ Γ, the free energy,

∆G(φ, s) = (L− 1)Gassoc +
∑

loop∈s

∆G(φ, loop),

is calculated using nearest-neighbor empirical parameters for RNA in 1M Na+ [9, 10] or for DNA in user-

specified Na+ and Mg++ concentrations [11–13], of all loops in that structure. Here, L is the number

of strands in the complex, Gassoc is the penalty for strand association [14], and secondary structure loop

classification is depicted in Figure 1.1. This physical model provides the basis for rigorous analysis and

design of equilibrium base-pairing in the context of the free energy landscape defined over ensemble Γ.

1.1.2 Characterizing equilibrium secondary structure

By calculating the partition function [17],

Q(φ) =
∑
s∈Γ

e−∆G(φ,s)/kBT ,

over Γ, it is possible to evaluate the equilibrium probability,

p(φ, s) =
1

Q(φ)
e−∆G(φ,s)/kBT ,

1Pseudoknotted structures are excluded from the ensemble Γ for computational expediency.

3

hairpin loop

interior loop

bulge loop

stacked base pairs

exterior loop

multiloop

Figure 1.1: Secondary structure model and loop classification for a single nucleic acid strand. The backbone
is represented by the thick directed line with an arrow marking the 3′ end of the strand. Bases are depicted as
dots with red lines representing complementary base-pairing. The colors and annotations are used to illustrate
the canonical loops [15, 16].

of any secondary structure s ∈ Γ. Here, kB is the Boltzmann constant and T is temperature. The secondary

structure with the highest probability at equilibrium is the minimum free energy (MFE) structure,2 satisfying

sMFE(φ) = arg min
s∈Γ

∆G(φ, s).

The equilibrium structural features of ensemble Γ are quantified by the base-pairing probability matrix, P (φ),

with entries Pi,j(φ) ∈ [0, 1] corresponding to the probability,

Pi,j(φ) =
∑
s∈Γ

p(φ, s)Si,j(s), (1.1)

that base pair i · j forms at equilibrium. Here, S(s) is a structure matrix with entries Si,j(s) ∈ {0, 1}. If

structure s contains pair i · j, then Si,j(s) = 1, otherwise Si,j(s) = 0. For convenience, the structure and

probability matrices are augmented with an extra column to describe unpaired bases. The entry Si,N+1(s)

is unity if base i is unpaired in structure s and zero otherwise; the entry Pi,N+1(φ) ∈ [0, 1] denotes the

equilibrium probability that base i is unpaired over ensemble Γ. Hence the row sums of the augmented S(s)

and P (φ) matrices are unity.

The distance between two secondary structures, s1 and s2, is the number of nucleotides paired differently

2For simplicity of exposition, we assume that there is a unique MFE structure; only superficial changes are required if this is not the
case.

4

in the two structures:

d(s1, s2) = N −
∑

1 ≤ i ≤ N

1 ≤ j ≤ N+1

Si,j(s1)Si,j(s2).

We also define the discrete delta function

δs1,s2 =

 1, if d(s1, s2) = 0,

0, otherwise,

with respect to secondary structure.

Although the size of the ensemble, Γ, grows exponentially with the number of nucleotides N [18], the

MFE structure, the partition function, and the equilibrium base-pairing probabilities can all be calculated via

Θ(N3) dynamic programs [8, 18–25].These dynamic programming algorithms can also be parallelized with

their efficiency to run on multiple computational cores [20, 26].

1.2 Thermodynamic sequence design

For a given target structure, s, we formulate sequence design as an optimization problem, minimizing an

objective function with respect to sequence, φ. Rather than seeking a global optimum, we terminate opti-

mization if the objective function is reduced below a prescribed stop condition.

1.2.1 Objective functions

MFE defect optimization

One strategy is to minimize the MFE defect [20, 27–30]:

µ(φ, s) = d(sMFE, s)

= N −
∑

1 ≤ i ≤ N

1 ≤ j ≤ N+1

Si,j(sMFE(φ))Si,j(s),

corresponding to the distance between the MFE structure sMFE(φ) and the target structure s. The util-

ity of this approach hinges on whether or not the equilibrium structural features of ensemble Γ are well-

characterized by the single structure sMFE(φ), which in turn depends on the specific sequence φ [31]. If

µ(φ, s) = 0, the target structure s is the most probable secondary structure at equilibrium; p(φ, s) can

nonetheless be arbitrarily small due to competition from other secondary structures in Γ.

5

Probability defect optimization

To address this concern, an alternative strategy is to minimize the probability defect [20, 31, 32]:

π(φ, s) = 1− p(φ, s),

corresponding to the sum of the probabilities of all non-target structures in the ensemble Γ. If π(φ, s) ≈

0, the sequence design is essentially ideal because the equilibrium structural properties of the ensemble

are dominated by the target structure s. However, as π(φ, s) deviates from zero, it increasingly fails to

characterize the quality of the sequence because the probability defect treats all non-target structures as being

equally defective. This property is a concern for challenging designs where it may be infeasible to achieve

π(φ, s) ≈ 0.

Ensemble defect optimization

To address these shortcomings, a third strategy minimizes the ensemble defect [31]:

n(φ, s) =
∑
σ∈Γ

p(φ, σ)d(σ, s) (1.2)

= N −
∑

1 ≤ i ≤ N

1 ≤ j ≤ N+1

Pi,j(φ)Si,j(s), (1.3)

corresponding to the average number of incorrectly paired nucleotides at equilibrium calculated over ensem-

ble Γ.

Comparing formulations

We cast these three objective functions into a unified formulation to highlight their differences:

n(φ, s) =
∑
σ∈Γ

p(φ, σ)d(σ, s),

µ(φ, s) =
∑
σ∈Γ

δσ,sMFEd(σ, s),

π(φ, s) =
∑
σ∈Γ

p(φ, σ)(1− δσ,s).

Using n(φ, s) to perform ensemble optimization, the average number of incorrectly paired nucleotides at

equilibrium is evaluated over ensemble Γ using p(φ, σ), the Boltzmann-weighted probability of each sec-

ondary structure σ ∈ Γ, and d(σ, s), the distance between each secondary structure σ ∈ Γ and the target

structure s. By comparison, using µ(φ, s) to perform MFE defect optimization, p(φ, σ) is replaced by the

6

discrete delta function δσ,sMFE , which is unity for sMFE and zero for all other structures σ ∈ Γ. Alternatively,

using π(φ, s) to perform probability defect optimization, d(σ, s) is replaced by the binary distance function

(1− δσ,s) that is zero for s and 1 for all other structures σ ∈ Γ. Hence, the MFE defect makes the optimistic

assumption that sMFE will dominate Γ at equilibrium, while the probability defect makes the pessimistic

assumption that all structures σ ∈ Γ with d(σ, s) 6= 0 are equally distant from the target structure s. The

objective function n(φ, s) quantifies the equilibrium structural defects of sequence φ even when µ(φ, s) and

π(φ, s) do not.

1.2.2 Prior optimization algorithms

The computational challenge of rational sequence design stems from sequence space growing exponentially

with the linear size of the desired target structure. One approach is to employ a local search strategy inspired

by biological evolution to optimize a thermodynamic objective function. These randomized algorithms ex-

plore local neighbors by mutating the identity of a base or base pair followed by an objective function eval-

uation. If the mutation lowered the value of the objective function, the mutation is saved, otherwise it is

accepted with a probability less than one [20, 27, 28, 31–34].

Previous implementations of probability defect optimization [20, 31–33] and ensemble optimization [31]

employed single-scale mutation procedures in which each candidate mutation was evaluated on the full se-

quence using Θ(N3) dynamic programs to calculate Q(φ) or P (φ), respectively. By comparison, more effi-

cient hierarchical mutation procedures have been developed for MFE defect optimization [20, 27, 28]. These

methods perform a hierarchical decomposition of the target structure, optimizing subsequences on a series

of growing substructures to reduce the number of times that sMFE(φ) is calculated on the full sequence using

a Θ(N3) dynamic program. Furthermore, to reduce the total number of mutations that must be evaluated,

these methods guide the selection of candidate mutation positions based on defects in the MFE substructure

[20, 27, 28].

1.3 Thesis outline

Here, we develop an ensemble defect optimization algorithm that employs hierarchical decomposition and

weighted mutation sampling to simultaneously achieve high design quality and low design cost. We then

expand this algorithm to achieve high-quality, low cost ensemble defect optimization for linked multi-state

nucleic acid systems, thus increasing the versatility of nucleic acid design. In order to improve the accessibil-

ity and ease of use of these algorithms, we describe a web application for the design and analysis of nucleic

acid systems.

In Chapter 2 we describe the single-complex design algorithm and perform computational studies that

characterize the algorithmic ingredients and compare performance to previous design approaches. We also

make empirical observations about the algorithm’s running time with respect to the theoretical lower bound.

7

Motivated by these results and previous invented multi-state nucleic acid systems, in Chapter 3 we improve

the versatility of this algorithm to achieve high-quality designs of multiple linked targets at a reduced cost.

Finally, in Chapter 4, we describe the NUPACK web server for the analysis and design of nucleic acid

systems, as a means for researchers to design, analyze, and visualize nucleic acids.

8

Chapter 2

Nucleic acid sequence design via efficient
ensemble defect optimization

The work in this chapter is based on the following submitted manuscript: J. N. Zadeh, B. R. Wolfe, and N.

A. Pierce. Nucleic acid sequence design via efficient ensemble defect optimization.

2.1 Introduction

Here, we describe a sequence design algorithm that achieves high design quality via ensemble defect opti-

mization, and low design cost via hierarchical structure decomposition and defect-weighted sampling. For

a given target secondary structure, s, with N nucleotides, we seek to design a sequence, φ, with ensemble

defect, n(φ, s), satisfying the stop condition:

n(φ, s) ≤ fstopN,

for a user-specified value of fstop ∈ (0, 1). Candidate mutations are evaluated at the leaves of a binary tree

decomposition of the target structure. During leaf optimization, defect-weighted mutation sampling is used

to select each candidate mutation position with probability proportional to its contribution to the ensemble

defect of the leaf. If emergent structural defects are encountered when merging subsequences moving up the

tree, they are eliminated via defect-weighted child sampling and reoptimization. This design algorithm is

outlined below and detailed in the pseudocode of Algorithm 2.1.

2.2 Algorithm description

2.2.1 Hierarchical structure decomposition

Prior to sequence design, the target structure s is decomposed into a (possibly unbalanced) binary tree of

substructures, with each node of the tree indexed by a unique integer k. For each parent node, k, there is a left

9

child node, kl, and a right child node, kr. Each nucleotide in parent structure sk is partitioned to either the

left or right child substructure (sk = skl ∪ skr and skl ∩ skr = ∅). Child node kl inherits from parent node k the

augmented substructure, skl+, comprising native nucleotides, skl

native ≡ skl , and additional dummy nucleotides

that approximate the influence of its sibling in the context of their parent (skl ≡ skl

native ∪ s
kl

dummy ≡ skl+).

In contrast to earlier hierarchical methods that decompose parent structures at multiloops [20, 27], our

algorithm decomposes parent structures within duplex stems. This approach is more generally applicable

to the design of duplex-rich engineered structures that often contain no multiloops. Eligible split-points are

those locations within a duplex stem with at least Hsplit consecutive base-pairs to either side, such that both

children would have at least Nsplit nucleotides. If there are no eligible split-points, a structure becomes a leaf

node in the decomposition tree. Otherwise, an eligible split-point is selected so as to minimize the difference

in the size of the children, ||skl | − |skr ||. Dummy nucleotides are defined by extending the newly-split duplex

stem across the split-point by Hsplit base pairs (|skl

dummy| = 2Hsplit).

For a parent node k, the sequence φk follows the same partitioning as the structure sk (φk = φkl ∪ φkr
and φkl ∩ φkr = ∅). Likewise, for a child node kl, the sequence contains both native and dummy nucleotides

(φkl ≡ φkl

native ∪ φ
kl

dummy ≡ φkl+).

For any node k with sequence φk and structure sk, the ensemble defect, nk ≡ n(φk, sk), may be ex-

pressed as

nk =
∑

1≤i≤|sk|

nki ,

where

nki = 1−
∑

1≤j≤|sk|+1

P ki,jS
k
i,j .

is the contribution of nucleotide i to the ensemble defect of the node. For a parent node k, the ensemble defect

can be expressed as a sum of contributions from bases partitioned to the left and right children (nk = nkl +nkr).

For a child node kl, the ensemble defect can be expressed as a sum of contributions from native and dummy

nucleotides (nkl = nkl

native +nkl

dummy). Conceptually, nkl

native, the contribution of the native nucleotides to the

ensemble defect of child kl (calculated on child node kl at cost Θ(|skl |3), approximates nkl , the contribution

of the left-child nucleotides to the ensemble defect of parent k (calculated on parent node k at higher cost

Θ(|sk|3)). In general, nkl

native 6= nkl , because the dummy nucleotides in child node kl only approximate the

influence of its sibling (which is fully accounted for only in the more expensive calculation on parent node

k).

The utility of hierarchical structure decomposition hinges on the assumption that sequence space is suf-

ficiently rich that two subsequences optimized for sibling substructures will often not exhibit crosstalk when

merged by a parent node. Our hierarchical mutation procedure is designed to benefit from this property when

it holds true, and to eliminate emergent defects when they do arise.

10

2.2.2 Leaf optimization with weighted mutation sampling

The sequence design process is initialized by randomly specifying the identities of all nucleotides in the

leaf structures, subject to the constraint that bases intended to be paired are chosen to be Watson-Crick

complements. At leaf node k, sequence optimization is performed by mutating either one base at a time (if

Ski,|sk|+1 = 1) or one base pair at a time (if Ski,j = 1 for some 1 ≤ j ≤ |sk|, in which case φki and φkj are

mutated simultaneously so as to remain Watson-Crick complements).

We perform defect-weighted mutation sampling by selecting nucleotide i as a candidate for mutation with

probability nki /n
k. A candidate sequence φ̂k is evaluated via calculation of n̂k if the candidate mutation, ξ, is

not in the set of previously rejected mutations, γunfavorable (position and sequence). A candidate mutation is

retained if n̂k < nk and rejected otherwise. The set, γunfavorable, is updated after each unsuccessful mutation

and cleared after each successful mutation.

Optimization of leaf k terminates successfully if the leaf stop condition:

nk ≤ fstop|sk|

is satisfied, or restarts ifMunfavorable|sk| consecutive unfavorable candidate mutations are either in γunfavorable

or are evaluated and added to γunfavorable. Leaf optimization is attempted from new random initial conditions

up toMleafopt times before terminating unsuccessfully. The outcome of leaf optimization is the leaf sequence

φk corresponding to the lowest encountered value of the leaf ensemble defect nk.

2.2.3 Subsequence merging and reoptimization

After sibling nodes kl and kr have been optimized, parent node k merges their native subsequences (setting

φkl = φkl

native and φkr = φkr

native) and evaluates nk to check the parental stop condition:

nk ≤ max(fstop|skl |, n
kl

native) + max(fstop|skr |, n
kr

native).

If this stop condition is satisfied, subsequence merging continues up the tree. Otherwise, failure to satisfy

the stop condition implies the existence of emergent defects resulting from crosstalk between the two child

sequences. In this case, parent node k initiates defect-weighted child sampling and reoptimization within its

subtree. Left child kl is selected for reoptimization with probability nkl /n
k and right child kr is selected

for reoptimization with probability nkr/n
k. This defect-weighted child sampling procedure is performed

recursively until a leaf is encountered (each time using partitioned defect information inherited from the

parent k that initiated the reoptimization). The standard leaf optimization procedure is then performed starting

from a new random initial sequence. The use of random initial conditions during leaf reoptimization is based

on the assumption that sequence space is sufficiently rich that emergent defects can typically be eliminated

simply by designing a different leaf sequence. Following leaf reoptimization, merging begins again starting

11

with the reoptimized leaf and its sibling. The elimination of emergent defects in parent k by defect-weighted

child sampling and reoptimization is attempted up to Mreopt times.

