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"Because what we can achieve technically has always
been limited by the weaknesses of the materials of construc-
tion this new science [the science of strong materials] is
important. Instead of accepting our materials as something
provided, arbitrarily, by Providence — as people used to until
very recently — we can understand why they behave as they
do and moreover, we can see much more clearly how they
might be modified and improved. As a consequence, we are
beginning to see our way to making radically better materials,
unlike anything which has existed before, and they may open
up quite new possibilities to the engineers."

J.E. Gordon, The Science of Strong Materials
(or Why you don’t fall through the floor)
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Abstract

In an effort to better understand the evolution of damage in brittle matrix composites,
the mechanical behavior of a ceramic matrix composite, unidirectional SiC/CAS (SiC
fibers reinforcing a calcium aluminosilicate matrix), was studied. The presented results are
based on uniaxial tension experiments for specimens with the fibers aligned in the loading
direction. Post-test optical and scanning electron microscopy was also used to identify the
various micromechanisms of damage; axial and transverse strain gauges on all four gage
section surfaces and in situ acoustic emission and ultrasonic wave speed measurements
were used to monitor the evolution of damage. The experimental results demonstrate the
existence of “zones of deformation” which are associated with the onset of different damage
mechanisms. The energy dissipated in each of these zones was calculated. It is shown that
the observed stress-strain behavior can be qualitatively explained in terms of the material
properties of the matrix and the fiber, the material processing, and the postulated zones of
deformation.

The experimental results for SiC/CAS were compared with an existing shear-lag
model, and the shortcomings of the model are discussed. By approximating matrix cracks
as penny shaped cracks, a micromechanical model was used to estimate the change in the
axial modulus of the composite. These results also present another way to interpret the
acoustic emission data.

The evolution of damage in the SiC/CAS experiments was found to be strain rate
dependent even within the quasi-static strain rate regime. For higher rate experiments, the
transition from elastic to matrix cracked occured at a stress level that was nearly twice that
of the same transition in the lower rate experiments. This phenomenon and the mechanisms
which cause it was further investigated with a model material system (a brittle epoxy
resin sandwiched between aluminum strips). In situ quantification of the stress during
damage initiation and propagation was realized by the optical method of Coherent Gradient
Sensing. Based on these results, the reasons for strain rate dependence of the composite

are postulated.
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Detailed understanding of aspects of the evolution of damage in brittle matrix com-
posites was achieved with finite element simulations. This modeling was based on an
axisymmetric unit cell composed of a fiber and its surrounding matrix. The unit cell was
discretized into linearly elastic elements for the fiber and the matrix and cohesive elements
which allow cracking in the matrix, fiber-matrix interface, and fiber. The cohesive elements
failed according to critical stress and critical energy release rate criteria (in shear and/or
in tension). After failing, the cohesive elements could slide with Coulomb friction. The
tension and shear aspects of failure were uncoupled. The cohesive elements were used to
simulate a Dugdale penny shaped crack in a homogeneous cylinder; results compared well
to the analytical solution. In order to solve the composite axisymmetric unit cell prob-
lem, inertia and viscous damping were added to the formulation. The resulting dynamic
problem was solved implicitly using the Newmark Method. Results were compared to the
experiment by assuming that only a given number of unit cells were active at any point
during the simulation. The effects of changing material properties (e.g., interface strength
and toughness and matrix toughness) and loading rate are discussed. Several aspects of the
experimentally observed material response of SiC/CAS composite were reproduced by the

numerical simulations.
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CHAPTER 1

Introduction

1.1 Motivation

A large part of the engineering community is devoted to finding ways to move faster
and further more efficiently and with reduced cost. Examples of projects which embody
these wishes include safe, lightweight, high speed, reliable and efficient land, sea, air and
spacecraft; using and developing alternate energy sources; and replacing and developing
infrastructure. These applications reflect not only the desires of consumers, but they are
also key ingredients for providing a sustainable future.

Future engineering applications require materials which are lightweight and can with-
stand the hostile environments (high temperatures, chemical reactivity, wear situations,
high loads, impact, fatigue, etc.) in which they must function. It is believed that the main
limitation to rapid advancement of technology is not a lack of design ideas, but rather, the
availability of materials with “high performance” properties. Not only must advanced mate-
rials be developed, but they must also be understood before they can be used in engineering
design.

Candidate materials for future engineering applications include monolithic ceramics,
intermetallics, nano-crystalline materials, graded materials and ceramic matrix composites.
Although conventional metallic materials can typically provide the required toughnesses for
structural applications (i.e., they are able to withstand over stressing without catastrophic
failure), they generally have high mass density and are incapable of sustaining high temper-

atures. Monolithic ceramics, on the other hand, are highly refractory but lack the required
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toughnesses. Ceramic composites take advantage of the refractory nature of the ceramic
constituents while increasing toughness through energy absorbing damage mechanisms.
This has placed ceramic matrix composites at the forefront of advanced materials research.

The process of developing advanced materials for engineering applications could pro-
ceed as shown in Fig.1.1.1. A range of experiments are performed to obtain the material
response directly and also to determine the damage mechanisms active during a particular
loading history. Through modeling efforts, knowledge of the damage mechanisms also
yields the material response. Valuable information regarding life prediction could be ex-
tracted from suitable models. Once the material response is known (particularly in terms
of the active damage and deformation mechanisms), it is probable that improvements could
be made through processing and constituent selection optimization. From a futuristic point
of view, material selection would be a simple matter of the design engineer specifying the
desired constitutive behavior in terms of material requirements such as stiffness, ultimate
strength, operating environment and expected life. A model would then iteratively deter-
mine the optimal material system and manufacturing parameters. Presumably, the model
could generate this information because known damage mechanisms would be associated
with each material system and manufacturing process. In any case, before ceramic matrix
composites can be reliably incorporated into designs, viable models for predicting the con-
stitutive behavior under thermomechanical loading conditions are required. The first step
in such a modeling effort requires fundamental understanding of the initiation and accumu-
lation of internal damage for a particular composite system. Experimental investigations

are seen as a means of determining and quantifying the relevant damage mechanisms.

1.2 Review
Although the word “composites” conjures up images of ultra-modern materials, com-
posites in various forms have been used for at least 5000 years. There are biblical references

to reinforcing bricks with straw, and roadways in ancient Babylon were made with rein-
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F'1G.1.1.1 The role of experiments in advanced materials research and development.

forced bitumen.” Paper and concrete are both composites and were well known in Roman

times. In actuality, many natural load bearing materials (e.g., wood, bone, muscle) are also

composites, implying that composites have been in existence forever.

The development of composite structures other than roads and buildings is significantly

more modern. Papier-méché, a composite known to most elementary school students, was

used in ancient times, and it was then revived and used in World War 11 for fuel tanks

and other aircraft parts. The use of more common resins began in the early 1900°s with

the invention of Bakelite resin, and then in the 1920°s with phenolic resin. Both of these

materials could be molded into complicated shapes. Bakelite was often reinforced with

whiskers or particles. Phenolic resins were often reinforced with cellulose, and significant

* An asphalt of Asia Minor used in ancient times as a cement and mortar.
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effort was put into developing cellulose-reinforced sheet to replace aluminum sheet in
aircraft during World War II. This effort was unsuccessful because of the expansion and
contraction of the composites in various (not necessarily extreme) environmental conditions.

Towards the end of World War II, inorganic fibers were introduced. This is what
led to the growth of the composites industry and to the general sense that composites are
modern, high-tech materials. In particular glass fibers and their use in “fiberglass” changed
the composites industry. Although the trend is towards high stiffness composites, it is
instructive to mention a few facts about fiberglass. Some of the earliest fiberglass structures
were radomes.™™ Now, high performance racing cars, and nearly all recreational boats are
made of fiberglass. Itis noted that these are all shell like structures. This takes advantage of
the directional properties of composite materials. Metals are generally isotropic; therefore
thin shells of metal dent and buckle easily. The limitation of fiberglass is that its work of
fracture is on the order of 70 kJ/m? which is low compared to steel. The low toughness
leads to reduced crash worthiness, and this fact has left fiberglass with only a limited role
in the automotive industry.

Although the toughness of fiberglass is low compared to steel, it is relatively high,
considering that the toughnesses of the individual constituents is extremely low. Although
stiffness (and to some degree, strengths) are linear combinations of the composite compo-
nents, toughness is certainly not. The work of fracture of composites is greatly enhanced by
crack trapping and crack bridging combined with frictional sliding and pull-out. The exis-
tence of these toughening mechanisms has given researchers hope that materials composed
of more brittle components could be made “useful” in composite form. This is desirable
since more brittle components are generally much stiffer and have better high temperature
and wear characteristics. Thus, research into high stiffness composites began.

Experimental investigations into fiber reinforced composites did not begin in earnest

until the mid 1960’s. These early investigations typically dealt with materials such as

** Dome-like fiberglass structures which housed radar scanners during World War I1.
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carbon fiber (graphite) reinforced epoxy. The work by Cook and Gordon (see Gordon,
1979) contains some of the earliest studies of fiber bridged matrix cracking. Ceramic
matrix composites lagged behind because they were difficult to manufacture and therefore
were expensive and wholly unpredictable. Glass-ceramic composites were first to be
manufactured since the glassy phase allows the ceramic to flow at lower temperatures. Since
the early 1970’s, advances in highly refractory, high stiffness fibers has enabled researchers
to consistently produce glass-ceramic matrix composites which do not fail in a completely
brittle fashion. Philipps (1974) was one of the first to study a glass-ceramic matrix which was
reinforced with carbon fibers. These composite materials have low density, are chemically
inert and have some degree of toughness. However, the glassy phase in the matrix and
the carbon fibers led to less-than-spectacular high temperature capabilities. In addition,
these materials have a relatively low ultimate strength, even when the fibers are aligned
in the loading direction. As is typical for fiber reinforced composites, tensile strengths
are non-existent under off axis loading. The next advanced composite material beyond
glass-ceramic matrix composites are fully crystalline ceramic composites. Although these
materials provide improved stiffness, strength and temperature resistance, they are still
difficult and expensive to manufacture. However, since materials processing technology
is constantly improving, these ceramic composites will most likely play important roles
as future high temperature structural materials. Despite the limitations associated with
glass-ceramic matrices, due to significant innovation in fiber technology coupled with the
continued difficulties in processing fully crystalline ceramics, glass-ceramic composites
remained readily available as a research material.

In the early 1980’s a high strength SiC fiber by the name of Nicalon (Nippon Carbon
Co., Yokahama, Japan) was introduced. These fibers are readily available in bulk, and
this has led to a tremendous amount of brittle matrix composites (BMC) research using
glass-ceramic matrix composites. The first Nicalon composite system commonly available

to the research community was Nicalon SiC fibers reinforcing Lithium AluminoSilicate
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(LAS) which was produced at UTRC (United Technologies Research Center, Hartford,
Connecticut) by Brennan and Prewo (1982). The early work with SiC/LAS dealt primarily
with presenting the mechanical behavior and identifying the damage mechanisms (Brennan
and Prewo, 1982; Mah et al., 1985a; Marshall and Evans, 1985). With regards to the
development of tough composites, this research into mechanical behavior was important
in that it showed which micromechanisms were important enough to require individual
attention.

Previous studies (Marshall and Ritter, 1987; Evans, 1990) have shown that toughening
in BMCs is achieved by the energy absorbing processes of damage development. It is
well known (Ashby and Jones, 1980) that although the toughnesses of each individual
constituent in a composite are quite low, the crack trapping and deflection and frictional
sliding in composites can lead to relatively large toughnesses (work of fracture). The
following toughening mechanisms have been identified for fiber reinforced ceramic matrix
composites: matrix cracking, fiber bridging, debonding and delamination, and fiber pull-
out. In their review article, Evans and Marshall (1989) present analytical results for several
of the individual micromechanisms. Much of the early work was done with flexural loading
conditions. This creates non-uniform and to some extent unknown stress fields within
the specimen. More recently Sorensen et al. (1992), Daniel et al. (1993) and Walter and
Ravichandran (1995) have performed tension tests and characterized damage for the full
loading history.

Recent research in brittle matrix composites has also branched into areas related to the
individual damage mechanisms. Most models of matrix cracking which include bridging
effects are based primarily on the shear-lag concept (see Section 3.1). However, there are
also models which have modified the shear-lag approach. Danchaivijit and Shetty (1993)
use a new shear-lag formulation with a stress intensity approach which accounts for bridging
and frictionally sliding fibers. Dharani and Tang (1990) have used a modified (“consistent™)

shear-lag model which allows the matrix to carry normal stress as well as shear stress. This
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approach is logical since for brittle matrix composites, the matrix is nearly as stiff as the
fibers and thus initially carries a significant portion of the load. There are also matrix
cracking investigations which do not incorporate the shear-lag concept. Weitsman and Zhu
(1993) have based their matrix cracking analysis on an energy criterion, as have Kuo and
Chou (1995). Wijeyewickrema and Keer (1991) have used fracture mechanics to analyze
various potential crack configurations in fiber composites. Pagano and Brown (1993) have
developed an axisymmetric full-cell cracking model; this model can also account for non-
uniform fiber distributions which are believed to play an important role in matrix cracking
(Sgrensen et al., 1992). Curtin (1993) has developed a model which includes fiber breaks
and Weibull statistics. Spearing and Zok (1993) have also considered statistics of initial
flaw distributions in determining the evolution of crack density. Similarly, Cho et al.
(1992), theorized that local variations in matrix strength will have significant influence on
the spacing of matrix cracks.

There are many experimental investigations into matrix cracking. By making surface
replicas of tensile composite specimens Kim and Pagano (1991) have studied the initiation
and propagation of matrix cracks. Beyerle et al. (1992), Pryce and Smith (1992) and Wang
and Pavizi-Majidi (1992) have experimentally observed the development of matrix cracks
and have provided plots of the matrix crack density for the compete loading history. Some
authors have used acoustic emission to qualitatively visualize matrix cracking (e.g., Kim
and Pagano (1991); Harris et al., 1992; Walter and Ravichandran, 1995).

For all of the active damage mechanisms in ceramic matrix composites, the interface
between the fiber and the matrix plays a key role. Thus, another large fraction of the
research effort to toughen BMCs has focused on the fiber-matrix interface (e.g., Kerans et
al., 1989). This specialization has taken the form of numerical, analytical and experimental
investigations and models. It has been postulated that the fiber-matrix interface properties
determine the extent of fiber pull-out (Evans and Marshall, 1989; Kerans et al., 1989) and

have important effects on material response (Cao et al., 1990; Llorca and Singh, 1991). Fiber
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pull-out and push-in tests have been developed to study the energy dissipation of the fiber
pull-out process (Marshall and Oliver, 1987) and to determine interface properties (Weihs
and Nix, 1991; Laracurzio and Ferber, 1994). More recently a “microcomposite” specimen
(a single coated fiber surrounded by an annulus of matrix) was developed for determining
interface properties (Lamon et al., 1995). Among others, Kerans and Parthasarathy (1991),
Freund (1992) and Marshall (1992) have developed models of the pull-out/push-in process.
The effect of temperature on the fiber-matrix interface properties has important implications
for the thermomechanical response of ceramic matrix composites. These implications are
outlined below, within the context of high temperature testing of ceramic matrix composites.

Fiber-matrix debonding has also been investigated. Charalambides and Evans (1989)
and Hutchinson and Jensen (1990) have developed analytical models of debonding which
take residual stresses and frictional sliding into account. Dharani and Recker (1991) have
used their consistent shear-lag model to study initiation and propagation of debonding. More
recently Budiansky et al. (1995) approximate the stresses need to initiate and propagate fiber-
matrix debonding from a matrix crack. Experimentally, due to the difficulties in visualizing
debonding, relatively little work has been done in the area of debonding. However, the
experimental works of Wooh and Daniel (1994) and Walter and Ravichandran (1995) have
used ultrasonics to investigate debonding.

Ceramic matrix composites were originally proposed as the high temperature material
of the future (Katz and Kerans, 1988). Despite this proposition, there has been relatively
little high temperature work with ceramic matrix composites. Most likely one of the first
high temperature investigations with a glass-ceramic composite reinforced with Nicalon SiC
fibers was that of Prewo and Brennan (1980). For temperatures up to 700°C no degradation
in material properties was observed. Since then authors (Mah et al., 1985; Luh and Evans,
1987; Prewo et al., 1989) have found that there is a transition to a brittle, notch sensitive
material at temperatures greater than 1000°C. Attention has focussed on embrittlement of

the interface as the primary cause for this transition (Bischoff et al., 1989; Kim et al., 1991).
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Since creep is an important issue at high temperature, researchers have also focussed on
determining the mechanisms of creep (Wu and Holmes, 1993; Weber et al., 1994). Park
and Holmes (1992) have modeled the high temperature creep process with finite elements.
Meyer et al. (1993) used creep to characterized the interface and found that an amorphous
SiO; layer flows viscously at high temperatures.

Many engineering materials must be able to function in fatigue environments, and
within their realm of proposed applications, ceramic matrix composites provide no excep-
tion. Fatigue has been investigated by Butkus et al. (1993) at high temperatures. It has been
found that the matrix damage and matrix creep at high temperatures is the limiting factor
for fatigue life of ceramic matrix composites. Interesting studies of frictional heating by
Holmes and Cho (1992) have found temperature rises of more than 100°K during fatigue
loading of a ceramic matrix composites.

Unidirectional fiber composites have meaningful strength only in the fiber direction.
It is clear that in actual applications, composite laminates will be used. There is a large
body of research into epoxy matrix laminates; much of this work regards determining
the effective elastic properties (see Hashin, 1983). Only more recently have ceramic
matrix composite laminates been investigated (Wang and Parvizi-Majidi, 1992; Xia and
Hutchinson, 1994; Daniel and Anastassopoulos, 1995). Most of this work with laminates is
concerned with determining when and how cracks propagate through the different laminates.
More recently Kuo and Chou (1995) have developed an energy criterion for evaluating the
onset of damage in cross-ply ceramic matrix composites. Other studies have concerned
themselves with macro crack (notch) propagation in ceramic composite laminates (e.g.,
Cady et al., 1995). A new technique for examining damage uses SPATE (stress pattern
analysis from thermoelastic emission) to measure small temperature changes associated
with changes in hydrostatic stress (Mackin et al., 1995). This technique has been used
to study damage in notched ceramic matrix composites. In addition, fatigue studies with

laminates have also been performed (Habib et al., 1993; Karandikar and Chou, 1993).
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This brief review of composites in general and ceramic matrix composites in particular
shows that composites have been in existence for a long time and that there is a large body of
research related to composites (particularly in the last decade). However, extensive research
will continue into the future since the improved understanding of the mechanical response
of composites together with the improvement of processing methods will increase the use

of composites in practical applications.

1.3 Approach and Objectives

Since future ceramic matrix composites are of the same system as glass-ceramic
composites (i.e., stiff fibers reinforcing a brittle matrix), investigations with glass-ceramic
composites are also relevant for future composites applications. In addition, by placing
the existence and evolution of damage in terms of fundamental mechanics, it is anticipated
that many of the results encountered with glass-ceramic composites can be applied to other
composites systems. As was mentioned above, in actual applications, composite laminates
will most likely be used. Despite this fact, only unidirectional composites are studied in the
present investigation. This specialization is required because composite properties are best
in the fiber direction, and improvement of composites as an overall structural material will
occur only if properties in the fiber direction are improved. Furthermore, unidirectional
composites are the building blocks of laminates, and therefore fundamental understanding
of unidirectional composites is necessary for understanding laminate response.

Determining the existence, sequence and extent of damage mechanisms in unidirec-
tional brittle matrix composites is the main goal of this investigation. A secondary, but
equally important goal is determining the effects of strain rate on the damage process. The
realization of these goals 1s attempted through a combination of experiments and numerical
simulations.

In the next chapter, experiments with a glass-ceramic matrix composite (unidirectional

SiC reinforcing a calcium aluminosilicate matrix) are described. Post-test microscopy was
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used to establish the existence of different damage mechanisms. In situ strain, ultrasonic and
acoustic emission measurements were used to track the evolution of damage. The results
indicate that there are “zones” which are dominated by individual damage mechanisms.
In addition the percentage of the unrecoverable energy absorbed by each zone (damage
mechanism) is estimated. A separate chapter is devoted to analyzing the usefulness of two
models of matrix cracking.

The effect of strain rate on the damage evolution is studied in Chapters 3 and 4. In
Chapter 3 the same composites studied earlier were tested at two different strain rates
within the quasi-static strain rate regime. Significant changes in the material response were
observed. A model composite system was designed and tested at various strain rates; the
results are presented in Chapter 5. Similarities to the response of the actual composite
were noted. The advantage of the model system was the ability to make full-field optical
measurements in order to observe the evolution of damage.

In the final chapter numerical simulations with a unit cell composite are described.
Parametric studies with the interface toughness and strength and matrix toughness were
performed. In addition, the propagation of matrix cracks and the initiation of debonds was
observed. Several aspects of the experimentally determined material response of SiC/CAS

composite were reproduced by the numerical simulations.
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CHAPTER 2

Ceramic Composite Experiments

2.1 Introduction

Experiments were undertaken to understand the details of how ceramic matrix com-
posites deform. The ceramic matrix composite used for these experiments was a research
material called SiC/CAS (calcium aluminosilicate reinforced with silicon carbide fibers).
An array of different measurements were made and based on these measurements and
on observations, the deformation (damage) history is postulated. All experiments were
performed with unidirectional composite specimens and the load was always applied in
the fiber direction. The results presented in this chapter are all for “lower” strain rates.
Interesting changes in material response arise when the strain rate is increased. Chapter 4
is devoted to these “higher” strain rate experiments.

Until very recently, much of the testing of ceramic matrix composites has been flexural
testing. This has been primarily because of the complications in designing specimens and
grips for valid tension experiments. However, flexural specimens are loaded by non-uniform
stress fields, making the interpretation of damage evolution difficult. This has been realized,
and since approximately 1990 various specimen geometries and gripping methods have been
presented for tension testing of ceramic matrix composites. Cranmer (1991) has grouped
these methods into the following categories: pin-loaded, edge-loaded, and tabbed, and he
summarized the advantages and disadvantages of each. To date, there is still no published

standard for tension testing of ceramic matrix composites or monolithic ceramics.
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Previously published experimental work in ceramic matrix composites has been out-
lined in Chapter 1; most of the research referenced therein is with SiC/CAS. Throughout
this chapter, reference will be made to only relevant published research. The CAS matrix
is preferred over other glass-ceramic matrices because it is nearly fully crystalline (>99%).
This gives it better high temperature performance and more closely resembles future fully
crystalline ceramic composites (e.g., SiC/SiC, SiC/Al,O3).

Although itis clear from Chapter 1 that there is a large body of research on brittle matrix
composites, it is believed that there are still fundamental issues to be resolved. For this
reason work is continued with a unidirectional composite system with loading in the fiber
direction. The results presented in this chapter are unique in that the postulated deformation
mechanisms are used to explain macroscopic measurements. In addition, several new
observations and measurements have been made. This chapter proceeds as follows: after
introducing specifics related to the SiC/CAS material system, the experimental procedure is
presented. Particular attention is given to the specimen and grip design and strain, acoustic
emission and ultrasonics measurements. The next section of the chapter is devoted to
presentation and discussion of the experimental results and observations. Based on these
results, the history of damage evolution is postulated in the subsequent section. The chapter

concludes with a brief summary.

