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ABSTRACT

Both first-order and variational valence bond calculations were
made to estimate the ESR hyperfine splittings of the )p—protons of
cyclobutenyl. The ESR spectrum of the radical has not been obtained;
but on the basis of these calculations, it is anticipated that the
F -proton splittings will be large and in the range 42g to 10lg.

The first-order results indicate considerably larger splittings than the
variational calculation; this situation was shown to be in marked
contrast with another valence bond calculation on a free radical con-
taining P—protons. Possible inequality in the %—proton splittings
of cyclobutenyl at low temperatures was also discussed.

The dependence of the spin densities of P—protons on M-electron
excitation energies (in appropriate free radicals) was discovered and
was shown to reduce the size of the ﬁ—proton hyperfine splittings.
The agreement with experiment was satisfactory.

The transformation between the vector-coupling states for an
eight electron system and its canonical states was obtained. The
canonical states were found to be especially amenable to compuiter com-
putations, involving the non-overlap, empirical valence bond theory.

The reasons for the suitability of the use of vector-coupling
functions in configuration interaction in the valence bond theory were
discussed. A case was presented in which it appeared desirable to

distribute the antisymmetrical spatial components of the ground-state



wave function somewhat differently in space than that of the symmetrical
spatial components,
An anomaly in the ESR spectra of irradiated benzene was deduced

from theoretical considerations,
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The problems

INTRODUCTION

of this work were to predict the ESR spectrum of a

free radical, cyclobutenyl, using the valence bond theory and to improve

that theory for such

ting constants in an

work., The fact that the ﬁ—proton hyperfine split-

aromatic free radical such as cyclobutenyl (CB) are

dependent on the excited states of the TM-electrons was discovered and is

also discussed.

In line with

sion of the extended

of the effects which

order calculation on

The need for

the goal of improving the theory, a further exten-
valence bond theory is proposed; and some indication
might be observed using it are given in a first-

the C-H fragment model.

reconsideration of the source of an ESR spectrum,

originally attributed to phenyl, was deduced from theoretical consider-

ations, which are presented here.



I. THE HAMILTONIAN AND THE EFFECTS WHICH ARE OBSERVABLE IN ESR EXPERIMENTS

The total Hamiltonian for the system of cyclobutenyl (CB) in a

magnetic field is:
- - o s . 3
He v gope S H- 24,8 H-5 Tj ¢S T + ¥ e
- ) L £ A

o Jefe> T T P T S TS T Moention Siom,, 1Y)
The sum over j is over all protons of the molecule;ﬂuggg?aspeaﬁh., This
Hamiltonian is suitable for hydrocarbon free radicals in a doublet spin
ground state and which have no molecular axis about which electron orbit-
al angular momentum is conserved (1), (6). For magnetic fields used in

-
. . . |
ESR experiments, the term Z HI is negligible since 3 ~ ‘3(’. (Tm)
j PN 1 P
Other than the use of ge (instead of the free electron g value 2.0023),
spin-orbit effects have also been neglected,. 8o is the rotational average
of the g tensor, or (1/3) (tr%), which differs from g because of the
second-order interaction of orbital Zeemann and spin-orbit effects (3).
8¢ further implies that F;, the magnetic moment of the electron, is
-

only approximately equal to XSS, where & is a multiplicative constant.
Hence the dipolar interaction (discussed below) between F; and the nuclear

maghetic moment due to the spin angular momentum of the nucleus does not

exactly average to zero with rotational tumbling (4).

~t -—
The terms Z SII
i

Y
i Jandzidssngoth arise from the interaction of the

unpaired electron spin of the free radical with the magnetic field whose

vector potential is:

A, = - < (TH) ,where fip=%T - 25T



The derivation, reported in (3), of these terms involving the anisotropic
dipolar interaction and the Fermi contact interaction, is given below:
He= ¥ x Ap = -V x{ iy x V)3
-FI;XI{IA(-L)—TV’(V’H))}
o=~ H xlx{(I SXA ) -T-V(5-UX+)S,
where/«s-'-xss % = -%%z‘.
Erg= <t Wl t) - zgxs(—tmz D0
- CHA T TNE DN HAY using A(H=—4730)

For the spherically symmetric case,

() (T XS UDHEY = + (TG AR HE)

- IRk (7.3))%0)

Then E—_‘;, s =

For non-spherical symmetry,

E, o= - 525 (TS0 vy, CHe| =3 @eBr) 4,

Hoew — EFE (13500 » g pg T2 IEXED

This expression gives aj and gﬁ immediately for the case of one electron
interacting with one proton,
Generalizing eq. 2 to the case of many electrons involved in
interaction with a nucleus N, it is found that
é(c.'n{v (Fermi contact) = &g) sz%%‘c 45:‘!:;:' Zk X(;k‘?ﬁ\-sl_fﬂ
The Fermi contact term is thus proportional to the quantity

pr) = KH L8 ol ¥

matrix operating on the spin states of electron k. IO(YN) is the spin

, where Uk is the Pauli spin

density at the nucleus N, By the indistinguishability of electrons,

(HZ SE-Be 1) = NCH TR0 [



Thus aN of eq. 1 is:

aN=(g§‘) %Jf’ plry) (17)
Similarly, it can be shown that the dipolar interaction portion of
is given by

A
}Fint (dipolar) = —glF‘ + XI S e { Trace ( P l ))' El,

) 3IFE
where %: r ( g - Y") (1), (6). Since the anisotropic coupling
tensor T is traceless, there is no contribution to EI S from j(int
-~ ?

(dipolar) for a rapidly rotating molecule. The effect of rapid rotation
may be simulated by averaging the results of many ESR spectra obtained
for a reasonable distribution of orientations of the crystal relative to
the magnetic field.

The interplay of ;}(’o and ﬂint from neighbor molecules i(\ﬂn)
in the crystal of a free radical containing ﬁ—protons such as CB can be
studied only approximately theoretically. The experimental data must be
fitted in order to determine j(“ qualitatively and/or the apparent
temperature dependence of j‘, . This fitting often involves using
theoretical results calculated for isotropic splittings of the p-protons
to a single spectrum, since the ESR speétra for other orientations are
smeared. In such cases, simulated rotational averaging cannot be used
to eliminate the effects of anisotropic coupling in the crystal. For-
tunately, the anisotropic effects are rather small, as has been shown
in cases in which the spectrum can be resolved for a large number of
orientations, examples being the radical COOHéHCHZCOOH, derived from
the parent compounds ﬁ—succinic acid (7) and dl-aspartic acid (8).

The variation about the isotropic value for the hyperfine splittings of

ﬁ ~protons is about 6 Mc (2.80 Mc = 1lg). Hence it is still worthwhile



to compare the calculated isotropic splittings of the ﬁ-quntons of CB
for various possible distortions of the methylene unit with future
experimental data, despite the fact that the ESR spectrum of only one
orientation of the crystal may be resolvable.

Because of the strong dependence, as predicted by electron
structure theory (Section III), of the fs—proton hyperfine splittings
on distortions occurring at the methylene carbon (in appropriate free
radicals), it is possible to determine whether the methylene unit under-
goes a rocking distortion and/or a spread in the angle between the hy~
brids extending from the methylene carbon to the f;—protons. The in-
equalities, which accompany such distortions, in the hyperfine splittings
of the lﬁ—protons are definitely outside the range of anisotropic effects.
This fact has been amply demonstrated in the two cases of the COOHéHCH2COOH
radical mentioned above.

The remaining problems in this analysis of the order of magnitude
of the terms appearing in.Jeare to determine the size of ge‘and to con-
sider the character of 1&, wherejcifﬁfh at low temperatures. There is
the possibility that even without the presence of an’ the potential
energy surface which determines the positions of the fg—protons has a
dual minimum at the methylene carbon, located symmetrically on either
side of the molecular plane., The barrier to rotation between two such
wells, hypothesized to exist at the methylene carbon adjacent to an allyl
section in a long-chain polymer (hereafter called MCAAICP), has been
estimated to be .104 kcal/mole (9). This barrier is very low compared to
those in ethane (3 kcal/mole) (10) and in ethylene (40 kcal/mole) (11).

The idea that dual wells exist in MCAALCP is based on the fact that there



is a continuous increase starting from zero in the difference between the
ESR splittings of the ﬁ—protons of MCAAICP as the temperature is increased,

Possibly, in the case of MCAALCP, the unequal ﬂ—proton splittings
detected at low temperatures are independent of j(; but experiments
studying COOHCHZéHCOOH (Is, for instance, show that # may severely per-
turb lh in other radicals, Radical (IS, produced from the different
parent species dl-aspartic acid and P-succinic acid, gave the unequal
splittings of 115 and 18 Mc and of 80 and 100 Mc, respectively. The
author has suggested that it would be of interest to obtain the ESR
spectrum of radical (IS within the crystalline structure of ol-succinic
acid (18) as well,

A third class of radicals, in this classification of the relative
strengths of J{o and J‘Pint in determining the molecular electronic
structure at low temperatures, are those which have equal proton splittings
at any temperature, An example is cyclohexadienyl, which has equal
ﬁ -proton splittings of 50g at low temperatures (12). The two F -protons
are evidently not tunnelling between two asymmetrical positions at high
temperatures, though.}ﬁ,may also contriﬁute to the low temperature symmetry
of the wave function at the methylene carbon. Another indication that CB
will be found to belong to this third class is the fact that the barrier
to rotation of the fS—protons in cyclobutyl is very high, as indicated
by their high temperature ESR spectrum and theoretical considerations (13).

An approximation of proven utility in the analysis of ESR spectra
is McConnell's relation ap :PQ, where F is the spin density on a
T -orbital, which is adjacent to a ¥ -proton, in an aromatic radical,

Q is the hyperfine coupling constant from which the splitting ap of the



O -proton may be deduced. This relation allows one to relate the theory
of the W -electron wave functions to the experimental proton splittings
without considering the total free Hamiltonian j(, The discussion of the
means of calculating Q and fluctuations in it is of considerable theoreti-
cal importance, Various aspects of the problem of determining different
Q's will be discussed in Section IV in the course of calculations in-
volving first-order perturbation theory in the general framework of the
valence bond (VB) theory., The scheme is to perform a calculation of spin
densities for fragmental portions of molecules, such as the C-H (14),

W -methyl (15), and W-methylene (16) fragments in order to obtain a
value for Q from which the hyperfine splittings of the protons of such a
fragment, appearing in an aromatic free radical, can be estimated from a
knowledge of only the spin densities of the W ~electrons. The Q's of
special interest in this work are:

for ﬁ-protons,

1) @ 29,15g (15), theoretical;

i

2) @

i

24,68z (13), experimental, ﬂ—protons on rapidly
rotating methylene group;
3) Q= 38z (13), experimental, ﬁ-—protons in cyclobutyl at
high temperatures experiencing hindered rotation; Q
3/4 = 0052300) x2 x24.68g;
4) Q = 35.16g, (13), experimental, P—protons on cyclopentyl;
for © -protons,
1) Q = ~63 Mc = -22,5g, experimental (4);
2) Q= +21.20g, experimental, ¥ -proton in cyclobutyl (13);

3) Q= +21.48g, experimental, ¥ ~-proton in cyclopentyl (13);



4) Q = -2b5.67g, experimental, « -proton in cycloctatetraene
aniont (44).

In addition, the author has obtained Q for the allyl - F ~proton fragment,
which will be demonstrated in Section IV to be different from that of the
7P-ﬁ ~proton fragment, This Q is defined by the equation:

ap = Q f , Where f is the total spin density in the allyl section

of the fragment,
Q = 21,3g, experimentally, and 22g, theoretically, for the splittings at
hizh temperature of the P—protons of MCAAILCP,., The experimental value
is given in (9). Q = 66.2g, theoretically, for the F—protons of CB,
if their motion is restrained because of rotational hindrance. Q = 44.lg,
theoretically, for the CB F—protons if they experience free rotation,

Both of these Q's are taken from first-order calculations, as are the

other theoretical Q's given above.

lThis value for Q in the cyclooctatetraene negative anion may be
compared with that of the other planar aromatic radicals since 13C
splittings in this anion indicate the radical is planar (19). The
dependence of these splittings on the out-of-plane angle X==§f~eis very
large (19) as can be seen by the following equation:

a5 = 1191 Mc T (1-cot?0) " (v ) + 2 cot2o0 ()],

where r’(-;r) is the W-orbital spin density of the C atom and F(ch):‘—f .05 f”(ﬂ)
(17).



II, THE VALENCE BOND THEORY, ITS COMPUTATIONAL UTILITY, AND IDENTITIES

USEFUL IN RELATING IT TO VECTOR~COUPLING THEORY

The problem of calculatinz the ESR spectrum of CB has been reduced
to solving the equation J(,Iﬁ;‘goitfor various arbitarily chosen nuclear
positions and then using the ground—state.4; to calculate the a 's.

The choice of the valence bond (VB) theory to use in cafculating
4: was made because it had been used extensively in the past to study
‘ﬂ -proton splittings (14-16, 20). The evaluation of ¥-W interaction
parameters is a considerable obstacle to the application of MO theory
in such cases (21).

Inspection of the perfect-pairing state, the well-known ground-
state of VB theory, with the view of calculating spin densities on
(6 -protons, reveals the need for the introduction of configuration
interaction, or perturbation of the ground state wave function by various
excited states. Otherwise, the theory would not predict the occurrence
of any unpaired spin density on these protons (or on W ~-protons) of a
hydrocarbon free radical, which is contrary to experiment, There are two
alternatives for introducing configurational interaction: the variational
method and first-order perturbation theory.

The variational method further subdivides into the linear and non-
linear variation techniques. In both cases, the object is to improve the
accuracy of the ground-state wave function '42 by finding a IV such that
<1rleJ1eﬁs a minimum, The nonlinear variation process, which formerly

involved hybridizing the perfect-pairing wave function(s) so as to attain
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a minimum in the energy, has evolved to manipulating the spatial com-
ponents of orthogonal bond orbitals, with the spin portion of the wave
function still that of the perfect-pairing function. This technique
introduces ionic components in the wave function. This theory is called
the extended VB theory (22). However, it fails to give any unpaired
spin density on protons in aromatic free radicals.

The linear variation form assumes that xk, the exact wave func-
tion is of the form:jf’Zﬁg¢;Where the c; are the variational parameters
of the known set ¢i. If 1P is the ground-state wave function, then,
by the variational theoren, (#‘“,"{')5(2(.‘(%,3&‘2(('( ¢‘>, so "",: ZC" 4’(
is a no-less accurate approximation to 4’than any of the ¢(. The
linear variational method is to differentiate the equation

e 1 U Zoecbd =< e bl B 2000400

with respect to each of the variational parameters c;

i (one at a time)

and to solve the resulting set of equations for the eigenvalues and
eigenvectors.. The equations to be solved, written in matrix notation,

are:

g( QXV where X is an eigenvector, l’fq = < ¢( ,je,‘¢3>,
RRNUDE BT

»p e

The d& chosen in the conventional VB theory of singlet states
are known as canonical states. The '"'singlet" states with one phantom
orbital are a set of linearly independent doublet states, as are needed
in studying free radicals of spin 1. More physically complete function
sets can be composed by using ionic functions and non-electron pairing

functions. The latter are a means of introducing additional atomic



i1

states of the carbon atoms involved into the variational procedure. Only

the canonical states are used in calculations in this thesis.

