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Abstract 

Semiconductor lasers are arguably the most important component in optical 

communications. This thesis investigates two types of semiconductor lasers that are useful 

in integrated optics. Part I focuses on supermode Si/III–V lasers and Part II discusses 

circular Bragg lasers for the application as surface-emitting lasers. 

Just as optical fibers have largely replaced the traditional copper wires in long-

distance applications, people started to consider incorporating optical communication onto 

chips, primarily because the increased ohmic heating and RC delay associated with the 

metal interconnection prevent further increase in the data-processing rate. Si is well known 

to be the integration platform for electronics, and III–V materials (GaAs, InP, etc.) are 

efficient light emitters. It is natural to bring them together to realize the on-chip optical 

communication. Among various Si/III–V integration schemes the most promising is the 

hybrid Si evanescent platform in which a wafer-bonding technique that is compatible with 

current CMOS processing is used to bring Si and III–V materials together. Part I of this 

thesis focuses on the application of a novel mode-control method to such hybrid waveguide 

system to enhance the modal gain, which makes for more efficient and, most importantly, 

shorter devices that may hold the key to the photonics/electronics integration. The 

supermode theory is derived, the shortest adiabatic mode transformer is theoretically and 

numerically studied, and the device design and fabrication are presented, followed by the 
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experimental demonstration of the performance enhancement in the mode-controlled 

Si/InGaAsP laser devices.  

Vertical cavity surface emitting lasers are a commercial light source for optical 

communications, but their single-modedness and good emission pattern are guaranteed 

only over a very small mode area (diameter of several microns) thus they have limitations 

in high-power applications. As an alternative, circular Bragg lasers can be designed as a 

superior surface emitting laser that produces high output power with good beam quality. 

Part II of this thesis presents a comprehensive and systematic theoretical study on the 

surface-emitting Hankel-phased circular Bragg lasers in various geometries. The analytical 

and numerical mode-solving methods will be described, followed by near- and above-

threshold modal analyses. 
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Chapter 1 

Introduction 

1.1 Motivation of a Laser on Silicon 

The voracious appetite for a higher rate of data processing and transmission of computers 

and networks has resulted in an ever-increasing density of the silicon (Si) large-scale 

integration. However, this technology is approaching a bottleneck because of the inherent 

problems associated with the copper interconnections.  

The electronic integration with higher device density consumes more power and at the 

same time generates more heat in a unit area on the chip. It is difficult to find an effective 

way to dissipate the generated heat. Figure 1.1 is a graph from Professor Bahram Jalali’s 

paper in Nature Photonics [1]. It demonstrates clearly the exponential growth of the heat 

density on the computer chips. The heat dissipation density is exceeding that of a hot plate, 

and in fact it is not far away from that of a nuclear reactor. The heat dissipation issue itself 

sets a limitation on the future growth of the integration density.  

Because of the concern of heat dissipation, the processor manufacturers gradually 

abandoned the higher transistor count strategy, turning to multiple core processing. Even 

though each processor is very powerful, their cooperation runs into a communication 

barrier: moving data between different cores takes too long due to the resistive–capacitive 
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(RC) delay. When the data rates approach 10 Gb s−1 and beyond, optical communication 

becomes a superior and perhaps even the only solution on the horizon simply because of its 

considerably larger operational bandwidth. This is the underlying driving force of the 

research of Si photonics.  

In a photonic circuit, one should have various functional devices for light generation, 

guiding, modulation, amplification, filtering, and detection. Indeed, an on-chip integrable 

laser is an indispensable element in active photonic circuits. Unfortunately, Si is a poor 

converter of electricity to light, due to its indirect semiconductor bandgap. In addition, the 

epitaxial growth of standard GaAs- and InP-based direct bandgap materials on Si substrates 

has proven to be a major obstacle, due to the mismatch in lattice constants and in thermal 

Fig. 1.1. Exponential growth of the heat density on the computer chips. The power density 
on a silicon chip has already exceeded 100 W cm−2. Reprinted with permission from [1], 
© 2007 Macmillan Publishers Ltd. 
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expansion coefficients [2]. Despite these difficulties, recent years witnessed a reawakening 

of the interest in Si-integrated lasers, with various approaches toward its practical 

realization.  

 

1.2 Review of Various Integration Schemes 

Numerous avenues have been followed toward obtaining Si-integrated lasers, including 

Raman amplification [3], rare-earth doping [4], and nanocrystalline Si structures [5]. 

Since III–V semiconductor compounds have been well known as efficient light emitting 

materials, integration of these materials on Si platform is considered as the most 

promising approach, although band-engineered epitaxial germanium (Ge) has recently 

been shown to be a potential laser material. In the following we will review several 

schemes that are being implemented to integrate the active materials on Si.  

 

Direct Growth of Active Materials on Si 

Due to the large lattice mismatch between Si and GaAs (4.1%) or InP (8.1%), 

heteroepitaxial growth of III–V on Si has been very difficult for producing material with 

high quality because the density of threading dislocations in the epitaxial layers is too high, 

which greatly reduces the lifetime of fabricated devices [6]. A possible way to overcome 

this difficulty is to use buffer layers to fully relax the stress during the growth so as to 

prevent the dislocations from extending into the useful active layers. Since the difference 

between the lattice constants of GaP and Si is only 0.3%, using GaP as the buffer layer for 

the epigrowth of GaP-based compound materials on Si is a good choice. Electrically 
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injected lasers grown by metal organic vapor phase epitaxy have been demonstrated for 

GaP-based broad-area Ga(NAsP)/GaP single-quantum-well heterostructures near room 

temperature [7]. The work on growing the dilute nitride Ga(NAsP) on Si substrate using 

GaP as the buffer layer to achieve lasing for practical uses is still underway [8].  

In the meantime, the study of using Ge as the active material on Si substrate has made 

good progress [9-11].  Due to its pseudodirect gap properties and compatibility with Si 

complementary metal–oxide–semiconductor (CMOS) technology, Ge may also be used 

in the electronic–photonic integration. It has been shown that Ge can be band engineered 

by tensile strain and n-type doping to achieve efficient light emission and optical gain 

from its direct gap transition. Indeed, the optical gain in the wavelength range of 1600–

1608 nm from n+ tensile-strained epitaxial Ge on Si (100) substrate has been observed [9]. 

Optical pumped lasing action at room temperature edge-emitted from such Ge waveguides 

has recently been achieved [11]. The laser threshold is still very high, and further 

investigation on p-type doping in Ge is necessary to achieve an electrically pumped device. 

Figure 1.2 shows the emission spectra, cross-sectional scanning electron microscope 

(SEM) image of the Ge waveguide and a schematic drawing of the experimental setup for 

optical pumping.  

 

Recess Integration of Lasers with Waveguides on Si 

In the recess integration scheme, III–V ridge waveguide gain elements such as diode 

lasers and semiconductor optical amplifiers are coaxially aligned with, and coupled to, 

silicon oxy-nitride (SiOxNy) waveguides on silicon substrates [12]. This method is 
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Fig. 1.2. Edge-emission spectra of a Ge waveguide with mirror polished facets under 
1064 nm excitation from a Q-switched laser with a pulse duration of 1.5 ns and a 
repetition rate of 1 kHz. The three spectra at 1.5, 6.0, and 50 μJ/pulse pumping power 
correspond to spontaneous emission, threshold for lasing, and laser emission. The inset 
shows a cross-sectional SEM picture of the Ge waveguide and a schematic drawing of 
the experimental setup for optical pumping. Reprinted with permission from [11], 
© 2010 OSA. 
 
 

 

       

 

 
                                 (a)                                                                          (b) 
 
Fig. 1.3. (a) Schematic of recess integration: a microcleaved laser platelet is placed in a 
recess in silica on silicon. The laser emission is coupled into the silicon oxy-nitride
waveguide for light transportation. (b) Scanning electron microscope (SEM) image of a 
passive microcleaved ridge waveguide platelet positioned in a dielectric recess on Si 
substrate and aligned with a SiOxNy waveguide. The image is a close-up view of one end 
of a platelet in a recess showing a well-aligned pair of waveguides. Reprinted with 
permission from [12], © 2008 SPIE. 
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claimed to be highly modular and consistent with standard Si-CMOS front- and back-end 

processing.  

The process starts with fabricating silicon oxy-nitride waveguides in silicon oxide and 

then etching recesses for the laser platelets. The ridge waveguide lasers, prefabricated 

from typical III–V materials, were cleaved by a novel microcleaving technique to 

produce 6 μm thick, 100 μm wide, 300 μm long platelets with good end facets. These 

laser platelets were manually picked and bonded into the recesses, after which the top 

contact was fabricated. The light emitted from the laser is coaxially coupled to the silicon 

oxy-nitride waveguide for chip transport. As expected, the biggest obstacle of this scheme 

is the high coupling loss arising from the misalignment between the laser and the 

waveguide. 

Figure 1.3(a) is a schematic drawing of the recess integration. Figure 1.3(b) is a 

SEM image of a microcleaved III–V ridge waveguide platelet positioned in a dielectric 

recess on Si substrate and aligned with a silicon oxy-nitride waveguide. 

 

Integrating III–V Materials with Si by Wafer Bonding  

To overcome the problems encountered in the epitaxial growth or thin-film deposition, 

wafer bonding is introduced in photonic integration, which provides a way to join together 

two disparate materials without the restriction of matching lattice constants. Based on the 

different applications, two types of wafer bonding are usually used to integrate the III–V 

materials on Si platform: (1) adhesive bonding (also known as “polymer bonding”) and 

(2) direct bonding (also known as “fusion bonding” or “molecular bonding”). The 
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successful examples of using these two types of wafer bonding techniques are shown 

below.  

In [13, 14], an InP/InGaAsP thin film epitaxial layer was bonded to a silicon-on-

insulator (SOI) waveguide circuit by adhesive bonding using divinyl-

tetramethyldisiloxane-benzocyclobutene (DVS-BCB). Lasers and photodetectors were 

fabricated in the bonded InP/InGaAsP epitaxial layer. Light emitted from the laser is 

vertically coupled into the Si waveguide with an inverted taper approach. Figure 1.4(a) 

shows an electrically injected InGaAsP microdisk laser coupled with an underlying 

submicron Si wire waveguide. The microdisk laser has a diameter of 7.5 μm and a 

thickness of 1 μm. The laser with emission wavelength at 1.6 μm has a low threshold 

current of 0.5 mA under continuous-wave operation at room temperature, and a SOI-

coupled maximum unidirectional output power of 10 μW. Figure 1.4(b) is a SEM image 

       
                                    (a)                                                                                (b) 
 
Fig. 1.4. Schematic of the heterogeneous microdisk laser structure, showing the disk 
cavity, SOI wire waveguide, bottom contact layer, tunnel junction, and metal contacts. 
(b) Cross section of the bonded structure, zooming in at the interface showing
benzocyclobutene (BCB) as the bonding layer. Reprinted with permission from [13, 14], 
© 2006, 2007 OSA. 
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showing the cross section of the wafer-bonded structure with DVS-BCB as the bonding 

interlayer. 