2.2.4 Optimality bound and time complexity

This hierarchical sequence design approach implies an asymptotic optimality bound on the cost of designing

the full sequence relative to the cost of evaluating a single candidate mutation on the full sequence. For

a target structure with N nucleotides, evaluation of a candidate sequence requires calculation of n(φ, s) at

cost ceval(N) = Θ(N3). Performing sequence design using hierarchical structure decomposition, mutations

are evaluated at the leaf nodes and merged subsequences are evaluated at all other nodes. For node k, the

evaluation cost is ceval(|sk|). If at least one mutation is required in each leaf, the design cost is minimized by

maximizing the depth of the binary tree. Furthermore, at each depth in the tree, the design cost is minimized

by balancing the tree. Hence, a lower bound on the cost of designing the full sequence is given by

cdes(N) ≥ ceval(N)
[
1 + 2

(
1
2

)3 + 4
(

1
4

)3 + 8
(

1
8

)3 + . . .
]

or

cdes(N) ≥ 4
3
ceval(N).

Hence, if the sequence design algorithm performs optimally for large N , we would expect the cost of full

sequence design to be 4/3 the cost of evaluating a single mutation on the full sequence. In practice, many

factors might be expected to undermine optimality: imperfect balancing of the tree, the addition of dummy

nucleotides in each non-root node, the use of finite tree depth, leaf optimizations requiring evaluation of mul-

tiple candidate mutations, and reoptimization to eliminate emergent defects. This optimality bound implies

time complexity Ω(N3) for the sequence design algorithm.

2.3 Methods

Computational sequence design studies were performed using the default algorithm parameters of Table 2.1.

Design trials were run on a cluster of 2.53 GHz Intel E5540 Xeon dual-processor/quad-core nodes with 24

GB of memory per node.

2.3.1 Structure test sets

Algorithm performance was evaluated on structure test sets containing 30 target structures for each of N ∈

{100, 200, 400, 800, 1600, 3200}. An engineered test set was generated by randomly selecting structural

components and dimensions from ranges intended to reflect current practice in engineering nucleic acid

secondary structures. A multi-stranded version was produced by introducing nicks into the structures in

12

DESIGNSEQ(φ, s, n, k)
a← DEPTH(k)
if HASCHILDREN(k)

mreopt ← 0
if n = ∅

φl ← DESIGNSEQ(∅, sl+, ∅, kl)
φr ← DESIGNSEQ(∅, sr+, ∅, kr)

else
UPDATECHILDREN(k, a, a− 1)
child, φ← WEIGHTEDCHILDSAMPLING(φ, s, nl, nr)
φchild ← DESIGNSEQ(φchild+, schild+, nchild+, kchild)

nk,a ← ENSEMBLEDEFECT(φ, s)
UPDATECHILDREN(k, a, a+ 1)

while nk,a > max(fstop|sl|, n
kl,a

native) + max(fstop|sr|, nkr,a
native)

andmreopt < Mreopt

child, φ̂← WEIGHTEDCHILDSAMPLING(φ, s, nk,a
l , nk,a

r)

φ̂child ← DESIGNSEQ(φchild+, schild+, n
k,a
child+, kchild)

n̂← ENSEMBLEDEFECT(φ̂, s)

if n̂ < nk,a

φ, nk,a ← φ̂, n̂
UPDATECHILDREN(k, a, a+ 1)

mreopt ← mreopt + 1
else

mleafopt ← 0

φ, nk,a ← OPTIMIZELEAF(s)

while nk,a > fstop|s| andmleafopt < Mleafopt

φ̂, n̂← OPTIMIZELEAF(s)

if n̂ < nk,a

φ, nk,a ← φ̂, n̂
mleafopt ← mleafopt + 1

return φnative

UPDATECHILDREN(k, a, b)

if HASCHILDREN(k)

nkl,a ← nkl,b

nkr,a ← nkr,b

UPDATECHILDREN(kl, a, b)
UPDATECHILDREN(kr, a, b)

OPTIMIZELEAF(s)

munfavorable ← 0
γunfavorable ← ∅
φ← INITSEQ(s)
n← ENSEMBLEDEFECT(φ, s)
while n > fstop|s| andmunfavorable < Munfavorable|s|

ξ, φ̂← WEIGHTEDMUTATIONSAMPLING(φ, s, n1, . . . , n|s|)
if ξ ∈ γunfavorable

munfavorable ← munfavorable + 1
else

n̂← ENSEMBLEDEFECT(φ̂, s)
if n̂ < n

φ, n← φ̂, n̂
munfavorable ← 0
γunfavorable ← ∅

else
munfavorable ← munfavorable + 1
γunfavorable ← γunfavorable∪ ξ

return φ, n

Algorithm 2.1: Pseudocode for hierarchical ensemble defect optimization with defect-weighted sampling.
For a given target structure s, a designed sequence φ is returned by the function call DESIGNSEQ(∅, s, ∅, 1).
During the recursive design procedure, φ, s, and n are local variables that are used to push sequence, structure,
and defect information between nodes in the tree. By contrast, nk,a provides global storage for the ensemble
defect of each node k. For a given k, the index, a = 1, . . . ,DEPTH(k), enables storage of the ensemble defect
corresponding to the sequence for node k that has been accepted up to depth a in the tree. Storage of these
historical values eliminates unnecessary recalculation of ensemble defects during subtree reoptimization.

13

the engineered test set. Each structure in a random test set was obtained by calculating an MFE structure of

a different random RNA sequence at 37◦C. Figure 2.1 compares the structural features of the engineered and

random test sets. In general, the random test set has target structures with a lower fraction of bases paired,

more duplex stems, and shorter duplex stems (as short as one base pair). Additional structural features of

the engineered and random test sets are summarized in Appendix B, Figure B.1. For the design studies that

follow, new target structure test sets were generated from scratch. The design algorithm was not tested on

these structures prior to generating the depicted results.

Engineered
Random

40
Base pairs per stem

0 8 16 24 32

Nu
m

be
r o

f s
te

m
s

0

2000

3000c

1000

300
Stems per structure

0 60 120 180 240

Nu
m

be
r o

f s
tru

ctu
re

s

0

5

10

15
b

Nu
m

be
r o

f s
tru

ctu
re

s

0.0 0.2 0.4 0.6 0.8 1.00

40

80

120

Fraction of bases paired

a

Figure 2.1: Comparison of the structural features of the engineered and random test sets.

2.3.2 Other algorithms

To illustrate the roles of hierarchical structure decomposition and weighted mutation sampling in the context

of ensemble optimization, we compare our algorithm to three alternative algorithms lacking either or both of

these features:

• Single-scale ensemble defect optimization with uniform mutation sampling [31]. The leaf optimization

algorithm is applied directly on the full sequence using uniform mutation sampling in which each can-

didate mutation position is selected with equal probability (pseudocode in Appendix C, Algorithm C.1).

• Single-scale ensemble defect optimization with defect-weighted mutation sampling. The leaf optimiza-

tion algorithm is applied directly on the full sequence (pseudocode in Appendix C, Algorithm C.2).

• Hierarchical ensemble defect optimization with uniform mutation sampling. The hierarchical algorithm

is applied using uniform mutation sampling during leaf optimization and uniform child sampling during

Parameter Value
Hsplit 2
Nsplit 20
fstop 0.01
Mreopt 10
Mleafopt 3
Munfavorable 4

Table 2.1: Default parameter values used in evaluating algorithm performance for RNA design. For DNA
design, Hsplit = 3.

14

subsequence merging and reoptimization (pseudocode in Appendix C, Algorithm C.3).

We also modified our algorithm to compare performance to algorithms inspired by previous work:

• Single-scale probability defect optimization with uniform mutation sampling [20, 31–33]. This method

seeks to design a sequence such that the probability defect satisfies the stop condition π(φ, s) ≤ fstop.

Satisfaction of this stop condition is sufficient to ensure that stop conditions n(φ, s) ≤ fstopN and

µ(φ, s) ≤ fstopN are also satisfied for fstop ∈ (0, 0.5]. Optimization is performed using a modified

version of the leaf optimization algorithm (with π(φ, s) taking the role of n(φ, s)) applied directly on

the full sequence using uniform mutation sampling (pseudocode in Appendix C, Algorithm C.4).

• Hierarchical MFE defect optimization with weighted mutation sampling [20, 27, 28]. This method

seeks to design a sequence such that the MFE defect satisfies the stop condition µ(φ, s) ≤ fstopN .

Optimization is performed using a modified version of our algorithm with µk taking the role of nk

(pseudocode in Appendix C Algorithm C.5).

2.3.3 Implementation

The sequence design algorithm is coded in the C programming language. By parallelizing the dynamic

program for evaluating P (φ) using MPI [26], the sequence design algorithm can also reduce run time using

multiple cores. For a design job allocated M computational cores, each evaluation of P k for node k with

structure sk is performed using m cores for some m ∈ 1, ...,M selected to approximately minimize run time

based on |sk| [35]). More implementation and infrastructure details are given in Appendix A.

2.4 Computational design studies

Our primary test scenario is RNA sequence design at 37◦C for target structures in the engineered test set.

For each target structure in a test set, 10 independent design trials were performed. Each plotted data point

represents a median over 300 design trials (10 trials for each of 30 structures for a given size N).

2.4.1 Algorithm performance and asymptotic optimality

Figure 2.2 demonstrates the typical performance of our algorithm across a range of values of N using the

engineered and random test sets. Typical designs surpass the desired design quality (n(φ, s) ≤ N/100) as a

result of overshooting stop conditions lower in the decomposition tree (panel a). For the engineered test set,

typical design cost ranges from a fraction of a second for N = 100 to roughly three hours for N = 3200

(panel b). For small N , the design cost for the random test set is higher than for the engineered test set,

becoming comparable as N increases. Typical GC content is less than 60% (starting from random initial

sequences with ≈50% GC content; panel c). Remarkably, as the depth of the decomposition tree increases

15

102 103

0.005

0.01

Design Quality

Target structure size N (nt)

No
rm

ali
ze

d
en

se
m

ble
 d

ef
ec

t
n(
φ,s

)/N

stop condition

102 10310−1

100

101

102

103

104

Design Cost

Target structure size N (nt)

W
all

 cl
oc

k t
im

e
(s

)

102 1030.4

0.5

0.6

0.7

0.8

Target structure size N (nt)

GC
 co

nt
en

t

Sequence Composition

initial condition

102 1031
5

10
15
20
25
30

c de
s(N

) /
 c ev

al(N
)

Target structure size N (nt)

Relative Design Cost

Engineered test set
Random test set

optimality bound

a b

dc

Figure 2.2: Algorithm performance and asymptotic optimality. a) Design quality. The stop condition is
depicted as a dashed line. b) Design cost. c) Sequence composition. The initial GC content is depicted
as a dashed line. d) Cost of sequence design relative to a single evaluation of the objective function. The
optimality bound is depicted as a dashed line. RNA design at 37◦C on the engineered and random test sets.

with N , the relative cost of design, cdes(N)/ceval(N), decreases asymptotically to the optimal bound of 4/3

(panel d). Hence, for sufficiently large N , the typical cost of sequence design is only 4/3 the cost of a single

mutation evaluation on the root node. Mutation evaluation has time complexity Θ(N3) and is empirically

observed to be approximately in the asymptotic regime (Figure 2.3). Hence, for our design algorithm, the

empirical observation of asymptotic optimality implies that the exponent in the Ω(N3) time complexity

bound is sharp.

2.4.2 Leaf independence and emergent defects

Figure 2.4 compares the ensemble defect evaluated at the root node, to the sum of the ensemble defects

evaluated at the leaf nodes.1 If the assumption of leaf independence is valid (i.e., if dummy nucleotides do a

good job of mimicking parental environments and there is minimal crosstalk between merged subsequences),

we would expect the data to fall near the diagonal.

For the engineered test set (panel a), we observe three striking properties. First, for random initial se-

quences, the assumption of leaf independence is well-justified despite the fact that the ensemble defect is

large. Second, leaf optimization followed by merging without reoptimization (i.e., Mreopt = 0) typically

1To avoid overcounting defects at the leaves, nk
i is counted in leaf k only if nucleotide i is native throughout its ancestry.

16

102 103

10−1
100
101
102
103
104
105

W
all

 cl
oc

k t
im

e
(s

)
Target structure size N (nt)

Evaluation Cost

Figure 2.3: Computational cost, ceval(N) = Θ(N3), of a single evaluation of the ensemble defect, n(φ, s),
for the full sequence and target structure. Each data point represents the median over all sequences for a
particular value of N . The line depicts a slope of three, suggesting empirically that the dynamic program
is operating approximately within the asymptotic regime for this range of N . RNA design at 37◦C on the
engineered test set.

10−3 10−2 10−1 10010−3

10−2

10−1

100

[Sum of leaf n(φ,s)]/N

Ro
ot

 n
(φ

,s)
/N

Random sequences
Leaf−optimized sequences
Final sequence designs

10−3 10−2 10−1 10010−3

10−2

10−1

100

[Sum of leaf n(φ,s)]/N

Ro
ot

 n
(φ

,s)
/N

a b

Figure 2.4: Leaf independence and emergent defects. Comparison of the ensemble defect evaluated at
the root node to the sum of the ensemble defects evaluated at the leaf nodes. a) Engineered test set.
b) Random test set. Dots represent independent designs. Symbols denote medians for each value of
N ∈ {100, 200, 400, 800, 1600, 3200} (symbol size increases with N). RNA design at 37◦C.

17

yields full sequence designs that achieve the desired design quality (n(φ, s) ≤ N/100 on the root), with

emergent defects arising only in a minority of cases. Third, these emergent defects are successfully elimi-

nated by defect-weighted child sampling and reoptimization starting from new random initial subsequences.

The resulting full sequence designs exhibit leaf independence and satisfy the stop condition.

By comparison, for the random test set, merging of leaf-optimized sequences typically does lead to emer-

gent defects in the root node. Even in this case, our algorithm successfully eliminates emergent defects using

defect-weighted child sampling and reoptimization starting from new random initial subsequences.

2.4.3 Contributions of algorithmic ingredients

Figure 2.5 isolates the contributions of hierarchical structure decomposition and defect-weighted sampling to

our ensemble defect optimization algorithm by comparing performance to three modified algorithms lacking

one or both ingredients. All four methods typically achieve the desired design quality, with hierarchical

methods surpassing the quality requirement for the root node as a result of overshooting stop conditions

lower in the decomposition tree. Hierarchical methods dramatically reduce design cost relative to their single-

scale counterparts (which are not tested for N = 800 due to high cost). Defect-weighted sampling reduces

design cost and GC content by focusing mutation effort on the most defective subsequences. For the single-

scale methods, the relative cost of design, cdes(N)/ceval(N), increases with N . For hierarchical methods,

cdes(N)/ceval(N) decreases asymptotically to the optimal bound of 4/3 as N increases. Our algorithm thus

combines the design quality of ensemble defect optimization, the reduced cost and asymptotic optimality of

hierarchical decomposition, and the reduced cost and reduced GC content of defect-weighted sampling.

2.4.4 Sequence initialization

To explore the effect of sequence initialization on typical design quality and cost, we tested four types of initial

conditions (Figure 2.6): random sequences (default), random sequences using only A and T bases, random

sequences using only G and C bases, and sequences satisfying sequence symmetry minimization (SSM) [3].2

The desired design quality is achieved independent of the initial conditions (panel a), which have little effect

on design cost (panels b and d). Designs initiated with random AT sequences or with random GC sequences

illustrate that the ensemble defect stop condition can be satisfied over a broad range of GC contents (panel c).

2.4.5 Stop condition stringency

Figure 2.7 depicts typical algorithm performance for five different levels of stringency in the stop condition:

fstop ∈ {0.001, 0.005, 0.01(default), 0.05, 0.10}. For each stop condition, the observed design quality is

better than required (resulting from overshooting stop conditions lower in the decomposition tree). Consistent

2SSM is a heuristic that promotes specificity for the target structure by prohibiting repeated subsequences of a specified word length
(taken to be six for our tests). For bases in single-stranded or branched regions of the target structure, the complementary word is also
prohibited[3].

18

102 103

0.005

0.01

Design Quality

Target structure size N (nt)

No
rm

ali
ze

d
en

se
m

ble
 d

ef
ec

t
n(
φ,s

)/N

stop condition

102 10310−1
100
101
102
103
104
105 Design Cost

Target structure size N (nt)

W
all

 cl
oc

k t
im

e
(s

)

102 1030.4

0.5

0.6

0.7

0.8

Target structure size N (nt)

GC
 co

nt
en

t

Sequence Composition

initial condition

102 103100

101

102

103
c de

s(N
) /

 c ev
al(N

)

Target structure size N (nt)

Relative Design Cost

Uniform sampling
Defect-weighted sampling

Uniform sampling
Defect-weighted sampling

optimality bound

Single-scale optimization Hierarchical optimization

a b

dc

Figure 2.5: Contributions of hierarchical structure decomposition and defect-weighted sampling to algorithm
performance. a) Design quality. The stop condition is depicted as a dashed line. b) Design cost. c) Sequence
composition. The initial GC content is depicted as a dashed line. d) Cost of sequence design relative to a
single evaluation of the objective function. The optimality bound is depicted as a dashed line. RNA design at
37◦C on the engineered test set.

