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SUMMARY

In Part I a method for calculating the effect of changes in the
variables temperature and pressure on the reaction yields of chemical
systems not at equilibrium is developed. The method circumvents the
exact solution of the differential rate equation by expanding the time
derivative of the progress variable about its equilibrium value and re-
taining the linear terms. The equations are valid near equilibrium and
comparisonswith the results obtained by exact solution of the rate
equation show good agreement., Much economy of algebraic labour is
achieved at small cost in accuracy., The method is extended to systems
of competing reactions but the results do not appear to be very useful.
In addition the ease with which some other questions may be answered is
illustrated,

In Part II an equation for the calculation of equilibrium pres-
sures and phase compositions for non-ideal systems is derived. Conformal
solution theory is applied to the liquid phase and a second drder virial
equation is employed in the description of the gas phase, Calculated and
experimental results for binary systems show good agreement in most

cases,.
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INTRODUCTION

In investigating the effect of changes in termperature or pres-
sure on chemically reacting systems a state of equilibrium is frequently
assumed. Such an assumption allows the use of the relatively simple
equiliktrium equations in predicting the result. However, the assumption
of the equilibrium state for systems not at equilibrium can lead to re-
sults which are significantly in error. In fact Rastogi and Denbigh (1)
have shown that, even for a system which has attained ninety percent of
its equilibrium state, the results can be in error by a factor of ten.

To investigate the effect of a change in temperature or pressure
without assuming the equilibrium state generally requires that the rate
equation for the system be solved, The rate equation can be solved for
the concentration of one of the chemical species and the resulting equa-
tion involves the concentration of one or more chemical species and the
rate constants for the system. The appropriate derivative of this equa-
tion yields the effect of a change in temperature or pressure. Rastogi
and Denbigh have utilized this approach in the paper cited aBove but such
a method becomes cumbersome for all but the simplest rate laws.

The assumption of equilibrium can be avoided and the unwieldy
equations, which result from direct solution and differentiation of the
rate equation, can be replaced by the use of the Kirkwood and Crawford
linearization (2).

In this, Section I of the thesis, the Kirkwood and Crawford
linearization will be applied in a completely general way to the problem

of obtaining the effect of a change in temperature or pressure on a
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system not at equilibrium. Further, the method will be worked out in
detail for several systems and the results compared with results obtained
by the exact method of Rastogi and Denbigh. In the second part of this
section the methods are extended in a completely general way to a system
of competing reactions and in particular to a system of two competing re-
actions, In the final part some other questions about the system are

answered with the aid of the equations developed.

SINGLE CHEMICAL REACTIONS
Essentially the method of this work is the expansion of the time
derivative of the progress variable about its equilibrium value of zero
and the retention of the linear terms.
The progress variable N is defined as

dn = v, ax (1)

In this definition n, is the concentration of species Na in moles per
liter and v is the stoichiometric coefficient of Na in the reaction
considered. The sign attached to \aa is such that d A is always posi-
tive., It should be noted that is for convenience defined here in
moles per liter but this does not detract from the generality of the
methods developed. If we expand the time derivative d N/dt about its

equilibrium value and retain only the first derivative term we obtain

adA aA e d;L
TRt Ewg-n)d o /
e [+ 4 e

Here the subscript indicates evaluation of the derivative at equilibrium.
Since dna/dt is zero at equilibrium it follows from equation 1 that

(a 7\/dt)e is zero and we have

i -5 G- P/ @
a » a ‘e
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Integration of equation 1 yields n; - nz =

v ( N - A®) where the super-
scripts "t and e" indicate evaluation at time t and at equilibrium re-

spectively. Imnsertion of this last statement into equation 2 gives

. t e di
A= (A ->\)§ Vaa’n;‘/e (3)

é; \Ja %ﬁt'// depends on A for the system, a constant for a given
a a/ e

aA
system, and is denoted by B. Rewriting equation 3 we have )f - )F = Pdt

which has the solution
t e
In ( A~ X)) =8t +1nlI

where I is a constant of integration. Since for t =0 A= O then

1In (= A®) = In I so we have P »No@a- eﬁt). Replacing B by -1/¢
where T , designated as the relaxation time, is greater than zero we

obtain finally

t -t

N Na-tr ()
We may use equation 4 to obtain the effect of a change in tempera-

ture or pressure. Letting X = P or T and taking the derivative d/dX of

equation 4 we have

ax _ A aA°

dln 1/% )
ax N dX

- X Q- AY>3) In (1 - A/)Cﬂ"jff—_—{s

Defining f, the fractional attainment of equlibrium as f = ;VCKe and

equation 5 can be rewritten as

e
AA_ s8N 58 (1 5 1n(1-8)

dln 1/%
x x (6)

aX

From equation 1 we have dna/dX = v d A/dX so that we obtain for dq(dx

the equation

e
dog ., p4A Ly N @Q-f) (- ST (7)
ax « © Tax a ax
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This equation clearly gives the effect of a change in temperature or
pressure in terms of the relaxation time T and the fractional attainment
of equilibrium for any reaction near equilibrium.
The effect of a change in temperature or pressure for the equili-

brium state is given by equation 1 as

e
d d

dX dX

(8

dng /dX

——=—-— one obtains on dividing equation 7 by
dng/ax

Defining r as the ratio r =

equation 8

d 1n 1/ fdx )
'd In  »e/dx 9

r=f~-(1~f)1n(1~1)

Clearly the ratio r is a measure of the effect of a change in temperature
or pressure for a non equilibrium state compared to the effect of a simi-
lar change for the equilibrium state. As such, the magnitude of r is a
measure of the error which arises from assuming the equilibrium state
compared to the result when equilibrium is not assumed.