In applications that require direct contact of the two materials, i.e., with no 

intermediate bonding layers, the above adhesive bonding is inapplicable when direct 

coupling is required through bonding. The direct wafer bonding is a process in which the 

adhesion between two semiconductor surfaces occurs as a result of chemical bonds 

established between the atoms and molecules from the two surfaces. The adhesion is weak 

at room temperature (because of the Van der Waals forces) and this can be greatly 

enhanced with a high-temperature thermal annealing to transform the weak bonds into 

stronger covalent bonds. However, this high-temperature annealing step induces material 

degradation and is incompatible with back-end Si CMOS processing. For this purpose, 

many efforts have been put into reducing the annealing temperature while keeping a strong 

bonding [15-17]. A special surface preparation process (surface activation) is usually 

performed to change and control the bonding mechanism by controlling the surface 

chemistry. Surface activation can be performed by a dip of the substrates in chemical 

solutions (wet activation) [18] or by a plasma treatment of the surface (dry activation) [19].  

For Si-to-InP wafer bonding, a prebonding oxygen (O2) plasma surface treatment has 

been demonstrated to yield a very spontaneous bonding at room temperature [19]. This 

plasma aims to have a high density of chemically active species arrive at the surface with a 

low incident power to minimize surface damages. The postbonding annealing temperature 

can be below 200 °C while the interface strength can be as high as the bulk fracture energy 

of InP. The plasma affects the bonding surfaces both physically and chemically. The O2 

plasma is used to remove hydrocarbon and water molecules so as to reduce the probability 
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of the formation of interfacial bubbles and voids during postbonding annealing. 

Additionally, the plasma treatment generates a very smooth and reactive thin oxide layer 

that helps in bonding process. As a powerful tool of heterogeneous photonic integration, 

this low-temperature O2 plasma-assisted wafer bonding technique has given birth to a 

series of hybrid Si/III–V photonic devices, among which the Si evanescent laser will be 

introduced in the next section as a representative.  

 

1.3 Introduction of Si/III–V Evanescent Lasers 

Using the direct wafer bonding technique, an active AlGaInAs material is transferred 

onto a prepatterned Si-on-insulator wafer. The top AlGaInAs layers, which include 

multiple quantum wells (MQWs), are then patterned postbonding to produce Fabry–Pérot 

[20], racetrack [21] and distributed-feedback (DFB) lasers [22]. The bonded structure is 

designed to support a joint optical mode, whose profile overlaps both materials. During 

operation, this optical mode is guided in a Si waveguide and is amplified by its 

evanescent penetration into a III–V slab waveguide, which provides optical gain when 

electric current is injected [see Fig. 1.5(a) and (b)], and thus these devices are referred to 

as Si/AlGaInAs evanescent lasers [20]. 

The reliance on the small evanescent tail penetrating into the III–V slab waveguide to 

obtain optical gain is a major drawback: the trade-off between the modal confinement 

factors in the Si and in the III–V prevents efficient use of the gain from the III–V material, 

which makes the lasers operate with substantially lower efficiency than the traditional 

semiconductor lasers [see Fig. 1.5(c) and (d)]. Because of the inefficient use of gain, the 
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lasers had to be fabricated very long, whose large footprint reduces the density of photonic 

integration on a chip. This is the major hurdle to be overcome before this hybrid Si/III–V 

technology can be industrialized.  

In the following chapters we will apply a novel mode control method to such hybrid 

waveguide system to enhance the modal gain, which makes for more efficient and, most 

importantly, shorter devices that may hold the key to the photonics/electronics integration. 

The supermode theory will be presented, based on which the modal control method will be 

described. The shortest adiabatic mode transformer (also known as “taper,” “mode 

converter,” or “mode adapter”) will be studied. The device design procedure and 

fabrication process will be elaborated, followed by the experimental demonstration of the 

performance enhancement in the mode-controlled Si/InGaAsP laser devices. This modal 

control method can also be extended to design other hybrid Si/III–V photonic devices and 

circuits whose performances are expected to be significantly improved by the gain 

enhancement. 
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(a) 
 

(b) 
 

 
                                      (c)                                                                      (d) 
 
Fig. 1.5. (a) Schematic of a cross-sectional view of the hybrid evanescent laser structure 
with the optical mode superimposed. (b) Schematic of a side view of the hybrid 
evanescent laser structure. The optical mode is amplified by the penetration of the small 
evanescent tail into the III–V slab waveguide to obtain the optical gain. (c) Vertical index 
profile and optical mode profile. (d) Confinement factors for the quantum wells (QWs) and 
silicon waveguide. (a), (c), and (d) courtesy of Professor John E. Bowers, University of 
California, Santa Barbara.  
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Chapter 2 

Supermode Theory 

The term “supermode” was initially introduced by Kapon et al. to analyze the modes 

propagating in semiconductor laser arrays [23]. The formalism was used formally in the 

textbook Optical Electronics in Modern Communications [24]. Here the “supermodes” 

refer to the eigenmodes of a system of two (or even more) coupled optical waveguides. In 

this chapter we will first derive the supermodes of a coupled optical waveguide system, 

then show the numerical simulation results based on a hybrid waveguide structure to 

support the theory. 

This chapter is reproduced and adapted with permission from [25-27], © 2007, 2008 

OSA, © 2009 IEEE. 

 

2.1 Derivation of Supermodes of Coupled Optical Waveguides 

We start with the Maxwell’s equations, 

 
( )

( ) ( )

0

0

,

.

H E P
t

E H M H
t t

ε

μ μ

∂⎧∇× = +⎪⎪ ∂
⎨ ∂ ∂⎪∇× = − + = −
⎪ ∂ ∂⎩

 (2.1) 

Taking the curl of the second equation of (2.1) and using the first equation leads to 
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Using vector identity and 0E∇⋅ = , 

 ( ) ( ) 2 2E E E E∇× ∇× = ∇ ∇⋅ −∇ = −∇ , (2.3) 

we have 

 
22

2
2 2

pertPEE
t t

με μ
∂∂

∇ − =
∂ ∂

. (2.4) 

Without loss of generality, we consider the case of two uncoupled 1-D (slab) 

waveguides with refractive index distributions ( )an x  and ( )bn x  (see Fig. 2.1). The 

normalized transverse eigenmodes of each waveguide are ( ) ( )a
y xξ  and ( ) ( )b

y xξ , and their 

 

Fig. 2.1. Refractive index profile for the uncoupled waveguides na(x) and nb(x) and for the 
coupled-waveguide structure nc(x). 
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propagation constants are aβ  and bβ . The modal field of the coupled guide structure with 

an index distribution ( )cn x  can be expressed as a superposition of the uncoupled fields, 

 ( ) ( )( ) ( )( , ) ( ) ( ) ( ) ( )a bi t z i t za b
y y yE x z A z x e B z x eω β ω βξ ξ− −= + , (2.5) 

where ( ) ( )a
y xξ  and ( ) ( )b

y xξ  satisfy 
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2 ( ) 2 2 ( )

02

2
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b b
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 (2.6) 

Substitution of (2.5) into (2.4) yields 
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where we have used (2.6) and the “slow-varying” approximations 
2
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. The perturbation polarization is 

 

0 0 0

( ) ( )2 ( ) ( )
0

( ) ( )2 ( ) 2 ( )
0 0

( )
0

( , ) ( , ) ( , ) ( , ) ( , )

( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( )

( ) ( )

a b

a b

coup orig
pert r r

i t z i t za b
c y y

i t z i t za b
a y b y

i t a
y

P r t P r t P r t E r t E r t

n x A z x e B z x e

n x A z x e n x B z x e

e A z x n

ω β ω β

ω β ω β

ω

ε ε ε ε

ε ξ ξ

ε ξ ε ξ

ε ξ

− −

− −

= − = −

⎡ ⎤= +⎣ ⎦
− −

= ( ) ( )2 2 ( ) 2 2( ) ( ) ( ) ( ) ( ) ( ) .a bi z i zb
c a y c bx n x e B z x n x n x eβ βξ− −⎡ ⎤− + −⎣ ⎦

(2.8) 

Plugging (2.8) into (2.7), multiplying both sides by ( ) ( )a
y xξ , then integrating over all x 

leads to 
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where we have used the mode orthogonality condition, 
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Likewise, 
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If we introduce the definitions, 
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then we have 
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To simplify (2.13), we introduce aiM zA Ae−=  and biM zB Be−=  and define , , ,a b a b a bMβ β′ = + , 

then we get 

 ( )( ) ( )( , ) a bi z i zi t a b
y y yE x z e Ae Beβ βω ξ ξ′ ′− −= + , (2.14) 

and 
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Eq. (2.14) can be expressed in the basis of { }( ) ( ),a b
y yξ ξ  as a column vector, 
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so that 
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A propagating supermode, by its definition, is a field solution whose z (the 

propagation direction) dependence is only through a propagation phase factor i ze γ , i.e., 

( ) (0) i zE z E e γ= , so 

 dE i E
dz

γ= . (2.18) 

Combining (2.17) and (2.18) yields 

 ( ) 0C i I Eγ− = , (2.19) 

i.e.,  
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To have nontrivial solutions, we require that 
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where ( )
1
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ab baκ κ κ≡ , leading to 
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There are three limiting cases of our special interest: 
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where 1 2,
2 2

ab baκ κε ε
δ δ

≡ ≡  and 1 20 , 1ε ε< . 

(2) 0δ = ,  

so S κ= , and 
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Fig. 2.2. Field profile of the two supermodes Eo and Ee in the three limiting cases: δ < 0, 
δ = 0, and δ > 0. 
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The field profiles of the supermodes in the three cases are illustrated in Fig. 2.2, where the 

subscripts “o” (odd) and “e” (even) refer to the modal symmetry.  

 

2.2 Numerical Verification of the Supermode Theory 

To numerically verify the supermode theory, the III–V wafer structure employed in the 

work of Fang et al. (see the detailed epiwafer structure in Table 1 of [20]) is used here as an 

example. The thickness of the separate confinement heterostructure (SCH) layer and the n-

layer are modified to be 80 and 200 nm, respectively, to increase the modal confinement to 

the quantum wells. Additionally, we will design the Si waveguide to be a ridge rather than 

a rib waveguide to facilitate the coupling between the III–V and Si.   