The predominance of the canonical states in chemical theory can

be attributed to the following facts:

(1)

(2)

(3)

Chemical intuition once supported the model that singlet
pairings between electrons are as applicable in excited
states of a molecule as in the perfect-pairing state,
Though the perfect-pairing state is capable of giving
reasonably accurate ground-state energies in hydrocarbons
(23), the excited states are usually physically inaccurate
(24),. A notable exception appears to be the excited states
of ethylene (25).

The canonical states are clearly eigenfunctions of 82 = 0,
or 82 = 3/4 (if one of the orbitals is treated as a phantom).
The restriction to only singlet pariings throughout the
canonical states (CS's) leads to considerable mathematical
convenience, The CS's can be represented by Rumer diagrams ,
each of which is a collecfion of lines drawn between points
equally spaced on a circle, such that only one line touches
each point, The fourteen CS's of an eight electron system
are given in Fig. 1 below. The points represent orbitals,
the lines are bonds between any two orbitals such that the
spin function of the electrons involved in the bond is a
singlet. Further, since any singlet state is a linear
combination of canonical states (assuming the same total

basis set considered is that of the CS's), any singlet
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state can be expressed as a linear combination of these
diagrams. The diagram representation then allows one to
calculate the 2}: and g matrices for any eigenfunction
of 82 = 0 (or 3/4) by the especially simple rules given in

fact (4) below.
o — ./ N\
\\l:r. N w [__‘B.\ / n.

/

T N .
N\ ls. | 7 n. \\\\E. o | l'c.
7 1> 7 L2 0N

S A R S T
Fis.l
Two useful identities which are helpful in expressing spin

functions which are not CS's in terms of the Rumer diagrams

(or CS's) are:
(8,-5,)(s5-5¢) = (5,-53X5,=5¢) + (5,-5Nsy5) (entity 1.
ﬁ (S‘Sz' 'Ii (S,* S,_YS';* Sg)+ SSS‘I) = %3 [—'i (S‘,- Sz)(ss' Sq)

- 55 )s55)] (Tdemtity 7). (5,00 yrespends fosespin fr |

In terms of vectors, whose 'direction' is significant,

identity (1) may also be written in the well-known form (25):

" az 1 v '

i
+

{——-3 4 3 | 3
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Applying identity (1) to more complex vector decoupling

problems, as will appear in Section IV, the author derived

the following:

=‘7l-r_> ] \wc

=L -B -G +J +C

- e %@J
s
LT -
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To evaluate X, one rotates identity (3) since identity (3)
is valid for all rotations and inversions of the Rumer

diagrams, The following version of identity (3) is useful:

Then X = I + K+ E - (N + A).

(Idch'\'ihj 3D

So /éi;jﬁ = —(J+N+H+ 2A +L) + (B+ M+ G+ F+ K+ I + E)

(identity 4).

Similarly, identity (4) is valid for all rotations and/or

inversions of the Rumer diagrams involved. Rotating it so

that it rests on the side to whiech the arrow is drawn, one

finds:

’ .

P<O$ = ~(T+6+M +2B+K) + (A+L+N +C + T+H+D)
(4) The most useful quality of these canonical structures is the
ease with which one can compute the matrix elements ¢j'ﬂ¢(7¢jl¢)('
The rules for computing them can be formulated in terms of

Pauling's "islands' (26) or the Eyring-Walter-Kimball

"cycles" (25). In terms of the latter, they are:

H'z"("JﬂZ):lx—“{Q-t%[Z(single exchange integrals

between orbitals in the same cycle with opposite spins)
-stingle exchange integrals between orbitals in the same
cycle with the same spinﬂ —%2:(all single exchange integrals?
where QK’is the total molecular Hamiltonian, n - x = total
number of cycles possible minus the number appearing in the

cycle diagram for canonical structures 1 and 2, (The factor
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14
(-1) , which appears in reference (25), is of no conse-
quence provided every factor of the various canonical

structures is of the form (S ), where m and n are

2mr1 " Sens2
integers.)
Also, the overlap matrix, assuming orthogonality of all space
orbitals, is formed by using the coefficients of the Coulomb
integral Q. Rule (1)
This formula for the matrix elements, because of its simplicity, proves
to be amenable to computer computation. The computer program, which the
author wrote to handle the entire problem of calculating the spin densi-
ties for an eight orbital problem, is given and discussed in Appendix I.
The program treats only the non~overlap, empirical VB theory. This pro-
gram was checked, using 2{ and QZ matrices, which the author had con-
structed by hand for the seven functions of A symmetry of the rotation

group 02 for CB, (If one labels the orbitals of principal interest in

CB as follows:

and numbers the orbitals of each of the Rumer diagrams of Fig. 1 in the

following fashion 4

then one can construct the table:

operation of canonical states
C2 rotation
group
E JAGICKD
c MBHNFLE

2
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One then takes the positive sum of each pair of functions to form the
(unnormalized) functions of A symmetry)) The z and Q matrices, in turn,
~ -~

had been checked by substituting suitable eigenvalues of the equation

g’,{,’ EQ 2‘\, into 2}; and determining left and right multipliers, E
~1
and‘Ir, such that Tl (H-EO)T = A, where A has at least one row or
~ = = X X[r %, ~

column of zeroes. These eigenvalues were linear combinations of the

T -exchange integrals (called J (p3p4) and J(p4p5) in Section III) and
the exchange integrals of the C-H bonds (J¢( h7 q——6), J(h1 W'zj). Though
it is necessary to use vector-coupling functions (Section IV) to be.
certain the eigenvalues, guessed by a semi-vector-coupling approach, are
appropriate to functions of A symmetry, the rule that the sign and value
of an exchange integral in a triplet bond is minus that of the same
integral for a singlet bond leads eventually to the following table:
Energy (A =J ( “k q@, B = J(pipj)) Spin function as direct product of

spin functions in*the allyl and
methylene regions

(1) 2A + B (A symmetry) DS
(2) 2A - B (B symmetry) DgS
(3) B DT
(4) -B DT
(5) -2B QT
(6) -2A + B DSq, DTy
(7) -2A - B Dqu, DqTq
(8) -2A - 2B QT,, Q@
*Notation:
D = doublet
T = triplet
S = singlet
Q = quartet (allyl), quintet (methylene)
Dq= doublet arising from the appropriate coupling of spin 3 to spin 1
Squ singlet arising from the appropriate coupling of spin 1 to spin 1
Ty= triplet arising from the appropriate coupling of spin } to spin 1
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Energies (3) through (8) were found to belong to functions of A and B
symmetry, as evidenced by the fact that each of them appeared twice (in
terms of a distinctive numerical value) in the computer calculation on
the fourteen orbital system, using only the characteristic parameters of
the table above. The eigenfunctions calculated by the computer differed
from those calculated by hand by an orthogonal transformation.

The accuracy of the computer program was further confirmed by the
fact that the results obtained with it for the spin densities of the
benzyl radical, using fourteen canonical structures and one parameter,
were in exact agreement with those of a hand calculation of the spin

densities on the same number of states and parameters (27).
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III, A VALENCE BOND CAILCULATION OF THE SPIN DENSITIES OF THE ﬁ?—PROTONS

OF CYCLOBUTENYL AND COMPARISON WITH RELATED THEORETICAL CALCULATIONS

Calculations with the program of Appendix I, which uses the con-
ventional variational VB theory, were made on the eight orbital model
(Section II) of CB, The following hybridizations of the methylene carbon
were considered:

(1) tetrahedral hybrids ( 8= ©,= 30°);

[0}
(2) hybrids such that § = 104° 20', = 287 =37 ;
(3) hybrids such that ¢ = 104° 29", g = 9.6°, @,= 65.7°.

The angles 6, ©, and 43 are given in the following diagram:
Fo, 7/

The relations between the 2s, 2px, 2py, and 2pZ orbitals of the methylene

carbon and its hybrids are given by: (28):

Zab W-Za—u

a, b O Fzg Vvi-za\ 4S
o)l —b

G;_ - "zﬁ'bz 0 - 342 “"Zl«." QPX

5 a -6 TEE o 2P,

- |
where = cos (Qz)( a*- D )
tan @, = ab ( Y7=7az-12 r_l—:—_b-i) _
tan ezz o h"-la_’i,bz (b ‘—-'—__—a?—-) )

tan e, tan 8, = a2 ( | —q2)"!
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The values of the parameters a and b corresponding to the hybridizations

(1) through (3) are:

(1) a=Db=3;
(2) a=%, b=¥;
(3) a:-é’b:r!_j_

In view of the very approximate dependence upon hybridization of the
exchange integrals of the empirical VB theory, the possibility that the
methylene carbon is tilted out of the plane of the other three carbons
was disregarded., The assumption that CB is planar at high temperatures
is probably correct since cyclobutyl is planar (13). PFurther, electron
diffraction studies have shown that gaseous cyclobutene is planar (29).
The possibility that a skew hybridization exists at the methylene carbon
can be shown to be negligible by the fact that such a hybridization is

2
impossible for normal electron~pairing type hybrids.

2Proof that the normal hybrids of a carbon atom lie in two perpen-
dicular planes: The vectors of hybridization must be orthogonal both row-
and column-wise when aligned as a four-dimensional array since otherwise
(the column orthogonality not holding), the determinant of the coefficients
would vanish, This, however, implies that the rows are also linearly
dependent. A general hybrid matrix is:

X = FT=(ar+ai-03), x¥= =% .

rd
X \r“ v,

v a, cosga’ sing o ¥ o s b
Vil 2| ax -cose af Sim 6, 4;" (o] '
v Ay -singsing a; -5inB,cos B @y  ay"CosOy ! :
Vg K $inB, sino " -sindy s 6, X ¥ cos 8y |
a¥s IT=a7 , a} =4z, ag=-&q, 2

(

|

Then - [(ag’)ICos 6; S ©; sim O + (Y*)ZCose‘, SM&ysin 9._] =03

z .
It 93, 6‘1# O y tanes= - taneb. es--fe(,:o, oy eg‘;"e&.
That is, the vectors vz and vg lie in the same plane, perpendicular to
the x~-y plane (author's proof).
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Only the seven orbital system for CB was considered because of
computing limitations. A revision of the program of Appendix I could
handle a twelve orbital system. Then the effects of the in-~plane orbitals
could be included. However, it has been found empirically (see Section V)
that the in-plane hybridization is of less importance in determining at
least o -proton spin densities. Such a result means that the Q values
given in Section I are most likely applicable to CB, The value -22,5g
will be used to estimate, by application of McConnell's relation, the
hyperfine splittings of the o -protons in CB.

Six sets of exchange integrals were considered in calculating the
spin densities in the seven orbital CB system, They were (giving only

one of a kind, if sufficient):

Triall J(h,%)| T(h,a) | Tpspd| Tlaqp)| Tl pd| Tlaw) | Thha)| Thed ﬂhjq',) Ih,p)
(1a) |-3.8 {-3.8 |-1.9 |-.62 |-.62 |O 0 0 0 0

(lb) 1"t 1t 1 | 1 1 0 _1. O 0 0

(1C) 1" 1A " 1" Tr _1. " O O 0

(1d) 1" 1t " 1" 1t T 1 0233 .233 0

(2) }-3.8 {|-3.94 " -.722 |-,518 |0 0 0 0 0

(3) |-3. -3.94 " -1,16 |-.08 |-1, -1, .745 0 -.5(est.)

All the exchange integrals given in the above table and throughout this
thesis are in units of electron volts., The trial numbers (1) through (3)
correspond to the three hybridizations of this section.

The exchange integrals between two orbitals }& ,2% of the VB theory

are defined as <X‘(D Xj(l)l }e’xt(Z)X3(‘)> 3‘( is the total Hamil-

tonian for the isolated molecule. The choices and means of determining

the J( XC x_‘) were: o
-1.24 (1.54 A) (28)

(1) J(p;p) = -1.,9 (1.395 %) (26)
A) -2.27 (.34 %) (30)
(—2.46) 1" "

J(Q:?S) = -1.9 was used for the allyl section,



(2)

(3)

(4)

(5)
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The perpendicular distance between the Tf-orbitals, p3 and p5,
and an axis in the z-direction through the methylene carbon
o
was taken to be 1,54 A, Using only the p component of the
z

hybrids G and G, one finds that

-1
T (P3%) = J(pswy) = Ipp) (L - 2a” - BH( - 2a)

T (pa®) = 3(pe %) = I(p PG - 20"

where J(pb.pj) = -1,24,

The other components of J( stz)’ etc.,, are very small (15),
(28), It has been assumed in estimating these integrals that
the methylene protons in CB experience hindered rotation as
they do in cyclobutyl, The latter fact has been verified by
the extraordinarily large splittings of the p-qnbtons found
in cyclobutyl. Their hyperfine splittings are 38z as compared
to the value of 25g for a radical in which the methylene
group is freely rotating (Section I),

J(h,h7) = -1. (31), This is 85% of the dissociation energy
of H2 (32)., The distance between the two B -protons does not

vary sufficiently to require a significant change in this

estimate between trials (1) and (3).

J(h,w,) = J(hh“i) +.233, for tetrahedral hybridization (31),

i

J(h,v;) +.745, as the exchange integral between a
T-orbital and a W-proton,

J(hqvé) in trial (3) is only a rough approximation.

J(0 %) = ~-1,, for tgtrahedral hybridization (31), (33);

.88, for sp hybridization (34);
1.707’ 1" 1" 1Al (30).
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Use of J(g,%% ) = .88 in trial (3) would most likely give an
even more negative spin density on the nearly in-plane

ﬂ -proton, This idea is based on the fact that a positive
value of J(“EUZ) leads to negative spin densities on the

9 -proton of the C-H fragment in a first-~order calcu-
lation (14).

2

+ (1 - DN,

2 2 3
b N + b(l-b)° (2N o

SS

(6) J(Ch, o)

SG')

2 2 i 2 2. %
JChy @) = (L - 2a° - bHIN__ + (1 - 2a° = b)Z(2a" + b (N )
2 2
+ (22 + b INgo
N = -2,
SS

Ngg = -1.82
Ngg = .60
Nge = —-2.30

The expressions are Vgn Vleck's formula for J(ch) in terms

of the hybridization coefficients of ¢; and of 01(35),(28).
Corresponding to the trials above, the following electron spin densities
were calculated., (The rules used to calculate the isotropic hyperfine

splittings were:

ah = (507,.6g)(spin density on the proton) (20);
a, = (22.5g)(C " " in " TM-orbital of the same carbon atom).)
Trial Spin density (splitting of appropriate proton in gauss)
No, Methylene proton Methylene carbon hybrid| T-orbitals (allyl)
la .122 (62) -.110 .653 (14.7), -.333 (7.5)
1b .106 (54) -, 095 .65 (14.6), "
1c . 088 (45) -.080 .66 " v
1d .082 (42) -.075 " " "
(2) .145 (74); .096(49) -.128; -.088 .65 " "
(3) .199 (100); -.06(3) -,174; .072 .645 (14,5) "
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A better estimate of the isotropic hyperfine splittings of the < -protons
is probably that obtained using the SCF theory spin densities of .622 and
-.231 for the W-orbitals (9). Then the splittings due to the v -protons
would be l4g (ortho protons) and 5.2g.