19

102 103

0.005

0.01

Design Quality

Target structure size N (nt)

No
rm

ali
ze

d
en

se
m

ble
 d

ef
ec

t
n(
φ,s

)/N

stop condition

102 10310−1

100

101

102

103 Design Cost

Target structure size N (nt)
W

all
 cl

oc
k t

im
e

(s
)

102 1030

0.2

0.4

0.6

0.8

1

Target structure size N (nt)

GC
 co

nt
en

t

Sequence Composition

102 1031

2

3

4

5

6

c de
s(N

) /
 c ev

al(N
)

Target structure size N (nt)

Relative Design Cost

Random
Random AU
Random GC
SSM

optimality bound

a b

dc

Figure 2.6: Effect of sequence initialization on algorithm performance. a) Design quality. The stop condition
is depicted as a dashed line. b) Design cost. c) Sequence composition. Initial GC contents are depicted
with dashed lines. d) Cost of sequence design relative to a single evaluation of the objective function. The
optimality bound is depicted as a dashed line. RNA design at 37◦C on the engineered test set.

20

102 10310−4

Design Quality

Target structure size N (nt)

No
rm

ali
ze

d
en

se
m

ble
 d

ef
ec

t
n(
φ,s

)/N

102 10310−1

100

101

102

103 Design Cost

Target structure size N (nt)

W
all

 cl
oc

k t
im

e
(s

)
102 1030.4

0.5

0.6

0.7

0.8

Target structure size N (nt)

GC
 co

nt
en

t

Sequence Composition

initial condition

102 1031

10

20

30

c de
s(N

) /
 c ev

al(N
)

Target structure size N (nt)

Relative Design Cost

fstop = 0.001
fstop = 0.005
fstop = 0.01
fstop = 0.05
fstop = 0.1

optimality bound

10−3

10−1

10−2

a b

dc

Figure 2.7: Effect of stop condition stringency on algorithm performance. a) Design quality. Stop conditions
are depicted by dashed lines. b) Design cost. c) Sequence composition. The initial GC content is depicted
as a dashed line. d) Cost of sequence design relative to a single evaluation of the objective function. The
optimality bound is depicted as a dashed line. RNA design at 37◦C on the engineered test set.

with empirical asymptotic optimality, the design cost is independent of fstop for sufficiently large N (for the

tested stringency levels). It is noteworthy that the algorithm is capable of routinely and efficiently designing

sequences with ensemble defect less than N/1000.

2.4.6 Multi-stranded target structures

Multi-stranded target structures arise frequently in engineering practice [4, 5, 7]. Figure 2.8 demonstrates that

our algorithm performs similarly on single-stranded and multi-stranded target structures.

2.4.7 Design material

Figure 2.9 compares RNA and DNA design. DNA designs are performed in 1 M Na+ at 23 ◦C to reflect that

DNA systems are typically engineered for room temperature studies. In comparison to RNA design, DNA

design leads to similar design quality (panel a), higher design cost (panel b), and somewhat higher GC content

(panel c), while continuing to exhibit asymptotic optimality (panel d).

21

102 103

0.005

0.01

Design Quality

Target structure size N (nt)

No
rm

ali
ze

d
en

se
m

ble
 d

ef
ec

t
n(
φ,s

)/N

stop condition

102 10310−1

100

101

102

103 Design Cost

Target structure size N (nt)
W

all
 cl

oc
k t

im
e

(s
)

102 1030.4

0.5

0.6

0.7

0.8

Target structure size N (nt)

GC
 co

nt
en

t

Sequence Composition

initial condition

102 1031

2

3

4

5

6

c de
s(N

) /
 c ev

al(N
)

Target structure size N (nt)

Relative Design Cost

Single−stranded target structures
Multi−stranded target structures

optimality bound

a b

dc

Figure 2.8: Algorithm performance on single-stranded and multi-stranded target structures. a) Design quality.
The stop condition is depicted as a dashed line. b) Design cost. c) Sequence composition. The initial GC
content is depicted as a dashed line. d) Cost of sequence design relative to a single evaluation of the objective
function. The optimality bound is depicted as a dashed line. RNA design at 37◦C on the engineered test set.

22

102 103

0.005

0.01

Design Quality

Target structure size N (nt)

No
rm

ali
ze

d
en

se
m

ble
 d

ef
ec

t
n(
φ,s

)/N

stop condition

102 10310−1

100

101

102

103

104

Design Cost

Target structure size N (nt)
W

all
 cl

oc
k t

im
e

(s
)

102 1030.4

0.5

0.6

0.7

0.8

Target structure size N (nt)

GC
 co

nt
en

t

Sequence Composition

initial condition

102 1031

5

10

c de
s(N

) /
 c ev

al(N
)

Target structure size N (nt)

Relative Design Cost

RNA design
DNA design

optimality bound

a b

dc

Figure 2.9: Effect of design material on algorithm performance. a) Design quality. The stop condition is
depicted as a dashed line. b) Design cost. c) Sequence composition. The initial GC content is depicted as a
dashed line. d) Cost of sequence design relative to a single evaluation of the objective function. The optimality
bound is depicted as a dashed line. RNA design at 37◦C and DNA design at 23 ◦ on the engineered test set.

23

2.4.8 Sequence constraints and pattern prevention

Molecular engineers sometimes constrain the sequence of certain nucleotides in the target structure (e.g., to

ensure complementarity to a specific biological sequence), or prevent certain patterns from appearing any-

where in the design (e.g., GGGG). Our algorithm accepts sequence constraints and pattern prevention require-

ments expressed using standard nucleic acid codes.3 Figure 2.10 demonstrates that the prevention of patterns

{AAAA,CCCC,GGGG,UUUU,KKKKKK,MMMMMM,RRRRRR,SSSSSS,WWWWWW,YYYYYY} has little effect on de-

sign quality or GC content (panels a and c), and somewhat increases design cost while retaining asymptotic

optimality (panels b and d).

102 103

0.005

0.01

Design Quality

Target structure size N (nt)

No
rm

ali
ze

d
en

se
m

ble
 d

ef
ec

t
n(
φ,s

)/N

stop condition

102 10310−1

100

101

102

103 Design Cost

Target structure size N (nt)
W

all
 cl

oc
k t

im
e

(s
)

102 1030.4

0.5

0.6

0.7

0.8

Target structure size N (nt)

GC
 co

nt
en

t

Sequence Composition

initial condition

102 1031
2

4

6

8

c de
s(N

) /
 c ev

al(N
)

Target structure size N (nt)

Relative Design Cost

Unconstrained design
Pattern prevention

optimality bound

a b

dc

Figure 2.10: Effect of pattern prevention on algorithm performance. a) Design quality. The stop condition
is depicted as a dashed line. b) Design cost. c) Sequence composition. The initial GC content is depicted
as a dashed line. d) Cost of sequence design relative to a single evaluation of the objective function. The
optimality bound is depicted as a dashed line. RNA design at 37◦C on the engineered test set.

2.4.9 Parallel efficiency and speedup

The contour plots of Figure 2.11 demonstrate the parallel efficiency and speedup achieved using a parallel

implementation of the design algorithm onM computational cores (efficiency(N,M) = t(N, 1)/(t(N,M)×

M), speedup(N,M) = t(N, 1)/t(N,M), where t is wall clock time). Using two computational cores, the

3During leaf optimization, mutation candidates are not considered if they would introduce a pattern violation. Pattern violations that
arise during merging are eliminated via an adaptive walk in which mutations are accepted if they reduce the number of pattern violations.

24

0.0
0.1
0.2
0.3

0.5
0.4

0.6
0.7
0.8
0.9
1.0

Number of computational cores
20 21 22 23 24 25

Ta
rg

et
 st

ru
ctu

re
 si

ze
 N

 (n
t)

102

103

Number of computational cores
20 21 22 23 24 25

Ta
rg

et
 st

ru
ctu

re
 si

ze
 N

 (n
t)

102

103

0
2
4
6
8
10

14
12

a bParallel Efficiency Parallel Speedup

Figure 2.11: Parallel algorithm performance. a) Parallel efficiency and b) parallel speedup using multiple
computational cores. Dashed lines denote boundaries between nodes, indicating the use of message passing.
RNA design at 37◦C on the engineered test set.

parallel efficiency exceeds ≈ 0.9 for target structures with N > 400. Using 32 computational cores, the

parallel speedup is ≈ 14 for target structures with N = 3200.

2.4.10 Comparison to previous methods

Figure 2.12 compares the performance of our algorithm to the performance of algorithms inspired by previous

publications. Single-scale methods that employ uniform mutation sampling to optimize either ensemble de-

fect or probability defect achieve the desired design quality at significantly higher cost and with significantly

higher GC content (panels a-c). Sequences resulting from probability defect optimization typically surpass

the ensemble defect stop condition despite failing to satisfy the probability defect stop condition (panel e),

reflecting the pessimism of π(φ, s) in characterizing the equilibrium structural defect over ensemble Γ. For

either single-scale method, the relative cost of design, cdes(N)/ceval(N), increases with N (panel d). Owing

to the high cost of the single-scale approaches, designs were not attempted for large N .

By contrast, hierarchical MFE defect optimization with defect-weighted sampling leads to efficient satis-

faction of the MFE stop condition (panels b and f), exhibiting asymptotic optimality with cdes(N)/ceval(N)

approaching 4/3 for large N (panel d). Asymptotically, the cost of hierarchical MFE optimization relative to

hierarchical ensemble defect optimization is lower by a constant factor corresponding to the relative cost of

evaluating the two objective functions using Θ(N3) dynamic programs (panels b and d). The shortcoming of

MFE defect optimization is the unreliability of sMFE(φ) in characterizing the equilibrium structural properties

of ensemble Γ [31]. Despite satisfying the MFE defect stop condition, sequences designed via MFE defect

optimization typically fail to achieve the ensemble defect stop condition by roughly a factor of five for the

engineered test set (panel a), and by roughly a factor of 20 for the random test set (Figure 2.13).

25

−2
−1
0
1
2
3
4
5

0

1

2

3

4

5

0.0

0.02

0.04

0.06

0.08

0.1
No

rm
ali

ze
d

en
se

m
ble

 d
ef

ec
t

n(
φ

,s)
/N

10
10
10
10
10
10
10
10

W
all

 cl
oc

k t
im

e
(s

)
0.4

0.5

0.6

0.7

0.8

GC
 co

nt
en

t

10

10

10

10

10

10

de
s

ev
al

c
(N

) /
 c

(N
)

0

0.005

0.010

No
rm

ali
ze

d
M

FE
 d

ef
ec

t
μ

(φ
,s)

/N

0

0.2

0.4

0.6

0.8

Pr
ob

ab
ilit

y d
ef

ec
t

π
(φ

,s)

a b

dc

fe
1

2 3 2 3

2 3 2 3

10 10

Design Quality

Target structure size N (nt)
10 10

Design Cost

Target structure size N (nt)

10 10
Target structure size N (nt)

Sequence Composition

10 10
Target structure size N (nt)

Relative Design Cost

0 0.05 0.1
Normalized ensemble defect

n(φ,s)/N

0 0.05 0.1
Normalized ensemble defect

n(φ,s)/N

optimality bound
initial condition

stop condition

Single−scale probability defect optimization
Single−scale ensemble defect optimization
Hierarchical MFE defect optimization
Hierarchical ensemble defect optimization

Figure 2.12: Comparison to algorithms inspired by previous publications for the engineered test set. a) Design
quality. The stop condition for ensemble defect optimization is depicted as a dashed line. b) Design cost.
c) Sequence composition. The initial GC content is depicted as a dashed line. d) Cost of sequence design
relative to a single evaluation of the objective function. The optimality bound is depicted as a dashed line. e,f)
Evaluation of each sequence design using three objective functions. Stop conditions are depicted as dashed
lines. Dots represent independent designs. Symbols denote medians for each value of N ∈ {100, 200}
(symbol size increases with N). RNA design at 37◦C on the engineered test set.

26

102 103
0.00
0.05
0.10
0.15
0.20
0.25
0.30

Design Quality

Target structure size N (nt)

No
rm

ali
ze

d
en

se
m

ble
 d

ef
ec

t
n(
φ,

s)
/N

102 103
10−2
10−1
100
101
102
103
104
105 Design Cost

Target structure size N (nt)

W
all

 cl
oc

k t
im

e
(s

)

102 103
0.4

0.5

0.6

0.7

0.8

Target structure size N (nt)

GC
 co

nt
en

t

Sequence Composition

102 103100

101

102

103

104

105

c de
s(N

) /
 c ev

al(
N)

Target structure size N (nt)

Relative Design Cost

0 0.05 0.1 0.15 0.2 0.25

0.1

0.2

0.3

0.4

0.5

Normalized ensemble defect
n(φ,s)/N

No
rm

ali
ze

d
M

FE
 d

ef
ec

t
μ

(φ
,s)

/N

0 0.05 0.1 0.15 0.2 0.25
0

0.2

0.4

0.6

0.8

1

Normalized ensemble defect
n(φ,s)/N

Pr
ob

ab
ilit

y d
ef

ec
t

π
(φ

,s)

a b

dc

fe

0

Single−scale probability defect optimization
Single−scale ensemble defect optimization
Hierarchical MFE defect optimization
Hierarchical ensemble defect optimization

stop condition

initial condition
optimality bound

Figure 2.13: Comparison to algorithms inspired by previous publications for the random test set. a) Design
quality. The ensemble defect stop condition is depicted as a dashed line. b) Design cost. c) Sequence
conmposition. The initial GC content is depicted as a dashed line. d) Cost of sequence design relative to a
single evaluation of the objective function. The optimality bound is depicted as a dashed line. e,f) Evaluation
of each sequence design using three objective functions. Dots represent independent designs. Symbols
denote medians for each value of N ∈ {100, 200} (symbol size increases with N). RNA design at 37◦C on
the random test set.

27

2.5 Discussion

Our algorithm combines four major ingredients to design the sequence φ of one or more strands intended to

adopt target secondary structure s at equilibrium:

• Ensemble defect optimization: The design objective function is the ensemble defect, n(φ, s), represent-

ing the average number of incorrectly paired nucleotides at equilibrium calculated over the ensemble of

unpseudoknotted secondary structures Γ. For a target structure with N nucleotides, we seek to satisfy

the stop condition: n(φ, s) ≤ fstopN .

• Hierarchical structure decomposition: We perform a binary tree decomposition of the target secondary

structure, decomposing each parent structure within a duplex stem, and introducing dummy nucleotides

to extend the truncated duplex in each child structure to mimic the parental environment.

• Leaf optimization with defect-weighted mutation sampling: Starting from a random initial sequence, se-

quence optimization is performed in the leaf nodes using defect-weighted mutation sampling in which

each candidate mutation position is selected with probability proportional to its contribution to the

ensemble defect of the leaf.

• Subsequence merging and reoptimization: As subsequences are merged moving up the tree, a parent

node initiates defect-weighted child sampling and reoptimization within its subtree only if there are

emergent defects resulting from crosstalk between child subsequences. Leaf reoptimization starts from

a new random initial sequence.

Using a Θ(N3) dynamic program to evaluate the design objective function, we derive an asymptotic opti-

mality bound on design time: for large N , the minimum cost to design a sequence with N nucleotides is 4/3

the cost of evaluating the objective function once on N nucleotides. Hence, our design algorithm has time

complexity Ω(N3).

We studied the performance of our algorithm in the context of empirical secondary structure free en-

ergy models [10, 11] that have practical utility for the analysis [36–40] and design [41–46] of functional

nucleic acid systems. In particular, we examined RNA design at 37◦C on target structures containing

N ∈ {100, 200, 400, 800, 1600, 3200} nucleotides and duplex stems ranging from 1 to 30 base pairs. Empir-

ically, we observe several striking properties:

• Emergent defects are sufficiently infrequent that they can typically be eliminated by leaf reoptimization

starting from new random initial sequences.

