APPENDIX D

Complex	Designation	CCDC	Page
TBA·Sm(DO2A)(DPA)	MLC07	655647	D2
TBA·Eu(DO2A)(DPA)	MLC05	634507	D15
TBA·Gd(DO2A)(DPA)	MLC13	746157	D30
TBA·Tb(DO2A)(DPA)	MLC03	629534	D51
TBA·Dy(DO2A)(DPA)	MLC06	643596	D64

Crystallographic Data for TBA·Ln(DO2A)(DPA) Structures

CALIFORNIA INSTITUTE OF TECHNOLOGY BECKMAN INSTITUTE X-RAY CRYSTALLOGRAPHY LABORATORY

Date 26 July 2007

Crystal Structure Analysis of:

MLC07

(shown below)

For	Investigator: Morgan Cable		ext. (818) 354-4345		
	Advisor: A. Ponce/H. B. Gray	у	ext. 6500		
	Account Number:	DOI.000002			
By	Michael W. Day	116 Beckman e-mail: mikeday@	ext. 2734 caltech.edu		

<u>Contents</u>

Table 1. Crystal data

Figures Minimum overlap, unit cell contents, stereo view of unit cell contents

Table 2. Atomic Coordinates

Table 3. Full bond distances and angles

Table 4. Anisotropic displacement parameters

Table 5. Hydrogen bond distances and angles

Table 6. Observed and calculated structure factors (available upon request)

MLC07

Note: The crystallographic data have been deposited in the Cambridge Database (CCDC) and has been placed on hold pending further instructions from me. The deposition number is 655647. Ideally the CCDC would like the publication to contain a footnote of the type: "Crystallographic data have been deposited at the CCDC, 12 Union Road, Cambridge CB2 1EZ, UK and copies can be obtained on request, free of charge, by quoting the publication citation and the deposition number 655647."

Empirical formula	$[C_{19}H_{25}N_5O_8Sm]^ [C_{16}H_{36}N]^+$ 2(H ₂ O), 0.73(C ₃ H ₆ O)),
$0.27(C_2H_6O \bullet O)$		
Formula weight	939.36	
Crystallization Solvent	Acetone/ethanol/isopropanol	
Crystal Habit	Plate	
Crystal size	0.33 x 0.24 x 0.11 mm ³	
Crystal color	Yellow	
Data	a Collection	
Type of diffractometer	Bruker SMART 1000	
Wavelength	0.71073 Å MoKα	
Data Collection Temperature	100(2) K	
θ range for 33380 reflections used in lattice determination	2.17 to 39.91°	
Unit cell dimensions		
Volume	4600.4(2) Å ³	
Z	4	
Crystal system	Monoclinic	
Space group	P2 ₁ /c	
Density (calculated)	1.356 Mg/m ³	
F(000)	1966	
θ range for data collection	1.70 to 40.79°	
Completeness to $\theta = 40.79^{\circ}$	94.6 %	
Index ranges	$-23 \le h \le 23, -22 \le k \le 24, -47 \le l \le 44$	
Data collection scan type	ω scans at 7 ϕ settings	
Reflections collected	150100	
Independent reflections	28270 [R _{int} = 0.1100]	
Absorption coefficient	1.336 mm ⁻¹	
Absorption correction	None	

0.8670 and 0.6669

Max. and min. transmission

Table 1. Crystal data and structure refinement for MLC07 (CCDC 655647).

Table 1 (cont.)

Structure solution and Refinement

Structure solution program	SHELXS-97 (Sheldrick, 1990)
Primary solution method	Direct methods
Secondary solution method	Difference Fourier map
Hydrogen placement	Geometric positions
Structure refinement program	SHELXL-97 (Sheldrick, 1997)
Refinement method	Full matrix least-squares on F^2
Data / restraints / parameters	28270 / 6 / 560
Treatment of hydrogen atoms	Riding
Goodness-of-fit on F ²	1.124
Final R indices [I>2 σ (I), 14923 reflections]	R1 = 0.0422, <i>w</i> R2 = 0.0734
R indices (all data)	R1 = 0.0997, <i>w</i> R2 = 0.0821
Type of weighting scheme used	Sigma
Weighting scheme used	$w=1/\sigma^2(\text{Fo}^2)$
Max shift/error	0.009
Average shift/error	0.000
Largest diff. peak and hole	3.079 and -2.442 e.Å ⁻³

Special Refinement Details

The solvent region is disordered, containing acetone (73%) and ethanol/water (27%). These were refined without restraint. Additionally, the solvent region contains two ordered water molecules which were refined with hydrogen geometry restrained.

Refinement of F^2 against ALL reflections. The weighted R-factor (*w*R) and goodness of fit (S) are based on F^2 , conventional R-factors (R) are based on F, with F set to zero for negative F^2 . The threshold expression of $F^2 > 2\sigma(F^2)$ is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

	Х	у	Z	U _{eq}	Occ
Sm(1)	7494(1)	4931(1)	5001(1)	12(1)	1
O(1)	8313(1)	5490(1)	5785(1)	17(1)	1
O(2)	8658(2)	6668(1)	6366(1)	33(1)	1
O(3)	6717(1)	5941(1)	4337(1)	18(1)	1
O(4)	6445(1)	7418(1)	3952(1)	30(1)	1
O(5)	6038(1)	5292(1)	5515(1)	16(1)	1
O(6)	5302(1)	5278(1)	6280(1)	22(1)	1
O(7)	8982(1)	5576(1)	4585(1)	16(1)	1
O(8)	9678(1)	6092(1)	3855(1)	17(1)	1
N(1)	7516(1)	6789(1)	5149(1)	15(1)	1
N(2)	7032(1)	3512(1)	5682(1)	13(1) 17(1)	1
N(2)	6029(1)	3789(1)	4676(1)	17(1) 17(1)	1
N(4)	7040(1)	4027(1)	4070(1)	17(1) 16(1)	1
N(4) N(5)	7949(1) 8030(1)	4027(1)	4121(1) 5116(1)	10(1) 16(1)	1
C(1)	7140(2)	7402(2)	4702(1)	20(1)	1
C(1)	7140(2)	7403(2)	4/92(1)	20(1) 21(1)	1
C(2)	7132(2)	8420(2)	4803(1)	31(1)	1
C(3)	7519(2)	8808(2)	5518(1)	38(1)	1
C(4)	7901(2)	8169(2)	5686(1)	28(1)	1
C(5)	/893(2)	/152(2)	5583(1)	1/(1)	l
C(6)	6/33(2)	6888(2)	4315(1)	19(1)	l
C (7)	8319(2)	6373(2)	5948(1)	18(1)	1
C(8)	6332(2)	2770(2)	5449(1)	22(1)	1
C(9)	5538(2)	3231(2)	5096(1)	20(1)	1
C(10)	6284(2)	3149(2)	4236(1)	21(1)	1
C(11)	6975(2)	3701(2)	3870(1)	20(1)	1
C(12)	8624(2)	3161(2)	4212(1)	20(1)	1
C(13)	9426(2)	3352(2)	4624(1)	19(1)	1
C(14)	8670(2)	2724(2)	5418(1)	21(1)	1
C(15)	7985(2)	3011(2)	5856(1)	21(1)	1
C(16)	6535(2)	4022(2)	6114(1)	19(1)	1
C(17)	5899(1)	4923(2)	5959(1)	15(1)	1
C(18)	8457(2)	4782(2)	3800(1)	18(1)	1
C(19)	9099(1)	5537(1)	4103(1)	14(1)	1
N(6)	8625(1)	7115(1)	7812(1)	18(1)	1
C(21)	9621(2)	6949(2)	7523(1)	20(1)	1
C(22)	10552(2)	7499(2)	7733(1)	24(1)	1
C(23)	11416(2)	7497(2)	7342(1)	25(1)	1
C(24)	12372(2)	8025(2)	7542(1)	34(1)	1
C(25)	8744(2)	6830(2)	8371(1)	20(1)	- 1
C(26)	9016(2)	5745(2)	8471(1)	$\frac{-3}{31}(1)$	1
C(27)	9270(3)	5576(2)	9024(1)	42(1)	1
C(28)	9436(3)	4504(2)	9174(2)	57(1)	1
C(20)	7815(2)	-50 - (2) 6478(2)	7547(1)	22(1)	1
C(20)	6720(2)	6610(2)	77/2(1)	22(1) 26(1)	1
C(30)	6007(2)	5024(2)	7/72(1)	$\frac{20(1)}{48(1)}$	1
C(31)	4997(2)	3724(3)	7430(1) 7506(1)	40(1) 55(1)	1
U(32)	400/(2)	011/(3)	1390(1)	33(1)	1

Table 2. Atomic coordinates $(x \ 10^4)$ and equivalent isotropic displacement parameters $(\mathring{A}^2x \ 10^3)$ for MLC07 (CCDC 655647). U(eq) is defined as the trace of the orthogonalized U^{ij} tensor.

C(33)	8325(2)	8203(2)	7802(1)	20(1)	1
C(34)	8166(2)	8649(2)	7271(1)	26(1)	1
C(35)	7925(2)	9747(2)	7314(1)	27(1)	1
C(36)	7715(2)	10218(2)	6793(1)	35(1)	1
O(21)	4163(1)	3901(1)	6866(1)	37(1)	1
O(22)	746(1)	5096(1)	3092(1)	26(1)	1
O(51)	3632(3)	9306(2)	5430(2)	69(1)	0.731(3)
C(51)	5010(4)	10204(4)	5845(2)	67(2)	0.731(3)
C(52)	4046(5)	9525(3)	5821(2)	54(1)	0.731(3)
C(53)	3596(5)	9324(4)	6253(3)	83(2)	0.731(3)
O(61)	5133(6)	8689(5)	7101(3)	40(2)	0.269(3)
C(62)	4947(11)	8807(10)	6546(6)	62(4)	0.269(3)
C(64)	4410(11)	9466(11)	6164(9)	91(8)	0.269(3)
O(71)	6114(5)	7249(5)	6485(2)	29(2)	0.269(3)

Sm(1)-O(5)	2.3858(14)	C(27)-C(28)	1.510(4)
Sm(1)-O(7)	2.3964(14)	C(29)-C(30)	1.522(3)
Sm(1)-O(3)	2.4246(14)	C(30)-C(31)	1.519(3)
Sm(1)-O(1)	2.4283(14)	C(31)-C(32)	1.532(4)
Sm(1)-N(1)	2.5295(17)	C(33)-C(34)	1.527(3)
Sm(1)-N(3)	2.5940(17)	C(34)-C(35)	1.514(3)
Sm(1)-N(5)	2.6115(16)	C(35)-C(36)	1.528(3)
Sm(1)-N(4)	2.6740(16)	O(51)-C(52)	1.191(6)
Sm(1)-N(2)	2.6824(16)	C(51)-C(52)	1.556(8)
O(1)-C(7)	1.263(2)	C(52)-C(53)	1.306(8)
O(2)-C(7)	1.243(2)	O(61)-C(62)	1.481(17)
O(3)-C(6)	1.274(3)	C(62)-C(64)	1.51(2)
O(4)-C(6)	1.245(2)		
O(5)-C(17)	1.278(2)	O(5)-Sm(1)-O(7)	146.52(6)
O(6)-C(17)	1.245(2)	O(5)-Sm(1)-O(3)	87.60(5)
O(7)-C(19)	1.272(2)	O(7)-Sm(1)-O(3)	78.96(5)
O(8)-C(19)	1.247(2)	O(5)-Sm(1)-O(1)	79.02(5)
N(1)-C(5)	1.330(3)	O(7)-Sm(1)-O(1)	85.28(5)
N(1)-C(1)	1.339(3)	O(3)-Sm(1)-O(1)	127.82(5)
N(2)-C(16)	1.477(3)	O(5)-Sm(1)-N(1)	73.79(5)
N(2)-C(8)	1.482(3)	O(7)-Sm(1)-N(1)	72.75(5)
N(2)-C(15)	1.484(3)	O(3)-Sm(1)-N(1)	63.90(5)
N(3)-C(10)	1.478(3)	O(1)-Sm(1)-N(1)	63.92(5)
N(3)-C(9)	1.480(3)	O(5)-Sm(1)-N(3)	73.50(5)
N(4)-C(18)	1.478(2)	O(7)-Sm(1)-N(3)	131.63(5)
N(4)-C(12)	1.479(3)	O(3)-Sm(1)-N(3)	77.99(5)
N(4)-C(11)	1 496(2)	O(1)-Sm(1)-N(3)	141 36(5)
N(5)-C(14)	1 471(3)	N(1)-Sm(1)-N(3)	130.02(5)
N(5)-C(13)	1 479(3)	O(5)-Sm(1)-N(5)	130.02(5) 130.71(5)
C(1)-C(2)	1 388(3)	O(7)-Sm(1)-N(5)	73 21(5)
C(1)- $C(6)$	1 520(3)	O(3)-Sm(1)-N(5)	139.83(5)
C(2)-C(3)	1 390(4)	O(1)-Sm(1)-N(5)	78 41(5)
C(3)-C(4)	1 383(4)	N(1)-Sm(1)-N(5)	13045(5)
C(4)- $C(5)$	1 394(3)	N(3)-Sm(1)-N(5)	99 53(6)
C(5)-C(7)	1 521(3)	$\Omega(5)$ -Sm(1)-N(4)	139 46(5)
C(8)-C(9)	1 518(3)	O(7)-Sm(1)-N(4)	65 67(5)
C(10)- $C(11)$	1 514(3)	O(3)-Sm(1)-N(4)	$74\ 43(5)$
C(12)- $C(13)$	1 520(3)	O(1)-Sm(1)-N(4)	$140\ 31(5)$
C(12) C(15) C(14)-C(15)	1 510(3)	N(1)-Sm(1)-N(4)	125 36(5)
C(14)-C(17)	1.524(3)	N(3)-Sm(1)-N(4)	67.40(5)
C(10)-C(17) C(18)-C(19)	1.525(3)	N(5)-Sm(1)-N(4)	67.97(5)
N(6) - C(33)	1.555(3)	$\Omega(5) - Sm(1) - M(4)$ $\Omega(5) - Sm(1) - M(2)$	65 63(5)
N(6)-C(35)	1.515(3) 1.520(3)	O(3)-SIII(1)-IN(2) O(7)-Sm(1) N(2)	138 22(5)
N(6) - C(20)	1.520(5)	$O(3)_{Sm}(1) N(2)$	130.22(3) 1/1 20(5)
N(0) - C(29)	1.525(2) 1.526(3)	O(3)-SIII(1)-N(2) O(1) Sm(1) N(2)	76 02(5)
C(21) C(22)	1.520(5)	N(1) Sm(1) N(2)	10.02(3) 127 15(5)
C(21) - C(22) C(22) - C(23)	1.525(3) 1.528(3)	N(1) - SIII(1) - IN(2) N(3) Sm(1) N(2)	121.13(3)
C(22) - C(23) C(23) C(24)	1.520(3) 1.527(3)	N(5) - SIII(1) - N(2) N(5) - Sm(1) - N(2)	66 65(5)
C(25) - C(24)	1.527(5)	N(3) - SIII(1) - N(2) N(4) Sm(1) N(2)	107 50(5)
C(25) - C(20) C(26) C(27)	1.525(5) 1 500(4)	$\Gamma(4) - SIII(1) - \Gamma(2)$ $\Gamma(7) \cap (1) Sm(1)$	107.30(3) 125.27(12)
C(20) - C(21)	1.300(4)	$\mathcal{O}(1)$ - $\mathcal{O}(1)$ - $\mathcal{O}(1)$	123.37(12)

Table 3. Bond lengths [Å] and angles [°] for MLC07 (CCDC 655647).