2.2 Material System

The experimental Brittle Matrix Composite (BMC), used in the present investigation
was obtained in plate form from Corning Inc. (Corning, New York). The silicon carbide
fibers are Nicalon SiC (Nippon Carbon Co., Yokahama, Japan) and the matrix material is
Corning CAS-II (calcium aluminosilicate). This composite is commonly called SiC/CAS
and is available in various layups (fiber orientations). As the introduction indicated, this
material is quite prevalent in the research community; however, to date, it is not used

in any engineering applications. For the present study, only unidirectional specimens
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were investigated. The as-received plate consisted of eighteen 0° plies corresponding to a
thickness of approximately 3.25 mm.

The following information regarding the manufacture of SiC/CAS is known (Stuart,
1992). An organic binder is used to impregnate SiC fiber tows (bundles of fibers) with
a slurry of CAS matrix material, and then the fiber tows are laid out to dry as 12 x 36
inch sheets. Next, this sheet is cut into 6 inch square pieces which are stacked on top of
each other in the desired orientation (in the present case, 18 plies are all aligned in one
direction). The stacked plies are then heated to burn off the majority of the binder. The
material is subsequently hot pressed, starting at around 2000 psi and 1400 °C. The pressure
and temperature are gradually decreased until at approximately 850 °C the material is
under atmospheric pressure only. Various known properties of the individual phases and
the composite are shown in Table 2.1. It was shown that the glass-ceramic composite,
SiC reinforcing Lithium AluminoSilicate (LLAS), is actually a four phase material with
an interface between the fibers and matrix composed of a layer of carbon and NbC layer
(Bischoff et al., 1989). During heat treatment part of carbon layer is replaced by SiO»
and the Niobium oxidizes. Similarly, Meyer et al. (1993) report that SiIC/CAS also is a
four phase material. In addition to the fiber and the matrix, there is a carbon layer and a
SiO; layer around the fiber. Although both of these interface layers are extremely thin,
they are not well understood. According to Cooper (1994), it is possible that the carbon
layer is porous, and it is probable that the fiber changes from amorphous to polycrystalline
during the processing of the composite. The experiments described in this chapter were
performed on two batches of material which differed in their fiber volume fractions. Values
reported in Table 2.1 are for the first batch with a 41% volume fraction of fibers. Additional
experiments were performed with 50% fiber volume fraction SiC/CAS composite. No

attempts were made to compare results from the different batches.
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Table 2.1: Material Properties of SiC/CAS-II

Material

Fibers
(SiC)

Matrix
(CAS 1)

Composite
(CAS 1I/SiC)

Property

Young’s Modulus® (E)
Ultimate Strength®
Thermal Expansion Coef.} (a¢)

Strain to Failure (e'ff:)

Young’s Modulust (E,,)

Shear Modulus? (G,,,)

Thermal Expansion Coef.7 («v,,,)
Poisson’s Ratio* (1,,,)

Strain to Failuret (/)

Glass Transition* (T,)

Density (p)

Young’s Modulus (E3)
Transverse Modulus (E1, E»)
Shear Modulus (G1»)
Major Poisson’s Ratio (7/31)
Minor Poisson’s Ratio (/51)
Elastic Limit Stress (o.,.)
Elastic Limit Strain (¢..,.)
Ultimate Strength (o)
Ultimate Strain (¢,,)

Fiber Diameter (2a)

Fiber Vol. Fraction (cy)

Value

190 GPa

1300 MPa

3.1 x 107%eC—!
0.87 %

88 GPa

42 GPa

4.5 x 1076°C—!
0.26

0.15 %

850 °C

2.7 g/em?
130 GPa
120 GPa
49 GPa
0.29
0.35

170 MPa
0.14%
420 MPa
0.78%
14.6 pm
0.41

Simon and Bunsell (1984) T Harris et al., 1992

Assumed based on hot-pressing data.

2.3 Experimental Procedure

' Davies et al.. 1993

All of the experiments with SiC/CAS were performed on an MTS (Material Test

Systems Corporation, Minneapolis, Minnesota) tension-torsion machine with 15 kN axial

capacity. The machine was controlled with an MTS 458.20 controller. Experiments were

conducted in displacement control with a ramp function input by an external function

generator. The “lower” strain rate experiments presented in this chapter were performed

at crosshead displacement rates of 0.0075 mm/s. The “higher” rate experiments presented

in Chapter 4 used crosshead displacement rates of 7.5 mm/s. Load and displacement was
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output by the MTS controller and was recorded using 12 bit data acquisition. Details of the
specimen and grip design are given in the next section. Then, in the subsequent sections,

the use of various transducers is discussed.

2.3.1 Specimen Design/Grip Details

The importance of specimen and grip design when testing ceramic materials cannot
be overstated. Due to the brittle nature of ceramics, poor specimen and/or grip design
would lead to stress concentrations which would invalidate the experimental results. For
the present work it was desired to design specimens and grips which were inexpensive,
which did not require elaborate equipment, and which allowed for making various in situ
measurements.

The first step required choosing a grip method. Various options were considered. A
flexible grip system is one in which the grips do not transmit moments (i.e., they are free to
rotate). In such a system, the centers of rotation of the grips and the line of symmetry of the
specimen must all lie on the same straight line throughout the deformation. Additionally, in
order for the grips to align themselves under load, the grips must be a) stiff enough such that
any rotation at one end of the specimen is equal to the rotation at the other and b) essentially
friction free. Flexible grip systems are incapable of applying compressive forces. Rigid
grip systems require that the axis of symmetry of the specimen be on a line parallel to the
direction of motion of the grips. These grips are required to be sufficiently stiff such that
the displacements are only in the axial direction. The commercially available self-aligning
(flexible) grips generally work with a piston which is floating in hydraulic fluid. These grips
are costly to either purchase directly or to develop in-house. In addition, the effectiveness
of mechanical, self-aligning grips with bearings are limited by friction at even low loads.
Such grips also have fixed centers of rotation which, as was previously mentioned, must
both still lie on the axis of symmetry of the specimen. Therefore it was decided to proceed

with a rigid grip system.
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Rigid grip systems require manual concentric and angular alignment of one grip
with respect to the other. Although adjustment fixtures are commercially available (e.g.,
MTS Corporation, Minneapolis, Minnesota), it was found that for MTS servo-hydraulic
machines, the position of the load cell can be adjusted concentrically. In addition, angular
alignment can be achieved by using shims in conjunction with load cell positioning. Proper
alignment is accomplished easily when the grip fixtures are cylinders. A tube (or box
stock) whose inner diameter matches the outer diameter of the grip fixture is fitted over
the cylindrical grip fixtures. The alignment is then performed so that the tube slides freely
around both grips. Validation of this alignment technique will be discussed shortly.

Various options for specimen design were also considered. It was decided that pinned
specimens would be too expensive to machine and would most likely fail due to the stress
concentrations at the pins. More elaborately machined “dog-bone” specimens would also be
prohibitively expensive to machine and would most likely sustain internal damage during
the machining process. For these reasons, it was decided to proceed with tabbed strip
specimens. Specirhen machining consisted only of cutting specimens into strips with a
diamond wafering blade. For all of the present experiments, three inch long and 1/ inch
wide strips were cut from the /g inch thick plate.

To transfer load from the grip to the specimen, dovetail slots were machined in
the cylindrical grip fixtures, and angularly matched tabs were glued to the specimens. A
photograph of the side view of the cylindrical grip fixture and a ceramic composite specimen
with its angled tabs is shown in Fig. 2.3.1a. A photograph of the grip and the specimen from
the front is shown in Fig. 2.3.1b. In this front-view photograph, the wedges which keep the
specimen centered within the grips are visible. The specimen tabs were angled by 10° in
order to produce a normal force and thereby facilitate the transfer of load through the glue.
Since the cylindrical grip fixtures are steel, for low stiction, brass was used for the angle-tabs.
The tabs were glued with SpeedBonder 325 (Loctite Corp, Aurora, Illinois). Gluing the tabs

on the specimens was done by hand. This led to asymmetries due to placement of the tabs
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and varying glue layer thickness. Assuming the worst possible bending configuration, tab
offsets of only 15.:m would cause significant bending strains. Therefore, following gluing,
a special tooling fixture was designed, and a 3 axis CNC milling machine was programmed

to machine the specimen and its tabs to be perfectly symmetric.

a) b)

F1c.2.3.1 a) A photograph of the side-view of the quasi-static grip fixtures with a ceramic
matrix composite specimen. b) A front-view photograph of the grip fixtures
with a fully instrumented failed specimen and wedge spacers.

The alignment of the grip fixture was checked before each experiment. After the load
cell was adjusted such that the alignment tube moved freely around it, the tube was removed
and a brass dummy specimen was elastically deformed. This brass specimen was machined
from a solid piece of brass with the same CNC program as that for the actual specimen. It
was used because brass has a comparable modulus to the ceramic matrix composite. The
brass specimen was instrumented with strain gauges on each of the 4 gauge section surfaces

(see Section 2.3.2 for details regarding strain gauge sensing). The 4 strain gauge values
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were checked with ASTM Standard E-1012 (1993) to verify that the normalized bending
strain was less than 5%. This calculation is summarized in Appendix A. For the described
setup, the worst normalized bending strains were calculated to be 1.3%.

As a further check of the alignment, Aluminum Nitride (AIN), a monolithic ceramic
was tested. As with most monolithic ceramics, AIN fails at less than 0.1% strain, and
misalignment during tension testing is revealed through grip-section failures. For the
present experiments with AIN, failures were typically in the gauge section. From one such
experiment, the stress-strain curve generated from two strain gauges on opposite sides of the
specimen is shown in Fig.2.3.2. These curves show that there is negligible bending from
0.005% strain to ultimate strain at 0.07%. As expected the curve is linear with a modulus
of 350 GPa, and the ultimate strength is 250 MPa. The strain rate for this experiment was
10~%~!. The noise seen in the data is within the Wheatstone bridge circuitry. For all
experimental results reported, macroscopic failure always occured within the gauge section

(vis-a-vis Fig. 2.3.1b).
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F'1G.2.3.2 The axial stress-strain curves for a monolithic Aluminum Nitride specimen with
strain gauges on opposite sides of the specimen.
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The primary advantage to this grip and specimen design and testing procedure is the
ability to cost-effectively obtain valid experimental data for testing of ceramics and ceramic
composites. By changing the thicknesses of the tabs and/or the spacer wedges is possible
to accommodate different specimen geometries. It is also noteworthy that the specimens
and grip fixtures are such that the gauge section surfaces are fully accessible for mounting
various transducers. Experiments have been performed with multiple strain gauges and
ultrasonic transducers or an acoustic emission (AE) transducer. The specimen shown in
Fig.2.3.1b has an ultrasonic shear wave and a normal wave transducer on the back face
and a 0/90° strain gauge rosette on the front face of the specimen gauge section. The main
disadvantages of this type of specimen are the reliance on the glue to transfer the force from

the tab to the specimen and the limitations regarding testing in hostile environments.

2.3.2 Strain Sensing

Various different foil resistance strain gauges were used throughout the experiments.
The different gauges were used either for convenience (e.g., 0/90 strain gauge rosettes) or
dimensional reasons. All gauges were from Measurements Group (Measurements Group,
Inc., Raleigh, North Carolina), were 350 Ohms, and had a 1.5% maximum strain capability.
Gauges with a grid size of 1 x 2 mm (031EC and 031DE) and gauges with 2 x 3 mm grid
sizes (062AP and 062TT) were used primarily on the 3.25 mm sides and 6.5 mm faces
of the specimens, respectively. To check for geometric effects, the smaller gauges were
used on the 6.5 mm faces and the larger gauges were used on the 3.25 mm sides for two
experiments. No differences were noted. All gauges were attached to specimens using
Loctite Depend Adhesive and following the Measurements Group guidelines for gluing.

Measurement of the change in resistance with strain for the foil gauges was done
using in-house constructed Wheatstone bridge circuitry. These bridges are standard equal-
arm bridges and are documented in references such as Dally and Riley (1991). The

Wheatstone bridges were powered with 10 Volts DC. This is approximately 3 times higher
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than the recommended applied voltage for the gauges mentioned above. Nonetheless, it
was observed that the high voltage did not produce thermal effects in the output, nor were
the gauges degraded in any way. The advantage of the high bridge voltage is that the noise
to signal ratio is much lower. The output signal from the Wheatstone bridges was recorded
by 12 bit continuous data acquisition (Nicolet 440 or Nicolet 20x oscilloscopes, Nicolet
Instrument Corporation, Madison, Wisconsin and Masscomp Model 5400, Masscomp,
Westford, Massachusetts). For the Nicolet 20x and Masscomp systems, amplifiers/filters

(8300 XWB Amplifier, Preston, Anaheim, California) were used to condition the signal.

2.3.3 Acoustic Emission

On some specimens acoustic emission (AE) was monitored. As explained by Eitzen
and Wadley (1984), acoustic emission is the name given to transient mechanical waves
which are spontaneously generated by abrupt, localized strain changes within a body.
Dislocation motion and/or crack propagation are two mechanisms which can cause such
localized strain changes. The acoustic emission causes surface motion of a body which
can be measured by transducers. It is important to realize that different events within
the material will cause different surface motion. One of the difficulties with acoustic
emission is interpreting the data quantitatively. It is possible to detect and locate sources,
however, it is not possible to determine event characteristics such as size and direction
of propagation. For the current experiments, a /4" diameter AE transducer (Micro-30,
Physical Acoustics Corp., Princeton, New Jersey) was coupled to the 6.5 mm specimen
face using a special holder and vacuum grease for the couplant. This transducer is tuned to
resonate at approximately 150 kHZ.

Appendix B shows a schematic of the acoustic emission data acquisition setup. The
main challenge with data acquisition was the need to sample at a high rate for the majority
of the duration of a lower strain rate experiments (approximately 150s). The output from the

acoustic emission transducer went first to a low noise pre-amplifier (Model SR560, Stanford
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Research Systems, Sunnyvale, California) and then to an analog to digital (A-D) converter
(DSP56ADC16, Motorola Semiconductor Products Sector, Austin, Texas) which was AC
coupled and used in 8 bit mode. The A-D was part of a Motorola Digital Signal Processor
(DSP560000ADS) which was directly connected to a 486-50 PC. The PC triggered the DSP
to run a program which uniformly sampled the output of the A-D at 48 kHZ and wrote
the data directly to the PC’s expanded memory for 130s. The speed of sampling depended
on the speed of the PC bus and the duration of the sampling depended on the amount of
expanded memory in the PC. For timing purposes, when data acquisition began and ended,
a signal was sent from the PC to an independent data acquisition channel. The impedance

of the timing signal was lowered through an op-amp follower.

2.3.4 Ultrasonics

For several different experiments, in situ ultrasonics was performed. A 10 MHz
ultrasonic longitudinal wave transducer and a 5 MHz ultrasonic shear wave transducer (#V-
129, #V-157, Panametrics Inc., Waltham, Massachusetts) were coupled to either the 6.5 mm
face or 3.25 mm side of the specimens. These piezoelectric transducers can produce and
measure vibration at the transducer surface. The normal wave and shear wave transducer
produce vibration perpendicular and parallel to the transducer surface, respectively. The
shear wave transducer was oriented with polarization either perpendicular or parallel to the
fiber direction. The ultrasonic transducers were used with a pulse-echo ultrasonic analyzer
(Model 5052UA, Panametrics Inc., Waltham, Massachusetts). After being excited by a
initial burst pulse, the transducer “listens” for echos which constitute reflections of the
initial burst. As shown in Fig.2.3.3, the analyzer output has both the initial burst pulse
and subsequent echos. It is difficult to manually correlate the peaks in the burst pulse
with the peaks in the reflections. However, as is seen in Fig. 2.3.3, the reflections are very
self-similar, and hence the time between corresponding peaks is easily determined. Upon

sustaining damage which is large with respect to the ultrasonic wave length and which is
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“properly” oriented with respect to the ultrasonic wave particle motion directions, the wave
speed decreases. Hence the drop in wave speed is related to the damage state of the material.
In addition, since the wave speeds are related to the elastic constants of the material, the

influence of the damage state on the elastic constants can also be determined.
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F'1G.2.3.3 The signal from the ultrasonic analyzer showing the initial burst pulse and three
subsequent reflections of a shear wave.

In order to determine the wave speed at a given instant of time, it was necessary
to capture the initial pulse and several echoes output by the ultrasonic analyzer. Since
the normal wave speed and shear wave speeds for undamaged SiC/CAS (perpendicular
to the fibers) are 7200 and 4200 m/s, respectively, and ultrasonic frequencies are in the
megahertz regime, the signals needed to be sampled at a very high rate. Thus the signal
from the analyzer was passed to an HP 54510A oscilloscope (Hewlett Packard, Palo Alto,
California) sampling at 1 GHz. A schematic of the data acquisition setup is shown in
Appendix C. The 486-50 PC was equipped with a GPIB board (Model NI-488.2, National

Instruments, Austin, Texas) and was programmed to trigger the ultrasonic analyzer, to
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acquire and store the data from the oscilloscope, to switch the relay, and then to repeat the
process. Each digitized signal (waveform) consisted of 8000 eight bit data points. The
time to acquire each waveform was limited by the oscilloscope buffering to approximately
1.5 seconds. After an experiment, there were a large number of files for which the time
between wave bursts needed to be calculated. It was found that since the bursts remained
self-similar, the time between bursts could be followed by using an autocorrelation program.
The autocorrelation procedure is also able to identify time-of-travel using only the initial
burst pulse and a single reflection. This is useful since for heavily damaged materials,
attenuation of the waves can be quite severe, and it is possible that only one reflection will

be clearly identifiable.

2.4 Experimental Results and Discussion

2.4.1 Stress-Strain Curves

Typical stress versus axial strain curves for lower strain rate (~ 10~ %s71) experiments
with SiC/CAS are shown in Fig. 2.4.1. The load was applied in the x5 direction as defined in
Fig.2.4.1. The Young’s modulus for this material is seen to be around 130 GPa. Following
the initially linear behavior, there is a severe loss of stiffness which precedes another nearly
linear region which has a very low slope. Next there is a stiffening of the material, and
finally, a slight leveling off before ultimate failure. The tangent modulus of the stress versus
axial strain curve showed that the curve is essentially tri-linear with two transition regions.
Macroscopic failure was at an ultimate strength and strain of approximately 420 MPa and
0.8%, respectively. The curves presented in Fig. 2.4.1 are only typical. Other experimental
curves often have slightly different shapes and ultimate strain values. For this reason it is
assumed that the strain gauges are able to sense different degrees of damage and in particular

matrix crack opening displacement.
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F1G.2.4.1 Typical stress versus axial strain curves for SiC/CAS with load applied in the
X3 direction.

Several stress versus transverse strain curves for gauges on the 6.5 mm face and the
3.25 mm side are shown in Fig.2.4.2. For the coordinate system shown, the transverse
strain on the 3.25 mm face is ¢;; and the transverse strain on the 6.5 mm face is €29.
The transverse strains begin, as expected, by showing compressive deformation due to the
Poisson effect. At a stress level of about 170 MPa, there is a reversal of deformation which
represents expansion of the specimen in the transverse direction. Upon further loading, the
transverse strains reverse again. If this material were perfectly transversely isotropic at all
stages of deformation, ¢;; and €2, would be identical throughout the loading history. This
is the first time that transverse strain measurements on the side of plates of SIC/CAS have
been made. The differences between 17 and €55 are quite substantial and will be discussed
in Section 2.4.5. Nevertheless, notice that the highest transverse strain was less than 0.25%,
and for some measurements the maximum transverse strain was less than 0.05% strain.

Post-test observations of the specimens showed that in all cases, the gauges remained fully
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bonded to the specimens. In addition, neither the size of the gauge nor the dimension of the
surface to which they were glued affected the strain measurements. As was the case with the
axial strain measurements, the transverse strain measurements show that the strain gauges
can sense different levels of damage. This is evident in the €115 presented in Fig.2.4.2;
for other experiments, €2 showed significantly more variation, with, for some instances,

the transverse expansion causing bulging beyond the original transverse dimension of the

specimen.
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F'1G.2.4.2 Stress versus transverse strain curves for strain gauges on the 3.25 mm (¢1,) and
6.5 mm (e29) specimen faces.

Similar stress versus transverse strain curves have been presented by Harris et al.
(1992), Nardone and Prewo (1988) and Sgrensen (1993). However, for these authors,
the second reversal in transverse strain consisted only of a transition to vertical (constant
strain). This was not the case for the present experiments where, as is seen in Fig.2.4.2,
both €17 and €55 continue to measure further contraction after the second reversal. The

main differences between the present experiments, and those of the above listed authors is
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that the present experiments were performed at slightly lower crosshead displacement rates
and the specimens were slightly smaller. It is unknown if specimen size effects transverse
strain measurements. As will be shown in Chapter 4, higher strain rate experiments do have

an incomplete second reversal of the transverse strain.

2.4.2 Micromechanisms of Deformation

Post test microscopy (optical and scanning electron) was performed on different speci-
men cross sections. The purpose of these investigations was to establish which deformation
(damage) mechanisms had been active during the experiment.

The macroscopic fracture surface of the specimens was examined using a CamScan
(Camscan USA, Mars, Pennsylvania) scanning electron microscope (SEM). Figure 2.4.3
is an SEM micrograph of a fracture surface taken at approximately 45° to the direction of
loading (fiber direction). The surfaces of both the fibers and the matrix show brittle failure.
Note that the macroscopic crack did not propagate straight, and that the fracture surface is
quite wavy. Significant fiber pull-out is clearly visible in the form of both protruding fibers
and empty holes. This implies that, at the very least, during the final stages of loading, fiber
pull-out with frictional sliding was an important damage mechanism.

Figure 2.4.4, an optical micrograph of a specimen polished in the direction of the
fibers, shows matrix cracks bridging the fibers. The average crack spacing is approximately
150 pm. Recall that the smallest strain gauge grid surface was 1 mm. This implies
that there were approximately 6 cracks under each strain gauge. Results in Section2.4.3
will suggest the stage during the test at which these matrix cracks were formed. Similar
polishing of untested specimens showed no matrix cracking. However, the long, black
voids were present in both the tested and the untested, polished specimens; these voids are
presumably caused by the mechanical polishing process. Because of the damage introduced

during polishing in this particular orientation, it is not possible to identify debonding of
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F1G.2.4.3 An SEM micrograph of the macroscopic fracture surface (x~ 45° to the direction
of loading) showing fiber pull-out.

the fiber-matrix interface. However, in Section 2.4.4 ultrasonic results which identify the
propagation of debonds in situ will be discussed.

Upon polishing untested specimen cross sections perpendicular to the fibers, it was
observed that the SiC fiber polished at nearly the same rate as the CAS matrix and that the
polished surface was completely smooth (see Fig.2.4.5). However, for tested specimens,
optical micrographs such as that shown in Fig. 2.4.6 had regions where the polished surface
was not smooth. An SEM micrograph with one such region is shown in Fig. 2.4.7. Itis seen
that after testing, the composite is damaged in such a way that matrix material will break
away when polishing perpendicular to the fibers. These sections are small relative to the
whole polished section and they exist very nearly throughout the length of the specimen.
Thus, the periodic cracks shown in Fig.2.4.4 may be misleading in that there is possibly
additional damage distributed between the periodic cracks. This indicates that the three

dimensional nature of the damage may be important.
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F1G6.2.4.4 An optical micrograph of fiber bridged matrix cracking as seen on an intact
section of a specimen tested to failure.

F1G.2.4.5 Anoptical micrograph of an untested composites specimen polished perpendic-
ular to the fibers and showing a smooth, polished surface.
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F1G.2.4.6 An optical micrograph of a polished tested composite cross-section showing
“canyons” where matrix material has broken away.