• It is routine to design sequences with ensemble defect n(φ, s) < N/100 over a wide range of GC

contents.

28

• Our algorithm exhibits asymptotic optimality for large N , with full sequence design costing roughly

4/3 the cost of a single evaluation of the objective function. Hence, the algorithm is efficient in the

sense that the exponent in the Ω(N3) time complexity bound is sharp.

We modified our algorithm to compare performance to algorithms inspired by previous work [20, 27–29,

31, 32]. In line with conceptual expectations, we observe empirically that our algorithm achieves lower design

cost relative to single-scale probability or ensemble defect optimization with uniform mutation sampling, and

higher design quality relative to hierarchical MFE defect optimization with defect-weighted sampling.

To enhance the utility of our algorithm for molecular engineers, our algorithm addresses several practi-

cal considerations, including: sequence constraints, pattern prevention, multi-stranded target structures, and

parallel execution.

29

Chapter 3

Sequence design for multi-state nucleic
acid systems

Motivated by the design of multi-state nucleic acid systems [41, 44–47], we wish to extend the quality and

efficiency of the single-complex algorithm to the design of multiple strands that interact conditionally to form

multiple different target structures. Most of these dynamic systems involve pathways of interactions between

complexes. For instance, a disassembly reaction involving one complex might release a strand that engages

in a self-assembly reaction with another complex. For these types of interactions to occur, the identities of

certain bases across the multiple ordered complexes may be linked.

Our early approaches to using ensemble defect optimization for the design of multi-state systems em-

ployed single-scale algorithms. These algorithms successfully designed systems that exhibited the desired

behavior [41, 44, 45], but were costly, as one would expect from our single-scale computational studies pre-

sented in Chapter 2. Here we extend the scope of our single-complex design algorithm to include the design

of multiple ordered complexes with related sequences.

3.1 Objective function

The design of multiple ordered complexes can be formulated as a multiobjective optimization problem, min-

imizing the ensemble defect of each sequence in Φ = {φ1, ..., φR} relative to a set of target structures

Ψ = {s1, ..., sR} simultaneously,

n(φt, st) < fstopNt ∀st ∈ Ψ.

Thus, we wish to achieve the same single-objective stop condition on each ordered complex in Ψ. In order to

maintain the efficiency and quality, our approach preserves the same algorithmic ingredients from the single-

objective problem: each structure in Ψ undergoes hierarchical structure decomposition, leaf optimization with

weighted mutation sampling, and subsequence merging with weighted leaf sampling and reoptimization.

30

3.2 Sequence linkages

In addition to providing a set of ordered complexes Ψ, the algorithm also requires a set of linkages Ξ =

{η1, ..., ηz} where each linkage η is a quintuple 〈sa, i, sb, j, ρ〉 representing the base-pairing relationship

ρ ∈ {complementary, identical} between the base at position i in complex sa and the base at position j

in complex sb. Thus, in Φ, base i in sequence φa must be either complementary or identical to base j in

sequence φb. Furthermore, linkages can exist within the same structure (i.e., sa = sb) and each base can

participate in multiple linkages.

3.3 Optimality bound and time complexity

Since the multiobjective algorithm is attempting to design multiple decomposition trees simultaneously, the

asymptotic optimality bound is the sum over the bounds of designing those trees independently and is given

by

cdes(Ψ) ≥ 4
3

∑
s∈Ψ

ceval(s).

3.4 Multiobjective ensemble defect optimization algorithm

3.4.1 Synchronizing linkages

The existence of a set of linkages Ξ implies that a mutation at one base could potentially affect multiple other

bases elsewhere in the system. To keep bases in sync, the algorithm employs a global sequence table, GST,

with each entry corresponding to a base identity. The quintuples in Ξ are used to assign a global index in this

table to each base position in each structure st ∈ Ψ. Thus, in the quintuple 〈sa, i, sb, j, ρ〉, position i in sa

and position j in sb will be assigned the same global index as will all other linked related bases. In addition

to each base being assigned an index in the GST, each base will also be assigned a relationship ρ to that entry

in the GST.

Each mutation requires an update to the global sequence table. It also follows that prior to objective

function evaluation, all bases will be synchronized with the the global sequence table.

3.4.2 Multi-state hierarchical decomposition

Each structure in Ψ is decomposed with the same single-complex technique outlined in Section 2.2.1. The

decomposition process also ensures that each base in the decomposition tree also has the appropriate GST

index.

We will refer to the set of all nodes in all decomposition trees as ΨD and the leaves as ΨL ⊆ ΨD.

Individual nodes, skt , are uniquely identified by their tree t and node index k.

31

3.4.3 Multi-leaf optimization with weighted mutation sampling

The algorithm makes mutations to nodes in ΨL with the goal of satisfying the stop condition

n(φkt , s
k
t) ≤ fstop|skt | ∀skt ∈ ΨL.

To determine which leaves are not satisfied and thus eligible for mutation, we define an ensemble defect

threshold function,

nthreshold(φkt , s
k
t) =

 n(φkt , s
k
t) : n(φkt , s

k
t) > fstop|skt |

0 : n(φkt , s
k
t) ≤ fstop|skt |

,

that is used to weigh which leaf should be optimized next. The probability of a selecting a leaf sk
∗

t∗ for

mutation is nthreshold(φk
∗

t∗ , s
k∗

t∗)/
∑
sk

t∈ΨL nthreshold(φkt , s
k
t). Once a leaf is selected, mutations are weighted

according to the same defect sampling scheme of the single-complex algorithm, described in Section 2.2.2.

After a mutation is made, the other leaves must be synchronized with the GST. To determine if the

mutation brought the multiple objectives closer to the stop condition, we calculate n(φkt , s
k
t) for each leaf

and sum the thresholding functions. The mutation is retained if

∑
sk

t∈ΨL

nthreshold(φ̂kt , s
k
t) <

∑
sk

t∈ΨL

nthreshold(φkt , s
k
t).

Thus, when ∑
sk

t∈ΨL

nthreshold(φkt , s
k
t) = 0,

the stop condition has been reached.

As in single-complex design, we keep a list of previously rejected mutations, γkt , for each leaf1. Thus, a

mutation that propagates to several other leaves must be retained in each leaf’s γkt list. If leaf skt accepts a

mutation, even if that mutation originated elsewhere, it must clear its γkt list. Likewise, any failed mutation

must be stored locally in each affected leaf’s γkt .

Optimization of leaves terminates successfully if the stop condition is satisfied or unsuccessfully if

Munfavorable|skt | consecutive unfavorable candidate mutations are either in γkt or are evaluated and added

to γkt for all leaves skt ∈ ΨL.

This leaf optimization procedure is reinitialized and reoptimized up to Mleafopt times. With each at-

tempt, leaves that did not satisfy the stop condition are reinitialized. Note that reinitialization may propagate

mutations to leaves that were previously satisfied.

1In the single-complex algorithm, we maintained only one γunfavorable since only one leaf was optimized at a time. However, in
the multiobjective case we must maintain separate lists γk

t , hence the need for indexing notation.

32

3.4.4 Subsequence merging and reoptimization

Once the leaves have been optimized, the algorithm can begin checking merged substructures and moving up

the tree. Just as leaf optimization occurred on set ΨL ⊆ ΨD, we generate a new set of nodes for evaluation

ΨK ⊆ ΨD where K is an integer representing a level in the tree starting with K = max(depth(k)). This set

is defined as

ΨK = {skt ∈ ΨD : depth(k) = K} ∪ {skt ∈ ΨL : depth(k) < K}.

This set represents all nodes at the same level K and any leaves that have a shallower tree depth than K (i.e.,

depth(k) < K). When K = 1, the algorithm has reached the global objective function. Therefore, Ψ1 = Ψ

and Ψmax(depth(k)) = ΨL. Figure 3.1 illustrates leaf, parent, and root node sets.

Reoptimization decisions are made in the same manner as single-complex design. All nodes in ΨK where

K < max(depth(k)) that are unsatisfied will select a reopt child in ΨK+1 using defect weighted sampling.

This will continue down the tree, bringing inherited information, until ΨL is encountered. The reopt leaves

of ΨL are reinitialized (perhaps affecting other previously satisfied leaves) and redesigned from new random

initial sequences.

Upon subsequent mergings, the algorithm determines which nodes improved and updates their sequences

in the GST without overwriting other nodes that were previously satisfied. This requires looking at sets of

linked nodes to see if the overall behavior of an entire linked-node-set improved.

3.4.5 Language

Since it would be cumbersome for a molecular engineer to manually specify each linkage for even a modest

sized system, we have developed a scripting language that aids in describing linked, multi-state systems.

A user begins by defining target structures and sequence blocks. Sequence blocks are regions of contiguous

bases that might be linked to other regions elsewhere in the system. With sequence blocks, instead of defining

linkages on a base-by-base basis, a user can define linkages on a region-by-region basis. After structures and

sequence blocks are defined, the user must indicate how the blocks are arranged on the target structure from

the 5′ end to the 3′ end. Finally, the user must indicate which structures are to be included the objective

function and the desired fstop of each objective.

Defining structures

Structures are defined using the following statement:

structure struc name = s

where s is a secondary structure in Ψ that can be specified in either dot-parens-plus notation or HU+ notation

(see Appendix D).

33

a) Leaf optimization

b) Parent node evaluation

c) Root node evaluation

Figure 3.1: Example of multiobjective decomposition trees. a) Leaf optimization is performed on the set of
leaves ΨL in the tree, shaded in green. b) After leaf optimization, the algorithm proceeds up the tree to Ψ2

which includes the leaves shaded in red and pink. The leaves shaded in pink were already satisfied so they
need not be considered again. c) The set Ψ1 = Ψ contains the roots of all trees, shaded in red and pink. The
red nodes must be evaluated.

34

Defining sequences

A sequence block is defined using the following statement:

sequence seq name = constraints

where constraints is an array of strings, each of the form X1C1, delimited by spaces, where Xi is the number

of bases of type Ci.

The complement sequence block seq name* is generated automatically and represents the reverse comple-

ment of seq name; it must also adhere to the complement constraints (i.e., the complement of 5W is 5S).

Linking structures and sequence blocks

The linkages between structures are defined by specifying the sequence blocks of a structure. Two structures

with the same sequence block will have an identical sequence at the block’s respective position.

struc name : sequence array

where sequence array is a comma delimited array of sequence block identifiers. For example,

I : c d c*

is interpreted to mean that the structure I is made up of the sequence blocks c, d, and c* when read from 5′

to 3′. The sum of the lengths of the sequence blocks must be identical to the length of the structure.

Defining stop conditions

The stop condition of each objective function is set by using the following line:

struc name < fstop

Allowing for varying fstop by objectives allows the molecular engineer to enforce varying degrees of

quality for different structures in the system.

Example script

A complete example script for a programmable in situ amplification system [46] is shown in Algorithm 3.2.

3.4.6 Implementation and comparison to single-complex design

Pseudocode for the multiobjective algorithm is provided in Algorithm 3.1. Unlike the single-complex algo-

rithm, the implementation of this multiobjective algorithm is not recursive. Even though there are multiple

structural decomposition trees, the nodes of these trees are partitioned into sets that are designed together.

While the algorithm designs leaves and evaluates parent nodes in a different order compared to the single-

complex algorithm, it is performing tasks with all of the same algorithmic ingredients. We thus expect a

correct implementation of the multiobjective algorithm to perform similarly for single-complex input.

The multiobjective algorithm is implemented with object oriented programming in C++.

35

structure H1 = U10 H16 (U10)
structure H2 = H16 (U10) U10
structure I1 = U26
structure I2 = U26
structure I1H1 = H26 (+) U26
structure I2H2 = U26 H26 (+)
structure R1 = U10
structure R2 = U10
sequence a = 10N
sequence b = 16N
sequence c = 10N
H1 : a b c* b*
H2 : b* a* b c
I1 : b* a*
I2 : c* b*
I1H1 : b* a* a b c* b*
I2H2 : b* a* b c c* b*
R1 : a
R2 : c
H1 < 1.0
H2 < 1.0
I1 < 1.0
I2 < 1.0
I1H1 < 1.0
I2H2 < 1.0

Figure 3.2: Code for programmable in situ amplification for multiplexed bioimaging [46]. This system is
designed with RNA energy parameters at 45 ◦C.

3.5 Computational studies

For comparison with the single-complex algorithm, we ran our algorithm on the engineered and random sets

used in Chapter 2. As shown in Figures 3.3 and 3.4 our multiobjective algorithm performs similarly to the

single-complex algorithm although with greater cost.

To demonstrate the multiobjective algorithm’s efficacy in designing nucleic acid systems invented by

molecular engineers, we created a test suite of 8 systems with code for each given in Appendix B. We evalu-

ated the design of these systems for quality and cost compared to an single-scale unweighted ensemble defect

optimization approach. The results, shown in Figure 3.5, demonstrate that our hierarchical multiobjective

algorithm achieves similar quality as the single-scale approach. For larger systems the hierarchical algorithm

has a significantly lower cost since it can create larger decomposition trees. For the larger systems we achieve

more than an order of magnitude cost improvement without loss in quality.

In Figure 3.6 we present results of an imperfect design for a system that allows for programmable in situ

amplification for multiplexed bioimaging [46]. As demonstrated, the majority of the sequences have achieved

low ensemble defect for their target structures. There are linked bases, however, that exist in multiple contexts,

and do not form desired base-pairs with high probability.

36

DESIGNOBJECTIVES(ΨD,GST)

for s ∈ ΨL

s.reseed← TRUE

for s ∈ ΨD −ΨL

s.mreopt ←Mreopt

satisfied← FALSE
while not satisfied

DESIGNLEAVES(ΨL,GST)
satisfied←

MERGELOOP(ΨD,GST)
return ΨD,GST

DESIGNLEAVES(ΨL,GST)

for s ∈ ΨL

s.munfavorable ←Munfavorable · s.N
PQ.CLEAR()
ΨL.RESETBEST()
satisfied← FALSE
mredesign ← 0
while not satisfied and

mredesign < Mredesign + 1
res← GETRESEEDEDSTRUCTS()
INITRANDOM(res)

Ψ̂L,mut← OPTIMIZELEAVES()
satisfied← NODESSATISFIED()
mredesign ← mredesign + 1
if mredesign < Mredesign + 1

u← GETUNSATISFIED(mut)
for s ∈ u

s.reseed← TRUE

ΨL.UPDATEBEST(Ψ̂L)
ΨL.REVERTTOBEST(GST)

MERGELOOP(ΨD,GST)

satisfied← TRUE
k ← LEAFDEPTH − 1
while satisfied and k ≥ 0

UPDATELEVEL(Ψk)
while PQ.SIZE > 0

UPDATEDEFECT(PQ.TOP)
PQ.POP()

Ψk.UPDATEBEST()
Ψk.REVERTTOBEST(GST)
for s ∈ Ψk

if s.n > f · s.N and
not s ∈ ΨL

satisfied← FALSE

REDESIGN(s,ΨD)
k ← k − 1

return satisfied

REDESIGN(s,ΨD)

s.mreopt ← s.mreopt − 1
ŝ← s
while not ŝ ∈ ΨL

nleft, nright ← ŝ.MAPCHILDREN()
r ← RANDOM(0, nleft + nright)
if r < nleft

ŝ← ŝ.GETLEFTCHILD()
else

ŝ← ŝ.GETRIGHTCHILD()
ŝ.mreopt ←Mreopt

ΨD.RESETLEVEL(ŝ.DEPTH)
ŝ.mreopt ←Mredesign

ŝ.reseed← TRUE

OPTIMIZELEAVES(ΨL,GST)

mut← ∅
UPDATELEVEL(ΨL)
while PQ.SIZE > 0

ψ ← PQ.TOP
if not PQ.TOP in mut

mut.INSERT(PQ.TOP)
UPDATEDEFECT(s,GST)

Ψ̂L ← ΨL

Ψ̂L.RESETBEST()
leaves satisfied← FALSE
while not leaves satisfied

s← PICKGUIDEDSTRUCTURE(ΨL,mut)
ξ ← WEIGHTEDMUTATION(s)
if ξ ∈ s.γunfavorable

s.munfavorable ← s.munfavorable − 1
else if CAUSESCONFLICT(ξ)

s.munfavorable ← s.munfavorable − 1
s.γunfavorable ← s.γunfavorable ∪ {ξ}

else
Ψ̆L ← APPLYMUTATION(ξ, Ψ̂L)

UPDATELEVEL(Ψ̆L)
modified← ∅
while PQ.SIZE > 0

modified.APPEND(PQ.TOP)
if not PQ.TOP in mut

mut.INSERT(PQ.TOP)
UPDATEDEFECT(PQ.TOP,GST)
PQ.POP()

success← Ψ̂L.UPDATEBEST(Ψ̆L)
if success

for s ∈ modified
s.munfavorable ← 4 · s.N
s.γunfavorable ← ∅

else
for s ∈ modified

s.munfavorable ← s.munfavorable − 1
s.γunfavorable ← s.γunfavorable ∪ {ξ}

Ψ̂L.REVERTTOBEST(GST)
leaves satisfied← LEAVESSATISFIED(mut)

return Ψ̂L,mut

Algorithm 3.1: Pseudocode for multiobjective, hierarchical ensemble optimization with weighted mutation
sampling.