$\begin{array}{llllllllllllllllllllllllllllllllllll$
C(17)-O(5)-Sm(1)123.51(12)C(19)-O(7)-Sm(1)122.58(12)C(5)-N(1)-C(1)120.23(18)C(5)-N(1)-Sm(1)119.83(13)C(1)-N(1)-Sm(1)119.83(13)C(1)-N(1)-Sm(1)119.94(14)C(16)-N(2)-C(8)110.79(16)C(16)-N(2)-C(15)100.31(16)C(8)-N(2)-C(15)109.60(16)C(16)-N(2)-Sm(1)106.24(11)C(8)-N(2)-Sm(1)109.61(12)C(10)-N(3)-C(9)112.65(16)C(10)-N(3)-C(9)112.65(16)C(10)-N(3)-Sm(1)115.52(12)C(9)-N(3)-Sm(1)115.52(12)C(18)-N(4)-C(12)111.29(15)C(18)-N(4)-C(11)109.58(16)C(12)-N(4)-C(11)109.58(16)C(12)-N(4)-C(11)109.58(16)C(12)-N(4)-C(11)106.28(11)C(12)-N(4)-Sm(1)110.77(11)C(11)-N(4)-Sm(1)108.61(11)C(14)-N(5)-Sm(1)115.96(12)C(13)-N(5)-Sm(1)115.96(12)C(13)-N(5)-Sm(1)115.96(12)C(13)-N(5)-Sm(1)111.86(12)N(1)-C(1)-C(6)114.61(18)C(2)-C(1)-C(6)124.01(19)C(1)-C(2)-C(3)118.6(2)C(4)-C(3)-C(2)119.7(2)C(3)-C(4)-C(5)118.2(2)N(1)-C(5)-C(7)114.61(17)C(4)-C(5)-C(7)123.52(19)O(4)-C(6)-C(1)117.9(2)O(3)-C(6)-C(1)115.76(17)N(2)-C(8)-C(9)113.21(16)N(3)-C(1)-C(5)115.76(17)N(4)-C(1)-C(10)112.00(17)N(4)-C(1)-C(13)112.89(16)N(4)-
C(19)-O(7)-Sm(1)122.58(12)C(5)-N(1)-C(1)120.23(18)C(5)-N(1)-Sm(1)119.83(13)C(1)-N(1)-Sm(1)119.94(14)C(16)-N(2)-C(8)110.79(16)C(16)-N(2)-C(15)100.31(16)C(8)-N(2)-C(15)109.60(16)C(16)-N(2)-Sm(1)106.24(11)C(8)-N(2)-Sm(1)106.24(11)C(8)-N(2)-Sm(1)109.61(12)C(10)-N(3)-C(9)112.65(16)C(10)-N(3)-C(9)112.65(16)C(10)-N(3)-Sm(1)115.52(12)C(9)-N(3)-Sm(1)115.52(12)C(9)-N(3)-Sm(1)112.28(12)C(18)-N(4)-C(12)111.29(15)C(18)-N(4)-C(11)109.58(16)C(12)-N(4)-C(11)109.58(16)C(12)-N(4)-C(11)106.28(11)C(12)-N(4)-C(11)106.28(11)C(12)-N(4)-Sm(1)110.77(11)C(11)-N(4)-Sm(1)106.28(11)C(12)-N(4)-C(13)112.67(16)C(14)-N(5)-Sm(1)115.96(12)C(13)-N(5)-Sm(1)111.86(12)N(1)-C(1)-C(2)114.61(18)C(2)-C(1)-C(6)124.01(19)C(1)-C(2)-C(3)118.6(2)C(4)-C(5)-C(7)114.61(17)C(4)-C(5)-C(7)123.52(19)O(4)-C(6)-C(1)117.9(2)O(3)-C(6)-C(1)115.16(17)O(2)-C(7)-C(5)117.38(19)O(1)-C(7)-C(5)115.76(17)N(4)-C(11)-C(10)112.00(17)N(4)-C(11)-C(10)112.00(17)N(4)-C(12)-C(13)112.89(16)N(5)-C(13)-C(12)111.03(16)N(4)-C(12)-C(13)112.89(16)
C(5)-N(1)-C(1)120.23(18)C(5)-N(1)-Sm(1)119.83(13)C(1)-N(1)-Sm(1)119.94(14)C(16)-N(2)-C(8)110.79(16)C(16)-N(2)-C(15)110.31(16)C(8)-N(2)-C(15)109.60(16)C(16)-N(2)-Sm(1)106.24(11)C(8)-N(2)-Sm(1)106.24(11)C(10)-N(3)-Sm(1)110.25(12)C(10)-N(3)-C(9)112.65(16)C(10)-N(3)-Sm(1)115.52(12)C(9)-N(3)-Sm(1)115.52(12)C(10)-N(3)-Sm(1)115.52(12)C(18)-N(4)-C(12)111.29(15)C(18)-N(4)-C(11)109.58(16)C(12)-N(4)-C(11)109.58(16)C(12)-N(4)-C(11)106.28(11)C(12)-N(4)-C(11)106.28(11)C(12)-N(4)-Sm(1)110.77(11)C(11)-N(4)-Sm(1)106.28(11)C(12)-N(4)-Sm(1)110.77(11)C(11)-N(4)-Sm(1)108.61(11)C(14)-N(5)-C(13)112.67(16)C(14)-N(5)-Sm(1)115.96(12)C(13)-N(5)-Sm(1)111.86(12)N(1)-C(1)-C(2)121.4(2)N(1)-C(1)-C(3)112.67(16)C(14)-N(5)-C(7)118.6(2)C(4)-C(3)-C(2)119.7(2)C(3)-C(4)-C(5)118.2(2)N(1)-C(5)-C(7)114.61(17)C(4)-C(5)-C(7)123.52(19)O(4)-C(6)-O(3)126.9(2)O(4)-C(6)-C(1)117.9(2)O(3)-C(6)-C(1)115.16(17)O(2)-C(7)-C(5)117.38(19)O(1)-C(7)-C(5)115.76(17)N(4)-C(11)-C(10)112.00(17)N(4)-C(11)-C(10)112.00(17)N(4)-C
C(5)-N(1)-Sm(1) $119.83(13)$ C(1)-N(1)-Sm(1) $119.94(14)$ C(16)-N(2)-C(8) $110.79(16)$ C(16)-N(2)-C(15) $110.31(16)$ C(8)-N(2)-C(15) $109.60(16)$ C(16)-N(2)-Sm(1) $106.24(11)$ C(8)-N(2)-Sm(1) $106.24(11)$ C(8)-N(2)-Sm(1) $106.24(11)$ C(10)-N(3)-C(9) $112.65(16)$ C(10)-N(3)-C(9) $112.65(16)$ C(10)-N(3)-Sm(1) $115.52(12)$ C(9)-N(3)-Sm(1) $112.28(12)$ C(18)-N(4)-C(12) $111.29(15)$ C(18)-N(4)-C(11) $109.58(16)$ C(12)-N(4)-C(11) $106.28(11)$ C(12)-N(4)-C(11) $106.28(11)$ C(12)-N(4)-Sm(1) $106.28(11)$ C(12)-N(4)-Sm(1) $106.28(11)$ C(12)-N(4)-Sm(1) $106.28(11)$ C(12)-N(4)-Sm(1) $115.96(12)$ C(13)-N(5)-Sm(1) $111.86(12)$ N(1)-C(1)-C(2) $121.4(2)$ N(1)-C(1)-C(3) $112.67(16)$ C(4)-C(3)-C(2) $119.7(2)$ C(3)-C(4)-C(5) $118.6(2)$ C(4)-C(3)-C(2) $119.7(2)$ C(3)-C(4)-C(5) $118.2(2)$ N(1)-C(5)-C(7) $114.61(17)$ C(4)-C(5)-C(7) $123.52(19)$ O(4)-C(6)-O(3) $126.9(2)$ O(4)-C(6)-C(1) $117.9(2)$ O(3)-C(6)-C(1) $115.16(17)$ O(2)-C(7)-C(5) $117.38(19)$ O(1)-C(7)-C(5) $115.76(17)$ N(4)-C(11)-C(10) $112.00(17)$ N(4)-C(11)-C(10) $112.00(17)$ N(4)-C(12)-C(13) $112.89(16)$ N(5)-C(13)-C(12) $111.03(16)$ <
C(1) - N(1) - Sm(1) $119.94(14)$ $C(16) - N(2) - C(8)$ $110.79(16)$ $C(16) - N(2) - C(15)$ $110.31(16)$ $C(8) - N(2) - C(15)$ $109.60(16)$ $C(16) - N(2) - Sm(1)$ $106.24(11)$ $C(8) - N(2) - Sm(1)$ $106.24(11)$ $C(8) - N(2) - Sm(1)$ $100.5(12)$ $C(10) - N(3) - C(9)$ $112.65(16)$ $C(10) - N(3) - C(9)$ $112.28(12)$ $C(10) - N(3) - Sm(1)$ $115.52(12)$ $C(10) - N(3) - Sm(1)$ $112.28(12)$ $C(18) - N(4) - C(12)$ $111.29(15)$ $C(18) - N(4) - C(11)$ $109.58(16)$ $C(12) - N(4) - C(11)$ $106.28(11)$ $C(12) - N(4) - C(11)$ $106.28(11)$ $C(12) - N(4) - Sm(1)$ $106.28(11)$ $C(12) - N(4) - Sm(1)$ $106.28(11)$ $C(12) - N(4) - Sm(1)$ $108.61(11)$ $C(14) - N(5) - C(13)$ $112.67(16)$ $C(14) - N(5) - C(13)$ $112.67(16)$ $C(14) - N(5) - Sm(1)$ $111.86(12)$ $N(1) - C(1) - C(2)$ $21.4(2)$ $N(1) - C(1) - C(6)$ $114.61(18)$ $C(2) - C(1) - C(6)$ $124.01(19)$ $C(1) - C(2) - C(3)$ $118.6(2)$ $C(4) - C(3) - C(2)$ $119.7(2)$ $C(3) - C(4) - C(5)$ $118.2(2)$ $N(1) - C(5) - C(7)$ $123.52(19)$ $O(4) - C(6) - C(1)$ $117.9(2)$ $O(4) - C(6) - C(1)$ $117.9(2)$ $O(4) - C(6) - C(1)$ $117.9(2)$ $O(3) - C(6) - C(1)$ $112.00(17)$ $N(4) - C(11) - C(10)$ $112.00(17)$ $N(4) - C(11) - C(10)$ $112.89(16)$
$\begin{array}{llllllllllllllllllllllllllllllllllll$
$\begin{array}{llllllllllllllllllllllllllllllllllll$
$\begin{array}{llllllllllllllllllllllllllllllllllll$
C(0) $\Gamma(2) C(15)$ 109.00(10)C(16) $-N(2) - Sm(1)$ 106.24(11)C(8) $-N(2) - Sm(1)$ 109.61(12)C(15) $-N(2) - Sm(1)$ 109.61(12)C(10) $-N(3) - C(9)$ 112.65(16)C(10) $-N(3) - Sm(1)$ 115.52(12)C(9) $-N(3) - Sm(1)$ 112.28(12)C(18) $-N(4) - C(12)$ 111.29(15)C(18) $-N(4) - C(11)$ 109.58(16)C(12) $-N(4) - C(11)$ 109.58(16)C(12) $-N(4) - C(11)$ 106.28(11)C(12) $-N(4) - C(11)$ 106.28(11)C(12) $-N(4) - Sm(1)$ 108.61(11)C(11) $-N(4) - Sm(1)$ 108.61(11)C(14) $-N(5) - C(13)$ 112.67(16)C(14) $-N(5) - Sm(1)$ 115.96(12)C(13) $-N(5) - Sm(1)$ 111.86(12)N(1) $-C(1) - C(2)$ 121.4(2)N(1) $-C(1) - C(6)$ 124.01(19)C(1) $-C(2) - C(3)$ 118.6(2)C(4) $-C(3) - C(2)$ 119.7(2)C(3) $-C(4) - C(5)$ 118.2(2)N(1) $-C(5) - C(7)$ 114.61(17)C(4) $-C(5) - C(7)$ 123.52(19)O(4) $-C(6) - O(3)$ 126.9(2)O(4) $-C(6) - C(1)$ 117.9(2)O(3) $-C(6) - C(1)$ 115.16(17)O(2) $-C(7) - O(1)$ 126.8(2)O(2) $-C(7) - C(5)$ 115.76(17)N(2) $-C(8) - C(9)$ 113.21(16)N(3) $-C(10) - C(11)$ 110.27(17)N(4) $-C(11) - C(10)$ 112.00(17)N(4) $-C(11) - C(10)$ 112.00(17)N(4) $-C(11) - C(10)$ 112.89(16)N(5) $-C(13) - C(12)$ 111.03(16)
$\begin{array}{llllllllllllllllllllllllllllllllllll$
$\begin{array}{llllllllllllllllllllllllllllllllllll$
$\begin{array}{llllllllllllllllllllllllllllllllllll$
$\begin{array}{llllllllllllllllllllllllllllllllllll$
$C(10)^{-1}((3)^{-5}(11)^{-1}(12)^{-1}(1$
$\begin{array}{llllllllllllllllllllllllllllllllllll$
$\begin{array}{llllllllllllllllllllllllllllllllllll$
C(18)-N(4)-C(11) $109.38(10)$ $C(12)-N(4)-C(11)$ $110.19(16)$ $C(12)-N(4)-Sm(1)$ $106.28(11)$ $C(12)-N(4)-Sm(1)$ $106.28(11)$ $C(12)-N(4)-Sm(1)$ $110.77(11)$ $C(11)-N(4)-Sm(1)$ $108.61(11)$ $C(14)-N(5)-C(13)$ $112.67(16)$ $C(13)-N(5)-Sm(1)$ $115.96(12)$ $C(13)-N(5)-Sm(1)$ $111.86(12)$ $N(1)-C(1)-C(2)$ $121.4(2)$ $N(1)-C(1)-C(6)$ $124.01(19)$ $C(1)-C(2)-C(3)$ $118.6(2)$ $C(4)-C(3)-C(2)$ $119.7(2)$ $C(3)-C(4)-C(5)$ $118.2(2)$ $N(1)-C(5)-C(7)$ $114.61(17)$ $C(4)-C(5)-C(7)$ $123.52(19)$ $O(4)-C(6)-O(3)$ $126.9(2)$ $O(4)-C(6)-C(1)$ $117.9(2)$ $O(3)-C(6)-C(1)$ $115.16(17)$ $O(2)-C(7)-O(1)$ $126.8(2)$ $O(2)-C(7)-C(5)$ $115.76(17)$ $N(2)-C(8)-C(9)$ $113.21(16)$ $N(3)-C(10)-C(11)$ $110.27(17)$ $N(4)-C(11)-C(10)$ $112.00(17)$ $N(4)-C(11)-C(10)$ $112.89(16)$ $N(5)-C(13)-C(12)$ $111.03(16)$
C(12)- $N(4)$ - $C(11)$ $110.19(16)$ $C(13)$ - $N(4)$ - $Sm(1)$ $106.28(11)$ $C(12)$ - $N(4)$ - $Sm(1)$ $110.77(11)$ $C(11)$ - $N(4)$ - $Sm(1)$ $108.61(11)$ $C(14)$ - $N(5)$ - $C(13)$ $112.67(16)$ $C(14)$ - $N(5)$ - $Sm(1)$ $115.96(12)$ $C(13)$ - $N(5)$ - $Sm(1)$ $111.86(12)$ $N(1)$ - $C(1)$ - $C(2)$ $121.4(2)$ $N(1)$ - $C(1)$ - $C(6)$ $124.01(19)$ $C(2)$ - $C(1)$ - $C(6)$ $124.01(19)$ $C(1)$ - $C(2)$ - $C(3)$ $118.6(2)$ $C(4)$ - $C(3)$ - $C(2)$ $119.7(2)$ $C(3)$ - $C(4)$ - $C(5)$ $118.2(2)$ $N(1)$ - $C(5)$ - $C(7)$ $123.52(19)$ $O(4)$ - $C(6)$ - $O(3)$ $126.9(2)$ $O(4)$ - $C(6)$ - $C(1)$ $117.9(2)$ $O(3)$ - $C(6)$ - $C(1)$ $115.16(17)$ $O(2)$ - $C(7)$ - $O(1)$ $126.8(2)$ $O(2)$ - $C(7)$ - $C(5)$ $117.38(19)$ $O(1)$ - $C(7)$ - $C(5)$ $115.76(17)$ $N(2)$ - $C(8)$ - $C(9)$ $113.21(16)$ $N(3)$ - $C(10)$ - $C(11)$ $110.27(17)$ $N(4)$ - $C(11)$ - $C(10)$ $112.00(17)$ $N(4)$ - $C(12)$ - $C(13)$ $112.89(16)$ $N(5)$ - $C(13)$ - $C(12)$ $111.03(16)$
C(18)-N(4)-Shi(1) $106.28(11)$ C(12)-N(4)-Sm(1) $110.77(11)$ C(11)-N(4)-Sm(1) $108.61(11)$ C(14)-N(5)-C(13) $112.67(16)$ C(14)-N(5)-Sm(1) $115.96(12)$ C(13)-N(5)-Sm(1) $111.86(12)$ N(1)-C(1)-C(2) $121.4(2)$ N(1)-C(1)-C(6) $114.61(18)$ C(2)-C(1)-C(6) $124.01(19)$ C(1)-C(2)-C(3) $118.6(2)$ C(4)-C(3)-C(2) $119.7(2)$ C(3)-C(4)-C(5) $118.2(2)$ N(1)-C(5)-C(4) $121.9(2)$ N(1)-C(5)-C(7) $114.61(17)$ C(4)-C(5)-C(7) $123.52(19)$ O(4)-C(6)-O(3) $126.9(2)$ O(4)-C(6)-C(1) $117.9(2)$ O(3)-C(6)-C(1) $115.16(17)$ O(2)-C(7)-O(1) $126.8(2)$ O(2)-C(7)-C(5) $115.76(17)$ N(2)-C(8)-C(9) $113.21(16)$ N(3)-C(9)-C(8) $111.14(16)$ N(3)-C(10)-C(11) $110.27(17)$ N(4)-C(11)-C(10) $112.00(17)$ N(4)-C(11)-C(10) $112.89(16)$ N(5)-C(13)-C(12) $111.03(16)$
C(12)-N(4)-Sm(1) $110.7/(11)$ C(11)-N(4)-Sm(1) $108.61(11)$ C(14)-N(5)-C(13) $112.67(16)$ C(14)-N(5)-Sm(1) $115.96(12)$ C(13)-N(5)-Sm(1) $111.86(12)$ N(1)-C(1)-C(2) $121.4(2)$ N(1)-C(1)-C(6) $114.61(18)$ C(2)-C(1)-C(6) $124.01(19)$ C(1)-C(2)-C(3) $118.6(2)$ C(4)-C(3)-C(2) $119.7(2)$ C(3)-C(4)-C(5) $118.2(2)$ N(1)-C(5)-C(4) $121.9(2)$ N(1)-C(5)-C(7) $114.61(17)$ C(4)-C(5)-C(7) $123.52(19)$ O(4)-C(6)-O(3) $126.9(2)$ O(4)-C(6)-C(1) $117.9(2)$ O(3)-C(6)-C(1) $115.16(17)$ O(2)-C(7)-O(1) $126.8(2)$ O(2)-C(7)-C(5) $115.76(17)$ N(2)-C(8)-C(9) $113.21(16)$ N(3)-C(9)-C(8) $111.14(16)$ N(3)-C(10)-C(11) $110.27(17)$ N(4)-C(11)-C(10) $112.00(17)$ N(4)-C(11)-C(10) $112.89(16)$ N(5)-C(13)-C(12) $111.03(16)$
C(11)-N(4)-Sm(1) $108.61(11)$ C(14)-N(5)-C(13) $112.67(16)$ C(14)-N(5)-Sm(1) $115.96(12)$ C(13)-N(5)-Sm(1) $111.86(12)$ N(1)-C(1)-C(2) $121.4(2)$ N(1)-C(1)-C(6) $114.61(18)$ C(2)-C(1)-C(6) $124.01(19)$ C(1)-C(2)-C(3) $118.6(2)$ C(4)-C(3)-C(2) $119.7(2)$ C(3)-C(4)-C(5) $118.2(2)$ N(1)-C(5)-C(7) $114.61(17)$ C(4)-C(5)-C(7) $123.52(19)$ O(4)-C(6)-O(3) $126.9(2)$ O(4)-C(6)-C(1) $117.9(2)$ O(3)-C(6)-C(1) $115.16(17)$ O(2)-C(7)-C(5) $115.76(17)$ N(2)-C(8)-C(9) $113.21(16)$ N(3)-C(9)-C(8) $111.14(16)$ N(3)-C(10)-C(11) $110.27(17)$ N(4)-C(11)-C(10) $112.00(17)$ N(4)-C(12)-C(13) $112.89(16)$ N(5)-C(13)-C(12) $111.03(16)$
C(14)-N(5)- $C(13)$ $112.67(16)$ $C(14)$ -N(5)-Sm(1) $115.96(12)$ $C(13)$ -N(5)-Sm(1) $111.86(12)$ $N(1)$ - $C(1)$ - $C(2)$ $121.4(2)$ $N(1)$ - $C(1)$ - $C(6)$ $124.01(19)$ $C(2)$ - $C(1)$ - $C(6)$ $124.01(19)$ $C(1)$ - $C(2)$ - $C(3)$ $118.6(2)$ $C(4)$ - $C(3)$ - $C(2)$ $119.7(2)$ $C(3)$ - $C(4)$ - $C(5)$ $118.2(2)$ $N(1)$ - $C(5)$ - $C(7)$ $114.61(17)$ $C(4)$ - $C(5)$ - $C(7)$ $123.52(19)$ $O(4)$ - $C(6)$ - $O(3)$ $126.9(2)$ $O(4)$ - $C(6)$ - $C(1)$ $117.9(2)$ $O(3)$ - $C(6)$ - $C(1)$ $115.16(17)$ $O(2)$ - $C(7)$ - $O(1)$ $126.8(2)$ $O(1)$ - $C(7)$ - $C(5)$ $115.76(17)$ $N(2)$ - $C(8)$ - $C(9)$ $113.21(16)$ $N(3)$ - $C(10)$ - $C(11)$ $110.27(17)$ $N(4)$ - $C(12)$ - $C(13)$ $112.89(16)$ $N(5)$ - $C(13)$ - $C(12)$ $111.03(16)$
C(14)-N(5)-Sm(1) $115.96(12)$ $C(13)$ -N(5)-Sm(1) $111.86(12)$ $N(1)$ -C(1)-C(2) $121.4(2)$ $N(1)$ -C(1)-C(6) $114.61(18)$ $C(2)$ -C(1)-C(6) $124.01(19)$ $C(1)$ -C(2)-C(3) $118.6(2)$ $C(4)$ -C(3)-C(2) $119.7(2)$ $C(3)$ -C(4)-C(5) $118.2(2)$ $N(1)$ -C(5)-C(4) $121.9(2)$ $N(1)$ -C(5)-C(7) $114.61(17)$ $C(4)$ -C(5)-C(7) $123.52(19)$ $O(4)$ -C(6)-O(3) $126.9(2)$ $O(4)$ -C(6)-C(1) $117.9(2)$ $O(3)$ -C(6)-C(1) $115.16(17)$ $O(2)$ -C(7)-O(1) $126.8(2)$ $O(1)$ -C(7)-C(5) $115.76(17)$ $N(2)$ -C(8)-C(9) $113.21(16)$ $N(3)$ -C(9)-C(8) $111.14(16)$ $N(3)$ -C(10)-C(11) $110.27(17)$ $N(4)$ -C(11)-C(10) $112.00(17)$ $N(4)$ -C(12)-C(13) $112.89(16)$ $N(5)$ -C(13)-C(12) $111.03(16)$
C(13)-N(5)-Sm(1) $111.86(12)$ $N(1)$ -C(1)-C(2) $121.4(2)$ $N(1)$ -C(1)-C(6) $114.61(18)$ $C(2)$ -C(1)-C(6) $124.01(19)$ $C(1)$ -C(2)-C(3) $118.6(2)$ $C(4)$ -C(3)-C(2) $119.7(2)$ $C(3)$ -C(4)-C(5) $118.2(2)$ $N(1)$ -C(5)-C(4) $121.9(2)$ $N(1)$ -C(5)-C(7) $114.61(17)$ $C(4)$ -C(5)-C(7) $123.52(19)$ $O(4)$ -C(6)-O(3) $126.9(2)$ $O(4)$ -C(6)-C(1) $117.9(2)$ $O(3)$ -C(6)-C(1) $115.16(17)$ $O(2)$ -C(7)-O(1) $126.8(2)$ $O(2)$ -C(7)-C(5) $117.38(19)$ $O(1)$ -C(7)-C(5) $115.76(17)$ $N(2)$ -C(8)-C(9) $113.21(16)$ $N(3)$ -C(9)-C(8) $111.14(16)$ $N(3)$ -C(10)-C(11) $110.27(17)$ $N(4)$ -C(11)-C(10) $112.00(17)$ $N(4)$ -C(12)-C(13) $112.89(16)$ $N(5)$ -C(13)-C(12) $111.03(16)$
N(1)- $C(1)$ - $C(2)$ $121.4(2)$ $N(1)$ - $C(1)$ - $C(6)$ $114.61(18)$ $C(2)$ - $C(1)$ - $C(6)$ $124.01(19)$ $C(1)$ - $C(2)$ - $C(3)$ $118.6(2)$ $C(4)$ - $C(3)$ - $C(2)$ $119.7(2)$ $C(3)$ - $C(4)$ - $C(5)$ $118.2(2)$ $N(1)$ - $C(5)$ - $C(4)$ $121.9(2)$ $N(1)$ - $C(5)$ - $C(7)$ $114.61(17)$ $C(4)$ - $C(5)$ - $C(7)$ $123.52(19)$ $O(4)$ - $C(6)$ - $O(3)$ $126.9(2)$ $O(4)$ - $C(6)$ - $C(1)$ $117.9(2)$ $O(3)$ - $C(6)$ - $C(1)$ $115.16(17)$ $O(2)$ - $C(7)$ - $O(1)$ $126.8(2)$ $O(2)$ - $C(7)$ - $C(5)$ $117.38(19)$ $O(1)$ - $C(7)$ - $C(5)$ $115.76(17)$ $N(2)$ - $C(8)$ - $C(9)$ $113.21(16)$ $N(3)$ - $C(10)$ - $C(11)$ $110.27(17)$ $N(4)$ - $C(11)$ - $C(10)$ $112.00(17)$ $N(4)$ - $C(12)$ - $C(13)$ $112.89(16)$ $N(5)$ - $C(13)$ - $C(12)$ $111.03(16)$
N(1)- $C(1)$ - $C(6)$ $114.61(18)$ $C(2)$ - $C(1)$ - $C(6)$ $124.01(19)$ $C(1)$ - $C(2)$ - $C(3)$ $118.6(2)$ $C(4)$ - $C(3)$ - $C(2)$ $119.7(2)$ $C(3)$ - $C(4)$ - $C(5)$ $118.2(2)$ $N(1)$ - $C(5)$ - $C(4)$ $121.9(2)$ $N(1)$ - $C(5)$ - $C(7)$ $114.61(17)$ $C(4)$ - $C(5)$ - $C(7)$ $123.52(19)$ $O(4)$ - $C(6)$ - $O(3)$ $126.9(2)$ $O(4)$ - $C(6)$ - $C(1)$ $117.9(2)$ $O(3)$ - $C(6)$ - $C(1)$ $115.16(17)$ $O(2)$ - $C(7)$ - $O(1)$ $126.8(2)$ $O(2)$ - $C(7)$ - $O(5)$ $117.38(19)$ $O(1)$ - $C(7)$ - $C(5)$ $115.76(17)$ $N(2)$ - $C(8)$ - $C(9)$ $113.21(16)$ $N(3)$ - $C(10)$ - $C(11)$ $110.27(17)$ $N(4)$ - $C(12)$ - $C(13)$ $112.89(16)$ $N(5)$ - $C(13)$ - $C(12)$ $111.03(16)$
$\begin{array}{llllllllllllllllllllllllllllllllllll$
C(1)-C(2)-C(3) $118.6(2)$ $C(4)-C(3)-C(2)$ $119.7(2)$ $C(3)-C(4)-C(5)$ $118.2(2)$ $N(1)-C(5)-C(4)$ $121.9(2)$ $N(1)-C(5)-C(7)$ $114.61(17)$ $C(4)-C(5)-C(7)$ $123.52(19)$ $O(4)-C(6)-O(3)$ $126.9(2)$ $O(4)-C(6)-C(1)$ $117.9(2)$ $O(3)-C(6)-C(1)$ $115.16(17)$ $O(2)-C(7)-O(1)$ $126.8(2)$ $O(2)-C(7)-C(5)$ $117.38(19)$ $O(1)-C(7)-C(5)$ $115.76(17)$ $N(2)-C(8)-C(9)$ $113.21(16)$ $N(3)-C(9)-C(8)$ $111.14(16)$ $N(3)-C(10)-C(11)$ $110.27(17)$ $N(4)-C(11)-C(10)$ $112.00(17)$ $N(4)-C(12)-C(13)$ $112.89(16)$ $N(5)-C(13)-C(12)$ $111.03(16)$
C(4)-C(3)-C(2) $119.7(2)$ $C(3)-C(4)-C(5)$ $118.2(2)$ $N(1)-C(5)-C(4)$ $121.9(2)$ $N(1)-C(5)-C(7)$ $114.61(17)$ $C(4)-C(5)-C(7)$ $123.52(19)$ $O(4)-C(6)-O(3)$ $126.9(2)$ $O(4)-C(6)-C(1)$ $117.9(2)$ $O(3)-C(6)-C(1)$ $115.16(17)$ $O(2)-C(7)-O(1)$ $126.8(2)$ $O(2)-C(7)-C(5)$ $117.38(19)$ $O(1)-C(7)-C(5)$ $115.76(17)$ $N(2)-C(8)-C(9)$ $113.21(16)$ $N(3)-C(9)-C(8)$ $111.14(16)$ $N(3)-C(10)-C(11)$ $110.27(17)$ $N(4)-C(11)-C(10)$ $112.89(16)$ $N(5)-C(13)-C(12)$ $111.03(16)$
$\begin{array}{llllllllllllllllllllllllllllllllllll$
N(1)-C(5)-C(4) $121.9(2)$ $N(1)$ -C(5)-C(7) $114.61(17)$ $C(4)$ -C(5)-C(7) $123.52(19)$ $O(4)$ -C(6)-O(3) $126.9(2)$ $O(4)$ -C(6)-C(1) $117.9(2)$ $O(3)$ -C(6)-C(1) $115.16(17)$ $O(2)$ -C(7)-O(1) $126.8(2)$ $O(2)$ -C(7)-C(5) $117.38(19)$ $O(1)$ -C(7)-C(5) $115.76(17)$ $N(2)$ -C(8)-C(9) $113.21(16)$ $N(3)$ -C(9)-C(8) $111.14(16)$ $N(3)$ -C(10)-C(11) $110.27(17)$ $N(4)$ -C(11)-C(10) $112.00(17)$ $N(4)$ -C(12)-C(13) $112.89(16)$ $N(5)$ -C(13)-C(12) $111.03(16)$
$\begin{array}{llllllllllllllllllllllllllllllllllll$
N(2)-C(8)-C(9)113.21(16)N(3)-C(9)-C(8)111.14(16)N(3)-C(10)-C(11)110.27(17)N(4)-C(11)-C(10)112.00(17)N(4)-C(12)-C(13)112.89(16)N(5)-C(13)-C(12)111.03(16)N(5)-C(14)-C(15)110.27(15)
N(3)-C(9)-C(8)111.14(16)N(3)-C(10)-C(11)110.27(17)N(4)-C(11)-C(10)112.00(17)N(4)-C(12)-C(13)112.89(16)N(5)-C(13)-C(12)111.03(16)
N(3)-C(10)-C(11)110.27(17)N(4)-C(11)-C(10)112.00(17)N(4)-C(12)-C(13)112.89(16)N(5)-C(13)-C(12)111.03(16)N(5)-C(14)-C(15)111.03(16)
N(4)-C(11)-C(10)112.00(17)N(4)-C(12)-C(13)112.89(16)N(5)-C(13)-C(12)111.03(16)N(5)-C(14)-C(15)111.03(16)
N(4)-C(12)-C(13) 112.89(16) N(5)-C(13)-C(12) 111.03(16)
N(5)-C(13)-C(12) 111.03(16)
M(5) = O(1.4) = O(1.5) = 110 = O(1.6)
N(5)-C(14)-C(15) 110.2/(16)
N(2)-C(15)-C(14) 112.50(17)
N(2)-C(16)-C(17) 114.02(15)
O(6) C(17) O(5) 102 $O(19)$
U(0) - U(17) - U(3) = 123.90(18)
O(6)-C(17)-O(5) 125.90(18) O(6)-C(17)-C(16) 117.90(16)
O(6)-C(17)-O(3)123.96(18)O(6)-C(17)-C(16)117.90(16)O(5)-C(17)-C(16)118.09(16)