In view of the fact that an overcorrelation (relative to "experi-
mental" spin densities) is nearly always observed in VB calculations
employing the full set of CS's (28, 27), the first-order result should be
considered, too. The first order result is obtainable in this case from
eq. 4 on p., 30, The spin density on each of the ﬂ-qnntons for the case
of hindered rotation is found to be ,130, corresponding to a hyperfine
splitting of 66,2g. Without rotational hindrance, this spin density is
.087; the splitting 44.2g. The same integrals were used to obtain this
result as in trial (1la). If the first-order results and the variational
results differed significantly, one would be inclined to choose the former
since it has been found empirically (15, 16, 20, 27) that the use of the
minimum set of exchange integrals in a first-order calculation gives good
agreement with experiment,

That agreement between the two types of calculations does not
prevail in all studies of f?—proton spin densities is well illustrated
by the VB variational calculation on the B-proton spin densities in
MCAAICP (28). There the w- p—proton fragment results (obtained by the
variational VB) were multiplied by the SCF estimate of the spin density on
a terminal T-orbital in the allyl radical (.622) in order to estimate the
ﬁ -proton spin densities of MCAALCP, This approach has two major draw-
backs: (1) the p-qnoton spin densities of MCAALCP are dependent on the

T -electron excitation energies and the Q of the 'ﬁ-@-proton fragment
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is consequently larger than the true Q, and (2) the Q which was obtained
for the “-—p—proton fragment itself is much too large., Ope may deduce

from the results in (28) that Q =~ 41.1g, whereas the actual

1!-(3 -proton

QW'P‘P"’"‘"‘ =~ 24.7g (13). The first-order estimate obtained in Section IV

for Q“‘@'P“¢°“ is 25g.

A sketch of the ESR spectrum of CB, as a line spectrum, using the

values ah = 42g, ak = l4g, % = 5,2g is given below
p Y _ortho ¥ -non-ortho

(Fig. 2). The results of the variational calculation on CB are graphed on

the next page (Fig. 3).

———A — — A ' '
""3 1{25 5:13
Fis.l

Should isotropic inequalities appear in the ESR hyperfine splittings of
the fs-protons in CB, the nature of the contortion occurring at the
methylene carbon could be estimated from this graph, as was done in the
case of MCAAICP,

Other information available from the variational calculation on
CB is:

(1) Inclusion of an increased number of exchange integrals tends

to lower the spin density on the 'B—protons.
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(2) The methylene carbon ¥ -orbital spin densities show a decrease
in magnitude relative to that of the proton spin densities.
13 .
This effect may be important in C splittings, though polari-
zation of the 1ls electrons seems to be an adequate explana-
. . . . . 13
tion of the reduction in spin density on the C nucleus,
as long as there is a ¥ -orbital at the same carbon (20).
But otherwise, large discrepancies appear (36).
(3) A negative spin density of the same order of magnitude as
that appearing on the in-plane < -proton of the C-H

"fragment" may appear on an in-plane P-proton.

(4) There is a considerable increase in P—proton spin density
when one assumes a small attractive exchange integral between
the W -orbitals and a P—proton (trial (3)).
This last effect, though mentioned (37, 12) as a primary contributor to
P -proton spin densities appears not to have been calculated before.
This effect is a direct rather than an indirect coupling of the T-orbital
electron spin to that of the P—proton° However the need for the existence
of this phenomenon, originally cited to explain a discrepancy between
theory and experiment in the case of the F -proton splittings of cyclo-
hexadienyl (38), has been removed (28b).
A shortening of the methylene carbon-ortho~-carbon distances (from
1.54 A) would ehhance the magnitude of the spin density appearing on the
F -protons of CB. If the distance is only 1.395 A (and J(PP) = -1.9),
then the first-order result for the F<—proton splittings in CB is 10lg

(hindered rotation).



27

1V. REQUIREMENTS ON THE WAVE FUNCTIONS USED IN FIRST-ORDER PERTURBATION
THEORY CALCULATIONS OF THE SPIN DENSITIES OF THE f3—PROTONS ; A CALCU-
LATION ON THE CYCLOBUTENYL RADICAL DEMONSTRATING THE DEPENDENCE OF THE

SPIN DENSITIES OF ITS F—PROTONS ON THE 7J-ELECTRON EXCITATION ENERGIES

Certain functions belonging to an incomplete set of canonical
states give more accurate results in predicting various Q's using first-
order perturbation theory than if a complete set of functions had been
used. These functions are linear combinations of the perfect-pairing
state (PPS) and the singly broken-bond states of conventional VB theory.
Such functions, together with the PPS, had proven to be an adequate set
for the calculation of energy levels of aromatic hydrocarbons, prior
to their use in computing the spin densities on ¢ - or ﬁ—protons of
aromatic free radicals. One of the best known VB calculations (of
reasonable accuracy) on the energy levels‘of an aromatic molecule is that
of Altman on ethylene (30). The PPS and five singly broken-bond struc-

tures, employed in Altman's variational calculation on ethylene, were:

+4 cthers similar+o A,
The complete set of CS's for such a twelve orbital system is 132, as

given by Rumer's rule (discussed later in this section). Similar reduc-
tions in the size of the basis set, as used in first-order calculations
of the spin densities of - or g -protons in aromatic free radicals

were subsequently shown to give close agreement with experiment, Two
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classic examples were the T -methyl (15) and the C-H fragment (14)
calculations. The T -methyl study involved only five canonical CS's
out of the 42 possible CS's for a ten orbital system.

The particular linear combination of PPS and the broken-bond
states to be used as excited states of a first-order perturbation
expansion should satisfy the following criteria:

(1) They must be diagonal in the energies (expressed as exchange

integrals) which involve orbitals of the bonds of the PPS,
(Bonds are distinguished by the fact that the spins of the
two electrons in a bond are coupled to form a singlet state
of themselves.) Such integrals in aromatic free radicals
are J(ch) and J(q1 ).

(2) The functions of an incomplete set must be orthonormal;
otherwise, the spin densities calculated by first-order
perturbation expansion theory are not invariant upon a uni-
tary transformation of the basis functions. The CS's are
nonorthogonal and hence are not suitable for the use in
first-order perturbation theory on an incomplete set.

Requirements (1) and (2) are both satisfied if the excited state, which

is a linear combination of the PPS and a particular singly broken-bond
state, has a triplet pairing of the spins of the electrons at the site

of the broken-bond. The signed exchange integral of a bond with a triplet
pairing is simply minus that of the bond with a singlet pairing, Ortho-
gonality of the states is guaranteed by the fact that two spin states,
orthogonal in at least one pond factor of an overall spin function, are

orthogonal. Using identity (2) of Section II, one finds that the linear
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combination eXyy (3PPS - singly broken-bond state) is an eigenfunction of
2

S broken-bond = 2. (The total spin of both the PPS and of the singly
broken-bond state is still 0 (or 4, if one orbital is a phantom).) The
Pauling island overlap coefficients (given in Appendix X)) for the CS's
are useful in checking the orthogonality of CS expansions of the exbb's.

The first-order calculation on CB utilized the same seven orbital
model as the variational treatment (Section III). Tetrahedral hybridi-
zation of the methylene carbon was assumed and the same set of exchange
integrals as in trial (la) employed. The perturbation expansion used
linear combinations of the PPS and the singly broken-bond states, satis-
fying requirements (1) and (2) above. The use of these particular func-
tions allows one to describe the origin of spin density on the methylene
protons as due to an excited triplet in a particular C-H bond (15, 17).
(The same reasoning is also applicable to the o -proton of the C-H

fragment (17).) This dependence is evident in the following results on

the T -methyl radical,
:f( TJitrp)
1"‘#2* z:rict\(l‘b %)+ Z zx(trh)lil/ 1”

where &, = (t, b, X+, b, )4 hthC)P
AERCTR GLED GLED QLIS L}
%= (4 tp X" X" D,

‘4’,=( " szhzrtﬂ)(" )h3
no ) e Xaghg Xep Yhy.

- = Tl - tati d J(t, p)
P =—Fe. ___4%§ 25g/ 507.6g (free rotations assumed, so P
A EHY = 3(-1.24); J(+, h, ) =-3.75) (eq. 3)

_ -1 _J’_Lf_q%e
FC' - -f,tq lT(C‘ qf (eq° Sa)



30

Comparable results for CB, obtained by the vector-coupling approach and
assuming again that the major contribution to the methylene proton spin

densities will arise from single triplets in the C-H bonds were:

— - - 1
Yo & (e s GRleldny s ()

(-Iﬁgj'I;q'Irs*lka 3 -
* CAS, + A%, +B) (3>(M (H+D))’

where  T= (ho, X hy, X Py py ) ps
€=Chp X " Xp._,,cr;_)':s-

(Pg\‘z X o XPSP‘!)hv

( hy @ X Xl’s P'l)l’s

C» X PzWLX " >h,,

D= » Wpeq Xhophy .

prpee SRERERAE], (o2 gy S e (0

J

1]

G

L

M

w

\

- N . . . .. — movihg
where Ii' the exchange integral between orbitals i, j; 123 -93 Uu'nd!"‘).
Aé‘ = " " " for a C-H bond (singlet) =-3,80;

ij
AEJ - n 1" ' 1" 3] " " " (triplet) = -3.80.
_ " " 1" - — -
B = between Pg and Py, or ps and Py = 1.9.

Diagrams for the functions J, C, G, M, N, D were given in Section II.
It is evident that the contribution of the W -electron excitation

energy tends to lower the magnitude of the coupling constant Q between
the spin of a W -orbital and the hyperfine splittings of its B -protons
in CB as compared to the q-methyl radical, This is a factor of the right
magnitude to explain the decrease of 3g between the high temperature
splittings of the throtons of MCAAICP (Fig. 4, I) (2) and one with a
single M -orbital (Fig. 4, II) (13). The two splittings are 21.3g and
24,6g, respectively, and are estimated from first-order calculations
(using the same exchange integrals and the free rotation character of long-

chain polymers) to be 22g and 25g. The calculation appropriate to radical
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(II) has been given in eq. 3.

H H / H H
AN / B2 fla p,\ / b2 N /” R
c ¢ c \
3\. 1\ / 3 / C c
\ //, ///, > N .
Cy (& c‘:‘ Cy R/ \C/ \R'
)
o]
W@ e , a  hBRae
F'S-q ¢ontinuations.
For radical I, eq. 2 becomes:
.- -2 E-Tae+T5,] 2 (-.021
Pz Pr= e 3R +AR AR T2 —q§ T 0428
ah = 22.1g (ah for a single electron in the 1s orbital of hydrogen
[ is 507.6g (20)).
B = -1.9
ASe= A% = -3.80
136_ 5 (-1.24) (136 1s the average of J(pp) (1.54 A)

over "'free rotation'.)
(The symmetry appropriate to cyclobutenyl was explicitly expressed in

I I I say,

eq. 4, but one needs merely to omit the terms Il§’ 2’ Yeso Tag

to obtain the equation applicable to radical (I). There is difficulty
in assessing the proper value of 136 because the long-chain polymer
radical (II) has a lower ahpthan does a similar molecule, Cz HS éHCsz,
which presumably has freer motion in its P—protons (24.8g as compared
to 28.8z (13)). However, the relative values of ah for (I) and (II) do
show an effect, which may be attributed to the prestnce of allyl in (I1).
The results of eq. 4, which indicate a dependence of the

§ -proton hyperfine splittings on the T -electron-excitation energies
(in the appearance of the B exchange integrals in the energy denominators)
extend previous theoretical conclusions (17). The most direct means of
proving that the ¥ -electron-excitation energies do contribute is to

use vector-coupling functions. Vector-coupling functions may be defined

as the spin functions of two or more electrons, which are constructed by
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coupling the spins of every two electrons to form "particles"” of spin 1

or 0, repeating the spin coupling process on the spins of these "particles",
and then continuing this procedure until there is only one uncoupled spin
angular momentum vector. In this section, the vector-coupling functions
are all spin doublet states. As an example of these functions, the PPS

and one ex such as discussed above, constitute the two possible vector-

bb’
coupling singlet states for a four electron system,

The simplest case in which the effect of T -electron-excitation

energies appear is that of a system of three " W' electrons and two

1" 1

¢ . electrons, the latter in a C-H bond., There are two ways to couple
the spins of the three electrons so as to get a doublet spin state
S
(the notation is | Ms>)1
L
z'> . L _
‘g_ T = ﬁ.[dpd pad}
% L [ ofd+ fdd
fé = r-g[ 5 - !’z-up] = ﬁ[u‘s¢+§¢u-2a¢e}
i T 3
( ;>I: is a doublet state which is orthogonal to ‘.;Zobtained by appli-
3
cation of the spin lowering operators to ,%>=ddd. In terms of the spin
of a composite "particle" whose spin is either 1 (triplet) or 0 (singlet),
these spin states and the relations between them are:
L o L
£\ - [14)
=111,
B\ = L1 -mDIR)]
[P wllelty-mliols
' H-1OR
obtained fyom ';_ = 1 L),

ESERIEAIE S EINEAY )

To achieve an unpaired spin density on the ¥ -protons of a C-H fragment
(a model system consisting of the ;éand ¢ orbitals of a carbon atom in
an aromatic hydrocarbon radical), it is necessary to mix the "ground-

]
2 1 -
state" wave function, which has the spin function \{)}with the "excited
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state" having the spin function ’% . The energies of these two states,
in first order, are J(ch) (ground-state) and -J(ch) (excited state).
(J(ch) is negative.) The perturbation is due to U-w interaction, the
matrix element of which is proportional to (-J(ppw ) + J (F%h])'
L
If ,;zris neglected as a possible doublet spin function for the three
Y -electrons, then the excited states of the “G!—electrons are the
only ones affecting the ¥ -proton spin density. But this truncation of the
first-order perturbation expansioun is too severe,
The W -electron excitation energies are expected to appear in the
more complete expansion because the energies of W-electron wave functioné
s
with spin functions Iilgndl;, are not the same even in first order. Let
4 L

zl’-_c correspond toigz, Il_fnto l—i)l Then

<3 = 3 el immm 1352 1) cea o
S (-1 » (W=D

= 31 Tpp) + Tipp) ~ J(ppl = TBP (eq. 6)

qu represents a Slater determinant in which the spin-orbital of column

one has spin %; that of column two, spin %; and that of column three,
spin -%#. The results of the operation * on the various products of three
arrows is given in Table I below, The result in eq. 6 may be calculated
by direct manipulation of eq. 5, as well,
Similarly, for ‘ﬁi,
. \

O 1801 > = 1 1 3 hmngm 1) 1D
[autrdt g ] (M g1y ]
[ 11+ 111 +zzu~rw4v|+ L1 2L ¥ 110)
S 2 (A = I ]

= 4 [~ T(pp)— TR - 2T(pp) +2Tpp) 1 = = T(pp).