The supermodes of the hybrid waveguides arise from the coupling between all the 

original modes of the III–V waveguide and the Si waveguide. However, we are interested 

in the two lowest-order supermodes, which result from the coupling between the 

fundamental modes of the III–V and the Si waveguides. In the simulation, the III–V 

waveguide has a width of 3.30 μm. The effective index neff is 3.2588 at the wavelength 

1.55 μm as calculated with a mode solver. Figure 2.3(a) and (b) show the index profile and 

the fundamental mode of the III–V waveguide. For Si waveguide, we use a typical SOI 

ridge waveguide with a fixed height H and a longitudinally varying width W. Figure 2.3(c) 

and (d) show the index profile and the fundamental mode of the SOI waveguide. The 

composite hybrid structure consists of the III–V and Si waveguides separated by a 10-nm-

thick layer of silica, as shown in Fig. 2.4(a). The thin silica layer is considered to assist in a 

low-temperature wafer bonding process [19]. Figure 2.4(b) through (g) show the modal 
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profiles of the even and odd supermodes of the hybrid waveguides in the three 

representative cases. The phase-matching condition (δ→0) is satisfied in Fig. 2.4(d) and (e) 

where the Si waveguide has a height H = 0.84 μm and a width W = 0.65 μm with neff of 

3.2529. In this case, for both even and odd supermodes, the modal power is roughly evenly 

divided between the III–V and the Si waveguides, as predicted by the supermode theory.  

Now we understand that the even and odd supermodes coexist in the coupled-

waveguide system, though propagating at different phase velocities. In practice, we want a 

single mode to be in operation in such a system. We can separate the two supermodes by 

adiabatically tapering the Si waveguide width to provide different amount of feedback to 

different modes. Only the mode having stronger feedback will lase. Figure 2.5(a) shows the 

confinement factors in the active region (including quantum wells and barriers in between) 

Γact, and in the Si waveguide ΓSi, for the lowest-order even supermode, as a function of the 

Si waveguide width W. Figure 2.5(b) plots the confinement factors in the whole III–V 

waveguide ΓIII–V and in the Si waveguide ΓSi, and the mismatch parameter δ as a function 

of Si waveguide width W. As expected, these three curves intersect at one point where the 

phase is matched (δ→0) and the modal power is also evenly distributed in each waveguide. 

Figure 2.5(c) displays the absolute value of the mismatch parameter |δ| and the coupling 

coefficient κ in the same plot so that their magnitudes can easily be compared.  
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Fig. 2.3. (a) Index profile of the III–V waveguide. (b) Fundamental mode of the III–V
waveguide. (c) Index profile of the Si waveguide. (d) Fundamental mode of the Si 
waveguide. 
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Fig. 2.4. (a) Index profile of the coupled-waveguide system. (b), (d), (f) Even supermode 
and (c), (e), (g) odd supermode of the coupled-waveguide system as the Si waveguide 
width W is increased. The phase-matching condition is achieved in (d) and (e) where δ→0 
and the modal power in the III–V and Si waveguides is evenly distributed.  
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Fig. 2.5. (a) Confinement factors in the active region (Γact) and in the Si waveguide (ΓSi) as 
a function of the Si waveguide width W. (b) Confinement factors in the III–V (ΓIII–V) and 
Si waveguide (ΓSi), and the mismatch parameter δ as a function of the Si waveguide width 
W. (c) Calculated values of |δ| and κ as a function of the Si waveguide width W. 
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2.3 Proposal of Supermode Si/III–V Lasers and Beyond 

As shown in Figs. 2.4 and 2.5, with a proper choice of the Si waveguide width, we can 

direct the modal power to the amplifying III–V waveguide or to the Si waveguide, 

thereby avoiding the degraded performance that results from the reliance on the 

evanescent field. At the in/out coupling regions, the modal power is diverted to the Si 

waveguide by adiabatically increasing its width. This makes for efficient coupling to the 

 

 
(a) 

 

 
(b) 

 
Fig. 2.6. Two configurations of supermode Si/III–V lasers. (a) Asymmetric: one adiabatic 
taper, output comes only from the right Si end facet. (b) Symmetric: two adiabatic tapers, 
output comes from both left and right Si end facets. 
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outside Si photonic circuit.  

As marked with the red line in Fig. 2.6(a), the mode starts propagating from left to 

right in the upper left III–V waveguide where it is amplified. It then enters the adiabatic 

transformer section where the width of the Si waveguide increases so as to cause δ to 

change from δ < 0 to δ > 0. This causes the modal power to shift to the lower low-loss Si 

waveguide where it is partially reflected from the right output facet. The reflected field 

retraces its path till reflected from the upper left facet thus completing the round trip. The 

other mode is suppressed due to the high distributed loss along the path and the absence of 

feedback mechanism. A considerable enhancement of modal gain is the most direct 

advantage of the supermode control. Based on the calculated modal confinement factors in 

the active region Γact and in the Si waveguide ΓSi for different Si waveguide widths [Fig. 

2.5(a)], the modal gain can be increased up to five times, if the adiabatic tapers are efficient 

in mode transformation and designed as short as possible [26]. 

The main advantage of this “spatial switching” of the modal power is to obtain 

maximum achievable gain from the inverted medium since the peak modal field and not 

just an evanescent tail induce the amplifying transitions in the gain (III–V) region. Bearing 

in mind the idea of supermode control, we can make another laser configuration [Fig. 

2.6(b)] that is more symmetric in the longitudinal extension. The laser light emits from both 

left and right Si end facets, and two adiabatic tapers are used to transform the supermode 

between Si and III–V.  

With a little modification, the same principle of spatial switching of the modal power 

can be used to make other functional devices. We can also have supermode optical 

amplifier, modulator, and photodetector. To make an optical amplifier or modulator 
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[Fig. 2.7(a)], light is first coupled into the Si waveguide (δ > 0), then switched to the upper 

III–V section (δ < 0) for amplification or modulation, finally coupled back to Si waveguide 

(δ > 0) for output coupling. This principle can also be applied to make a photodetector [Fig. 

2.7(b)]: as the light is spatially switched from the Si waveguide to the upper III–V 

waveguide, which under reversed bias is highly absorbing, extra electron–hole pairs will be 

 
(a) 

 

 
(b) 

 
Fig. 2.7. (a) Supermode Si/III–V optical amplifier. (b) Supermode Si/III–V photodetector.



 28 

 

excited across the p–n junction contributing to the conductivity, which reflects in the 

change of current in the outside electric circuit.  

It is envisioned that once the individual optical functional devices are achieved in a 

much more efficient fashion by using the supermode control, the next-generation, large-

scale, high-efficiency Si/III–V hybrid circuitry will not be far away (see Fig. 2.8), and we 

expect a thorough revolution in the development of optical communications. 
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Chapter 3 

Adiabaticity Theorem and the 
Shortest Adiabatic Taper Design 

In Chapter 2 we have shown that as the refractive index profile n(x, y) of the coupled-

waveguide system varies along the longitudinal direction (z), the corresponding local 

normal modes (supermodes) Ee(x, y) and Eo(x, y) will change accordingly. For such 

longitudinally variant waveguide structure, these supermodes are actually z dependent, and 

each cross section of the waveguide system has its own set of supermodes. In analogy to 

the famous adiabaticity theorem in quantum mechanics, if the change in n(x, y), which can 

be the variation in waveguide geometry and/or refractive index, is slow enough along the 

propagation direction (z), we are able to approximate the solutions of the Maxwell 

equations in the real configuration by means of “stationary” supermodes of the local 

waveguide structure. In such a case, a particular supermode at a z plane will go over 

continuously into the corresponding supermode at any other z plane. 

One question arises: How slow is considered “slow enough”? The answer to this 

question is definitely nontrivial and is at the heart of designing the supermode hybrid 

circuits for maximal device performance. Obviously the transforming region that connects 

the two states [δ < 0, |δ| à κ] and [δ > 0, |δ| à κ] should be designed to be as short as 
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possible while keeping the scattering to other unwanted modes as low as possible. In this 

chapter we derive a universal criterion for designing such adiabatic mode transformers 

based on a perturbation approach. The criterion relates ε, the fraction of power scattered 

into the unwanted mode, to waveguide design parameters and gives the shortest possible 

length of an adiabatic mode transformer that is approximately 2/πε1/2 times the distance of 

maximal power transfer between the waveguides. After that the numerical results obtained 

based on a transfer-matrix formalism are presented to support this theoretical derivation.  

This chapter is reproduced and adapted with permission from [28], © 2009 OSA. 

 

3.1 Derivation of the Adiabaticity Criterion 

Mode transformers have been widely used in optical communications to efficiently route 

and transmit light between different optical functional devices on a chip or from an on-chip 

device to an optical fiber. By varying the modal shape and size from input to output, these 

transformers enable efficient and alignment-tolerant coupling between different 

components and thus reduce the packaging costs. During the past two decades, they have 

been extensively studied in the form of tapered fibers [29, 30], and “spot-size converter” 

(also referred to as “mode converter/expander/adapter”) integrated laser diodes [31, 32], 

modulators [33, 34], optical amplifiers [35], WDM filters [36], and optical switches [37]. 

Nowadays, with the development of new concepts and techniques, coupling of light 

between different photonic devices in hybrid material systems assumes an ever increasing 

importance [25, 38-40].  
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Two schemes have been implemented to realize the mode transformation—resonant 

coupling and adiabatic coupling. In a resonant coupler, optical power is mostly distributed 

in the fundamental and the second-order supermodes of the coupled-waveguide system; by 

designing the coupling region to be of a half beat length, the light transfers from one 

waveguide to the other [40]. The coupler length can be made very short in this manner, 

however, the beat length depends critically on the refractive indices and the dimensions of 

the waveguides. In practice there are always unavoidable variations in layer composition, 

thickness and feature dimensions during material growth and device fabrication. Moreover, 

the refractive indices also depend on injected current levels for an active device. These 

uncertainties make it practically difficult to determine the exact beat length, rendering the 

efficiency of power transfer uncertain and the resulting devices of dubious value. An 

adiabatic coupler, on the other hand, does not require a precise definition of power-transfer 

length [30, 41, 42]. By changing the geometry of the waveguides gradually, an optical field 

that is launched into a local mode (supermode) at the input will remain in the local mode 

even as the waveguide parameters change. This can be used to move the optical power 

spatially from one waveguide to the other. The downside of an adiabatic coupler is that it 

has to be sufficiently long to satisfy the adiabatic condition to reduce the coupling of power 

into other unwanted modes. Clearly a longer coupler not only reduces the component 

density, but also suffers from higher transmission losses, such as the material absorption 

and sidewall roughness scattering, and higher probability of material defects and 

fabrication imperfections. Therefore it is desirable to design the shortest possible adiabatic 

coupler given the maximal tolerated scattering from the wanted mode into other modes 

during power transfer.  
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The optimal design procedure of adiabatic mode transformers has been proposed in 

different ways. Love et al. first studied the fiber tapers, suggesting that for a given taper 

length the optimal delineating curve should have the local taper angle inversely 

proportional to the local beat length [30, 43]. This design principle was also employed in 

[42] and [44] in experiments. Another design concept is based on equalization of the single 

step loss (defined as the overlap integral of the modes in two adjacent segments) along the 

taper [45, 46]. Since those analyses depended on the stationary field distributions and did 

not include the wave propagation behavior, they did not point out the optimal taper length 

with which a certain coupling efficiency could be achieved. Taking into account the 

supermode propagating behavior, we will derive a universal criterion for the adiabatic 

mode transition in a coupled-waveguide system and suggest the shortest possible length of 

an adiabatic mode transformer for any given power transfer efficiency.  