37

102 103

0.005

0.01

Design Quality

Target structure size N (nt)

N
or

m
al

iz
ed

 e
ns

em
bl

e
de

fe
ct

n(
φ,

s)
/N

102 103
10−2
10−1
100

101

102

103

104

105 Design Cost

Target structure size N (nt)

W
al

l c
lo

ck
 ti

m
e

(s
)

102 103
1

2

3

4

5

c de
s(N

) /
 c

ev
al
(N

)

Target structure size N (nt)

Relative Design Cost

Single-complex design algorithm

optimality

Multiobjective design algorithm

Figure 3.3: multiobjective algorithm performance on Engineered single-complex input.

38

102 103

0.005

0.01

Design Quality

Target structure size N (nt)

N
or

m
al

iz
ed

 e
ns

em
bl

e
de

fe
ct

n(
φ,

s)
/N

102 103
10−2
10−1
100

101

102

103

104

105 Design Cost

Target structure size N (nt)

W
al

l c
lo

ck
 ti

m
e

(s
)

102 103
1

10

20

30

40

50

c de
s(N

) /
 c

ev
al
(N

)

Target structure size N (nt)

Relative Design Cost

optimality

Single-complex design algorithm
Multiobjective design algorithm

Figure 3.4: multiobjective algorithm performance on Random single-complex input.

39

102 103
0

0.02

0.04

0.06

0.08

0.1
Design Quality

Σ
n(
φ,

s)
 /
Σ

N

Total Strand Length (ΣN)

102 103
10−1

100

101

102

103

104

Total Strand Length (ΣN)

Design Cost

W
al

l C
lo

ck
 T

im
e

(s
)

 Seesaw gate
 Pair displacement

 Triggered Dicer
 And gate

 Single displacement

 HCR

 in situ HCR

 Rickettsia

102 103
100

101

102

103

104

Total Strand Length (ΣN)

(D
es

ig
n

tim
e)

 /
(E

va
lu

at
io

n
tim

e)

Relative Design Cost

Single−scale ensemble defect optimization
Hierarchical ensemble defect optimization

Figure 3.5: multiobjective performance on systems specified by molecular engineers.

40

Equilibrium
 probability

H1 H2

I1

I2

I2H2

I1H1

Figure 3.6: multiobjective design results for an imperfect programmable in situ amplification system. The
bases with the largest defect are a base-pair at the end of helix in the structure I2H2. The purple and brown
arrows demonstrate the other locations in the system where these bases are linked, which exhibit low defect
for these bases.

41

3.6 Discussion

Our algorithm designs a set of sequences Φ for the set of linked structures Ψ by utilizing the four major in-

gredients from single-complex design: ensemble defect optimization, hierarchical structure decomposition,

leaf optimization with weighted sampling, and subsequence merging with weighted leaf sampling and reop-

timization. To ensure that linkages are preserved, leaf optimization, merging, and reoptimization all occur

at each depth in the tree simultaneously. The bound on running time is 4/3 the summed cost of a single

evaluation of each objective in Ψ. To aid molecular engineers in specifying systems, we have also developed

a scripting language for expressing target structures and the linkages between them.

We studied the performance of our algorithm on invented nucleic acid systems. Our results demonstrate

that this algorithm achieves high-quality design but with a cost significantly higher than the optimum. Cost

is improved, relative to single-scale methods, as the input systems grow larger. We also ran this algorithm on

single-complex input and achieved similar results to our previous single-complex studies.

Linkages provide an inherent challenge for designing multi-state systems. Although linked bases may

have the same identity (or be complementary) they must be designed to perform well in a variety of contexts.

For example in systems similar to the programmable in situ amplification system [46], some linked bases are

unpaired in some structures and paired in others. Base identities that stabilize the unpaired regions may not

be ideal for stabilizing helix regions.

Furthermore, the development of a multiobjective algorithm is strongly motivated by the inventions of

molecular engineers. Although the invented systems studied in this chapter have multiple objectives, the

individual objectives of some of the systems are small and thus do not benefit from the efficiency provided

by hierarchical decomposition. Furthermore, the heterogeneity of the invented design objectives provide a

challenge in observing how the algorithm performs relative to the optimum. Further computational studies

are needed in order to characterize the performance of this algorithm. By creating test sets that allow us to

vary objective size, the size of Ψ, the number of linkages, and the nature of those linkages, we may be able

to improve the performance of algorithm and fully describe why the cost of designing our set of invented

structures is relatively high.

42

Chapter 4

The NUPACK web server: analysis and
design of nucleic acid systems

The work in this chapter is based on the following submitted manuscript: J. N. Zadeh, C. Steenberg, J. S.

Bois, B. R. Wolfe, M. B. Pierce, A. Khan, R. Dirks, and N. A. Pierce. NUPACK: Analysis and design of

nucleic acid systems.

4.1 Introduction

In the two previous chapters we described methods for achieving high-quality sequence design for systems

of interacting nucleic acid strands with improved computational cost. In order to increase the ease of use

and accessibility of these and other related algorithms, we have developed NUPACK, an online server for the

analysis and design of nucleic acid systems, available at http://nupack.org.1

A web application is an attractive platform as a front-end for computational tools. Not only does this

lower the technological barrier for users since the only requirement is that their system have a compatible

web browser, it allows us to develop for a single platform and continuously release new features without

requiring global redistribution. Furthermore, a centralized web application like NUPACK allows the research

community to share a single high-performance compute cluster, a resource which might otherwise be un-

available, over commodity Internet.

The are currently two other independent software packages for analyzing the structure of nucleic acids:

UNAFold (previously mfold) [48, 49] and RNAFold [20, 50]. Both packages and accompanying web

servers can perform partition function and minimum free energy calculations on sequences for single strands

or dimers. 2 An additional resource, the RNASoft web server can also perform MFE calculations on

dimers [52].3 The RNAFold, RNAsoft [27], and INFO-RNA [28, 53] design servers perform MFE defect

1Note that at the time of this writing, not all of the features described here are publicly available. Those features are available as a
private beta feature for a select group of users.

2The DINAMelt package [51] extends UNAFold’s capabilities of predicting dimer structures.
3 RNASoft also offers source code download for MultiRNAFold package for MFE prediction of an arbitrary number of interacting

nucleic acids [24].

43

optimization using the RNAFold engine for computing their objective function. The RNAFold design server

also offers a single-scale probability optimization design algorithm.

NUPACK is focused on the analysis and design of systems involving an arbitrary number of interacting

strands. Notable features include:

• calculation of the partition function and minimum free energy (MFE) secondary structure for unpseu-

doknotted complexes of arbitrary numbers of interacting RNA or DNA strands4 including rigorous

treatment of distinguishability issues that arise in the multi-stranded setting [8].

• calculation of the equilibrium concentrations for arbitrary species of complexes in a dilute solution

(e.g., for a test tube of interacting RNA or DNA strand species) [8].

• use of partition function and concentration information to calculate equilibrium base-pairing observ-

ables for dilute solutions of interacting strand species [8].

• partition function analysis of non-interacting RNA strands including the possibility of a class of pseu-

doknots [22, 33].

• sequence design for one or more strands intended to adopt an unpseudoknotted target secondary struc-

ture at equilibrium (see Chapter 2).

• sequence design for multiple, linked, unpseudoknotted target secondary structures at equilibrium (see

Chapter 3).

The NUPACK web server also offers utilities for the customization of figures for talks and papers, providing

• publication-quality vector graphics that can be downloaded and edited in standard vector graphics

programs.

• automatic layout and rendering of secondary structures depicted with or without ideal helical geometry.

• dynamic graphical editing of secondary structure layout within the web interface.

4.2 Application organization

NUPACK’s web application is organized into three interconnected modules: Analysis, Design, and Utilities.

Each of these modules can export results to the other two modules for further computation. The functionality

and relationships between the modules are summarized Figure 4.1.

The modules can be accessed via the orange navigation bar at the top of each page, as shown in Figure 4.2.

The green navigational bar provides a submenu of items relevant to the current module. Located in this

4The web server currently limits the maximum complex size to ten strands and displays a single MFE structure. Larger complexes
and degenerate MFE structures can be analyzed by downloading and compiling the NUPACK source code.

44

structure

sequence

Utilities
Physical system: ordered complex
Input:
 strand sequences
Output: Customized graphics,
 energetics and sequence

 structure, base-pairing
 probabilities for ordered
 complex

Design
Physical system: ordered complex
 or set of linked ordered
 complexes
Input: target structure or set of
 target structures and
 linkages
Output: strand sequences

Analysis
Physical system: dilute solution of
 interacting strands
Input: strand sequences and
 concentrations
Output: equilibrium base-pairing
 properties of the dilute
 solution; equilibrium
 concentration, MFE structure,
 and base-pairing probabilities
 of each ordered complex in
 solution.

targ
et s

tru
ctu

re, se
quence

 MFE structure, sequence

sequence

Figure 4.1: The organizational structure of NUPACK’s Analysis, Design, and Utilities modules. Arrows
represent information that can be exported from one module to another.

submenu for each module is a link to a “Demos” page, which allows the user to load input for example

calculations. “Help” pages can also be accessed from this submenu, which explain each feature or field on

a page. We have also embedded some of this information directly into the page by placing a question mark

next to fields of interest. If the question mark is clicked, an explanation of that field surfaces as shown in

Figure 4.3. The message can subsequently be dismissed by clicking the message or the question mark.

To reduce the amount of irrelevant information on the page, NUPACK’s user interface is designed to

dynamically adjust as the user types in input. For example, concentration information is not shown if a

user wishes to only analyze a single-stranded complex with only one strand species present. If the user

wishes to investigate multiple stranded complex in a dilute solution, the page expands to include fields for

concentration. Furthermore, we have hidden some options that we believe appeal mostly to advanced users.

These options can be accessed by expanding the “Advanced” section of the page.

45

Figure 4.2: The NUPACK web application navigational bar with links to the Analysis, Design, and Utilities
modules highlighted in orange. Submenu items that are related to the current module, such as “Demos” and
“Help”, are highlighted in green.

Figure 4.3: When a user clicks the orange-highlighted question mark, a help popup appears, providing infor-
mation relevant to the feature or field.

4.3 Publication-quality graphics

The standard convention for drawing two-dimensional nucleic acid secondary structures is to depict helix

regions as rectangles and loop regions as circles. Base pairs are also connected by line segments. Using

this convention it is not possible to draw all secondary structures without distorting distances between bases

or allowing structural elements to overlap.5 The first published drawing algorithms attempted to prevent

overlapping substructures by allowing the user to interactively “untangle” the illustration [48, 50, 54, 55].

Subsequent drawing algorithms attempt to automatically deform structural elements to prevent overlaps [56,

57]. As a consequence, users do not have precise control over the layout and aesthetics of the drawing.

Recent nucleic acid drawing software enables the user to interactively modify or untangle canonical struc-

tures [58, 59]. NUPACK also utilizes this approach of drawing structures without deformation and allowing

the user to edit the structure in a manner they find pleasing. To this end, we have developed an in-browser

nucleic acid drawing editor that runs natively in the browser. With this integrated editor, shown in Figure 4.4,

the user can shrink or grow unpaired loop regions, stretch helices, or change the angle of stems relative to

adjacent loops.

NUPACK offers several options for drawing two-dimensional secondary structures. Bases can be repre-

sented by ticks or circles that can be shaded according to their identity (i.e., A, G, C, or T/U) or the probability

they are paired at equilibirum. Bases can also be annotated with their numerical position in the structure

and with their base identity. Figure 4.5 demonstrates some examples of different shading options. Two-

dimensional structures can also be rendered with their backbones and bases displaying ideal helical geome-

try, shown in Figure 4.6. These can also be edited within the NUPACK interface. NUPACK also provides

5An example of a structure impossible to draw without overlaps or distance distortion is shown in Figure 4.4 a. In this case, four-
branch multiloops will inevitably overlap each other.

46

a)

e)

b)

c)

d)

Figure 4.4: NUPACK offers an in-browser secondary structure editor that does not require the installation of
third-party software. One method of untangling the structure depicted in a) is to activate the editor, shown in
b). The angle of a branch in a multiloop can be changed, shown in c). A helix can also be stretched, shown in
d). Once the “Update” button is selected, the NUPACK server will re-render the images with new orientation,
depicted in e).

47

a) b) c)

d) e) f)

Figure 4.5: Different variations of NUPACK’s secondary structure depictions. Bases can be drawn in circles
with a) identity shading, b) probability shading, or c) no shading. d) Identities can also be shown on the
shape. Bases can also be drawn in ticks that can also be shaded with e) identity or f) probability.

publication-quality pairing probability plots. While some of these drawings are automatically rendered for

the Analysis and Design modules, all of these drawings can be created and customized in the Utilities module.

All images are displayed inline in the web application using the Portable Network Graphics (PNG) raster

format. Plots and secondary structure drawings without ideal helical geometry are available to download in

their original Scalable Vector Graphics (SVG) format so that they can be fully scaled and edited with vector

graphics editing software (e.g., Adobe Illustrator). Renderings of structures with ideal helical geometries are

also available for download as a higher-resolution PNG.

4.4 Module details

4.4.1 Thermodynamic analysis

The analysis module allows for calculating thermodynamic properties of a dilute solution of interacting nu-

cleic acid strands in the absence of pseudoknots.

48

Figure 4.6: Depiction of secondary structures with ideal helical geometry for stacked base pairs, as for this
complex of three DNA strands with B-form helices (left) or three RNA strands with A-form helices (bottom).

Input

The Analysis input page allows the user to specify the components and conditions of the solution of interest:

• RNA or DNA.

• Temperature (or range of temperatures for melts).

• Number of strand species.

• Maximum complex size (all ordered complexes with up to this number of strands will be included in

the analysis).

• Strand sequences.

• Strand concentrations (for calculations with maximum complex size greater than one).

Under an expandable Advanced Options panel, users may select among available energy models, specify

salt concentrations, allow a class of pseudoknots (non-interacting RNA strands only), and specify additional

ordered complexes to include in the calculation (larger than the specified maximum complex size). The

estimated computation time is displayed as the user provides input. If this estimate is on the order of hours,

an email address is required to notify the user of job completion; jobs estimated to exceed a threshold are not

accepted.

Computation

The partition function, equilibrium base-pairing probabilities, and MFE structure are calculated for each

ordered complex using dynamic programs [8, 22, 33]. For calculations in which the maximum complex size

is greater than one, the calculated partition functions and user-provided strand concentrations are used to

calculate the equilibrium concentration of each ordered complex by solving a convex optimization problem

[8]. If the user wishes to change the strand concentrations after examining the results, it is not necessary

49

to recompute the partition functions, and the equilibrium properties of the dilute solution can be rapidly

recomputed from within the Results page.

Results

The Results page summarizes the equilibrium properties of the dilute solution:

• Melt profile plot: Depicts the fraction of unpaired bases at equilibrium as a function of temperature.

• Ensemble pair fractions plot: Depicts equilibrium base-pairing information for the dilute solution,

taking into account the equilibrium concentration and base-pairing properties of each ordered complex.

Each entry in the plot provides information about a particular species of base pair (e.g., the base pair

in which base i of strand species A (row) pairs to base j of strand species B (column); the color and

area of the corresponding dot scale with the fraction of strands of species A that form this pair at

equilibrium). In general, the matrix is not symmetric. Each dot in the column at right represents the

fraction of strands of a given species with the corresponding base unpaired at equilibrium.

• Equilibrium concentration histogram: Depicts the equilibrium concentrations of the ordered com-

plexes.