—-—

1
3

e



34

Let the order of the arrows, from left to right, in the above symbolic
notation for Slater determinants correspond to the ordering p3 pq ps
(PS'T) of the space portions of the spin-orbitals, Considering only
exchange integrals between psand p,, and between p, and ps , one will
get contributions to <“3(> from the exchange integrals J(pqu) and

J(Pq Ps ) in accordance with the table:
TABLE 1

¥ T AT [AVF I T MU ItV ] 3P 4
"M 'Baf;,_
11V ~Bsq | -~ Bys
141 —By
Jrb - Bqs
M —Bys | —Bag
I M ~Bys
U — Bayg
{d B34 Beg

Since the table is symmetric, only non-zero elements above the diagonal
are given,

Finally, the vector-coupling diagrams describing this system of
three “ﬂ”—electrons and two  o” ~electrons clarify the answers to the
guestions as to how many doublet states are possible and which have been

considered. There are a total of five doublet states to a five electron

system; the states written as: (spin in CH) (spin of two HTfCelectrons)
o4y
(sp%nhof extra _ \%/

W -electron = 3) ' @
are: X=4 3 “i ! '!i
0 k /}5 Q =& \EE/

]

Y-
ni-
~i-
NI
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The coupling diagram labelled (Q) has a quartet spin state in the
7" —electrons and can be excluded because of its high energy (-J(ch) -
2J(pp)) as compared to that of the ground state (J(ch) + 3J(pp)).

The essential point is that even in this simplest case, the
spin densities of the ﬁ -protons depend on the excitation energies of the
“77”-electrons as long as appropriate matrix elements of the spin density
operator do not vanish, That these matrix elements do not vanish can ke
deduced from eq. 4, p 30 . The entire calculation of the spin densities
of the /3—protons of radical (II) and of CB will now be given,

The calculation begins with the formation of the fourteen possi-
ble singlet states for an eight electron system; in the VB theory, this
total number is given by Rumer's rule (or directly by permutation group
theory):

total number of VB singlets = @gyf%g:ﬁﬂ, where n is the number

of orbitals (26).

The singlet states, which are linear combinations of the VB CS's, are

2 2
Sw., and S

chosen to be eigenfunctions of S , S“w” , and S g e < .
are the total spin angular momentum of the electrons in the methylene and
w ~orbitals subregions, respectively. One composes the various spin
angular momentum states which result from the coupling of two particles
of spin 1, or one particle of spin 1 and one of spin 0, or both of spin

0 (each of these having been obtained from the coupling of two particles

. 2
of spin %), These form eigenfunctions of S%\Wﬂ and of S.QT” . The

coupling is repeated to form functions of S = O.
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This procedure is indicated schematically below (42).
1

NVAZRVAVARVAVERVAVERVAN,

VAYAVAVAVAAAAVRVY,
VvV VYV VV VAV

OC])O qu)o
The Clebsch-Gordan coefficients useful in expressing

these states

explicitly in terms of spin states of particles of spin 3 are evident

in the following equations (see also Appendix III):
5y =110
|%>=v'~z[l‘\>l'->+|‘>|'>]

B AP EESRNENEE AEVEY:
1= [ >- S
0y =L LY - 1S
5= 5 LI -1+ P

Once proper eigenfunctions were constructed, they were resolved, for
calculation convenience, into linear combinations of the CS's, This
problem is discussed in Section V for all fourteen states. The
results of interest for this first-order perturbation calculation, in
which no excited states with two triplet pairings in the methylene

region were included, are:
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TABLE 2

eigenfunction eigenvalue energy
(14 = J A5, + Ay 4By, -iBys
(13) = % (J - 20 AS, + K, -By,+iB,
(12) = £ (7 - 26) A%, - AT, +B, -3B,_
(11) = & (J - 2E) A%, - Al -Byy-3B,_
(100 = B[ + 28) - (@ + E + )] A%, - A7, -Byy

(9) = (I - 2B) Ay, - AT +Byy 3B,
(8) = H(@M+ B-D-H - J) AY, - AQ By -3B,_
(7) = YE@-D) AS, - AT, “Byg

The energies were calculated using Rule 1 of Section III. One way to
verify that the eigenvalues given in Table 2 are indeed correct is to
calculate directly the eigenvalues of the doublet states to which the
states (10) through (l4)vcorrespond° The energies of states of (7),
(8), and (9) are then readily deducible from those of (10), (11), and
(12), respectively, Only the B-type integrals will be considered since
the correct coefficients of the A's (either plus or minus one) can be
determined by inspection., Using earlier notation and results in this

section, we have:

Gayetia)= & [ (A= IMNT* [U=aM1] = By~ Bas
(9%0d= LTI ISITI* [IN-12] 1]
=4 [’IMHH-&% P AV, 2L 1) 2 MU AT+ m)]
2 [ By - 2B 4 2By ] = Byt BT = (15D,

(10), (11), and (12) are linear combinations of doublet functions, two

of which arise from a quartet state of the allyl section ((10) and (11)),

one from a doublet state of the allyl section (12).



38

(o-5014), 105, -1

’_IZ—L>A I :>M_J

A labels the spin function appropriate to the electrons of
the allyl section, M that of the methylene section.

4
In this case ,2>A (—53—‘%'—2-5 , so (12) has the same coefficients of B

39
and qu as does (14). (10) and (11) are linear combinations of the
iN_ |3 '
two doublet states, one of which arises from s )= 3 \
3 < /A M>

the other from

3 4 i

-1 10

3 /a1 /m

The doublet state arising from the latter state, |
4 i i L |

SRR IREDRIYRLAEDIEDY

el leg-mlinl.

L
k 2
[.ij% is not the same function here as that used in (12). This fact

ales i

> is:
>

may be deduced by inspection of the vector-coupling diagrams above. The

k3
doublet state obtained from ,gf)

19, | >

o+ & AN 1)
» and ‘*>A . etc., are given by the following relations:
DI
> V[E—l >‘_L> + ">‘-:>] (eq. 7a)

= Jr; [I i) ﬁ- ' -z;'_>] (eq. 7b)
>I= %Y—Hs—ugiiusi—%ss (5,

Hence,

Nlent- N]—d\~ =N W

4 (szg %z‘D—ZS _](.ﬂ?_ ]

where S¢ik =S/ S§ Sg .

11)=&ls, -4l
2 /AT @ LlS3yg T 3NS5t SyetSizg t S5 +S +

2ys S23q
—S'2§'5n3' tzq)] (‘s"l%\)
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After some expansion and cancellation, one finds that

-L -—
(w) 1 (4 [suq-s,z‘ “S,:w + S)23 *Syge — 523‘1 ] (s, 7_s,,,)

= ZG[ Sias ~Sz9s ~Sz3c SisT 2(3345.‘*3,25.)] (__'7?,_@,5 _zs )

So (lo)—"-' Y%,lf} -+ Fgli}[
© =% D+ B 15

Now let the total wave functions of which f

Nt

1
>, I—Z}are the spin functions
L * T
Z Z
be represented by l -;2, '{ZL. Then considering only the coefficients

of Bsq and qu , We have:

1) #3 1) = SN S 111D (111 1004111)]
=4 (B3 By +5 (LT * 1V #2401y MD

+ 2N+ (EOMALTH IR 3 {4 20MT1)
+ LA 4 AL + 41»*141,)]

=.»i§[.. -__L]Bgl,'r{x z- ’3]&,5? By * Bys)

-l[— - By 1(41MM+111,*L11)+z111,*11b]
=3[~ Bs‘,— Bys_ 2(~By )+ 2(-By)]= =By, + Bus

n«u=5( \;>I ':;>I IRED H%}I]

( q {)"' ( B3q+ Bus >'—B3‘I B’Z.
D19 15 ] 3018111
= %{'(Bw"'&(s + 5 (-Byy+ ._’?_221.):).] =By

3
(Note that li}ﬁ'xl;:'_)zr:-%(‘é)* \%_)"‘\:‘27*‘?;']:0, by equations (7a)

and (7b)).

-2

3
Z
3

(oy*(19) =

Ckarly, the eigenfunctions of Table 2 do not contain the symmetry
necessary for the CB problem, but a check on the spin densities for a

fragment (III) gives exact agreement with the T -methyl calculation
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(reviewed on p. 30):

. Ty —Tsg
f“"h - "52 Bsq

0
o 0T

< v
A+ A,

‘ ar a pampe= Leg =Tag

S
A%+ A‘,',"

To continue the calculation beyond fragment (III), or a system
in which the unpaired spin is localized on one orbital, it was necessary
to form wave functions whose spin functions are linear combinations of the
vector-coupling functions and whose transformation matrix for the rotation
P3~> “Pss Ps™-Py> Ps>-P3  is an irreducible representation of the rotation
group Cz. Since the total wave functions in the zeroth-order approxi-
mation can be considered to be direct products (properly antisymmetrized)
of the wave functions in the allyl and methyl regions, the transformation
of the methylene part of the wave functions upon rotation will be con-
sidered separately.

It is a well-known fact that the transformations of the spin
functions can be used to construct the irreducible representations of the
rotation group, Hence it is convenient to know the following facts about
spin functions and their irreducible representations (39)., There are k + 1
irreducible representations which can be formed from the ( Q ) spin func-
tions of the type S1Sgeee5. (n is the total number of spin orbitals for
n electrons; in S1Sge«+Sky an orbital assignment is explicitly designated
only if the electron has spin %). Further, k = 3n - S, MS= SZ = k, and
the irreducible representations for k%=%’are symmetric with those of k£ 4n,
The identity character of each of the kK + 1 irreducible representations is
( 2 )y ~ ( ﬁl‘ ), as long as k £ 3n, Applying this formula, one finds

that the dimension of the irreducible representation for S = MS = 0 is
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two; for S = 1, MS =1, 0, -1, it is three. One can see that such must
be the case from the following variations of the coupling of angular
momentum 1 and 1, or 1 and 0, or O and O.
12y =11910
120= 01 B+ 105 1]
[1y= 501518y lu>|> 5
DEIE
ERIP DHERS
1 23= [ 1Y 42INS + V]
DEAL I
o= |6)lay
Y= 1916

> =l I [+ I
8>=!8)l2>

From these functions, one can construct the irreducible representations

Y
' ]

) ~—

i A

- z
- = =l
'

[

]

|

"
OO [ JPN

‘{‘
o3

PRSI ¥ I,

of P(33 for functions having S = 1:

— — —

fégs - Yz %

P(35) was constructed from the vector-coupling functions for S = 1 by
calling s_, Sg and vice versa. One may work with the spin part of the
wave functions in order to learn how the permutation of orbitals ie,space
part only, alters the wave function, because the permutations Pij and
Pij’ which are spin and space orbital permutations of spin;orbitals i and
j, respectively, satisfy the relation Psij = (—1)Xpij (Relation 1). x is

the number of transpositions involved in permuting orbitals i and j, the
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numbers of their column position in any given Slater determinant., To

see that this relation is true, consider the following:

wld G - 6,0 a® & afi) - e (D Z) -

Ry | 20 GO D@ = - i@ o =f£_) 2@ i)
6, 13) EZEb : kgﬁ)gzag Iﬂiiagﬂg ﬁ§)§;55

It will be noted that P(35) involves an odd number of transpositions.

To find how the vector-coupling functions transform under
spatial rotations, one must consider the rotation of the space orbitals
explicitly as well as relation (1). Rotation of the space orbitals of the

allyl section of CB takes Pg into —p5, p. into ~-p

S 3

and p4 into —p4. Hence

02 allyl = —P(35), where P is the permutation only of the space

(35)
portions of spin-orbitals 3 and 5 throughout the wave function.
From the trace of the identity representation and of CZallyl’
we find that there are two functions of A symmetry and one of B symmetry

for the allyl portion of the CB wave function when the spin in that

2
region is 1, Similarly, for S

allyl = 0, we have one each of A and B

symmetry, To find the rotationally-invariant eigenfunctions of 82 =1,

we must find the matrix T such that:

Gn €8
- |\T/I
9 —1 | "0 -1 -1
. T 70 )= (07 Cyy T T cotimn
6] 0. a9 at left

+\ I

(Note that the column of functions are here being used to represent the

space part of the wave functions). The similarity transformation,

T V‘*M,)T" =C

2 ally| + | |
‘ | T e —
L 2 5 -1 "z zZ
is satisfied for T=['> % 7 T = 0 L4
-3 Z Iy YZ Z. z
v 1 1 o A A
2 Z Y2, YZ Yz
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The singlet functions of the eight electron model treatment of CB, having

A and B symmetry in the allyl section and S = 1 in that region, are then:

Table 3
eigenfunction energy
B(w = 3 (R0 - an o+ (2) = &£(5-w - 26 - ) A, -A], -B
B(L) =3 [ - 8 + @] =4[ -m - 28 - 5] A, -Aj-B
Ay(u) = Flan + a2l = - &+ a) A, -AlL
A, = gl®  + () = Y& - (2 + D)) A -AT,
A = 3Fao + an - a2l = Flo - -2 -a) AS,-AT,-B
A () = s+ ® - @] = g -m -2 -p)] AR -AT-B

Al and A2 are functions of A-type symmetry, B of B-type symmetry.
u and 1 denote that the upper or lower C-H bond has a triplet pair-
ing, respectively.