The mode transformer to be analyzed here is based on a coupled-waveguide system 

shown in Fig. 3.1. It consists of two waveguides, namely waveguide 1 and waveguide 2, 

placed in close proximity to each other. The refractive index or geometry of at least one 

waveguide is gradually varied along the propagation direction z. Light is coupled into this 

transformer at input plane z = zi (= 0) and out at output plane z = zf. As discussed in Chapter 

2, the normalized local modes (or “supermodes”), denoted as ee for the even mode and eo 

for the odd mode, of this coupled-waveguide system are expressed as column vectors with 

their components denoting the amplitudes of the two individual uncoupled waveguide 

modes respectively [47], 
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where δ = (β2 − β1)/2 is the mismatch of propagation constants between the individual 

uncoupled waveguide modes, 2S = 2(δ2 + κ2)1/2 = βe − βo is the difference of propagation 

constants of the supermodes, and κ is the coupling strength between waveguides 1 and 2. 

Figure 3.2 plots the corresponding dispersion curve of the propagation constants along z. 

Note that the modal profiles (3.1) of the supermodes are z dependent through the 

parameters δ and S. For both supermodes ee and eo, when δ < 0 and |δ|  κ, the mode 

substantially resides in one waveguide, and when δ > 0 and δ  κ, the mode is 

 

Fig. 3.1. Model of the adiabatic mode transformer based on two coupled waveguides 1 and 
2, placed in close proximity to each other. The geometry of waveguide 2 is gradually 
varied along the z direction. Light is coupled in at plane z = zi (= 0) and out at plane z = zf. 
The modal profiles of the local modes ee and eo are listed at the input, phase-matching, and 
output planes. 
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substantially in the other waveguide. At the phase-matching point z0 where δ = 0 the optical 

power is evenly distributed in the two waveguides [25]. Our task is to design this coupled-

waveguide system such that a supermode can transform adiabatically in the shortest 

distance with the parameter δ sweeping from a negative value to a positive value, while 

keeping the coupling to the other supermode below a certain level.  

The total field in the mode transformer can be expressed as a linear combination of the 

supermodes with their phases accumulated, 

 

βe

βo

z

β1

β2

z = zi = 0

β

2S

z = zfz = z0  

Fig. 3.2. Dispersion curves of the propagation constants along z. β1 and β2 correspond to 
the propagation constants of the individual uncoupled waveguide modes. They cross at the 
phase-matching point z0. βe and βo are the propagation constants of the even and odd 
supermodes of the coupled-waveguide system. 2S = βe − βo denotes the difference between 
them. At the phase-matching point z0 the optical power is evenly distributed in the two 
waveguides for both even and odd supermodes.  
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⎡ ⎤′ ′= −⎢ ⎥⎣ ⎦∑ ∫jE e . (3.2) 

Considering a guided optical wave paraxially propagating along the +z direction in a slowly 

varying waveguide, the total field satisfies the Fresnel equation [48], 

 ˆ( ) ( )zi z B z∂ =E E , (3.3) 

where B̂  is the Fresnel operator. The local modes ee(z) and eo(z) shown in (3.1) by their 

definitions satisfy 

 ˆ ( ) ( ) ( )eB z z zβ=e ee e , ˆ ( ) ( ) ( )oB z z zβ=o oe e . (3.4) 

Introducing (3.2) into (3.3) and utilizing (3.4) yield 
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⎡ ⎤⎡ ⎤ ′ ′∂ + ∂ − =⎣ ⎦ ⎢ ⎥⎣ ⎦∑ ∫j je e . (3.5) 

Without loss of generality, if we consider the case of adiabatically transforming the 

mode ee, then only ee is excited and the power coupled into eo is negligible, we can take ae 

≈ 1 and ao ≈ 0 so that (3.5) becomes 

 ( ) ( )exp[2 ] 0z o z e za iSz a∂ + ∂ + ∂ =o e ee e e , (3.6) 

where 
0
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zS z S z dz′ ′= ∫  and S = (βe − βo)/2. Taking the inner product of (3.6) with *
oe  

yields ( ) 2iSzo
z
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−= − ∂*
o ee ei . Introducing a normalized mismatch parameter γ ≡ δ/κ, it can 

be shown from (3.1) that 2
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where ( )d Sz S
dz

=  and 2 1 2(1 )S κ γ= +  have been used. Since the factor in the first bracket 

in the right-hand side of (3.7) varies slowly compared to the exponential term iSze− , Eq. 

(3.7) is integrated over z resulting in 2 3 2

1 sin( )
2 (1 )

iSz
o

da e Sz
dz
γ

κ γ
−⎛ ⎞

= −⎜ ⎟+⎝ ⎠
, so that  

 2 3 2

1
2 (1 )o

da
dz
γ

κ γ
≤

+
, (3.8) 

which imposes an upper bound on the amplitude of ao.  

In an adiabatic mode transformer, we require that the fraction of power in the 

unwanted mode eo be less than a certain value ε or, equivalently |ao| < ε1/2 along the 

propagation. Following (3.8), we arrive at the adiabaticity criterion in this two-mode 

coupled-waveguide system, 

 1 2
2 3 2

1
2 (1 )

d
dz
γ ε

κ γ
≤

+
. (3.9) 

 

3.2 Design of the Shortest Adiabatic Mode Transformer in a Coupled-
Waveguide System 

Since we are aiming at the shortest possible adiabatic mode transformer, we want d
dz
γ  to be 

as large as possible provided (3.9) is satisfied. In the case that the separation between the 

two waveguides does not change, κ depends very weakly on the variation of structure and 

can be regarded as a constant [see Fig. 2.5(c)]. It is straightforward to show that the largest 

possible d
dz
γ  is achieved when 1 2

2 3 2

1
2 (1 )

d
dz
γ ε

κ γ
=

+
, the solution of which is  
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where z0 is the phase-matching point corresponding to a zero γ. If κ cannot be regarded as a 

constant, then the factor 0( )z zκ −  should be replaced by 
0

( )
z

z
z dzκ ′ ′∫  in (3.10). It follows 

from (3.10) that as z − z0 varies from 1 2
1

2κε
−  to 1 2

1
2κε

, γ covers −∞ to ∞, which means that 

the mode ee transfers from being localized completely in waveguide 1 to waveguide 2. A 

transformer designed following (3.10) with length 1 2
1L

κε
=  can transform the mode ee from 

waveguide 1 at the input to waveguide 2 at the output with the fraction of power of the 

unwanted mode eo below ε. In other words, with this optimal design, ε has the least value 

( )21
Lκ , which is in agreement with previous studies indicating the scattered power being 

proportional to L−2 [41]. Considering that in a resonant coupler the distance of maximal 

power transfer from one waveguide to the other is 2
π
κ , it takes approximately 1 2

2
πε

 times 

this distance to adiabatically transform the wanted mode ee. It should be noted that this ratio 

is κ independent, which is about 6.37, for example, if we assume ε = 0.01.  

 

3.3 Numerical Verification 

To verify the above theory, we employ a transfer-matrix formalism to investigate the 

coupling efficiency of adiabatic mode transformers with different distributions of γ along z. 

For the coupled-waveguide system shown in Fig. 3.1, the amplitudes of each waveguide 

mode, b1(z) and b2(z), satisfy the coupled-mode equations, 
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 1 1 11

22 2 2

b b bi id
i ib b bdz
β κ
κ β

− −⎡ ⎤ ⎡ ⎤ ⎡ ⎤⎡ ⎤
= ≡⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎢ ⎥− −⎣ ⎦⎣ ⎦ ⎣ ⎦ ⎣ ⎦

C , (3.11) 

which leads to the transfer relation for small Δz, 

 ( )1 1

2 2

( ) ( )
exp ( )

( ) ( )
b z z b z

z z
b z z b z

+ Δ⎡ ⎤ ⎡ ⎤
= ⋅Δ⎢ ⎥ ⎢ ⎥+ Δ⎣ ⎦ ⎣ ⎦

C , (3.12) 

where  

( ) 1
( ) ( )

1 ( )
z

z i z i
z

γ
β κ

γ
−⎡ ⎤

= − + ⎢ ⎥− −⎣ ⎦
C I , 

with I being the identity matrix and ( )1 2 2β β β= + . Only the second term in the 

expression of C(z) is important since the first term just provides an overall phase factor for 

both b1 and b2. Light is launched into the transformer at the input plane zi with the mode 

substantially resident in waveguide 1 so that b1(zi) = 1 and b2(zi) = 0. The coupling 

efficiency of the mode transformer is defined as |b2(zf)|2, the fraction of power in waveguide 

2 at the output plane zf. We may take κ to be 40 mm−1, as calculated from the Si/III−V 

coupled-waveguide structure used for simulation in Section 2.2 [see Fig. 2.5(c)], and 

assume a practical γ to vary from −10 to 10 across the mode transformer. Figure 3.3 plots in 

blue the coupling efficiency as a function of the transformer length L (= zf − zi) for devices 

designed with γ distributed along z according to (3.10). A transformer with length L = 

200 μm is sufficiently adiabatic to transfer the power from waveguide 1 to waveguide 2. 

Using κ = 40 mm−1 and L = 200 μm, the fraction of power scattered from ee to eo is ( )21
8  

based on ( )21
Lκε = . The length ratio between this adiabatic coupler and a resonant coupler 

should be 1 2
2 5.09

πε
≈ . However, as seen from the oscillatory behavior of the blue curve, the 



 40 

 

length 200 μm appears to be 7 times the distance of maximal power transfer between the 

waveguides. The discrepancy is considered to be attributed to the shortened effective 

resonant coupling length since the local coupling length is 2S
π  rather than 2

π
κ , and S κ≥ . 