It is to be emphasized that the equations & for A and 9 for r
are completely general and can be formulated for any system near equili=-

brium for which the relaxation time 7T and the fractional attainment of

equilibrium f are known.

Application and Numerical Calculations

The magnitude of r is a convenient and significant number by which
the results of the linearization methods developed above can be compared
to the exact results obtained by the direct solution method used by
Rastogi and Denbigh. In order to make the comparison it is necessary to

formulate r for the systems considered both by the linearization method
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and by the direct solution method. For further comparison the system

types chosen are of increasing complexity.

The systems considered are:

System A
k,

gr——

k,

N,

System B
Ny + N, ,fi___

ky

System C

N.—.".‘-I—as
2 r——

ks

N, where: Nu is the molecular formula of a

chemical species a

N; + N, : ki and k, are respectively the for-

ward and backward rate constants

N, + N

The kinetics for the systems are taken as;

for A: unimolecular opposed by a unimolecular reaction so that the rate

law is

L o m - kgn, (10)

for B: bimolecular opposed by a bimolecular reaction so that the rate

law is

dn;

o= lmm, - koo, (11)

for C: unimolecular opposed by a bimolecular reaction so that the rate

law is

dn3
it =

- kynyny (12)

where in each case the na for a particular reaction are again mole/liter

concentrations of species Na at time t. For convenience the initial con-

centrations of the products are taken as zero and the initial concentra-

tions of all reactants are taken the same and equal to "a" moles/l. Thus

at any time t the following relations hold:



for System A

y =a - (13)
for System B
n =n, =a-Dn3; 03 =0, (14)
for System C
n =a-n;mn =on (15)
dng

In each case the equilibrium condition rral 0 defines the equilibrium
constant K as K = ¥k, /k, . Writing n: as the equilibrium concentration of
species Na and making use of the equilibrium condition we have;

for System A:

e ak
N, =T X (16)
for System B:
e aKy2
B =T xE (17)
for System C:
n; = S where 1 + K =9 (18)

We may now formulate r for a change in termperature for the systems
A, B and C. To obtain r by the method of linearization (i.e. by equation
9) we proceed as outlined below for each system,

For system A we find the relaxation time T by noting that from
equations 1 and 10 that

-

A=kn - -};-2— n, so that from equation &4

1 kEX+1D)
T T K
and thus
d In l/f d 1n k4 _ 4 ln K + K .48 1lnK (19)

daT - ar daT 1+K aT
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The derivatives in equation 19 can be taken from thermodynamics as

dlnK AH
aT = RT? (20)

where AH is the enthalpy change of the reaction and

dInky, _E (21)
aT RT?

where E is the activation energy of the forward reaction. Substituting

equations 20 and 21 into equation 19 gives

dln l/r &H 1 [(K + 1)_E
T T RT? (1 +K) AH 1 (22)
To find A? for system A we make use of equation 1 and the conditions

ng = 0 and 76 = O so that ni = A?. Then from equation 16 we have

)S =7 :KK which gives
adln X dlnK_ _K__dlnk (23)
daT - dar "~ I+K " ar

Substitetion of equations 19 and 23 into egquation 9 yields the required

formulation of r for this system as

ref-Q-Ha-0[Ea+w-1] (24)

We proceed in an identical manner for the systems B and C and. obtain the
formulas summarized in Table I.

To obtain r by the method of exact solution and differentiation
requires, for each system, that the differential rate equation be solved
for one of the components and then the solution differentiated in order
that dna/dT in the ratio r can be formulated,

For system A the differential rate equation to be solved is from
equations 10 and 13

dn,
— = K a - n
at 1[ 2

Qi-&] | (25)
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. (o} . :
Since n, = O we may write the solution as

(L +K)n 1 +K
1 m el 22 ) = .
in | n = ] — Ky t (26)
n; _ _X
and from equation 16 we may substitute < T+ X and obtain
n2 K +1
In f1 -] = =k (=)t (27)

On solving this explicity for n, and differentiating with respect to

temperature we have

e
9‘3.3: nez (l _B_é) tk1{K + 1 o d In k1 __]; . d an] +£l-?. . dn2
aT ] K atT K ar n¢ T

Substitution for the derivatives from equations 20 and 21 allows one to

write

an, 25 -"%09) ) _mgey EQ+K) | qAH n,dn
aT T+K AR RTZ ~ ng doT

Eliminating t with aid of equation 27 we obtain

_ a8 _nha, e e
dnp -2z Q= Mma) gy ga e Eaep - 1188, B2 (g
aT T+K o8 RTZ  n§ 4T

For the derivative dn%/dT we differentiate the expression for ng in equa-

tion 16 and obtain

dnj _  ak _dlnK
4T (1 +K)? ar

Substituting for the derivative d ln K/dT from equation 20 we have

e )
\ A
at (L + K)? RY?

Dividing equation 28 by equation 29 and replacing n5/a, by f yields the

required formulation of r for this system as

B
rexact=f-(1-f)[2—§(1+x)—1]1n(1-f) (30)

In an exactly similar manner we obtain T oxact for the systems B

and C., The formulations for rexact are summarized in Table I. It is to
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be emphasized that although r and r are identical for system A that

exact
this is not the case for the systems B and C. This is due of course to
the fact that the rate law for system A was linear to begin with while B
and C do not have linear rate laws.