» (3@) (z\)/(b)
A schematic representation of the form for these same

5@, 3=+ (') - )+ (O 1x (Y 'yl
Az(f),Az(u)z %;_[ ('\l,o) + (OY,) ] X [ OY|> \Yo1
A AG- % e () +(¥) - () Tx o, ¥

It is quite evident from this schematic representation that the
coefficients of the exchange integrals, A12 and A76’ are correct in
Table 8. One of the ways to verify that the coefficients of B (=B34 = B45)
are also correct is to determine the six independent matrix elements ofgg
in terms of B only for the states (10), (11), and (12), and then to

/
transform this ;K to find 2{ for B(u), A (u) and A (1). The energies
2B =B 1 1

of the other three states of Table 3 may then be verified by replacing
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(10) by (7), (11) by (8), and (12) by (9), as appropriate.
Let us identify these matrix elements of a¥5by (i) * (j), where i,

j = 10, 11, 12, Then

()+06) (%) 00+02) AR z
=X _ [L£ 1 -1 |=T;
@M+uto) =) H*ud 2g> | V2 Z Z >
L L
(D*00) ID*Ud (D*02D 0 G 7
where T is the transformation matrix of the
states (10), (11), and (12), used to
obtain the functions of Table 3,
+ / / .
Then T HB T = o\, where ;ﬁs is the Hamiltonian matrix in terms of

B only for the functions B(u), A (u), and Al(l). Tt is the transpose of
1
To
Constructing off-diagonal elements of ég%, by use of the rule given

in Section II, we have:
(1) * (12) =3 (7-26)#(3-26) = 5(322T6 -ZTE+Y6E), uhere X¥Y - XY.
= [ (=144 +L+D Byg+ (I-[-1+D) Byl = -Bé'_r

(11) * (10) =2 (T-2 %[ (T42A)-(6+EtM)] = & (T2 2TA~ (T6
+TE ﬂm—z:rf—L/AE+2(EG+EZ’—EM)]=E[( I+

Bt Tt e +5 -1+ z)ng Hhre oty L rh-zel -1+ )qu— —E,_
Z (3 26)*{(3’+ZA)—(G+\:+M)J
X2 [ 72 23A- ( T+ TEFTM)-2T6-4GA+2(€% 6E r6 M) ]

ST Lo g -5 4h -2 )R + (542

(12) * (10)

[{]

N
+'q+Jq—-’;_+£L—;{—)+J~+L>B,IS] >

The diagonal elements have been given in Table 2, So
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il
¥ J-
3

Nk -
|
N

"

Hence the eigenvalues given in Table 3 are correct.

To complete the calculation of the spin densities on the p—protons
in CB, one must determine the coefficients, 'S}J§¥%::lg>, which appear
in the first-order expression for Yrand then compute <1+‘iiﬁ\1+> and
<1Flﬁ"q‘1}l)’ where ﬁ" is the operator giving the spin density on proton
#1 and ﬁﬁ is the operator giving the spin density on the other p—pro—
ton. The standard rule of VB theory for calculating matrix elements
for singlet states has been given in Section III and the island diagrams
which are useful in applying this rule are given in Appendix II. The
rule for calculating the spin density in the VB spin-orbital 4; is:
the matrix element of the spin density operator ﬁ for 1; between two
CS's is given by the overlap coefficient of the two CS's multiplied by
1, -1, or 0, depending on whether the orbital-4;is in the same island as
the dummy orbital and is an even (+1) or odd (-1) numbered orbital or is
not in the same island as the dummy orbital (0) (40).

. L 10
In the coefficients, 'J;}—Eggff'L;}, IO> is the ground state,

-#3 (J + M). The j's are the states in Table 3 and the state, ex

=(J - M). ex and the ground state are the wave functions of the allyl

plus phantom section having S = 0 and have B- and A-type symmetry
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respectively, Eigenvalues of these two states are Aiz + Aﬂe + B
(ground state) and As + AS B (ex) '}e is that ti

, 2 2% ex). pert 1S that portion of the
HamilHonian which involves the exchange integrals J( P22 ), JC Ps G ),
JCp3sy)s JCpear), JCpghy ), JCpghy ), JC pohy ), JC pehy ). In the
table below each of these exchange integrals is represented by Iij’
since the numbering of the orbitals (i and j) involved in any given one
of them are distinct, The use of fﬁ in this table is merely to label

the contribution from the matrix elements of the spin density operator

P to the spin density in orbital j.

il j( e 10>
<0|p\ \> i At::j where DEs= E,~Ejy

o1 Ay Ty BT
@ <olel ALy g%’z-{’? al=Eaiat
3) < ol(a l A‘(Q)>— ("7— o

@ Solpt AW= % (p-p,) 0

@ Solpl ex >= 5lpep) o

@ <olpl BOY= <o!(,\13m)>=o A

!

l

W

Direct substitution in

1> = 22 SR o1
gives eq. 4 of this section.

This result holds even if the portion of the zeroth-order wave
functions in the methylene region of CB has A or B-type symmetry explicitly.
This fact is demonstrated below, Only the non-zero contributions are

considered.,

d=m AW+ A=A

S S T T
AE, = Ao A5, + B-L(AS AT, 4AS AT )= Bar Ao Aurllyy g
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Note that (9) * (11) = (J - 2B)*(J-2E) = 3 - Z2(JB+JE) +4BE
U= D By +(-3+ 4 +-’;_—é) Bys =0
@D *(12) = (7-2B)# (T-26) = T= 2(TB+IE) + YBE
- U=l By +(h+5+ L %) Byg=o
The same result holds for @*(N@H1), as may be deduced from symmetry.

So /‘\2 (u))‘Aza’):O, <Al P’A> = "é(‘gz'>[(f)(,—Pq>+ ({31"P|)].

MPSLLL@_ = J- J-){ ~Ta + T30~ Tge + Xyn T30+ L5 Izs*I.s\
Z\2

z&E Foa
( ~T3e+T3q-Tse+Ten—T
Hence < 7“ (J r )}/ '2(- ‘sg}"" 3-: ASSU-: As’g-f A:“'z“f: l;,IZﬁL;]{((’G (7 PZ (’SJ

This result is equivalent to that of equations (4) for 136 = 156’

132 = 152, 137 =I5, and 113 = 115. For convenience, equations (4) are

repeated here:

- =T Tsetl
pu=—py = AR

- X3z +T 13 —-Tae+T
fz = —ﬂ‘ = {__Aﬁs +'%L+'é$ |s]

The conclusion then is that the spin density on the p-protons is

ald  wips

dependent on the T -electron excitation energies. It has been shown

that Q

p.’
L

Q}4 ==G&:Pa”5‘ , Where Qup.is the ESR isotropic hyperfine
¢

in the relation

Bt
splitting on P-proton number ( and is the total (to

allyl

within a good approximation) spin density residing in the allyl
section of an allyl - F - proton type fragment,
is estimated for the ﬁ-ﬁnmﬁons of MCAAICP to be 22g, at high tempera-
tures, This Q, for the cyclobutenyl - ﬁ-quoton - type radical (with

hindered rotation), is calculated to be 66.2g.
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V. THE RESOLUTION OF THE FOURTEEN VECTOR-COUPLING STATES IN TERMS OF

THE FOURTEEN CANONICAL STATES FOR AN EIGHT ELECTRON SYSTEM

The methods of the resolution of the entire vector-coupling set
in terms of the CS's as given in Table 2 (Section IV) and Tables 4 and
5 below will now be outlined, State (14) was obtained by inspection;
(12), (10), (9), (8), (7)), (6), (4), and (3) by suitable permutation
of the orbitals in states (11) and (13). The identities of Section II
were used extensively., (13) was resolved by use of identity (2), p. 10.

(11) also involved this identity:

(s3tsqXss - .
W) = 2 Usys, (55 06,0s,) — Stsadscmsgouandsn s, oo (o5 -5))

I

?Lﬁ [sssq —~8$,S3 *SgSy ~SiSyrS "N 6K -, g‘!](s's-*s'g)(sq—s‘)

TILB [(93— sNsy=5y) + (s, —s3X S'—Sq)] (se—sgXs,=5.)
= % [(S‘,—s_z)(5'3~s<,‘) +2(s,~5,Xs,~ sg)1( S‘§~Sg)(s,,— s)
+ [ T-2E]

Both identities (2) and (3) were used to resolve (5):
(5) = 4 [sgy — £(5y05005#59) + e )5, -2 (545, )(5#5) + 55, ]
< { (é—)(sa— s se-5g) - (smsg)s- s,ﬂ[(”i)(srsz)(sq-rb —(s',-sg)(sq-szﬂ
5[ (%)(s5-5,X %—sg)(S.— Q(s,,—s}('z)(g; s XSe$g)5y- 5, XS, =)
= 4 (5,-5,X 5,- 5, )X(55-52 X5~ 500 + (55X 5,75, 5~ 55 X5 - 50 |

|

H

%(I—z( : l)«lt"\ +‘{( ]

1"

STz T4l —6-B+C)=2M +4(K+M—-H-A+F)]
= —-3'- (T+2(L+C)—(6+ B+M) +4( H+A)—(K+F))]
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W), )
For the resolution of state (2), let 'H;k MLg‘refer to the total spin
L
angular momentum states of the electrons in the orbitals numbered 3, 4,
5 and 8 and 1, 2, 7, and 6 respectively. This corresponds to the numb-
) (Duy (76
ering \\//\\v// of the orbitals in the coupling diagrams given above,
L
Similarly, let j in lﬂgzhave the range 1, 2, 3, 4 and refer to the pairs
S
of electrons, (3, 4), (5, 8), (1, 2), (7, 6), respectively. Then
\ } - |1 \ ] !
(2.) = J\é'[ \ ‘>L L|>K \°>L \ o>R + "‘|>L ‘ ‘>K]
= S (s - = T34y —d,—5) =A]
ST, = W Xy ) = YT
+ L, — 4 X sy — —3,1)=B1,
] ) l>
where /Tt\ = ‘ l>j’ —’—>k= Io>k, \1/2== l-l I
Expanding A and B,
A= (_““92’3/"1 > - ("‘_’z)q/rs)— (.—ﬁlﬂ T) +(_—>'>‘l/r7~)
B = ("‘"‘9,,4‘ Ts) "("""'_9\,3/‘\«13 -—(*92)41\3)-%(—' >2>3T‘l))

L —y = ———9()3.

where
A + B= [“‘92‘3 - (~—>7,q) ]1: + [“)7.,3 - (&’\,3)]1‘4
T e O R I e S I A
= L (sg+ sg)54qL (545~ (5,501 + £ Uscr sg—=(s3+ sPT(S#83) 5,5
+L (53459 5p5 LS+ Se= (5+50] + % (S7+5.)8,0 5575y ~ (sy459)]
= % (o) 55y [05,- 500 — (5,7 51+ Uispmsg) ~ (557590 (5y#52) 5, ()
+ 4 (5,4 5¢) Ssg L(s,- $)-(s5,-s 1+ 5 (5,45 5, 1= (5 59) +isgspl
Combining the first and third and second and fourth terms of this ex-

pression we have
A8 = (D =67+ s sy (55759 = Sag (5759
Tl s) (s, -5 NE sk (575D 45, (5-500]

- (Do XeysXsrs) et s, Xsrs5s)
= (8544 Sz7 X5 5eX 8 SO H(S33+ S NSy X565 §.
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At this point, recall of identity (22 which allows one to express
[ Syt Sy~ ';_(S',H‘XS(,f-Sgﬂ(S,fSZIS{ 33)) and so on, in terms of CS's, leads
to further progress. It turns out that the term Y is given by:
V=g ‘7; (s,+5 NSy + 55X 5,-3, X5, 59) — (S¢ 5 X s+5 Xs3=5¢X 55 -5¢)
433+ 50Xs, +8,Xsc~ Sg X5,-5)— (534 5065, +5 W5, XSe=5¢) §
= 4§ LlsrseXs,-5.) — (SSe Yo, 45, 155 =5 NSy +56
+[¢ Sz 4S5 X5,-5,) - (8, +3,Xs,, - $, )] (s3tsq )(ss—s*q)}

= _}fg [+ 5y szg)j(s3+sa)($g~s<,)

206 s%) = (5,+s

17 Sen 512
FLCS, o+ Spp=5,m 530 ~ (Si2# Siq—Sae—Sey) 1 (535S 45D
== (85, X55,-5e) = — L (T — ¥, TX TV, - \Lﬂl)—_{’—“ Y.
So (2) = LT"rs § =15, — £ (55 XSyt s+ gsq] (s 38 X550 82)
FIs,e 4 (545X S2+ 55D + Sary J0s5- S X 53¢ )
5 Lo g= 4 (S3+5Xs+50) + S161(50m 5, X8 59D +2%
= i §1- 4 (5ms X5y XS5 5X5,m8) +s s, e sy 557
+L3 (Se5gX 5y~ 5 X557 35X 8= 5D ~ (57X (5575 X3y spG-5]
— T £0s55pX80=8, X5 =59 Xs)~5)- (55 Szxsq"sxxsr’sy)(%‘%)]
R TCREN CERY CRT CRSHECIIN O $,~5,Xse~5,) |

:‘?%[ %_ [ +K_F]

& (14D +N= (B+D)~(BrM+G+F+T +K+E)
+ (T+H+L+2A4+N) + (KK-F)]
= L TR(L+N+A+(D+T+ D) -AB+I+ F-M+6+E)].

Y

* Z= =[5y~ L0sgrsgXsy 504510505 55,
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Only state (1) remains to be resolved, Orthogonality between (1) and
the remaining vector-coupling states and normalization of (1) gave the
expression for (1) found in Table 4. The normalization of (1) is most
easily accomplished by use of the overlap coefficients (Appendix II) of

the seven A-type symmetry functions of Section II.

Table 4
eigenfunction energy
L _ At AT _1

(6) = (I + 2(L + C) - 2(G + B A, ~Ah By, —3B,
(5) = Lo+ 20@+0) - (G+B+M)+ 4@+ 4) - K+ P

oA L 1

A —Ag, By 2By
(4) = B - 1) -Al, -AT%, +B,, -3B,
3)=VB[E+G+M - (L+C+T+D+H +2(I+K+B- (N+ A

T -
Az ~As =By 3Byg

(2):-’@(2(L+N+A)+(D+J+H) —2(B+ I+ F) -(M + G + B)

-AT, _A;e “Byy
(1) = 5%_[-(;\ + B) 43(I + N) +3((J + M) + (G + HD + (F + ©)
~2(K + L) -3/2(D + E)] -Ay, AT, By,

All of the above states, with the exception of (1) have been
checked using rule (1) (Section II) to verify that they do indeed give the
energies indicated. By inspection of the vector-coupling functions, it is
apparent that the energies of the allyl section of the states (2) through
(6) can be associated with those of the states (7) through (13). Groups
of three states which have the same By, and By¢ coefficients are: (12%
(9), and (4); (11), (8), and (3); and (10), (7), and (2). The cases in
which the exchange integral J(ch) in a C-H bond has a minus sign (triplet

spin coupling) and those in which it has a plus sign (singlet spin coupling)
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are recognizable by inspection, The energy of (1) is also obtainable by
inspection, and the result confirmed by the fact that che trace ofzg is then
identical to that obtained by the computer for another orthogonal set of
functions, The trace in either case is: —4(A12 + A76 + B34 + B45). The
completed set of orthogonal functions is of use in analyzing other ortho-
gonal functions and their expansion properties for any eight electron sys-

tem. To the author's knowledge, Table 5 below, giving all fourteen vector-

coupling functions in terms of canonical states, has not been published:

TABLE §
TIMTATB]6[HIEDJCTFIK]L]TIN
D3F 2 | £ |-1 |- (s 2 (2201 [2]-2)13]3
0% | 5| &|B|*| & 68| B |BEE
O\ 5|3 1252855 |-B|B| B 25 F 2528
&) E NE
O] % %A = %

D

T
i
¥l

)1 B I 1 B - € B B
@5 gL
O|E |-&125] B &
D] % -4
12) & % |
(13) v |-&
:

(9
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Vi. THE INTERPRETATION OF CONFIGURATION INTERACTION IN MOLECULAR THEORY
AND CONSIDERATIONS OF THE EFFECTS OF HYBRIDIZATIONS OF THE EXCITED

STATES IN VALENCE BOND FIRST~ORDER PERTURBATION THEORY

The use of configuration interaction introduces elements of anti-
symmetry in the otherwise symmetric spatial portions of a valence bond
ground state wave function., (43). The validity of this statement is
shown in the case of the valence bond theory by the following well-known
results: (1) Interchange of any two spin-orbitals of a wave function
(of the form of ‘f below) multiplies that function by -1. With the
ground-state valence bond function expressed as the sum of Slater determi-
nants, written compactly as:

= ) (2p- e

Fe | Cabed ) (gpopaddpped |,
where the order on the expression for’# is such that a and b, ¢ and d,
etc., are orbitals of the same bond, it is clear that the interchange of
the spins of spin-orbitals a® and bp , for instance, is an operation
equivalent to the multiplication of'q'by -1. Hence the outcome of the
space permutation of two paired orbitals is multiplication by +1. (The
more general case of the relation between spin- and space-permutations
was discussed in Section IV.) (2) Appropriate linear combinations of the
canonical states of the valence bond theory are eigenfunctions of the
spin of the perfect~pairing (or electron-pair)bonds. An example of such
a spin-coupled state (q@xbelow) which is antisymmetric in its spatial
part for the orbitals a and b is:

’l;x = [ (abed ...)[euﬂs - é(«@+[sd)(dp+§sd)+(spaﬂ"v§ \ .