F1G.2.4.7 An SEM micrograph of a polished, tested composite cross-section which shows
more detail of a region where the matrix has broken away.
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2.4.3 Acoustic Emission

The results for in situ acoustic emission (AE) measurements are shown in Fig. 2.4.8.
Along with the axial stress versus strain curve, acoustic emission events (represented in
terms of “counts”) are plotted. For the current experiments, a “count” is defined as an event
that is within a given frequency range and which exceeds an arbitrarily chosen threshold
level. The reason for bandpassing only certain frequencies is to separate various sources of
noise. In particular, it is essential that machine noise and vibration are removed from the
signal. After digitally filtering and thresholding the data, the distribution of counts plotted in
Fig.2.4.8 was determined. The threshold value did not qualitatively effect the results. Other
than a single peak the linear region is relatively quiet until about 100 MPa. The next region
has a distribution of events over approximately 0.2% strain. This distribution has a nearly
Gaussian shape centered around the narrow region in which the stress-strain curve becomes
severely non-linear. The recorded AE events originated from matrix cracking; thus, these
experimental results establish the zone in which the matrix cracking damage mechanism
was active. Following this region of active acoustic emission, there is little activity until very
near ultimate failure. It is likely that the events associated with macroscopic failure (fiber
failure and macrocrack propagation) will cover a broad frequency spectrum and therefore

will be recorded by the AE transducer.

2.4.4 Ultrasonics

The results for in situ ultrasonic wave speed measurements are shown in Fig.2.4.9
along with an axial stress-strain curve. The ultrasonic results are presented as wave speeds
normalized by the initial wave speeds (7200 and 4200 m/s for normal and shear velocities,
respectively). Itis seen that the wave speed is initially nearly constant and at approximately
0.2% strain, the speed drops quickly. At later stages in the test (=~ 0.4%) the speed levels
off slightly. For this particular experiment, a shear wave and normal wave transducer were

coupled to the 6.5 mm specimen surface. The direction of wave propagation (k) and the



]

CERAMIC COMPOSITE EXPERIMENTS 21

500 ~
1
]
: 140
.
| ;
400 + ! . 1120
;
;
1
$
~ y . 1100
4 ¥
4 H
A, 300 - : ”
ot 1
= i i 1 80 -
p—— 1
un ' =
n ' w : -
w0 H i ) O
L ' T ;160 ©
5 200 ¢ : NouEn {
e . R o
¥, "
w2 . NEEET 0
d 1
! TR T ;) 40
N Pt o ¥ y ¥
N ki 1 ' b e,
N e t! t vl o |
7 1 Y i
100 ¥ & Y
i #
i v '-~' 120
| 4 Y S
YAt L Ul iy
S\S ,"' ] Yy T A IRE .,‘- ,u"‘\ W
p o kb ‘v.‘*."f"‘- ;\‘t\ u‘\i‘\ ;". “Hﬁ‘}

0.0 0.1 0.2 | 0.3 0.4 0.5 0.6 0.7
Strain (%)

F1G.2.4.8 Acoustic emission counts plotted along with the corresponding stress versus
axial strain curve.

direction of particle motion (p) for each transducer is indicated schematically in Fig. 2.4.9.
These schematics represent the 1-2 plane of the material where the fiber direction is parallel
to the ‘3 direction. The decrease in wave speed is primarily due to the increase in transit
time through damaged material. Depending on whether cracks are opening or sliding,
the delay will be introduced in either the normal or shear waves, respectively. Based
on the geometry of the cracking and the particle motion produced by the two ultrasonic
transducers, it is realized that both longitudinal and shear wave speeds decrease primarily
as a result of debonding of the fiber-matrix interface. This is also true when the shear
wave transducer is polarized parallel to the fibers; however, for the two orientations of the
shear wave transducer, the material symmetry and damage sensing differences will produce
different results. These differences for polarizations normal to and parallel to the fibers
are illustrated in Fig. 2.4.10. It was observed that after the specimen failed and the region

under the ultrasonic transducers was unloaded, the wave speeds increased. Thus unloading
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I'1G. 2.4.9 The normalized ultrasonic longitudinal and shear wave (1-2 polarized) speeds
versus stress.

has the effect of masking some of the internal damage. This has important implications for
interpretation of post-test results.

The ultrasonic data can also be used to investigate the variation of the elastic constants
for the given loading history. The relationship between the ultrasonic wave speed and the
elastic constants are obtained through classical elastodynamics. It is important to realize
that the constants are universal only in the elastic region. After the elastic region, they are
not constant, but, rather, are functions of the given state of damage. If the same damage
evolved for a given loading, then local perturbations at the proper stress level, would yield
the same material constants. It is, however, likely that different loading configurations and
histories (including strain rate) will induce different damage. Nevertheless, determination
of the elastic “constants” is instructive in that it provides information on the current state

of damage.
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F'1G.2.4.10 Comparison of the change in normalized shear wave speed for wave polarized
normal to (1-2) and parallel to (2-3) the fibers.

For the transducer orientations shown in Fig. 2.4.9, the longitudinal wave speed (¢;)

and shear wave speed (¢, ) are related to the material constants as follows:

Cos
= and t =2

; (2.4.1)
o P

where p is the mass density of the material. For an isotropic, homogeneous, linearly
elastic material, C'1; = A+ 2y and Cg = 1, where A and 1 are the Lamé constants. If the
ultrasonic waves were “bar” waves C';; would be assumed equal to F, the Young’s modulus,
and the wave speed would be ¢}, = \/E/_/) For an isotropic material with Poisson’s ratio of
0.3, the one dimensional ¢, is 74.3% of the three dimensional ¢;. For anisotropic materials,
the expressions for C;; become quite complicated functions. For the current unidirectional
composites, as is typical in the literature, it will be assumed that transverse isotropy holds.
For the coordinate system defined in Fig. 2.4.1 with fibers in the x5 direction, the 1-2 plane is

the plane of isotropy. For the transducer orientation given in Fig. 2.4.9, and for transversely
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isotropic material symmetries, the two relevant components of the moduli tensor are:
(—Es +v3,E1) Ey

—E5 + 203 By + v Es + 2vi9 13 By

and (2.4.2)

1 FE

2(1+ 1)

Solving Eq. 2.4.2 and Eq. 2.4.1 for the in-plane modulus (£) and the minor Poisson’s ratio

Cll -

Ces =

(12) yields the following equations:
1c2pE;s (cf — (,:2)

8

£y (2.4.3)

4 pciviicl — 4 prdict + G Es

and
9 . g ‘
4 /)(1121/31 (:3 —_ 4/}1/%“:1% - (fl2E3 + 2 E3 (32

(2.4.4)

S dpciviicl — dpvsict + I E;

The variables 173; and F5 in the above equations still need to be determined. The
major Poisson’s ratio (r3; = —€11/¢45) is known from the axial and transverse strain
measurements. Note that since the major Poisson’s ratio is calculated from strain gauge
data, it is a function of the damage history; this is further discussed in Section2.4.5.
Determining the changing axial modulus (£'3) required another experiment. Under the
same loading configuration, a SiC/CAS specimen was periodically unloaded and then
reloaded every 33 MPa. The magnitude of each unloading was approximately 15 MPa.
The axial stress-strain response of the material for this experiment is shown in Fig.2.4.11.
Least squares fitting of the slopes of both the unloading and reloading trajectories was
performed and the resulting moduli are plotted versus stress in Fig. 2.4.12. This plot shows
that both the unloading and reloading moduli are decreasing with increasing load, and that
the reloading modulus is less than the unloading modulus. In addition, the data shows that
the modulus is slowly decreasing until 170 MPa, and then it drops off rapidly. The fact that
the reloading modulus is less than the unloading modulus is consistent with the opening
and closing of matrix cracks. Despite the multiple unloading and reloadings, it is noted that

the stress-strain curve for the unloading-reloading experiments were quantitatively similar

to monotonically loaded specimens.



[}
[N
<t

CERAMIC COMPOSITE EXPERIMENTS

450 ; }
405 | :
360 - ) ]
315 |
270 ‘ ]
225 .
180 |

135 i .
90 - / :
e /
8.00 O.le O.éO 0.50 0.40 | 0‘50 | 0.60 O‘;?O | 0.80

Strain (%)

F'1G. 2.4.11 The axial stress-strain response with periodic unloading and reloading of the
specimen.
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F'1G.2.4.12 The change in axial modulus computed from the results of a periodic unloading-
reloading experiment.
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The material constants resulting from the calculations discussed above are plotted
versus stress in Fig.2.4.13. Notice that the F’5 modulus begins to degrade before the F
modulus does. As will be discussed in Section 2.5.2, this has implications for the sequence
of damage progression. It is also noted that the minor Poisson’s ratio, > is relatively
constant throughout the loading history. The magnitude of this constant is also quite high.
Note also, that the technique for calculating 7,5 does not take into account the range of
applicability of this constant. Since 115 is the negative of the ratio of €25 to €17 for loading
in the ‘1’ direction (or vice versa, since transverse isotropy is assumed), the material will
fail well before the axial ultimate strain is reached. At later stages in the loading history,
when the material is heavily damaged, the calculation of 115 becomes inaccurate because
the strain gauges sense different levels of damage. Implications regarding damage induced

anisotropy will be discussed in the next section.
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F'1G.2.4.13 Four material constants computed from strain gauge and ultrasonic wave speed
data (defined according to the coordinate system in Fig. 2.4.1).
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2.4.5 Damage Induced Anisotropy

Since unidirectional fibrous materials typically have two mutually orthogonal planes
of symmetry and one plane of isotropy, they are called transversely isotropic and can be
fully characterized by 5 elastic constants. The experimental data in Section 2.4.1 indicates
that the unidirectional SiC/CAS composite is not transversely isotropic. In this section the
source, implications and degree of the non-transverse isotropy are discussed.

It has been experimentally observed that the unidirectional SiC/CAS composite is
slightly orthotropic. This has been realized through the ¢;; and €9 strains. It should
be noted that since the measured strains are very small, small differences between €
and €99 will appear to be quite significant. Since strain gauges were mounted on all four
sides of specimens, it was verified that this orthotropicity is not an artifact of bending.
Although there are small differences in the initial slope of the transverse stress-strain curve
for the ‘1" and ‘2’ directions, the more significant orthotropic character of the material
appears primarily after the onset of damage (non-linearity in the stress-strain response).
For this reason, it will be called “damaged induce anisotropy.” In particular, since it is the
transverse strain measurements which show directional dependence, it is the “transverse
damage” which produces anisotropy. This is not surprising since there is no reason to
expect that debonds would completely debond the fibers along their entire circumference.
In addition, inspection of Figures 2.4.5 and 2.4.6 clearly shows a layered microstructure. If
the whole specimen cross-section were shown, there would be 18 layers, corresponding to
18 rolled fiber tows. The microstructure most likely precludes the formation of randomly
oriented debonds. The matrix damage seen in Fig.2.4.6 shows that there is preference for
damage to remain in the matrix-rich regions of the layers. A final possible reason for the
observed transverse damage induced anisotropy is the fact that the material is hot-pressed
perpendicular to the layers. This could lead to directional residual stress and/or preferential

paths for crack propagation.
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For material symmetry change from transverse isotropy to orthotropy, the number of
material constants changes from 5 to 9. This has important implications for the computation
of material constants from the ultrasonics results. In particular, the stiffness components,
C11, Coy and Cjys, are complicated functions of the three Young’s moduli and the three
Poisson’s ratios. In addition, unlike for transverse isotropy, the other diagonal stiffness
components are only related to the shear moduli and not a combination of the other stiffness
components. Thus from experiments using shear transducers on two different surfaces with
polarization both parallel and perpendicular to the fibers, we can determine the shear moduli,
ft12, {113, and 103 The requirement that C;; is symmetric implies that Yij/E, = Vii/[F .,
and therefore using strain gauges, /13, /31, /23 and 3o can all be determined. The change
in E3 is known from loading/unloading experiments. From ultrasonics experiments using
the normal wave transducer on the ‘1’ and ‘2’ surfaces will give two relationships between
C11 and Cao and the longitudinal wave speeds. Unfortunately, after this process we are
left with two equations and three unknowns (F'1, F, and v15). Thus, the lose of transverse
isotropy implies that it is necessary to independently calculate either one of the in-plane
moduli or the minor Poisson’s ratio. Experiments in the off-fiber-axis direction are one
viable method of calculating these variables. However, this would limit the range of the
constants, since for an off-fiber-axis configuration, the specimen would fail at very low
stress and strain. Thus it would not be possible to comment on the evolution of the material
constants throughout the loading history.

For the results presented with the assumption of transverse isotropy, valuable infor-
mation was gained regarding the change of the material constants with damage. It is left
to evaluate the degree to which the results are affected by the assumed material symmetry
conditions. This was investigated by plotting the changing wave speeds for different wave
propagation directions. In Fig.2.4.14 and Fig. 2.4.15 the normalized wave speeds (in the
‘1" and ‘2’ directions) are plotted versus stress for the shear and normal waves, respectively.

Since these wave speeds are normalized, the information about initial anisotropy is lost on
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the plots. However, the initial wave speeds were measured, and the difference in initial wave
speeds was less than 1% and 7% for the normal and shear waves, respectively. The effect
of damage on the change in wave speed is related to the shape of the curves in Fig.2.4.14
and Fig.2.4.15. Thus it is seen that as far as the ultrasonic results are concerned, since the
shapes of these curves are self-similar, the dependence of damage evolution on direction is

not significant.
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I'1G.2.4.14 Comparison of the change in normalized shear wave speed versus stress for
wave propagation in the ‘1’ and ‘2’ directions.

2.5 ‘““Zones” of Deformation

In Fig.2.5.1 the scale of the transverse strain is changed and it is plotted along with
the axial strain. By comparing the fundamental changes in slopes of these two curves, and
by postulating that these changes are due to the onset of different deformation mechanisms,
five zones of deformation are identified. The first zone (I) is a nearly linear region which

lasts until approximately 170 MPa. The second zone (II) begins with the onset of severe
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F'1¢.2.4.15 Comparison of the change in normalized normal wave speed versus stress for
wave propagation in the ‘1’ and ‘2’ directions.

non-linearity. A third zone (III) with a much lower slope begins at approximately 210 MPa.

The fourth zone (IV) begins at 250 MPa and has a much greater slope than zone III. Finally,

there is a fifth zone (V) from 350 MPa until the ultimate strength is reached.

2.5.1 Existence

The various experiments along with their respective measurements have been per-
formed in order to both identify the important damage mechanisms and to establish the
sequence and extent of their occurrence throughout a monotonic loading history. The post-
test observations in the form of optical and scanning microscopy were done to complement
these experiments. The post-test micrographs in Fig. 2.4.3 and Fig. 2.4.4 show the existence
of the following damage mechanisms: matrix cracking, fiber bridging and fiber pull-out
and sliding. During a loading history the extent to which any given damage mechanism
contributes to the toughness varies. However, by concentrating on fundamental mechan-

ics it is possible to postulate the qualitative sequence and extent of each mechanism. In
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F1G.2.5.1 Stress versus axial strain and transverse strain (with a 10x scale change) divided
into five zones of deformation.

what follows, in each of five postulated “zones,” the experimentally observed deformations
(characterized by strain, acoustic emission and ultrasonics measurements) are explained
based on load redistribution and the dominant damage mechanisms.

As can be seen from Fig. 2.5.1, the zones correspond to regions in which the stress-
strain curves exhibit new trends. Although the zones appear to simply be the piecewise
linear regions of the stress-strain curve, this is not to imply that the actuation of each damage
mechanism yields a linear response. Rather, the zones are postulated based on comparison
of the axial and transverse stress-strain curves. Despite the empiricism involved in defining
the zones, the radical changes in strain direction of the transverse stress-strain curve indicate
a fundamental change in damage mechanisms. Although in each zone several mechanism
may be concurrently active, it will be shown in the following discussion that the deformation
behavior can be described under the assumption that each zone is dominated by a single

damage mechanism.
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2.5.2 Sequence and Extent

The first zone (I) is classified as the “macro-elastic” zone. In this zone, the load is
carried by both the fibers and the matrix. It is assumed that there is strain compatibility in
the fiber (loading) direction. By definition, elastic deformation is that which is completely
recovered during unloading. Macroscopically, this was observed in Zone I during the
unloading-reloading experiment. The unloading and reloading slopes are represented by
the first three points in Fig. 2.4.12. It is seen that the slopes in this stress range are nearly
identical. Outside of a single isolated spike, the acoustic emission data in Fig.2.4.8 is
relatively free of cracking events. It is believed that the isolated spike is the result of grip
noise which covered a range of frequencies and could not be filtered out. Other authors
have found crack initiation for SiC/CAS at around 100 MPa (Beyerle et al., 1992; Harris
et al., 1992; Kim and Pagano, 1991). From this information it is concluded that although
cracks may form in Zone I, these cracks are too small to appreciably affect the macroscopic
stress-strain behavior. In addition, the small cracks are stable and do not propagate to any
significant degree. Pagano and co-workers at the Wright-Patterson AFB (Pagano, 1992)
and Barsoum et al. (1991) have also shown that matrix crack initiation within Zone I is an
isolated event.

At the onset of Zone II, the matrix and fibers are still equally strained. However, the
matrix is very close to its failure strain of approximately 0.15%. Thus, at around 170 MPa,
significant matrix cracking begins and the stress-strain curve exhibits severe non-linearity.
Further evidence of matrix cracking is the unloading/reloading moduli of Fig.2.4.12. The
drop in moduli corresponds to the onset of Zone II, and the fact that the reloading moduli are
less than the unloading moduli is consistent with the opening and closing of microcracks. In
previous studies (Mah et al., 1985; Marshall and Evans, 1985) of glass-ceramic composites
(lithium aluminosilicate, LAS), matrix cracking was postulated to be a sudden event. In

the present study, as well in other recent experiments with SiC/CAS (Kim and Pagano,
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1991; Beyerle et al., 1992), matrix cracking has been found to be a gradual process. The
stress-strain curve throughout this process is smooth and monotonically increasing.

Based on experimental data, the gradual propagation of matrix cracks is postulated to
proceed in the following manner. In-plane tensile stresses ahead of the matrix cracks may
cause “local” debonding of the fibers. The existence of “local” debonding was visualized
with the numerical simulations presented in Chapter 6. This debonding absorbs energy at
the crack tip and has the effect of temporarily blunting further matrix crack growth, and
it is consistent with the Cook-Gordon Mechanism of interface debonding (see Gordon,
1979). Upon further loading, the crack continues to propagate around the still intact fiber.
Through the process of load redistribution (due to crack formation), the stored energy in
the matrix temporarily decreases. Only with further loading do microcracks continue to
propagate. However, since most of the matrix is near its failure strain, extensive initiation
and growth of microcracks occurs over a relatively small stress range. The matrix cracking
“saturates” at around the point when the tangent modulus of the axial stress-strain curve
reaches a minimum. The acoustic emission data (Fig.2.4.8) also indicate that most of
the matrix cracking occurs over a narrow strain range (0.13-0.23%). Both ultrasonic
transducers responded to matrix cracking, presumably because, as was proposed above,
each microcrack also causes local debonding.

Zone III is dominated by what is referred to as “global” debonding. This is realized
through the ultrasonic data in Fig. 2.4.9 where it is seen that both wave velocities decrease
drastically throughout this zone. This is indicative of (out-of-plane) cracks running parallel
to the fibers. The increasing tangent modulus in this region indicates that load is being
transferred to the fibers. This load transfer creates a shearing action (mode II loading)
which in turn would cause global debonding. It is observed that this is a very rapid process
since small increases in load led to large drops in ultrasonic wave speed. In addition, in
Zone 11, despite a constant sampling rate, the stress-strain curves have relatively few data

points in Zone III, as compared to the other zones. Upon debond initiation, high tensile
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stresses at the crack tip decrease and high shear stresses arise as load is transferred to the
fibers. With an analytical model, Dharani and Recker (1991) have shown, that for continued
debonding, stresses normal to the fiber become compressive and the shear stress plateaus.
In this way, the debond is temporarily blunted, requiring additional load transfer for further
propagation. It is not known to what extent frictional sliding in the wake of matrix cracks
contributes to the toughness in Zone III. In any case, it is not assumed to be significant;
since the displacements are small, the energy dissipated by frictional sliding would also be
small.

In Zone IV the load is completely transferred to the fibers. The stress-strain curve
is nearly linear with a slope of around 68 GPa in this zone. Considering a 41% volume
fraction of fibers gives a modulus (for the fibers) of 170 GPa. This is consistent with the
data in Table 2.1. Since the slope is relatively constant and there is little acoustic emission
activity in this region, it is believed that there are only isolated fiber failures in this zone.
In addition, after etching the matrix away from a large piece of a tested specimen, it was
found that the majérity of the fibers were, still continuous.

In Zone V the global failure crack forms. This failure crack should not be confused
with a matrix crack. Rather, the global failure crack is initiated in the vicinity of a bundle
of weak fibers. As soon as one fiber fails, the others nearby must carry additional load.
In such a process, a global failure crack propagates gradually with large scale frictional
pull-out and sliding of the broken fibers. For this reason, the stress-strain curve tends to
level off before ultimate failure. The values in Table 2.1 show that the ultimate strain of
the composite compares well to the fiber ultimate strain. In addition, assuming that the
load near failure is carried by the fiber bundle alone, then the stress in the fiber bundle is
approximately 1 GPa at failure. This maximum stress in the fiber bundle is comparable to
the ultimate strength of individual fibers as seen in Table 2.1.

The existence of different damage stages has been independently proposed by Sgrensen

etal. (1993) and Wooh and Daniel (1994). In both of these works, the zones were postulated
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empirically for modeling purposes. Sgrensen et al. (1993) suggest an elastic stage, a matrix
cracking and debonding stage, a sliding stage, and fiber failure stage. Wooh and Daniel
(1994) proposed the following four stages: an elastic stage, matrix cracking stage, interfacial

debonding stage, and fiber failure stage.

2.5.3 Explanation of Macroscopic Transverse Behavior

The stress versus transverse strain can also be explained in terms of the five zones
of deformation. It is important to realize that the transverse strains are extremely small
in comparison to the axial strains. Referring to Fig.2.4.2, initially, Poisson contraction
results in the expected negative slope of the stress versus transverse strain curve. Slight
differences in the initial slope for the ‘1’ and ‘2’ directions are believed to be the result of
the layered fiber-tow microsctructure. When matrix cracking begins, the transverse strain
reverses direction. Presumably, this is because the high tensile stresses at the crack tip
generate local debonding, the accumulated strain due to Poisson contraction is released,
and the compressive residual stresses in the fibers are relieved. Each of these individual
transverse expansions are “integrated” over a finite area by the strain gauge, resulting in a
reversal in macroscopic transverse strain.

InZone 11 the specimen continues to expand laterally. This is consistent with the notion
that Zone III is dominated by global debonding. As was mentioned in Section2.5.2, the
global debonding process is very rapid; this leads to an accumulation of positive transverse
strain (expansion). As the load is completely transferred to the fibers, debonding stops. It
is within this zone, that strain gauges on different gauge section surfaces and/or different
locations on the same surface sensed different amounts of damage. This is indicative of
damage induced anisotropy (i.e., €22 # ¢;1) and strain gauge sensitivity to damage. In
Zone III the side gauges consistently show much less transverse strain accumulation. In
addition, some specimens were observed to expand beyond their original lateral dimensions

in Zone III. Post-test observation showed that these specimens all had non-planar fracture
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surfaces (implying partial shear failure). For one experiment, three transverse strain gauges
were all mounted on the same 6.5 mm face. While two of these strains did have positive
transverse strain, the other one did not.