O(8)-C(19)-O(7)	124.58(18)
O(8)-C(19)-C(18)	117.34(17)
O(7)-C(19)-C(18)	118.04(16)
C(33)-N(6)-C(25)	106.57(15)
C(33)-N(6)-C(29)	110.88(16)
C(25)-N(6)-C(29)	111.22(17)
C(33)-N(6)-C(21)	110.78(16)
C(25)-N(6)-C(21)	110.93(15)
C(29)-N(6)-C(21)	106.52(15)
C(22)-C(21)-N(6)	115.50(16)
C(21)-C(22)-C(23)	110.31(17)
C(24)-C(23)-C(22)	112.01(19)
N(6)-C(25)-C(26)	115.47(17)
C(27)-C(26)-C(25)	111.2(2)
C(26)-C(27)-C(28)	115.2(3)
C(30)-C(29)-N(6)	115.09(16)
C(31)-C(30)-C(29)	109.71(19)
C(30)-C(31)-C(32)	111.8(2)
N(6)-C(33)-C(34)	115.39(16)
C(35)-C(34)-C(33)	110.02(19)
C(34)-C(35)-C(36)	112.0(2)
O(51)-C(52)-C(53)	119.1(7)
O(51)-C(52)-C(51)	122.9(6)
C(53)-C(52)-C(51)	117.1(5)
O(61)-C(62)-C(64)	141.9(12)

	U^{11}	U ²²	U ³³	U ²³	U ¹³	U ¹²
Sm(1)	103(1)	144(1)	102(1)	13(1)	7(1)	10(1)
O(1)	192(7)	191(7)	118(6)	-5(5)	-8(5)	27(5)
O(2)	562(12)	283(9)	148(7)	-69(6)	-67(7)	32(8)
O(3)	183(7)	195(7)	153(6)	48(5)	-15(5)	-1(5)
O(4)	324(9)	308(9)	274(9)	157(7)	-61(7)	-12(7)
O(5)	119(6)	222(7)	136(6)	36(5)	23(4)	20(5)
O(6)	234(7)	254(8)	157(6)	-9(5)	51(5)	31(5)
O(7)	159(6)	207(7)	115(6)	2(5)	12(5)	-22(5)
O(8)	175(6)	190(7)	153(6)	28(5)	21(5)	-7(5)
N(1)	122(6)	178(8)	155(6)	21(5)	33(5)	7(5)
N(2)	170(7)	169(8)	163(7)	32(6)	14(6)	15(5)
N(3)	139(7)	184(8)	184(8)	14(6)	-8(6)	-1(5)
N(4)	144(7)	190(8)	144(7)	-17(5)	17(5)	-25(5)
N(5)	147(7)	190(8)	147(7)	-1(6)	-5(5)	23(5)
C(1)	159(8)	196(10)	244(10)	61(7)	-2(7)	3(7)
C(2)	335(13)	191(11)	410(14)	79(9)	-75(11)	7(9)
C(3)	450(16)	181(12)	507(17)	-26(10)	-113(13)	23(10)
C(4)	274(11)	208(11)	352(12)	-73(9)	-24(9)	19(8)
C(5)	158(8)	183(9)	168(9)	-21(6)	25(6)	6(6)
C(6)	130(8)	254(10)	199(9)	88(7)	-13(7)	-7(7)
C(7)	199(9)	238(10)	115(8)	-22(6)	20(6)	19(7)
C(8)	233(10)	182(10)	229(10)	53(7)	11(7)	-29(7)
C(9)	155(8)	220(10)	225(10)	14(7)	15(7)	-26(7)
C(10)	174(9)	224(10)	224(10)	-37(7)	7(7)	-48(7)
C(11)	173(9)	243(10)	192(9)	-42(7)	-7(7)	-27(7)
C(12)	197(9)	204(10)	184(9)	-41(7)	14(7)	25(7)
C(13)	159(8)	212(10)	203(9)	-1(7)	28(7)	44(6)
C(14)	213(9)	192(10)	223(10)	38(7)	27(7)	55(7)
C(15)	213(9)	212(10)	191(9)	64(7)	5(7)	54(7)
C(16)	200(9)	229(10)	141(8)	48(7)	30(7)	31(7)
C(17)	119(7)	182(9)	153(7)	7(6)	-10(5)	-18(6)
C(18)	187(8)	231(10)	133(8)	5(6)	22(6)	-33(6)
C(19)	118(7)	172(9)	143(8)	14(6)	6(6)	17(6)
N(6)	155(7)	205(8)	176(8)	-71(6)	-12(6)	14(6)
C(21)	163(8)	248(10)	199(9)	-90(7)	0(7)	18(7)
C(22)	175(9)	343(12)	214(10)	-116(8)	28(7)	-27(8)
C(23)	231(10)	283(11)	246(11)	-49(8)	45(8)	-25(8)
C(24)	255(12)	362(14)	408(15)	-76(11)	93(10)	-52(9)
C(25)	191(9)	222(10)	189(9)	-54(7)	-16(7)	-13(7)
C(26)	378(13)	252(12)	289(12)	-35(9)	-3(10)	59(9)
C(27)	640(20)	279(14)	323(14)	14(10)	-125(13)	-28(12)
C(28)	670(20)	417(19)	620(20)	169(16)	-109(19)	81(16)
C(29)	173(9)	257(10)	220(9)	-133(7)	-38(7)	8(7)
C(30)	161(9)	328(13)	302(12)	-164(9)	-10(8)	-7(8)
C(31)	179(11)	640(20)	610(20)	-414(16)	10(11)	-63(11)

Table 4. Anisotropic displacement parameters (Å²x 10⁴) for MLC07 (CCDC 655647). The anisotropic displacement factor exponent takes the form: $-2\pi^2$ [h² a^{*2}U¹¹ + ... + 2 h k a^{*} b^{*} U¹²]

C(32)	197(12)	760(20)	690(20)	-361(19)	6(13)	-73(13)
C(33)	197(9)	192(9)	195(9)	-81(7)	-22(7)	40(7)
C(34)	302(12)	277(12)	212(10)	-50(8)	-23(8)	41(9)
C(35)	298(11)	265(11)	255(11)	-22(8)	-14(8)	64(8)
C(36)	428(15)	309(13)	323(13)	14(9)	-17(11)	55(10)
O(21)	424(11)	434(11)	248(9)	42(7)	74(7)	-159(8)
O(22)	377(9)	219(8)	187(7)	-4(6)	71(6)	62(6)
O(51)	870(30)	210(15)	980(30)	113(16)	-310(20)	-21(15)
C(51)	450(30)	820(40)	730(40)	150(30)	-100(20)	-140(30)
C(52)	810(40)	138(17)	680(30)	6(17)	-250(30)	154(19)
C(53)	720(40)	550(30)	1230(60)	-480(40)	340(40)	-190(30)
O(61)	510(50)	440(40)	240(30)	-60(30)	-80(30)	220(30)
C(62)	580(90)	440(80)	860(110)	-220(70)	160(70)	-170(60)
C(64)	390(70)	560(90)	1800(200)	-830(120)	-310(100)	240(70)
O(71)	250(30)	350(40)	280(30)	-120(30)	50(20)	-40(20)

D-HA	d(D-H)	d(HA)	d(DA)	<(DHA)
N(3)-H(3)O(5)#1	0.93	2.15	3.010(2)	152.5
N(3)-H(3)O(6)#1	0.93	2.53	3.288(2)	139.4
N(5)-H(5)O(7)#2	0.93	2.18	3.030(2)	152.0
N(5)-H(5)O(8)#2	0.93	2.47	3.261(2)	142.4
O(21)-H(21C)O(4)#1	0.96	1.931(3)	2.889(2)	175.4(14)
O(21)-H(21D)O(6)	0.96	1.884(4)	2.832(2)	169.0(18)
O(22)-H(22C)O(2)#1	0.96	1.912(2)	2.870(2)	174.7(7)
O(22)-H(22D)O(8)#3	0.96	1.834(4)	2.7858(18)	170.7(17)
O(61)-H(61)O(71)	0.84	2.30	2.831(9)	121.5

Table 5. Hydrogen bonds for MLC07 (CCDC 655647) [Å and $^\circ$].

Symmetry transformations used to generate equivalent atoms:

#1 -x+1,-y+1,-z+1 #2 -x+2,-y+1,-z+1

#3 x-1,y,z

CALIFORNIA INSTITUTE OF TECHNOLOGY BECKMAN INSTITUTE X-RAY CRYSTALLOGRAPHY LABORATORY

Date 23 January 2007

Crystal Structure Analysis of:

MLC05

(shown below)

For	Investigator: Morgan Cable		(818) 354-4348
	Advisor: Adrian Ponce/H. B.	Gray	(818) 354-8196
	Account Number:	NASA	00002-1-JPL.000174
By	Michael W. Day	116 Beckman e-mail: mikeda	ext. 2734 ay@caltech.edu

<u>Contents</u>

Table 1. Crystal data Figures Table 2. Atomic Coordinates Table 3. Selected bond distances and angles Table 4. Full bond distances and angles Table 5. Anisotropic displacement parameters Table 6. Hydrogen bond distances and angles

Table 7. Observed and calculated structure factors (available upon request)

MLC05

Note: The crystallographic data have been deposited in the Cambridge Database (CCDC) and has been placed on hold pending further instructions from me. The deposition number is 634507. Ideally the CCDC would like the publication to contain a footnote of the type: "Crystallographic data have been deposited at the CCDC, 12 Union Road, Cambridge CB2 1EZ, UK and copies can be obtained on request, free of charge, by quoting the publication citation and the deposition number 634507."

Empirical formula	$[C_{19}H_{25}N_5O_8Eu]^-[C_{16}H_{36}N_5O_8Eu]^-$	$N]^+ \bullet 3(H_2O) \bullet 0.32(C_3H_6O) \bullet$		
0.68(C ₃ H ₈ O)				
Formula weight	957.23	957.23		
Crystallization Solvent	Acetone/isopropanol/wate	er		
Crystal Habit	Prism			
Crystal size	0.34 x 0.13 x 0.11 mm ³			
Crystal color	Colorless			
Data C	ollection			
Type of diffractometer	Bruker SMART 1000			
Wavelength	0.71073 Å MoKα			
Data Collection Temperature	100(2) K			
θ range for 25559 reflections used in lattice determination	2.18 to 37.61°			
Unit cell dimensions	a = 13.1473(4) Å b = 13.2269(4) Å c = 26.2248(8) Å	$\beta = 90.0540(10)^{\circ}$		
Volume	4560.4(2) Å ³			
Z	4			
Crystal system	Triclinic			
Space group	P1			
Density (calculated)	1.394 Mg/m ³			
F(000)	2005			
θ range for data collection	1.55 to 40.67°			
Completeness to $\theta = 40.67^{\circ}$	93.9 %			
Index ranges	$-23 \le h \le 23, -24 \le k \le 23$	$-47 \le 1 \le 43$		
Data collection scan type	ω scans at 7 ϕ settings			
Reflections collected	126185			
Independent reflections	27668 [R _{int} = 0.1140]			
Absorption coefficient	1.438 mm ⁻¹			
Absorption correction	None			
Max. and min. transmission	0.8579 and 0.6407			

Table 1. Crystal data and structure refinement for MLC05 (CCDC 634507).

Table 1 (cont.)

Structure solution program	SHELXS-97 (Sheldrick, 1990)
Primary solution method	Direct methods
Secondary solution method	Difference Fourier map
Hydrogen placement	Geometric positions
Structure refinement program	SHELXL-97 (Sheldrick, 1997)
Refinement method	Full matrix least-squares on F ²
Data / restraints / parameters	27668 / 0 / 560
Treatment of hydrogen atoms	Riding
Goodness-of-fit on F ²	1.004
Final R indices [I> 2σ (I), 12878 reflections]	R1 = 0.0437, <i>w</i> R2 = 0.0750
R indices (all data)	R1 = 0.1187, <i>w</i> R2 = 0.0854
Type of weighting scheme used	Sigma
Weighting scheme used	$w=1/\sigma^2(\text{Fo}^2)$
Max shift/error	0.004
Average shift/error	0.000
Largest diff. peak and hole	4.742 and -2.402 e.Å ⁻³

Structure solution and Refinement

Special Refinement Details

Refinement of F^2 against ALL reflections. The weighted R-factor (*w*R) and goodness of fit (S) are based on F^2 , conventional R-factors (R) are based on F, with F set to zero for negative F^2 . The threshold expression of $F^2 > 2\sigma(F^2)$ is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

	X	у	Z	U _{eq}	Occ
Eu	2482(1)	42(1)	4988(1)	13(1)	1
O(1)	1700(1)	-916(1)	5660(1)	17(1)	1
O(2)	1405(1)	-2377(1)	6074(1)	29(1)	1
O(3)	3302(1)	-577(1)	4226(1)	18(1)	1
O(4)	3666(2)	-1811(2)	3671(1)	33(1)	1
O(5)	3952(1)	-588(1)	5414(1)	16(1)	1
O(6)	4674(1)	-1048(1)	6147(1)	17(1)	1
O(7)	1036(1)	-372(1)	4488(1)	18(1)	1
O(8)	273(1)	-413(1)	3728(1)	24(1)	1
N(1)	2504(1)	-1847(1)	4880(1)	14(1)	1
N(2)	2944(1)	1026(2)	5847(1)	17(1)	1
N(3)	3919(1)	1359(1)	4850(1)	17(1)	1
N(4)	2024(1)	1421(2)	4281(1)	19(1)	1
N(5)	1041(1)	121(2) 1232(1)	5286(1)	17(1)	1
C(1)	2899(2)	-2254(2)	4459(1)	17(1) 18(1)	1
C(1)	2079(2) 2928(2)	-2234(2) -3296(2)	4384(1)	29(1)	1
C(2)	2520(2)	-3290(2) 3020(2)	4364(1)	25(1)	1
C(3)	2339(2) 2161(2)	-3920(2)	4700(1) 5208(1)	33(1) 20(1)	1
C(4)	2101(2) 2135(2)	-3490(2)	5208(1) 5250(1)	$\frac{29(1)}{18(1)}$	1
C(5)	2133(2) 2210(2)	-2437(2)	3230(1)	18(1)	1
C(0)	3319(2) 1712(2)	-1469(2)	4063(1)	10(1)	1
C(7)	1/15(2)	-18/0(2)	5707(1)	10(1)	1
C(8)	3037(2)	1880(2)	5742(1)	21(1) 20(1)	1
C(9)	4419(2)	1659(2)	5333(1)	20(1)	1
C(10)	3657(2)	2237(2)	4530(1)	24(1)	1
C(11)	2969(2)	1910(2)	4095(1)	23(1)	1
C(12)	1323(2)	2197(2)	4492(1)	24(1)	l
C(13)	549(2)	1762(2)	4856(1)	21(1)	l
C(14)	1299(2)	1924(2)	5709(1)	21(1)	l
C(15)	1988(2)	1395(2)	6088(1)	20(1)	1
C(16)	3443(2)	272(2)	6180(1)	19(1)	1
C(17)	4078(2)	-509(2)	5893(1)	15(1)	1
C(18)	1527(2)	858(2)	3860(1)	23(1)	1
C(19)	887(1)	-34(2)	4037(1)	18(1)	1
N(6)	6382(1)	2794(1)	2785(1)	17(1)	1
C(20)	7191(2)	3434(2)	2522(1)	21(1)	1
C(21)	8262(2)	3295(2)	2731(1)	26(1)	1
C(22)	8999(2)	4001(3)	2463(1)	43(1)	1
C(23)	10103(2)	3786(3)	2615(1)	50(1)	1
C(24)	6676(2)	1685(2)	2785(1)	20(1)	1
C(25)	6818(2)	1216(2)	2260(1)	27(1)	1
C(26)	7080(2)	113(2)	2307(1)	29(1)	1
C(27)	7262(2)	-389(2)	1791(1)	38(1)	1
C(28)	5397(2)	2956(2)	2488(1)	20(1)	1
C(29)	4473(2)	2393(2)	2688(1)	24(1)	1
C(30)	3638(2)	2365(2)	2286(1)	27(1)	1
C(31)	2678(2)	1825(2)	2470(1)	37(1)	1

Table 2. Atomic coordinates (x 10⁴) and equivalent isotropic displacement parameters ($Å^2x$ 10³) for MLC05 (CCDC 634507). U(eq) is defined as the trace of the orthogonalized U^{ij} tensor.

C(32)	6253(2)	3105(2)	3340(1)	18(1)	1
C(33)	6042(2)	4216(2)	3431(1)	26(1)	1
C(34)	5672(2)	4384(2)	3972(1)	30(1)	1
C(35)	5627(3)	5483(2)	4128(1)	51(1)	1
O(11)	5766(1)	4998(1)	1879(1)	27(1)	1
O(12)	9151(2)	977(2)	3130(1)	34(1)	1
O(51A)	1461(4)	4404(3)	6187(2)	56(2)	0.685(4)
C(52A)	546(4)	4383(4)	6230(2)	51(2)	0.685(4)
C(53A)	16(4)	3724(4)	6593(2)	51(1)	0.685(4)
C(54A)	-150(10)	4899(10)	5837(5)	137(6)	0.685(4)
O(50A)	-1088(18)	2273(18)	6469(9)	617(15)	0.685(4)
O(51B)	1254(8)	4293(6)	5372(4)	82(4)	0.315(4)
C(52B)	844(12)	4542(8)	5759(5)	61(4)	0.315(4)
C(53B)	-37(16)	5278(11)	5958(7)	39(3)	0.315(4)
C(54B)	1210(20)	4450(30)	6257(9)	240(20)	0.315(4)
O(50B)	-141(9)	3709(9)	7102(5)	101(4)	0.315(4)

Eu-O(7)	2.3740(15)	O(5)-Eu-N(4)	138.38(6)
Eu-O(5)	2.3801(14)	O(1)-Eu-N(4)	140.64(5)
Eu-O(1)	2.4038(15)	O(3)-Eu-N(4)	75.97(6)
Eu-O(3)	2.4140(15)	N(1)-Eu-N(4)	127.07(6)
Eu-N(1)	2.5146(18)	N(5)-Eu-N(4)	68.22(6)
Eu-N(5)	2.5848(18)	N(3)-Eu-N(4)	66.98(6)
Eu-N(3)	2.5947(18)	O(7)-Eu-N(2)	139.46(6)
Eu-N(4)	2.6692(18)	O(5)-Eu-N(2)	65.89(5)
Eu-N(2)	2.6711(18)	O(1)-Eu-N(2)	74.65(6)
Eu-C(17)	3.249(2)	O(3)-Eu-N(2)	139.65(5)
Eu-C(19)	3.2578(18)	N(1)-Eu-N(2)	125.21(5)
		N(5)-Eu-N(2)	67.34(6)
O(7)-Eu-O(5)	145.85(6)	N(3)-Eu-N(2)	68.04(6)
O(7)-Eu-O(1)	86.57(5)	N(4)-Eu-N(2)	107.73(7)
O(5)-Eu-O(1)	79.59(5)	O(7)-Eu-C(17)	150.24(5)
O(7)-Eu-O(3)	79.77(5)	O(5)-Eu-C(17)	19.27(5)
O(5)-Eu-O(3)	84.64(5)	O(1)-Eu-C(17)	67.79(5)
O(1)-Eu-O(3)	128.30(6)	O(3)-Eu-C(17)	103.91(5)
O(7)-Eu-N(1)	73.56(5)	N(1)-Eu-C(17)	81.50(5)
O(5)-Eu-N(1)	72.30(5)	N(5)-Eu-C(17)	112.87(5)
O(1)-Eu-N(1)	64.12(5)	N(3)-Eu-C(17)	77.48(5)
O(3)-Eu-N(1)	64.18(5)	N(4)-Eu-C(17)	143.74(6)
O(7)-Eu-N(5)	73.75(6)	N(2)-Eu-C(17)	49.23(5)
O(5)-Eu-N(5)	131.78(5)	O(7)-Eu-C(19)	19.10(5)
O(1)-Eu-N(5)	77.57(6)	O(5)-Eu-C(19)	150.37(5)
O(3)-Eu-N(5)	141.69(5)	O(1)-Eu-C(19)	105.62(5)
N(1)-Eu-N(5)	130.32(6)	O(3)-Eu-C(19)	69.12(5)
O(7)-Eu-N(3)	131.38(6)	N(1)-Eu-C(19)	83.68(6)
O(5)-Eu-N(3)	73.13(6)	N(5)-Eu-C(19)	77.21(5)
O(1)-Eu-N(3)	140.21(5)	N(3)-Eu-C(19)	112.48(6)
O(3)-Eu-N(3)	77.68(6)	N(4)-Eu-C(19)	49.06(6)
N(1)-Eu-N(3)	130.00(6)	N(2)-Eu-C(19)	143.73(6)
N(5)-Eu-N(3)	99.67(6)	C(17)-Eu-C(19)	165.18(6)
O(7)-Eu-N(4)	66.01(6)		

Table 3. Selected bond lengths [Å] and angles [°] for MLC05 (CCDC 634507).

Eu-O(7)	2.3740(15)	C(24)-C(25)	1.521(3)
Eu-O(5)	2.3801(14)	C(25)-C(26)	1.504(3)
Eu-O(1)	2.4038(15)	C(26)-C(27)	1.528(4)
Eu-O(3)	2.4140(15)	C(28)-C(29)	1.520(3)
Eu-N(1)	2.5146(18)	C(29)-C(30)	1.523(3)
Eu-N(5)	2.5848(18)	C(30)-C(31)	1.529(4)
Eu-N(3)	2.5947(18)	C(32)-C(33)	1.514(3)
Eu-N(4)	2.6692(18)	C(33)-C(34)	1.518(3)
Eu-N(2)	2.6711(18)	C(34)-C(35)	1.511(4)
Eu-C(17)	3.249(2)	O(51A)-C(52A)	1.209(7)
Eu-C(19)	3.2578(18)	C(52A)-C(53A)	1.467(8)
O(1)-C(7)	1.275(3)	C(52A)-C(54A)	1.538(13)
O(2)-C(7)	1.238(3)	O(51B)-C(52B)	1.194(14)
O(3)-C(6)	1.264(3)	C(52B)-C(54B)	1.40(3)
O(4)-C(6)	1.247(3)	C(52B)-C(53B)	1.60(2)
O(5)-C(17)	1.273(2)		
O(6)-C(17)	1.251(2)	O(7)-Eu-O(5)	145.85(6)
O(7)-C(19)	1.278(2)	O(7)-Eu-O(1)	86.57(5)
O(8)-C(19)	1.249(2)	O(5)-Eu-O(1)	79.59(5)
N(1)-C(1)	1.334(3)	O(7)-Eu-O(3)	79.77(5)
N(1)-C(5)	1.337(3)	O(5)-Eu-O(3)	84.64(5)
N(2)-C(16)	1.477(3)	O(1)-Eu-O(3)	128.30(6)
N(2)-C(8)	1.484(3)	O(7)-Eu-N(1)	73.56(5)
N(2)-C(15)	1.490(3)	O(5)-Eu- $N(1)$	72.30(5)
N(3)-C(10)	1.473(3)	O(1)-Eu-N(1)	64.12(5)
N(3)-C(9)	1.481(3)	O(3)-Eu-N(1)	64.18(5)
N(4)-C(18)	1.482(3)	O(7)-Eu-N(5)	73.75(6)
N(4)-C(11)	1.484(3)	O(5)-Eu-N(5)	131.78(5)
N(4)-C(12)	1.486(3)	O(1)-Eu-N(5)	77.57(6)
N(5)-C(13)	1.477(3)	O(3)-Eu-N(5)	141.69(5)
N(5)-C(14)	1.477(3)	N(1)-Eu-N(5)	130.32(6)
C(1)-C(2)	1.393(3)	O(7)-Eu-N(3)	131.38(6)
C(1)-C(6)	1.518(3)	O(5)-Eu-N(3)	73.13(6)
C(2)-C(3)	1.388(4)	O(1)-Eu-N(3)	140.21(5)
C(3)-C(4)	1.391(4)	O(3)-Eu-N(3)	77.68(6)
C(4)-C(5)	1.405(3)	N(1)-Eu-N(3)	130.00(6)
C(5)-C(7)	1.515(3)	N(5)-Eu-N(3)	99.67(6)
C(8)-C(9)	1.516(3)	O(7)-Eu-N(4)	66.01(6)
C(10)-C(11)	1.518(3)	O(5)-Eu-N(4)	138.38(6)
C(12)-C(13)	1.511(3)	O(1)-Eu-N(4)	140.64(5)
C(14)-C(15)	1.516(3)	O(3)-Eu-N(4)	75.97(6)
C(16)-C(17)	1.526(3)	N(1)-Eu-N(4)	127.07(6)
C(18)-C(19)	1.521(3)	N(5)-Eu- $N(4)$	68.22(6)
N(6)-C(24)	1.517(3)	N(3)-Eu- $N(4)$	66.98(6)
N(6)-C(32)	1.522(3)	O(7)-Eu-N(2)	139.46(6)
N(6)-C(20)	1.524(3)	O(5)-Eu-N(2)	65.89(5)
N(6)-C(28)	1.525(3)	O(1)-Eu-N(2)	74.65(6)
C(20)-C(21)	1.522(3)	O(3)-Eu-N(2)	139.65(5)
C(21)-C(22)	1.519(3)	N(1)-Eu-N(2)	125.21(5)
C(22)-C(23)	1.531(4)	N(5)-Eu-N(2)	67.34(6)
			· · ·

 Table 4. Bond lengths [Å] and angles [°] for MLC05 (CCDC 634507).