For purposes of comparison,numerical calculations of r are carried
out here for different values of f for each of the systems of types A, B
and C, The chemical systems along with the calculated values of r and
Toxact 2T¢ tabulated in Table II. Chemical systems were chosen having
the characteristics of A, B and C,and for which the required data were
available, In addition the systems were chosen,such that the magnitude
of E/AH was in the range 10-20;for as pointed out by Rastogi and Denbigh,
r is principally a function of E/AH and is small,unless E/AH is of the
order of 10,

We next consider the formulation of r for a change in pressure
for a system of the type B. The chemical system chosen was again
HI + HI ——> H, + I,. The reaction is taken to be in the gaseous phase,
The gases are considered non-ideal and the mixture of gases is considered
a perfect mixture,

To obtain r,by the linearization method,we first note that it is
expedient to express ‘2~as a function of the fugacities of the chemical

species in the system rather than the concentrations. The Taylor expan-

sion of equation 2 now reads
A= 2 (f -fe)d—)l/
o [+ 8 o e

where f& is the fugacity of species Na in the reaction mixture. The Lewis

and Randall approximation is employed to define the fa as
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Table II

Effect of a Change in Temperature

Comparison of r computed by present method [r (present)] with r computed

by the exact method of Reference (1) [r (exact)]. Numbers in brackets

are literature references,

cis —* trans

Reaction Ha+ I, 2l CH, - CH = CHCH, CH,CO0H + CH,CH
Kinetic Bimolecular- Unimolecular- Unimolecular -
Type Bimolecular Unimolecular Bimolecular [4]
E(Kcal) Ly (3] 18 (8] 14,9 (7]
H(Kcal) 3 (3] .950 (8] +890 el
K .0022[3] l.12 [8] .005 (5]
T(°K) 764 620 298
(present) (exact) (present) (exact) (present) (exact)
0.99 2.49 2.86 2.8 2,8 2.6k 2.88
f 0.9 5.80 7.0 6.8 6.8 6.45 -
0.90 8.40 10.6 9.9 9.9

9.3 10.8



-13% -

o

fl

fa =£ni «
i

where 251 n, is the total number of moles in the mixture and where f& is
the fugacity of the pure species Na at a given pressure, IfAn = O and
only differential pressure changes are considered,then fo'n can safely be
taken constant with respect to time., Since An = 0O then 21 n, = C,a

constant and fa can be written as

ng £§
fa = = =n da where da #* £ (t)
From equation 1 we can obtain n - n: = v, (A - 2®) and on substi-

tuting for n, we have
e e
fo-fo=d, vy (X A%

Thus we can now write the expansion as

e 3 e
A= 3 4, \70‘(/\—>\)%§_/==(A--7\)$3f
[+ 8

where

and is again constant with respect to time. As before we have the solu-

tion

A= 2\® (1 - <—:-'-t/,c ) but where -,]t" = - ‘da v %é—/g (31)

Since equation 31 is identical with equation 4, except for the definition

of 't', one can write directly the pressure form of equation 9 as

1
d in ~/% /ep
d 1n €/ap (32)

r=f~-(Q1-f)1In (1-1f)

To obtain r for system B we note first that the rate law (1l) writ-

ten in terms of fugacities is



which gives

S I U S-S Y £ (d,85 + a,£9)]
Using the conditions of equation 14 and the Lewis and Randall relation of

n and fa given above we may obtain the expression for 1/ as

e
1 e djd, 15
= 2k,d,d a - n; + . ]
X ™14 2 [ 3 d1d2 K (33)
e.e €42
ow - quz - d1d2 (a - ne3)
i dd,
and for convenience write ——K = ¢ K
dsd,
so that on solving for ni we have
1
g - calowl (34)
3714+ (0K)?
Substituting from equation 34 for ni in equation 33 we have
Iz Yo
1 (oK) (oK) "
which reduces to
1 -2
:L=2ak1 d1 dz(oK) (35)
. . £4f)
Noticing that we can write o = FITI
3ty
fi f
and d, d, = ’czz

and inserting these last two expressions into equation 35 one obtains

finally

1
] - P—N
%5 1n fa > in K

o=

In Y% = 1n f% + lnk, +

Taking the derivative with respect to pressure we have

AT < dln g
ap =2 2 T
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d In f§ Vo )
But 3 ~ ®T3’ where Va is here the molecular volume of species Na

at temperature and pressure T, P. Thus we can write
4 1n 1/

1
dp =2RT2aVa

(36)

To find d 1n ni/dP we note since ng = O that one has ni

e
v A
So that from equation 3% 1n A% = In n$ = 1n a + %'ln cK-1In[1+ GrK)%]

Differentiating this with respect to pressure gives

.
a1nA° 1 dlng ldlnK __ 1 Ca (o)
agp "~ 2 apP 2 dP 1+ (oK) dP
which reduces to
d1n AS 1 1 AV
ap = 3 T+ (eK)? =T (37)

Inserting equations36 and 37 into 32 we obtain the required expression for

Tr as
r=f4+(1-8)] ln(l—f)][l-(ch)szs_"‘_&X_a.