As has already been mentioned, at the onset of Zone IV, all of the load has been
transferred to the fibers and debonding has stopped. The loading of the fibers results in
Poisson type contraction which negates the accumulated transverse strain. Hence, in this
zone, the transverse strain undergoes a second reversal. For the transverse strains measured
on the 3.25 mm faces of the specimens, since there is relatively little accumulated transverse
strain (€11 ), the second reversal occurs over a small strain range. This is in contrast to the
transverse strains (¢2o) measured on the 6.5 mm faces of the specimens. In Zone V, since it
has been postulated that there is no further debonding, any further contraction in the lateral
direction is due to a Poisson type effect. Assuming that fibers deform elastically until failure
with a Poisson’s ratio of 0.28 leads to a failure strain of 0.2% in the lateral direction. This is
consistent with the transverse strains on the 3.25 mm face (e, ) where there was relatively
little accumulated transverse strain.

Several authors (Harris et al., 1992; Sgrensen et al., 1992; Nardone and Prewo,
1988) have not encountered a complete second reversal in transverse strain. Instead, in
these investigations, it was found that following the second reversal, the strain becomes
at most constant and never more negative. Other than the fact that Nardone and Prewo
(1988) performed their investigation with carbon fiber reinforced borosilicate glass, the
only differences between these authors’ experiments and the present experiments are that
our specimens and strain gauges were smaller and that the loading rates were different.
A smaller gauge will integrate over a smaller area and therefore be more sensitive to
microfeatures such as fibers, cracks and debonding. However, as was mentioned above,
for the present experiments, approximately 6 matrix cracks were present beneath even the
smallest strain gauge. This should be sufficient to yield an average response, and indeed, the

axial results for the above works are similar to those presented in this investigation. Due to
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the similarities in the axial response, it is also unlikely that the specimen size influences the
results. As will be discussed in Chapter 4, loading rate is one possible source of discrepancy
in the transverse results. Nardone and Prewo (1988) have documented the “dual reversal” in
their experiments with 410 © fiber orientation composites. This indicates that shear loading

may also play an important role in the second transverse strain reversal.

2.5.4 Analysis of Energy Dissipation

For design of tough ceramic composites, it is desirable to know which damage mech-
anisms absorb the most energy. Having potentially established the existence and sequence
of damage mechanisms throughout the loading history of unidirectional SiC/CAS, it is now
left to determine which mechanisms (or zones) dissipate the majority of the unrecoverable
strain energy. To accomplish this, it is necessary that the elastic portion of the energy is
removed. For the present experiments, this is easily done by calculating the area under
the axial stress-strain curve while taking into account the change in axial modulus (F3).
Integrating the area under the curve in this fashion yields the normalized energy dissipation
curve shown in Fig.2.5.2. The energy dissipated is normalized with respect to the total
unrecoverable energy dissipated in the experiment.

From Fig.2.5.2, by definition, the energy dissipated in the elastic zone is zero. Matrix
cracking in Zone II dissipates approximately 10% of the energy, and the global debonding
debonding in Zone III absorbs roughly 30%. Zone IV releases only 15%, while Zone V
dissipates approximately 45%. The fact that the last zone absorbs a large percentage of the
energy is consistent with the positive contributions of frictional pull-out and sliding. What
should also be noted regarding this large dissipation in Zone V is that most likely a significant
portion is due to fiber failures. In designing composites, since the fiber failure indicates that
macroscopic failure is imminent, it is not necessarily wise to encourage energy dissipation
in zone V. The other relatively large contribution from Zone III indicates that there should

be more study of debonding mechanisms. This is especially true considering the lack of
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F1G.2.5.2 A calculation of the energy dissipated by inelastic deformation for each of the
five zones.

experimental visualization of the debonding process. It is believed that a significant portion

of the toughening in ceramic matrix composites is the result of debonding mechanisms.

2.6 Summary

The experimental methods introduced in this chapter provide a cost effective way
of obtaining valid quasi-static tensile data for brittle materials. In addition, methods for
making in situ strain, acoustic emission and ultrasonic measurements were presented.
With these experimental tools, the deformation and failure of a continuous fiber reinforced
glass-ceramic composite (SiC/CAS) was studied. The damage mechanisms responsible
for toughening of the composite were postulated based on experimental data and post-
test scanning electron and optical microscopy. It was observed that upon initiation of
damage, the material is no longer transversely isotropic (damage induced anisotropy). The
micromechanisms of damage were used to explain the response of the composite at various

stress levels. The dominant mechanisms associated with each stress level (zone) are shown
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schematically in Fig. 2.6.1. The energy dissipated for each of these zones was calculated. It
was found that the third and fifth zones dissipated approximately 75% of the unrecoverable

energy. The active mechanisms in each zone are summarized as follows:

I: matrix flaws, possible propagation to fibers, but no further growth and no debonding;

II: matrix cracking, significant growth of matrix cracks with local debonding and fiber
bridging;
III: load transfer to the fibers with very rapid global debonding and accumulated transverse
strain;

IV: loading of the fibers with isolated fiber failure; and

V: large scale fiber pull-out, frictional sliding, fiber bundle failure, and macrocrack prop-
agation.

The results presented in this chapter indicate which damage mechanisms are active
for the complete loading history. Establishing the sequence and extent of the damage
mechanisms is necessary for determining the optimal constituents and processing methods
for ceramic matrix composites and for developing models of their material response. Since
ceramic matrix composites have been proposed for high temperature applications, it is
also necessary to determine if the damage mechanisms and/or the sequence of damage
mechanisms change as a function of testing temperature. As was the case with structural
metallic materials, significant understanding and modeling effort is required before ceramic

matrix composites can be reliably incorporated into engineering designs.
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CHAPTER 3

Modeling of Ceramic Matrix Composites

3.1 Introduction

Before advanced materials can be used in engineering applications, it is necessary
that models of their mechanical behavior are developed. These models are the tools which
designers use for deciding how much of which material is required for safe and reliable use
of the end product over a given period of time. Metals have been studied extensively and
there are many models of their post-elastic, fracture and fatigue behavior. Similar studies
need to be done for ceramic matrix composites. Thus far, for ceramic matrix composites, it
has been generally assumed that the onset of matrix cracking determines the useful strength
of the material (Kim and Pagano, 1991). For this reason, there have been many studies to
predict the critical stress for matrix cracking.

The shear-lag concept (which assumes that matrix cracks are initiated by shear failure
of the interface) was proposed to explain observed periodic matrix cracks in epoxy matrix
composites. In 1971, Aveston, Cooper and Kelly (ACK, 1971) performed a complete
mechanics analysis of the shear-lag model. The main assumption in this model was that
the matrix did not carry any load due to its relatively low stiffness as compared to the
fibers. This work has become classical and is often referenced in present day shear-lag
modeling. Despite the questionable portability of the ACK shear-lag model to ceramic
based composites (ceramic matrices are typically at least 75% as stiff as the reinforcement),
it has been used and referenced extensively. Aveston and Kelly (1973) and Budiansky,

Hutchinson and Evans (BHE, 1986) have modified the original shear-lag model to allow for
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a fully bonded fiber-matrix interface or a frictionally sliding interface. The BHE model also
accounts for residual stresses, which, as will be shown below, may be quite extensive in the
case of ceramic matrix composites. These models all require a long bridged starter crack;
other modifications of the ACK model have addressed this requirement. Marshall et al.
(1985) and McCartney (1992) have re-analyzed the problem with a short starter-crack. The
short start-crack caused the critical stress (for matrix cracking) to depend on crack length.
Marshall et al. (1985) determined the minimum crack size for which the critical stress did
not depend on crack length. In addition, this work determined that the minimum crack
length was on the order of flaw sizes due to processing. More recently, investigators are
realizing that there are no detectable flaws in the material prior to testing. At the very least,
it is logical to begin with short starter cracks, however, this also adds another unknown
empirical factor to the analysis.

Several research groups are questioning the applicability of steady-state cracking to
ceramic matrix composites. Beyerle et al. (1992) are currently using the notion of steady-
state cracking only as a lower bound for the matrix cracking stress. More recently, Wang
et al. (1992) have completely removed the required starter crack, instead theorizing that
matrix cracking is initiated at randomly distributed microflaws. Kim and Pagano (1991)
have found that the critical stress as calculated by using the BHE model overestimates their
experimentally determined critical stress. In Chapter 1 several modified shear-lag models
and non-shear-lag models were referenced.

To develop a unified model of the deformation of advanced materials an approach
which studies the formation, propagation and interaction of damage must be undertaken.
This forms the relatively new field of (continuum) damage mechanics (Krajcinovic, 1989).
Damage mechanics can be generally divided into the following two categories: phenomeno-
logical and micromechanical. The phenomenological approach uses continuous field vari-
ables (damage parameters or internal variables). These variables (and their evolution) are

usually determined empirically. Talreja (1991) used this approach to determine the uniaxial
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response of a ceramic matrix composite. The deformation was divided into different stages
and damage parameters selected for each stage. On the other hand, the micromechanical
approach analyzes damage on the microscale and then places the results in a homogeniz-
ing/averaging scheme. This method has been used primarily to determine effective moduli
of materials (Hashin, 1983; Nemat-Nasser and Hori, 1993). Deng and Nemat-Nasser
(1992) determined effective moduli of cracking in simulated composites by analyzing (2-
dimensional) parallel crack arrays in isotropic or orthotropic elastic solids. More recently,
Weitsman and Zhu (1993) used the micromechanical approach with an energy criterion to
effectively average an analytical unit cell mechanics solution for matrix cracks in fiber com-
posites. This work was extended to add dissipation from fiber breaks (Zhu and Weitsman,
1994) and thereby model the whole composite response.

In this chapter application of the BHE shear-lag model will be demonstrated and
discussed. Comparison will be made to the works of several other authors who have
applied this model to their experimental results. Next, micromechanical continuum damage
mechanics calculations will be performed for penny shaped cracks in a transversely isotropic
material. The acoustic emission results presented in Section2.4.3 will be used as an
estimate of the history of crack density. Phenomenological damage mechanics then yields
the evolution of the axial modulus (with damage). Although these results are qualitative,
they present an interesting link between acoustic emission data and actual matrix cracking

events.

3.2 Models

3.2.1 Existing Shear-Lag Models
In this section, application of the BHE shear-lag model is compared to the experimental
results presented in Chapter 2. Following presentation of the results, comparison with other

applications of the BHE model are made, and the problems in using this model are discussed.
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The BHE shear-lag model considers the following three cases: non-slipping, non-
debonding fibers; initially bonded, debonding fibers; and unbonded, frictionally constrained
slipping fibers. All of these cases assume steady state cracking (cracking at constant stress)
and that there is a long starter crack. For brittle matrix fibrous composites, it is generally
assumed that the interface is quite weak and that situation resembles the case of unbonded,
frictionally constrained slipping fibers. The critical stress, o1, can be written as follows:

o1 _ 6(:?Ef’7’ ST G 17 G2.1)
E cmEmE o, o

where « is the fiber radius, F, F,,,. ' are the moduli of the composite, matrix and fiber,
respectively, ¢y and ¢, are the fiber and matrix volume fractions, respectively, G,, is the
critical mode-I matrix energy release rate and 7 is the interfacial shear stress. Other versions
of Eq. 3.2.1 have a factor of 2 in the brackets. In such versions, v,,,, representing the fracture
surface energy of the matrix, replaces G,,. When taking the residual stresses into account

the critical stress, o, is written:

TN § (3.2.2)

where ¢! is the axial residual stress in the matrix.

As was discussed in Section 2.2, the residual stresses in ceramic matrix composites are
not well known. Residual stresses will arise because there are thermal expansion coefficient
mismatches and because the processing of the composite requires hot pressing and subse-
quent heat treatment. Since there are possible changes in thermal expansion coefficients
during processing and since the role of the fiber-matrix interface is not known, detailed
quantitative understanding of the residual stresses is lacking. For illustrative purposes, the
residual stresses are calculated based on constant thermal expansion coefficients and no
fiber-matrix interface effects. Therefore, with the material properties given in Table 2.1 on
page 2.4 and with hot pressing temperatures around 1400°C, significant residual stresses

are calculated. The following expressions for the fiber-matrix interface pressure, (7,[,, and
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the residual axial matrix stress, o, are derived using a shear-lag model (BHE, 1986):

U"I‘ — _L cm 9]
m 2)\1 I—w m

E (3.2.3)
/ . . 2.
0y M2 [E_t 7 A P
Em /\1 L E 1—- Vi,
where 1, is the Poisson’s ratio of the matrix, €2 is the strain mismatch, and
1/1-2v E
Ar=1—= 1 — =
()0 5)
(3.2.4)
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Nyg=1—-[1- =
’ 2( Ef>

where it is assumed that v,,, = vy = . Assuming that the strain mismatch is due only to
thermal strains during fabrication, €2 = —(ay — v, ) AT where oy and cv,,, are the thermal
expansion coefficients acting over the temperature range A7". Using the material properties
in Table 2.1 on page 2.4, one finds that ¢! = —54.5 MPa and ¢! = 84.4 MPa. These
stresses are very significant considering that several investigators (e.g., Harris et al., 1992;
Daniel et al., 1993) have documented the failure strength of the matrix to be approximately
100 MPa.

By using the indentation technique (Evans and Charles, 1976), the critical stress
intensity factor K}t for the matrix material (CAS II) is determined to be 1.6 MPa,/m
(G =261/ m?). The interfacial shear stress, 7, is calculated by writing the force balance
for the shear-lag model (ACK) as follows:

0777, Cm,

(3.2.5)

- 2maNz’
where «a is the fiber radius, N = ¢/ 7a? is the number of fibers per unit area and o, is
the critical cracking stress of the matrix. The term = = Tgﬁ is the effective crack spacing
(Aveston et al., 1974), with S being the measured crack spacing. Using a crack spacing of
200pm from the present experimental results, one finds that 7 = 6.1 MPa. Together with
the values in Table 2.1 on page 2.4, the value for 7, is determined to be 225 MPa. Applying
Eq. 3.2.2 with a residual stress of 84.4 MPa, one finds that the critical cracking stress, 7.,

is 115 MPa.



MODELING OF CERAMIC MATRIX COMPOSITES 3.6

Table 3.1 is a summary of five independent applications of the BHE model. Included
in this table are the values of 7, G,,, (or 2v,,) and the residual stress for each application.
As can be seen from this table, the results vary widely. Like any model, the BHE model
is limited by the simplifying assumptions. For this particular application, it is not known
how accurate the assumption of unbonded, frictionally constrained fibers is. In addition, as
was shown in Fig. 2.4.5, the microstructure is non-uniform with an overall layered structure
and with many fibers close to or touching each other. However, the main problem with the
application of this model is its dependence on several poorly determined parameters. In
particular, the matrix fracture energy is not well known, and may very well vary greatly
between specimen lots. Glass-ceramics typically have matrix fracture energies between 15—
30 J/m?. This also presents another problem related to using properties of the individual
constituents. It is unknown to what degree properties of the individual constituents change
during processing of the composite. For instance, there may be significant porosity in the
neat matrix and leftover binder may affect the matrix properties in the composite. Also
difficult to determine is 7. Many researchers use fiber push-out tests (e.g., Marshall and
Oliver, 1987; Parthasarathy et al., 1991; Laracurzio and Ferber, 1994) to determine a value
for 7. However, fiber push-out tests present new problems for interpreting 7, since curve
fitting of experimental results is required and the cutting of small push-out samples most
likely significantly alters the stress state. Finally, as was discussed earlier, the residual
stresses are not well understood. Within the BHE formulation, high residual stresses lead
to a substantially lower critical matrix cracking stress. With the addition of a soft but thin
carbon interface layer, one would expect o to be similar to that calculated above but that

o! would be much less. This has important implications for the calculation of the critical

matrix cracking stress using Eq.3.2.2.
Although the ACK model was originally derived as a lower bound to matrix cracking.

Kim and Pagano’s (1991) experience with the model has prompted them to call it an upper

bound to their experimentally determined critical stress for matrix cracking. Along these
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Table 3.1: Comparison of Various Applications of BHE

3.7

Authors oo MPa) | G, (J/m?) | 7 (MPa) | ol (MPa)
Present Work 115 26 6.1 84.4
Beyerle et al. (1992) 150 25 10 89
Kim and Pagano (1992) 233%* 2x40 7 e
Harris et al. (1992) 135 2x40 5 140
Pryce and Smith (1992) 95%* 6 10 —

* no residual stress correction

lines, a more fundamental concern regarding the applicability of BHE or ACK arises. That
is, although all specimens tested to stresses above the matrix crack saturation stress have
cracks running throughout the width of the specimen, as has been previously discussed,
these cracks are not necessarily steady-state cracks. By incrementally loading specimens
Pagano and co-workers (Pagano, 1992) have found that the initial cracks (forming in the
100 MPa range) are not steady-state cracks. It is possible, however, that at later loading
stages, the cracks do behave as steady-state cracks. However, even if they were steady-state
cracks, as was pointed out in the introduction (see Section 3.1), the shear-lag concept was
developed for materials in which the matrix is only a small fraction of the stiffness of the
reinforcement. Certainly, this is not the case for brittle matrix composites. For application
of the shear-lag concept to brittle matrix composites, modifications should be made.

3.2.2 Micromechanical Model

Micromechanical continuum damage mechanics is based on relating deformation of
the microstructure to that of the overall material. When a material is cracked, its compli-
ance increases; it is desired to construct a model to calculate this increase in compliance.
Following the notation of Mauge and Kachanov (1994), the overall strain for a solid with

N cracks can be written for the 2-D case as follows:
1 N
=S5:0=759: _ (F Iy (k;)lk;
e=S:0=5%:0+ A;(7z<)>+<l)/n) 326

=(5+AS): 0.
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where S is the effective compliance, S° is the compliance without cracks, AS is the
compliance due to cracks, (%), 2{*) and (b)(*) are the unit normal vector, length and
average crack opening displacement (COD) of the kth crack, respectively, and A is the

b4

representative area. Note that the ‘:’ represents contraction over two tensorial indices. In
what follows, the 3-D case with penny shaped cracks will be analyzed. For this situation the
representative area becomes a representative volume and the crack lengths become crack
areas.

Having determined the strain in terms of stress, crack density and COD, the comple-

mentary energy density can be written as follows:

N
flo) = %(r ce(o) = %O‘ 259 0+ %Z(n co - (D)YPIE = o)+ Af,  (327)
k=1

Li 4]

where f¢ is the energy without cracks and Af is the change in energy due to cracks.
The change in elastic material constants can be recovered from the complementary energy

density through the relation:
DPAf

ASi = 22
ig kil p - .
do;jdoy

(3.2.8)

Thus determining the effective compliance of a microcracked solid (for non-interacting
cracks) reduces to specifying the crack lengths (or density) and determining the CODs.
There are several authors who have derived expressions for the CODs of penny shaped
cracks in transversely isotropic solids (e.g., Laws, 1985). For one crack parallel to the plane
of isotropy (the ‘1-2’ plane) and for constant far-field applied stress (¢) in the ‘3’ direction,

the average normal COD can be written as follows (Laws, 1985):

(3.2.9)

(b)) =

odl?y17v2(71 + 72) R ﬁ%
E1 El ,

™
where v, and - are the roots of the following equation:
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(3.2.10)
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By defining the crack density, p, as

| N
— (A
TV Z l
and using Eq. 3.2.8, the expression for the modulus £'; can be written as
2

1 v
+8v172(71 + 72) (E—l - “é‘f‘)f’- (3.2.11)

1 p——
Es  EY

where £5 is the modulus of the material with no cracks. Using the average shear COD, one
can similarly derive an expression for the change in the shear modulus G15.

In the above, the framework for calculating the evolution of material constants in a
transversely isotropic material with non-interacting penny shaped cracks parallel to the
plane of isotropy was presented. It is desired to use this formulation to estimate the change
in axial modulus of the unidirectional SiC/CAS ceramic matrix composite investigated in
Chapter 2. The experiments were performed with uniaxial loading in the fiber direction
only. The first step, therefore, is to assume that the matrix cracks which initially form normal
to the loading (fiber) direction and which bridge the fibers can be approximated as penny
shaped cracks in a transversely isotropic material. Clearly, there are large inaccuracies
associated with this assumption. In particular crack closing forces associated with the
bridged fibers are neglected and the fact that the cracks are not exactly penny shaped is
ignored.

It is now left to calculate the evolution of crack density. Although acoustic emission
was used in a qualitative way in Chapter 2, it was anticipated that acoustic emission events
might also be quantitatively related to the crack density. A measure of density was extracted
from the acoustic emission data by simply integrating the thresholded signal. Within reason,
changing the threshold always yielded qualitatively similar results. Thus, since the threshold
is arbitrary, it was necessary to scale the resulting integration of the experimental data. As
seen in Fig. 3.2.1, after such scaling the experimental density (effective density) compared
favorably to results by Beyerle et al. (1992). The results presented by Beyerle et al. were

obtained by counting cracks which were visualized using a surface replication technique.
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F'1G.3.2.1 Effective density from the acoustic emission data compared to a curve fit of
results from Beyerle et al. (1992)

Using the effective density and several of the elastic material properties in Table 2.1 on
page 2.4, the change in axial modulus of SiC/CAS for uniaxial tension in the fiber direction
can be calculated using Eq. 3.2.11. In Section 2.4.4 an experiment for which the specimen
was periodically unloaded and then reloaded was described. This simple experiment also
provided a measure of how the axial modulus changed (see Fig.2.4.12). The results from
the experiment and from the micromechanical continuum damage model are plotted versus
strain and compared in Fig. 3.2.2.

As seen in Fig. 3.2.2, the experimental results and the predictions from the microme-
chanical model are quite similar. Because of the arbitrary scaling of the experimentally
determined effective density, it is not known to to what degree matrix cracks can be regarded
as penny shaped cracks. It is possible that the density scaling is also scaling the COD of
the matrix cracks, thereby canceling the effect of crack closing forces by the bridging

fibers. It is also likely the acoustic emission signal is related to penny shaped cracks in
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F1G.3.2.2 Comparison of the X3 modulus determined directly from an experiment and
that calculated using acoustic emission data and damage mechanics.

an averaged sense. Since Eq.3.2.11 is for average COD and obtaining elastic constants
from the complementary energy is essentially a volume averaging procedure, the analytical
results are smoothed out and compare favorably to the experimental results. It would be
perhaps better to think of this modeling procedure as a combination of micromechanical and
phenomenological models with the effective density as an empirically determined damage

parameter.

3.3 Summary

Two models for the mechanical response of a unidirectional ceramic matrix composite
have been presented. The first model used existing shear-lag theories to calculate the
theoretical onset of matrix cracking. Although the results were reasonable, it was shown
that this model is dependent on several poorly defined experimental parameters. In the

literature, results which use this model vary widely. For the second model, the use of
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micromechanics was demonstrated. In this situation, an assumption that matrix cracks can
be represented as penny shaped cracks in a transversely isotropic matrix was made. In
addition, acoustic emission results were scaled to yield an effective density parameter. It
was thus possible to determine the change in axial modulus of a unidirectional ceramic
matrix composite for uniaxial tension in the fiber direction. Despite the assumptions it is
believed that the results are reasonable in an averaged sense. Comparison of the model
results and the experimentally determined change in axial modulus were favorable.