D25

			101 1/0
N(3)-Eu-N(2)	68.04(6)	N(1)-C(5)-C(4)	121.1(2)
N(4)-Eu-N(2)	107.73(7)	N(1)-C(5)-C(7)	114.95(19)
O(7)-Eu- $C(17)$	150.24(5)	C(4)-C(5)-C(7)	123.9(2)
O(5)-Eu- $C(17)$	19.27(5)	O(4)-C(6)-O(3)	126.2(2)
O(1)-Eu-C(17)	67.79(5)	O(4)-C(6)-C(1)	117.9(2)
O(3)-Eu-C(17)	103.91(5)	O(3)-C(6)-C(1)	115.84(19)
N(1)-Eu-C(17)	81.50(5)	O(2)-C(7)-O(1)	127.1(2)
N(5)-Eu-C(17)	112.87(5)	O(2)-C(7)-C(5)	118.3(2)
N(3)-Eu-C(17)	77.48(5)	O(1)-C(7)-C(5)	114.62(19)
N(4)-Eu-C(17)	143.74(6)	N(2)-C(8)-C(9)	113.37(18)
N(2)-Eu-C(17)	49.23(5)	N(3)-C(9)-C(8)	110.88(17)
O(7)-Eu-C(19)	19.10(5)	N(3)-C(10)-C(11)	110.02(19)
O(5)-Eu-C(19)	150.37(5)	N(4)-C(11)-C(10)	112.06(19)
O(1)-Eu-C(19)	105.62(5)	N(4)-C(12)-C(13)	112.99(19)
O(3)-Eu-C(19)	69.12(5)	N(5)-C(13)-C(12)	111.68(18)
N(1)-Eu-C(19)	83.68(6)	N(5)-C(14)-C(15)	110.13(18)
N(5)-Eu-C(19)	77.21(5)	N(2)-C(15)-C(14)	112.10(18)
N(3)-Eu-C(19)	112.48(6)	N(2)-C(16)-C(17)	114.17(17)
N(4)-Eu-C(19)	49.06(6)	O(6)-C(17)-O(5)	124.1(2)
N(2)-Eu-C(19)	143.73(6)	O(6)-C(17)-C(16)	117.79(18)
C(17)-Eu-C(19)	165.18(6)	O(5)-C(17)-C(16)	118.07(18)
C(7)-O(1)-Eu	126.12(14)	O(6)-C(17)-Eu	157.04(15)
C(6)-O(3)-Eu	125.35(14)	O(5)-C(17)-Eu	38.08(10)
C(17)-O(5)-Eu	122.65(14)	C(16)-C(17)-Eu	81.64(11)
C(19)-O(7)-Eu	123.46(14)	N(4)-C(18)-C(19)	113.93(17)
C(1)-N(1)-C(5)	120.5(2)	O(8)-C(19)-O(7)	123.9(2)
C(1)-N(1)-Eu	119.92(14)	O(8)-C(19)-C(18)	117.99(18)
C(5)-N(1)-Eu	119.60(14)	O(7)-C(19)-C(18)	118.03(18)
C(16)-N(2)-C(8)	110.82(17)	O(8)-C(19)-Eu	157.66(18)
C(16)-N(2)-C(15)	110.20(17)	O(7)-C(19)-Eu	37.44(10)
C(8)-N(2)-C(15)	110.22(18)	C(18)-C(19)-Eu	81.62(11)
C(16)-N(2)-Eu	105.65(12)	C(24)-N(6)-C(32)	106.84(16)
C(8)-N(2)-Eu	110.79(13)	C(24)-N(6)-C(20)	111.10(17)
C(15)-N(2)-Eu	109.06(12)	C(32)-N(6)-C(20)	111.13(17)
C(10)-N(3)-C(9)	112.29(18)	C(24)-N(6)-C(28)	110.59(17)
C(10)-N(3)-Eu	115.98(13)	C(32)-N(6)-C(28)	110.74(17)
C(9)-N(3)-Eu	112.52(13)	C(20)-N(6)-C(28)	106.50(16)
C(18)-N(4)-C(11)	110.08(18)	C(21)-C(20)-N(6)	114.57(18)
C(18)-N(4)-C(12)	110.54(17)	C(22)-C(21)-C(20)	110.45(19)
C(11)-N(4)-C(12)	109.94(19)	C(21)-C(22)-C(23)	111.8(2)
C(18)-N(4)-Eu	105.84(14)	N(6)-C(24)-C(25)	115.20(18)
C(11)-N(4)-Eu	109.68(13)	C(26)-C(25)-C(24)	110.46(19)
C(12)-N(4)-Eu	110.70(13)	C(25)-C(26)-C(27)	112.6(2)
C(13)-N(5)-C(14)	112.27(18)	C(29)-C(28)-N(6)	115.72(17)
C(13)-N(5)-Eu	112.26(13)	C(28)-C(29)-C(30)	110.40(19)
C(14)-N(5)-Eu	115.85(13)	C(29)-C(30)-C(31)	112.7(2)
N(1)-C(1)-C(2)	121.8(2)	C(33)-C(32)-N(6)	115.71(18)
N(1)-C(1)-C(6)	114.27(19)	C(32)-C(33)-C(34)	110.40(19)
C(2)-C(1)-C(6)	123.9(2)	C(35)-C(34)-C(33)	114.0(2)
C(3)-C(2)-C(1)	118.5(2)	O(51A)-C(52A)-C(53A)	123.2(6)
C(2)-C(3)-C(4)	119.7(2)	O(51A)-C(52A)-C(54A)	121.2(8)
C(3)-C(4)-C(5)	118.4(2)	C(53A)-C(52A)-C(54A)	114 6(7)
	110.7(2)	C(JJH) C(JZH) C(JHA)	117.0(7)

O(51B)-C(52B)-C(54B)	128.0(19)
O(51B)-C(52B)-C(53B)	140.5(15)
C(54B)-C(52B)-C(53B)	89.6(15)

	U ¹¹	U ²²	U ³³	U ²³	U ¹³	U ¹²
Eu	106(1)	172(1)	111(1)	15(1)	-13(1)	1(1)
O(1)	175(7)	210(8)	129(7)	22(6)	18(5)	22(6)
O(2)	349(10)	306(10)	199(8)	116(7)	59(7)	42(8)
O(3)	198(8)	238(8)	101(7)	-8(6)	-5(5)	-16(6)
O(4)	485(12)	372(11)	142(8)	-82(8)	61(8)	-60(9)
O(5)	156(7)	230(8)	104(7)	-5(6)	-43(5)	24(6)
O(6)	167(7)	196(8)	143(7)	25(6)	-46(5)	-7(5)
O(7)	136(7)	265(8)	123(7)	43(6)	-36(5)	20(6)
O(8)	232(9)	323(9)	158(7)	-6(7)	-74(6)	18(7)
N(1)	113(7)	186(8)	128(8)	3(6)	-45(6)	-3(6)
N(2)	162(9)	210(9)	151(8)	-18(7)	-11(6)	16(7)
N(3)	148(8)	183(9)	174(9)	8(7)	8(7)	1(6)
N(4)	152(9)	230(10)	197(9)	45(8)	-15(7)	10(7)
N(5)	156(9)	187(9)	163(9)	27(7)	3(6)	12(6)
C(1)	119(9)	250(11)	165(10)	-29(8)	-31(7)	-1(8)
C(2)	267(13)	269(13)	325(14)	-106(11)	28(10)	-6(10)
C(3)	378(16)	209(12)	476(17)	-49(12)	75(13)	-13(11)
C(4)	281(13)	197(11)	381(15)	41(11)	48(11)	-12(9)
C(5)	143(10)	203(10)	191(10)	44(8)	-22(7)	19(7)
C(6)	149(10)	285(12)	115(9)	-14(8)	-26(7)	-26(8)
C(7)	129(10)	250(11)	163(10)	78(9)	-6(8)	10(8)
C(8)	210(11)	207(11)	214(11)	-34(9)	-33(8)	-10(8)
C(9)	153(10)	210(11)	226(11)	-8(9)	-41(8)	-50(8)
C(10)	209(11)	219(11)	282(13)	71(10)	-24(9)	-24(8)
C(11)	200(11)	250(12)	250(12)	107(10)	4(9)	-21(9)
C(12)	204(11)	243(12)	279(12)	76(10)	-23(9)	37(9)
C(13)	173(10)	216(11)	232(11)	30(9)	-20(8)	41(8)
C(14)	179(11)	220(11)	234(11)	-45(9)	-5(9)	30(8)
C(15)	170(10)	263(12)	172(10)	-56(9)	-6(8)	15(8)
C(16)	199(10)	221(11)	146(9)	-10(8)	-46(7)	24(7)
C(17)	130(9)	158(10)	158(9)	-4(8)	-18(7)	-24(7)
C(18)	177(11)	327(13)	179(10)	77(9)	-35(8)	-5(9)
C(19)	127(8)	276(11)	142(8)	2(10)	-29(6)	58(10)
N(6)	146(9)	216(9)	161(9)	64(7)	1(6)	1(7)
C(20)	160(10)	274(12)	209(11)	130(9)	19(8)	5(8)
C(21)	171(11)	323(13)	281(12)	135(10)	-15(9)	-8(9)
C(22)	203(13)	549(19)	524(19)	324(16)	-9(12)	-61(12)
C(23)	242(15)	640(20)	630(20)	269(18)	-3(14)	-85(14)
C(24)	167(10)	213(11)	207(11)	67(8)	3(8)	31(8)
C(25)	306(13)	302(14)	212(12)	36(10)	26(9)	49(10)
C(26)	301(12)	280(13)	290(11)	-3(11)	-28(9)	55(10)
C(27)	374(16)	411(16)	340(15)	-59(13)	4(12)	76(12)
C(28)	168(10)	265(12)	160(10)	81(9)	-24(8)	28(8)
C(29)	176(11)	348(13)	194(11)	90(10)	-23(8)	-19(9)
C(30)	268(13)	292(13)	257(13)	45(10)	-74(10)	-22(10)
C(31)	248(14)	390(16)	466(18)	69(13)	-109(12)	-69(11)

Table 5. Anisotropic displacement parameters (Å²x 10⁴) for MLC05 (CCDC 634507). The anisotropic displacement factor exponent takes the form: $-2\pi^2$ [$h^2a^{*2}U^{11} + ... + 2h k a^* b^* U^{12}$]

C(32)	180(10)	196(10)	158(9)	57(8)	9(7)	2(7)
C(33)	290(13)	201(11)	286(13)	65(10)	6(10)	-8(9)
C(34)	381(15)	237(13)	282(14)	-21(10)	34(11)	-6(10)
C(35)	610(20)	358(18)	560(20)	-86(16)	160(18)	-3(16)
~ ~ ~ ~						
O(11)	364(9)	263(9)	192(7)	30(8)	-82(6)	65(9)
O(12)	371(11)	<i>4</i> 19(1 2)	223(0)	24(8)	77(8)	153(0)
0(12)	5/1(11)	41)(12)	223())	24(0)	-77(0)	155(7)
O(51A)	224(18)	490(20)	960(40)	-60(20)	30(20)	-8(15)
C(52A)	280(20)	560(30)	700(40)	-270(30)	30(20)	60(20)
C(53A)	400(30)	540(30)	600(30)	-110(30)	20(20)	0(20)
C(54A)	560(60)	2450(180)	1110(100)	250(100)	110(70)	440(100)
0(51D)	1070(00)	250(50)		20(10)	100/(0)	110(50)
O(51B)	1270(90)	350(50)	830(70)	-30(40)	480(60)	-110(50)
C(52B)	1050(120)	210(50)	570(80)	40(50)	360(80)	-120(50)
C(53B)	370(70)	420(60)	380(60)	80(50)	30(50)	80(40)
C(54B)	1400(300)	5200(600)	640(130)	-1500(200)	-210(160)	1100(300)

D-HA	d(D-H)	d(HA)	d(DA)	<(DHA)
N(3)-H(3)O(5)#1	0.93	2.23	3.059(2)	148.5
N(3)-H(3)O(6)#1	0.93	2.45	3.232(2)	141.6
N(5)-H(5)O(7)#2	0.93	2.17	3.016(2)	151.4
N(5)-H(5)O(8)#2	0.93	2.54	3.294(3)	138.3
O(11)-H(11A)O(4)#3	1.00	1.90	2.892(3)	175.7
O(11)-H(11B)O(6)#4	1.00	1.80	2.769(2)	162.2
O(12)-H(12A)O(2)#1	1.00	1.91	2.886(3)	164.7
O(12)-H(12B)O(8)#5	1.00	1.88	2.830(2)	158.3
N(3)-H(3)O(3)	0.93	2.82	3.144(2)	102.1
N(5)-H(5)O(1)	0.93	2.81	3.128(2)	101.1

Table 6. Hydrogen bonds for MLC05 (CCDC 634507) [Å and $^\circ$].

Symmetry transformations used to generate equivalent atoms:

#1 -x+1,-y,-z+1 #2 -x,-y,-z+1 #3 -x+1,y+1/2,-z+1/2 #4 x,-y+1/2,z-1/2 #5 x+1,y,z

CALIFORNIA INSTITUTE OF TECHNOLOGY BECKMAN INSTITUTE X-RAY CRYSTALLOGRAPHY LABORATORY

Date 1 September 2009

Crystal Structure Analysis of:

MLC13

(shown below)

For	Investigator: Morgan	Cable	(818) 354-2539		
	Advisor: H. B. Gray		ext. 6500		
	Account Number:	AP1.HSARPA3-1-	HSARPA.PONCE		
By	Michael W. Day	116 Beckmar e-mail: mik	n ext. 2734 xeday@caltech.edu		

Contents

Table 1. Crystal data

Figures Minimum overlap, asymmetric unit contents, stereo views

Table 2. Atomic Coordinates

Table 3. Selected bond distances and angles

Table 4. Full bond distances and angles

Table 5. Anisotropic displacement parameters

 Table 6. Hydrogen atomic coordinates

Table 7. Hydrogen bond distances and angles

Table 8. Observed and calculated structure factors (available upon request)

MLC13

Note: The crystallographic data have been deposited in the Cambridge Database (CCDC) and has been placed on hold pending further instructions from me. The deposition number is 746157. Ideally the CCDC would like the publication to contain a footnote of the type: "Crystallographic data have been deposited at the CCDC, 12 Union Road, Cambridge CB2 1EZ, UK and copies can be obtained on request, free of charge, by quoting the publication citation and the deposition number 746157."

Table 1. Crystal data and structure refinement for MLC13 (CCDC 746175).

Empirical formula	$[C_{19}H_{25}N_5O_8Gd]^ [C_{16}H_{25}N_5O_8Gd]^-$	$[C_{19}H_{25}N_5O_8Gd]^ [C_{16}H_{36}N]$ + • 2(H ₂ O) 0.62(C ₃ H ₆ O)		
$0.38(C_2H_6O\bullet O)$				
Formula weight	946.79	946.79		
Crystallization Solvent	Ethanol/	Ethanol/		
Crystal Habit	Block	Block		
Crystal size	0.22 x 0.16 x 0.13 mm ³	0.22 x 0.16 x 0.13 mm ³		
Crystal color	Colorless	- Sec.		
Data	a Collection			
Type of diffractometer	Bruker KAPPA APEX	II		
Wavelength	0.71073 Å MoKα			
Data Collection Temperature	100(2) K			
θ range for 9360 reflections used in lattice determination	2.18 to 47.36°			
Unit cell dimensions	a = 13.1910(5) Å b = 13.4544(5) Å c = 26.1712(9) Å	$\beta = 90.368(2)^{\circ}$		
Volume	4644.7(3) Å ³			
Z	4			
Crystal system	Monoclinic			
Space group	$P2_{1}/c$			
Density (calculated)	1.354 Mg/m^3			
F(000)	1975			
θ range for data collection	2.16 to 47.72°			
Completeness to $\theta = 47.72^{\circ}$	90.4 %			
Index ranges	-20 \leq h \leq 27, -27 \leq k \leq	27, $-53 \le 1 \le 54$		
Data collection scan type	ω scans; 19 settings			
Reflections collected	245931			
Independent reflections	39658 [R _{int} = 0.0563]			
Absorption coefficient	1.487 mm ⁻¹			
Absorption correction	None			
Max. and min. transmission	0.8302 and 0.7356			

Table 1 (cont.)

Structure solution program	SHELXS-97 (Sheldrick, 2008)
Primary solution method	Direct methods
Secondary solution method	Difference Fourier map
Hydrogen placement	Difference Fourier map
Structure refinement program	SHELXL-97 (Sheldrick, 2008)
Refinement method	Full matrix least-squares on F ²
Data / restraints / parameters	39658 / 0 / 664
Treatment of hydrogen atoms	Mixed
Goodness-of-fit on F ²	1.384
Final R indices [I> 2σ (I), 22019 reflections]	R1 = 0.0302, wR2 = 0.0482
R indices (all data)	R1 = 0.0805, wR2 = 0.0509
Type of weighting scheme used	Sigma
Weighting scheme used	$w=1/\sigma^2(\text{Fo}^2)$
Max shift/error	0.005
Average shift/error	0.000
Largest diff. peak and hole	3.917 and -2.616 e.Å ⁻³

Structure solution and Refinement

Special Refinement Details

Crystals were mounted on a glass fiber using Paratone oil then placed on the diffractometer under a nitrogen stream at 100K.

Hydrogen atoms in the Gadolinium dipicolinate macrocycle were refined without restraint. Hydrogen atoms of the tetramethyammonium counterion were restrained. The solvent region is disordered, containing acetone (62%) and ethanol/water (38%). These were refined without restraint (except for riding hydrogens). Additionally, the solvent region contains two ordered water molecules which were refined with no restraint on corresponding hydrogens.