To obtain r,by exact solution of the rate equation,we note first
that the rate equation 11 in terms of fugacities is

dn; - k, f, f, -k, f5 f,
dt

Do
Inserting fa = ?;-f& from the definition given earlier,the rate law becomes

dns k4 1
T [£4 £y nyn, - 2050, £ 1]

Noting that for this chemical system that f} = f} and making use of equa-

tion 1lk,we can eliminate n,, n, and n, and obtain

dn, k1(f%)2 f'S f}o
s or— [at-2am; v - @mi] wrere b= e

This differential equation has the solution

Y% 1 4
1n 21 -d)n; - 2a + 2a® . .Zk._,((:zfj)2 287t +1n 1

2(1 ~d)ns - 2a - 220"
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The constant of integration I can be evaluated since for t = 0, ny =0

then
¥
1l +
=1n I
ln 1-¢2

and the solution can be written as

1 'dﬂé)(l ""byz)na - a(l +¢Vz) = 1n X "'4’ , 2 (f))2 a¢1/2t

1 Q1 -0™Q +$Pn; -~ a(l -¢% 1 - 9% " T oz
which reduces to
(1 - ¢y2)n, -a _ 2k,(fy?2 Ye
T ——— a.¢ t
(1 + &n, - a c?

Taking the derivatives with respect to pressure we obtain after some

algebra
%

an, 93.;.‘2_

== 2507 - 2(a;-2) _o2atK 2 1amdy L2 (s
dlnd AV dlnfy _Va

But = Hrg f'fzK ot TR TR Y Tae TR M

%
ap 2RT ap

Inserting these last three equations into equation 38 and rearranging one

can obtain

. ”
dny _ nj(ny-a) AV ZVg , ;n3(i-9)-2an,+a?y, 1n (1-9 " )n;-a
dp a 2RT | 2R L 2a 72 ] [ (1+ ¢ Pns-a 2

To obtain dn 3e/dP we note that since n;o = O then from equation 1

e e
nse = >\e and - nie S.S_l_n.f.é_)
aP
e e
i n AV
. ans _ 2
From equation 37 ip T 21 + (cK)?)  RT
¥
) K
and from equation 34 n;° = {1 i((v crl)()%l
an <% af{ O‘K)yz AV
so that 2 == o)

@ 1+ (oK)’ TET
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On dividing equation 39 by equation 40 we can obtain r as

N n;(nz,—a)(l-t-(O’K)yz) - aVa .[ni(l- ¢ )~2an s+a ? IE (.' (l-¢ “)ns-a
a?(oK)” v 2a2¢ 2(aK)% (1+¢ )n ;-a
from ¢ = £5 1L and o = (f!l)z
LR £

we have the identity @ = :}E o Bliminating njs by the relation ny = fn ,e

and the use of equation 34 and inserting the identity @ = ;l-ﬁ' we obtain

finally

Texact = T [—( ‘K)%(l-f)-,l\"lgivv{f‘z( <TK"]-)"Zf(C"K)yzkch)}ﬂl]-l-( °’K)ﬁ+1}

%
(ex) -1
M CT S 4D

l1-f

*Inl

k
For the system chosen, HI + HI ;-‘-‘.J_*Hz + I,, the known data are
2

taken as:T = 764°K ref. (3)

K

H

2.2 x lO-’z ref. (3)
P = 0.4 atmos., calculated from reference (3) data

The molecular volume Va is considered given by the formula
Vo= 01+ (D P]

where. Bc:n is for the pure gas of species a at a pressure P and temperature
T, The Bo'n (T) were calculated with the aid of Lennard-Jones potential

functions and for the species involved were found to be

i

for KI B! (T) = 7.76 x 10™" atmos. "

-4 n

for H, B& (T) = 2.26 x 10

34,1 x 1070

for I, B} (T)

So that
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BT 1.
Zava = 2 (4°002)

—h
av, =Bplx 100 x 20.8
Inserting the above data into the equations for r and Toxact "€

obtain the data tabulated and compared in Table III. It should be peointed
out that the magnitude of r is largely due to the pressure effectively

increasing the concentration.

Table III

Effect of a Change in Pressure

r by exact solution o . rpoence in

£ r by linearization of the rate law r by the tw
method followed by differen- ;;thods °
tiation (r )
exact
1.0 * 1 + 1 0
0.999 - 12.2 inaccurate
0.99 - 87 - % 10
0.90 - 4o - 500 12
Discussion

In comparing the algebra and manipulations involved,in obtaining
r by the exact method and by the method of linearization,it should be
quite clear that the method of linearization involves much less labour.
Comparing the complexity of the equations summarized in Table I it is
also evident that numerical evaluationswith the r obtained by lineariza-
tion will be much less tedious than those required to obtain Togact®

From the percent difference columns of Tables II and III it is

clear that the values of r by the two methods are siﬁilar (within 10-20%)
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and that the difference in,r by the two methods,becomes more significant
further from equilibrium. It is also apparent that the difference in r,
by the two methods,increases somewhat for an increase in the “order" of
the equation that has undergone linearization,
Thus we may say,for systems not far from equilibrium,that it would
appear that euch saving of labour may be accomplished by the use of linear-

ization methods and without significant loss in accuracy.

SYSTEMS OF COMPETING REACTIONS

We now extend the concept of linearization to a system where we
have competing reactions. For the sake of clarity and simplicity a system
of two competing reactions has been chosen, The methods of solution and
all manipulations are, however, quite general and would apply to a system
of n competing reactions.