The results presented in Fig. 3.2.2 provide an interesting way of interpreting the acous-
tic emission data. It would be worthwhile to see if similar results can be obtained for
different material systems. Future work in this area requires removing the empiricism
of determining the crack density. This, unfortunately requires visualizing the evolution of
cracks in three dimensions. By sectioning specimens from experiments which were stopped
at various stages of the loading history, it might be possible to visualize the formation of
cracks. This is a tedious procedure which is made more difficult by the fact that matrix

cracking occurs over a relatively small strain range.
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CHAPTER 4

Strain Rate Effects in Ceramic Matrix Composites

4.1 Introduction

Considering that engineering composites are relatively new, it is not surprising that
there are few investigations into strain rate aspects of their mechanical behavior. However,
many engineering materials are either designed for higher strain rates or will accidentally
experience high rates of loading. Since composites have been proposed for numerous
applications in the transportation sector, it is very important that strain rate effects are
investigated.

Some of the previous studies of composites at different strain rates have been for
polymer matrix composites reinforced with discontinuous fibers. Experimental aspects
of this work has been carried out by Kander and Siegmann (1992), and using acoustic
emission, they found a transition in damage mechanisms at different quasi-static strain
rates. Although at higher strain rates the maximum load carrying capability increased,
there was also a change from ductile to brittle behavior. The modeling phase of this work
by Termonia (1992) showed that for increasing strain rate, the strength of the interface did
not affect the mechanical behavior. This may be an important result since interface design
in composites is believed to be of paramount importance for tough composite materials
(Kerans et al., 1989). It is observed that it was not necessary to go to dynamic strain rates

in order to notice these differences in the mechanical behavior.
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For brittle matrix composites, Vaidya and Chawla (1994) studied ceramic fibers re-
inforcing a glass (borosilicate) matrix. Composites were manufactured with both coated
and uncoated fibers and experiments were performed at rates within the quasi-static strain
rate regime. It was found that at the higher strain rates, both the coated and uncoated fiber
composites failed catastrophically with minimal fiber pull-out. The difference was more
pronounced for the coated fiber composites. Lankford et al. (1992) investigated the SiC
(Nicalon) reinforced LAS (Lithium AluminoSilicate) composite system. Experiments were
performed at both quasi-static and dynamic strain rates. The results showed that the strain
to failure increased for dynamically tested specimens. In addition, the results showed a
very strong strain rate dependence for matrix crack spacing and fiber pull-out. Multiple
strain rates within the quasi-static strain rate regime were not presented by Lankford et al.
Zhu and Weitsman (1994) did present axial stress-strain curves for two different quasi-static
strain rates (0.0013 and 0.0025 mm/min.); however, not only are these minor differences in
strain rates, but the results were plotted separately, and no differences for the two loading
rates were observed.

In the present investigation we are interested in the effect of strain rate on unidirectional
SiC/CAS composites. In order to make comparisons with the previously performed exper-
iments discussed in Chapter 2, the higher rate experiments are also for tension applied in
the fiber direction. Experiments were conducted at two strain rates within the quasi-static
strain rate regime (107°s~! and 10~2s~1). After a very brief discussion of the experi-
mental measurements, acoustic emission, stress-strain and post-test microscopy results are
presented and then discussed. The origin of the strain rate dependence is postulated, and

experiments which would verify the hypothesis are proposed.

4.2 Experimental Details
The SiC/CAS specimens and the gripping procedure for the higher strain rate experi-

ments was identical to that described in Chapter 2. In order to use a crosshead displacement
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rate of 7.5 mm/s, the feedback loop for the MTS described in Section 2.3 was optimized.
Strain gauge instrumentation also followed the procedure described in Section 2.3. Acoustic
emission detection was performed using both the tuned Micro-30 AE transducer (Physical
Acoustics Corp., Princeton, New Jersey) and the broadband #V-129 (normal wave) and #V-
157 (shear wave) ultrasonic transducers (Panametrics Inc., Waltham, Massachusetts). Each
of these transducers was used only as a receiver, and they were directly connected (AC-
Coupled) to the (high-impedance) inputs of a Nicolet 440 Oscilloscope (Nicolet Instrument
Corporation, Madison, Wisconsin). All channels were sampled at 200 KHz. Test durations
were approximately 0.25 seconds. Due to these short test times, it was not possible to make

pulse-echo ultrasonics measurements.

4.3 Experimental Results

4.3.1 Stress-Strain Results

The axial stress versus strain results for higher and lower strain rate tests are shown
in Fig.4.3.1. Results for several different experiments at both the lower (10~°s~!) and
higher (1072s™1) strain rate experiments are presented. The mechanical response at the
two different strain rates is quite different. The higher rate experiments have a much larger
initial linear region, with the onset of nonlinearity delayed by nearly twice the stress. After
non-linearity, for the higher rate experiments, the strain increases at nearly constant stress.
Further loading leads to a rapid stiffening response and then subsequently, macroscopic
failure. Ultimate failure appears to be at nearly the same strain level and at slightly higher
stress levels.

The axial stress versus transverse strain response for the two different rates of loading
is shown in Fig.4.3.2. Again, the differences are quite significant. For the higher rate
experiments, the larger linear region in the axial response is manifested in the transverse

data by a larger zone of Poisson contraction. The subsequent reversal in strain is quite
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Fia.4.3.1 The axial (x3) stress versus axial strain for unidirectional SiC/CAS specimens
at two different strain rates.

sharp, and the lateral expansion is much greater than for the lower rate experiments. For
both of the higher rate experiments shown, the specimen has expanded beyond its original
dimension. The second complete reversal seen at lower loading rates is not present for the
higher rate experiments. Instead, at higher rates, the specimens continue to expand until

ultimate failure is reached.

4.3.2 Acoustic Emission Results

In Fig.4.3.3, an axial stress versus strain curve is presented along with results from
acoustic emission (AE). The AE data was obtained using the broadband ultrasonic shear
wave transducer. As discussed in Section 2.3.3, the acoustic emission results are obtained
by digitally filtering the raw AE signal and then thresholding the filtered signal. The
resulting counts show three large, but isolated spikes, followed by a nearly Gaussian shaped
distribution of counts, a relatively quite region, and then an increase in activity just before

ultimate failure. The three initial spikes are believed to be grip noises which cover a range
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of frequencies and thus could not be filtered out. The number of these isolated spikes
varied from one experiment to the next. The Gaussian region is understood to be the
result of matrix cracking, and the gradual buildup near ultimate failure most likely results
from isolated fiber failures. When comparing to the AE results for lower rate experiments
(presented in Fig. 2.4.8), it is seen that the matrix cracking region is delayed both in absolute

strain and with respect to the non-linear portion of the stress strain curve.

4.3.3 Micromechanisms of Deformation

Post-test microscopy on specimen sections polished parallel to the fibers was per-
formed. The results are shown in Fig.4.3.4 and Fig.4.3.5 for lower and higher rate ex-
periments, respectively. It is seen that the bridging mechanisms are not as efficient for
the specimens tested at higher rates; several of the fiber bridging cracks appear to stop in
the middle of the polished sections. This is not the case for the specimens tested at lower

rates; all of the cracks can be traced completely across the field of view. In addition, on
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F1G. 4.3.3 Acoustic emission results plotted along with the axial stress-strain curve for the
higher strain rate.

average, the crack spacing for the high rate experiments is less than that for the lower rate
experiments. Observations of macroscopic fracture surfaces (Fig. 4.3.6 and Fig. 4.3.7) show
significant differences; it is apparent that the pull-out lengths for the higher rate experiments
are much less. In addition, it is seen that for the higher rates tested specimens, the crack
plane is much more discontinuous (stair-stepped) than for the lower rate tested specimens.

The macroscopic crack followed a tortuous path with many out of plane jumps.

4.4 Discussion

The experiments with unidirectional SiC/CAS have indicated that there are changes
in the deformation (damage) mechanisms for different loading rates within the quasi-static
strain rate regime.

The first obvious change in the mechanical response is that the onset of non-linearity
occurs at a load that is nearly double that for the lower strain rate experiments. In Sec-

tion 2.5.2 it was proposed that for the lower rate experiments, the onset of non-linearity
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F1G.4.3.4 A post-test optical micrograph of periodic cracking for a lower rate experiment.

F1G.4.3.5 A post-test optical micrograph of periodic cracking for a higher rate experiment.
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F1G.4.3.6 An SEM micrograph of the macroscopic fracture surface of a specimen tested
at a lower strain rate.

F1G.4.3.7 An SEM micrograph of the macroscopic fracture surface of a specimen tested
at a higher strain rate.
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is associated with matrix cracking. There is no reason why that would not be the case
for the present, higher rate experiments. However, for the present experiments, it was
observed that, in terms of overall macroscopic strain, the matrix cracking was significantly
delayed. In other words, the matrix does not reach its critical failure strain until the system
is under higher loads. The reason for the delay is unknown. It is possible that there are rate
sensitivities associated with the matrix and/or the load transfer mechanisms.

Once the matrix is at its critical failure strain, it appears that the matrix cracking
also continues over a larger strain range. This was experimentally realized with acoustic
emission results. In terms of the zones of deformation presented in Section2.5.2, the
implication is that for the higher strain rate experiments, Zones II and III have blended
together with each matrix crack incurring significant load transfer and global debonding.
In Chapter5 experiments with a model brittle matrix composite material are described.
For lower to higher strain rate experiments with the model material, there was a clear
transition from periodic cracking of the matrix to a single matrix crack with reinforcement
debonding. This is analogous to the present results, for which it believed that debonding
plays a more significant role at higher strain rates. A consequence of more debonding
is the increased transverse expansion shown in Fig.4.3.2. The cause of the increase in
debonding is also unknown. As was the case with the delayed onset of matrix cracking,
rate sensitivities of the different constituents (including the interface) could be playing a
role. Presumably the sequence of load transfer between the different constituents was also
altered by the different loading rates; it is not known if this is the result or the cause of the
change in damage modes. An additional reason for the change in damage modes could be
the result of local inertial effects. It is believed that matrix cracks propagate dynamically,
and, considering the different length scales within the problem (fiber diameter and spacing,
cracking spacing, interface thickness, etc.), it is possible that inertial effects influence the

kinetics of damage formation and propagation.
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As indicated by the post-test optical microscopy in Figures 4.3.4 and 4.3.5, the matrix
cracking at higher loading rates is more isolated (some matrix cracks terminated within
the matrix) and not as periodic. This is consistent with the acoustic emission data which
shows that matrix cracking occurs over a larger strain range. Also, as seen in Figures 4.3.6
and 4.3.7, in addition to there being significantly less pull-out at higher loading rates, the
macroscopic crack plane is also quite wavy. The decreased pull-out length is consistent
with a delayed matrix cracking and an increase in debonding. The delayed stiffening
response of the higher rate experiments indicates that the fiber bundle does not begin to
carry significant load until higher macroscopic strain is reached. Since this processes is
also seen to be more rapid, presumably there is less time for isolated fiber failures. This
would allow the fiber bundle to carry more load and lead to a slightly higher ultimate stress.
In addition, this delayed loading of the fiber bundle along with increased debonding could
cause the incomplete second reversal in the transverse strain. Unlike for the lower rate
experiments, for the higher rates of loading, there is no time for debonds to close and for
Poisson contraction of the fibers to be sensed by the transverse strain gauges.

The present experimental results differ from those of Vaidya and Chawla (1994) in that
it was found that the increased strain rate did not lead to a more brittle material response.
Most likely this disparity is a result of the different material systems. One similarity
between the present results and those of Vaidya and Chawla is that increased strain rates
did significantly reduce fiber pull-out lengths.

Although the SiC/LAS system used by Lankford et al. (1992) is very similar to the
present specimen material, it is difficult to make comparisons because the quasi-static
stress-strain curve presented by Lankford et al. is quite different from that in the present
experiments. In addition, it is possible that there is a transition to increased “flow” and
increased fiber pull-out under dynamic rates of loading. For the present experiments,

as has already been mentioned, there was a decrease in pull-out length and the failure
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strain remained approximately constant for the higher (but still quasi-static) strain rate
experiments.

A number of simple tests could be performed to elucidate some of the details of
the rate sensitivity of the unidirectional SiC/CAS composites. These tests would involve
both stopping tests and/or jumping to different strain rates at selected points during the
deformation history. In this way, it would be possible to determine the state of damage at
various stages. In addition, the jump tests would determine if there are rate sensitivities
inherent in the material. This latter possibility exists since the in situ properties (including
the rate sensitivity) of the matrix, the fiber-matrix interface and the fibers are not well known

(Cooper, 1994).

4.5 Summary

This study has shown that even within the quasi-static strain rate regime, the rate of
loading is an important variable for SiC/CAS composites. For the first time, significant
differences between lower strain rate and higher strain rate mechanical behavior were
presented. The experimental measurements led to the conclusion that the kinetics of
damage formation and propagation were altered by different rates of loading. In addition,
the extent of damage was also changed. Various reasons for the change in damage mode
were postulated. Since damage in composite materials is the method by which these
materials are made tougher, this work has important implications for composite materials
design.

Experiments for which the specimen is unloaded and/or the strain rates are changed at
specific points in the deformation history would provide more detailed information on the
origin of the strain rate dependence. It is also desirable to see if there are more significant
differences in the macroscopic failure for dynamic rates of loading. Before ceramic matrix
composites can be used in applications such as high speed aircraft engines, their mechanical

behavior needs to be understood for loading rates ranging from quasi-static to dynamic.
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CHAPTER 5

Model Composite Experiments

5.1 Introduction

As has been seen in Chapter 2, the multi phase nature of composite materials has con-
siderable effect on the material response. These changes are beneficial in that they introduce
nonlinearity (toughening) to materials which would otherwise fail in a brittle fashion. For
the ceramic composite investigated in Chapter 2, the material response was divided into 5
zones of deformation (see Section 2.5). Within each zone a different damage mechanism
is presumed to dominate. Thus, it is the damage mechanisms (matrix cracking, debonding,
fiber sliding and pull-out) which provide for a nonlinear material response. Various methods
have been used to investigate individual damage mechanisms in an averaged sense. These
methods include acoustic emission and ultrasonics. For more detailed analysis, it is neces-
sary to isolate individual damage mechanisms in a controlled, easily analyzed environment.
Experiments which effectively isolate different aspects of the material response of more
complicated materials are referred to as “model experiments.”

There have been relatively few experimental investigations of model materials which
mimic fiber reinforced composites or the damage therein. Under fatigue loading Botsis and
Shafiq (1992) studied the effect of fiber spacing on crack bridging for a line of glass fibers
in an epoxy matrix. Using the same material system, crack initiation and propagation was
studied as a function of crack spacing (Botsis and Beldica, 1994). In both of these studies,
since the matrix and fibers were transparent, damage could be observed in real time. In

the present investigation the model material resembles a fiber composite only in that it is
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composed of a brittle material symmetrically reinforced by a strong material. When viewed
on a smaller scale, the problem looks like that of a crack in a weak material propagating
perpendicular to an strong material. Much of the previous work with cracks and interfaces
is related to cracks along the interface (e.g., He and Hutchinson, 1989b; Lambros and
Rosakis, 1995; Geubelle and Knauss, 1994). The near-tip analysis of a crack impinging
(perpendicularly) on a debondable interface has been theoretically investigated by Dollar
and Steif (1992). In this study stress concentrations from the cracks were determined for
various load levels and debond states. In an earlier study, Dollar and Steif (1989) found
crack tip stresses to be highly dependent on the coefficient of friction. He and Hutchinson
(1989) have studied the branching of cracks approaching an interface. There are no known
studies of rate effects for cracks propagating perpendicularly to a strong material.

In this chapter, experiments which isolate the propagation of cracks in a brittle ma-
terial are described. In addition, the interface between the brittle material and strong
reinforcement is observed to debond under certain conditions. The materials for the model
experiments were chosen to simulate a brittle matrix reinforced by strong fibers. Loading
was applied parallel to the reinforcement to mimic the experiments described in Chapter 2,
and experiments were performed at two different strain rates within the quasi-static strain
rate regime. The model material response has several similarities to that of the ceramic
composites. In particular, a transverse strain reversal was observed, and strain rate was
found to have an important effect. The method of Coherent Gradient Sensing was used to
qualitatively understand nature of the stress fields in the vicinity of the “damage” and for
different strain rates. Throughout this chapter, “matrix cracking” will be used to refer to
the propagation of cracks within the brittle (matrix) material. The term, “debonding,” will

refer to the propagation of cracks along the reinforcement-matrix interface.
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5.2 Experiments

To analyze what happens when a crack in a brittle material encounters a tough re-
inforcement, the specimen shown in Fig.5.2.1 was designed. The epoxy resin, Homalite
100 (The Homalite Corporation, Delaware), was cut and milled from 3/;¢" plate stock into
5/g" x 6" strips. Homalite was chosen as the “matrix” because it is optically transparent and
very brittle. Aluminum was used for “fibers” because it is both tough and has a relatively
low modulus. Since Homalite 100 has a Young’s modulus of approximately 4 GPa, the low
modulus of aluminum (approximately 70 GPa) was desired in order to keep the modulus
mismatch low. The resulting modulus mismatch for the above described “composite” is
greater than that of the SiC/CAS ceramic composite described in Section 2.2. However, this
mismatch is more typical of brittle matrix composites than of other composite systems (i.e.,
polymer matrix composites). As shown in Fig.5.2.1, the aluminum strips were machined
into half dog-bone shapes (gauge section area: 5/64"x 3/16") to insure deformation in the
gauge section. The aluminum strips were first grit blasted and then glued to the as-machined
(milled) Homalite using Loctite Depend Adhesive (Loctite Corporation, Aurora, Illinois).
The composite specimen was clamped together during the gluing procedure; this yielded
a thin interface layer of glue which was consistent from one specimen to the next. The
resulting interface can be thought of as analogous to the carbon interface present in most
brittle matrix composites. Another detail of the specimen preparation is the introduction of
an initial stress concentration. A 3/¢4" hole was drilled in the center of the Homalite strips.
A jewelers saw was used to cut wing cracks on the hole, and a razor blade was used to further
sharpen the wings. This ensured that the initial “matrix” crack would start perpendicular
to the reinforcement and that it would be within the field of view of the Coherent Gradient
Sensing optical technique. Finally, the aluminum and the Homalite were ground flat in the

grip section to guarantee that both the materials were uniformly loaded in the far field.
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F1G6.5.2.1 A schematic of the specimen for the model experiments.

5.2.1 Load Frame Details

The specimen described above was loaded using an MTS Tension/Torsion (MTS
Corporation, Minneapolis, Minnesota) load frame. The specimen was gripped with Instron
(Instron Corp., Massachusetts) wedge grips. The experiments were run in displacement
control, and load and displacement were output directly from the MTS controller to a
Nicolet 440 oscilloscope. A Lucas Schaevitz (Lucas Control Systems Products, Hampton,
VA) Model 025-MHR Linear Variable Differential Transducer (LVDT) was used to measure
the transverse displacement of the specimen. This LVDT was chosen because it is small,
lightweight, and has a very high sensitivity (7.8 mV/V per 0.001"). The LVDT and its non-
ferrous core were mounted on aluminum pieces which were glued to the specimen using
Loctite Multi-Bond Adhesive 312. As indicated schematically in Fig.5.2.1, the LVDT was
mounted directly across the initial stress concentration.

For high accuracy, it is best to drive LVDTs with AC signals, and therefore it is
also necessary to demodulate the resulting LVDT signal into DC. Driver electronics from

Sangamo (Solatron Tranducers, West Sussex, England) were used for both the driving and
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demodulating. A schematic of the LVDT electronics is shown in Appendix D. The oscillator
produces an oscillating voltage (sine-wave) for the LVDT and a reference voltage and clock
signal for the demodulators. As indicated in the schematic, the 10 kHz frequency and 3V
rms amplitude options were set on the oscillator. Using the amplitude and phase shift of
the LVDT output along with the reference voltage and clock signal from the oscillator,
the demodulator outputs the DC signal which is directly related to the position of the core
within the LVDT (displacement). Additional options on the demodulator give the user
means to zero the transducer output and to increase the gain of the output signal using
trimpots. To remove high frequency noise associated with the LVDT and its electronics, the
output from the demodulator is low pass filtered using a Preston (Preston, California) 8300
XWB Amplifier. The output from the Preston Filter/Amplifier is recorded using a Nicolet

440 oscilloscope.

5.2.2 Coherent Gradient Sensing (CGS)

The optical method of CGS for use in mechanics was first proposed by Tippur et
al. (1991). A schematic of the setup for the present experiments is shown in Fig.5.2.2.
A 50 mm coherent, monochromatic collimated laser beam is transmitted through the de-
forming specimen. For reasons which will be explained below, during deformation of the
specimen the laser beam acquires an optical path difference which is a function of the
in-plane coordinates (. x2). The now non-collimated laser beam passes through two line
diffraction gratings, G; and G of pitch (inverse line spacing) p. The gratings are positioned
at a distance A apart. The output from the two gratings is transmitted though a filtering
lens L. This results in diffraction spots on the filtering plane. Blocking all diffraction orders
except a first order diffraction spot (=1) allows the interference pattern to be imaged and
stored by the CCD camera.

The CGS interferometer is a lateral shearing interferometer which has been rigorously

analyzed with Fourier optics by Tippur (1992) and Lee et al. (1995). However, based on the
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F'16.5.2.2 A schematic of the CGS setup for the model experiments.

diffracted wave fronts shown in Fig. 5.2.3 and following the work of Murty (1964), a simple
explanation of the CGS interferometer is presented. Without loss of generality, the line
gratings are assumed to have a sinusoidal transmittance. Thus, a plane wave propagating
along the optical axis will be diffracted into three wavefronts (Eo and E. ;) by the first

grating (G1). The angle of the propagation directions for E; and E.; is given by the

A
0 = sin~! (-A-> ~ <_) i (5.2.1)
P Iz

where ) is the wavelength of light and p is the grating pitch. For the helium-neon laser and

diffraction equation

gratings used in the present experiments (A = 632 nm and p = 0.025 mm/line), # = 1.4°.
The second grating (G2) will diffract each of the three wavefronts incident on it into three
additional wavefronts. Thus, as can be seen in Fig. 5.2.3, nine wavefronts will emerge from
G.. The wavefront pairs (Ey —1,E_; ) and (E, (,Ey 1) are parallel and are therefore filtered
to the same spot on the filtering plane. In addition, these wavefront pairs are copies of the
original deformed wavefront emerging from the specimen and are sheared by a distance w
which is given by

w = Atanf ~ Af (5.2.2)
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F1a.5.2.3 Diffracted wavefronts within the CGS interferometer.

for small shearing (i.e., small 6).
The deformed wavefront emerging from the deforming specimen can be mathemat-
ically represented as having a phase (optical path) of S(x,z,). For shearing in the

direction, the condition for constructive interference on the image plane of the camera is
S(xy +w,xa) — Sy, w0) = mA , (5.2.3)
where m = 0.=%1,%£2.... . Upon dividing both sides of Eq.5.2.3 by w and using the

relations in Eq. 5.2.1 and Eq. 5.2.2, the following equation results:

S(r; + w, :1:2)‘ — S(x1, x9) _ %@ ‘ (52.4)

If the two diffraction gratings are moved together (i.e., A — 0) or the grating pitch is
increased (i.e., p — 0) then w — 0. From Eq.5.2.4, the condition for interference then

becomes

JS(xy. . m
—-—%’;T’?_) - -'—'A'if m=0,41,42,... . (5.2.5)
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Similarly, if the grating lines are parallel to the z; direction, the condition for interference

becomes
i‘?%f;il) - % no=0,+1,42. ... (5.2.6)
Now that the condition for interference has been related to the change in optical path
length, for solid mechanics applications, it is necessary to relate the change in optical path
length to the deformation of the specimen. As shown in Fig.5.2.2, we assume that a planar
wavefront is normally incident on the specimen which lies in the 2y — 2 plane. The
transparent material is assumed to be optically and mechanically isotropic with a uniform
thickness of /. and a refractive index of n. The equation for the transmitted wavefront
becomes 23 + S(wx1,x2) = constant, where S(xy,x2) is the optical path length change

acquired during refraction. As discussed in detail by Rosakis(1993), S(xq,x2) can be

related to the deformation state by

[Sie

) 13 I3
S(zy.we) = 2h(n —1) / eszd| =} + 2h /
Jo ( h ) Jo

The first term in equation Eq. 5.2.7 represents the net optical path length change due to the

5nd(3;—3) . (5.2.7)

12

plate thickness change caused by the strain component e33. The second term is the net
optical path length change due to the stress induced change in refractive index. The change

in refractive index with stress is given by the stress optic relation (Maxwell relation),
on = Di(o11 + 022 + 022) , (5.2.8)

where D) is the stress optic coefficient and o;; (¢ = 1. 2, 3) are the Cartesian components of
the stress tensor. Given the isotropy assumptions, the strain component, ¢33 can be related

to the stress components, and Eq. 5.2.7 becomes

N ‘ B 033 T3
S(a1. 1) = 2he, ’/U {(olﬁm)k 1)2(%”(0” +022)>}}d< h) . (5.2.9)

where

(SIS

Diyvin—1)

Cor = [Di——%('ll—l)] Eln(i DQZ_‘{
E

vDy + ”(7;5“1)}
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In the above, F and 1 are the Young’s modulus and Poisson’s ratio of the material, respec-
tively.