Refinement of F^2 against ALL reflections. The weighted R-factor (*w*R) and goodness of fit (S) are based on F², conventional R-factors (R) are based on F, with F set to zero for negative F². The threshold expression of $F^2 > 2\sigma(F^2)$ is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F² are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Gd(1) 7490(1) 4917(1) 5001(1) 13(1) 1 0(1) 6703(1) 5881(1) 4333(1) 19(1) 1 0(2) 6426(1) 7336(1) 3928(1) 30(1) 1 0(3) 8308(1) 5548(1) 6351(1) 39(1) 1 0(4) 8622(1) 6681(1) 6351(1) 39(1) 1 0(5) 8963(1) 5567(1) 4588(1) 18(1) 1 0(6) 9675(1) 6070(1) 3858(1) 18(1) 1 0(7) 6048(1) 5315(1) 5506(1) 18(1) 1 0(8) 5318(1) 6765(1) 5128(1) 17(1) 1 N(1) 7506(1) 6765(1) 18(1) 1 1 N(2) 7951(1) 3999(1) 4132(1) 17(1) 1 N(3) 8929(1) 3623(1) 564(1) 16(1) 1 N(4) 7027(1) 354(1) 18(1) 1 1		Х	у	Z	U _{eq}	Occ
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\overline{\mathrm{Gd}(1)}$	7490(1)	4917(1)	5001(1)	13(1)	1
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	O(1)	6703(1)	5881(1)	4333(1)	19(1)	1
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	O(2)	6426(1)	7336(1)	3928(1)	30(1)	1
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	O(3)	8308(1)	5488(1)	5772(1)	19(1)	1
C(5) 8963(1) 5567(1) 4588(1) 18(1) 1 O(6) 9675(1) 6070(1) 3858(1) 18(1) 1 O(7) 6048(1) 5315(1) 5506(1) 18(1) 1 O(8) 5318(1) 5347(1) 6272(1) 24(1) 1 N(1) 7506(1) 6765(1) 5128(1) 17(1) 1 N(2) 7951(1) 3999(1) 4132(1) 17(1) 1 N(3) 8929(1) 5623(1) 5129(1) 18(1) 1 N(4) 7027(1) 3534(1) 5694(1) 19(1) 1 N(4) 7027(1) 3534(1) 5694(1) 18(1) 1 C(2) 7904(1) 8170(1) 5648(1) 28(1) 1 C(3) 7526(1) 8799(1) 5271(1) 38(1) 1 C(4) 7138(1) 3394(1) 4823(1) 31(1) 1 C(5) 7135(1) 7465(1) 21(1) 1 1 <	O(4)	8622(1)	6681(1)	6351(1)	39(1)	1
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	O(5)	8963(1)	5567(1)	4588(1)	18(1)	1
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	O(6)	9675(1)	6070(1)	3858(1)	18(1)	1
0(8) $5318(1)$ $5347(1)$ $6272(1)$ $24(1)$ 1 $N(1)$ $7506(1)$ $6765(1)$ $5128(1)$ $17(1)$ 1 $N(2)$ $7951(1)$ $3999(1)$ $4132(1)$ $17(1)$ 1 $N(3)$ $8929(1)$ $3623(1)$ $5129(1)$ $18(1)$ 1 $N(4)$ $7027(1)$ $3534(1)$ $5694(1)$ $19(1)$ 1 $N(5)$ $6042(1)$ $3778(1)$ $4685(1)$ $18(1)$ 1 $C(1)$ $7888(1)$ $7148(1)$ $5558(1)$ $18(1)$ 1 $C(2)$ $7904(1)$ $8170(1)$ $5648(1)$ $28(1)$ 1 $C(3)$ $7526(1)$ $8799(1)$ $5271(1)$ $38(1)$ 1 $C(4)$ $7138(1)$ $8394(1)$ $4823(1)$ $33(1)$ 1 $C(5)$ $7135(1)$ $7365(1)$ $4765(1)$ $21(1)$ 1 $C(6)$ $8304(1)$ $6379(1)$ $5931(1)$ $20(1)$ 1 $C(7)$ $6719(1)$ $6823(1)$ $4297(1)$ $20(1)$ 1 $C(7)$ $6719(1)$ $6823(1)$ $4297(1)$ $20(1)$ 1 $C(10)$ $8664(1)$ $2739(1)$ $5438(1)$ $23(1)$ 1 $C(11)$ $7978(1)$ $3041(1)$ $5879(1)$ $23(1)$ 1 $C(12)$ $633(1)$ $3111(1)$ $4256(1)$ $21(1)$ 1 $C(13)$ $6526(1)$ $2069(1)$ $611(1)$ 1 $C(14)$ $6303(1)$ $3111(1)$ $4256(1)$ $21(1)$ 1 $C(15)$ $6993(1)$ $3653(1)$ $3879(1)$	O(7)	6048(1)	5315(1)	5506(1)	18(1)	1
0(1) $7506(1)$ $675(1)$ $5128(1)$ $17(1)$ 1 $N(2)$ $7951(1)$ $3999(1)$ $4132(1)$ $17(1)$ 1 $N(3)$ $8929(1)$ $3623(1)$ $5129(1)$ $18(1)$ 1 $N(4)$ $7027(1)$ $3534(1)$ $5694(1)$ $19(1)$ 1 $N(5)$ $6042(1)$ $3778(1)$ $4685(1)$ $18(1)$ 1 $C(1)$ $7888(1)$ $7148(1)$ $5558(1)$ $18(1)$ 1 $C(2)$ $7904(1)$ $8170(1)$ $5648(1)$ $28(1)$ 1 $C(3)$ $7526(1)$ $8799(1)$ $5271(1)$ $38(1)$ 1 $C(4)$ $7138(1)$ $8394(1)$ $4823(1)$ $33(1)$ 1 $C(5)$ $7135(1)$ $7365(1)$ $4765(1)$ $21(1)$ 1 $C(6)$ $8304(1)$ $6379(1)$ $20(1)$ 1 1 $C(7)$ $6719(1)$ $6823(1)$ $4297(1)$ $20(1)$ 1	O(8)	5318(1)	5347(1)	6272(1)	24(1)	1
N(2) $7951(1)$ $399(1)$ $4132(1)$ $17(1)$ 1 $N(3)$ $8929(1)$ $3623(1)$ $5129(1)$ $18(1)$ 1 $N(4)$ $7027(1)$ $3534(1)$ $5694(1)$ $19(1)$ 1 $N(5)$ $6042(1)$ $3778(1)$ $4685(1)$ $18(1)$ 1 $C(1)$ $7888(1)$ $7148(1)$ $5558(1)$ $18(1)$ 1 $C(2)$ $7904(1)$ $8170(1)$ $5648(1)$ $28(1)$ 1 $C(2)$ $7904(1)$ $8170(1)$ $5648(1)$ $28(1)$ 1 $C(3)$ $7526(1)$ $879(1)$ $5211(1)$ $38(1)$ 1 $C(4)$ $7138(1)$ $8394(1)$ $4823(1)$ $33(1)$ 1 $C(5)$ $7135(1)$ $7365(1)$ $4765(1)$ $21(1)$ 1 $C(6)$ $8304(1)$ $6379(1)$ $5931(1)$ $20(1)$ 1 $C(7)$ $6719(1)$ $6422(1)$ $21(1)$ 1 $C(6)$ $84640(1)$ $2739(1)$ $5438(1)$ $23(1)$ 1 <	N(1)	7506(1)	6765(1)	5128(1)	17(1)	1
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	N(2)	7951(1)	3999(1)	4132(1)	17(1)	1
N(4) $O(27(1)$ $S(25(1)$ $S(25(1)$ $I(0)$ I $N(5)$ $6042(1)$ $3778(1)$ $4685(1)$ $18(1)$ I $N(5)$ $6042(1)$ $3778(1)$ $4685(1)$ $18(1)$ I $C(1)$ $7888(1)$ $7148(1)$ $5558(1)$ $18(1)$ I $C(2)$ $7904(1)$ $8170(1)$ $5648(1)$ $28(1)$ I $C(3)$ $7526(1)$ $8799(1)$ $5271(1)$ $38(1)$ I $C(4)$ $7138(1)$ $8394(1)$ $4823(1)$ $33(1)$ I $C(5)$ $7135(1)$ $7365(1)$ $4765(1)$ $21(1)$ I $C(6)$ $8304(1)$ $6379(1)$ $5931(1)$ $20(1)$ I $C(7)$ $6719(1)$ $6823(1)$ $4297(1)$ $20(1)$ I $C(7)$ $6719(1)$ $6823(1)$ $4297(1)$ $20(1)$ I $C(8)$ $8640(1)$ $2739(1)$ $5438(1)$ $23(1)$ I $C(10)$ $8664(1)$ $2739(1)$ $5438(1)$ $23(1)$ I $C(12)$ $6325(1)$ $2782(1)$ $5468(1)$ $23(1)$ I $C(12)$ $6325(1)$ $2782(1)$ $5468(1)$ $21(1)$ I $C(14)$ $6303(1)$ $3111(1)$ $4256(1)$ $21(1)$ I $C(14)$ $6303(1)$ $3111(1)$ $4256(1)$ $21(1)$ I $C(15)$ $6993(1)$ $3653(1)$ $3879(1)$ $20(1)$ I $C(17)$ $9089(1)$ $5519(1)$ $17(1)$ I $C(13)$ $6526(1)$ </td <td>N(3)</td> <td>8929(1)</td> <td>3623(1)</td> <td>5129(1)</td> <td>18(1)</td> <td>1</td>	N(3)	8929(1)	3623(1)	5129(1)	18(1)	1
(1(7) $12(1)$ $12(1)$ $12(1)$ $12(1)$ $12(1)$ (1) $712(1)$ $312(1)$ $468(1)$ $18(1)$ 1 (2) $7904(1)$ $8170(1)$ $5648(1)$ $28(1)$ 1 (2) $7904(1)$ $8170(1)$ $5648(1)$ $28(1)$ 1 (3) $7526(1)$ $8799(1)$ $5271(1)$ $38(1)$ 1 (2) $7135(1)$ $7365(1)$ $4765(1)$ $21(1)$ 1 (2) $7135(1)$ $7365(1)$ $4765(1)$ $21(1)$ 1 (2) $8304(1)$ $6379(1)$ $5931(1)$ $20(1)$ 1 (2) $7135(1)$ $7365(1)$ $4297(1)$ $20(1)$ 1 (2) $6323(1)$ $4297(1)$ $20(1)$ 1 (2) $6424(1)$ $21(1)$ 1 1 (2) $9428(1)$ $3350(1)$ $4642(1)$ $21(1)$ 1 (2) $9428(1)$ $3350(1)$ $4642(1)$ $21(1)$ 1 (2) $9428(1)$ $3350(1)$ $4642(1)$ $21(1)$ 1 (2) $8664(1)$ $2739(1)$ $5438(1)$ $23(1)$ 1 (1) $7978(1)$ $3041(1)$ $5879(1)$ $23(1)$ 1 (1) $7978(1)$ $3041(1)$ $5879(1)$ $21(1)$ 1 (1) $6333(1)$ $3111(1)$ $4256(1)$ $21(1)$ 1 (1) $6333(1)$ $3111(1)$ $4256(1)$ $21(1)$ 1 (1) $6526(1)$ $4068(1)$ $6121(1)$ $21(1)$ <td>N(4)</td> <td>7027(1)</td> <td>3534(1)</td> <td>5694(1)</td> <td>19(1)</td> <td>1</td>	N(4)	7027(1)	3534(1)	5694(1)	19(1)	1
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	N(5)	6042(1)	3778(1)	4685(1)	19(1) 18(1)	1
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\Gamma(3)$	7888(1)	7148(1)	4000(1)	18(1)	1
$\begin{array}{cccccc} (2) & 750(1) & 6170(1) & 5076(1) & 260(1) & 1 \\ (3) & 7526(1) & 8799(1) & 5271(1) & 38(1) & 1 \\ (4) & 7138(1) & 8394(1) & 4823(1) & 33(1) & 1 \\ (5) & 7135(1) & 7365(1) & 4765(1) & 21(1) & 1 \\ (6) & 8304(1) & 6379(1) & 5931(1) & 20(1) & 1 \\ (7) & 6719(1) & 6823(1) & 4297(1) & 20(1) & 1 \\ (7) & 6719(1) & 6823(1) & 4297(1) & 20(1) & 1 \\ (7) & 6719(1) & 6823(1) & 4229(1) & 21(1) & 1 \\ (6) & 8664(1) & 2739(1) & 5438(1) & 23(1) & 1 \\ (7) & 8664(1) & 2739(1) & 5438(1) & 23(1) & 1 \\ (11) & 7978(1) & 3041(1) & 5879(1) & 23(1) & 1 \\ (12) & 6325(1) & 2782(1) & 5468(1) & 23(1) & 1 \\ (11) & 7978(1) & 3041(1) & 5879(1) & 23(1) & 1 \\ (12) & 6325(1) & 2782(1) & 5468(1) & 21(1) & 1 \\ (14) & 6303(1) & 3111(1) & 4256(1) & 21(1) & 1 \\ (14) & 6303(1) & 3111(1) & 4256(1) & 21(1) & 1 \\ (15) & 6993(1) & 3653(1) & 3879(1) & 20(1) & 1 \\ (16) & 8461(1) & 4754(1) & 3807(1) & 20(1) & 1 \\ (17) & 9089(1) & 5519(1) & 4108(1) & 16(1) & 1 \\ (18) & 6526(1) & 4068(1) & 6121(1) & 21(1) & 1 \\ (19) & 5905(1) & 4973(1) & 5955(1) & 17(1) & 1 \\ \end{array}$	C(1)	7004(1)	7140(1) 8170(1)	5538(1)	$\frac{10(1)}{28(1)}$	1
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C(2)	7504(1)	8170(1) 8700(1)	5040(1)	20(1)	1
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C(3)	7320(1) 7128(1)	8799(1) 8204(1)	3271(1)	30(1)	1
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C(4)	7130(1) 7125(1)	0394(1)	4023(1)	33(1)	1
$\begin{array}{cccccc} C(6) & 8304(1) & 6379(1) & 5931(1) & 20(1) & 1 \\ C(7) & 6719(1) & 6823(1) & 4297(1) & 20(1) & 1 \\ C(8) & 8640(1) & 3142(1) & 4229(1) & 21(1) & 1 \\ C(9) & 9428(1) & 3350(1) & 4642(1) & 21(1) & 1 \\ C(10) & 8664(1) & 2739(1) & 5438(1) & 23(1) & 1 \\ C(11) & 7978(1) & 3041(1) & 5879(1) & 23(1) & 1 \\ C(12) & 6325(1) & 2782(1) & 5468(1) & 23(1) & 1 \\ C(13) & 5541(1) & 3237(1) & 5108(1) & 21(1) & 1 \\ C(14) & 6303(1) & 3111(1) & 4256(1) & 21(1) & 1 \\ C(15) & 6993(1) & 3653(1) & 3879(1) & 20(1) & 1 \\ C(16) & 8461(1) & 4754(1) & 3807(1) & 20(1) & 1 \\ C(17) & 9089(1) & 5519(1) & 4108(1) & 16(1) & 1 \\ C(18) & 6526(1) & 4068(1) & 6121(1) & 21(1) & 1 \\ C(19) & 5905(1) & 4973(1) & 5955(1) & 17(1) & 1 \\ \end{array}$	C(3)	7155(1)	(303(1))	4/03(1)	21(1) 20(1)	1
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C(0)	6304(1)	(922(1))	3931(1)	20(1)	1
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C(7)	6/19(1)	0823(1)	4297(1)	20(1)	1
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C(8)	8640(1)	3142(1)	4229(1)	21(1)	1
$\begin{array}{cccccc} C(10) & 8664(1) & 2739(1) & 5438(1) & 23(1) & 1 \\ C(11) & 7978(1) & 3041(1) & 5879(1) & 23(1) & 1 \\ C(12) & 6325(1) & 2782(1) & 5468(1) & 23(1) & 1 \\ C(13) & 5541(1) & 3237(1) & 5108(1) & 21(1) & 1 \\ C(14) & 6303(1) & 3111(1) & 4256(1) & 21(1) & 1 \\ C(15) & 6993(1) & 3653(1) & 3879(1) & 20(1) & 1 \\ C(16) & 8461(1) & 4754(1) & 3807(1) & 20(1) & 1 \\ C(16) & 8461(1) & 4754(1) & 3807(1) & 20(1) & 1 \\ C(17) & 9089(1) & 5519(1) & 4108(1) & 16(1) & 1 \\ C(18) & 6526(1) & 4068(1) & 6121(1) & 21(1) & 1 \\ C(19) & 5905(1) & 4973(1) & 5955(1) & 17(1) & 1 \\ \end{array}$	C(9)	9428(1)	3350(1)	4642(1)	21(1)	1
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C(10)	8664(1)	2/39(1)	5438(1)	23(1)	1
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C(11)	7978(1)	3041(1)	5879(1)	23(1)	l
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C(12)	6325(1)	2782(1)	5468(1)	23(1)	l
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C(13)	5541(1)	3237(1)	5108(1)	21(1)	1
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C(14)	6303(1)	3111(1)	4256(1)	21(1)	1
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C(15)	6993(1)	3653(1)	3879(1)	20(1)	1
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C(16)	8461(1)	4754(1)	3807(1)	20(1)	1
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C(17)	9089(1)	5519(1)	4108(1)	16(1)	1
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C(18)	6526(1)	4068(1)	6121(1)	21(1)	1
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	C(19)	5905(1)	4973(1)	5955(1)	17(1)	1
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	N(6)	1372(1)	2141(1)	7192(1)	20(1)	1
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C(21)	1673(1)	3238(1)	7202(1)	22(1)	1
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C(22)	1837(1)	3680(1)	7729(1)	29(1)	1
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C(23)	2069(1)	4787(1)	7687(1)	29(1)	1
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C(24)	2293(1)	5256(1)	8209(1)	40(1)	1
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C(25)	2189(1)	1507(1)	7452(1)	25(1)	1
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C(26)	3270(1)	1652(1)	7251(1)	30(1)	1
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C(27)	3999(1)	924(1)	7509(1)	58(1)	1
$\begin{array}{cccccc} C(29) & 1242(1) & 1851(1) & 6635(1) & 22(1) & 1 \\ C(30) & 972(1) & 767(1) & 6537(1) & 34(1) & 1 \\ C(31) & 695(1) & 590(1) & 5986(1) & 41(1) & 1 \\ \end{array}$	C(28)	5108(1)	1149(2)	7379(1)	59(1)	1
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C(29)	1242(1)	1851(1)	6635(1)	22(1)	1
C(31) 695(1) 590(1) 5986(1) 41(1) 1	C(30)	972(1)	767(1)	6537(1)	34(1)	1
	C(31)	695(1)	590(1)	5986(1)	41(1)	1

Table 2. Atomic coordinates (x 10⁴) and equivalent isotropic displacement parameters ($Å^2x$ 10³) for MLC13 (CCDC 746175). U(eq) is defined as the trace of the orthogonalized U^{ij} tensor.

C(32)	537(2)	-481(1)	5839(1)	61(1)	1
C(33)	383(1)	1976(1)	7488(1)	23(1)	1
C(34)	-548(1)	2528(1)	7282(1)	27(1)	1
C(35)	-1407(1)	2536(1)	7676(1)	28(1)	1
C(36)	-2365(1)	3059(1)	7484(1)	37(1)	1
O(21)	755(1)	5071(1)	3099(1)	27(1)	1
O(22)	4180(1)	3991(1)	6880(1)	37(1)	1
O(51)	3644(2)	9315(1)	5378(1)	71(1)	0.617(2)
C(51)	5077(2)	10064(4)	5838(2)	103(2)	0.617(2)
C(52)	3994(3)	9518(2)	5800(1)	70(1)	0.617(2)
C(53)	3504(2)	9414(2)	6205(1)	45(1)	0.617(2)
O(61)	5123(2)	8723(2)	7094(1)	45(1)	0.383(2)
C(62)	4987(4)	8771(4)	6547(2)	75(2)	0.383(2)
C(64)	4438(4)	9473(4)	6157(3)	72(2)	0.383(2)
O(71)	6124(2)	7291(2)	6479(1)	25(1)	0.383(2)

Gd(1)-O(7)	2.3850(7)	O(3)-Gd(1)-N(5)	141.62(3)
Gd(1)-O(5)	2.3941(7)	N(1)-Gd(1)-N(5)	129.53(3)
Gd(1)-O(1)	2.4069(7)	O(7)-Gd(1)-N(3)	131.59(3)
Gd(1)-O(3)	2.4080(8)	O(5)-Gd(1)-N(3)	73.05(3)
Gd(1)-N(1)	2.5081(8)	O(1)-Gd(1)-N(3)	140.09(3)
Gd(1)-N(5)	2.5816(9)	O(3)-Gd(1)-N(3)	77.43(3)
Gd(1)-N(3)	2.5960(9)	N(1)-Gd(1)-N(3)	129.98(3)
Gd(1)-N(2)	2.6607(9)	N(5)-Gd(1)-N(3)	100.48(3)
Gd(1)-N(4)	2.6727(9)	O(7)-Gd(1)-N(2)	139.96(3)
		O(5)-Gd(1)-N(2)	66.05(3)
O(7)-Gd(1)-O(5)	145.15(3)	O(1)-Gd(1)-N(2)	74.30(3)
O(7)-Gd(1)-O(1)	86.56(3)	O(3)-Gd(1)-N(2)	139.52(2)
O(5)-Gd(1)-O(1)	79.85(3)	N(1)-Gd(1)-N(2)	124.89(3)
O(7)-Gd(1)-O(3)	79.50(3)	N(5)-Gd(1)-N(2)	67.89(3)
O(5)-Gd(1)-O(3)	84.32(3)	N(3)-Gd(1)-N(2)	68.18(3)
O(1)-Gd(1)-O(3)	128.75(3)	O(7)-Gd(1)-N(4)	65.99(3)
O(7)-Gd(1)-N(1)	73.11(3)	O(5)-Gd(1)-N(4)	138.60(3)
O(5)-Gd(1)-N(1)	72.07(3)	O(1)-Gd(1)-N(4)	140.23(3)
O(1)-Gd(1)-N(1)	64.25(3)	O(3)-Gd(1)-N(4)	75.90(3)
O(3)-Gd(1)-N(1)	64.50(3)	N(1)-Gd(1)-N(4)	127.00(3)
O(7)-Gd(1)-N(5)	73.71(3)	N(5)-Gd(1)-N(4)	68.35(3)
O(5)-Gd(1)-N(5)	132.39(3)	N(3)-Gd(1)-N(4)	67.37(3)
O(1)-Gd(1)-N(5)	76.86(3)	N(2)-Gd(1)-N(4)	108.11(3)

Table 3. Selected bond lengths [Å] and angles [°] for MLC13 (CCDC 746175).

Gd(1)-O(7)	2.3850(7)	C(12)-C(13)	1.5229(16)
Gd(1)-O(5)	2.3941(7)	C(12)-H(12A)	1.004(14)
Gd(1)-O(1)	2.4069(7)	C(12)-H(12B)	1.000(13)
Gd(1)-O(3)	2.4080(8)	C(13)-H(13A)	0.921(15)
Gd(1)-N(1)	2.5081(8)	C(13)-H(13B)	0.989(13)
Gd(1)-N(5)	2.5816(9)	C(14)-C(15)	1.5308(16)
Gd(1)-N(3)	2.5960(9)	C(14)-H(14A)	0.966(13)
Gd(1)-N(2)	2.6607(9)	C(14)-H(14B)	0.951(13)
Gd(1)-N(4)	2.6727(9)	C(15)-H(15A)	1.004(14)
O(1)-C(7)	1.2711(13)	C(15)-H(15B)	0.928(13)
O(2)-C(7)	1.2473(13)	C(16)-C(17)	1.5346(15)
O(3)-C(6)	1.2698(13)	C(16)-H(16A)	0.927(14)
O(4)-C(6)	1.2435(14)	C(16)-H(16B)	0.981(13)
O(5)-C(17)	1.2710(12)	C(18)-C(19)	1.5296(14)
O(6)-C(17)	1.2572(12)	C(18)-H(18A)	1.012(15)
O(7)-C(19)	1.2768(12)	C(18)-H(18B)	0.962(15)
O(8)-C(19)	1.2452(12)	N(6)-C(29)	1.5182(15)
N(1)-C(1)	1.3345(14)	N(6)-C(21)	1.5282(14)
N(1)-C(5)	1.3360(13)	N(6)-C(25)	1.5307(13)
N(2)-C(16)	1.4874(13)	N(6)-C(33)	1.5370(13)
N(2)-C(8)	1.4893(14)	C(21)-C(22)	1.5161(17)
N(2)-C(15)	1.4965(14)	C(22)-C(23)	1.5233(17)
N(3)-C(10)	1.4822(14)	C(23)-C(24)	1.532(2)
N(3)-C(9)	1.4851(14)	C(25)-C(26)	1.5362(16)
N(3)-H(3)	0.956(15)	C(26)-C(27)	1.5265(17)
N(4)-C(18)	1.4878(14)	C(27)-C(28)	1.535(2)
N(4)-C(12)	1.4905(15)	C(29)-C(30)	1.5234(16)
N(4)-C(11)	1.4974(14)	C(30)-C(31)	1.504(2)
N(5)-C(14)	1.4805(14)	C(31)-C(32)	1.506(2)
N(5)-C(13)	1.4842(14)	C(33)-C(34)	1.5312(16)
N(5)-H(5)	0.911(14)	C(34)-C(35)	1.5366(16)
C(1)-C(2)	1.3940(15)	C(35)-C(36)	1.5282(17)
C(1)-C(6)	1.5218(15)	O(21)-H(21D)	0.846(18)
C(2)-C(3)	1.3895(19)	O(21)-H(21C)	0.793(18)
C(2)-H(2)	0.973(15)	O(22)-H(22C)	0.825(17)
C(3)-C(4)	1.389(2)	O(22)-H(22D)	0.836(19)
C(3)-H(3A)	0.921(16)	O(51)-C(52)	1.227(4)
C(4)-C(5)	1.3934(16)	C(51)-C(52)	1.609(5)
C(4)-H(4)	0.937(16)	C(52)-C(53)	1.252(5)
C(5)-C(7)	1.5245(17)	O(61)-C(62)	1.445(7)
C(8)-C(9)	1.5191(17)	C(62)-C(64)	1.566(9)
C(8)-H(8A)	0.912(14)		
C(8)-H(8B)	0.989(14)	O(7)-Gd(1)-O(5)	145.15(3)
C(9)-H(9A)	0.976(13)	O(7)- $Gd(1)$ - $O(1)$	86.56(3)
C(9)-H(9B)	0.965(13)	O(5)-Gd(1)-O(1)	79.85(3)
C(10)-C(11)	1.5270(16)	O(7)-Gd(1)-O(3)	79.50(3)
C(10)-H(10A)	0.971(14)	O(5)-Gd(1)-O(3)	84.32(3)
C(10)-H(10B)	0.979(13)	O(1)-Gd(1)-O(3)	128.75(3)
C(11)-H(11A)	0.955(13)	O(7)-Gd(1)-N(1)	73.11(3)
C(11)-H(11B)	0.948(12)	O(5)-Gd(1)-N(1)	72.07(3)

 Table 4. Bond lengths [Å] and angles [°] for MLC13 (CCDC 746175).