Let the progress variable of the two reactions be denoted by A ,
and A,, and define the "lag" of a reaction as X = 7\s - :)%eb If we

»

expand AS as in equation 2 we have

AN =(A) + S@ - s / (42)
s s'e o a a’ an .
[0 4 e

where the subscript on A refers to the progress variable of a particular
reaction s, For a system of reactions we must write
dn = £ ¥ dA
a 5 a s
where the Vv 2 is the stoisbimetric coefficient of species Na in reaction
s and for a system of two reactions
N | + 2
dn »ad/\1 vadxz
so that
n -0 = v (A=A s v2 (N, -5
o o o 2

8
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This allows equation 42 to be written for a system of two reactions as

an,

Ar =05 (A= 2D+ ©2 (A, - XD« Tan

i

Defining Brs as

IAr
B s »S / (43)
e

[}

rs o @ 3n,

we have 3\8 = S Brs (7\8 - >\:)

S

in general and for a system of two reactions we have

Ag = Bar (g = A + By, ( A - A3). since A% =0
then

Xy = Bay Xq + Baz X, (1)
Similarly

Xy = Baq X4 + Ba2 X, (45)

Taking the Laplace transforms of equations 44 and 45 we obtain
KO
-X1(O) + PX1 = 611X1 + B12X2 Where XS = OIXS e-pt dt (46)

~X(0) + PX, = ByiXq + BpX, and X (0)

]
1]

A S R M

s
Foi- non trivial solutions we have the determinant
Bia =P  Bq2

Bae B2z~ P

with roots P+ and P_

where

P = EJJ—%%EEZE.i. [(Bq4q = Ba2d % + 4By, ‘322]1/2 (43)

~+

So we can write
B11 - P B12
B 21 Baza - P

. 1 - 1 . 1
(P-p ) (P-P_) = (P -P_)(P-P ) " (P_+P )(P-P_)

For which the inverse Laplace transforms are
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Pt P_t P_t
e and e - e
P - P P -P -~"p -p °
+ - - + + -

For the solution of the '"set'(equations 46 and 47)we have

-x,(0) Baa -x, (0) B1s -x,©) Bys
%, = X,(0) B, -P -x, (0) gy, - By x, 0 g, -p
Byq = P Baz (p, =P )P -P) (P, - P_)(P -P)
B 21 Baz = P
So that
X, 0) Bra x,(0) Bas
‘. - X, (0 B, - P, Bt ~X,(0) By, - P_ Pt
(e, - P) (B, - B)

Replacing X4 by Ay - A and since X,(0) = - A ; we obtain

7\1 = >\1€ + —PS-%TP— {[(B11'P+) ?\—i"521 X?]ep.{.t—[(a‘]r'f’_) 7\62_521 lf]ep‘t}(%)
+ -

and in a similar fashion we obtain

Ao = Aoree {[0811-2,) ASB20 AT L8442 ) A5-8,0 AT1-} (50)
+ -

Equation 48 can be expanded as

B11 + Ba2 P11 - B22 Ba2 Bas
P = 1 ——— e cres
P e e
So that
" B1z2 Bay
P+ = Paros 2(B1y = Ba2)
Biz B2y
P = B -
- 2z 2(B1q - 522)

And we can then write, by making use of these approximations for P+ and

P_,

1 - 1 Biz Baq : ~
P -P_ " Byq - Baz [ 1 (B1y = Boa)? J (51)
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And if we take Biz B2y 1
<&
(511 - ‘322)2

then equation 51 becomes

1 1
P - E. P11 - B 52)
On substituting for P » P_ and (P - P ) into equation 49 we have
Pty Az B1g (F+t_gP-t A8, Pit_ Pt
= "\_e leg P )w ———i + +____....2§.2J__ +
M= Al B REICPP I (53)
If P12 P21 i5 taken as small,compared to the first two terms,we
(Baq = B22)?
have
A% Bi2
I e ol (LML EL) (54)
Bi1 = P22
and similarly for A, we have
e
P A3 Bay P
A= RS (1 - -ty o TR (et | Pt (55)

B11 = B22

Equations 54 and 55 give the extent of each reaction and could be
used to determine the concentration of any component in the system at any
time t not far from equilibrium. For any chemical species Na we may
write

dn = v1adA;+ vIdA,
a o «

so that

n, = nz + \7(; Ay + v 2 A, (56)

Suppose we were interested in knowing the effect of a change in tempera-
ture on the yield at time t. We insert equations 54 and 55 into equation
56 and on differentiating one obtains

dna - v;d/\,

yop2 dA,
a
aT

aT 4aT
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e e
= (l--eP*'t)d?L1 - tet+t AS &t aby ——-—’—7\2 Paz [ te Fat 2B teP_t -
- - dT AT Ba1= B2 aT aT

Pyt P t Y[ S Bi1=B2z dB42 A B4, (d311 _ 9Ba, Bip A

2(By1=P22) % dT ~ (Bq4=Bp)2 aT /" By4=B,, 4T ](57)

+(e

Equation 57 appears rather awkward and further substitutions and
manipulations have failed to improve it. Thus it appears that even with
the approximations made in leading up to equations 54 and 55,that their
use in calculating the effect of a change in a parameter,such as tempera-
ture,leads to rather unwieldy equations such as equation >7. The equa-
tions are workable but still so cumbersome that the extension of lineari-
zation methods,to the problem of a change in a variable for a system of

competing reactions 6 has not led to readily applicable equations.

OTHER ASPECTS

In this section we point out that certain other questions,not
considered in the first two sections,may be answered about the system with
the aid of the methods already developed.