It is clear from Eq.5.2.9 that S(x;, 25) depends on the three dimensional stress state.
In particular, the stress state will be three dimensional in the vicinity of crack tips. A
summary of the relevant numerical analysis of the three dimensionality of homogeneous
and interfacial cracks in plates is given by Rosakis (1993). These numerical simulations
have shown that for homogeneous cracks in plates, plane stress conditions exist in regions
that are at distances greater than half the specimen thickness from the crack. For bimaterials
there is a large three dimensional zone ahead of the crack; behind the crack, plane stress
conditions exist beyond approximately one half the specimen thickness from the interface.
For the current specimen geometry the 3-D stress fields have not been analyzed. However,
it is expected that there are large regions of the specimen in which plane stress conditions

exist. For such conditions, o33 is zero, and Eq. 5.2.9 simplifies to
S(xy.x2) = 2hey [611(w1, 22) + Faa(1y, 12)] (5.2.10)

where 71, and 622 are the thickness averages of the in-plane stress components in the plate.
Now the conditions for optical interference are related to the thickness averaged in-plane
pressure (011 (1. 22) + Fog(xy1, 22)) as follows:

o1 (ry, wo) + Gaolwy, x2))  mp

Coht o =X m=0=x1,+2, ...
L o (5.2.11)
061 (. we) + Oaa(ay, 10))  np ‘
) . = —, n=0x1,+2.....
Jxy A '

Figure 5.2.4 is a photograph taken by Tippur and Rosakis (1991). The photograph
contains CGS interference fringes caused by quasi-static three point bend loading of an
interfacial crack between PMMA (PolyMethyl Methacralate) and aluminum. The gratings
were oriented parallel to the 2 axis, and thus the shearing is in the x5 direction. As explained
in the discussion above, the fringes are contours of constant gradient (with respect to the

x2 direction) of the thickness averaged in-plane pressure (611 (1. 2) + Go2(71, 23)). A
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characteristic of these interfacial cracks is the presence of two lobes of fringes. One lobe
is ahead of the crack tip and one behind. The point at which the fringes in the two lobes
converge is the crack tip. The CGS fringes outside the 3-D zone can be used to determine the
2-D stress intensity factor. Since the adhesive used in bonding the Homalite and aluminum
is of finite thickness (albeit small), the model composite is actually a trimaterial. The work
of Gu (1993) has indicated that there were only small differences in phase angle for the

macroscopic bimaterial K-field and the trimaterial local near tip K-field.

Contours of Constant

A A
J (011+622)
oX,

= Crack Tip

PMMA Aluminum

F1G.5.2.4 CGS fringes from a crack along the interface of PMMA/Aluminum under three
point bend loading.

Several limitations with the experimental technique exist. These limitations are char-
acteristic of many different optical techniques used in fracture mechanics. Since the fringes

get quite dense near the crack tip (due to high deformations/stresses), it becomes difficult
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to locate the crack tip exactly. Additional difficulties result from the formation of shadow
spots. The formation of this spot is illustrated by Fig. 5.2.5. Because of the large deforma-
tions near the crack tip, the originally collimated laser beam obtains large angular deviation
during refraction. Since the optics (gratings and lenses) are of finite dimension, some of
these rays are not collected at the image plane and a shadow spot results. A similar effect
can be caused by poor focusing of the optics. The shadow spot, usually called a “caustic,”
is actually used to gather information for the optical method of caustics. However, in the

present study it is undesirable.

,,,,,,,,,,

——— > ‘1 T _ Shadow Spot
| (caustic)

Columnated Laster Light
T
(@]
=S
g
1

F'1G6.5.2.5 A schematic of the profile of rays transmitted through a highly deformed
(cracked) specimen.

5.3 Results

The axial response of the model composite for two different strain rates is shown in
Figures 5.3.1 and 5.3.2. The stress was calculated from load and original cross sectional

area, and the strain was determined from crosshead displacement and original gauge section



MODEL COMPOSITE EXPERIMENTS 5.12

length. The strain was calculated over the whole gauge length to avoid ambiguities with the
formation of cracks in the Homalite. Unfortunately, by relying on crosshead displacement,
compliances in the grip-train were present. The grip-train compliances (particularly those
associated with the wedge-gripping) presumably result in the bi-linear response seen in
both Figures 5.3.1 and 5.3.2. After the bi-linear portion, the model composite response is
nearly perfectly plastic. Since the CGS fringes were video taped during the experiments, it
was possible to determine the points at which matrix cracking and debonding began. These
points are indicated in the figures. For the higher rate experiment shown in Fig.5.3.1, the
center crack dynamically propagated at a relatively low stress. At the higher rate, neither
the center crack propagation nor the debond propagation effected the axial response. Only
at much later loading stages did cracks in the Homalite influence the axial response. The
lower rate axial response in Fig. 5.3.2 is effected by the (dynamic) center crack propagation.
The propagation of Homalite cracks causes a sharp drop in load carrying capability followed
by a gradual recovery.

The aluminum “reinforcement” was tested independently and found to have a nearly
elastic-perfectly plastic response. The same nonlinearities in the elastic regions of Fig-
ures 5.3.1 and 5.3.2 were present in the monolithic aluminum experiments and, as was
mentioned above, are most likely related to specimen gripping. The axial response of the
composite was dominated by the aluminum. This is not unexpected since the Homalite
has a relatively low modulus and low strength. Experiments with only Homalite strips
were also performed. Within a range of crosshead displacement rates (0.12-0.005 mm/s)
the Homalite was found to be mildly strain rate sensitive with a slight increase in Young’s
modulus under higher rates of loading. It is not known how strength is effected by strain
rate since for the brittle Homalite, the ultimate failure strength is most likely statistical in
nature. Additional experiments were performed with monolithic Homalite strips in which
the initial hole and wing-tip cracks were present. Since the initial flaw is again of a statistical

nature, no conclusions regarding the effect of strain rate on crack propagation in Homalite
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F1G.5.3.1 The axial stress versus strain for a model composite during higher strain rate
loading.

could be drawn. During experiments with the model composites, the propagation of the
initial flaw did not correlate with strain rate or stress.

In Fig.5.3.3 the transverse strain which was determined from the LVDT signal is
plotted versus the axial load for the higher strain rate experiment shown in Fig.5.3.1.
Again, the cracking events are indicated on the figure. Although the aluminum appears
to dominated the response, it is seen that the cracking events (in particular, the debonds)
influence the transverse strain. The stepped response in the transverse strain is a result of
the delayed cracks in the Homalite.

For each of a higher and lower strain rate experiment, four video frames of the CGS
fringes were digitized. The frames were selected to illustrate the stress fields just before or
after a cracking event (matrix cracking or debonding).

The results for a lower rate experiment are shown in Fig. 5.3.4. The digitized frames
ranged in time (actual experiment time) between 7:55 and 10:15 minutes. The shearing

for this experiment is in the horizontal direction (i.e., the grating lines are parallel to the
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aluminum reinforcement). The first frame, digitized at time t=7:55, shows the fringe pattern
for a hole in a homogeneous material. Both the wing cracks and the reinforcements have
little influence on the stress field at this stage of the loading. The dark line across the center
of the image is the shadow from the LVDT probe. The “double” image of the aluminum is
due to the fact that the shearing is in the horizontal direction. The second frame (t=8:05)
is just after the center crack has propagated. There were no video frames which captured
the crack during propagation, and therefore the crack propagates dynamically in less than
1/30 of a second (the time between video frames). The fringe pattern is symmetric showing
that the crack propagation was also symmetric. The fringe pattern reflects the fact that the
center crack is now stress free. The Homalite away from the central crack is loaded by stress
transfer from the aluminum reinforcements. This loading is enough to cause further matrix
cracks. In the lower portion of the third frame (t=8:50), a crack has propagated through
the Homalite. This crack propagated dynamically, between frames and also bifurcated. No
crack propagation along the interface (debonding) was observed between frames 2 and 3.
Although the Homalite is now cracked in the center and the bottom of the image, there are
still CGS fringes throughout these regions. This is because there are still gradients of stress
(recall that the CGS technique forms fringes for constant stress gradients). Notice that the
pattern in the upper half of the image is quite similar to the image in frame 2. The fourth
frame (t=10:15) was digitized just after another matrix crack propagated dynamically (near
the top of the image). As was the case for the other frames, up until this point, no debonding
was observed. At much later stages of the test (>15:00), small debonds were observed
to propagate short distances from the matrix cracks. In summary, for the lower strain
rate experiments, it was observed that the model composites tended to form matrix cracks
perpendicular to the aluminum reinforcement with minimal debonding of the Homalite-
aluminum interface only in the very late stages of loading.

Four frames of a higher strain rate experiment are shown in Fig. 5.3.5. These frames

range in time between 0:16 and 0:25 minutes. For this experiment the shearing is in the
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F1¢.5.3.4 Four frames from the video taped CGS fringes formed during a lower (10

5
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~1) strain rate model composite experiment.
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vertical direction. Therefore, in contrast to Fig. 5.3.4, there are two shadows (or one sheared
shadow) of the LVDT probe. Also as a consequence of the different shear direction, the
fringes seen in frame 1 (t=0:16) are quite different from those in Fig.5.3.4; nonetheless,
they are representative of a hole in a homogeneous specimen. The advantage to vertical
shearing is that the interface is now distinct and debond cracks are more easily visualized.
In frame 2 (t=0:17) the center crack has dynamically propagated. On the left side of the
crack there are additional fringes which show that the interface on this side of the specimen
may be partially debonded in the vicinity of the center crack. The third frame (t=0:23.5)
shows the model composite in the process of debonding. A debond crack is just passing out
of the field of view in the first quadrant of the image. Also in this frame, another debond is
approximately in the center of the second quadrant of the image. This latter debond is seen
to be qualitatively similar to the bimaterial interface crack shown in Fig. 5.2.4. In frame 4
there is a debond crack in the middle of the third quadrant; the debond in the fourth quadrant
has moved out of the field of view. All of the debonding events were relatively slow, with
each debond taking approximately 1 second to propagate from the center crack to beyond
the field of view of the interferometer. For these model experiments, the debonds tended to
travel all the way to the grip section of the specimens. Additional matrix cracks occurred

in the Homalite at much later loading stages and out of the CGS field of view.

5.4 Discussion of the Rate Dependence

The model experiments described above show strain rate dependence within the quasi-
static strain rate regime. This dependence manifests itself in the form of the activation and
propagation of different damage mechanisms. For lower loading rates, the Homalite matrix
material develops multiple cracks perpendicular to the aluminum reinforcement. These
cracks all propagate dynamically. Debonding follows only much later in the experiment.
For higher loading rates, propagation of the center (starter) crack occurs and the debonds

propagate relatively slowly along the entire gauge section of the specimen. At much later
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F1G.5.3.5 Four frames from the video taped CGS fringes formed during a higher (10~ s~!) strain rate model composite experiment.
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loading stages, additional cracks develop in the Homalite. Therefore it is seen that the
final macroscopic deformation state can be achieved through different damage paths. The
damage path appears to be highly dependent on strain rate.

Within the strain rate regime investigated in this work (10~°=1073 s~ 1) the aluminum
is not strain rate dependent. As discussed above, due to the statistical nature of flaws in
brittle materials, it is not known to what degree the Homalite is strain rate dependent. It
was noticed that, although propagation of the initial center crack did not correlate with the
loading rate, there was still correlation between the loading rate and the damage path. Thus
it is concluded, that the bulk Homalite properties do not play a dominant role. One could
argue that since the interface (primarily Loctite Depend epoxy adhesive) is a viscoelastic
material, it may be responsible for the strain rate dependence. In particular, the epoxy
interface, like many viscoelastic materials, may become more brittle at higher strain rates.
However, given the clamping procedure involved in making the specimens, the interface
layer is extremely thin.

The experimental results indicated that it is energetically favorable for debonding of
the interface at higher loading rates and for cracking of the Homalite matrix at lower rates.
To understand this phenomenon, it may be appropriate to consider the material as a system
or a structure in which load is shifted back and forth between the different constituents.
The change in macroscopic loading rate may have important ramifications for the rate and
sequence of load shedding between the different constituents. Along the same lines, as
was discussed in Section 4.4, the dynamics of matrix crack propagation together with the
macroscopic loading rate may also effect the activation of different damage mechanisms. In
the model experiments there are different length scales associated with the “reinforcement”
and “matrix” phases, the interface, and flaws. Inertial effects and wave propagation along
with the increased macroscopic loading rate (not allowing equilibration along certain length

scales) may play a role in changing the damage mode.
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The rate effects observed in the model composite can be compared to the rate effects
for the unidirectional SiC/CAS composite presented in Chapter 4. In the model composite,
at Jower strain rates, periodic matrix cracks developed. A similar response was noted for
the SiC/CAS system. It was observed that the SIC/CAS composite modulus degrades more
quickly and matrix cracking saturates sooner at lower strain rates. In addition, debonding
was not observed in the model composite at lower rates. The analogous effect of reduced
debonding at lower loading rates with the SiC/CAS composite is evidenced by the relatively
small transverse strain reversal. For higher strain rates, the lack of periodic cracking in
the model composite parallels the delayed matrix cracking effect observed in the SiC/CAS
composite. Similarly, at higher loading rates, the enhanced debonding observed in the
model composite parallels the large transverse strain reversal in the SiC/CAS composite.
In the model composite results, the response is dominated by the aluminum reinforcement.
Although there is slight variation in the ultimate stress in the SiC/CAS composite for
different strain rates, as is the case with the model composite, it appears that the ultimate

strength is dominated by the reinforcement phase.

5.5 Summary

In this chapter, the results for experiments with a model composite material were
presented. The model material consisted of a Homalite “matrix” and aluminum “reinforce-
ment.” This composite specimen was designed to simulate a brittle matrix composite with
unidirectional fiber reinforcement. An initial stress concentration in the Homalite was used
to control the location and propagation direction of the initial flaw. The optical technique
of Coherent Gradient Sensing (CGS) was used to obtain qualitative information regarding
the stress fields and to visualize the propagation of cracks (damage). Since the Homalite
has a relatively low strain to failure, it was expected that periodic cracks would develop in
the Homalite as load was transfered (in shear) from the aluminum. This was found to be

true only for low loading rates. For higher rates (but still within the quasi-static strain rate
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regime), it was found that the initial starter crack tended to debond the interface and further
“matrix” cracks would develop only much later. Possible reasons for this rate dependence
(change in damage path with strain rate) were postulated; further work is required for more
definitive answers. It was observed that behavior of the model material under different rates
of loading is qualitatively similar to response of the SiC/CAS composite under different
loading rates. Thus, detailed analysis of the model system may provide insight into the

behavior of much more complicated composite systems.

5.6 Future Work with the Model Material

Comparison of the results for the model composite material and the actual ceramic
matrix composites provides justification for further experiments and analysis. Ideally, it
would be best to develop a material system for which the modulus mismatch between the
“matrix” and the “reinforcement” was less. In addition, it would be advantageous if both

constituents were optically transparent. The following studies would be worth pursuing:

e Varying the interface strength.

e Varying the initial flaw location and size (including placing the initial flaw along

the interface).
e Analysis of the stress fields as given by the CGS fringes.

e “‘Jump Tests” (see Section 4.4) to determine the source of the rate dependence.
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CHAPTER 6

Computational Model

6.1 Introduction

One of the advantages of composites lies in the ability to optimize properties in de-
sired directions. If the composite material properties are well understood and design is done
properly, directional optimization can lead to considerable weight savings. Another advan-
tage to composite materials is the relatively high toughness with respect to the individual
constituents. Thorough understanding of the constitutive response of composites requires
knowledge of the formation and propagation of damage. In particular, it is of interest to
obtain the overall material response for cracks which propagate through the matrix material
and interact with strong and stiff fibers. In addition, the potential debonding of the fiber is
important for the toughening characteristics of the material.

Within the last decade ceramic matrix composites have received considerable attention
as a light-weight, high temperature material. There exist many different models for the
overall response resulting from the matrix cracking process in ceramic matrix composites;
reference was made to several of these models in Chapter 1. As was discussed in Chapter 3,
a number of the matrix cracking models are based on fiber-matrix unit cell analysis using
shear-lag approximations (e.g., Budiansky et al., 1986; Dharani and Tang, 1990; Danchaivi-
jit and Shetty, 1993). More recently, He et al. (1994) have used both a shear-lag analysis
and finite element solutions to study the fiber-matrix unit cell. In their numerical model,
the matrix crack spacing and debond length were predetermined. It was found that the

shear-lag and numerical results differed for small fiber debonds.
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The above mentioned shear-lag models primarily study the crack bridging (with fiber
debonding) mechanism. Details of crack trapping cannot be determined from such models.
Recently extensive study of three-dimensional crack propagation in fiber reinforced brittle
matrix composites was performed by Xu et al., (1994). In their investigation, Xu et al.
studied the overall fracture toughness through numerical simulations of planar and non-
planar crack trapping and deflection. It was found that low values of interface toughness
resulted in crack deflection and minimal toughening from the crack trapping mechanism. It
was postulated, however, that for low interface toughness, the toughness of the composite
would be improved through energy dissipation mechanisms associated with bridging effects.
In the present investigation the overall behavior of a ceramic matrix composite will be
simulated by a numerical model of a fiber-matrix unit cell. The unit cell model will allow
for the development of multiple matrix cracks and fiber debonding.

The numerical model developed in the present study is based on a cohesive element
formulation similar to that of Needleman (1987). Since this original paper, the cohesive
law has been to include shear failure in the cohesive zone (Tvergaard, 1990; Needleman,
1990a,b), and more recently a coupled normal and shear response was developed by Xu
and Needleman (1993). All of these cohesive element models have studied plastically
deforming materials with interfaces. Ortiz and Suresh (1993) employed cohesive elements
in their investigation of intergranular fracture in ceramic materials, and Ungsuwarungsri
and Knauss (1987) studied fracture of composites and adhesives. The cohesive element
formulation has also been used in a dynamic setting by Camacho and Ortiz (1995) to
study impact damage in brittle materials and by Maurisch and Ortiz (1995) to simulate
high speed machining. The present formulation closely parallels that of Ortiz and Suresh
(1993). However, differences include an axisymmetric formulation, a cohesive law using an
uncoupled shear and normal response, and the possibility of frictional sliding after cohesive
elements have lost their load carrying capability. In addition, the main results are derived

within a dynamic setting with viscous damping included.
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A large part of this chapter is devoted to the finite element formulation. A time
independent formulation is first presented and the details of how contact and friction were
incorporated are described. The finite element simulations for an axisymmetric penny
shaped Dugdale crack are compared with the analytical solution. Next the composite
unit cell is described and shortcomings of the time independent formulation are discussed.
Inertial effects and viscous damping are added in order to obtain converged solutions. The
effects of matrix and interface toughness and interface strength parameters are presented. In
addition, the interaction of cracks in the matrix with the fiber and the fiber-matrix interface
are visualized. The implications of these interactions with respect to debonding of the fiber

and subsequent, additional matrix cracks are considered.

6.2 Time Independent Formulation
For standard displacement based finite elements, the time independent form of the

principle of virtual work is used as the starting point:

/ P:VudV, = / f-udV, +/ t-udsS, (6.2.1)
Ja, Q. r,

where (), represents volume integration of the reference configuration, I',, is the surface
integral of the reference configuration, V is the material gradient, u are the virtual displace-
ments, P are the first Piola-Kirchhoff stresses, and f and t are the body forces and boundary
tractions, respectively. Following the notation of Bathe (1982), discretization of Eq.6.2.1

with finite elements gives the following equilibrium equations:
Kd=R,+R; -R; +R,. ., (6.2.2)

where K is the stiffness matrix of the assemblage, d are the nodal displacements, Ry, R,
R; and R, are loads from body forces, element surface forces, element initial stresses
and concentrated forces, respectively. Although infinitesimal displacements and strains are
assumed, as will be shown in Section 6.2.1, the cohesive element formulation gives a non-

linear material (stress-strain) response. In addition, since contact is possible, the changing
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boundary condition can also result in non-linearities. For these reasons, it is necessary to
iterate to find the equilibrium solution.

The basic problem in non-linear analysis reduces to finding the state of equilibrium
of a body under given applied loads. Assuming that external loads are applied as a given

function of time, then the equilibrium condition reduces to
RI—-F =0, (6.2.3)

where R’ represents the external forces (at time t) described in Eq.6.2.2 and F! are the
nodal point forces (internal forces) which correspond to the element stresses at time ¢.
Incremental analysis assumes that the solution at time ¢ is known and that the solution for

time ¢ + At is desired. With A¢ a suitable time increment, equilibrium requires that
RITAT _FiHAL — (6.2.4)
Since the solution at time ¢ is known, the following can be written:
Fitat — F! L F (6.2.5)

where F are the increment in nodal forces corresponding to the increment in element
displacements and stresses from time ¢ to time ¢ + A¢. These incremental forces can be

approximated as follows:

F=Kid, (6.2.6)

where K’ is a tangent stiffness matrix and d represents the incremental nodal displacements.
If the tangent stiffness matrix is revised with each iteration, the method is referred to as
“full Newton-Raphson iteration.” There are variants of the stiffness matrix update which
are group as “modified” Newton-Raphson iteration. For all the simulations in the present
investigation, Full Newton-Raphson Iteration was used. Combining Equations 6.2.6, 6.2.5
and 6.2.4 yields

K'd = R"T2! — F (6.2.7)
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where d, the incremental nodal displacements, are the only unknowns in the system of
equations. Using the calculated incremental nodal displacements, the total displacements

(solution) at time ¢ + At can approximated as

ditat =gt +d, (6.2.8)

where d’ is the known displacement vector at time ¢. Presumably, one could simply take
the solution at 7 + At as the correct solution and then restart the iteration process with
the next load increment (¢ + 2A?). However, if non-linearity is severe, because of the
approximation in Eq. 6.2.6, it is likely that after only one iteration, increasing the time step
and using the approximate solution would incur significant errors and/or be unstable. Thus
it is necessary to insure that Eq. 6.2.4 is satisfied before increasing the time step. This can
be accomplished by comparing either normalized (usually the square root of the sum of
the squares) nodal forces or displacements of the current iteration and the first iteration. If
the ratio of normalized forces or displacements for the two iterations is less than a given
tolerance, then the solution is assumed to have converged. For the simulations described
herein, convergence on nodal displacements was used.