Also displayed in Fig. 3.3 are the coupling efficiencies for devices with γ distributed 

according to some common odd functions such as u, u3, and sin(u) (here u is proportional 

to z − z0), all of which require a substantially longer coupler than in the case of the optimal 

distribution tan[arcsin(u)] for adiabatic mode transformation.  
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Fig. 3.3. Coupling efficiency as a function of the transformer length L (= zf − zi) for devices 
designed with γ distributions of tan[arcsin(u)], u, u3, and sin(u) where u is proportional to 
z − z0. The coupling strength κ is taken to be 40 mm−1 and the normalized mismatch 
parameter γ is assumed to vary from −10 to 10 across the mode transformer. The optimal 
design with γ distributed with tan[arcsin(u)] has the least length for adiabatic mode 
transformation.  
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The fundamental reason that an adiabatic mode transformer favors the tan[arcsin(u)]-

shaped γ distribution is that only by following this distribution can the power scattered into 

the unwanted mode have the smallest least upper bound, which minimizes the total 

scattering of power into the unwanted mode. In this numerical case, since the γ value of 

−10 leads to 1
20oa ≈  at the input plane zi and the fraction of power coupled from ee to eo is 

( )21
8  during the transformation, it is expected that at the output plane zf the maximal 

fraction of power in the mode eo satisfies ( ) ( )2 221 1 1 1
8 20 8 20maxoa− ≤ ≤ + , the specific value 

depending on the propagation phase in the transformer. Figure 3.4 shows the fraction of 

power in the wanted (even) and unwanted (odd) supermodes calculated from the transfer-

 

Fig. 3.4. Fraction of power in the wanted (even) and unwanted (odd) supermodes along the 
propagation direction in a 200-μm-long mode transformer with the optimal design. The 
equiripple behavior of both modes indicates that the total scattered power into the odd 
mode is minimized.  
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matrix method for a 200-μm-long mode transformer with the optimal shape. The equiripple 

behavior of both modes is evident, and the fraction of power in the odd supermode is 

bounded by 0.02, which falls in the expected range.  

In conclusion, we derived a universal criterion for designing adiabatic mode 

transformer based on the supermode control in a coupled-waveguide system. By optimally 

distributing the design parameter γ along the light propagation direction z, we obtain the 

shortest possible adiabatic mode transformer needed to keep the fraction of power scattered 

into the unwanted mode below ε. This length is approximately 2/πε1/2 times the distance of 

maximal power transfer between the two waveguides. The numerical calculations based on 

a transfer-matrix formalism compared coupling efficiency of devices with different designs 

and demonstrated the superiority of the optimal design.  
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Chapter 4 

Device Design and Fabrication 

This chapter is reproduced and adapted with permission from [49, 50], © 2009, 2010 OSA. 

 

4.1 Device Design 

Choosing III–V Material System 

As we have elaborated in previous chapters, the hybrid laser consists of a III–V 

waveguide in close proximity (by wafer bonding) to a Si waveguide. The first step in 

device design is to choose an appropriate III–V material system and design the specific 

layers for efficient conversion of injected current to light emission.  

The AlGaInAs material system as used in [20] is advantageous in uncooled laser 

operation at high temperatures, due to the large conduction band offset [51]. However, 

high-quality AlGaInAs layers are relatively more difficult to obtain, and the reliability of 

Al containing lasers remains a concern [51, 52]. In addition, Al alloys could be prone to 

nonradiative surface recombination, which may elevate the lasing threshold current. In 

our work we choose InGaAsP quaternary compounds as the III–V material.  
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Table 4.1. InGaAsP epiwafer layer structure 

 

Layer Material Thickness 
(nm) 

Bandgap 
(eV) Doping (cm–3)

p-side contact layer p-In0.53Ga0.47As 200 0.77 p > 1019 

Upper cladding layer p-InP 1500 1.34 p = 1018 → 
5 × 1017 

Separate confinement layers 
InGaAsP 
InGaAsP 

40 
40 

1.08 
0.99 

Quantum wells  
(1% compressive strain) 
Barriers  
(0.3% tensile strain) 

InGaAsP (×5) 
InGaAsP (×4) 

7 
10 

0.83 
0.99 

Separate confinement layers 
InGaAsP 
InGaAsP 

40 
40 

0.99 
1.08 

undoped 

n-side contact layer n-InP 110 1.34 n = 1018 

Superlattice 
n-InGaAsP (×2)
n-InP (×2) 

7.5 
7.5 

1.13 
1.34 

n = 1018 
n = 1018 

Bonding layer n-InP 10 1.34 n = 1018 
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Fig. 4.1. Refractive index profile and optical mode profile of the InGaAsP epilayer. 
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Table 4.1 lists the InGaAsP epiwafer layer structure. This design facilitates the dual 

confinement of photons and electrons in vertical (layer growth) direction. Figure 4.1 plots 

the corresponding refractive index profile and optical mode profile of the InGaAsP epilayer. 

 

Designing the SOI wafer 

Since high-quality SOI wafers are commercially available, the Si waveguide as a part of 

our lasers should naturally be designed based on this platform. For the previous given 

InGaAsP epiwafer structure (Table 4.1), the SOI waveguides have to be designed 

accordingly.  

As described in detail in Chapter 2, altered Si waveguide width changes its effective 

index, thus can vary the fractions of modal power in both the III–V and the Si waveguide to 

achieve the supermode transform. However, for a given Si waveguide height (or, the 

thickness of the Si device layer of a SOI wafer), there is an upper limit for the maximally 

achievable fraction of modal power in Si, which corresponds to an infinite width, i.e., a slab 

waveguide. Figure 4.2(a) illustrates the slab waveguide model and Fig. 4.2(b) plots the 

maximal faction of power in Si waveguide as a function of the Si waveguide height. To 

enable the supermode transform (i.e., to achieve a large range of variation of the modal 

confinement), the Si waveguide height must be larger than 0.7 μm. This means we have to 

choose a SOI wafer with its Si device layer thicker than 0.7 μm.  

To be conservative, in our experiment we choose a SOI wafer with 0.9-μm-thick Si 

device layer on 2-μm-thick buried SiO2 oxide layer.  
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Fig. 4.2. (a) The InGaAsP epilayer bonded to a Si slab waveguide. (b) Confinement factor 
for Si waveguide of the slab waveguide structure shown in (a). This is the maximal fraction 
of modal power in Si if the Si slab is replaced with a channel waveguide. 
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Fig. 4.3. (a) Illustration of the cross-sectional view of the hybrid laser (not to scale).
(b) Si waveguide dimensions of the supermode lasers: Lend = 350 μm, Ltaper = 200 μm, Lctr

= 400 μm, wend = 1.2 μm, wctr = 0.6, 0.7, 0.8, or 0.9 μm. The tapers connecting the end 
and central sections have linear width variation. 
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Fig. 4.4. Quantum well confinement factor ΓQW as a function of the Si waveguide width 
w. Inset: Calculated confinement factors of the III–V and the Si waveguide. 
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Designing the Si Waveguide for Supermode Control 

Now we well understand from the supermode theory that changing the effective index of 

the Si waveguide by altering its width changes the spatial distribution of the supermodes 

of the Si/III–V waveguide system (Fig. 2.4). By proper choice of the Si waveguide width, 

it is possible to localize the supermode mostly in the III–V waveguide or mostly in the Si 

waveguide. The supermode lasers are designed such that the modal power is localized in 

the Si waveguide near the ends for output coupling and in the active III–V waveguide in 

the central portion to obtain maximal gain. The efficient mode transformation between 

the two states is realized by the shortest possible adiabatic tapers as discussed in Chapter 

3. Therefore, the designed Si waveguide has a fixed height of 0.9 μm, while exhibiting a 

dumbbell shape [looking from top as shown in Fig. 4.3(b)] that comprises a central region 

of width wctr, two end regions of width wend, and two tapered connecting regions of length 

Ltaper.  

Based on the InGaAsP epiwafer layer structure (Table 4.1) and given dimensions  of 

the SOI waveguide (fixed Si waveguide height and varying Si waveguide width), the 

cross-sectional supermode field profile E(x, y) of the hybrid laser was numerically 

obtained. The modal confinement factor Γj defined as [53] 

 
( , ) ( , )

( , ) ( , )
j

j

E x y E x y dxdy

E x y E x y dxdy

∗

∗

∞

Γ =
∫∫
∫∫

 (4.1) 

is also referred to as the fraction of modal power confined to region j. The quantum well 

confinement factor ΓQW was calculated as a function of the Si waveguide width w and the 

results are plotted in Fig. 4.4. At the phase-matching point the modal power should be 
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distributed evenly between the III–V and Si waveguides. As shown in the inset of Fig. 4.4, 

the curves of ΓIII–V and ΓSi intersect at w0 = 0.69 μm, indicating the phase-matching 

condition is met there. The laser threshold condition is given by equating the modal gain 

to the modal loss [54]: 

 1 1
th QW III V III V Si Si lns L Rγ α α α − −

− −Γ = Γ + Γ + + , (4.2) 

where γth denotes the threshold gain, αIII–V and αSi denote respectively the absorption loss 

in the III–V and the Si waveguide, and αs represents the scattering loss. L−1lnR−1 is well 

understood to be the mirror loss for Fabry–Pérot lasers with L the cavity length and R the 

field reflectivity of the end facets. Varying in the longitudinal (z) direction, all the 

confinement factors in Eq. (4.2) must be replaced with their effective values that are 

averaged along the laser cavity 1

0
( )

Leff
j jL z dz−Γ ≡ Γ∫ . Therefore, we can keep a high 

output coupling while taking advantage of the maximal available gain by increasing the 

QW
effΓ  using the longitudinal modal control.  

Several rules must be followed when designing the Si waveguide width: (1) a large 

wend should be chosen to ensure large ΓSi for output coupling; (2) a small wctr should be 

chosen to ensure large ΓQW to obtain high optical gain; however, (3) wctr should be large 

enough to ensure mechanical stability of the Si waveguide; and (4) wctr and wend should 

be as close as necessary to minimize the additional modal loss arising from the tapering. 

Designed with these principles and the results in Fig. 4.4, the fabricated supermode lasers 

have the Si waveguide widths of wend = 1.2 μm and wctr = 0.6, 0.7, 0.8, or 0.9 μm. For 

demonstration of concept, the tapers are simply designed to be linear in width variation. 
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The lengths associated with the cavity are Lend = 350 μm, Ltaper = 200 μm, and Lctr = 

400 μm for a total device length of 1500 μm. As a control, the evanescent lasers with a 

constant Si waveguide width of 1.2 μm and the same total length of 1500 μm were also 

fabricated. The calculated effective quantum well (QW) confinement factors QW
effΓ  for 

these supermode and evanescent lasers are listed in Table 5.1. As can be seen, all the 

supermode lasers possess considerably higher modal gain than the evanescent laser due to 

the higher QW
effΓ  in the laser cavity. For example, the supermode laser with wctr = 0.6 μm 

and wend = 1.2 μm has its modal gain enhanced by a factor of 3.15 compared to the 

evanescent laser with a constant Si waveguide width of 1.2 μm. 

 

4.2 Device Fabrication 

The fabrication of the hybrid Si/III–V lasers involves multiple processes mainly consisting 

of SOI waveguides fabrication, InGaAsP epilayer transfer by wafer bonding, InGaAsP 

mesa formation, current channel definition, and electrode deposition. A detailed fabrication 

flow chart can be found in Fig. 4.5.  