Suppose we are interested in knowing the effeet a change in
temperature would have on the time required for a system to reach ninety
percent of its equilibrium state. From equation 4 we have t = - T 1n(1-

ﬂ/ %?) but for these considerations we have fixed )7 )F = 0,9 as a
constant. Taking the derivative we have the answer sought as

at _ ey 4¥V _ _ e d In7T
=~ 1- X - -ma- v S

[N

k4
For the reaction Ny + N, :igi N, in a closed vessel,we can
2

quite easily obtain the effect that a change in initial concentration of
Ny = N, = a would have on the yield, near for example ninety percent of

equilibrium, compared to the effect of a similar change on the equilibrium
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yield. In a manner similar to that employed for equation 19,one can ob-

k
tain é?- = —%§~ for this reaction, where Qz = 1 + 4aK, and subse-

1
guently Q_l%;_éi_ = %%‘ . Similarly we can obtain

d1n N =

q and on insertion of these equations into

no =

equation 9 we obtain
2Ka 1

dngfda o (q ). - e * o -1
wea f-@Q-8-11nQ f)],[ f--l-e ]

These two examples should demonstrate the ease with which various
other questions concerning a chemical system may be answered when lineari-

zation methods are employed.
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I1

EQUILIBRIUM PRESSURES AND PHASE COMPOSITIONS FOR NON-IDEAL MIXTURES
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INTRODUCTION

A good deal of effort has been expended in the past few years in
developing equations equal to the task of describing the equilibrium
pressure, temperature and composition relations for non-ideal mixtures.
Contributors prominent in this field have been Clark, whose equations
relate liquid and vapour composition; Hirata, whose equations express
the liquid=~vapour relation as three straight line segmentsj; and Redlich
and Kister, whose equations describe the ratios of activity coefficients.,
Such equations have been successful in the sense that they predict cor-
rect results with varying degrees of accuracy. However, all have in-
volved the determination of a number of empirical constants and conse~
guently have required much experimental data on the mixtures.

Since the necessity for determining much experimental data in
part nullifies the usefulness of these equations it would be worthwhile
to develop a method employing only the readily available pure component
data and fewer empirical parameters. Such an equation will.not be ex~
pected to be as exact but since all the required data are available or
readily determined analytically it should prove useful,

In this section an expression is derived for the equilibrium
total pressure over a‘liquid mixture, In addition partial pressures and
phase compositions may be calculated from the equation. To obtain the
equation,conformal solution theory is applied to the liquid phase and a
second order virial equation is employed in the description of the gas

phase.
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DEVELOPMENT AND METHOD

We let the equation of state for the gas phase be given by

PV P
it s 2oy oy By (L
GO R S

where: P is the total pressure over the liquid phase;yi, i ... n, is
the mole fraction of species Ni in the gas phase.
Bijis the second virial coefficient for the interaction of
chemical species Ni and Njin the gas phase.

From equation 1 we have the partial molar volume v# of species Ni‘given

by
Vv = -
K RT + 2; 223 yiyj [Bik Bij + Bjk] (2)
Taking
?1n £, Vk
=+ = = (3
one obtains
(g)P _ P
£ =y, P exp L o %5 é% Y35 (Bik - Bij + Bjk)] (L)

in which fég)P is the fugacity of species Nk in the mixture of gases at
a total pressure of P and mole fraction Vi
For the liquid phase,we express the fugacity fk (1) of species

N. in the liquid mixture by the relation

k
f}({l) - x, Kk flEl)ref. (5)
where;xk = mole fraction of Nk in the liquid phase.
. fil)ref. = the fugacity of species Nk in some reference state,
3 Kk = is the activity coefficient.

For the vapour and liquid in equilibrium,at the same temperature
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and pressure,we may equate the fugacities as

1) _ (&)
£ = £ (6)

Substituting equations 4 and 5 into equation 6 we have

(1)ref. P S 5
Inx, +1n %, +1nf, =Pyt nr & 5 vy (Bik-Bij+Bjk\ (7)

We select as the reference state, for fil)ref., the pure liquid of
species Nk at the same temperature and pressure as the mixture so that
(1)ref. ] 0(1)P
£ = f (8)
And
" o(1) P
ci{(l)P m%(l)Pk Vie f
S T aF
1"
Pk
. O(l)Pﬂ "
in which f represents the fugacity of species N, at a pressure P
k k k?

where P; is the vapour pressure of pure species at the same temperature

as the mixture. V;(l) is the average molar volume of Nk over the inter-
val P to P;o Since we know

o(1)Py o(g)Pﬂ

fk = fk
and

o(g)Pﬂ " P; \

fk = Pk exp(i‘T- Bk

o(1)
P B vV, (P - P
(L)ref. 1 k Yk k k)
in fk = 1ln Pk *+~gr t@m (9)

To obtain an expression for % x ve resort to conformal solution theory

(1,2), and use the expression from reference 2

E
o
= == - < 4a.. 10
In ¥ k RT [ il xidik i< j xix.]dlg.] (10)
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Insertion of equations 9 and 10 into equation 7 leads to the required

equation " oQ)
2 s = gy, ZEEHB-Y )].
" RT i j JiYj ijk|. 2
PP [e ][e
Lo
[ — ( Zi x.d., - ié ; xixjdij )] (11)
e

In equation 11 we have used the following notation:

A58yt Eii‘é”Eii (12)
Dijk ™ Pix ~ Buj t Oy = By ~ By ¥ By~ By (13)
dij = 2fij -(fii + fjj) (14)
dg = 2., -(fii + fjj) (15)

The significance of the first two parameters,which are defined by equations

12 and 13,is clear and we see that the term in Di’ attempts to correct

jk
for the mixing imperfections of the gas phase., Although a more complete
description of the significance of the parameter d,, is available (1,2)

we can, for the purposes of this section, consider dij as performing the
same function for the liquid phase as Dijk

© figurational energy of the reference species used in defining dij' For

did for the gas. Eo is the con-

convenience,we may think of the first and last exponential terms as ac-
counting for imperfections due to mixing of the liquid and gas phases
respectively. The middle term is not due to mixing but rather to the
pure components.