D45

O(1)-Gd(1)-N(1)	64.25(3)	C(11)-N(4)-Gd(1)	109.53(6)
O(3)-Gd(1)-N(1)	64.50(3)	C(14)-N(5)-C(13)	112.16(8)
O(7)-Gd(1)-N(5)	73.71(3)	C(14)-N(5)-Gd(1)	115.28(6)
O(5)-Gd(1)-N(5)	132.39(3)	C(13)-N(5)-Gd(1)	112.63(7)
O(1)-Gd(1)-N(5)	76.86(3)	C(14)-N(5)-H(5)	112.6(9)
O(3)-Gd(1)-N(5)	141.62(3)	C(13)-N(5)-H(5)	107.9(9)
N(1)-Gd(1)-N(5)	129.53(3)	Gd(1)-N(5)-H(5)	94.9(9)
O(7)-Gd(1)-N(3)	131.59(3)	N(1)-C(1)-C(2)	121.92(10)
O(5)-Gd(1)-N(3)	73.05(3)	N(1)-C(1)-C(6)	114.23(9)
O(1)-Gd(1)-N(3)	140.09(3)	C(2)-C(1)-C(6)	123.85(10)
O(3)-Gd(1)-N(3)	77.43(3)	C(3)-C(2)-C(1)	118.41(12)
N(1)-Gd(1)-N(3)	129.98(3)	C(3)-C(2)-H(2)	120.6(9)
N(5)-Gd(1)-N(3)	100.48(3)	C(1)-C(2)-H(2)	121.0(9)
O(7)-Gd(1)-N(2)	139.96(3)	C(4)-C(3)-C(2)	119.31(11)
O(5)-Gd(1)-N(2)	66.05(3)	C(4)-C(3)-H(3A)	117.3(10)
O(1)-Gd(1)-N(2)	74.30(3)	C(2)-C(3)-H(3A)	123.3(10)
O(3)-Gd(1)-N(2)	139.52(2)	C(3)-C(4)-C(5)	118.78(12)
N(1)-Gd(1)-N(2)	124.89(3)	C(3)-C(4)-H(4)	122.2(10)
N(5)-Gd(1)-N(2)	67.89(3)	C(5)-C(4)-H(4)	119.0(10)
N(3)-Gd(1)-N(2)	68.18(3)	N(1)-C(5)-C(4)	121.54(11)
O(7)-Gd(1)-N(4)	65.99(3)	N(1)-C(5)-C(7)	114.25(9)
O(5)-Gd(1)-N(4)	138.60(3)	C(4)-C(5)-C(7)	124.21(11)
O(1)-Gd(1)-N(4)	140.23(3)	O(4)-C(6)-O(3)	126.56(10)
O(3)-Gd(1)-N(4)	75.90(3)	O(4)-C(6)-C(1)	117.65(9)
N(1)-Gd(1)-N(4)	127.00(3)	O(3)-C(6)-C(1)	115.77(9)
N(5)-Gd(1)-N(4)	68.35(3)	O(2)-C(7)-O(1)	127.06(11)
N(3)-Gd(1)-N(4)	67.37(3)	O(2)-C(7)-C(5)	117.88(10)
N(2)-Gd(1)-N(4)	108.11(3)	O(1)-C(7)-C(5)	115.06(9)
C(7)-O(1)-Gd(1)	125.67(7)	N(2)-C(8)-C(9)	113.16(8)
C(6)-O(3)-Gd(1)	124.95(7)	N(2)-C(8)-H(8A)	108.6(9)
C(17)-O(5)-Gd(1)	122.58(6)	C(9)-C(8)-H(8A)	110.5(8)
C(19)-O(7)-Gd(1)	123.58(6)	N(2)-C(8)-H(8B)	108.0(8)
C(1)-N(1)-C(5)	120.03(9)	C(9)-C(8)-H(8B)	109.7(8)
C(1)-N(1)-Gd(1)	119.87(7)	H(8A)-C(8)-H(8B)	106.7(11)
C(5)-N(1)-Gd(1)	120.10(7)	N(3)-C(9)-C(8)	110.49(8)
C(16)-N(2)-C(8)	110.35(8)	N(3)-C(9)-H(9A)	111.5(8)
C(16)-N(2)-C(15)	110.09(8)	C(8)-C(9)-H(9A)	109.5(8)
C(8)-N(2)-C(15)	110.33(8)	N(3)-C(9)-H(9B)	105.7(8)
C(16)-N(2)-Gd(1)	106.12(6)	C(8)-C(9)-H(9B)	110.8(8)
C(8)-N(2)-Gd(1)	110.83(6)	H(9A)-C(9)-H(9B)	108.7(10)
C(15)-N(2)-Gd(1)	109.02(6)	N(3)-C(10)-C(11)	110.04(9)
C(10)-N(3)-C(9)	112.22(8)	N(3)-C(10)-H(10A)	111.7(8)
C(10)-N(3)-Gd(1)	115.73(6)	C(11)-C(10)-H(10A)	106.3(8)
C(9)-N(3)-Gd(1)	112.49(6)	N(3)-C(10)-H(10B)	109.1(8)
C(10)-N(3)-H(3)	105.8(9)	C(11)-C(10)-H(10B)	112.2(7)
C(9)-N(3)-H(3)	108.7(9)	H(10A)-C(10)-H(10B)	107.5(11)
Gd(1)-N(3)-H(3)	100.9(9)	N(4)-C(11)-C(10)	111.80(9)
C(18)-N(4)-C(12)	110.36(8)	N(4)-C(11)-H(11A)	110.3(7)
C(18)-N(4)-C(11)	110.15(9)	C(10)-C(11)-H(11A)	109.3(8)
C(12)-N(4)-C(11)	110.16(8)	N(4)-C(11)-H(11B)	105.6(7)
C(18)-N(4)-Gd(1)	106.16(6)	C(10)-C(11)-H(11B)	108.4(7)
C(12)-N(4)-Gd(1)	110.41(6)	H(11A)-C(11)-H(11B)	111.3(11)
	• •		. /

N(4) - C(12) - C(13)	112.92(9)
N(4) - C(12) - C(13) N(4) - C(12) + U(12A)	112.92(9)
C(12) C(12) H(12A)	100 8(8)
N(4) C(12) H(12P)	105.8(8)
$N(4)-C(12)-\Pi(12D)$	100.0(7)
C(13)-C(12)-H(12B)	111.4(8)
H(12A)-C(12)-H(12B)	104.5(11)
N(5)-C(13)-C(12)	110.78(9)
N(5)-C(13)-H(13A)	111.4(9)
C(12)-C(13)-H(13A)	108.3(9)
N(5)-C(13)-H(13B)	108.3(8)
C(12)-C(13)-H(13B)	113.2(8)
H(13A)-C(13)-H(13B)	104.8(11)
N(5)-C(14)-C(15)	110.07(8)
N(5)-C(14)-H(14A)	111.7(8)
C(15)-C(14)-H(14A)	107.6(8)
N(5)-C(14)-H(14B)	109.4(8)
C(15)-C(14)-H(14B)	111.6(8)
H(14A)-C(14)-H(14B)	106.4(11)
N(2)-C(15)-C(14)	111.56(9)
N(2)-C(15)-H(15A)	111.1(7)
C(14)-C(15)-H(15A)	109.0(8)
N(2)-C(15)-H(15B)	106.4(8)
C(14)-C(15)-H(15B)	109.0(8)
H(15A)-C(15)-H(15B)	109.8(11)
N(2)-C(16)-C(17)	114.22(9)
N(2)-C(16)-H(16A)	111.7(9)
C(17)-C(16)-H(16A)	103 9(9)
N(2)-C(16)-H(16B)	103.9(9) 110 4(8)
C(17)-C(16)-H(16B)	107 5(8)
H(16A)-C(16)-H(16B)	107.3(0) 108.8(12)
$\Omega(6)-C(17)-\Omega(5)$	124 68(10)
O(6) - C(17) - C(16)	124.00(10) 117.42(9)
O(5) C(17) C(16)	117.42(9) 117.88(0)
N(4) C(18) C(10)	117.00(9) 114.25(0)
N(4) - C(18) - C(19)	114.23(9) 107.5(8)
C(10) C(12) H(12A)	107.3(8) 107.0(8)
N(4) C(19) H(19D)	107.9(8)
$N(4)-C(18)-\Pi(18D)$	109.8(9)
C(19)-C(18)-H(18B)	108.2(9)
H(18A)-C(18)-H(18B)	109.1(12)
O(8)-C(19)-O(7)	124.37(9)
O(8)-C(19)-C(18)	117.81(9)
O(7)-C(19)-C(18)	117.77(8)
C(29)-N(6)-C(21)	106.92(8)
C(29)-N(6)-C(25)	110.97(9)
C(21)-N(6)-C(25)	110.39(8)
C(29)-N(6)-C(33)	110.84(8)
C(21)-N(6)-C(33)	110.70(8)
C(25)-N(6)-C(33)	107.05(8)
C(22)-C(21)-N(6)	115.44(9)
C(21)-C(22)-C(23)	110.31(10)

C(22)-C(23)-C(24)

N(6)-C(25)-C(26)

112.18(11)

115.42(9)

C(27)-C(26)-C(25)	110.50(10)
C(26)-C(27)-C(28)	111.96(11)
N(6)-C(29)-C(30)	115.63(9)
C(31)-C(30)-C(29)	111.61(11)
C(30)-C(31)-C(32)	115.48(13)
C(34)-C(33)-N(6)	115.70(8)
C(33)-C(34)-C(35)	111.05(9)
C(36)-C(35)-C(34)	113.25(10)
H(21D)-O(21)-H(21C)	99.8(17)
H(22C)-O(22)-H(22D)	107.2(17)
O(51)-C(52)-C(53)	123.0(4)
O(51)-C(52)-C(51)	119.1(4)
C(53)-C(52)-C(51)	117.6(3)
O(61)-C(62)-C(64)	136.7(4)

	U ¹¹	U ²²	U ³³	U ²³	U ¹³	U ¹²
Gd(1)	125(1)	166(1)	111(1)	15(1)	12(1)	13(1)
O(1)	192(3)	237(3)	155(4)	33(3)	-3(3)	5(3)
O(2)	346(5)	310(4)	256(5)	142(3)	-71(4)	-35(3)
O(3)	194(3)	226(3)	136(4)	-7(3)	0(3)	23(3)
O(4)	708(7)	316(4)	158(4)	-72(3)	-88(4)	90(4)
O(5)	160(3)	269(4)	119(4)	-3(3)	20(3)	-11(3)
O(6)	189(3)	209(1) 208(3)	156(4)	31(2)	36(3)	17(3)
O(7)	165(3)	200(3) 243(3)	138(4)	29(3)	31(3)	25(3)
O(8)	278(4)	270(4)	150(4) 164(4)	-11(3)	78(3)	15(3)
N(1)	130(3)	270(4)	154(4)	21(3)	34(3)	9(3)
N(2)	150(5) 161(4)	220(4)	1/10(4)	21(3)	11(3)	3(3)
N(2)	167(4)	212(4) 220(4)	1+9(+) 172(4)	9(3)	1(3)	-3(3)
N(3)	102(4) 181(4)	220(4)	172(4) 174(4)	3(3)	1(3)	23(3) 21(3)
N(4)	161(4)	222(4) 203(4)	174(4) 176(4)	13(3)	11(3) 12(3)	$\frac{21(3)}{7(3)}$
$\Gamma(3)$	109(4) 147(4)	203(4)	170(4) 184(5)	8(3)	12(3) 27(4)	1/(3)
C(1)	14/(4)	224(4) 240(5)	164(3) 212(7)	-8(3) 54(4)	57(4)	14(3) 15(4)
C(2)	270(0)	240(3)	313(7)	-34(4)	-23(3)	13(4)
C(3)	449(8) 242(6)	210(5)	409(9)	-17(5)	-101(6)	22(5)
C(4)	342(6)	237(5)	408(8)	(7)	-93(6)	10(5)
C(5)	161(4)	226(4)	233(6)	62(4)	11(4)	-4(3)
C(6)	213(5)	252(5)	135(5)	-20(3)	31(4)	28(4)
C(7)	163(4)	264(5)	187(5)	74(4)	4(4)	-16(4)
C(8)	197(5)	225(4)	209(5)	-41(4)	20(4)	37(4)
C(9)	172(5)	237(5)	211(6)	-14(4)	31(4)	49(4)
C(10)	223(5)	222(5)	248(6)	49(4)	14(4)	63(4)
C(11)	218(5)	250(5)	210(6)	76(4)	-4(4)	46(4)
C(12)	236(5)	222(5)	239(6)	59(4)	14(4)	-15(4)
C(13)	161(4)	233(5)	227(6)	23(4)	26(4)	-24(4)
C(14)	197(5)	222(4)	207(5)	-34(4)	6(4)	-32(4)
C(15)	185(5)	253(5)	168(5)	-33(4)	-5(4)	-10(4)
C(16)	194(5)	258(5)	135(5)	-5(3)	29(4)	-21(4)
C(17)	140(4)	199(4)	144(4)	4(3)	14(3)	40(3)
C(18)	215(5)	284(5)	141(5)	58(4)	42(4)	26(4)
C(19)	149(4)	206(4)	142(4)	1(3)	5(3)	-31(3)
N(6)	158(4)	254(4)	193(5)	98(3)	-12(3)	-19(3)
C(21)	191(5)	253(5)	203(5)	92(4)	-24(4)	-35(4)
C(22)	314(6)	342(6)	213(6)	61(5)	-39(5)	-66(5)
C(23)	298(6)	324(6)	262(6)	31(4)	2(5)	-61(5)
C(24)	447(8)	429(7)	333(8)	-29(6)	-16(6)	-93(6)
C(25)	174(5)	312(5)	269(6)	165(4)	-27(4)	-10(4)
C(26)	176(5)	405(7)	325(7)	198(5)	-7(5)	-2(5)
C(27)	193(6)	742(11)	809(14)	569(10)	-6(7)	53(6)
C(28)	191(6)	761(12)	825(15)	432(10)	6(7)	76(7)
C(29)	209(5)	241(5)	197(5)	69(4)	-7(4)	2(4)
C(30)	397(7)	290(6)	344(8)	50(5)	-16(6)	-92(5)
C(31)	560(9)	289(6)	379(9)	-10(5)	-107(7)	51(6)

Table 5. Anisotropic displacement parameters (Å²x 10⁴) for MLC13 (CCDC 746175). The anisotropic displacement factor exponent takes the form: $-2\pi^2$ [$h^2a^{*2}U^{11} + ... + 2h k a^* b^* U^{12}$]

C(32)	705(12)	419(9)	708(14)	-159(8)	-102(10)	-110(8)
C(33)	184(5)	301(5)	195(5)	99(4)	2(4)	-38(4)
C(34)	194(5)	391(6)	219(6)	115(4)	19(4)	18(4)
C(35)	262(6)	324(6)	248(6)	67(4)	57(5)	7(4)
C(36)	250(6)	419(7)	434(9)	83(6)	98(6)	53(5)
O(21)	377(5)	260(4)	174(4)	-7(3)	66(3)	70(3)
O(22)	446(6)	442(5)	223(5)	46(4)	66(4)	-175(4)
O(51)	1028(17)	250(8)	839(18)	80(9)	-287(14)	41(9)
C(51)	427(17)	2080(50)	580(20)	650(30)	-221(15)	-510(20)
C(52)	1170(30)	184(9)	740(20)	-39(11)	-640(20)	169(13)
C(53)	216(10)	577(15)	556(19)	-171(12)	-51(10)	59(9)
O(61)	565(17)	560(16)	236(14)	-88(11)	-133(12)	369(13)
C(62)	580(30)	600(30)	1060(50)	-340(30)	240(30)	-270(20)
C(64)	570(30)	650(30)	950(50)	-480(30)	-140(30)	40(20)
O(71)	253(11)	270(10)	238(12)	-85(8)	60(8)	-11(8)

	X	у	Z	U _{iso}
H(3)	9397(11)	3996(11)	5332(6)	31(4)
H(5)	5627(10)	4286(11)	4588(5)	26(4)
H(2)	8179(10)	8438(11)	5965(6)	32(4)
H(3A)	7548(11)	9482(12)	5295(6)	35(4)
H(4)	6863(11)	8790(12)	4562(6)	41(4)
H(8A)	8947(10)	2974(10)	3930(6)	25(3)
H(8B)	8220(10)	2567(10)	4330(5)	24(3)
H(9A)	9866(9)	2771(9)	4683(5)	19(3)
H(9B)	9841(9)	3915(10)	4551(5)	17(3)
H(10A)	9260(10)	2436(11)	5592(5)	27(4)
H(10B)	8347(9)	2240(10)	5216(5)	19(3)
H(11A)	7818(9)	2467(10)	6078(5)	19(3)
H(11B)	8321(8)	3526(9)	6078(5)	9(3)
H(12A)	5975(10)	2392(10)	5742(5)	25(3)
H(12B)	6756(9)	2282(10)	5288(5)	22(3)
H(13A)	5131(10)	2734(12)	4987(5)	31(4)
H(13B)	5073(10)	3701(10)	5282(5)	23(3)
H(14A)	5706(10)	2898(10)	4069(5)	23(3)
H(14B)	6614(9)	2525(10)	4386(5)	21(3)
H(15A)	7143(10)	3199(10)	3585(5)	25(3)
H(15B)	6665(9)	4219(9)	3761(5)	16(3)
H(16A)	7997(11)	5136(10)	3627(6)	27(4)
H(16B)	8917(10)	4429(10)	3564(5)	21(3)
H(18A)	7078(11)	4306(11)	6362(6)	35(4)
H(18B)	6086(11)	3621(11)	6301(6)	34(4)
H(21D)	410(13)	5370(14)	3322(7)	45(5)
H(21C)	956(12)	4616(14)	3264(7)	42(5)
H(22C)	4487(12)	4446(13)	6737(6)	36(4)
H(22D)	3998(13)	3590(15)	6653(7)	54(5)

Table 6. Hydrogen coordinates (x 104) and isotropic displacement parameters (Å2x103) for MLC13 (CCDC 746175) (refined hydrogens only).

D-HA	d(D-H)	d(HA)	d(DA)	<(DHA)
N(3)-H(3)O(5)#1	0.956(15)	2.249(14)	3.0722(12)	143.7(12)
N(3)-H(3)O(6)#1	0.956(15)	2.442(15)	3.2454(13)	141.5(12)
N(5)-H(5)O(7)#2	0.911(14)	2.286(14)	3.0535(12)	141.7(11)
N(5)-H(5)O(8)#2	0.911(14)	2.614(14)	3.2907(13)	131.6(11)
O(21)-H(21D)O(6)#3	0.846(18)	1.952(19)	2.7966(11)	177.2(17)
O(21)-H(21C)O(4)#2	0.793(18)	2.089(19)	2.8783(13)	173.6(17)
O(22)-H(22C)O(8)	0.825(17)	2.042(17)	2.8533(12)	167.8(16)
O(22)-H(22D)O(2)#2	0.836(19)	2.04(2)	2.8755(15)	177.1(19)
O(61)-H(61)O(71)	0.84	2.36	2.841(3)	116.7

Table 7. Hydrogen bonds for MLC13 (CCDC 746175) [Å and $^\circ$].

Symmetry transformations used to generate equivalent atoms:

#1 -x+2,-y+1,-z+1 #2 -x+1,-y+1,-z+1

#3 x-1,y,z

CALIFORNIA INSTITUTE OF TECHNOLOGY BECKMAN INSTITUTE X-RAY CRYSTALLOGRAPHY LABORATORY

Date 4 December 2004

Crystal Structure Analysis of:

MLC03

(shown below)

For	Investigator: Morgan Cable			ext. (818) 354-4348	
	Advisor: Adrian Ponce/	H. B. Gray	ext.	(818) 354-8196	
	Account Number:	API.000	02-1-NA	ASA.000174	
By	Michael W. Day	116 Beckm e-mail: m	an nikeday@	ext. 2734 Caltech.edu	

Contents

Table 1. Crystal data

Figures Minimum overlap, unit cell contents, stereo view of unit cell contents Table 2. Atomic Coordinates

Table 2. Atomic Coordinates

 Table 3. Full bond distances and angles

Table 4. Anisotropic displacement parameters

Table 5. Hydrogen atomic coordinates

Table 6. Hydrogen bond distances (interactions) and angles

Table 7. Observed and calculated structure factors (available upon request)

MLC03

Note: The crystallographic data have been deposited in the Cambridge Database (CCDC) and has been placed on hold pending further instructions from me. The deposition number is 629534. Ideally the CCDC would like the publication to contain a footnote of the type: "Crystallographic data have been deposited at the CCDC, 12 Union Road, Cambridge CB2 1EZ, UK and copies can be obtained on request, free of charge, by quoting the publication citation and the deposition number 629354."

$[C_{19}H_{25}N_5O_8Tb]^{-}[C_{16}H_{36}N]^{+} \bullet 0.47(C_3H_8O)$ Empirical formula $0.53(C_3H_6O) 3(H_2O)$ Formula weight 964.94 Crystallization Solvent Acetone/isopropanol/water Crystal Habit Square Crystal size 0.35 x 0.31 x 0.11 mm³ Crystal color Colorless **Data Collection** Bruker SMART 1000 Type of diffractometer 0.71073 Å MoKα Wavelength Data Collection Temperature 100(2) K θ range for 24638 reflections used in lattice determination 2.18 to 37.67° Unit cell dimensions a = 13.1047(5) Å b = 13.3397(5) Å $\beta = 90.0130(10)^{\circ}$ c = 26.0901(9) Å4560.9(3) Å³ Volume 4 Ζ Crystal system Monoclinic $P2_1/c$ Space group Density (calculated) 1.405 Mg/m^3 F(000) 2016 1.56 to 37.67° θ range for data collection Completeness to $\theta = 37.67^{\circ}$ 83.6 % $-22 \le h \le 22, -17 \le k \le 20, -40 \le l \le 44$ Index ranges Data collection scan type ω scans at 5 ϕ settings 78733 Reflections collected Independent reflections $20316 [R_{int} = 0.0879]$ 1.613 mm⁻¹ Absorption coefficient Absorption correction None Max. and min. transmission 0.8425 and 0.6022

Table 1. Crystal data and structure refinement for MLC03 (CCDC 629534).

Table 1 (cont.)

Structure solution program	Bruker XS v6.12
Primary solution method	Direct methods
Secondary solution method	Difference Fourier map
Hydrogen placement	Geometric positions
Structure refinement program	Bruker XL v6.12
Refinement method	Full matrix least-squares on F ²
Data / restraints / parameters	20316 / 0 / 577
Treatment of hydrogen atoms	Riding
Goodness-of-fit on F ²	1.077
Final R indices [I>2 σ (I), 11252 reflections]	R1 = 0.0384, <i>w</i> R2 = 0.0639
R indices (all data)	R1 = 0.0900, wR2 = 0.0717
Type of weighting scheme used	Sigma
Weighting scheme used	$w=1/\sigma^2(\text{Fo}^2)$
Max shift/error	0.005
Average shift/error	0.000
Largest diff. peak and hole	3.035 and -2.004 e.Å ⁻³

Structure solution and Refinement

Special Refinement Details

The crystals contain a disordered solvent. The site contains acetone and water or isopropanol and water, modeled as a combination of both with a total occupancy = 1.0.