Clicking on any bar in the histogram displays equilibrium information about the corresponding ordered com-

plex:

• MFE structure plot: Depicts the MFE secondary structure for the ordered complex. In the default

view, each base is shaded with the probability that it adopts the depicted paired or unpaired state

at equilibrium, allowing the user to assess the utility of different portions of the MFE structure in

summarizing the structural features of the ordered complex ensemble. The sequence and MFE structure

information for an ordered complex can be exported to the Utilities page (e.g., to annotate or edit

publication-quality graphics).

• Pair probabilities plot: Depicts equilibrium base-pairing probabilities for the ordered complex. The

color and area of each dot scale with the equilibrium probability of each base pair. All strands within

the ordered complex are treated as distinguishable. The matrix is symmetric and independent of con-

centration. The probability that a base is unpaired at equilibrium is depicted in the column at the right.

Optional black circles depict each base pair or unpaired base in the MFE structure.

The pair probability and MFE images may be downloaded in SVG format for editing in vector graphics

programs. Alternatively, all data and plots can be downloaded as a single compressed file.

4.4.2 Thermodynamic design

Design sequences for one or more strands are intended to adopt an unpseudoknotted target secondary structure

or set of structures at equilibrium.

50

Input

The design input page allows the user to specify design requirements:

• RNA or DNA.

• Temperature.

• Number of independent sequence designs.

• Target secondary structure in dot-parens-plus notation (each unpaired base is represented by a dot, each

base pair by matching parentheses, and each nick between strands by a plus). A user can also specify

multiobjective designs by using the language described in Appendix D.

Target secondary structures for single-complex design that are multi-stranded must be connected. Valid target

structures are depicted during data entry to provide visual feedback to the user. Under an expandable Ad-

vanced Options panel, users may select among available energy models, specify salt concentrations, specify

sequence constraints, and define pattern prevention requirements.

Computation

The design algorithm performs efficient ensemble defect optimization to reduce the ensemble defect [31].

For a target secondary structure withN nucleotides, the algorithm seeks to achieve an ensemble defect below

N/100 (see Chapter 2). For a set of target secondary structures, the algorithm seeks to achieve the same

condition for each objective.

Results

The Results page summarizes the properties of the designed sequences:

• Designability summary: Depicts each base in the target secondary structure shaded by the probability

that it adopts the depicted paired or unpaired state at equilibrium, averaged across the independent

sequence designs. This plot can expose conceptual design flaws in the target structure: if a particular

base pair has a low probability of forming over several independent sequence designs, adjustments to

the target structure may be warranted.

• Sequence designs table: Displays the ensemble defect, normalized ensemble defect, GC content of

each design, and sequences for each design.

Any set of designed sequences can be exported to the Analysis page (e.g., to check for the formation of

unintended ordered complexes in the context of a dilute solution) or to the Utilities page (e.g., to customize

publication-quality graphics). Alternatively, clicking on a sequence design displays equilibrium information

about the ordered complex to which the target secondary structure belongs:

51

• Target structure plot: Depicts the target secondary structure with each base shaded by the probability

that it adopts the depicted state at equilibrium.

• Pair probabilities plot: Depicts the equilibrium base-pairing probabilities for the ordered complex.

Optional black circles depict each base pair or unpaired base in the target secondary structure.

4.4.3 Utilities

The Utilities page accepts as input either sequence information, structure information, or both, performing

diverse functions based on the information provided, including

• Evaluation and display of equilibrium information for an arbitrary secondary structure in the context

of the ordered complex to which it belongs (analogous to the treatment of the MFE structure in the

Analysis page, and the target structure in the Design page).

• Redimensioning duplex and loop lengths in a secondary structure while retaining the original sequence

information as design constraints for a subsequent redesign.

• Automatic layout and rendering of secondary structures specified in dot-parens-plus notation with or

without ideal helical geometry. In either case, the structure layout can be edited dynamically within

the web application (allowing users to eliminate overlaps that sometimes arise using automated layout

procedures with default geometric parameters).

Sequences can be exported to the Analysis page for further examination in the context of a dilute solution.

Alternatively, structures can be exported to the Design page, carrying any specified sequence information as

design constraints.

4.5 Example of single-complex design calculation

To illustrate how the design algorithm presented in Chapter 2 can be used via NUPACK, we present an

example calculation. For this example, we will use the demo provided under the Design tab.

The target structure is entered into the input page, shown in Figure 4.7, using dot-parens-plus notation.

A graphic demonstrating this structure is automatically rendered. If the structure is modified, this graphic

updates in real time. If an invalid structure is encountered, the input text will be annotated with color to help

inform the user of the error. In this example, we have also elected to perform two independent sequence

designs. When ready, the user clicks the “Design” button to submit the calculation.

Once submitted to the server a job is decomposed into smaller subjobs, some of which can be run inde-

pendently of each other on multiple cores. Figure 4.8 depicts an example execution graph. While this digraph

is executing, the user is presented with a progress bar and feedback of how many compute cores are in use

52

Figure 4.7: NUPACK’s input page for single-complex design.

53

Prepare input

Design trial 1 Design trial 2

Parse results Parse results

Render secondary structure Render pair probabilities

Update database

Render secondary structure Render pair probabilities

Update database

Calculate designability

Render designability summary

Update database

Figure 4.8: Backend execution graph for NUPACK’s single-complex design. Design trials can be run inde-
pendently on different cores. The visual results of a single design trial can also span multiple cores. When
all trials are completed a designability summary is computed.

(Figure 4.9). Since design trials are independent, results relating to a particular trial can be displayed before

the full job is complete.

Upon completion, the designability summary and final sequences are displayed, sorted by descending

quality as shown in Figure 4.10. Inspection of the designability summary can inform the user which bases

are significantly contributing to ensemble defect, averaged over all trials, which might possibly indicate that

a target structure is inherently difficult to design. From this page a sequence can be imported into Analysis

module or a sequence/structure combo can be imported into the Utilities module, by clicking the appropriate

button.

The user can then click on a sequence and investigate the secondary structure drawings and probability

matrices for a specific designed sequence, as shown in Figure 4.11.

54

Figure 4.9: NUPACK’s design progress page. The number of compute cores currently in use by the cluster is
listed.

4.6 Example of multiobjective design calculation

As a demonstration of multiobjective design capabilities with NUPACK we will demonstrate the design of

the programmable in situ amplification system [46]. The input is given on the same page as single-complex

design, with the target structure field allowing input using the language described in Appendix D. and the

structure code specified in Appendix B. All of the objectives are immediately displayed graphically to give

the user feedback, shown in Figure 4.12.

After submitting the design, a similar progress page is displayed as single-complex design, and trials are

also presented before the job has fully completed. The completed results show the results per trial, sorted by

the sum over each objective’s ensemble defect shown in Figure 4.13. The unique strands that make up the

system are displayed with a check-box that allow the user to import them into the Analysis module.

Clicking on a design trial result will provide details of the final objectives, as shown in Figure 4.14. By

using the slider at the top of the page, the user can view the results for any particular objective.

4.7 Infrastructure and implementation

The NUPACK web server is a highly visual interface for using a high-powered compute cluster that currently

has over 200 compute cores. The hardware details of this cluster are detailed in Appendix A. The essential

components are a web server, head node, and a collection of compute nodes. This infrastructure is also

55

Figure 4.10: NUPACK’s design results page for single-complex design.

56

Figure 4.11: NUPACK’s design results detail page for single-complex design.

57

Figure 4.12: NUPACK’s multiobjective design input page. Each objective function is rendered visually to
give the user feedback about the terms in the objective function.

58

Figure 4.13: NUPACK’s design results detail page for multiobjective design, listing unique strands that
comprise the system.

59

Figure 4.14: NUPACK’s design results detail page for multiobjective design.

60

cloned, in a scaled-down verison, into a test cluster. This allows us to test new features without disturbing the

live, public version of the site.

The web server handles all user requests. If a calculation or drawing predicted to take less than a second

is requested, the computation will execute directly on the cluster head node. Longer computation is broken

down into a directed acyclic graph of component subjobs. The head node will then submit these subjobs

to the cluster in the appropriate order. If a subjob is predicted to take less than a minute and use a single

processor, it will run on the cluster nodes designated for fast jobs. If it is predicted to take more than a minute

or use multiple processors, the job will run on the nodes designated for long jobs. Queues are used to provide

efficient utilization of resources.

The compute cluster, head node, and web server all have access to the same file system. This allows

the web server to easily send rendered image files to the user upon request. The web server and head node

also have access to a relational database, which stores important numeric and sequence results that can be

displayed to the user or exported into other modules.

The NUPACK web application is programmed within the Ruby on Rails framework, employing AJAX

and the Dojo Toolkit to implement dynamic features and interactive graphics. The NUPACK library of

analysis and design algorithms is written in the C and C++ programming language. Dynamic programs are

parallelized using MPI [26]. The Ruby and Python languages are also used for plot drawing and back-end

data aggregation. Further implementation details including software are given in Appendix A.

NUPACK’s front end is designed to be compatible with the current versions of three popular, freely

available browsers: Firefox, Safari, and Chrome. Other compatible browsers must support XHTML,

CSS, SVG, Javascript, and the use of cookies. All vector images are stored in the SVG format. All raster

images are stored in the PNG format.

NUPACK officially launched its beta version of the Analysis module on Feburary 1, 2007. A beta version

of single-complex design was launched on March 1, 2007. All three modules were officially released on

January 10, 2010. At this same time, the multiobjective design capability was released as private beta to

members of the Molecular Programming Project at Caltech and University of Washington. Usage statistics

are provided in Appendix E.

61

Chapter 5

Summary and outlook

This thesis focuses on making thermodynamic nucleic acid design a high-quality, versatile, and low-cost

technology that is easy to use and easily accessible. We demonstrated how to achieve high-quality sequences

via ensemble defect optimization for only 4/3 the cost of the objective function for large structures. We have

further increased design versatility by developing an algorithm for the design of multi-state systems of nucleic

acids that also achieves high-quality sequence for low cost with ensemble defect optimization. Finally, we

have presented a web server that makes parallel implementations of these and other algorithms easy to use

and accessible with the use of a specialized front-end to a high-performance compute cluster. The highly

interactive features and visualization tools of NUPACK allow for users to explore and communicate their

results with greater understanding and further reach than was previously possible. Nevertheless, improving

cost, scope, and availability remains an open area of research.

5.1 Computational cost

Even though our single-complex design algorithm is performing near the optimum, improvements in how our

objective function implementations interact with underlying hardware architecture could potentially lower

computational cost. The current implementations of the Θ(N3) algorithms interact with memory in such

a way that they prevent concurrent processes from efficiently sharing. Implementing the objective function

algorithms to utilize improved memory access synchronization methods would allow for better concurrent

performance. Furthermore, vectorizing the partition function and probability matrix calculations such that

they could run efficiently on a SIMD processor would allow for the utilization of newer and cheaper architec-

tures such as GPUs. Some areas of scientific research such as molecular dynamics have experienced speed

gains of over two order of magnitude by utilizing these architectures [60]. Furthermore, NUPACK currently

stores floating point values with 128 bits on a 64-bit system in order to capture the dynamic range of the par-

tition function. Modifying the algorithms to perform calculations with values stored in double precision (i.e.,

64 bits) would not only improve performance but would also open doors to other specialized architectures.

Improved resource management could also allow for more efficient designs. The algorithms presented in

62

this thesis may benefit from designing multiple unlinked leaves of a decomposition tree simultaneously. The

challenge lies in that subproblem complexities are heterogeneous, making it difficult to preallocate resources

such that processors are efficiently used. More sophisticated resource management would allow many differ-

ent designs by different users to be computed simultaneously, such that they use and release processors from

a pool as necessary. The multi-state algorithm presented in Chapter 3 was implemented with grid comput-

ing architectures in mind (i.e., the global sequence table can be stored in a master lightweight process that

synchronizes multiple independent design processes).

5.2 Design versatility

In Chapter 3 we demonstrated that certain systems from literature are difficult to design, often a result of re-

duced sequence space or specified structures incompatible with the parameters for the energy model. While

this could be addressed by the engineer studying resulting pair probability matrices and manually redimen-

sioning some structural elements [45], it would be advantageous to have the tools to perform this specification

optimization automatically. Shrinking a structure while maintaining function could improve fabrication costs,

while adding more stability to some structural elements could improve experimental performance.

Our current multi-state algorithm does not take into account the concentration of each individual strand

in the system. Designing strands to form a complex with high affinity and specificity does not guarantee that

they will form with desired concentration in a dilute solution. The ability to design strands to form with the

correct concentrations at equilibrium will also be useful to prevent certain species from interacting with each

other (i.e., certain complexes are assigned a zero target concentration).

We have studied the performance of our algorithms in the context of empirical secondary structure free

energy models [10, 11] that have practical utility for the analysis [36–40] and design [41–46] of functional

nucleic acid systems. It would also be beneficial to develop a set of experiments that study the accuracy of

NUPACK’s predictions. Furthermore, work in the area of kinetic analysis and rational kinetic design will be

of great utility for designing and analyzing nucleic acid systems.

5.3 Availability

In addition to providing tools to the research community, making our work available over the web has pro-

vided very valuable insight through continuous feedback from our users. This feedback helps inform us

of desired features and tools. Continuously improving the site’s performance will inevitably lead to better

technological development.

63

5.4 A compiler for biomolecular function

The advancement of computer science has led to the construction of highly complex electronic systems

with billions of interacting components. To reach this state, researchers developed tools and languages for

obscuring this complexity into higher levels of abstraction. Since the field of nucleic acid nanotechnology is

built on the notion that nucleic acids are fundamentally programmable, it follows that we should be able to

build similar tools for molecular programming.

Traditional compilers translate programs from one language into another, usually from high- to low-level

languages [61]. A compiler for biomolecular function would similarly allow users to specify abstract func-

tions and concepts without concerning themselves with the underlying molecular representations. While there

remains much work to be done before a molecular compiler functions with the reliability of its silicon analog,

the work presented in this thesis has attempted to address issues related to the lower layers of compilation:

programming equilibrium secondary structure into primary sequence. This thesis also demonstrates that the

web will be a very compelling platform for distributing molecular programming tools.

64

Bibliography

[1] B. Alberts, et al., Molecular Biology of the Cell (Garland Science, New York, 2002), 4th ed.

[2] M. H. Caruthers, Gene synthesis machines: DNA chemistry and its uses, Science 230, 281-285 (1985).

[3] N. Seeman, Nucleic acid junctions and lattices, J. Theor. Biol. 99, 237-247 (1982).

[4] F. Simmel, W. Dittmer, DNA nanodevices, Small 1, 284-299 (2005).

[5] U. Feldkamp, C. Niemeyer, Rational design of DNA nanoarchitectures, Angewandte Chemie Interna-

tional Edition 45, 1856-1876 (2006).

[6] U. Feldkamp, C. M. Niemeyer, Rational engineering of dynamic DNA systems, Angewandte Chemie-

International Edition 47, 3871-3873 (2008).

[7] J. Bath, A. Turberfield, DNA nanomachines, Nature Nanotechnology 2, 275-284 (2007).

[8] R. Dirks, J. Bois, J. Schaeffer, E. Winfree, N. Pierce, Thermodynamic analysis of interacting nucleic

acid strands, SIAM Review 49, 65-88 (2007).

[9] M. Serra, D. Turner, Predicting thermodynamic properties of RNA, Methods Enzymol 259, 242-261

(1995).

[10] D. Mathews, J. Sabina, M. Zuker, D. Turner, Expanded sequence dependence of thermodynamic pa-

rameters improves prediction of RNA secondary structure, Journal of Molecular Biology 288, 911-940

(1999).

[11] J. SantaLucia, Jr., A unified view of polymer, dumbbell, and oligonucleotide DNA nearest-neighbor

thermodynamics, Proceedings of the National Academy of Sciences of the United States of America 95,

1460-1465 (1998).

[12] J. SantaLucia, D. Hicks, The thermodynamics of DNA structural motifs, Annu Rev Bioph Biom 33,

415-440 (2004).

[13] R. Koehler, N. Peyret, Thermodynamic properties of DNA sequences: characteristic values for the

human genome, Bioinformatics 21, 3333-3339 (2005).

65

[14] V. Bloomfield, D. Crothers, I. Tinoco, Jr., Nucleic Acids: Structures, Properties, and Functions (Uni-

versity Science Books, Sausalito, CA, 2000).