For binary systems equation 11 simplifies considerably to

(1) ,
L )t aA, (P-BY) (Be-Vie )17 Bo (1-x)?dy,
P=P} X [ e RT ][e RT l»[e'fﬁ ] (16)
Ik

To apply equation 16 to any system we require values for A,,, P;, Bk’
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%(l)

K ! Eo and d4, and in line with the ideas stated earlier,we have tried

to obtain the required data primarily from the more readily available
pure component data. The proposed sources and methods for obtaining the
data are outlined below,

The vapour pressure P of most compounds is tabulated at various

k

temperatures in appropriate handbooks or in reference tables such as
Jordan's tables (3). In order to obtain the average molar volume Vi(l)
we follow the procedure outlined by Fried and Vilim (7). This procedure,
based on theory of corresponding states as modified by Watson (5,6), is
valid for Tr<: 0.8 and is reasonably accurate. The virial coefficients
Bk may be obtained from the literature. However, since this limits the
applicability of equation 16 to the temperature ranges covered by the ex-
periment,we have used a Lennard-Jones potential and the force constants
tabulated in Tables IA and IB, pp. 1110 in reference (8). Similarly in

calculating the B,, for A ;,,we have used the Lennard-Jones potentials

and have assumed applicability of the combining rules (8)

1]

l’-( o, + O©)

Q.ij 2 i

L]

] %
3 (('iej)

ij
The conformal solution interaction parameter dij may be found tabulated
in the literature (1,2) or calculated from experimental data as described
by reference (1). In the calculations herein,only systems for which dij

is tabulated are considered. The configurational energy Eo may be ob-

tained by the equation (4)

-1
o Vg
[o]

E pree 220D _am . v(8) L) (17)

3T )
where the A refers to the change of the reference species from liguid

to vapour. This equation can easily be derived (4) with the aid of
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thermodynamics and the statements

E = £ - g'®
(o] [o}

-AE
o} o

AE =AH - PAV
(o] (o] (o]

and the virial equation of state for the pure gas given earlier,

The data so obtained is given in Tables I and II.

APPLICATIONS AND DISCUSSION
In equation 16 we have already pointed out that the exponential
is the sum of three different terms namely the corrections to the liquid,
to the gas and to the pure components. At lower temperatures and pres-
sures (i.e. at the boiling temperatures near one atmosphere) the terms
in &4, and for the pure components may be small in comparison with the

term in d,,. In such a case equation 16 can be approximated by

P:P;_)E-k_' exp[ O(l_xk.) d12] (18)
Vi RT

This equation which corrects only for the liquid imperfections,is readily

solved (i.e. it is not a transcendental equation when xk and T are the

independent variables). A less drastic approximation is valid when A 4,
is much smaller than either d4, or the Poynting term for the pure com-

ponents., In this case we may write

P = Pk Xk + exp [ B (1 - X, )2d,, - (P - Pk)(Bk - Vk)] (19)
Vi RT

This latter approximation is valid for certain systems at higher tempera-

tures and pressures and we may consider it as adequately correcting for
both the gas and liquid imperfections.
The systems indicated in Table II have been selected to test the

accuracy of the results predicted by equations 18 and 19. The selection
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of these systems is based on the availability of experimental data with
which to compare the calculated results. The choice is limited at
higher temperatures and pressures because of the lack of experimental
data., Calculated and experimental values are tabulated and compared in
the Tables III through VII and the figures I through VI,

From the Tables III and IV it is seen that the maximum deviation
of the calculated from the experimental is about 5%. Also it is evident
that of the order of 85% of the deviation from ideality is predicted by
equation 18. Although it was known that conformal solution theory is not
too satisfactory for the Benzene-Cyclohexane system,the system was never-
theless selected since experimental data was available. Table V thus
only bears out the known fact that the conformal solution parameter
dq, = - 0,065 does not give satisfactory results, If d,, is adjusted to
give a best fit of the experimental data,as in Table VI,then one can use
this adjusted d,, at other temperatures and pressures. In Table VII we
have the pressures calculated by equations 18 and 19 using the different
values of d4,. It is clear from Table VII and the accompanying figures
V and VI that if the conformal solution is adjusted at a given tempera-
ture then the parameter applies equally well at another temperature. It
is also evident that the vapour phase contributions are significant being
about 25% of the total correction. Again experimental and calculated re-

sults agree to within about 5%.
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Pure Substance Data Table I
" A B °(1)

Symbol T°K atios. I;Coal]é/ I:Oalle/ l/;ile Tc°K atigs. l;.,ters
Ccs, 308.4 0.674

(CH;) ,CO 308.4 0.453 7.41 6,80

CHCls  293.2 0.215  7.498 6.917

cs, 293.2 0.399

C.CeHiz 313.0 0.243 0.770 55k.2  40.4 0,115
QH 313.0 0.239 ?7.86 7.14  0.850 561.7 41.7 0.095
CCeHz 475.5 13.4 0.355 554.2 4O.4  0.143
gH 475.5 1h.k 5.325 h4.754 0,408 561.7 47.7  0.115
System Data Table II