For such a case, the spins of the electrons in orbitals a and b form a
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triplet spin state, of themselves.

The inclusion of such antisymmetric components tends to correct
for the error inherent in a symmetrical space function, which allows for
two electrons to occupy the same point in space (43). The exclusion
principle is operative in the anti-symmetrical spatial parts, and hence
they are effective in reducing contributions to the total energy from
electron-electron repulsion. These ideas have been particularly em-
phasized by Lennard-Jones and Pople (43). It follows, by the variational
principle, that a better ground-state wave function is secured by the
interaction of antisymmetrical spatial portions of the valence-bond ex-
cited states with the perfect-pariing state.

This antisymmetry of components of the electronic wave function,
in the case of the vector-coupling functions, is concentrated in the same
regions of the molecule as that of the perfect pairing bonds, The fact
that the electrons always experience electron-electron repulsion and
doubtlessly most strongly in an electron-pair is some explanation of the
success of first-order calculations using vector-coupling functions, such
as were discussed in Sections IV and V,

The electron pair theory of molecular structure is thus seen to
be well represented in the vector~coupling theory. The concepts of the
atoms-in-molecule theory (46) are employed in the choice of perturbations
which mix the various vector-coupling states, This is particularly notice-
able in the case of the C-H fragment, of which it is argued that Lhe spin
polarization of the electron in the 1ls orbital of the proton is opposite
to that of the T-orbital because of a Hund's rule-type phenomenon (4,

17). The direction of the electron spin at the proton can be verified



55

experimentally to be opposite to that of the T -orbital (4).

The excited state to which the Hund's rule argument refers is
the 3P state of the carbon atom. An investigation to determine the
relation between the excited doublet staie of the C-H fragment and the

carbon 3P state yields:

(3F)x(ls) = I(PPOIS)(%%[‘A>\—%=>”\’1 l‘l>l—-'i§>])\
=\PPis Qﬁ?&“ﬁq%fu

= PP 19 letsrsd o )|+ peris (5 stz
(eq, 8),

where (SP) x (1ls) is the total electronic wave function formed

3

from the carbon P state and the ground doublet siate of hydrogen,

o
P =P

(in terms of Fig. 5), P=P_= et + Py,
x

Z

The first term of the sum is the doublet excited state of the C-H fragment
for the case in which the in-plane orbital is a pure p orbital., The term
IPP19) 2 stsqs) ibute - ~ - ,

B 354 ;) does not contribute to the unpaired spin density on the
proton regardless of the hybridizations of the perfect-pariing and the
excited states.

The hybridication of the excited doublet state can significantly
alter the dependence of the @ values on the in-plane hybrid angle
g -proton

9, as will be shown below. The evidence that the hybridization of the in-
plane orbital,‘ﬁ?%%gg> may be different in the excited state from that
of the ground-state is as follows, The character of (or a hybridization
peculiar to) the excited doublet state appears to be important in determin-

ing the amount of electron spin density present on the ag-hydrogen of the C-H

fragment in a variety of aromatic hydrocarbon free radicals, The hyperfine
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splitting dependence of such protons on the angle 6 (given in Fig. 5) is
estimated by conventional VB theory (44) to be 2g/°, This effect is not
observed., The Qg 's observed experimentally are:

-21,20g (cyclobutyl) (13), -22.5g (cases in which the carbon atom has sp3
hybridization) (4), -21.5g (cyclopentyl) (13),-25.7g (cyclooctatetraene
anion) (44)., Hence there is a nearly constant coupling constant Qv
between the spin of the JJ-orbital and the hyperfine splitting of the

9 -proton, both for cases in which the hybrid angle & is less than 120°
(cyclobutyl) and in which it is greater (cyclooctatetraene anion (1350)).
As mentioned on p.8 , the latter is not disqualified on the basis of non—.
planarity, because 13C splittings, which, according to standard variational
VB theory magnify out-of-plane distortions (20), show that its in-plane

o -hybrids lie in the same plane, In view of the fact that the in-plane

hybrid angle for isolated triplets is invariably vary large (12), it

seems possible that the components of the excited (intermixing) doublet,
whose effect is essentially that of a triplet pairing between the 7 and v
carbon orbitals, may affect the in-plane hybridization. To see that the
excited doublet has essentially the same effect as far as determining the
9 -proton spin density is concerned as a wave function having a triplet
spin coupling of the electrons in these two carbon orbitals, one may
subtract the second term on the right in eq. 8 from both sides. (eq. 8
is easily generalized to the case in which the in-plane hybrid extending
toward the w-proton is of the type ?%%%?instead of pZ alone). The fact
that bent-bonds accompany the large in-plane hybrid angles for isolated
triplets is apparently of lesser significance than the tendency of the

carbon atom, at which the triplet pairing is localized to exist in a
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3
state quite similar to a carbon P atomic state. Discussion of the theo-

retical analyses of the properties of isolated triplets is included in
the next section.

Possibly then, the wave function component with the triplet
pairing between the electrons of the T -orbital and the hybrid orbital
should assume more 3P atomic state character than the perfect-pairing
ground state, The failure to do this has led to a somewhat curious result:
the spin polarization of the electron on the in-plane ¥ -proton of the
C-H fragment becomes increasingly negative as the in-plane carbon hybrid is
removed -~ removed in accordance with standard concepts of hybridization
as a function of the carbon in-plane hybrid angle & (see Fig, 6 below).

The dependence of the hyperfine splitting of the @ -proton of the
C-H fragment as a function of the hybridizations of the ground state and
of the excited doublet state was analyzed using first-order theory. In
accord with the work of (44), the in-plane hybrid orbital was taken to
be:

(-2¢o5©) <
TCH-; W[(w“(l”ﬂ’ where A= Ll—kcose } .

The values of the exchange integrals involved were assumed to be:

(1) J(T,5y, ) =5 [ICw,s ) + AJCw,p )}, where J(ms )
=J( P,S ), the atomic exchange integral between the atomic 2p and 2s
orbitals; J(-n,P) = J( Px> Py ), the atomic exchange integral between
two atomic p orbitals; J(T,S$) = 2.4, J(T,P) = . 63 (44, 45),

2) J(mw,s, ) = .792, where sh is the 1ls orbital of the proton;

(8) J(sgy>8y) = -3.916.

The hybridization dependence of J( m,Sy ) and J( <z, ,S$y ) was neglected be-
cause of computational difficulties, The result of the variational cal-

culation (44) using these integrals on the C-H fragment was
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similar to that obtained by using first-order perturbation theory for
the case of identical ground and excited state hybridizations, The
dependence of the energy denominators on hybridization must be ignored
in the first-order approach, and hence the variational approach is
presumably preferable in such studies. However, using well-known
equations for calculating the spin densitiy on the proton of the C-H

fragment (4), one has:

Yegrr (exl’é?perfl ard oy

—=DE2)
gr = l(Phs)("uF‘%“&édL)‘ .
€X=|(Pkg@¢$%%tgégl,where p is the py orbital of the carbon

h is the in~plane hybrid, and s is the ls orbital of hydrogen.

h= Cu

Clpld = 25gel ot lod (g1, Ve

-Zr”<1rl lexd = -2
Ak,)<jrl;‘(’Pert|eX> I, v )- Tt s)

= % L2940 0009) - 742 (LT - 1)
< 7H‘o,,I7F>=_A (ra)(T(rch I(vrs))éz)ls(o)\ w&s@f
S, a"”vl,— - (3T, WDAE ?‘(ms)) (&y =SO. (‘j)

Q (\+ 2 J). This equation is graphed as Case (1)
cHUb AE A
below,

For comparison, let
A od -
ex=1(ppys) ‘LP%——&MQ—\.

ex has the hybridization of the 3P carbon state in this case. Then
A
(-’U'fs')<3r l @Hlex> = -2 YT

Tlrge,) = § pl> SRRAD- b)) nd- e )
T, 19= § p(l) 15&) ﬂg%@;}e oot PO Is0pA) dTd T d T,

= v (712
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< (@(3_@_)%1-)30 eﬂlrix>-= Y’FT ():7— ,742) = ,,r_._ (=, 10)
= _;I_ )\ (-,
Uen,,= A, ,1‘» )= (case (2.

Cases (3a), (3b) have the hybridization in the excited state ex given

ex = | (Pla/s)( A3 +d?gl —;(,@o(d )‘

by
where h' = ‘Xl(ﬁs+)\(sz)),)\, =3, 4 for Cases (3a), (3b), re-
spectively.
(a13) <qrl gy lexy = RUEND
gridleo = e
T(W)OE#) ,(P(DM J(peré P@) ﬁ"%%}(_')——dfrd’t
= T(p,sw/\A’T(p\pr _ 249 +AIN 669
Tx Yrave e ry ol s i

J(ms) = gp(!) Is(z)—(iiréﬁi_x-l) Hpert p 35&)_(;’_&7!%_)& 2 d1,d,

AN
JZTT, H) )‘T’jil"‘TunebleCtlng three-center integrals,
'

= TR T

((e)=42(|+MX) (13
So <7H/DH’2P> (— ) Q\j}'t%\\)f YT T ( 3Y‘><_7L-;/\;¥\I~)%TE;
= AE A= T(a9) + W 6)-,752(14)] (f;ﬁz—)%m)

For =3 <\‘HIS‘ ¥y = - N [I 6l - OSOG/\][‘L&%—] (Case 3a);
/\/_4 <A )f,,l’f’) = —Z——f%‘lf’ a6 A= H—,\x (Case 3b).

<"‘H{)H 11')for these four cases is graphed on page 60 (Fig. 6),

The information given on the graph is also contained in the table

below:

p = < -proton spin density, (ratio: p/p at® =120
A © Case (1) Case (2) Case (3a) Case (3b)
0 90" 1.6, ... Ocyunoe .16, ... .07, ...
T |101.5° 1.03, (.59) -.033, (.86) .289, (.73) .12, (.769)
1 109.5 ° 75, e 2 05, eee 0262, et seseneees
Z |120° 44, (1.) -.067, (1.) .192, (1.) .092, (1.)
3 | 127° .32, ... S 075, wer eeseenense eaeeenees
2 132° .24, (1.83) -.080, (1.19).14, (1.37) .057, (1.61)
3 145° 07, ... -.090, ... .07, ... L021, ....

Note: ©' = 145°, (153°) in Case (3a), (Case (3b)).
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Case (2) would imply a spin polarization of the electrons at the proton

in the same direction as that of the Ti-orbital, contrary to experiment

( AE; > 0). One still obtains a positive spin density on the proton in
cases 3a and 3b, where the Zg/o dependence of a"v on © has been decreased
to 1g/o and l.3g/o, respectively. Thus a considerable variation with the
excited state hybridization has been found in both the size and

e -dependence of the < -proton spin densities,

From the foregoing discussion on the significance of configurational
interaction using vector-coupling functions and the effects of intraatomic
electron correlation as exemplified by the study of the C-H fragment above,
one can see extensions which should be made in the extended valence-bond
theory as discussed on p. 9 of Section III. Vector-coupling states with
a triplet spin coupling of electrons in the electron-pair bonds would
reduce the inaccuracy arising in the extended VB ground state wave func-
tion due to neglect of electron-electron repulsion., Suitably perturbed,
they also account for the presence of an unpaired electron spin density
of B —and O -protons. With the use of orthogonal bond orbitals, in
addition to the orthogonal characteristics of the vector-coupling func-
tions themselves, a configurational interaction, within the precision of
the extended VB theory, would be considerably less difficult than that
envisioned for the canonical states (22). The use of variational para-
meters which are dependent upon whether the bond has a triplet or singlet
pairing is feasible; a method has been given by Lowdin for determining
the matrix elements of the Hamiltonian for two Slater determinants in

which the bond orbitals for a given bond are different (47),.
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VII. THE EXISTENCE OF A NEW ESR SPECTRUM SOURCE IN IRRADIATED BENZENE:

A CONCLUSION BASED PRIMARILY ON THEORETICAL CONSIDERATIONS

The work of Fischer and of Ohnishi, Tanei, and Nitta on the free
radical derivatives of benzene and various substituted benzenes (toluene,
chlorobenzene, benzenecyclohexane, benzoic acid, xylenes, ethyl benzene,
cumene, and fluorobenzene) has revealed the existence of two distinct
radical species for benzene, only one of which is also characteristic of
the related compounds (38), (48). The common radical produces an ESR
spectrum, consisting of a triplet of splitting 50+2g on which is super-
imposed a quartet of splitting 10.6g, itself subdivided into a triplet
of splitting 2.6g. Values of 47.5g and 45g have also been given for the
major triplet splitting. This spectrum has been attributed to the cyclo-
hexadienyl radical with the splittings, in order of decreasing magnitude,
assigned to the following.equivalent sets of protoms: the methylene, the
ortho and para, the meta, Estimates of the magnitude of the spin density
on the methylene protons indicate that this assignment is correct. The

results of two sets of calculations are given below (12), (28):

IC
Meth—COrtho spin density of orbital
Theoryl Qa |Qg | distance methylene g - proton ortho meta para
)
(1) 26 38 1.54A first order .482 .585 |-.274
(2) A " " .400 |.400 [-.100
(3) " - " . 086 .508 |.551 |-.291
(4) .. 1.39A .180 ,495 | .507 |-.281
The Q applied in (1) and (2) was unsuitable, as has been demon-

é

strated by this thesis since it was derived for the TL-P—proton fragment
with hindered rotation of the p—protons (16). The spin densities in the

orbitals for (1) and (2) were obtained by use of the VB and MO theories,

respectively, In (3) and (4) the VB theory with a reduced set of CS's

3

and sp” hybridization of the methylene carbon was employed,
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The noteworthy point is that even if the spin density on the ortho

1M -orbitals were to drop as low as .04 units for some cyclohexadienyl-
like structure, one should detect a methylene triplet of separation “ 6g.,
Hence it is not surprising that Ohnishi et.al. labelled their second benzene
radical spectrum (a singlet of 25g) as due to the phenyl radical rather
than to cyclohexadienylidene (IV). Either would qualify on the basis that
the spectrum exhibited the characteristic of a triplet, in that it per-
sisted at higher temperatures than the more elaborate one previously

described (49).

o

However, their assignment of the singlet spectrum to phenyl is
questionable on the basis.that the in-plane 7 -orbital of the divalent
carbon should induce a large T -proton-type spin density on its neigh-
boring in-plane < ~protons. This is easily shown by valence bond calcu-
1ations (28b) (there should be a 21g splitting for spz divalent carbon (50)
and appears to be confirmed by the triplet splitting (lSiZg) observed by
Tolkachev et.al, on a radical derivative of phenyl iodide and by the mag-
nitude and numbers of components observed in the hyperfine structure of

the following ground-state triplet molecules:
[ ] [

H H H H a ¢ B

I¥e Irb IXc Trvd
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IVa produced a triplet of magnitude 8z; IVb and IVd a triplet and doublet,
respectively, of 10-12g (52), 1IVc significantly produced a singlet, Such
a result can be interpreted to mean that the triplet is mainly localized
on the divalent carbon and direct interaction between the appropriate in-
plane orbitals should be detectable by a large splitting.