 

SOI Waveguides Fabrication 

Due to the small critical dimensions and the required sidewall quality, the Si waveguides 

are fabricated by using electron-beam lithography and plasma reactive ion etching. The 

layout of the Si waveguides is programmed and generated by L-Edit. The layout is then 

transferred to the e-beam resist ZEP with the exposure of 100 keV electron beam. After 

the exposure and development, the remaining patterned ZEP serves as the mask for the 
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subsequent SF6/C4F8 plasma reactive ion etching, during which the Si to the two sides of 

the waveguide is entirely etched down to the SiO2 layer. For more details on the plasma 

reactive ion etching mechanism and recipes, see [55].  

 

Wafer Bonding and InGaAsP Epilayer Transfer 

The next step is to transfer the InGaAsP epilayer from its InP substrate to the patterned 

SOI wafer. This is achieved by an oxygen plasma-assisted low-temperature wafer 

bonding process and the subsequent InP substrate removal.  

After etching, the SOI wafer is cleaned by organic solvents and then a 3:1 

H2SO4:H2O2 mixture (10 min at 170 °C). In terms of chemical composition, the InGaAsP 

epifilm as shown in Table 4.1 consists of an InGaAs contact layer at the top, a p-InP 

upper cladding layer at middle followed by an InGaAsP active layer and then an n-InP 

lower cladding layer at the bottom. The total thickness of this epifilm is ~2 μm.  

The wafer bonding procedure begins with solvent cleaning of the surfaces of both 

the SOI wafer and the InGaAsP epiwafer. A 10-nm-thick oxide layer is grown on top of 

the SOI wafer to enhance the bonding strength. The surfaces of the two wafers are then 

activated through exposure to oxygen plasma, and bonded together under a pressure of 

0.1 MPa at 150 °C for 2 h. Following the bonding process, the InP substrate is removed 

by HCl wet etching.  

Figure 4.6 clearly shows the cross-sectional structure consisting of the remaining 

InGaAsP epifilm bonded onto the SOI wafer. The bonding interface between the epifilm 

and Si is thin and smooth. Figure 4.6(a) focuses on one end of the epifilm: it is evident  
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Fig. 4.6. SEM cross-sectional images of the InGaAsP epifilm on SOI by wafer bonding 
after the InP substrate removal. The InGaAsP epifilm consists of an InGaAs contact layer 
at the top, a p-InP upper cladding layer at middle followed by an InGaAsP active layer and 
then an n-InP lower cladding layer at the bottom. (a) Zoom at one end of the epifilm. The 
top InGaAs layer is protrusive at the end due to its different composition from the p-InP 
layer below. (b) Zoom at middle of the epifilm. The pyramids at the top of p-InP layer are 
results of HCl wet etching during InP substrate removal due to the damaged outer InGaAs 
layer. 
 
 

that the top InGaAs layer is protrusive at the end due to its different composition from the 

p-InP layer below. Figure 4.6(b) focuses on a middle part of the epifilm. The pyramids at 

the top of p-InP layer are results of HCl wet etching during InP substrate removal due to 

the damaged outer InGaAs layer.  

 

Subsequent Processing of the Bonded InGaAsP Epilayer 

With the active III–V epilfilm bonded on the SOI wafer, the subsequence processing is in 

the InGaAsP compound. An 80-μm-wide mesa structure is formed in the InGaAsP layers, 

centered above the Si waveguide, through photolithography and subsequent three-phase 

wet etching, down to the n-InP contact layer (see the structure in Table 4.1). The etching 

(a) (b) 

Si Si 

InGaAsP 
epifilm InGaAsP 

epifilm 
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solutions are (a) 1:1:10 mixture of H2SO4:H2O2:H2O (p-InGaAs layer, 60 s), (b) 2:1 

mixture of HCl:H2O (p-InP layer, 30 s), and (c) 1:1:10 mixture of H2SO4:H2O2:H2O 

(quaternary layers, 4 min). After the mesa formation, a 5-μm-wide center current channel 

by means of proton (H+) implantation on its two sides is created to enable efficient 

current injection [56]. The implantation dosage and proton energy are 5 × 1014 cm−2 and 

170 keV, respectively. Metal contacts are then deposited by thermal evaporation for the 

p-side (Cr/AuZn/Au = 3.6/7.5/180 nm) on top of the remaining p-InGaAs layer, and for 

the n-side (Cr/AuGe/Au = 3.6/7.5/180 nm) on the exposed n-InP layer to the two sides of 

the mesa. In a working device, the injected current starts from the top p-side contact, 

passes through the center current channel in the p-InP cladding and the InGaAsP active 

region, then bifurcates in the n-InP layer until it reaches the n-side contacts on both sides.  

 

Device Completion 

Finally, the Si substrate is lapped down to a thickness of ~50 μm for cleaving facets. 

Rapid thermal annealing for metal contacts using the setup shown in Fig. 4.7 is usually 

performed to achieve continuous-wave (CW) devices. The annealed devices are usually 

die-bonded onto a C-mount, which can be mounted on a temperature controlled stage for 

testing. 

Figure 4.8 shows a top view optical microscope image and cross-sectional SEM 

images of a fabricated device. 
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Fig. 4.7. Annealing system for fabricating continuous-wave (CW) semiconductor lasers. 
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Fig. 4.8. (a) Optical microscope image of top view of a fabricated device. (b), (c) SEM 
images of a cleaved end facet of a fabricated supermode Si/InGaAsP laser: (b) overview 
of the device, (c) close-up view at the center Si waveguide region. Approximate proton 
implanted regions are superimposed on the image for illustration. 
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Chapter 5 

Experimental Characterization and 
Data Analysis 

This chapter is reproduced and adapted with permission from [49, 50, 57], © 2009, 2010 

OSA, © 2009 American Vacuum Society. 

 

5.1 Characterization with Pulsed Current Injection 

Comparison of Thresholds and Slope Efficiencies 

The threshold and slope efficiency were obtained from the L–I curve, which was taken 

with the setup shown in Fig. 5.1(a). The total emitted power from the laser was collected 

by an integrating sphere power head, which was connected to a power meter to get the 

reading. The fabricated laser devices were tested at room temperature under pulsed 

current injection of 1% duty cycle. The data reported in Table 5.1 were collected from the 

best device out of many of the same design in order to minimize the impact of 

unpredictable and uncontrollable fabrication imperfections, which can arbitrarily degrade 

device performance. As the supermode and evanescent lasers were fabricated and tested 

on the same platform, direct comparison of results is meaningful. The supermode lasers 
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have substantially lower thresholds (in voltage Vth or in current density Jth) and higher 

slope efficiencies (ηex) than the evanescent laser.  

The threshold behavior of the hybrid lasers is expected: a higher QW
effΓ  leads to a 

lower threshold current density and voltage, which is in agreement with what the 
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Fig. 5.1. Experimental setup for measuring (a) laser L–I curve, and (b) near-field emission 
pattern and optical spectrum. 
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threshold condition Eq. (4.2) predicts. However, the behavior of the slope efficiency ηex 

is interesting: shown in Fig. 5.2, as wctr decreases (1.2→0.6 μm) and QW
effΓ  increases, ηex 

presents a local maximum at wctr = 0.8 μm. In traditional III–V lasers the threshold and 

slope efficiency are usually inversely related, meaning a monotonically decreased 

Table 5.1. Test results of supermode (varying-width) lasers and evanescent (constant-
width) lasers 

Si waveguide type wend (μm) wctr (μm) QW
effΓ  Vth (V) Jth (kA cm−2) ηex (%)

Varying-width 1.2 0.6 0.0388 3.0 1.47 1.06 
Varying-width 1.2 0.7 0.0264 4.0 2.20 1.88 
Varying-width 1.2 0.8 0.0189 5.0 3.85 2.31 
Varying-width 1.2 0.9 0.0155 9.0 11.7 1.50 
Constant-width 1.2 1.2 0.0123 11.0 11.9 0.36 
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Fig. 5.2. Threshold current density Jth and slope efficiency ηex as a function of the width of 
central section of the Si waveguide wctr. The threshold current density increases 
monotonically as wctr, but the slope efficiency presents a local maximum at wctr = 0.8 μm.  
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threshold should be associated with a monotonically increased slope efficiency. The 

abnormal trend of ηex observed in the hybrid lasers suggests that the end facet loss might 

not be the only contribution for output coupling. As many interfacial defects were 

introduced during the wafer bonding step, the coupling from the guided mode to the 

radiation field should not be neglected, and this scattering loss might provide another 

source for the laser output. Since this scattering loss obviously depends on the modal 

confinement to the bonding interfacial layer ΓBL, we calculated its value as a function of 

the Si waveguide width. As shown in Fig. 5.3, there is indeed a turning with the 

maximum achieved at w = 0.73 μm. This well explains the turning of ηex happening 

probably at somewhere between wctr = 0.7 and 0.8 μm.  
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Fig. 5.3. Bonding interfacial layer confinement factor ΓBL as a function of the Si 
waveguide width w. The maximal confinement to the bonding interfacial layer is 
achieved at w = 0.73 μm. 
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Fig. 5.4. (a) Optical spectrum of a typical device. (b) Evolution of the optical spectrum as 
the pump current (voltage) increases. Higher pump level results in the expansion of the 
range of lasing modes to the longer wavelength side. Spectra in both (a) and (b) were 
measured with pulsed current injection.  
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Laser Emission Spectra 

Shown in Fig. 5.1(b), the laser emission was coupled via multimode fiber to an optical 

spectrum analyzer to obtain the laser spectrum. Figure 5.4(a) shows the optical spectrum 

of a laser device. The equidistant multiple peaks are the typical feature of a Fabry–Pérot 

laser. The separation between the adjacent peaks in the spectrum is the free spectrum 

range of the Fabry–Pérot cavity. Figure 5.4(b) displays the evolution of the optical 

spectrum as the pump current (voltage) increases. Higher pump level results in the 

expansion of the range of lasing modes to the longer wavelength side. This is because the 

gain spectrum broadens to the longer wavelength side so that those modes can lase once 

their modal losses are compensated by gain.  

 

Near-Field Emission Patterns 

Using the same setup shown in Fig. 5.1(b), the laser near-field emission patterns were 

obtained by focusing the laser emission to an IR camera with a typical lens imaging system. 