Numbers in parentheses are literature references

Temp =By, &4, -4, (are  -d,; adjusted T,

System °k  1/mole 1/mole from 1it.) for fit at (T,) °K
CS,/(CH3) ,CO  308.h4 0,130 (2)
CS,/CHC1, 293.2 0.054 (2)
PB/CyC ¢Ha, 313.0 0.065 (1) 0.0k26 313

GH/CyC ¢H 4, 475,5 0.388 0,007 0.065 (1) 0.0k426 313
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Calculated Results Compared to Experimental Results

System: Carbon disulphide/Acetone Table III

Temp: 308.4°K
dypt = 0.130
Exptl. data: Ref. (14)

Total Vapour Compo-
Pressure Partial Pressures (atmos.) sition,Mole
Mole fraction atmos, Fraction CS,
CS, in liquid
Cs, Acetone
Exptl., Calc. Exptl. Calc.

Exptl. Calc. Exptl. Calc.

0 0.453 0.453 0 0 0.453 0.453 o) o)
0.2 0.750 0.725 0.368 0.341 0.382 0.384 0.50 0.469
0.4 0.833 0.797 0.497 0.454  0.335 0.343 0.59 0.569
0.5 0.862 0.809 0.55 0.484 0.325 0.598
0.6 0.862 0.815 0.559 0.510 0.303 0.305 0.62 0.625
0.8 0.857 0.800 0.605 0.571 0.250 0.229 0,70 0.714

1.0 0.674 0.674 0.674 0.674 0 0 1.0 1.0
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System: Carbon disulphide/Chloroform Table IV

Temp: 293.2°K
d12: -OoOSL"
Exptl. Data: Ref. (15)

Total Vapour Compo-
Pressure Partial Pressures (atmos.) sition,Mole
Mole fraction atmos., Fraction CS,
CS, in liquid
Exptl. Calc. CHC1, €S, Exptl. Calc.

Exptl., Calc., Exptl. Calc,

0 0.215 0.215 0,215 0.215 0 0 0 0
0.2 0.285 0.297 0.180 0.176 0,103 0,120 O.42 0.41
0.4 0.332 0.344 0,143 0.143 0.190 0.201 0.60  0.59
0.5 0.350 0.361 0.125 0.126 0.225 0.234% 0.66 0.65
0.6 0.%5 0,371 0,103 0.108 0.260 0.265 0,072 0.71
0.7 0.375 0.384% 0,083 0.088 0.293 0.296 0.78 0.77
0.8 0.385 0,392 0,060 0.065 0.325 0.327 0.83 0.83

1.0 0.399 0.399 0 0 0.399 0.299 1 1
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System: Benzene/Cyclohexane Table V
Temp: 313°
dq,t - 0.065
Exptl. Data: Ref, (13)
Total Vapour Compo-
Pressure Partial Pressures (atmos.) sition,Mole
Mole fraction (atmos,) Fraction CS,
Beggen?dln Benzene Cyclohexane
+qud Exptl. Calc. Exptl. Calc.
Exptl. Cale. Exptl. Calc.
0] 0.243 0.243 0] 0.243 o) 0
0.2 0,262 0.277 0,077 0,200 0.245 0.277
0.4 0.271 0,290 0.125 0.164 0.430 0.432
0.5 0.272 0.291 O.14k 0.146 0,500 0.497
0.6 0.271 0.298 0.162 0.127 0.570 0.560
0.8 0.262 0,276 0,197 0.078 0.740 0,715
1.0 0.239 0,239 0.239 0] 1.0 1.0
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System: Benzene/Cyclohexane Table VI
Temp: 313°
Exptl. Data: Ref. (13)
Total Vapour Compo-
Pressure Partial Pressures (atmos.) sition,Mole
(atmos.) Fraction
Mole fraction Benzene
Begieﬁidln Benzene Cyclohexane
4 Exptl. Calc. Exptl. Calc.
Exptl. Calc. Exptl. Calc.
0 0.243 0.243 0 0.243 0 0
0.2 0.262 0.262 0.067 0.196 0.245 0.250
0.k 0.271 0.272 0.114 0.158 0.430 0.420
0.5 0.272 0.273 0.135 0.137 0.500 0.496
0.6 0.271 0.2715 0.155 0.116 0.570 0.572
0.8 0.262 0.262 0.193 0.066 0.740 0.74k4
1.0 0.239 0.239 0 1.0 1
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System: Benzene/Cyclohexane Table VII

Temp: L475.5°K
dqp: = 0,065 (literature ave.) and d,, = - 0.0426 (adjusted)

Exptl. Data: Ref. (12)

Calculated Total Calculated Total
Pressure for Pressure for
: Exptl. Total (atmos.,) (atmos.)
Fraction
Benzene Pressure
in Tiquid (atmos.) Corrected Corrected Corrected Corrected
14 for liquid for gas and for liquid for gas and
imper- liquid im- imper- liquid im~
fections  perfections fections  perfections
0 13.40 13,40 13.40 13,40 13,40
0.2 14,20 14,41 14,59 14,12 14,22
0.4 14,70 14,91 15.17 14,545 14,71
0.5 14.80 15.04 14,67 14,85
0.6 14,96 15.14 15.42 14,73 14,90
0,7 15,00 15.10 14,745 14,90
0.8 14,97 14,98 15.18 14,70 14,82

1.0 14,40 14,40 14,40 14,40 14,40
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