[15] I. Tinoco, Jr., O. Uhlenbeck, M. Levine, Estimation of secondary structure in ribonucleic acids, Nature

230, 362-367 (1971).

[16] M. Zuker, P. Stiegler, Optimal computer folding of large RNA sequences using thermodynamics and

auxiliary information, Nucleic Acids Res 9, 133-147 (1981).

[17] L. Landau, E. Lifshitz, Statistical Physics Part 1 (Butterworth-Heinemann, New York, 1980), 3rd ed.

[18] M. Zuker, D. Sankoff, RNA secondary structures and their prediction, Bulletin of Mathematical Biology

46, 591-621 (1984).

[19] J. McCaskill, The equilibrium partition function and base pair binding probabilities for RNA secondary

structure, Biopolymers 29, 1105-1119 (1990).

[20] I. Hofacker, et al., Fast folding and comparison of RNA secondary structures, Chemical Monthly 125,

167-188 (1994).

[21] R. Lyngsø, M. Zuker, C. Pedersen, Fast evaluation of internal loops in RNA secondary structure predic-

tion, Bioinformatics 15, 440-445 (1999).

[22] R. Dirks, N. Pierce, An algorithm for computing nucleic acid base-pairing probabilities including pseu-

doknots, Journal of Computational Chemistry 25, 1295-1304 (2004).

[23] R. Dimitrov, M. Zuker, Prediction of hybridization and melting for double-stranded nucleic acids, Bio-

physical Journal 87, 215-226 (2004).

[24] M. Andronescu, Z. Zhang, A. Condon, Secondary structure prediction of interacting RNA molecules,

Journal of Molecular Biology 345, 987-1001 (2005).

[25] S. Bernhart, et al., Partition function and base pairing probabilities of RNA heterodimers, Algorithms

for Molecular Biology 1, 3 (2006).

[26] M. Fekete, I. Hofacker, P. Stadler, Prediction of RNA base pairing probabilities on massively parallel

computers, Journal of Computational Biology 7, 171-182 (2000).

[27] M. Andronescu, A. Fejes, F. Hutter, H. Hoos, A. Condon, A new algorithm for rna secondary structure

design, Journal of Molecular Biology 336, 607-624 (2004).

[28] A. Busch, R. Backofen, INFO-RNA–a fast approach to inverse RNA folding, Bioinformatics 22, 1823-

1831 (2006).

66

[29] R. Aguirre-Hernandez, H. Hoos, A. Condon, Computational RNA secondary structure design: Ehoosm-

pirical complexity and improved methods, BMC Bioinformatics 8, Article 34 (2007).

[30] B. Burghardt, A. Hartmann, RNA secondary structure design, Physical Review E 75, 021920 (2007).

[31] R. Dirks, M. Lin, E. Winfree, N. Pierce, Paradigms for computational nucleic acid design, Nucleic Acids

Res 32, 1392-1403 (2004).

[32] C. Flamm, I. Hofacker, S. Maurer-Stroh, P. Stadler, M. Zehl, Design of multistable RNA molecules,

RNA 7, 254-265 (2001).

[33] R. Dirks, N. Pierce, A partition function algorithm for nucleic acid secondary structure including pseu-

doknots, Journal of Computational Chemistry 24, 1664-1677 (2003).

[34] H. Hoos, T. Stutzle, Stochastic Local Search: Foundations and Applications (Morgan Kaufmann, 2005).

[35] B. R. Wolfe, Personal communication (2009).

[36] Y. Ding, C. Lawrence, A statistical sampling algorithm for RNA secondary structure prediction, Nucleic

Acids Res 31, 7280-7301 (2003).

[37] D. Mathews, Using an RNA secondary structure partition function to determine confidence in base pairs

predicted by free energy minimization, RNA 10, 1178-1190 (2004).

[38] Y. Ding, C. Chan, C. Lawrence, RNA secondary structure prediction by centroids in a Boltzmann

weighted ensemble, RNA 11, 1157-1166 (2005).

[39] S. Rogic, et al., Correlation between the secondary structure of pre-mRNA introns and the efficiency of

splicing in saccharomyces cerevisiae, BMC Genomics 9, 355 (2008).

[40] J. Zhi, J. Gloor, D. Mathews, Improved RNA secondary structure prediction by maximizing expected

pair accuracy, RNA 15, 1805-1813 (2009).

[41] R. Dirks, N. Pierce, Triggered amplification by hybridization chain reaction, Proceedings of the Na-

tional Academy of Sciences of the United States of America 101, 15275-15278 (2004).

[42] V. Patzel, et al., Design of siRNAs producing unstructured guide-RNAs results in improved RNA inter-

ference efficiency, Nature Biotechnology 23, 1440-1444 (2005).

[43] R. Penchovsky, R. Breaker, Computational design and experimental validation of oligonucleotide-

sensing allosteric ribozymes, Nature Biotechnology 23, 1424-1433 (2005).

[44] S. Venkataraman, R. Dirks, P. Rothemund, E. Winfree, N. Pierce, An autonomous polymerization motor

powered by dna hybridization, Nature Nanotechnology 2, 490-494 (2007).

67

[45] P. Yin, H. Choi, C. Calvert, N. Pierce, Programming biomolecular self-assembly pathways, Nature 451,

318-322 (2008).

[46] H. Choi, et al., Programmable in situ amplification for multiplexed bioimaging. in review .

[47] G. Seelig, D. Soloveichik, D. Zhang, E. Winfree, Enzyme-free nucleic acid logic circuits, Science 314,

1585-1588 (2006).

[48] M. Zuker, Mfold web server for nucleic acid folding and hybridization prediction, Nucleic Acids Res

31, 3406-3415 (2003).

[49] N. Markham, M. Zuker, UNAFold: Software for nucleic acid folding and hybridization., Methods in

molecular biology (Clifton, NJ) 453, 3 (2008).

[50] A. Gruber, R. Lorenz, S. Bernhart, R. Neubock, I. Hofacker, The vienna RNA websuite, Nucleic acids

research 36, W70 (2008).

[51] N. Markham, M. Zuker, DINAMelt web server for nucleic acid melting prediction, Nucleic Acids Res

33, W577 (2005).

[52] M. Andronescu, R. Aguirre-Hernández, A. Condon, H. H. Hoos, Rnasoft: A suite of rna secondary

structure prediction and design software tools, Nucleic Acids Res 31, 3416–22 (2003).

[53] A. Busch, R. Backofen, INFO-RNA - a server for fast inverse RNA folding satisfying sequence con-

straints, Nucleic Acids Res 35, W310–W313 (2007).

[54] G. Lapalme, R. Cedergren, D. Sankoff, An algorithm for the display of nucleic acid secondary structure.,

Nucleic Acids Res 10, 8351 (1982).

[55] B. Shapiro, L. Lipkin, J. Maizel, An interactive technique for the display of nucleic acid secondary

structure, Nucleic Acids Res 10, 7041 (1982).

[56] B. Shapiro, J. Maizel, L. Lipkin, K. Currey, C. Whitney, Generating non-overlapping displays of nucleic

acid secondary structure, Nucleic acids research 12, 75–88 (1984).

[57] R. Bruccoleri, G. Heinrich, An improved algorithm for nucleic acid secondary structure display, Bioin-

formatics 4, 167 (1988).

[58] P. De Rijk, J. Wuyts, R. De Wachter, RnaViz 2: an improved representation of RNA secondary structure,

Bioinformatics 19, 299 (2003).

[59] K. Darty, A. Denise, Y. Ponty, VARNA: Interactive drawing and editing of the RNA secondary structure,

Bioinformatics 25, 1974 (2009).

68

[60] M. Friedrichs, et al., Accelerating molecular dynamic simulation on graphics processing units, Journal

of Computational Chemistry 30, 864–872 (2009).

[61] A. Aho, R. Sethi, J. Ullman, Compilers, Principles, Techniques, and Tools (Addison Wesley Publishing

Company, 1986).

[62] L. Qian, E. Winfree, A simple DNA gate motif for synthesizing large-scale circuits, DNA Computing

pp. 70–89 (2009).

[63] S. Ligocki, C. Berlind, Personal communication (2009).

[64] M. Schwarzkopf, Personal communication (2009).

69

Appendix A

Computing resources, languages, and
software dependencies

A.1 Cluster hardware resources

Model Cores Clock Speed (GHz) Cache Size (MB)
A Intel® Xeon® E5540 4 2.53 8
B Intel® Xeon® E5530 4 2.40 8
C Intel® Xeon® E5345 2 2.33 8

Table A.1: CPU details

Cluster Node Type Node Count Node RAM (GB) CPUs Total Cores

NUPACK
Webserver 1 24 A×2 8

Head 1 24 B×2 8
Compute 30 24 A×2 240

Test
Webserver 1 24 A×2 8

Head 1 24 A×2 8
Compute 1 24 A×2 8

Development Head 1 48 B×2 8
Compute 16 4 C×2 64

Table A.2: Summary of compute cluster resources. The CPU types are crossreferenced with Table A.1

All computing, development, and production run on 64-bit Intel® Xeon® processors with attributes de-

scribed in Table A.1. Resources are divided into the following three clusters, all with TCP/IP networking

over Gigabit Ethernet:

NUPACK Cluster : This is the hardware that runs the live version of NUPACK.org. It is also the cluster

used for final timing results.

Test Cluster : The NUPACK web application is developed on this cluster with production quality algorithms

running on the worker node. New features are tested in a production environment before deploying to

70

the live server.

Development Cluster : Algorithms are developed and tested on this cluster.

The properties of each cluster are defined in Table A.2.

A.2 Languages

C : all NUPACK energy calculations, concentration solver, single-complex designer, single-complex test-

suite generator, test-suite structure analyzer

C++ : multiobjective designer

Ruby 1.8 : all webserver code

Python 2.4 : secondary structure drawing, pair probability plotting, multiobjective input parsing

JavaScript : used for interactive web features

SVG : all vector images generated by NUPACK are in this open format

XHTML : the format of all web pages served by NUPACK

A.3 Software dependencies

Cluster and resource management

Rocks 5.2 Chimichanga (http://www.rocksclusters.org): Linux distribution designed for

scientific clusters.

Open MPI (http://www.open-mpi.org/): implementation of the MPI-2 message passing standard

for parallel computing.

Torque Resource Manager (http://www.clusterresources.com/products/torque-resource-manager.

php): software responsible for allocating computational resources.

Maui (http://www.clusterresources.com/products/maui-cluster-scheduler.php/):

software used in conjunction with Torque to schedule computational jobs.

Compilers and development tools

GNU Compiler Collection (http://gcc.gnu.org): Collection of compilers and debugging tools.

71

Intel® Compiler Suite (http://software.intel.com/en-us/intel-compilers/): A

compiler with special optimizations for Intel® processors.

Subversion (http://subversion.tigris.org/): Revision control system.

Valgrind (http://valgrind.org/): tools for debugging and profiling executable code.

Libraries

JsonCpp (http://jsoncpp.sourceforge.net/): A C++ library for reading and writing data in

the JavaScript Object Notation (JSON format).

Mersenne Twister (http://www.math.sci.hiroshima-u.ac.jp/˜m-mat/MT/emt.html):

Platform-independent, high-quality random number generator.

Drawing

LAPACK (http://www.netlib.org/lapack/): Linear Algebra PACKage.

BLAS (http://www.netlib.org/blas/): Basic Linear Algebra Subprograms.

matplotlib (http://matplotlib.sourceforge.net/): Python plotting library designed to re-

semble MATLAB.

NumPy (http://numpy.scipy.org/): Python extension for handling numerical operations on large

arrays and matrices

SciPy (http://www.scipy.org): Python library of algorithms and mathematical tools

librsvg (http://librsvg.sourceforge.net/): SVG rendering library

ImageMagick (http://www.imagemagick.org): Software suite for converting images from one

format to another.

GLE (http://glx.sourceforge.net/): A scripting language for creating graphs and plots.

OpenGL (http://www.opengl.org/): API for producing 2D and 3D graphics.

Web development

Ruby on Rails (http://rubyonrails.org/): web application framework for Ruby

PostgreSQL (http://www.postgresql.org/): object-relational database management system

Apache Qpid (http://qpid.apache.org/): messaging system that implements the Advanced Mes-

sage Queueing Protocol.

72

Dojo Toolkit (http://www.dojotoolkit.org/): JavaScript library for developing rich web ap-

plications.

73

Appendix B

Design test sets

B.1 Single-complex design test sets

0 50 100 150 200 250 300
Stems per structure

0

8

16

str

uc
tu

re
s

0 8 16 24 32 40
Base pairs per stem

0

2000

4000

ste

m
s

0 10 20 30 40 50 60
Hairpin loops per structure

0

20

40

str

uc
tu

re
s

0 8 16 24 32 40
Nucleotides per hairpin loop

0

600

1200

ha

irp
ins

0 20 40 60 80
Bulge loops per structure

0

20

40

str

uc
tu

re
s

0 3 6 9 12 15
Nucleotides per bulge loop

0
1000
2000
3000

bu

lge
s

0 20 40 60 80 100 120
Interior loops per structure

0

20

40

str

uc
tu

re
s

0 5 10 15 20 25
Nucleotides per interior loop

0

2000

4000

int

er
ior

 lo
op

s

0 10 20 30 40 50 60
Multiloops per structure

0

30

60

str

uc
tu

re
s

0 8 16 24 32 40
Nucleotides per multiloop

0
100
200
300

m

ult
ilo

op
s

0 2 4 6 8
Branches per multiloop

0
1000
2000
3000

m

ult
ilo

op
s

0 2 4 6 8 10
Branches per exterior loop

0
50

100
150

ex

te
rio

r l
oo

ps

0 10 20 30 40 50
Nucleotides per exterior loop

0
10
20
30

ex

te
rio

r l
oo

ps

0.0 0.2 0.4 0.6 0.8 1.0
Fraction of bases paired

0
40
80

120

str

uc
tu

re
s

Engineered
Random

a b

mm nn

kk ll

ii jj

gg hh

ee ff

cc dd

Figure B.1: Structural features of the engineered and random test sets.

74

B.2 Multiobjective design test suite

structure H1 = U6 H18 (U6)
structure H2 = H18 (U6) U6
structure I = U24
structure I H1 = H24 (U24 +)
structure I H1 H2 = H24 (H24 (+ U24) +)
sequence a = 6N
sequence b = 18N
sequence c = 6N
H1 : a b c b*
H2 : b* a* b c*
I : b* a*
I H1 : a b c b* b* a*
I H1 H2 : a b c b* b* a* b c* b* a*
H1 < 1.0
H2 < 1.0
I < 1.0
I H1 < 1.0
I H1 H2 < 1.0

Figure B.2: Code for hybridization chain reaction [41]. This system is designed with DNA energy parameters
at 23 ◦C.

75

structure H1 = U6 H18 (U6) U3
structure H2 = U3 H18 (U6) U6
structure AR = H18 (U6 + U3) U3
structure State2 = H24 (U6 H21 (+) U3 +)
structure State4 = H24 (H24 (H3 (+) H21 (+) U6) +)
sequence a = 6N
sequence b = 18N
sequence c = 6N
sequence x = 3N
sequence y = 3N
H1 : a b c b* x*
H2 : y* b* a* b c*
AR : b* a* x b y
State2 : a b c b* x* x b y b* a*
State4 : a b c b* x* x b y y* b* a* b c* b* a*
H1 < 1.0
H2 < 1.0
AR < 1.0
State2 < 1.0
State4 < 1.0

Figure B.3: Synthetic molecular motor inspired by Rickettsia rickettsii [44]. This system is designed with
DNA energy parameters at 23 ◦C.

structure G-Eout-F = H15(U27 H15(H30(U6 +)))
structure Gin = U36
structure Fin = U36
structure G-Gin = H36 (+)
structure Eout-F = H15(U27 H15(+ U30))
structure Eout = U57
structure Fin-F = H36(+ U24)
sequence Gtoe = 6N
sequence Ftoe = 6N
sequence G = 24N
sequence F1 = 15N
sequence F2 = 15N
sequence E = 27N
G-Eout-F : F1 E F2 Ftoe* G Gtoe G* Ftoe F2* F1*
Gin : Gtoe* G* Ftoe
Fin : F2 F1 Ftoe*
G-Gin : Ftoe* G Gtoe Gtoe* G* Ftoe
Eout-F : F1 E F2 G* Ftoe F2* F1*
Eout : F2 E F1
Fin-F : F2 F1 Ftoe* G* Ftoe F2* F1*
G-Eout-F < 1.0
Gin < 1.0
Fin < 1.0
G-Gin < 1.0
Eout-F < 1.0
Fin-F < 1.0

Figure B.4: Code for 2-input And logic gate [47]. This system is designed with DNA energy parameters at
23 ◦C.