We can see the mode is mostly confined to the lower Si waveguide at the end facet. As the 

pump current increases, the mode tends to concentrate more in the Si waveguide, which is 

potentially good for outcoupling to other devices in a photonic circuit. These images 

provide a striking illustration to the confinement of the lasing mode in the Si waveguide.  
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Fig. 5.5. Near-field patterns of the edge emission from a device operated (a) below 
threshold, (b) at threshold, and (c) above threshold. The modal confinement to the Si 
waveguide (especially when the mode is lasing) is obvious.  
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Fig. 5.6. Threshold voltage of evanescent Si/InGaAsP lasers with constant Si waveguide 
widths. Measurements were taken in pulsed mode at 15 °C, with dc denoting the duty 
cycle of the applied voltage. 
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Threshold Dependence on the Si Waveguide Width of Evanescent Devices 

On varying the Si waveguide width w, Vth was found to have a local minimum at w~1.5 μm, 

with dependence shown in Fig. 5.6. This behavior can be understood qualitatively by 

considering the two limiting cases of waveguide width. As width decreases, less of the 

mode resides in the silicon, and thus experiences less feedback from the Si facets, which 

are of higher reflectivity than those in the III–V. On the other hand, as width increases, the 

mode is less confined to the quantum well region and thus requires a higher pump level to 

reach threshold.  

 

5.2 Continuous-Wave Operation 

Using the setup shown in Fig. 4.7, the fabricated laser devices were rapidly annealed after 

cleaving facets. Typical annealing conditions are 400–420 °C for 10–15 s in hydrogen 

atmosphere. The annealing assists in the diffusion of Zn from the p-side metal contact 

into the p-side InGaAsP epilayers, and therefore reduces the resistance of that region. 

After annealing, the device was mounted on a thermoelectric cooler temperature 

controlled stage for testing.  

Figure 5.7(a) shows an L–I–V curve of a 960-μm-long evanescent Si/InGaAsP laser 

device, with constant Si waveguide width of 1.0 μm, measured at 15 °C. The turn-on 

voltage was 0.8 V, and the lasing threshold voltage Vth was 1.3 V. The threshold current 

Ith was 60 mA, corresponding to a threshold current density Jth of 1.25 kA cm−2. The 

maximum power output Pmax from a single facet was 12.5 mW, and the external slope 

efficiency ηex for a single facet was 8.4%. The series resistance of the laser was 8 Ω. 
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Figure 5.7(b) shows Ith as a function of temperature. Continuous-wave lasing could be 

obtained at temperatures up to 45 °C, and the characteristic temperature of the device was 

found to be 39 °K.  

Figure 5.8(a) shows the laser spectrum of the device, whose central wavelength was 

1490 nm. The modal loss α was estimated as 50–60 cm−1 and the internal quantum 

efficiency was bound above 0.83, using the Hakki–Paoli method [58] and the measured ηex. 

Figure 5.8(b) plots evolution of the optical spectrum with the increased pump current: the 

emission lines shift to longer wavelength side while the envelope broadens. This is because 

of broadening and redshift of the gain spectrum of the quantum wells under higher 

pumping levels.  

Evanescent lasers with various cavity lengths ranging between 300 and 1500 μm 

were also tested, and Jth of 1–1.5 kA cm−2 were obtained. Ith of the 300-μm-long devices 

was 24 mA at 15 °C, with Pmax of 4.2 mW. Jth and Vth of the devices are about 35% lower 

than those of previously reported Fabry–Pérot hybrid Si/AlGaInAs lasers [20]. At the 

same time, the devices Pmax is 70% higher, and their ηex is 30% higher. As one of the key 

challenges facing hybrid Si/III–V active devices is the extent of heat generation [59], the 

reduction in threshold current and voltage may prove significant. These improved 

performances are due to either our different choice of III–V material, or the different 

fabrication processing. 
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Fig. 5.7. (a) L–I–V curve of a 960-μm-long evanescent laser under CW operation at 15 °C. 
(b) Lasing threshold current (in log scale) as a function of temperature (blue “+” signs) 
with a linear fit (red dashed line). 



 67 

 
 

1.48 1.485 1.49 1.495 1.5
-70

-60

-50

-40

-30

Wavelength (μm)

P
ow

er
 (d

B
m

)

 
(a) 

1.475 1.48 1.485 1.49 1.495 1.5
0

2

4

6

8

10

12

14

Wavelength (μm)

In
te

ns
ity

 (a
.u

.)

I=70mA
I=80mA
I=90mA
I=100mA
I=110mA
I=120mA
I=130mA
I=140mA
I=150mA
I=160mA
I=180mA
I=210mA

 
(b) 

 
Fig. 5.8. (a) Optical spectrum of a Si/InGaAsP evanescent laser (in dB scale). 
(b) Evolution of the optical spectrum as the pump current increases. The emission lines 
shift to longer wavelength side and the envelope broadens with higher pump levels. 
Spectra in both (a) and (b) were measured with CW current injection. 
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Chapter 6 

Conclusion and Outlook 

Hybrid Si/III–V integration by using direct wafer bonding is considered the most 

promising avenue toward the next-generation high-speed intra- and interchip optical 

communication. We have proposed, using supermode theory and the adiabaticity theorem, 

to vary the Si waveguide width along the hybrid Si/III–V circuit so as to control the 

localization of the mode in the longitudinal direction. Careful design by taking advantage 

of this supermode control effectively enhances the modal confinement to quantum wells, 

yielding increased modal gain. We have also experimentally demonstrated the superiority 

of the supermode Si/InGaAsP hybrid lasers with an adiabatically varying Si waveguide 

width over the evanescent lasers with a constant Si waveguide width. Fabricated side by 

side on the same platform, the supermode lasers have substantially lower lasing 

thresholds and higher slope efficiencies. These advantages translate to lower power 

consumption and smaller device size in this technology that may hold the key to 

photonics/electronics integration. 

Our process optimization yielded room-temperature, continuous-wave operation of 

Si/InGaAsP lasers. A 960-μm-long evanescent laser device achieved a maximal single-

facet output power as high as 12.7 mW, a single-facet slope efficiency of 8.4%, and a 
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lasing threshold current density of 1 kA cm−2. Continuous-wave laser operation was 

obtained up to 45 °C. The threshold current density and the threshold voltage of the 

fabricated devices are 30%–40% lower than those of the corresponding, previously 

reported Fabry–Pérot laser devices having a similar geometry [20]. At the same time, the 

output power and differential slope efficiency observed are higher than previously 

reported. Injection current dependent optical spectra feature the redshift and broadening 

of the range of emission peaks. Near-field edge-emission patterns show that the output 

light comes mostly from the Si waveguide, indicating the mode inside the laser cavity is 

mostly confined to the Si waveguide near the output facet.  

It is straightforward that the next step is to extend this “longitudinal supermode 

control” concept to other types of hybrid photonic devices such as optical amplifiers, 

modulators, detectors, and finally, integrated circuits with a combination of the individual 

functional devices, leading to the rise of a large-scale, high-efficiency Si/III–V hybrid 

circuitry. 
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Part II 

Circular Bragg Lasers: Theory and 

Design for Large Area, High Power 

Surface Emission Applications 



 71 

 

Chapter 7 

Introduction 

Surface-emitting lasers have been attracting people’s interest over the past two decades 

because of their salient features such as low threshold current, single-mode operation, and 

wafer-scale integration [60]. Their low-divergence surface-normal emission also facilitates 

output coupling and packaging. Although vertical cavity surface emitting lasers (VCSELs) 

have already been commercially available, their single-modedness and good emission 

pattern are guaranteed only for devices with a small mode area (diameter of several 

microns). Attempts of further increase in the emission aperture have failed mostly because 

of the contradictory requirements of large-area emitting aperture and single modedness, 

which casts a shadow over the usefulness of VCSELs in high-power applications. 

A highly desirable semiconductor laser will consist of a large aperture (say, diameter 

larger than 20 μm) emitting vertically (i.e., perpendicularly to the plane of the laser). It 

should possess the high efficiency typical of current-pumped, edge-emitting semiconductor 

lasers and, crucially, be single-moded. Taking a clue from the traditional edge-emitting 

distributed-feedback (DFB) semiconductor laser, we proposed employing transverse 

circular Bragg confinement mechanism to achieve the goals and those lasers are 

accordingly referred to as “circular Bragg lasers.” 
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There have been intensive research activities in planar circular grating lasers since 

early 1990s. Erdogan and Hall were the first to analyze their modal behavior with a 

coupled-mode theory [61, 62]. Wu et al. were the first to experimentally realize such 

lasers in semiconductors [63, 64]. With a more rigorous theoretical framework, Shams-

Zadeh-Amiri et al. analyzed their above-threshold properties and radiation fields [65, 66]. 

More recently, organic polymers are also used as the gain medium for these lasers due to 

their low fabrication cost [67-69]. 

The circular gratings in the above-referenced work are designed radially periodic. In 

2003 we proposed using Hankel-phased, i.e., radially chirped, gratings to achieve optimal 

interaction with the optical fields [70], since the eigenmodes of the wave equation in 

cylindrical coordinates are Hankel functions. With their grating designed to follow the 

phases of Hankel functions, these circular Bragg lasers usually take three configurations as 

shown in Fig. 7.1: (a) circular DFB laser, in which the grating extends from the center to 

the exterior boundary xb; (b) disk Bragg laser, in which a center disk is surrounded by a 

radial Bragg grating extending from x0 to xb; (c) ring Bragg laser, in which an annular 

defect is surrounded by both inner and outer gratings extending respectively from the 

center to xL and from xR to xb. Including a second-order Fourier component, the gratings are 

able to provide in-plane feedback as well as couple laser emission out of the resonator 

plane in vertical direction. 

In the following chapters we will present a comprehensive and systematic study on 

the surface-emitting Hankel-phased circular Bragg lasers. It is structured in the following 

manner: In Chapter 8 we derive a comprehensive coupled-mode theory for the Hankel-

phased circular grating structure in an active medium. Solving the coupled-mode 
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equations with the appropriate boundary conditions for each laser configuration, Chapter 

9 focuses on every aspect in obtaining the laser modes: analytical method, numerical 

method, and mode-solving accuracy check. Chapter 10 gives near-threshold modal 

properties of the lasers; comparison of different types of lasers demonstrates the 

advantages of disk and ring Bragg lasers in high-efficiency surface laser emission. 

Chapter 11 discusses above-threshold modal behavior, nonuniform pumping effect, and 

optimal design for different types of lasers. Chapter 12 concludes Part II of the thesis and 

suggests directions for future research. 

 

Fig. 7.1. Surface-emitting circular Bragg lasers: (a) circular DFB laser; (b) disk Bragg 
laser; (c) ring Bragg laser. Laser emission is coupled out of the resonator plane in the 
vertical direction via the Bragg gratings. 
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Chapter 8 

Comprehensive Coupled-Mode 
Theory 

This chapter is reproduced and adapted with permission from [71, 72], © 2007 IEEE, 

© 2008 SPIE. 