Other work by Wassermann and his colleagues also points to a locali-
zation of the in-plane '"component' of the triplet, with delocalization of
the w-"component”, D zero-field splittings of order .4cm_l, indicating
appreciable one-center interaction (53), have been observed in the

following compounds: Zfluorenylidene (Va), cyclopentadienylidene (Vb),

B 0

D= .4078 ew! - 4084 .3771

indenylidene (Vc).

E = ,02%3 0120 .0 60
Low E values in Vb and Ve are attributed to increased delocalization
(unfortunately, the hyperfine structure on Vb was not reported though

a spin density of .26 units was estimated to reside on C, and C4). Hence,

3
it seems one can rule out cyclohexadienylidene on two counts,

Other possibilities (though quite remote) are an excited triplet state
of benzene or an anion, Characteristically, these two species of an aro-
matic ring compound give similar and detectably large spin densities on
in-plane hydrogens (54); but even if these two states were distorted
variously, we would still expect at least one doublet splitting. A simi-

lar consideration eliminates a complex between a phenyl and benzene mole-

cules such that a proton is shared equally (VI).
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A further case is of course the presence of an impurity, such as oxygen
with a ground state triplet, However, it is most unlikely that one would
see EPR absorptions by O2 dissolved in organix solvents in the usual
magnetic resonance setup (9.5 Gec at 3400 Oe) (41). Higher frequencies
would be needed (41),

It seems worthwhile to consider the products of the radiolysis of
liquid benzene in order to ascertain their precursors, which may be common
to both the liquid and solid states. The major products were: bicyclo-
hexadiene, phenylcyclohexadene, biphenyl, and terphenyl; the fraction of
compounds having twelve carbon atoms was 18,8%; 18, 57.6%; and higher,
23.6% (57). There is evidently a good possibility of ¥ ~irradiation
striking the same molecule twice in the course of an irradiation. Hence,

further possibilities for the unidentified source are:
O > D
T a b il

VIIb should go quickly to VIIa or ViIc., VIIc (benzyne) is highly reactive,
becoming phenyl or benzene with the addition of the appropriate number of
hydrogen atoms,

The disappearance of the cyclohexadinyl spectrum at a temperature
(—3200) considerably below the melting point of benzene (5,50C), with its
replacement by the singlet spectrum, may indicate that motion due to

rising temperature has allowed cyclohexadienyl to borrow an additional
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hydrogen atom from its neighbors. If so, the concentration of both phenyl
and VIIa should rise. The singlet spectrum does not corroborate the
presence of either,

Known cases in which an ESR singlet spectrum has been observed are
in the charge~transfer complexes involving organic acids (58). However,
it is difficult to see what charge-transfer complex is involved in the
case at hand,

The foregoing comments were presented as a further illustration of
the usefulness of simplified VB theory calculations of spin densities in

free radicals.
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SUMMARY AND CONCLUSIONS

For the case of hindered rotation of the methylene /s—protons in
cyclobutenyl, the variational valence bond calculation, using a large
number of exchange integrals gave an appreciably lower estimate of the
electron spin densities on the p—protons that does the first-order
calculation, This situation, however, was seen to be the reverse of the
results obtained using the two methods in calculating the spin densities
of P—protons which are adjacent to a T -orbital in a long-chain
polymer., The first-order calculation, which agrees with experiment, was
given in this thesis; the variational calculation was deduced from re-
sults previously applied to the calculation of the spin densities of
p -protons which are adjacent to an allyl section in a long-chain
polymer, The original calculation (on the long-chain polymer with a
,3 ~proton-allyl section) was applied since in it the effects of two of
the three TI-orbitals of the allyl section on the # -proton spin densi-
ties were ignored until a multiplicative constant, the spin density of
the terminal TY-orbital of the allyl radical, was introduced as the very
end.

It was further demonstrated that the spin densities of the ﬁs—pro-
tons which are adjacent to an allyl section, whether it is present in a
long-chain polymer or part of the cyclobutenyl radical or any other aro-
matic hydrocarbon, are dependent on the 77 -electron excitation energies
of the allyl section. This result was in accord with experimental results,
which enabled one to make a comparison between the hyperfine splittings of
the ﬁ—protons of a long-chain polymer which are adjacent to an allyl

section and of those which are adjacent to a single T -orbital, The
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effect of the contribution of the - -electron excitation energies is to
reduce the size of the hyperfine splitting.

Expressions were obtained for all fourteen vector-coupling states
of an eight electron system in terms of canonical states, The latter
were found to be especially amenable to computer computations, as indi-
cated by the program given in Appendix II.

The reasons for the suitability of the use of the vector-coupling
functions in configuration interaction was discussed., A case was given
in which the hybridization of the perturbing excited state, different
from that of the perfect-pairing "ground" state, alters the magnitude
and dependence on hybrid angles of a proton splitting. The particular
system considered was that of the C-H "fragment'., The use of such distinct
hybridizations, dependent upon whether two electrons have a singlet or
triplet spin coupling, corresponds to having the antisymmetrical spatial
components (triplet) of the ground state wave function somewhat differently
distributed in space than that of the symmetrical spatial components
(singlet) for electron pairs,

For the radical in irradiated benzene giving the singlet spectrum,
it was concluded that all radicals, thought most likely to be present,

would not give such a spectrum,
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APPENDIX I, A COMPUTER PROGRAM FOR COMPUTING THE SPIN DENSITIES OF AN
EIGHT (OR LESS) ORBITAL SYSTEM USING THE EMPIRICAL, NON~OVERLAP VALENCE

BOND THEORY

The computer program below was designed to calculate spin densities
according to the non-overlap, empirical VB theory for an eight electron
(one phantom) system. Orbital number 8 was chosen to be the phantom.
The program was divided into three separate smaller programs, with the
information of Parts I and II being introduced as data in the final
Part 111, The three parts could be made into one entire program with the
removal of the parts within dotted lines and other minor adjustments,
The more general dimension statements are:

B((r%}" ,5n), G((%O[ , #n), KC(j), A(n,n,j), HH(j), RHO(n-1), H(i,i),

-1
U(i,i), D(i), where i = n![(%)f_(ﬂi-"l)!], j = i(i - 1), n is the
2

IR

The values of the exchange integrals were introduced (line 12a below)

number of orbitals = N; RR = i, MMR = j, MF

i

according to the numbers of the orbitals involved, with J(i, j) before
J(i, j+1), and J(i,j) before J(i - 1, j).

The program may be outlined as follows:
1) First, all permutations of the even integers between and including 2
and n were generated. Each integer of an even-integer permutation was
associated on the basis of its position, as counted from left to right,
with the odd integers between and including 1 and (n-1), Only one order-
ing of the odd integers was allowed, the one 1 3 5 eeo{n-1) ( = 21 =1,
where I = 1,2,3, ...). This correspondence of the even integers to the
odd integers is exactly that of the even and odd integers labelling or-

bitals in the Rumer diagrams, in which lines are drawn between even-numbered
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Hence we have all the canonical states

. v =1
represented and a few extra Rgn)l —n! ((%)l(ﬁﬂ47!) ]crossed structures,

interspersed with them (at this point).

The permutations of the even integers were obtained as follows:

\J

-

a) A matrix of size X X((%DDcontaining the ordering of even integers,

246 ,.,. n, across all its rows was constructed (line 1).

b) Then in one-half of the rows the integers n and n-2 were permuted,
The second half remained unchanged. Next the two halves were
each subdivided into thirds and the following permutations con-
structed:

2 4 n-4  n-2 "N 2 Y n n-2 WT‘I
i ; , n—; H{Z % i 4 “% i "jl
, n%4 w{l % . ' . niq nil %
héq n niz — : < n}z ;1 n;q
2 4 n_:‘l n w:—Z. 2 4. 3 h:-q v}—z M
i 4 wid v owez 2 4 n-4 m w-2

c) The pattern indicated was continued; each time a new number,
located one column further to the left, was introduced by all
possible single interchanges (or no interchange) between its
position and the position of the integers to its r£ght. In
this way all (g)’ distinct permutations were generated (line (2)
to line (3)).

Simultaneously, a matrix containing all possible ways of adding in 2's

was constructed to be used later in calculating the overlap coefficients

(the Q matrix elements) of every pair of CS's, Between lines (5) and (6),

the rows of this matrix were tested and arranged so that only rows, in

which the integers to the left were each greater than or equal to the
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integers to the right in the row, were present in the initial rows of

this matrix,

2) The next problem was to sort out and to "remove' the non-canonical
states, This was accomplished by noting that all CS's could be written
in terms of nested ''blocks' of integer intervals, with all larger "blocks"
containing one or more smaller blocks of variable length, These blocks
are defined by the following technique: arrange the integers from one to
n thus: 1 234567 8 (n= 8, for example), Then draw lines between
every two integers which correspond to the orbitals between which lines

are drawn in a given Rumer diagram (for a CS only). Examples are:

— —
| 23 4 S b 178=

\ =1 i 1 T
‘zaqsmgr—_[/
[ //

]
1}
N

—

The test which will check the integer intervals indicated by the
even-integer permutations are properly structured and exclude those which
are not, is given from line (4) to line (5),

3) At this point, the CS's having been constructed and isolated, the
calculation of the matrix elements of the éﬁ and QZmatrices begins, For
both matrices, it was necessary to determine whether two orbitals lay in
the same island, or on an unbroken line chain of the superposition dia-
gram of the two CS's involved. (See also Appendix IT.) 1In addition, it
was necessary to know, for the computation of ?g; , whether they were
both at odd (even) numbered sites or not, i.e. whether they were both at

odd (even) numbered sites or not. The technique employed was essential-

1y to work through each of the odd integers in succession (1, 3, 5, ...)
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and to determine the extent of the island in which the orbital, to which
the odd integer corresponded, lay., A three-dimensional matrix (A) was
used to record whether two orbitals were in the same island of a given
superposition diagram and what coefficient should be assigned to the
exchange integral between any two orbitals, on the basis of rule (1),
Section II (lines (8) through (9)).

The information as to whether or not any given pair of orbitals
occurred in the same island was stored separately in A; from it the
total number of distinct pairs of orbitals within some island of a given
superposition diagram was determined (lines (8) through (9)). (This part‘
of A also contained the information as to whether an orbital lay in the
same island as the phantom orbital, which was used in phése (5) below),

For any superposition diagram, this total number of in-island pairs is

N (ng-1)
21 fé"i—aj , where n 1is the number of orbitals occurring in any given
t={sland i

island i. The total number was then compared with the matrix (G) contain-

ing all combinations (ordered as previously mentioned) of even integers

whose sum is n. The integers Z}lki%fj> , where the summation is over all
[
columns of any given row of G and n is the even integer appearing in
c

column c, may be uniquely identified with the numbers Ef-lhiﬁ%;i>-
¢=isiand

One proof that this identification is unique is: Assume that there

were two possible choices, Then

2

2
But M, + + i n, + MJL "

n2

h._“la.+n

2
P +--..+ .z_ R 2_ N -
Y)u e ~Nea Yl”) n'b+ su L

2 2 2 _ 2 2
n + + ... s o= S SRV B
Thus "y, Vlz + “L )1, + AL

which is true
3y

when (1) holds only when Y‘l,kf- Y!,b‘)' “Z:\: le‘; A V‘(k: ”"b'
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In lines (10) through (11), the matrix elements of g?,zx‘n, were calcu-
lated, using G and the numbers Z—m(—*‘,-t‘—’z

t
4) Suitable values were than introduced for the exchange integrals (line
1la), and the eigenvectors )_(/and eigenvalues E such that j;ﬁ &= EQ 2‘,
computed (lines {12) through (13)). The subroutine EIGEN used two Jacobi
diagonalization procedures to determine the eigenvalues E and eigenvectors

X.
o~

5) The coefficients of the CS's in the ground-state wave function, the
overlap coefficients of thg CS's themselves, and the information as to
whether an orbital lay in the same island as the phantom orbital, were
then used to compute spin sensities for the various orbitals, according

to the rule given in Section IV on p. 15 (lines (14) -~ (15))).
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PART 1

DIMENSION B(24,4), G(24,4)

INTEGER B, G

INTEGER MOV, C, PT, PTV, RR, SS, P, RD, BC, BOV, GRl, GR2, P, V,
X T, EL1, EL2, SW, S, AB, BB, R, AP, BP, QR, EEl, EE2
N=8

M=4

RR=14

IPAR=5

MMR=105

MF=24

LOGICAL X, Y, XX, YY, X1, Y¥l, XX1, YY1l

DO 3 K=1, M

DO 3 J=1, MF

B(J,K) =0

B(J,K) =2%K line 1
G(J,K) =2 line 2
I =1

V = MF/(I+1)

GO TO 4

I = 1I+1

IF(I.GT,(M-1)) GO TO 7

V= V/(I+1)

LL = MF/(V¥(I+1))

DO 5 K=1,LL

L =I+1

DO 5 J=1,L

DO 5 T=1,V

MV=T+ V¥ (J-1+ (K~-1)%(I+1))

M =M-I

EL1 =B(MV,LM)

LN =M+1-J

EL2 =B(MV,LN)

B(MV,LM) =EL2

B(MV,LN) =EL1

IF(IM.EQ,ILN) GO TO 5

ELL =G(MV,LM)

EL2 =G(MV,LN)

G(MV,IM) =EL1 + EL2

G(MV,LN) =0

CONTINUE

GO TO 6

CONTINUE line 3
ELIMINATION OF CROSSED STRUCTURES

DO 14 I =1,MF line 4
LL=M-1

DO 14 J = 1, LL

L=Jd+1

DO 14 T =L, M

1P = B(I, J)
IPTP = B (I, T)
IPT = 2%T-1

IT = 2%J-1
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358

336
332

335
333

17

18

19
15 __
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1322

|
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X = IP,LT,IPT
Y = IP,LT,IPTP

XX=I1T.GT, IPT

YY=1T,GT, IPTP

X1=IP,GT, IPT

Yi=IP.GT.IPTP

XX1=IT, LT, IPT

YY1=IT, LT, IPTP
IF(((Y1.AND,YY).AND, (X,AND.XX1)).OR. ((X1,AND,Y1).AND, (XX1.AND,
YY1)).0R, ((X.AND,Y).AND, (XX1,AND,YY1))) GO TO 14

B(I,1)=0 line 5
CONTINUE

DO 322 IN=1,2 line 6
LR=RR

IR(IN.EQ.,1) GO TO 333

LR=IPAR

L=M-1

DO 358 I=1,L

DO 358 R=1,MF

GR1 =G(R,I)

GR2 =G(R,I+1)

IF(GRL1.LT.GR2) GO TO 336

GO TO 322

G(R,1)=0

DO 335 I=1,MF

DO 335 J=1,M

B(I,J)=G(I,J) line 7%

DO 15 I=1,LR

IF(B(I,1).NE,0) GO TO 15

I=1T+1 ’

DO 17 R=L,MF

IF((B(I,1).EQ.0).AND, (B(R,1).NE,0)) GO TO 18

GO TO 15

DO 19 K=1,M

EL1=B(I,K)

EL2=B(R,K)
B(I,K)=EL2
B(R,K)=EL1
CONTINUE

FORMAT (1X,4I13) !