76

structure s-LEFT =
structure s-RIGHT =
structure s-SEESAW RIGHT =(((((((((((((((+..........)))))))))))))))
structure s-SEESAW LEFT = (((((((((((((((.....+)))))))))))))))..........
sequence s-ltoe = NNNNN
sequence s-base = NNNNNNNNNN
sequence s-rtoe = NNNNN
sequence s- Anon0 = NNNNNNNNNN
sequence s- Anon1 = NNNNNNNNNN
s-LEFT : s-base s-ltoe s- Anon0
s-LEFT < 1.000000
s-RIGHT : s- Anon1 s-rtoe s-base
s-RIGHT < 1.000000
s-SEESAW RIGHT : s-ltoe* s-base* s-rtoe* s- Anon1 s-rtoe s-base
s-SEESAW RIGHT < 1.000000
s-SEESAW LEFT : s-ltoe* s-base* s-rtoe* s-base s-ltoe s- Anon0
s-SEESAW LEFT < 1.000000

Figure B.5: Code for modified Seesaw gate [62, 63]. This system is designed with DNA energy parameters
at 37 ◦C.

structure d-Gate =(((((((((((((((+)))))))))))))))
structure d-In =
structure d-Out =
structure d-Waste = ((((((((((((((((((((+))))))))))))))))))))
sequence d-t = NNNNN
sequence d-x = NNNNNNNNNNNNNNN
d-Gate : d-t* d-x* d-x
d-Gate < 1.000000
d-In : d-x d-t
d-In < 1.000000
d-Out : d-x
d-Out < 1.000000
d-Waste : d-t* d-x* d-x d-t
d-Waste < 1.000000

Figure B.6: Code for logic gate single displacement reaction [63]. This system is designed with DNA energy
parameters at 37 ◦C.

77

structure d1-Gate =(((((((((((((((+)))))))))))))))
structure d1-In =
structure d1-Out =
structure d1-Waste = ((((((((((((((((((((+))))))))))))))))))))
sequence d1-t = NNNNN
sequence d1-x = NNNNNNNNNNNNNNN
d1-Gate : d1-t* d1-x* d1-x
d1-Gate < 1.000000
d1-In : d1-x d1-t
d1-In < 1.000000
d1-Out : d1-x
d1-Out < 1.000000
d1-Waste : d1-t* d1-x* d1-x d1-t
d1-Waste < 1.000000
structure d2-Gate =(((((((((((((((+)))))))))))))))
structure d2-In =
structure d2-Out =
structure d2-Waste = ((((((((((((((((((((+))))))))))))))))))))
sequence d2-t = NNNNN
sequence d2-x = NNNNNNNNNNNNNNN
d2-Gate : d2-t* d2-x* d2-x
d2-Gate < 1.000000
d2-In : d2-x d2-t
d2-In < 1.000000
d2-Out : d2-x
d2-Out < 1.000000
d2-Waste : d2-t* d2-x* d2-x d2-t
d2-Waste < 1.000000

Figure B.7: Code for logic gate pair displacement reaction [63]. This system is designed with DNA energy
parameters at 37 ◦C.

78

structure A = U4 H14 U18
structure B = U4 H16 U14
structure C = U4 H24 U14
structure T = U20
structure TA = H20 (U30+)
structure SA B = H22 (U28+)
structure BC = H48 (U2 +) U18
structure SA = U22
structure SB = U28
structure SC = U18
structure toeA = U4
structure toeB = U4
structure toeC = U4
structure loopA = U18
structure loopB = U14
structure loopC = U14
structure overx = U2
structure openC = U38
sequence a = 4N
sequence c = 4N
sequence x = 2N
sequence y = 10N
sequence d = 8N
sequence m = 8N
sequence s = 2N
sequence t = 4N
A: t m a x s x y* c* x* a* m*
B: a x c y x* a* d* y* c* x*
C: c y d a x y* c* x* a* d* y*
T: s* x* a* m* t*
TA: t m a x s x y* c* x* a* m* s* x* a* m* t*
SA B: a x c y x* a* d* y* c* x* x y* c* x* a*
BC: a x c y x* a* d* y* c* x* c y d a x y* c* x* a* d* y*
SA: x y* c* x* a*
SB: a* d* y* c* x*
SC: d* y*
toeA: t
toeB: a
toeC: c
loopA: s x y* c*
loopB: x* a* d*
loopC: y* c*
overx: x*
openC: y* c* x* a* d* y*
A<1.0
B<1.0
C<1.0
T<1.0
TA<1.0
SA B<1.0
BC<1.0
SA<1.0
SB<1.0
SC<1.0
toeA<1.0
toeB<1.0
toeC<1.0
loopA<1.0
loopB<1.0
loopC<1.0
openC<1.0
overx<1.0

Figure B.8: Code for test tube Dicer system [64]. This system is designed with RNA energy parameters at 37
◦C.

79

Appendix C

Pseudocode for other single-complex
design algorithms

DESIGNSEQ(s)

mleafopt ← 0
φ, n← OPTIMIZELEAF(s)
while n > fstop|s| and mleafopt < Mleafopt

φ̂, n̂← OPTIMIZELEAF(s)
if n̂ < n

φ, n← φ̂, n̂
mleafopt ← mleafopt + 1

return φ

OPTIMIZELEAF(s)

munfavorable ← 0
γunfavorable ← ∅
φ← INITSEQ(s)
n← ENSEMBLEDEFECT(φ, s)
while n > fstop|s| and munfavorable < Munfavorable|s|

ξ, φ̂← UNIFORMMUTATIONSAMPLING(φ, s)
if ξ ∈ γunfavorable

munfavorable ← munfavorable + 1
else

n̂← ENSEMBLEDEFECT(φ̂, s)
if n̂ < n

φ, n← φ̂, n̂
munfavorable ← 0
γunfavorable ← ∅

else
munfavorable ← munfavorable + 1
γunfavorable ← γunfavorable ∪ ξ

return φ, n

Algorithm C.1: Single-scale ensemble defect optimization with uniform mutation sampling.

80

DESIGNSEQ(s)

mleafopt ← 0
φ, n← OPTIMIZELEAF(s)
while n > fstop|s| and mleafopt < Mleafopt

φ̂, n̂← OPTIMIZELEAF(φ̂, s)
if n̂ < n

φ, n← φ̂, n̂
mleafopt ← mleafopt + 1

return φ

OPTIMIZELEAF(s)

munfavorable ← 0
γunfavorable ← ∅
φ← INITSEQ(s)
n← ENSEMBLEDEFECT(φ, s)
while n > fstop|s| and munfavorable < Munfavorable|s|

ξ, φ̂← WEIGHTEDMUTATIONSAMPLING(φ, s, n1, . . . , n|s|)
if ξ ∈ γunfavorable

munfavorable ← munfavorable + 1
else

n̂← ENSEMBLEDEFECT(φ̂, s)
if n̂ < n

φ, n← φ̂, n̂
munfavorable ← 0
γunfavorable ← ∅

else
munfavorable ← munfavorable + 1
γunfavorable ← γunfavorable ∪ ξ

return φ, n

Algorithm C.2: Single-scale ensemble defect optimization with defect-weighted mutation sampling.

81

DESIGNSEQ(φ, s, n, k)

a← DEPTH(k)
if HASCHILDREN(k)

mreopt ← 0
if n = ∅

φl ← DESIGNSEQ(∅, sl+, ∅, kl)
φr ← DESIGNSEQ(∅, sr+, ∅, kr)

else
UPDATECHILDREN(k, a, a− 1)
child, φ← UNIFORMCHILDSAMPLING(φ, s, nl, nr)
φchild ← DESIGNSEQ(φchild+, schild+, nchild+, kchild)

nk,a ← ENSEMBLEDEFECT(φ, s)
UPDATECHILDREN(k, a, a+ 1)

while nk,a > max(fstop|sl|, n
kl,a
native) + max(fstop|sr|, nkr,a

native)
and mreopt < Mreopt

child, φ̂← UNIFORMCHILDSAMPLING(φ, s, nk,a
l , nk,a

r)

φ̂child ← DESIGNSEQ(φchild+, schild+, n
k,a
child+, kchild)

n̂← ENSEMBLEDEFECT(φ̂, s)
if n̂ < nk,a

φ, nk,a ← φ̂, n̂
UPDATECHILDREN(k, a, a+ 1)

mreopt ← mreopt + 1
else

mleafopt ← 0
φ, nk,a ← OPTIMIZELEAF(s)
while nk,a > fstop|s| and mleafopt < Mleafopt

φ̂, n̂← OPTIMIZELEAF(s)
if n̂ < nk,a

φ, nk,a ← φ̂, n̂
mleafopt ← mleafopt + 1

return φnative

UPDATECHILDREN(k, a, b)

if HASCHILDREN(k)
nkl,a ← nkl,b

nkr,a ← nkr,b

UPDATECHILDREN(kl, a, b)
UPDATECHILDREN(kr, a, b)

OPTIMIZELEAF(s)

munfavorable ← 0
γunfavorable ← ∅
φ← INITSEQ(s)
n← ENSEMBLEDEFECT(φ, s)
while n > fstop|s| and munfavorable < Munfavorable|s|

ξ, φ̂← UNIFORMMUTATIONSAMPLING(φ, s)
if ξ ∈ γunfavorable

munfavorable ← munfavorable + 1
else

n̂← ENSEMBLEDEFECT(φ̂, s)
if n̂ < n

φ, n← φ̂, n̂
munfavorable ← 0
γunfavorable ← ∅

else
munfavorable ← munfavorable + 1
γunfavorable ← γunfavorable ∪ ξ

return φ, n

Algorithm C.3: Hierarchical ensemble defect optimization with uniform sampling. Pseudocode conventions
follow those of Algorithm 2.1.

82

DESIGNSEQ(s)

mleafopt ← 0
φ, π ← OPTIMIZELEAF(s)
while π > fstop and mleafopt < Mleafopt

φ̂, π̂ ← OPTIMIZELEAF(s)
if π̂ < π

φ, π ← φ̂, π̂
mleafopt ← mleafopt + 1

return φ

OPTIMIZELEAF(s)

munfavorable ← 0
γunfavorable ← ∅
φ̂← INITSEQ(s)
π ←PROBABILITYDEFECT(φ, s)
while π > fstop and munfavorable < Munfavorable|s|

ξ, φ̂← UNIFORMMUTATIONSAMPLING(φ, s)
if ξ ∈ γunfavorable

munfavorable ← munfavorable + 1
else

π̂ ←PROBABILITYDEFECT(φ̂, s)
if π̂ < π

φ, π ← φ̂, π̂
munfavorable ← 0
γunfavorable ← ∅

else
munfavorable ← munfavorable + 1
γunfavorable ← γunfavorable ∪ ξ

return φ, π

Algorithm C.4: Single-scale probability defect optimization with uniform mutation sampling.

83

DESIGNSEQ(φ, s, µ, k)
a← DEPTH(k)
if HASCHILDREN(k)

mreopt ← 0
if µ = ∅

φl ← DESIGNSEQ(∅, sl+, ∅, kl)
φr ← DESIGNSEQ(∅, sr+, ∅, kr)

else
UPDATECHILDREN(k, a, a− 1)
child, φ← WEIGHTEDCHILDSAMPLING(φ, s, µl, µr)
φchild ← DESIGNSEQ(φchild+, schild+, µchild+, kchild)

µk,a ← MFEDEFECT(φ, s)
UPDATECHILDREN(k, a, a+ 1)

while µk,a > max(fstop|sl|, µ
kl,a

native) + max(fstop|sr|, µkr,a
native)

andmreopt < Mreopt

µ̂i ← µk,a
i + ε ∀i ∈ {1, . . . , |s|}

child, φ̂← WEIGHTEDCHILDSAMPLING(φ, s, µ̂l, µ̂r)

φ̂child ← DESIGNSEQ(φchild+, schild+, µ̂child+, kchild)

µ̂← MFEDEFECT(φ̂, s)

if µ̂ < µk,a

φ, µk,a ← φ̂, µ̂
UPDATECHILDREN(k, a, a+ 1)

mreopt ← mreopt + 1
else

mleafopt ← 0

φ, µk,a ← OPTIMIZELEAF(s)

while µk,a > fstop|s| andmleafopt < Mleafopt

φ̂, µ̂← OPTIMIZELEAF(s)

if µ̂ < µk,a

φ, µk,a ← φ̂, µ̂
mleafopt ← mleafopt + 1

return φnative

UPDATECHILDREN(k, a, b)

if HASCHILDREN(k)

µkl,a ← µkl,b

µkr,a ← µkr,b

UPDATECHILDREN(kl, a, b)
UPDATECHILDREN(kr, a, b)

OPTIMIZELEAF(s)

mtry ← 0
munfavorable ← 0
γunfavorable ← ∅
φ← INITSEQ(s)
µ← MFEDEFECT(φ, s)
while µ > fstop|s| andmunfavorable < Munfavorable|s|

andmtry < Mtry
µ̂i ← µi + ε ∀ i ∈ {1, . . . , |s|}
ξ, φ̂← WEIGHTEDMUTATIONSAMPLING(φ, s, µ̂1, . . . , µ̂|s|)
if ξ 6∈ γunfavorable

µ̂← MFEDEFECT(φ̂, s)
if µ̂ < µ or ACCEPTUNFAVORABLE(faccept)

φ, µ← φ̂, µ̂
munfavorable ← 0
γunfavorable ← ∅

else
munfavorable ← munfavorable + 1
γunfavorable ← γunfavorable∪ ξ

mtry ← mtry + 1
return φ, µ

Algorithm C.5: Hierarchical MFE defect optimization with defect-weighted sampling. During leaf optimiza-
tion, we employ defect-weighted mutation sampling, selecting nucleotide i as a mutation candidate with prob-
ability (µk,ai + ε)/(µk,a + ε|s|). Adding ε to each defect contribution ensures that all bases (even those with
µk,ai = 0) are subject to mutation with a non-zero probability. During leaf optimization, fraction faccept of
unfavorable candidate mutations are accepted to assist in escaping from local minima. The leaf stop condition
is µk,a < fstop|s|; the parental stop condition is µk,a < max(fstop|sl|, µkl,a

native) + max(fstop|sr|, µkr,a
native).

Because some unfavorable mutations are accepted, the total number of mutation attempts during a leaf op-
timization is limited to Mtry. Calculations are performed with defaults values: ε = 0.1, faccept = 0.2,
Mtry = 5000. Pseudocode conventions follow those of Algorithm 2.1.

84

Appendix D

Notation for specifying nucleic acid
secondary structures

HU+ is a novel notation for specifying secondary structures. It allows a user to quickly specify structures by

specifying sizes of structural elements instead of individual base pairs. In this notation helices are represented

by Hx and unpaired regions by Ux, where x represents the size of a helix or unpaired region. Each helix is

followed by a substructure, specified in HU+ notation, that is ”enclosed” by the helix. Like dot-parens-plus

notation, strand breaks are specified by +.

Three example structures specified in HU+ and dot-parens-plus notation:

H12 U10: ((((((((((((..........))))))))))))

H12 + U10: ((((((((((((+))))))))))))..........

H12 (+ U10): ((((((((((((+..........))))))))))))

As an additional example, the structure in Figure D.1 can be represented by the following notation:

U2 H3 (U3 H6 (U2 + U1) U1 H4 (U4))

Figure D.1: Example secondary structure drawing for HU+ notation: U2 H3 (U3 H6 (U2 + U1) U1
H4 (U4))

85

Appendix E

NUPACK usage statistics

 Q1 2008 Q1 2009
0

500

1000

1500

2000

2500

3000

3500

Vi
si

ts

Quarter

NUPACK visits per quarter

Figure E.1: Number of visits to NUPACK from Q2 2007 to Q3 2009

 Q1 2008 Q1 2009
0

10000

20000

30000

40000

50000

Pa
ge

 v
ie

w
s

Quarter

NUPACK page views per quarter

Figure E.2: Number of page views at NUPACK from Q2 2007 to Q3 2009