Refinement of F^2 against ALL reflections. The weighted R-factor (*w*R) and goodness of fit (S) are based on F^2 , conventional R-factors (R) are based on F, with F set to zero for negative F^2 . The threshold expression of $F^2 > 2\sigma(F^2)$ is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

	X	У	Z	U _{eq}	Occ
Tb	2488(1)	77(1)	4995(1)	14(1)	1
O(1)	1702(1)	-870(1)	5664(1)	19(1)	1
O(2)	1420(1)	-2322(1)	6074(1)	29(1)	1
0(3)	3304(1)	-500(1)	4227(1)	19(1)	1
O(4)	3642(2)	-1709(1)	3658(1)	36(1)	1
O(5)	3947(1)	-573(1)	5407(1)	18(1)	1
O(6)	4672(1)	-1065(1)	6137(1)	19(1)	1
O(7)	1058(1)	-336(1)	4497(1)	18(1)	1
O(8)	303(1)	-391(1)	3733(1)	24(1)	1
N(1)	2504(1)	-1777(1)	4876(1)	$\frac{1}{16(1)}$	1
N(2)	2951(1)	1011(1)	5858(1)	10(1) 17(1)	1
N(2)	391/(1)	1368(1)	4861(1)	17(1) 18(1)	1
N(3)	2027(1)	1300(1) 1446(2)	4001(1)	18(1)	1
N(4) N(5)	2027(1) 1048(1)	1440(2) 1222(1)	4294(1) 5302(1)	18(1)	1
$\Gamma(3)$	1040(1)	1222(1) 2167(2)	3302(1)	10(1)	1
C(1)	2693(2) 2010(2)	-2107(2)	4449(1)	19(1)	1
C(2)	2910(2)	-5195(2)	4303(1)	20(1)	1
C(3)	2334(2)	-3821(2)	4/40(1)	30(1)	1
C(4)	2134(2)	-3404(2)	5191(1)	33(1)	1
C(5)	2135(2)	-2372(2)	5242(1)	20(1)	1
C(6)	3313(2)	-1395(2)	40/3(1)	21(1)	1
C(7)	1713(2)	-1817(2)	5707(1)	21(1)	l
C(8)	3637(2)	1866(2)	5759(1)	21(1)	l
C(9)	4425(2)	1648(2)	5351(1)	22(1)	1
C(10)	3663(2)	2248(2)	4549(1)	24(1)	1
C(11)	2970(2)	1931(2)	4108(1)	23(1)	1
C(12)	1324(2)	2205(2)	4513(1)	24(1)	1
C(13)	542(2)	1760(2)	4874(1)	21(1)	1
C(14)	1301(2)	1900(2)	5731(1)	22(1)	1
C(15)	1991(2)	1367(2)	6106(1)	20(1)	1
C(16)	3455(2)	255(2)	6184(1)	20(1)	1
C(17)	4081(2)	-512(2)	5889(1)	16(1)	1
C(18)	1525(2)	894(2)	3870(1)	22(1)	1
C(19)	904(2)	-2(2)	4045(1)	18(1)	1
N(6)	6377(1)	2839(1)	2800(1)	20(1)	1
C(20)	7192(2)	3471(2)	2542(1)	24(1)	1
C(21)	8271(2)	3325(2)	2746(1)	29(1)	1
C(22)	8999(2)	4044(3)	2481(1)	55(1)	1
C(23)	10110(2)	3815(3)	2629(1)	57(1)	1
C(24)	6673(2)	1733(2)	2794(1)	22(1)	1
C(25)	6831(2)	1282(2)	2265(1)	30(1)	1
C(26)	7071(2)	176(2)	2308(1)	31(1)	1
C(27)	7281(2)	-300(2)	1788(1)	39(1)	1
C(28)	5383(2)	3004(2)	2504(1)	24(1)	1
C(29)	4458(2)	2451(2)	2707(1)	27(1)	- 1
C(30)	3606(2)	2431(2)	2311(1)	$\frac{28(1)}{28(1)}$	1
C(31)	2648(2)	1905(2)	2501(1)	$\frac{-3}{37(1)}$	1
-(-1)				2.(1)	-

Table 2. Atomic coordinates (x 10⁴) and equivalent isotropic displacement parameters ($Å^2x$ 10³) for MLC03 (CCDC 629534). U(eq) is defined as the trace of the orthogonalized U^{ij} tensor.

C(32) C(33) C(34) C(35)	6243(2) 5990(2) 5677(2) 5560(3)	3133(2) 4229(2) 4402(2) 5486(3)	3359(1) 3451(1) 3999(1) 4151(1)	21(1) 32(1) 37(1) 58(1)	1 1 1 1
O(11)	5754(1)	5055(1)	1892(1)	27(1)	1
O(12)	9175(2)	975(2)	3123(1)	35(1)	1
O(51A) C(52A) C(53A) C(54A)	1484(7) 544(6) 2(6) -223(9)	4416(5) 4415(7) 3743(6) 4727(10)	6143(5) 6202(4) 6551(3) 5781(5)	65(3) 64(3) 58(2) 92(4)	$\begin{array}{c} 0.476(4) \\ 0.476(4) \\ 0.476(4) \\ 0.476(4) \\ 0.476(4) \end{array}$
O(50R) O(51B) C(52B) C(53B) C(54B)	1315(5) 899(7) -22(8) 1385(15)	4316(3) 4533(5) 5292(7) 4504(15)	5364(2) 5758(3) 5909(5) 6255(7)	75(2) 53(2) 68(3) 149(10)	$\begin{array}{c} 0.524(4)\\ 0.524(4)\\ 0.524(4)\\ 0.524(4)\\ 0.524(4)\end{array}$
O(50B)	-123(5)	3726(6)	7096(2)	96(2)	0.524(4)

Tb-O(7)	2.3467(14)	C(26)-C(27)	1.522(4)
Tb-O(5)	2.3573(15)	C(28)-C(29)	1.515(3)
Tb-O(1)	2.3879(15)	C(29)-C(30)	1.522(3)
Tb-O(3)	2.3987(15)	C(30)-C(31)	1.522(4)
Tb-N(1)	2.4918(19)	C(32)-C(33)	1.517(3)
Tb-N(5)	2.5564(18)	C(33)-C(34)	1.505(4)
Tb-N(3)	2.5657(18)	C(34)-C(35)	1.507(4)
Tb-N(2)	2.6437(17)	O(51A)-C(52A)	1.241(12)
Tb-N(4)	2.6550(18)	C(52A)-C(53A)	1.463(12)
O(1)-C(7)	1.267(3)	C(52A)-C(54A)	1.545(15)
O(2)-C(7)	1.234(3)	O(51B)-C(52B)	1.199(8)
O(3)-C(6)	1.259(3)	C(52B)-C(54B)	1.445(19)
O(4)-C(6)	1.241(3)	C(52B)-C(53B)	1.625(14)
O(5)-C(17)	1.272(2)		· · · ·
O(6)-C(17)	1.250(2)	O(7)-Tb-O(5)	144.47(6)
O(7)-C(19)	1.276(2)	O(7)-Tb-O(1)	86.35(5)
O(8)-C(19)	1.245(2)	O(5)-Tb-O(1)	79.79(5)
N(1)-C(5)	1.332(3)	O(7)-Tb-O(3)	79.49(5)
N(1)-C(1)	1.332(3)	O(5)-Tb-O(3)	84.35(5)
N(2)-C(8)	1.475(3)	O(1)-Tb-O(3)	129.31(6)
N(2)-C(16)	1.475(3)	O(7)-Tb- $N(1)$	72.84(5)
N(2)-C(15)	1.491(3)	O(5)-Tb- $N(1)$	71.66(5)
N(3)-C(10)	1.466(3)	O(1)-Tb-N(1)	64.54(5)
N(3)-C(9)	1.489(3)	O(3)-Tb-N(1)	64.78(6)
N(4)-C(18)	1.483(3)	O(7)-Tb-N(5)	74.00(5)
N(4)-C(12)	1.482(3)	O(5)-Tb-N(5)	132.49(5)
N(4)-C(11)	1.478(3)	O(1)-Tb-N(5)	76.65(6)
N(5)-C(13)	1.482(3)	O(3)-Tb-N(5)	141.46(5)
N(5)-C(14)	1.475(3)	N(1)-Tb-N(5)	129.68(6)
C(1)-C(2)	1.389(3)	O(7)-Tb-N(3)	131.59(5)
C(1)-C(6)	1.525(3)	O(5)-Tb-N(3)	73.61(6)
C(2)-C(3)	1.390(4)	O(1)-Tb-N(3)	140.27(5)
C(3)-C(4)	1.389(4)	O(3)-Tb-N(3)	77.08(6)
C(4)-C(5)	1.384(3)	N(1)-Tb-N(3)	129.99(6)
C(5)-C(7)	1.525(3)	N(5)-Tb-N(3)	100.32(6)
C(8)-C(9)	1.513(3)	O(7)-Tb-N(2)	139.96(5)
C(10)-C(11)	1.526(3)	O(5)-Tb-N(2)	66.38(5)
C(12)-C(13)	1.515(3)	O(1)-Tb- $N(2)$	74.10(5)
C(14)-C(15)	1.510(3)	O(3)-Tb-N(2)	139.53(5)
C(16)-C(17)	1.522(3)	N(1)-Tb-N(2)	124.89(5)
C(18)-C(19)	1.517(3)	N(5)-Tb-N(2)	67.71(5)
N(6)-C(20)	1.518(3)	N(3)-Tb-N(2)	68.45(6)
N(6)-C(28)	1.528(3)	O(7)-Tb-N(4)	66.30(5)
N(6)-C(32)	1.522(3)	O(5)-Tb-N(4)	138.69(5)
N(6)-C(24)	1.526(3)	O(1)-Tb-N(4)	140.29(5)
C(20)-C(21)	1.524(3)	O(3)-Tb-N(4)	75.30(6)
C(21)-C(22)	1.518(4)	N(1)-Tb-N(4)	126.78(5)
C(22)-C(23)	1.538(4)	N(5)-Tb-N(4)	68.67(6)
C(24)-C(25)	1.519(3)	N(3)-Tb-N(4)	67.04(5)
C(25)-C(26)	1.513(4)	N(2)-Tb-N(4)	108.32(6)

 Table 3. Bond lengths [Å] and angles [°] for MLC03 (CCDC 629534).

C(7)-O(1)-Tb	125.87(15)	N(4)-C(18)-
C(6)-O(3)-Tb	125.03(14)	O(8)-C(19)-
C(17)-O(5)-Tb	122.63(14)	O(8)-C(19)-
C(19)-O(7)-Tb	123.76(14)	O(7)-C(19)-
C(5)-N(1)-C(1)	120.4(2)	C(20)-N(6)-
C(5)-N(1)-Tb	119.92(14)	C(20)-N(6)-
C(1)-N(1)-Tb	119.72(15)	C(28)-N(6)-
C(8)-N(2)-C(16)	110.85(17)	C(20)-N(6)-
C(8)-N(2)-C(15)	110.12(18)	C(28)-N(6)
C(16)-N(2)-C(15	5) 110.26(17)	C(32)-N(6)-
C(8)-N(2)-Tb	110.80(13)	N(6)-C(20)
C(16)-N(2)-Tb	105.73(13)	C(20)-C(21
C(15)-N(2)-Tb	108.99(12)	C(23)-C(22
C(10)-N(3)-C(9)	112.04(18)	C(25)-C(24
C(10)-N(3)-Tb	116.74(13)	C(26)-C(25
C(9)-N(3)-Tb	112.29(13)	C(25)-C(26
C(18)-N(4)-C(12	2) 110.54(17)	N(6)-C(28)
C(18)-N(4)-C(11	110.08(17)	C(30)-C(29
C(12)-N(4)-C(11	110.32(19)	C(29)-C(30
C(18)-N(4)-Tb	105.86(13)	C(33)-C(32
C(12)-N(4)-Tb	110.24(12)	C(34)-C(33
C(11)-N(4)-Tb	109.71(12)	C(33)-C(34
C(13)-N(5)-C(14	111.97(18)	O(51A)-C(5
C(13)-N(5)-Tb	112.57(13)	O(51A)-C(5
C(14)-N(5)-Tb	115.99(13)	C(53A)-C(5
N(1)-C(1)-C(2)	121.7(2)	O(51B)-C(5
N(1)-C(1)-C(6)	114.3(2)	O(51B)-C(5
C(2)-C(1)-C(6)	124.0(2)	C(54B)-C(5
C(1)-C(2)-C(3)	118.2(2)	
C(2)-C(3)-C(4)	119.5(2)	
C(5)-C(4)-C(3)	118.5(2)	
N(1)-C(5)-C(4)	121.7(2)	
N(1)-C(5)-C(7)	114.3(2)	
C(4)-C(5)-C(7)	124.0(2)	
O(4)-C(6)-O(3)	127.0(2)	
O(4)-C(6)-C(1)	117.3(2)	
O(3)-C(6)-C(1)	115.66(19)	
O(2)-C(7)-O(1)	127.5(2)	
O(2)-C(7)-C(5)	117.8(2)	
O(1)-C(7)-C(5)	114.7(2)	
N(2)-C(8)-C(9)	113.07(19)	
N(3)-C(9)-C(8)	110.25(17)	
N(3)-C(10)-C(11	109.31(19)	
N(4)-C(11)-C(10)) 111.82(18)	
N(4)-C(12)-C(13	3) 113.11(19)	
N(5)-C(13)-C(12	2) 110.81(17)	
N(5)-C(14)-C(15	5) 109.68(18)	
N(2)-C(15)-C(14	112.02(18)	
N(2)-C(16)-C(17	114.21(17)	
O(6)-C(17)-O(5)	124.0(2)	
O(6)-C(17)-C(16	5) 118.02(18)	
O(5)-C(17)-C(16	5) 117.91(18)	

N(4)-C(18)-C(19)	113.87(17)
O(8)-C(19)-O(7)	123.9(2)
O(8)-C(19)-C(18)	118.11(19)
O(7)-C(19)-C(18)	117.97(18)
C(20)-N(6)-C(28)	107.20(16)
C(20)-N(6)-C(32)	111.30(18)
C(28)-N(6)-C(32)	110.36(17)
C(20)-N(6)-C(24)	110.72(17)
C(28)-N(6)-C(24)	110.53(18)
C(32)-N(6)-C(24)	106.77(16)
N(6)-C(20)-C(21)	115.28(18)
C(20)-C(21)-C(22)	110.1(2)
C(23)-C(22)-C(21)	110.8(2)
C(25)-C(24)-N(6)	115.25(18)
C(26)-C(25)-C(24)	110.4(2)
C(25)-C(26)-C(27)	112.2(2)
N(6)-C(28)-C(29)	115.84(18)
C(30)-C(29)-C(28)	110.94(19)
C(29)-C(30)-C(31)	113.0(2)
C(33)-C(32)-N(6)	115.22(18)
C(34)-C(33)-C(32)	111.0(2)
C(33)-C(34)-C(35)	115.1(3)
O(51A)-C(52A)-C(53A)	124.1(10)
O(51A)-C(52A)-C(54A)	123.9(11)
C(53A)-C(52A)-C(54A)	106.9(8)
O(51B)-C(52B)-C(54B)	124.3(12)
O(51B)-C(52B)-C(53B)	134.0(8)
C(54B)-C(52B)-C(53B)	97.3(10)

	U^{11}	U ²²	U ³³	U ²³	U ¹³	U ¹²
Tb	118(1)	186(1)	123(1)	15(1)	-14(1)	-8(1)
O(1)	184(8)	233(9)	143(7)	17(6)	1(6)	7(7)
O(2)	338(10)	303(10)	234(9)	121(7)	73(7)	31(8)
O(3)	182(8)	248(9)	127(7)	6(6)	-12(6)	-19(6)
O(4)	580(13)	351(11)	155(8)	-71(8)	75(8)	-83(9)
O(5)	157(7)	258(9)	123(7)	-2(6)	-28(5)	12(6)
O(6)	174(8)	216(8)	168(7)	18(6)	-30(6)	-12(6)
O(7)	142(7)	244(8)	152(7)	29(6)	-22(5)	-2(6)
O(8)	246(9)	292(9)	166(7)	-15(7)	-65(6)	4(7)
N(1)	112(8)	239(9)	143(8)	14(6)	-35(7)	4(7)
N(2)	162(9)	207(10)	150(8)	0(7)	-30(7)	10(7)
N(3)	137(9)	215(10)	179(9)	2(8)	9(7)	-12(7)
N(4)	148(9)	247(10)	150(8)	37(7)	-10(7)	-20(7)
N(5)	141(9)	213(10)	170(9)	22(8)	6(7)	-13(7)
C(1)	136(10)	270(12)	171(10)	-17(9)	-36(8)	-6(9)
C(2)	243(12)	300(14)	303(13)	-69(11)	25(10)	2(10)
C(3)	416(17)	250(15)	478(17)	-55(13)	105(13)	-9(12)
C(4)	309(14)	267(14)	414(16)	83(12)	92(12)	10(11)
C(5)	151(10)	241(12)	216(11)	49(9)	-11(8)	12(9)
C(6)	152(10)	308(13)	155(10)	-2(10)	-30(8)	-32(9)
C(7)	113(10)	306(13)	201(11)	59(10)	-9(8)	32(9)
C(8)	181(11)	245(12)	216(11)	-46(9)	-26(8)	-44(9)
C(9)	167(11)	252(12)	226(11)	-6(10)	-36(9)	-66(9)
C(10)	201(11)	251(13)	259(12)	46(10)	-18(9)	-65(9)
C(11)	202(11)	276(13)	224(11)	72(10)	-2(9)	-38(9)
C(12)	220(12)	231(12)	256(12)	70(10)	-33(9)	32(9)
C(13)	160(11)	256(12)	226(11)	10(10)	-25(9)	27(9)
C(14)	160(11)	245(12)	254(12)	-14(10)	-6(9)	42(9)
C(15)	185(11)	235(12)	193(10)	-54(9)	-11(8)	11(9)
C(16)	182(10)	278(12)	133(9)	-11(8)	-38(7)	34(9)
C(17)	120(9)	208(11)	153(9)	13(9)	-13(7)	-45(8)
C(18)	204(11)	303(13)	146(10)	48(9)	-29(8)	-12(9)
C(19)	142(9)	238(12)	164(8)	-3(9)	-1(6)	54(9)
N(6)	151(9)	263(10)	176(9)	86(8)	15(7)	23(7)
C(20)	154(11)	300(13)	256(12)	139(10)	31(8)	18(9)
C(21)	173(12)	375(16)	332(13)	199(12)	14(9)	8(11)
C(22)	179(13)	740(20)	720(20)	480(19)	2(13)	-43(14)
C(23)	218(15)	720(20)	780(30)	370(20)	17(15)	-79(15)
C(24)	182(11)	271(12)	193(10)	86(9)	15(8)	44(9)
C(25)	316(14)	352(16)	221(12)	65(11)	2(10)	79(12)
C(26)	306(13)	332(15)	279(12)	26(11)	-14(9)	50(11)
C(27)	392(16)	448(17)	327(14)	-37(13)	0(11)	76(13)
C(28)	178(11)	324(14)	203(11)	101(10)	-22(8)	37(9)
C(29)	185(11)	420(15)	196(11)	95(10)	-20(8)	-9(10)
C(30)	261(13)	329(14)	255(12)	56(10)	-65(10)	-30(10)
C(31)	257(14)	410(17)	454(17)	71(13)	-97(12)	-50(12)
-()				(10)	··(1=)	20(12)

Table 4. Anisotropic displacement parameters (Ųx 10⁴) for MLC03 (CCDC629534). The anisotropic displacement factor exponent takes the form: $-2\pi^2$ [$h^2a^{*2}U^{11} + ... + 2 h k a^* b^* U^{12}$]

C(32)	183(11)	257(12)	197(10)	66(9)	6(8)	-12(9)
C(33)	340(14)	316(14)	303(13)	73(11)	26(11)	57(11)
C(34)	448(17)	310(16)	353(15)	-16(12)	75(12)	-32(13)
C(35)	660(20)	440(20)	630(20)	-129(18)	116(19)	70(18)
O(11)	356(9)	269(9)	183(7)	10(7)	-68(6)	64(8)
O(12)	394(11)	454(12)	199(8)	34(8)	-58(7)	154(9)
O(51A)	280(30)	400(30)	1260(100)	-200(40)	160(40)	-40(20)
C(52A)	350(40)	770(60)	800(60)	-360(50)	70(40)	60(40)
C(53A)	480(40)	610(50)	640(50)	-180(40)	20(40)	90(40)
C(54A)	510(70)	1300(130)	960(100)	200(90)	90(60)	60(80)
O(50A)	620(30)	720(40)	520(30)	140(30)	-120(20)	40(30)
O(51B)	1160(50)	330(30)	740(40)	70(20)	380(30)	-30(30)
C(52B)	800(60)	230(30)	550(40)	40(30)	210(40)	-90(30)
C(53B)	380(50)	750(70)	900(70)	180(60)	-60(40)	-20(40)
C(54B)	990(140)	2900(200)	550(60)	-610(100)	-160(70)	390(130)
O(50B)	1110(50)	1170(60)	580(40)	-170(40)	230(30)	-350(40)

148.5
142.2
150.4
139.4
172.1
159.2
170.6
159.2
102.2
101.3

Table 5. Hydrogen bonds for MLC03 (CCDC 629534) [Å and $^\circ$].

Symmetry transformations used to generate equivalent atoms:

#1 -x+1,-y,-z+1 #2 -x,-y,-z+1 #3 -x+1,y+1/2,-z+1/2 #4 x,-y+1/2,z-1/2 #5 x+1,y,z

CALIFORNIA INSTITUTE OF TECHNOLOGY BECKMAN INSTITUTE X-RAY CRYSTALLOGRAPHY LABORATORY

Date 11 April 2007

Crystal Structure Analysis of:

MLC06

(shown below)

For	Investigator: Morgan Cable		ext. (818) 354-4345
	Advisor: A. Ponce/H. B. Gray	у	ext. 6500
	Account Number:	API.HSARPA-1-D	OI.000002
By	Michael W. Day	116 Beckman	ext. 2734
		e-mail: mikeday@@	caltech.edu

Contents

Table 1. Crystal data

Figures Minimum overlap, N-H-O interactions

Table 2. Atomic Coordinates

Table 3. Selected bond distances and angles

Table 4. Full bond distances and angles

Table 5. Anisotropic displacement parameters

Table 6. Hydrogen bond distances and angles

Table 7. Observed and calculated structure factors (available upon request)

MLC06

Note: The crystallographic data have been deposited in the Cambridge Database (CCDC) and has been placed on hold pending further instructions from me. The deposition number is 643596. Ideally the CCDC would like the publication to contain a footnote of the type: "Crystallographic data have been deposited at the CCDC, 12 Union Road, Cambridge CB2 1EZ, UK and copies can be obtained on request, free of charge, by quoting the publication citation and the deposition number 643596."

Empirical formula	$[C_{19}H_{25}N_5O_8Dy]^- [C_{16}H_{36}N]^+ 2$	(C ₃ H ₈ O) 3(H ₂ O)
Formula weight	966.51	
Crystallization Solvent	Acetone/isopropanol/water	
Crystal Habit	Prism	
Crystal size	0.39 x 0.14 x 0.11 mm ³	
Crystal color	Colorless	
Data Coll	ection	
Type of diffractometer	Bruker SMART 1000	
Wavelength	0.71073 Å MoKα	
Data Collection Temperature	100(2) K	
θ range for 28613 reflections used in lattice determination	2.19 to 40.17°	
Unit cell dimensions	a = 13.1742(4) Å b = 13.1860(4) Å c = 26.1130(8) Å	β= 90.3720(10)°
Volume	4536.1(2) Å ³	
Z	4	
Crystal system	Monoclinic	
Space group	P21/c	
Density (calculated)	1.415 Mg/m ³	
F(000)	2012	
θ range for data collection	1.55 to 40.83°	
Completeness to $\theta = 40.83^{\circ}$	93.8 %	
Index ranges	$-23 \le h \le 23, -23 \le k \le 23, -46 \le$	$\leq 1 \leq 48$
Data collection scan type	ω scans at 7 ϕ settings	
Reflections collected	139731	
Independent reflections	27766 [$R_{int} = 0.1106$]	
Absorption coefficient	1.710 mm ⁻¹	
Absorption correction	None	
Max. and min. transmission	0.8342 and 0.5553	

Table 1. Crystal data and structure refinement for MLC06 (CCDC 643596).

Table 1 (cont.)

	Su ucture solution and Kennenien		
Structure solution program	SHELXS-97 (Sheldrick, 1990)		
Primary solution method	Isomorphous method		
0 1 1 2 1 1			

Structure solution and Refinement

Primary solution method	Isomorphous method
Secondary solution method	Difference Fourier map
Hydrogen placement	Geometric positions
Structure refinement program	SHELXL-97 (Sheldrick, 1997)
Refinement method	Full matrix least-squares on F ²
Data / restraints / parameters	27766 / 10 / 548
Treatment of hydrogen atoms	Riding
Goodness-of-fit on F ²	1.029
Final R indices [I> 2σ (I), 14774 reflections]	R1 = 0.0408, wR2 = 0.0721
R indices (all data)	R1 = 0.0995, wR2 = 0.0806
Type of weighting scheme used	Sigma
Weighting scheme used	$w=1/\sigma^2(\text{Fo}^2)$
Max shift/error	0.009
Average shift/error	0.000
Largest diff. peak and hole	3.252 and -2.305 e.Å ⁻³

Special Refinement Details

The disordered solvent region was modeled as two acetone and one water.