The finite element program used was a modified version of FEAP which was originally
programmed by R.L. Taylor at the University of California, Berkeley. The modifications
were done by Professor M. Ortiz at Brown University. The simulations described in this
chapter were all axisymmetric. Four noded quadrilaterals were used to model the bulk of
the mesh. These elements, which will be referred to as “bulk” elements, used linear shape
functions and 4 integration (Gaussian quadrature) points. Axisymmetric cohesive elements
were used to allow for the initiation and propagation of cracks. In the next two sub-sections,
the cohesive elements are described in detail. All elements where thoroughly checked with
consistency tests, patch tests (for the bulk elements) and single element simulations. In

addition, geometries with known analytical solutions were compared to numerical solutions.
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6.2.1 Cohesive Element Formulation

The cohesive elements used in the present investigation have some similarities to the
original element developed by Needleman (1987). Similarities include the following: a
continuum formulation which assumes the existence of a cohesive zone (Dugdale, 1960;
Barenblatt, 1962); surface elements which form an interface between either the boundary
or other continuum finite elements; and an interfacial constitutive relation (cohesive law)
which specifies the traction across the surface element for given displacement jumps across
the element surface.

The formulation for the present cohesive elements closely parallels that of Ortiz and
Suresh (1993). Ortiz and Suresh used 6 noded surface elements which had three quadra-
ture points and which could represent quadratic opening displacements. For the current
formulation, 4 noded elements with two quadrature points were used. In Fig.6.2.1 an
undeformed and a deformed 4 noded cohesive element are shown. The value of the jump
in shear (normal) displacement at each quadrature point was determined using linear shape
functions and the rélative displacements of nodes tangential (normal) to the surface of the
element. Shear (normal) stresses at each quadrature point were calculated from the shear
(normal) displacements and the cohesive law. Internal variables at each quadrature point
keep track of different stages of the deformation (e.g., undamaged, failed, etc.). In this

way, it is possible that an element will fail at one quadrature point but not at the other.

Undeformed Element Deformed Element

n
A Quadrature
Nodes i Point
“., ‘ //
) 2 : rg e 1
1,2 34

F1G.6.2.1 A schematic of an undeformed and deformed cohesive element with coordinates
and jump displacements indicated.
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The cohesive law determines the stress that is transmitted across the element and the
energy released by failure. In this respect there are distinct differences between the cohesive
law used presently and those used previously. In Needleman (1987,1990a,1990b) the
interfacial (cohesive) law was determined from either an exponential or polynomial potential
function. Since the cohesive law gives traction as a function of opening displacement, the
area under the curve is J/m? or work per area. Therefore the shape of the potential was
determined by a critical interfacial strength and by the work of separation per unit area.
Tvergaard (1990) developed a cohesive law which allowed debonding of a whisker by
normal separation as well as by tangential separation. In Xu and Needleman (1993), the
interfacial law was determined from a potential that couples the interfacial shear and normal
tractions. The normal response of the interface was taken to have the universal exponential
form (Universal Binding Energy) presented by Rose et al. (1983) for atomistically sharp
planes. The shear response had a similar form, but it was symmetric for positive and negative
shearing. Despite the attention to atomistics, the formulation was continuum, and it was
found that the exact shape of the interfacial law was not important for the final results. The
use of a potential for deriving the tractions has the following two distinct advantages: a) itis
possible to couple the shear and normal response consistently and b) the work of separation
is path independent. In Ungsuwarungsri and Knauss (1987) a formulation with non-linear
springs was developed. The springs followed a stress-displacement (g-w) law for which
the area under the curve represented the fracture energy. After presenting results for two
trapezoidal and two triangular ¢(w) functions, a procedure was proposed for determining
the details of the cohesive law from experiments.

As illustrated in Fig.6.2.2, in Ortiz and Suresh (1993) the cohesive law was linear
in both normal and shearing tractions up until a specified critical stress. The area under
the cohesive law curve is the critical energy release rate (G.). By specifying the critical

stress and critical energy release rate, the cohesive law was completely determined. Other,
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['1G.6.2.2 Cohesive law for normal displacement jumps from Ortiz and Suresh (1993).

interfacial laws have been proposed that are more complex. For example, in Xu et al.
(1995), tension-shear coupling is accounted for through an atomic level interlayer potential.

For the present simulations it was desired for the cohesive elements to be transparent
(i.e., transmit 100% of the load and not to add to the deformation of the body) until the
critical stress was reached. In terms of Fig. 6.2.2, this is equivalent to using a very large
initial stiffness (%) for the cohesive elements. However, in order to specify a reasonable
critical stress and critical energy release rate, it was decided that the cohesive law should
be box shaped. This is similar to the Dugdale-Barenblatt formulation with constant stress
in the cohesive zone. The resulting normal and shear cohesive laws are shown in Fig. 6.2.3.
The variable s denotes displacement jumps in the tangential direction and ¢ refers to
displacement jumps in the normal direction; o and 7 are the corresponding shear and
normal cohesive stresses. Note that the shear law is anti-symmetric about the ordinate, and
for negative g, contact is approximated by large compressive stresses. A similar concept
was used in Camacho and Ortiz (1995), where instead of a box shaped law, a triangular
cohesive law was followed with the stress ramped down linearly from a critical stress as a
function of the jump in displacement.

As was previously mentioned, an internal variable was used to keep track of where
each quadrature point was in terms of the shear and normal cohesive laws. The internal
variable was updated after a converged (equilibrium) solution was found. The terminology

used is “undamaged” for points along the initial linear slope; “yielding” for points along the



COMPUTATIONAL MODEL 6.9

b)

F1G. 6.2.3 The cohesive laws for a) shear displacement and b) normal displacement.

top of the cohesive law box; and “failed” for points beyond the cohesive law box (beyond
the critical displacements). The cohesive law for yielding and failed elements has a small
(10~7), but finite slope, to avoid numerical difficulties. The normal and shear responses are
uncoupled and any quadrature point may be yielding in tension and undamaged in shear,
or vice versa. Naturally, quadrature points may also be both undamaged or both yielding.
If the direction of displacement reverses while a quadrature point is either undamaged or
yielding, the cohesive law curve is still followed, albeit in the opposite direction. Once a
quadrature point has failed in either tension or shear, then the stresses calculated at that
quadrature point reflect the condition that tension cannot not be supported; compressive
stresses are possible with approximation of contact described above. As will be described
in Section 6.2.2, elements with failed quadrature points will only transmit shear stress when

there is friction. Schematics of the cohesive laws for failed quadrature points are shown in
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F1G.6.2.4 The a) shear and b) normal cohesive laws for failed quadrature points.

Fig.6.2.4. The possible paths to failure (with exaggerated yielding zones) are visualized in
stress space in Fig. 6.2.5.

There are two remaining aspects of the cohesive elements which merit discussion. For
a cracked body under load, the cohesive zone model allows for the calculation of a cohesive
(or plastic) zone size. This calculation can be done in terms of the far-field stresses and
the cohesive (or critical) stress (see Eq.6.2.26). Alternatively, a zone size can be written
in terms of the far-field stresses, critical energy release rate and Lamé constants. For plane

stress the relation is as follows:

Ty = Tﬁ%% . (6.2.9)
For a valid simulation, it is necessary that for the specified material properties, several
cohesive elements span the cohesive zone (i.e., cohesive elements are smaller than the
plastic zone size).

The stresses for the cohesive law presented above are given as a function of opening

displacement. The fact that displacements are used in the cohesive law introduces a length
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F1G.6.2.5 An illustration of the failure surface for cohesive elements (with exaggerated
yielding) in stress space.

scale into the problem. In discussion by Needleman (1987), the length scale, called the
“characteristic length” was related to opening (or sliding) displacement of the cohesive
element at which point the element no longer carries load (i.e., g* or s* in Fig.6.2.3).
Furthermore, the ratio between the characteristic length and the radius of an inclusion
determined whether the decohesion of the inclusion proceeded in a “ductile” or “brittle”
manner. In other words, the characteristic length to inclusion radius ratio influenced the
toughness (G..) of the material. However, in Needleman (1990a) it was noted that for large
specimen dimensions with respect to the characteristic length, the mesh dimensions do not
effect the results. This problem can be visualized with a single bulk and single cohesive

element subjected to uniaxial tension. The overall strain at failure is written as

(6.2.10)
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where o, is the critical stress in the cohesive element and L is the length of the bulk element.
Clearly, the length of the bulk element will effect the results when Lo, is the same order of

magnitude as G.. It is important to choose dimensions to avoid this problem.

6.2.2 Friction Formulation

As has been discussed, when the opening displacement of a cohesive element is greater
than ¢* and/or the sliding displacement is greater than |s*| the cohesive element is assumed
to have failed. In this situation, as illustrated in Fig.6.2.4, the element no longer can
transmit tensile stresses. When there is contact (compressive normal stress), it is realistic
that shear loads could be carried through friction. Thus, for failed cohesive elements, a
Coulomb friction formulation is added.

The friction formulation (Ortiz, 1995) summarized below is analogous to non-as-
sociative plasticity, and is described in detail in Giannakopoulos (1989). Since this is a
non-linear problem, the equations are written at step n + 1 in terms of the current (n)

variables. The relevant equations are as follows:

Op+1 = Oy, + E(.(]'H,Jrl -+ gn)
6.2.11)

where sgn(-) is the signum function (sgn(x)=x/|x|), E is the predictor modulus (a large
number) and A is the proportional load factor. In addition, there is another relation for

Coulomb friction which forms the “Yield Surface,”

| ’rf-&lj + UOp 1 = 0. (6212)

T

Now, the following equations constitute the “Elastic Predictors:”

6—71,+1 =0y + E(.(]n+l + gn)

Tl =1+ Blsus + s) (6.2.13)

T

AN =0.
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After calculating the stress using Eq. 6.2.13, the predicted stresses are checked to see if one
has gone beyond the yield surface. Thus, the following equations determine if the “Yield
Condition” has not been met:

YES, T,{H = 7:7]:+1

f

E = On4l = Opt1
77{+1} + poptr <0 e)’dt " (6.2.14)
NO. “Plastic Corrector”

As indicated in Eq.6.2.14, if the yield condition is violated, then the “plastic corrector”
must be applied. In other words, the stresses are adjusted through the following equations

to lie on the yield surface:

Op4+1 = (}n—%-l (6215&)
T =7 — EANsgn(r] 6.2.15b
n-+1 n—+1 ‘gll(rrz/i,—l) ( b )

1
lT;f+1!l + HOp 1 = 0. (6.2.16)

This method is called the method of “radial return.” It is graphically visualized in Fig. 6.2.6
for both three dimensions (friction in the plane) and two dimensions (plane problems with
one dimensional sliding).

Now it is left to implement the above formulation for the cohesive elements. The three
unknowns (A, 0,41, and 7‘7{+1) are related in Equations 6.2.15a, 6.2.15b and 6.2.16. In
what follows, the steps for solving for A\ are given. Since the sign of elastic predictor is

known, then the sign of the plastic corrector is also known, i.e.,
sen(r) ) =sen(7 ). (6.2.17)
Therefore, with the definition of the sgn function, it can be written that:

e

I

sen(7 ). (6.2.18)

| f
i7—71,~i-1[

n+l }
However, Eq. 6.2.18 can be rewritten using both Eq. 6.2.15a and Eq. 6.2.16 as

T = —pasen(7 ) (6.2.19)
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F1G.6.2.6 The method of “radial return” for correction of frictional stresses in three and
two dimensions (2-D or 1-D sliding, respectively).

Substituting Eq. 6.2.19 into Eq. 6.2.15b and using Eq. 6.2.17 gives
— 011 sgn(ﬁ":“) = %7]:+1 — EFAX sgn(rgﬂ). (6.2.20)

Noting that (sgn(x))? = (%), Eq.6.2.20 can be further simplified by multiplying both sides
g q y

by Sgn('f,{H) :
— U1 = %,{H Sgll(%;{+1) — FAN. (6.2.21)
The first term on the right hand side of Eq. 6.2.21 is the absolute value of %;f 1> and therefore
the solution for A\ is
AN = é—( T+ o) (6.2.22)

This quantity is necessarily greater than zero; otherwise the plastic predictor would not

have been employed.
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With the addition of friction, the tangent stiffness matrix must be accordingly revised.

There are three possible situations which can arise:

1. no contact (and hence no resistance to sliding)
ii. contact and insufficient shear stress for sliding (within the yield surface)

iii. contact and frictional sliding (passed the yield surface and corrected)
For each situation, there is a different tangent stiffness. At step n + 1, the element tangent

stiffness matrix, K, can be written as follows:

87}:;;—1 00

a4 8<’nd~ 0<‘n+

L D A (6.2.23)
-1 6011+1
IGn+1 Ogn+1

For case (i), the stresses are zero and hence the gradients are also zero. In actuality, as is the
case with the failed cohesive elements described in Section 6.2.1, the diagonal terms of the
tangent stiffness matrix are give a very small value (=~ 10~7) to avoid numerical difficulties.
For case (i), since the stresses have not exceeded the yield surface, from Eq.6.2.11, with
A\ = 0, itis seen that the gradients in Eq. 6.2.23 are equal to F along the diagonal and zero
off the diagonal. For case (iii), the gradients of the plastic correctors in Eq. 6.2.23 must be
calculated. Using Equations 6.2.15b, 6.2.13 and 6.2.22, the plastic corrector stresses can

be written as follows:
Op4+1 = Oy, + E(gn+1 + gn)
77{+1 - 7}{ + E(Snwl + 571,> - {t’rr]: -+ E(S'r7,+l + Sn)g + /1/[(772, + E(f/71+1 + gn)j}

X sgn(ﬂ{ + E(sps1+ 50)) -
(6.2.24)

Expressions for three of the the partial derivatives in the K © matrix can be written as

00—71,—;»1 -0

Dsnis
(‘)O-n—{-l
OGn 11

=F

or!

7_“1—'1‘ - “.U/E Sgll(’:’}{ + E(Sn-!—l + Sn))
()571,—1~1 ‘ v
(7

- "/LE sgn 'n,—frl) .
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The fourth component of Eq.6.2.23 is calculated after noting that the derivative of an
absolute value is the sgn function and that a derivative of the sgn function is a delta
function,

ol : _ .
-+ o [ oy (5] =f = S(

7();;:—;1_ =F - Sgll(T7f+1) E ‘L’g:[l(T'n,-{-l) - ( T7{+1| + “’O_TH"l) O(T71f,+l> E.
However, since the plastic corrector is being used, necessarily, "ﬁ,{ +1 # 0, which implies
that §(7;/ +1) = 0 and therefore

o

()T71,+1 _

— = 0.

dgn+1
In summary, the new tangent stiffness matrix for case (iii) is

K'=F ( 0 0) . (6.2.25)

— I sgn(r;{H) 1

The above Coulomb friction is implemented for failed cohesive elements. The friction
formulation is non-linear and thus requires iteration for finding converged solutions. The
iteration can be carried in the same way as that for the intact cohesive elements (i.e.,
Newton-Raphson iteration). Note that since Eq. 6.2.25 is unsymmetric, the global stiffness

matrix may also be unsymmetric, and the appropriate matrix solver is required.

6.2.3 An Axisymmetric Dugdale Crack

It was desired to validate the cohesive formulation with a problem that has an analytical
solution. It was found that there are solutions to the crack opening displacement (COD) of
a Dugdale penny shaped crack in a large cylinder. After giving a brief description of the
Dugdale-Barenblatt model, the analytical solution for the COD is described, and finally, the
results from the numerical simulations are compared to the analytical solution.

To eliminate the stress singularity at the tip of a crack, the Dugdale-Barenblatt (Dug-
dale, 1960; Barenblatt, 1962) cohesive zone was formulated. In this model, there is assumed

to be a cohesive zone (line), across which the stresses are constant. This is analogous to
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having a line of perfectly plastic material at a crack tip. Although in the original model
constant stresses were assumed for the cohesive zone, more recently investigations have
been done by Ungsuwarungsri and Knauss (1988) for non-constant stresses in the cohesive
zone; it was anticipated that microstructural details of the deformation would determine the
form of the cohesive stresses. Most of the formulations and analysis of the cohesive zone
model have been done for plane problems. For penny shaped cracks the concept is similar;
however, the cohesive line is replaced by a cohesive annulus. In Fig. 6.2.7, a cross-section
of a large cylinder loaded in the far-field by 0> and with a penny shaped crack at the origin
is sketched. The shaded detail is enlarged on the right-hand side of the figure and stresses
at the crack tip are schematically illustrated. The original crack has length a and c is the
original crack length plus the “yielded” portion of the cohesive zone. The stresses in the

region a < r < ¢ are the cohesive stresses denoted by o,.
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F1G.6.2.7 A schematic of the problem of a Dugdale penny shaped crack in a cylinder

In order to calculate the crack opening displacements (COD) for a penny shaped

Dugdale crack in a cylinder, it is first necessary to determine the size of the cohesive zone as
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a function of the far-field and cohesive stress. In terms of the variables defined in Fig. 6.2.7,

Tada (1973) provides the following relation:

a

c= (Uo ) (6.2.26)

3
l

For calculating the COD, Olesiak and Wnuk (1968) superposed the solutions for the fol-
lowing two problems with a crack in a cylinder: (I) a crack of length ¢ loaded in the far-field
and (IT) a crack of length ¢ which has tractions (equivalent to the cohesive stresses) applied
to the region @ < r < c¢. The solution is written for the regions from 0 < r/. < #/. and

af. < r/. < 1. Integrals of the form

/ R(p.s)dp .

where s is the square root of a cubic or quadratic polynomial in p, are encountered in the

solution. In terms of elliptic integrals the COD solutions are as follows:

w(r,z=0)==+

11~ vHeo, [0 ~——  [1—m?
TE '

2
To Vl p (6.2.27)

4(1 - v¥Heo, { (0% 1 ) m? — p? m
wir,z2=0) =t —u—""""1/1 - p? - “+ F(us, —

+ pE(po, '—’;)} m<p<l1
2
(6.2.28)

where p = /., m = ?/,, F and E are elliptic integrals of the first and second kind,

respectively, and with

e —

/ 2 i 2

g [L=m .1 [ L1=p
py = sin" "y flo = sin .
\/ 1 — p? 1 —m?

The elliptic integrals in the above equations were solved numerically (Press et al., 1992).



COMPUTATIONAL MODEL 6.19

The crack opening profiles derived analytically in Eq. 6.2.27 and Eq.6.2.28 are for
constant cohesive stress with infinite critical energy release rate. In other words, the crack
only deforms the material and does not propagate through the material. For the finite
element simulations the initial slope of the cohesive law (K,) was picked as large as
possible without causing significant ill-conditioning of the global stiffness matrix. Since
relevant quantities were normalized, the critical stress (o, in the above analytical solution),
Young’s modulus and Poisson’s ratio were arbitrarily set to 0.01, 1.0 and 0.25, respectively.
Forces were applied proportionally at the boundary of the mesh to simulate stresses in the
far-field. Since this analysis was only to verify that the cohesive elements are formulated
consistently, the mesh was not significantly refined. For symmetry reasons, only one
quadrant of the cross section of the cylinder needed to be analyzed. Cohesive elements
were placed along the r axis at » > a, and bulk elements composed the rest of the mesh.
The nodes composing the lower half of the cohesive elements were restricted to move only
in the radial direction. Displacements were measured at the bulk element nodes originally
at z = 0. The problem had approximately 3000 degrees of freedom with a mesh with
10 elements in two logarithmic zones in the vertical direction and 75 elements in three
logarithmic zones in the horizontal direction. This led to considerable refinement in the
crack tip region but not away from the crack tip. For various values of the far-field stress, the
COD resulting from the simulations are plotted along with the analytical COD in Fig. 6.2.8.
For low far-field stresses the analytical and numerical agreement is excellent. This was not
the case for a courser mesh, especially in the region behind the crack tip. It is believed that
further refinement would improve the agreement for higher far-field stresses. In particular,
a radially refined mesh around the crack tip would help significantly. In any case, the
similarity between the CODs in the cohesive zone indicates that the method is in good

agreement with the Dugdale-Barenblatt cohesive formulation.
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F1G.6.2.8 Crack opening profiles for a Dugdale penny shaped crack in a cylinder under
increasing far-field tension.

6.3 Composite Unit Cell Model

The goal of this numerical investigation is to model the constitutive behavior of a brittle
matrix composite which is undergoing damage. Constitutive behavior can be modeled by
analyzing a representative element, or unit cell of the material under question. In Fig. 6.3.1
a cross section of a damaged unidirectional fiber composite is sketched. The shaded region
in this figure is an axisymmetric unit cell which is a representative volume element of the
composite. The full unit cell with all of the elements which are used to discretized it is
shown in Fig.6.3.2. The boundary at the bottom of the cell is restricted to move in the r
direction only. Necessarily, the line of nodes along » = 0 cannot move in the r direction
because of axisymmetry. Displacements are applied to the nodes along the top boundary
in the z direction; these nodes are free to move in the r direction. With these boundary
conditions, the unit cell represents a repeating unit in the z direction. In order for the unit

cell to repeat in the 7 direction, it is required that the boundary at the outer diameter of
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the composite cylinder is restricted to remain straight. This then simulates the condition
of having surrounding material constraining the composite cylinder. Although the outer
diameter must remain straight, the nodes must be free to move in the z direction, and they
must be able to move (albeit simultaneously) in the r direction. The introduction of this

restraint is discussed in Section 6.3.1.

- Matrix Cracks

" Fiber Debonds

" Unit Cell

F'1G.6.3.1 A sketch of a damaged fiber composite with the unit cell for numerical simula-
tions indicated.

As was discussed in Chapter 2, damage in a fiber composite material propagates
gradually. If the behavior of only one unit cell represents the overall behavior of the
composite, then every section of the composite will have the same damage as the unit cell
at the same point in the simulation. This does not represent gradual damage. Therefore it
is necessary to assume that at a given point in a simulation only a certain percentage of unit
cells are active. Although in the present investigation this type of averaging is not applied,

during presentation of the results, the implications of averaging will be discussed.
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F1G. 6.3.2 Schematic of the discretization of the fiber unit cell.

6.3.1 Penalty Elements

Constraints, such as the one introduced in Section 6.3, are usually introduced by
either Lagrange multipliers or the penalty method. The Lagrange multiplier method has
the disadvantage that it introduces additional unknowns; whereas the disadvantage of the
penalty method is the introduction of large numbers in the global stiffness matrix, thereby
causing ill-conditioning. It was chosen to use the penalty method primarily for its simple
implementation and also because the global stiffness matrix is already filled with large
numbers from the stiff undamaged cohesive elements.

As the name implies, the penalty method works by introducing nodal forces which
“penalize” the mesh for non-equal displacements. For the present formulation, a two node
element is constructed. Assume that the local displacement (r. =) components for the two

nodes of the element are written as (uq, us) and (us. u4), and it is desired that u; = us.
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The following equations are assembled into the global equations:
f1 = k(ug — u3)

f3 = —k(u; — us).

where f; and f3 are element nodal forces and % is called the penalty stiffness and is a

(6.3.1)

large number. Thus, for the above constraint, large forces are introduced when w, is very
different from u3. The penalty element stiffness matrix which is assembled into the global
stiffness matrix,
E 0 =k 0
0 0 0 0
-k 0 kK 0
0 0 0 0

obviously contains large numbers in the penalty stiffness terms. The largest possible value
for k& depends on both the other element stiffness values and the specimen dimensions. In
the next section, selection of the element material properties, the specimen dimensions and

the penalty stiffness are described.