WRITE (6,160) ((B(I,J),J=1,M),I=1,MF)’
STOP '

END (

mmem e — e - — -

e o e - e m e e mm e e = e aEEm e e e e o o —w- — 4

*For the use of the results of this part in Parts 1L and I,
information on B must be stored prior to this operation.
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1001
556
66
62

64

69

65
265

76

PART II

N=8

INTEGER MOV, C, PT, PTV, RR, SS, P, RD, BC, BOV, GRl, GR2, P, V,

T, ELl, EL2, SW, S, AB, BB, R, AP, BP, QR, EEl, EE2

DIMENSION KC(4), B(24,4), FIS(4)
DIMENSION G(6,4)

INTEGER B, G

MMR=5

MF=6

M=4

READ (5,1000) ((G(I1,J), J=1,M), I=1,MF)
READ (5,1001) (KC(I),I=1,MMR)
FORMAT (721I1)

FORMAT (2612)

s=1

R=1

IP=G(R,1)

IF(IP.EQ.0) GO TO 69

8S =0

DO 64 I=1,M
$8=(G(R,I))*(G(R,I)-1)+SS
IKC=2%KC(S)

IF(IKC.EQ.SS) GO TO 65

R=R+1

IF(R.GT.MF) GO TO 100
GO TO 62

I=0

I =1I+1

IF(I.EQ.M) GO TO 70
GR1=G(R,I)

GR2=G(R, I+1)
IF((GR1,NE,0).AND, (GR2.EQ. 0)) GO TO &7
GO TO 265

KM

GO TO 83

K=1I

FIS(S)=0,5%*(FLOAT(M~K))

S=S+1

IF(S.GT.MMR) GO TO 671

GO TO 66

DO 675 S=1, MMR ~
WRITE(6,77) (S,FIS(S))
FORMAT(1X,///2HS=13,4X,4HFIS=F8.6)
CONTINUE

WRITE (6,960) SS

FORMAT (1X,21I3)

T T T T T T

line 10

line 11
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PART 11X

INTEGER V

V=0

LUCK =12

DIMENSION B(24,4), G(24,4)

DIMENSION A(8,8,105), FIS(105), HH(105), RHO(7), KC(105),
- _ X HQ4,14), U(14,14), D14 _ _ _ _ _ e e e
' N-8 T B
' INTEGER B, G |
I LOGICAL X, Y
| INTEGER MOV, C, PT, PTV, RR, SS, P, RD, BC, BOV, GRl, GR2, P, |

X v, T, EL1L, EL2, SW, S, AB, BB, R, AP, BP, QR, EEl, EE2 |
| RR=14 '
| MMR=105 |
l MF=24 |
| M=4 |
READ(5,500) ((B(L,J),J=1,M),I=1,MF), ((G(T,}),4=1,M),1=1,MF)__ |

500 FORMAT (16(411,1X))

€C  IN INSLAND CHECK., SIMPLE ISLAND (TO LINE 33), SAME SPIN AND

CC  MIXED SPIN ON A (37 TO 50).
DO 21 S=1, MMR line 8%
L=N-1
DO 23 J=1,L
LL=J+1
DO 23 I=LL,N

23  A(1,J,S)=-.5
DO 21 I=1,L
LL=I+1
DO 21 J=LL,N

21  A(I1,J,8)=0.
DO 440 J=1,RR

224 L=RR+1-J

DO 140 K=1,L
DO 140 I=1,M
AP=2%I-1
BP=B(J,I)
LP=K+V

26 A(AP,BP,LP)=1.0
A(BP,AP,LP)=1,0

140 CONTINUE
V=RR+1-J+V
440 CONTINUE
L =RR-1

DO 30 K=1,L
V=K*(K+1)/2

LP=MMR~-V+1
DO 30 J=K,L
V=V+J
QR=MMR+1-V
ILM=N-1

DO 30 K=1,1M
LL=K+1

DO 30 J=LL,N
IF(((A(K,J,LP)).EQ.(1.0)).0R. ((A(X,J,QR)).EQ. (1. ))) GO TO 460
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GO TO 30
460 A(K,J,QR)=1.0
A(J,K,QR)=1.0

30 CONTINUE
S=0
IR=RR-1
DO 36 C=1,1IR
IL=C+1
S=S+1
DO 38 MOV=IL,RR
S=5+1
IM=N-1
DO 38 PT=1,1IM,2
K=(PT+1)/2

49 R=1
BC=8B(C,K)

41 BOV=B(MOV,R)
IF(BC.EQ,BOV) GO TO 42
R=R+1
GO TO 41

42 LR=2*R~1
IF(LR-PT) 43,38,44

44 A(IR,PT,S)=-2.0
A(PT,LR,S)=1.0
GO TO 146

43 A(PT,LR,8)=-2.0
A(LR,PT,S)=1.0

146 LL=(PT+1)/2
EE1=B(C,LL)
EE2=B(C,R)
IF(EE1-EE2) 45,38,46

46 A(EE1,EE2,8)=-2,0
A(EE2,EE1,S)=1.0
GO TO 145

45 A(EE2,EE1,S8)=-2.0
A(EEl,EE2,5)=1.0

145 MM1=PT
MM2=B(C,R)
IF(MM1-MM2) 47,38,48

48 A(MM1,MM2,S)=1.0
A(MM2,MM1,S8)=1.0
GO TO 147

47 A(MM2,MM1,S)=1,0
A(MM1,MM2,S)=1,0

147 PTV=R
K=PTV
GO TO 49

38 CONTINUE

36 CONTINUE line 9
READ (5,701) (FIS(S),S=1,MMR)
S=1
DO 679 J=1,RR



679

701

183

134

71
72

132

89

75

131

137
76
192

79

79

DO 679 I=J,RR
U(J,1)=0.0
FJ=FIS(S)
U(J,1)=FJ
S=S+1

CONTINUE

WRITE (6,183) ((U(I,J),J=1,RR),I=1,RR)

FORMAT (7F10,8)
DO 135 I=1,LUCK
FORMAT (1X,14F9.6)
WRITE (6,134) I
FORMAT (2X,5HLUCK=IS)
LI=N-1
DO 71 I=1,LL
I=I+1
READ (5,72) (A(I1,J,1),J=L,N)
FORMAT (7F10,8)
DO 132 S=2,MMR
I=N~1
DO 132 J=1,L
LI=J+1
DO 132 I=LL,N
A(J,I1,S8)=A(J,I,1)
DO 75 S=1,MMR
HH(S)=0.0
I=N-1
DO 75 J=1,L
LI=J+1
DO 75 I=LL,N

A(J,I,8)=A(I,J,S)*FIS(S)*A(J,I,S)

HH(S)=A(J,1,S)+HH(S)
CONTINUE

DO 76 S=1,2

WRITE (6,131) S
FORMAT (1X,2HI=I3)
IM=N-1

DO 76 I=1,IM

L=T+1

WRITE (6,137) (A(I,d,S),J=L,N)

FORMAT (1X,13F10.7)
CONTINUE

S=1

DO 79 J=1,RR
DO 79 I=J,RR
H(I,J)=0.0
H(J,1)=0.0
FJ=HH(S)
H(J,1)=FJ
S=S+1
CONTTIWUL

line 12

line 12a
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WRITE (6,183) ((H(I,J),J=1,RR),I=1,RR)
CALL EIGEN(H,U,MMR,RR,D) line 13
XX=,0 line 14
DO 211 I=1,RR
211 D(I)=U(I,1)
212 S=1
DO 179 J=1,RR
DO 179 I=J,RR
U(1,J)=0,0
U(J,1)=0,0
FJ=FIS(S)
U(1,Jd)=FJ
U(J,I1)=FJ
S=S+1
179 CONTINUE
213 DO 214 I=1,RR
DO 214 J=1,RR
214 XX=(U(I,J))*D(I)*D(J)+XX
IL=N-1
DO 133 K=1,L
DO 92 S=1,MMR
IF(A(N,K,S)+0.500) 90,106,90
106 A(X,N,S8)=0.0
GO TO 92
99 IF(MOD(K,Z)QEQ.O) GO TO 93
A(K,N,S)=FIS(S)
GO TO 92 _
93 A(K,N,S8)=-1,0%FIS(S)
92 CONTINUE
S=1
DO 94 J=1,RR
DO 94 I=J,RR
H(I,J)=A(X,N,S)
S=S+1
94 CONTINUE
DO 95 J=1,RR
DO 95 I=J,RR
95 H(J,I)=H(I,J)
RHO(X)=0.0
DO 96I=1,RR
DO 96 J=1,RR
96 RHO(K)=H(I,J)*D(I)*D(J)+RHO(K)
RHO(K)=RHO(K) /XX
WRITE (6,99) K,RHO(K)

99 FORMAT (1X,4HRHO (,13,3H) =,F10.7)
133 CONTINUE line 15
135 CONTINUE
100 CONTINUE

STOP
END
*The number 671 should be inserted atd(line 8) if Part 1L added.
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APPENDIX II. THE PAULING SUPERPOSITION DIAGRAMS FOR THE FOURTEEN CANONI-
CAL STATES OF AN EIGHT ORBITAL SYSTEM; A TABLE OF OVERLAP COEFFICIENTS
FOR THESE SUPERPOSITION DIAGRAMS; AND A TABLE OF OVERLAP COEFFICIENTS

FOR THE SEVEN FUNCTIONS OF A-TYPE SYMMETRY DISCUSSED IN SECTION II

The 132 distinct Pauling superposition diagrams of the fourteen
canonical states possible for an eight electron system are given on
the next three pages. The Rumer diagrams of the fourteen canonical
states were given on p. 12, Their superposition diagrams will be
labelled Y and %, where Y and Z are the two canonical states involved.
The diagrams give x in rule (1) of Section II, since X is also the
number of "islands''. An "island" is defined as an entity composed of
all orbitals, which are connectéd by an unbroked chain of lines in the
superposition diagram. These lines are the composite collection of
those present in the initial Rumer diagrams of the two CS's, prior to
superposition. (A double line between two orbitals in a superposition
diagram is usually written as a single line, but it is nevertheless an
island.) The version of rule (1) applicable to superposition diagrams
is:

{Ylje[iz>=zx_ngQ+%’[Z(siﬁgle exchange integrals between orbi-

tals which lie on an unbroken chain of lines (the "island")

and are an odd number of linkd (lines) apart) - stingle ex-

change integrals between orbitals lying on an unbroken line

chain and which are an even number of links apartﬂ - %(all
single exchange integralsi}

The overlap coefficients of the canonical states are also given in
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Table E below, This table is followed by Table F, which contains the
overlap coefficients for the seven A-type symmetry functions of Section

II. Both tables are symmetric across the diagonal,
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APPENDIX III, WELL~KNOWN EXPRESSIONS FOR STATES WHOSE TOTAL ANGULAR
MOMENTUM J IS EQUAL TO THE VECTOR SUM OF ANGULAR MOMENTA J1 AND Jg 1IN
TERMS OF STATES WHOSE TOTAL ANGULAR MOMENTUM IS J; AND J2, RESPECTIVELY

The notation is > ‘T > \Tz >

5 3
=% ,d=2,d, =1, for

]) The expression for the J=3 state

is found as follows:

_L

|3+ 15)10]
> >+V@] >f >+13>‘:>]
>

~ N
"
)
sl »M\w

o nhq blanigPinet

fl
Sla
Ty

i

N
"
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":{,, oot plt

N NS
i

whp

E LI -8B +& 13

The expression for the J:% state for Jl =1, Jg = %4 is obtained as follows:

33111
13y =& 0] idE) + DI

M"‘"-" e~
"

11)= FLIDIEY -=]1D15Y]
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The J = 4, Jy = Jg =2 state is known; find an expression for the J = 0

state in terms of states whose total angular momentum is Jq = Jdg = 2.

|6y=12)1%)

[4Y ==l I DID+1DID]

19y = & [5125125+ 2z V) D) +131 221 50]

14y = w1 AY +r (15]2) + 1 ID) + 12N D]
195 = 7 L1251 30+ 12 25+ 4(1IR)+(2)13) I DIB]

135 = &1 -]
1= % (155 -5 2]
12Y= L[ BEMEUDIH-END -1ED]
135 = & [2] 301352150 T+ B - 132

y_

~

i i

2y 12 12)12)- B DID + B 151D
Dl (125135 +1358)-a (DI DID]
L1312 1] D1 DIBHDIE-191D]

R

[1Z253)+ 8 (130 %- 15130 - 155 2]
<[ |

| 1)
| &) 1 23| BN - 123 55+ 2 (150150 -1 ].2)

oo
3 -

19) = L1 Z5IBS -1 503 %) 1201 5+l D)]

(e}
This ’o> applicable to vector-coupling state (1).

"ﬁ
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