Refinement of F^2 against ALL reflections. The weighted R-factor (*w*R) and goodness of fit (S) are based on F^2 , conventional R-factors (R) are based on F, with F set to zero for negative F^2 . The threshold expression of $F^2 > 2\sigma(F^2)$ is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

	Х	У	Z	U _{eq}	Occ
Dy	2482(1)	52(1)	4985(1)	13(1)	1
O(1)	1700(1)	-860(1)	5658(1)	18(1)	1
O(2)	1398(1)	-2314(1)	6082(1)	28(1)	1
O(3)	3299(1)	-554(1)	4233(1)	18(1)	1
O(4)	3669(2)	-1796(1)	3679(1)	32(1)	1
O(5)	3923(1)	-581(1)	5402(1)	17(1)	1
O(6)	4664(1)	-1044(1)	6137(1)	18(1)	1
O(7)	1061(1)	-396(1)	4497(1)	17(1)	1
O(8)	278(1)	-479(1)	3738(1)	24(1)	1
N(1)	2499(1)	-1818(1)	4889(1)	15(1)	1
N(2)	2945(1)	1039(1)	5836(1)	18(1)	1
N(3)	3905(1)	1341(1)	4839(1)	18(1)	1
N(4)	2017(1)	1390(1)	4267(1)	19(1)	1
N(5)	1062(1)	1229(1)	5270(1)	19(1) 18(1)	1
$\mathbf{C}(1)$	2900(2)	-2236(2)	4468(1)	18(1)	1
C(2)	2933(2)	-3279(2)	4400(1)	28(1)	1
C(3)	2555(2)	-3901(2)	4787(1)	33(1)	1
C(3)	2351(2) 2156(2)	-3459(2)	5224(1)	28(1)	1
C(4)	2130(2) 2131(2)	-2403(1)	5224(1) 5261(1)	18(1)	1
C(5)	2131(2) 3319(2)	-1469(2)	$\frac{3201(1)}{4089(1)}$	19(1)	1
C(0)	1708(2)	-1407(2) -1822(2)	5709(1)	19(1)	1
C(8)	3637(2)	-1022(2) 1800(2)	5700(1) 5730(1)	21(1)	1
C(0)	$\frac{3037(2)}{4421(2)}$	1650(2)	5730(1) 5320(1)	21(1) 20(1)	1
C(10)	3647(2)	2216(2)	4511(1)	20(1) 22(1)	1
C(10)	2958(2)	1879(2)	4072(1)	22(1) 23(1)	1
C(11) C(12)	1324(2)	2174(2)	4072(1)	23(1) 24(1)	1
C(12) C(13)	5/18(2)	1740(2)	4835(1)	24(1) 21(1)	1
C(13)	1310(2)	1740(2) 1030(2)	5601(1)	21(1) 21(1)	1
C(14) C(15)	100(2)	1939(2) 1417(2)	5091(1) 6078(1)	21(1) 20(1)	1
C(15)	3/1/2	$\frac{1417(2)}{282(2)}$	6174(1)	20(1) 10(1)	1
C(10) C(17)	4067(2)	506(1)	5881(1)	15(1)	1
C(17)	4007(2) 1525(2)	-500(1)	3840(1)	$\frac{13(1)}{22(1)}$	1
C(10)	1323(2) 802(2)	86(2)	4041(1)	$\frac{22(1)}{18(1)}$	1
$\mathbf{N}(6)$	632(2)	-30(2)	4041(1) 2784(1)	18(1)	1
$\Gamma(0)$	7100(2)	2787(1) 3421(2)	2764(1) 2523(1)	10(1) 22(1)	1
C(20)	7199(2) 8262(2)	3421(2) 3278(2)	2525(1) 2740(1)	22(1) 26(1)	1
C(21)	8202(2)	3278(2)	2/40(1) 2/80(1)	20(1)	1
C(22)	0990(2) 10005(2)	4000(2)	2460(1) 2645(1)	43(1)	1
C(23)	10093(2)	3773(3)	2043(1) 2784(1)	$\frac{30(1)}{10(1)}$	1
C(24)	6819(2)	100/(1) 1205(2)	2/04(1) 2259(1)	17(1) 28(1)	1
C(25)	0010(2)	1205(2)	2238(1) 2204(1)	20(1)	1
C(20)	7082(2) 7260(2)	90(2) 402(2)	2304(1) 1785(1)	20(1)	1
C(27)	7209(2)	-403(2)	1/83(1)	50(1)	1
C(28)	5401(2)	2948(2) 2200(2)	2482(1)	21(1)	1
C(29)	44/8(2)	2390(2)	2084(1)	24(1)	1
C(30)	3646(2)	2545(2)	22/3(1)	20(1)	1
C(31)	2688(2)	1817(2)	2460(1)	36(1)	1

Table 2. Atomic coordinates (x 10⁴) and equivalent isotropic displacement parameters ($Å^2x$ 10³) for MLC06 (CCDC 643596). U(eq) is defined as the trace of the orthogonalized U^{ij} tensor.

C(32)	6254(2)	3092(1)	3339(1)	19(1)	1
C(33)	6040(2)	4211(2)	3433(1)	26(1)	1
C(34)	5666(2)	4370(2)	3973(1)	30(1)	1
C(35)	5617(3)	5479(2)	4128(1)	50(1)	1
O(11)	5754(1)	4997(1)	1877(1)	26(1)	1
O(12)	9152(2)	909(1)	3124(1)	34(1)	1
O(51A)	1469(2)	4414(3)	6177(2)	66(2)	0.747(4)
C(52A)	552(2)	4385(2)	6237(1)	54(1)	0.747(4)
C(53A)	-5(3)	3688(3)	6616(2)	58(1)	0.747(4)
C(54A)	-53(3)	5123(5)	5895(2)	109(4)	0.747(4)
O(50A)	-1170(50)	2500(50)	6430(30)	1940(70)	0.747(4)
O(51B)	1223(8)	4340(6)	5350(3)	61(3)	0.253(4)
C(52B)	765(6)	4521(6)	5744(3)	42(3)	0.253(4)
C(53B)	-371(7)	4792(16)	5766(5)	102(10)	0.253(4)
C(54B)	1399(9)	4464(15)	6241(3)	75(10)	0.253(4)
O(50B)	-58(8)	3751(8)	7120(4)	61(3)	0.253(4)

Dy-O(7)	2.3333(14)	O(7)-Dy-O(5)	144.16(5)
Dy-O(5)	2.3370(14)	O(7)-Dy-O(1)	85.70(5)
Dy-O(1)	2.3708(15)	O(5)-Dy-O(1)	80.10(5)
Dy-O(3)	2.3817(15)	O(7)-Dy-O(3)	80.27(5)
Dy-N(1)	2.4786(15)	O(5)-Dy-O(3)	83.97(5)
Dy-N(5)	2.5458(18)	O(1)-Dy-O(3)	129.90(6)
Dy-N(3)	2.5602(18)	O(7)-Dy-N(1)	72.59(5)
Dy-N(4)	2.6436(17)	O(5)-Dy-N(1)	71.58(5)
Dy-N(2)	2.6452(17)	O(1)-Dy-N(1)	64.81(5)
•		O(3)-Dy-N(1)	65.09(5)
		O(7)-Dy-N(5)	74.04(5)
		O(5)-Dy-N(5)	132.63(5)
		O(1)-Dy-N(5)	76.62(6)
		O(3)-Dy-N(5)	141.46(5)
		N(1)-Dy-N(5)	130.01(6)
		O(7)-Dy-N(3)	132.31(5)
		O(5)-Dy-N(3)	73.32(5)
		O(1)-Dy-N(3)	140.22(5)
		O(3)-Dy-N(3)	76.45(6)
		N(1)-Dy-N(3)	129.67(6)
		N(5)-Dy-N(3)	100.30(6)
		O(7)-Dy-N(4)	66.48(5)
		O(5)-Dy-N(4)	138.86(6)
		O(1)-Dy-N(4)	139.87(5)
		O(3)-Dy-N(4)	75.15(5)
		N(1)-Dy-N(4)	126.51(5)
		N(5)-Dy-N(4)	68.47(6)
		N(3)-Dy-N(4)	67.56(5)
		O(7)-Dy-N(2)	139.74(6)
		O(5)-Dy-N(2)	66.48(5)
		O(1)-Dy-N(2)	74.03(5)
		O(3)-Dy-N(2)	139.02(5)
		N(1)-Dy-N(2)	124.89(5)
		N(5)-Dy-N(2)	67.67(5)
		N(3)-Dy-N(2)	68.46(6)
		N(4)-Dv- $N(2)$	108.60(6)

Table 3. Selected bond lengths [Å] and angles [°] for MLC06 (CCDC 643596).
Dy-O(7)	2.3333(14)	C(26)-C(27)	1.525(3)
Dy-O(5) 2.3370(14)		C(28)-C(29)	1.519(3)
Dy-O(1)	y-O(1) 2.3708(15)		1.531(3)
Dy-O(3)	y-O(3) 2.3817(15) C		1.526(4)
Dy-N(1)	-N(1) 2.4786(15) C(2)		1.523(3)
Dy-N(5)	-N(5) 2.5458(18)		1.510(4)
Dy-N(3)	2.5602(18)	C(34)-C(35)	1.519(4)
Dy-N(4)	2.6436(17)	O(51A)-C(52A)	1.2200
Dy-N(2)	2.6452(17)	C(52A)-C(53A)	1.5400
O(1)-C(7)	1.275(2)	C(52A)-C(54A)	1.5400
O(2)-C(7)	1.243(3)	O(51B)-C(52B)	1.2200
O(3)-C(6)	1.264(2)	C(52B)-C(53B)	1.5400
O(4)-C(6)	1.244(3)	C(52B)-C(54B)	1.5400
O(5)-C(17)	1.267(2)		
O(6)-C(17)	1.249(2)	O(7)-Dy-O(5)	144.16(5)
O(7)-C(19)	1.277(2)	O(7)-Dy- $O(1)$	85.70(5)
O(8)-C(19)	1.242(2)	O(5)-Dy-O(1)	80.10(5)
N(1)-C(5)	1.333(3)	O(7)-Dy-O(3)	80.27(5)
N(1)-C(1)	1.341(3)	O(5)-Dy-O(3)	83.97(5)
N(2)-C(16)	1.481(3)	O(1)-Dy-O(3)	129.90(6)
N(2)-C(8)	1.483(3)	O(7)-Dy-N(1)	72.59(5)
N(2)-C(15)	1.487(3)	O(5)-Dy-N(1)	71.58(5)
N(3)-C(10)	1.476(3)	O(1)-Dy-N(1)	64.81(5)
N(3)-C(9)	1.480(3)	O(3)-Dy-N(1)	65.09(5)
N(4)-C(12)	1.478(3)	O(7)-Dy-N(5)	74.04(5)
N(4)-C(18)	1.481(3)	O(5)-Dy-N(5)	132.63(5)
N(4)-C(11)	1.489(3)	O(1)-Dy-N(5)	76.62(6)
N(5)-C(14)	1.479(3)	O(3)-Dy-N(5)	141.46(5)
N(5)-C(13)	1.481(3)	N(1)-Dy-N(5)	130.01(6)
C(1)-C(2)	1.388(3)	O(7)-Dy-N(3)	132.31(5)
C(1)-C(6)	1.522(3)	O(5)-Dy-N(3)	73.32(5)
C(2)-C(3)	1.397(4)	O(1)-Dy-N(3)	140.22(5)
C(3)-C(4)	1.388(4)	O(3)-Dy-N(3)	76.45(6)
C(4)-C(5)	1.396(3)	N(1)-Dy-N(3)	129.67(6)
C(5)-C(7)	1.509(3)	N(5)-Dy-N(3)	100.30(6)
C(8)-C(9)	1.528(3)	O(7)-Dy-N(4)	66.48(5)
C(10)-C(11)	1.524(3)	O(5)-Dy-N(4)	138.86(6)
C(12)-C(13)	1.516(3)	O(1)-Dy-N(4)	139.87(5)
C(14)-C(15)	1.519(3)	O(3)-Dy-N(4)	75.15(5)
C(16)-C(17)	1.533(3)	N(1)-Dy-N(4)	126.51(5)
C(18)-C(19)	1.530(3)	N(5)-Dy-N(4)	68.47(6)
N(6)-C(32)	1.514(3)	N(3)-Dy-N(4)	67.56(5)
N(6)-C(24)	1.526(2)	O(7)-Dy-N(2)	139.74(6)
N(6)-C(28)	1.522(3)	O(5)-Dy-N(2)	66.48(5)
N(6)-C(20)	1.528(3)	O(1)-Dy-N(2)	74.03(5)
C(20)-C(21)	1.519(3)	O(3)-Dy-N(2)	139.02(5)
C(21)-C(22)	1.522(3)	N(1)-Dy-N(2)	124.89(5)
C(22)-C(23)	1.534(4)	N(5)-Dy-N(2)	67.67(5)
C(24)-C(25)	1.515(3)	N(3)-Dy-N(2)	68.46(6)
C(25)-C(26)	1.516(3)	N(4)-Dy-N(2)	108.60(6)

 Table 4. Bond lengths [Å] and angles [°] for MLC06 (CCDC 643596).

D	74
---	----

C(7)-O(1)-Dy	125.37(14)	N(4)-C(18)-C(19)	113.25(17)
C(6)-O(3)-Dy	125.23(14)	O(8)-C(19)-O(7)	124.7(2)
C(17)-O(5)-Dy	123.25(13)	O(8)-C(19)-C(18)	117.81(18)
C(19)-O(7)-Dy	124.15(13)	O(7)-C(19)-C(18)	117.47(17)
C(5)-N(1)-C(1)	120.45(18)	C(32)-N(6)-C(24)	106.59(15)
C(5)-N(1)-Dy	119.89(13)	C(32)-N(6)-C(28)	111.09(17)
C(1)-N(1)-Dy	119.65(13)	C(24)-N(6)-C(28)	110.34(16)
C(16)-N(2)-C(8)	110.95(16)	C(32)-N(6)-C(20)	111.30(16)
C(16)-N(2)-C(15)	110.00(17)	C(24)-N(6)-C(20)	110.60(17)
C(8)-N(2)-C(15)	109.94(16)	C(28)-N(6)-C(20)	106.96(15)
C(16)-N(2)-Dy	105.52(11)	C(21)-C(20)-N(6)	114.65(16)
C(8)-N(2)-Dy	110.95(13)	C(20)-C(21)-C(22)	110.15(18)
C(15)-N(2)-Dy	109.39(12)	C(21)-C(22)-C(23)	110.9(2)
C(10)-N(3)-C(9)	112.28(16)	C(25)-C(24)-N(6)	115.00(17)
C(10)-N(3)-Dy	116.04(13)	C(26)-C(25)-C(24)	110.45(18)
C(9)-N(3)-Dy	112.98(13)	C(25)-C(26)-C(27)	112.5(2)
C(12)-N(4)-C(18)	110.86(17)	C(29)-C(28)-N(6)	115.51(16)
C(12)-N(4)-C(11)	109.69(17)	C(28)-C(29)-C(30)	110.20(19)
C(18)-N(4)-C(11)	109.57(18)	C(31)-C(30)-C(29)	112.4(2)
C(12)-N(4)-Dy	110.79(13)	N(6)-C(32)-C(33)	115.72(17)
C(18)-N(4)-Dy	105.93(12)	C(34)-C(33)-C(32)	110.34(18)
C(11)-N(4)-Dy	109.94(12)	C(33)-C(34)-C(35)	113.4(2)
C(14)-N(5)-C(13)	112.28(16)	O(51A)-C(52A)-C(53A)	125.2
C(14)-N(5)-Dy	116.38(13)	O(51A)-C(52A)-C(54A)	114.6
C(13)-N(5)-Dy	112.75(14)	C(53A)-C(52A)-C(54A)	120.2
N(1)-C(1)-C(2)	121.6(2)	O(51B)-C(52B)-C(53B)	124.2
N(1)-C(1)-C(6)	114.04(17)	O(51B)-C(52B)-C(54B)	115.6
C(2)-C(1)-C(6)	124.3(2)	C(53B)-C(52B)-C(54B)	120.2
C(1)-C(2)-C(3)	118.5(2)		
C(4)-C(3)-C(2)	119.2(2)		
C(3)-C(4)-C(5)	118.9(2)		
N(1)-C(5)-C(4)	121.2(2)		
N(1)-C(5)-C(7)	114.14(17)		
C(4)-C(5)-C(7)	124.6(2)		
O(4)-C(6)-O(3)	126.6(2)		
O(4)-C(6)-C(1)	117.84(19)		
O(3)-C(6)-C(1)	115.54(19)		
O(2)-C(7)-O(1)	126.8(2)		
O(2)-C(7)-C(5)	117.94(19)		
O(1)-C(7)-C(5)	115.25(18)		
N(2)-C(8)-C(9)	112.71(17)		
N(3)-C(9)-C(8)	110.15(18)		
N(3)-C(10)-C(11)	110.04(17)		
N(4)-C(11)-C(10)	111.27(19)		
N(4)-C(12)-C(13)	112.47(17)		
N(5)-C(13)-C(12)	110.43(18)		
N(5)-C(14)-C(15)	109.63(16)		
N(2)-C(15)-C(14)	111.69(18)		
N(2)-C(16)-C(17)	113.33(17)		
O(6)-C(17)-O(5)	124.8(2)		
O(6)-C(17)-C(16)	117.21(17)		
O(5)-C(17)-C(16)	117.91(16)		

	U ¹¹	U ²²	U ³³	U ²³	U ¹³	U ¹²
Dy	111(1)	169(1)	114(1)	13(1)	-13(1)	3(1)
O(1)	184(8)	225(7)	123(7)	34(5)	14(5)	0(5)
O(2)	363(10)	283(8)	201(8)	113(6)	67(7)	41(7)
O(3)	186(8)	236(7)	111(7)	1(5)	-7(5)	-9(5)
O(4)	477(12)	321(8)	154(8)	-80(6)	74(8)	-57(8)
O(5)	142(7)	241(7)	129(7)	-3(5)	-47(5)	26(5)
O(6)	180(7)	191(6)	160(7)	33(5)	-43(6)	-9(5)
O(7)	132(7)	250(7)	137(7)	26(5)	-27(5)	3(5)
O(8)	250(9)	304(8)	162(7)	-16(6)	-68(6)	26(6)
N(1)	122(7)	187(6)	128(8)	6(5)	-32(7)	14(5)
N(2)	154(9)	215(8)	172(8)	-7(6)	-15(7)	6(6)
N(3)	154(9)	193(7)	177(9)	26(6)	-2(7)	-4(6)
N(4)	152(9)	238(8)	175(9)	49(6)	-11(7)	5(6)
N(5)	178(9)	176(7)	195(9)	5(6)	-22(7)	12(6)
C(1)	146(10)	234(9)	163(10)	-23(7)	-34(7)	-6(7)
C(2)	271(13)	243(10)	310(13)	-82(8)	-1(10)	-5(8)
C(3)	363(15)	211(10)	419(15)	-8(9)	78(12)	-17(9)
C(4)	268(13)	222(10)	349(14)	50(9)	48(10)	9(8)
C(5)	151(10)	190(8)	195(10)	48(7)	-27(7)	17(6)
C(6)	164(10)	277(9)	131(9)	-26(7)	-41(8)	-9(7)
C(7)	144(10)	247(9)	166(10)	58(7)	-11(8)	15(7)
C(8)	211(11)	203(8)	216(11)	-44(7)	-14(8)	-16(7)
C(9)	159(10)	229(9)	219(11)	-14(7)	-26(8)	-38(7)
C(10)	199(11)	225(9)	248(11)	61(8)	3(9)	-35(7)
C(11)	216(11)	245(9)	229(11)	91(8)	6(9)	-20(8)
C(12)	220(11)	245(9)	247(12)	78(8)	-20(9)	52(8)
C(13)	165(10)	223(9)	230(11)	32(7)	-21(8)	39(7)
C(14)	170(11)	231(9)	228(11)	-35(8)	-10(8)	38(7)
C(15)	192(11)	245(9)	169(10)	-50(7)	-7(8)	20(7)
C(16)	199(10)	238(8)	134(9)	-20(6)	-45(7)	21(7)
C(17)	137(9)	185(8)	137(9)	17(6)	-21(7)	-32(6)
C(18)	203(11)	305(10)	164(10)	65(8)	-31(8)	-15(8)
C(19)	139(8)	254(9)	131(8)	-2(7)	-20(6)	68(7)
N(6)	160(9)	214(7)	167(9)	68(6)	-17(7)	5(6)
C(20)	187(11)	266(9)	197(11)	125(8)	21(8)	0(7)
C(21)	192(11)	340(11)	262(12)	139(9)	0(9)	-7(8)
C(22)	199(13)	557(17)	525(19)	336(14)	4(12)	-26(11)
C(23)	214(14)	608(19)	680(20)	299(17)	-30(14)	-84(12)
C(24)	199(10)	195(8)	179(10)	65(7)	0(8)	21(7)
C(25)	352(14)	275(10)	203(11)	32(8)	30(10)	54(9)
C(26)	322(12)	250(10)	272(11)	-7(9)	-32(9)	48(9)
C(27)	354(15)	385(13)	334(15)	-79(11)	-3(12)	77(11)
C(28)	180(10)	247(9)	189(10)	86(7)	-26(8)	29(7)
C(29)	178(11)	343(11)	196(11)	74(8)	-23(8)	-7(8)
C(30)	265(13)	288(10)	229(12)	34(8)	-64(10)	-20(8)
C(31)	245(14)	404(13)	431(17)	68(11)	-108(12)	-82(10)

Table 5. Anisotropic displacement parameters (Å²x 10⁴) for MLC06 (CCDC 643596). The anisotropic displacement factor exponent takes the form: $-2\pi^2$ [$h^2a^{*2}U^{11} + ... + 2h k a^* b^* U^{12}$]

D76

C(32)	196(10)	200(8)	168(9)	57(7)	-7(8)	-4(7)
C(33)	290(13)	222(9)	259(12)	42(8)	34(9)	13(8)
C(34)	368(15)	241(10)	299(14)	-42(9)	22(11)	3(9)
C(35)	590(20)	342(15)	570(20)	-136(14)	145(17)	12(13)
O(11)	358(9)	240(7)	178(7)	14(6)	-72(6)	62(7)
O(12)	392(11)	400(10)	227(9)	9(7)	-97(8)	141(8)
O(51A)	380(30)	520(20)	1090(40)	-80(20)	10(30)	7(19)
C(52A)	360(30)	660(30)	600(30)	-230(20)	20(20)	90(20)
C(53A)	420(30)	610(30)	700(40)	-170(20)	-10(20)	50(20)
C(54A)	310(40)	2180(110)	800(50)	580(60)	40(30)	260(50)
O(51B)	1020(90)	270(40)	540(60)	80(40)	250(60)	-40(40)
C(52B)	730(90)	180(40)	360(60)	90(40)	80(60)	-90(40)
C(53B)	180(90)	1900(300)	1000(180)	360(170)	-120(90)	-10(120)
C(54B)	280(100)	1800(300)	130(60)	-250(90)	30(60)	-190(110)

D-HA	d(D-H)	d(HA)	d(DA)	<(DHA)
N(3)-H(3)O(5)#1	0.93	2.29	3.101(2)	146.1
N(3)-H(3)O(6)#1	0.93	2.42	3.204(3)	141.4
N(5)-H(5)O(7)#2	0.93	2.23	3.069(2)	149.4
N(5)-H(5)O(8)#2	0.93	2.54	3.297(3)	138.2
O(11)-H(11A)O(4)#3	0.99	1.89	2.879(2)	175.2
O(11)-H(11A)O(3)#3	0.99	2.55	3.246(2)	126.5
O(11)-H(11B)O(6)#4	0.99	1.83	2.7691(19)	155.9
O(12)-H(12A)O(2)#1	1.00	1.89	2.875(3)	170.7
O(12)-H(12B)O(8)#5	1.00	1.88	2.844(2)	160.8

Table 6. Hydrogen bonds for MLC06 (CCDC 643596) [Å and $^\circ$].

Symmetry transformations used to generate equivalent atoms:

#1 -x+1,-y,-z+1 #2 -x,-y,-z+1 #3 -x+1,y+1/2,-z+1/2 #4 x,-y+1/2,z-1/2 #5 x+1,y,z