6.3.2 Normalization and Parameter Selection

For the unit cell described above and shown in Fig. 6.3.2, there are three element types
and nine material groups. For the time independent formulation, the bulk axisymmetric
elements require specifying the material Young’s modulus and Poisson’s ratio. The cohesive
elements need critical energy release rates for the shear and normal direction, critical stresses
in the shear and normal direction, a coefficient of friction, an initial stiffnesses (and friction
modulus for predicting the friction stress), and a nearly zero stiffness (for the ‘deforming’
and ‘failed’ sections of the cohesive law). As has been mentioned above, the penalty
elements require a penalty stiffness.

The material that is being modeled was described in detail in Chapter 2. It consists
of unidirectional SiC fibers reinforcing a CAS (calcium aluminosilicate) matrix. The fiber
radius is approximately 7.5um, and the volume fraction of fibers is approximately 40%.

All dimensions of the unit cell were normalized by the fiber diameter. As determined by
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the volume fraction of fibers, the outer diameter of the composite cell is at a radius of 1.58
(normalized by the fiber radius). For the present investigation no bulk interface layer was
used; its properties were taken to be the same as the matrix. The moduli of the bulk matrix
and fiber elements were all normalized by the initial composite modulus (140 GPa). The
Poisson’s ratios were 0.299 and 0.222 for the fiber and matrix, respectively. The critical
stresses in the normal direction were assumed to be equal to the maximum tensile stresses.
Because of the lack of information on the failure of ceramics in shear, critical stresses in
the shear direction were taken to be equal to those in the normal direction. Both critical
stresses are normalized by the initial composite modulus. To start the cracking process in a
controlled fashion, one cohesive element was given a low strength and toughness. It would
be even more realistic to assume that there was a statistical distribution of flaws throughout
the composite, however, that was not done for the present simulations.

The critical energy release rate in the normal direction was assumed based on typical
values in the literature. The critical energy release rate for Nicalon fibers is not accurately
known. In addition, it is probable that the microstructure changes from amorphous to
crystalline during processing (Cooper, 1994). This would have important implications
for the toughness. For the present simulations, since it was not desired to simulate fiber
breakage, the fiber normal critical energy release rate was set to 5 kJ/m?, a value in the
upper range of tough monolithic ceramics. The normal critical energy release rate for the
matrix was provided in Chapter 3. For the present purposes it is taken to be 0.02 kJ/m>.
For the shear critical energy release rate, in the work of Palaniswamy and Knauss (1978), it
was found that experiments fit theory very well for K. = /g K., where K7, and K,
are the mode I and mode II critical stress intensity factors, respectively. Thus, in terms of
critical energy release rates, the shear energy release rate is taken to be two-thirds of the
normal energy release rate. The critical energy release rate has units of J/m? = Pa-m, and
is therefore normalized by the composite modulus times the fiber radius. As was discussed

in Section 6.2.1, since the ratio of G. to Lo, must be small, it was necessary to scale all
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G. by 1073, Since this is a parametric study and as long as dimensions related to 7, (see
Eq. 6.2.9) are satisfied this is deemed acceptable.

The stiffnesses of the cohesive and penalty elements were chosen to avoid ill-con-
ditioning of the global stiffness matrix. Ill-conditioning is checked for in terms of the
loss of significant digits. If more than 7 significant digits (out of 16 double precision
digits) were lost, the program execution stopped. Thus, for maximum dimensions of
order 1, the maximum cohesive element stiffness and frictional predictor stiffness were
approximately 107. The penalty stiffness depends on the element size; its maximum value
was approximately 107 times the smallest element height. The zero stiffness associated
with deforming or failed cohesive elements was set to an arbitrary non-zero value of 10~7.
The coefficient of friction was set to 0.25, however, for the present simulations, it was not

found to have a significant effect.

6.3.3 Shortcomings of the Time Independent Formulation

Simulations were performed with the formulation outlined above. Despite significant
reduction in the time step for the Newton-Raphson iteration procedure, convergence was
always lost when large numbers of cohesive elements were failing. It is probable that the
energy released by the cracking could locally produce the “snap-back” behavior illustrated
in Fig. 6.3.3, where A represents loading forces and « represents displacements. If this is the
case, a full or modified Newton-Raphson iteration scheme would not maintain convergence.
Methods such as line search and arc-length (see Crisfield, 1983) can often be used to
maintain convergence in the presence of severe non-linearities. The line search procedure
was not successful in maintaining convergence. A modified arc-length procedure in which
the problem was controlled by the node with the highest velocity (Needleman, 1975) was
also unsuccessfully implemented. It was anticipated that the convergence problems could
be solved by allowing very few cohesive elements to fail during any given time step. It was

decided to indirectly enforce this “slow cracking” by adding inertia to the problem. This
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is physically realistic since in the presence of rapid cracking, inertial terms are significant.
In what follows the addition of time dependent terms to the finite element formulation is

discussed.
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Fi1G.6.3.3 A schematic of the “snap-back” behavior which may be locally present during
time independent numerical solutions.

6.4 Time Dependant Formulation

As was mentioned above, it appeared that stability was lost when cohesive elements
started failing rapidly and strain energy was released. It was necessary to slow the cracking
processes. This was accomplished by adding inertial terms, and thereby changing the
problem from elastostatic to elastodynamic. In addition, it was decided that viscous damping
terms would also be needed. The principle of virtual work with time dependent terms is

written at step n -+ 1 as follows:

/ P’n,—}—l :Va dv’o - / (fn—é—l = pap41 "5an,+1) -u (1% + / tn+1 ‘u dSo :
S, JQ, JI,
6.4.1)



COMPUTATIONAL MODEL 6.27

where p is the mass density, a,, 1, are the accelerations at step n + 1, ~ is the viscous
damping parameter, v,,;.; are the velocities at step n -+ 1, and all other terms are the same
as those described in Eq.6.2.1. Weak enforcement of equilibrium through Eq.6.4.1 and

subsequent discretization gives the following semi-discrete equations of motion:

Ma+ Cv+ Kd =R, (6.4.2)

where M is the mass matrix, C is the damping matrix, K is the tangent stiffness matrix and
R is the vector of applied forces.
Direct solution of Eq. 6.4.2 can be accomplished using a Newmark Method (Newmark,

1959). The family of equations to be solved are written as

Ma'rH—l + Cv'n,-iwl + Kdn+1 - R7L+1 (6.4.32)
d, 1 =d, + Atv, + At*[(Va — B)a,, + Pa,.1] (6.4.3b)
- V41 =V + Aﬂ(l - ’Y)an - A/a’n,—*—l}- (643C)

where Eq. 6.4.3b and Eq. 6.4.3c are finite difference formulas which determine the approxi-
mate solution at step n + 1 given the known approximate solution at step 7. The parameters
{3 and v are the Newmark parameters which determine the stability and accuracy of the
algorithm under considerations. Discussion of the selection of (/7. ) will follow shortly.
The Newmark implementation used in the present investigation is known as the “a-

form.” Following Hughes (1987), the first step of the solution process is to define predictors,

- At?
dn—é—l - dn + Atvn + "7‘”'(1 - 2/(7))371,
2 (6.4.4)
Qn«é‘l =V, + Aﬂl - ’Y)a?z, .
Thus, Eq. 6.4.3b and Eq. 6.4.3c can be rewritten in terms of the predictors as
dn+1 - an+1 + f/j)At2arz,+1
(6.4.5)

Vi1 = Vi1 -+ W’Atanﬁ—b
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Then, the following recursion relation determines a,,1:
(M + ~AtC + BA?K)a, 1, =R, 1 — Cv,pq — Kd, 1. (6.4.6)

Note that the right-hand side of Eq.6.4.6 is known. The solution process is begun by
specifying a,, or calculating it from Ma, = R — Cv, — Kd,,. Next the recursion relation
(Eq. 6.4.6)1s used and finally Eq. 6.4.5 are used to calculate the displacements and velocities
atstepn + 1.

Selection of the Newmark parameters, (3, v), determines the solution method and
the stability and accuracy. For the parameters (1/2, 1/4), the method is that of average
acceleration (trapezoidal rule); it is implicit, unconditionally stable and of second order
accuracy. For parameter selection (0. 1/2), the method is the central difference method, and
it is explicit, second order accurate and unconditionally stable for 2t/p < $erit /o7 = /7,
where €24, is the critical sampling frequency and 7" = 27/, is the period of vibration. For
determining the period of vibration, it is necessary to know the maximum natural frequency.
Typically the maximum natural frequency is the Rayleigh wave speed divided by the
smallest element dimension. Other combinations of (3. y) can be used. For 25 > v > 1/
the scheme is always unconditionally stable. For v > 1/5 and 3 < 7/2, the stability is
dependent on the critical sampling frequency. For v # 1/- the scheme is not second order
accurate and numerical (algorithmic) damping is present. For the present simulations, the
Newmark parameters are selected for implicit solution and unconditional stability. The cost
of solving implicitly is offset by the ability to take larger time steps. In addition, for reasons
explained in the next paragraph, numerical damping is also added.

As described by Hughes (1987), higher modes of vibration are induced by the dis-
cretization process and are not representative of the partial differential equations. For this
reason, it is desirable and/or necessary to add numerical (algorithmic) damping. For the
Newmark Method, this is accomplished by choosing v > 1/, and selecting the appropriate

{3 to maximize high frequency dissipation. As given by Hughes (1987), for viscous damp-
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ing ratios less than one and v > 1/, for unconditional stability, / should be calculated as

follows:

(v + Y2)°
1 .

5>\ (6.4.7)

Hughes (1983) shows that viscous damping does not damp the artificial higher modes.
Although numerical damping is effective in removing the artificial vibrations, it has the
unfortunate side-effect of relegating the scheme to first-order accuracy. For this reason,
there has been considerable research into alternative methods of numerical damping (see
Hughes, 1987). For the present simulations, despite the loss in accuracy, the “a-form”
implementation of the Newmark Method with minimal numerical damping (v > 1/2) is

employed.

6.4.1 Parameters Revisited

The cohesive and friction formulation described above are implemented in the time
dependent scheme without any changes. It is, however, necessary to add mass terms to the
bulk elements. As discussed by Hughes (1983), there are a number of different methods
for adding mass to the finite element formulation. For the present investigation, mass was
incorporated as “consistent mass,” which distributes mass throughout the element in the

following fashion:

M° = / N¢p(N)TdQ |
JQe

where M is the element mass matrix, €2° is the element volume, N¢ are the element shape
functions and p is the density. The density used for the matrix and fiber bulk elements was
the real (un-normalized) density for each material (2700 and 2500 ks/,,,3, respectively).
As was mentioned above, damping is added both numerically and through viscosity.
Both of these parameters were determined in an ad hoc fashion. It was found that for
both parameters there were choices which led to minimal spurious oscillations with rapid
solution. The numerical damping for all results reported herein was set with v = 0.6 and

(using Eq.6.4.7) /3 = 0.3025, and therefore provides an unconditionally stable algorithm.
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Rayleigh damping is a convenient way of calculating the viscous damping matrix, C,

without altering the solution algorithm. The damping matrix is given as follows:
C=aM+ K.

where M is the mass matrix, K is the stiffness matrix, and ¢ and b are two proportion-
ality constants. In terms of the proportionality constants and the undamped frequency of

vibration, w, the damping ratio can be written as (Bathe, 1982)

a ,
=+ bw

T
Thus, it is seen that the mass proportional damping is primarily effective at lower frequencies
and the stiffness proportional term damps the higher frequencies. For the current simulations
it was desired to remove high frequency oscillations, and therefore a was set to zero. Since
viscous damping is stiffness proportional, it varies with the mesh size.

The primary goal of the present composite unit cell simulations was to obtain quasi-
static results, and although inertial effects are included in the formulation, the rate of
application of displacements was very low and simulations advanced to large values of
time. Within this framework the propagation of waves within the model were not of
interest, and thus viscous damping was not studied in detail. At the same time, it was
found that for the composite unit cell, the numerical and viscous damping parameters did
not alter the point of first cracking (initial drop in the stress-strain curve), but that the
details of the crack propagation were changed. For this reason, when making comparisons
for computations with different material properties, the numerical and viscous damping
parameters were held constant. A secondary goal of the simulations was to observe the
rate dependence of the cohesive elements. In this situation the viscous damping is sure to
have an important effect on the wave propagation. Every material should have a certain
amount of internal damping, however, there is no way to correlate viscous damping with
internal damping. The influence of damping parameters will be shown in the results of the

one-dimensional dynamic and quasi-static simulations.
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6.4.2 One-Dimensional Results

One dimensional simulations were used to study the effects of damping parameters
and to verify that cohesive elements performed properly within the time dependent formu-
lation. First, single bulk elements were tested as spring oscillators in the radial and axial
directions. The amplitudes and frequencies of vibration were checked with respect to the
analytical solutions. Next, a simple mesh consisting of 6 bulk elements along the 2 axis
was constructed. In the middle of this row of bulk elements was a single cohesive element.
Displacements were applied linearly with time in the z direction at the top bulk element. In
addition, initial velocities equal to the displacement rate were also applied at the top bulk
element. Nodes were free to move only in the z direction. Stresses were monitored in the
top and bottom elements of the bar.

Relatively high displacement rates (¢ = 10™%) were used to illustrate the wave prop-
agation features, including the attenuation of waves by damping. For no damping and
minimal numerical damping (v = 0.6, [ = 0.3025) the stress versus time curves are plot-
ted in Fig. 6.4.1 for bulk elements at the top and the bottom of the 1-D bar. Itis noted that the
results with numerical damping are initially nearly identical to those without damping. The
“stair-step” increase in stress versus time is a direct consequence of the reflection of waves
within the bar, and the drop in the stress-strain curve is the result of failure of the cohesive
element. The release wave from the failure causes the two halves of the bar to continue to
oscillate. The numerical damping causes the magnitude of these oscillations to gradually
decrease with time. The tension spike just before the drop is stress is a consequence of the
discrete nature of the problem. For fewer elements the tension spike was more significant,
and for smaller elements the frequency of the spike was greater. The tension pulse propa-
gates throughout the body even after it is vibrating freely. Viscous damping was added to
the solution and in Fig. 6.4.2, the stress versus time is plotted for a bulk element at the top

and the bottom of the 1-D bar. The addition of damping reduces the oscillations and nearly
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F1G.6.4.1 Stresses versus time at both ends of a 1-D bar with no damping and with minimal
numerical damping, as indicated.
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F1G.6.4.2 Stresses versus time at the top and bottom a 1-D bar with viscous damping and
with viscous damping and numerical damping, as indicated.
eliminates the tension spike. As was the case with the data in Fig. 6.4.1, the addition of
numerical damping did not significantly alter the viscous damping results.
The 1-D bar geometry was also used to for quasi-static simulations. In Fig.6.4.3,
for reduced time rate of change of the applied displacements (i = 107°), the stresses

versus time are plotted. To achieve the required stress for failure in a reasonable number
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of iterations the time step was increased. In the region before failure no wave propagation
effects are seen. The high frequency oscillations after failure are most likely a consequence
of the large time step. Although it cannot be seen in Fig. 6.4.3 because the curves overlap, the
numerical damping was effective in reducing the high frequency, post-failure oscillations.
It is seen that numerical damping has no effect on when the cohesive element fails. Viscous
damping effects were similar to the numerical damping effects, and in particular, the point

of failure was not altered.
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F1G. 6.4.3 Quasi-static stress versus time at the top and bottom a 1-D bar with no damping
and with minimal numerical damping.

6.5 Composite Results

Two different mesh heights were investigated for the composite unit cell simulations.
In Fig.6.5.1 the tall mesh is shown. This mesh has approximately 22,000 degrees of
freedom. Note that the cohesive elements are not visible since they initially have zero
thickness. A shorter mesh, which was one tenth the height of the mesh in Fig. 6.5.1, was
used for most of the simulations in this section. The shorter mesh has approximately 3,000
degrees of freedom. For all the simulations presented, the number of horizontal elements

was fixed at 36. The elements were logarithmically spaced through the matrix, with the
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majority of the elements in the region next to the fiber-matrix interface. Since the cohesive
elements are present throughout the mesh, cracks could potentially form at any location.
Therefore, it is necessary to have a relatively fine vertical spacing of elements. For a 0.5
(normalized) high mesh, simulations with 10, 20 and 50 elements were performed. It was
found that the initial drop in load carrying capability was identical for the two finer meshes.
Although, there were slight differences in the transverse (debonding) response for the three

different element densities, it was decided to run all simulations with 20 elements per 0.5

unit height.
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Fic.6.5.1 A finite element mesh used for simulations of a fiber-matrix unit cell.

The shorter mesh was necessary because of the large number of iterations required
for solution made parametric studies with large numbers of elements impractical. To
further reduce the total time needed for a complete simulation, a time stepping scheme
which automatically varied the time step was implemented. If, after several iterations,
convergence was not achieved, restart data was retrieved from memory and the time step

was decreased. To ensure accurate solutions, the time step was restricted not to exceed a



COMPUTATIONAL MODEL 6.35

given value. The time step ranged quite significantly from large values in elastic regions
to very small values when cohesive elements were failing. The shorter mesh was usually
deformed to a strain level of 0.07%. For the lower strain rate simulations (¢ = 2x 107%) such
strain levels were achieved in anywhere from 700 to 2500 converged time steps, depending
on the material properties (sequence of cracking). Each time step required varying numbers
of iterations, but on average, for the smaller mesh, 11 seconds of CRAY Y-MP2E/232 CPU
time was required for each time step. The larger mesh required on average 125 seconds per

time step.

6.5.1 Interface Strength and Toughness

The benefits of properly choosing the interface strength in composites is well known
(e.g., Evans and Marshall, 1989). Strong interfaces will cause a matrix crack to propagate
through the fiber, while weaker interfaces will allow the matrix crack to debond the fiber.
Xu et al. (1994) illustrated that strong interfaces enhance toughening by crack trapping,
while weaker interfaces increase toughening through debonding and crack bridging.

In Fig. 6.5.2 the axial stress-strain curves for five simulations are shown. As indicated
in the figure, the interface for two of the simulations had the same strength and different
toughnesses, and the other two simulations had different strengths with fixed toughnesses.
A fifth simulation with an even stronger interface is also included in Fig.6.5.2. After an
initially linear stress-strain response, there is a sharp drop in stress followed by another
linear portion. For the weakest interface, the sharp drop in stress occurs slightly earlier.
For the strongest and toughest interface, the the final linear portion occurs at higher stresses
than for the weaker interfaces.

The initial modulus of the stress-strain curve in Fig. 6.5.2 is equivalent to the rule of

mixtures modulus, £,

E.= CfEf + B (6.5.1)
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F1G.6.5.2 Axial stress-strain curves for comparison of interface strength and toughness.

where ¢y, ¢, and Ey, F,, are volume fractions and Young’s moduli of the fiber and the
matrix, respectively. The composite modulus . is 130 GPa. At a stress of approximately
17.5 MPa, the slight drop in the stress-strain curve is due to the failure of the flawed
cohesive element. The sharp drop in the stress-strain behavior at approximately 45 MPa
is the result of propagation of the matrix crack. There are many points in the stress-strain
curve during this drop, however, the time step is so small, that the increase in displacement
is not resolved on the scale of the abscissa in Fig. 6.5.2. Recalling that the simulations
are performed in displacement control, it was expected that the ability of the composite to
maintain its load carrying capability would be lost as the matrix cracks propagated, and
that following propagation of matrix crack, the composite response would be linear and
related to only the modulus of the fiber. For a completely debonded interface the magnitude
of the drop and the subsequent fiber loading modulus can be verified using the rule of
mixtures with ¢, equal to zero in Eq. 6.5.1. These situations are indicated schematically
in Fig. 6.5.2. For the cases when the interface is not completely debonded, a portion of the
matrix is loaded in shear, and thus the matrix continues to help carry load. It is noted that

the drop for the stronger interfaces is delayed, possibly due to crack trapping. In the current
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simulations, although it is believed that more evidence of crack trapping would result from
better selection of parameters, the effects of axisymmetry could also be obscuring the ability
of a tough and/or strong interface toughness to inhibit propagation of the matrix crack.

The propagation of the matrix crack leads to a degradation of the composite modulus.
The degradation of the composite modulus was observed in the experiments with the fiber
reinforced ceramic matrix composite discussed in Chapter 2. However, for the experiments,
the modulus degraded gradually since not all matrix crack propagated at the same instant.
As was discussed earlier in this chapter, this behavior can be simulated in the numerical
model by implementing an averaging scheme which assumes that only a certain percentage
of fiber-matrix unit cells are active at a give stage of the simulation. In this way the
degradation of the composite modulus would be gradual.

The axial stress versus transverse strain curves for the various interface parameters are
shown in Fig. 6.5.3. The properties of the interface have various effects on the transverse
strain response. All of the stress-strain curves show reversals in transverse stress which
begin at the point of matrix cracking. Since the load is dropping during matrix cracking, the
reversal also occurs during the drop in load. For the weakest interface, since the interface
has begun to fail when the flawed cohesive element fails, there is additional non-linearity in
the transverse strain earlier than for the other simulations. The extent of the reversal depends
on whether the interface has completely debonded. For completely debonded interfaces,
the transverse strain returns to zero because of the axisymmetry. The oscillations in the
transverse strain data are the result of damped vibrations of the annular matrix. Both the
toughest and the strongest interfaces do not return to zero because these interfaces have not
completely debonded. For the case of the strongest interface which remained intact, it is
noted that there is a dual reversal. The initial slope of the transverse strain curve for the
uncracked interface is related to the composite Poisson’s ratio and the final slope is related
to the fiber Poisson’s ratio. In the experiments with the fiber reinforced ceramic matrix

composite described in Chapter 2 reversals in transverse strain were also observed.
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F1G.6.5.3 The axial stress versus transverse strain curves for the various interface tough-
nesses and strengths.

In the present simulations the fiber was given a relatively high strength and thus was
not permitted to fracture. Nevertheless, in Fig. 6.5.4, the effect of the interface strength is
illustrated by a plot of stresses in the fiber for the five different interface properties discussed
above. As indicated by the schematic in Fig.6.5.4, the stresses are plotted at a location
in the fiber which is close to the interface and on the plane of the matrix crack. For the
toughest interface and the two strongest interfaces, it is seen that the stresses in the fiber are
elevated during propagation of the matrix crack. For the case of the strongest interface, the
stress concentration is quite severe. This indicates that for tough and/or strong interfaces,
the propagation of the matrix crack can increase the stresses in the fiber, possibly causing

the fiber to fracture.

6.5.2 Matrix Toughness

A parametric study of the matrix toughness was also performed. In Fig.6.5.5 axial
stress-strain curves for three different values of matrix toughness are shown. For the two
least tough matrices the stress-strain response was qualitatively similar to that described in

Section 6.5.1. As expected, for the tougher matrix, the matrix crack propagates at a higher
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F1G.6.5.4 A comparison of the stresses in a fiber on the plane ahead of a matrix crack for
four different interface strengths and toughnesses.

load. For the toughest matrix, the matrix crack stops and requires significant further loading
before propagating to the fiber. In Fig. 6.5.6, the sequence of matrix and interface cracking
for the most and least tough matrix is shown. The point at which the interface cracking
curve intersects its matrix cracking curve defines the percentage of cracked matrix when
the interface cracking begin