 

8.1 Derivation of Comprehensive Coupled-Mode Theory for Circular 
Grating Structure in an Active Medium 

We can start from the scalar Helmholtz equation for the z component of electric field in 

cylindrical coordinates, 

 
2 2

2 2
02 2 2

1 1 ( , ) ( , , ) 0,zk n z E z
z

ρ ρ ρ ϕ
ρ ρ ρ ρ ϕ
⎡ ⎤⎛ ⎞∂ ∂ ∂ ∂

+ + + =⎢ ⎥⎜ ⎟∂ ∂ ∂ ∂⎝ ⎠⎣ ⎦
 (8.1) 

where ρ, ϕ, and z are respectively radial, azimuthal, and vertical coordinates, k0 = ω/c = 

2π/λ0 is the wave number in vacuum. 

For an azimuthally propagating eigenmode, Ez in a passive uniform medium in 

which the dielectric constant n2(ρ, z) = εr(z) can be expressed as 

 ( ) (1) (2)( , , ) ( , ) exp( ) ( ) ( ) ( ) exp( ),m
z z m mE z E z im AH BH Z z imρ ϕ ρ ϕ βρ βρ ϕ⎡ ⎤= = +⎣ ⎦  (8.2) 



 75 

 

with m the azimuthal mode number, β = k0neff the in-plane propagation constant, and Z(z) 

the fundamental mode profile of the planar slab waveguide satisfying 

 
2

2 2
0 2( ) ( ) ( ).rk z Z z Z z

z
ε β

⎛ ⎞∂
+ =⎜ ⎟∂⎝ ⎠

 (8.3) 

In a radially perturbed gain medium, the dielectric constant can be expressed as n2(ρ, z) = 

εr(z) + iεi(z) + Δε(ρ, z) where εi(z) with |εi(z)|  εr(z) represents the medium gain or loss 

and Δε(ρ, z) is the perturbation profile that in a cylindrical geometry can be expanded in 

Hankel-phased plane wave series: 
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 (8.4) 

In the above expression, al(z) is the lth-order expansion coefficient of Δε(ρ, z) at a given z. 

x is the normalized radial coordinate defined as x = βρ. δ = (βdesign−β)/β (|δ|  1), the 

normalized frequency detuning factor, represents a relative frequency shift of a resonant 

mode from the designed value.  

To account for the vertical radiation, an additional term ΔE(x, z) is introduced into 

the modal field so that 

 ( ) (1) (2)( , ) ( ) ( ) ( ) ( ) ( ) ( , ).m
z m mE x z A x H x B x H x Z z E x z⎡ ⎤= + + Δ⎣ ⎦  (8.5) 
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Assuming that the radiation field ΔE(x, z) has an exp(±ik0z) dependence on z in free space, 

i.e., 

 
2

2

1 0,m Eρ
ρ ρ ρ ρ

⎡ ⎤⎛ ⎞∂ ∂
− Δ =⎢ ⎥⎜ ⎟∂ ∂⎝ ⎠⎣ ⎦

 (8.6) 

substituting Eqs. (8.4), (8.5), and (8.6) into Eq. (8.1), introducing the large-radius 

approximations [70] 
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neglecting the second derivatives of A(x) and B(x), and applying the modal solution in the 

passive unperturbed case, one obtains 
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(8.8) 

The phase-matching condition requires that the source and wave have close phase 

dependence. Grouping the terms with the same kind of Hankel functions leads to the 

following set of coupled equations: 
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From Eq. (8.11), ΔE can be expressed as 

 ( ) (1)
1 1 ,i x i x

mE s Ae s Be Hδ δ− ⋅ ⋅
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where 
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and G(z, z’) is the Green’s function satisfying 
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Substituting Eq. (8.12) into Eqs. (8.9) and (8.10), multiplying both sides by Z(z), and 

integrating over z yields 
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where the gain coefficient 
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the radiation coupling coefficients 
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the feedback coupling coefficients 
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and the normalization constant 

 2 ( )d .P Z z z
+∞

−∞
≡ ∫  (8.20) 

In the case of index grating, we can choose the phase of the grating such that a−1 = 

a1, a−2 = a2, then we denote h1 = h±1, ±1, h2 = h±2. By defining u = gA − h1 and ν = h1 + ih2, 

Eqs. (8.15) and (8.16) become 

 2d ( ) ( ) ( ) ( ) ( ) ,
d

i xA x u x A x v x B x e
x

δ ⋅= ⋅ − ⋅ ⋅  (8.21) 

 2d ( ) ( ) ( ) ( ) ( ) .
d

i xB x u x B x v x A x e
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δ− ⋅= − ⋅ + ⋅ ⋅  (8.22) 

Specifically, in the unperturbed (i.e., no-grating) region where Δε = 0, h1 and h2 vanish, 

and Eqs. (8.21) and (8.22) reduce to 

 d ( ) ( ) ( ),
d A
A x g x A x

x
= ⋅  (8.23) 

 d ( ) ( ) ( ).
d A
B x g x B x

x
= − ⋅  (8.24) 

 

8.2 Grating Design Procedure and Calculations of the Numerical Green’s 
Function G(z, z'), Coefficients h1, h2, and s1 

Since we have previously fabricated such Hankel-phased circular Bragg lasers in 

InGaAsP active semiconductor material [73], we will use the layer structure therein as an 

example for our numerical study. The target lasing wavelength λ0 is 1.55 μm. For 

simplicity, we approximate the complicated layer structure by an effective index profile 
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comprising five layers as illustrated in Table 8.1. The vertical mode profile Z(z) and the 

effective index neff can be obtained numerically using a 1-D mode solver. The effective 

index neff was calculated to be 2.83 and the in-plane propagation constant β = k0neff = 

11.47 μm−1. Numerical calculations of the mode profile and effective index of the 

approximated layer structure indicate negligible deviations from those of the exact one. 

Table 8.1. Approximated layer structure for numerical study 

Layer description Refractive index n Thickness 
Upper cladding 1.54 ∞ 
Third layer 3.281 60.5 nm 
Second layer (active region) 3.4057 129 nm 
First layer 3.281 60.5 nm 
Lower cladding 1.54 ∞ 

 

 

Fig. 8.1. Real part of the Green’s function ( , )G z z′  with −∞ < z < ∞ and z′  between the 
top and bottom surfaces of the laser resonator.  
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We focus our analysis on the case of a partially etched grating with an etch depth of 

185 nm. The numerical Green’s function ( , )G z z′  that satisfies Eq. (8.14) with the given 

layer structure was calculated based on the recipe shown in Appendix B. A surface plot 

of the real part of ( , )G z z′  is displayed in Fig. 8.1. 

To favor a circularly symmetric laser mode, m = 0 is specially chosen in the grating 

phase design. In such case, a Hankel-phased grating modulation with rectangular profile 
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can be expanded in Fourier series as 
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The expansion yields the coefficients 

 2 2
sin(2π )

2π
cda a−= = , 

and 

 1 1
sin(π )

π
cda a−= = , 

where 

 arccos    ( 1 1, 0 1)
πc cd dα α≡ − < < < <  
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is the duty cycle of the Hankel-phased rectangular grating. It should be emphasized that 

the duty cycle has a significant role in determining the coupling coefficients h1 and h2 

[74]. Figure 8.2 plots h1 and h2 as a function of the duty cycle dc. A judicious choice 

would be dc = 0.25 where h2 is maximal and Re(h1) is not small so that we can have a 

large ratio of vertical emission to power leakage, hence a high emission efficiency. Based 

on Eqs. (8.18) and (8.19), the grating’s coupling coefficients were found to be h1 = 

0.0072 + 0.0108i and h2 = 0.0601. Calculated from Eq. (8.13), s1 and s−1 at the emission 

surface (i.e., the top surface of the laser resonator) were found to be 0.1725 − 0.0969i. 
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Fig. 8.2. Radiation coupling coefficient h1 and feedback coupling coefficient h2 as a 
function of the duty cycle dc of the Hankel-phased rectangular grating.  
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Chapter 9 

Mode-Solving Methods 

Taking into account the resonant vertical laser radiation, Section 8.1 presents a derivation 

of a comprehensive coupled-mode theory for the Hankel-phased circular grating 

structures in active media. The effect of vertical radiation is incorporated into the coupled 

in-plane wave equations by a numerical Green’s function method. The in-plane 

(vertically confined) electric field is expressed as 

 (1) (2)( ) ( ) ( ) ( ) ( ),m mE x A x H x B x H x= +  (9.1) 

where (1) ( )mH x  and (2) ( )mH x  are the mth-order Hankel functions that represent 

respectively the in-plane outward and inward propagating cylindrical waves. A set of 

evolution equations for the amplitudes A(x) and B(x) is obtained:  

 2d ( ) ( ) ( ) ( ) ( ) ,
d

i xA x u x A x v x B x e
x

δ ⋅= ⋅ − ⋅ ⋅  (9.2) 

 2d ( ) ( ) ( ) ( ) ( ) ,
d

i xB x u x B x v x A x e
x

δ− ⋅= − ⋅ + ⋅ ⋅  (9.3) 

where 

x = βρ: normalized radial coordinate with β being the in-plane propagation constant; 
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δ = (βdesign − β)/β: frequency detuning factor, representing a relative frequency shift 

of a resonant mode from the designed value; 

1( ) ,    for  in a grating region,
( )

( ),          for  in a no-grating region;
A

A

g x h x
u x

g x x
−⎧

= ⎨
⎩

 

1 2 ,     for  in a grating region,
( )

0,             for  in a no-grating region;
h ih x

v x
x

+⎧
= ⎨
⎩

 

h1 = h1r + ih1i: grating’s radiation coupling coefficient, representing the effect of 

vertical laser radiation on the in-plane modes; 

h2: grating’s feedback coupling coefficient, which can always be chosen real; 

gA(x) = g(x) − α: space-dependent net gain coefficient, the minimum value of which 

required to achieve laser emission will be solved analytically or numerically; 

α: nonsaturable internal loss, including absorption and nonradiative scattering losses; 

g(x) = g0(x)/[1 + I(x)/Isat]: intensity-dependent saturated gain profile; 

g0(x): unsaturated gain profile; and 

I(x)/Isat: field intensity distribution in units of saturation intensity. 

It should be noted that, although Eqs. (9.2) and (9.3) appear to be a set of coupled equations 

for in-plane waves only, they implicitly include the effect of vertical radiation due to h1. As 

it will become clearer in Section 9.3, the vertical radiation can simply be treated as a loss 

term during the process of solving the in-plane laser modes. 

This chapter is reproduced and adapted with permission from [75-77], © 2008, 2009 

OSA. 
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9.1 Analytical Mode-Solving Method 

When solving the modes at threshold with uniform gain (or pump) distribution across the 

device, the net gain coefficient gA is x independent. The generic solutions of Eqs. (9.2) and 

(9.3) in no-grating regions are trivial: 

 0( ) ,Ag xA x A e=  (9.4) 

 0( ) .Ag xB x B e−=  (9.5) 

In grating regions, by introducing ( ) ( ) i xA x A x e δ−=  and ( ) ( ) i xB x B x e δ= , Eqs. (9.2) 

and (9.3) become 

 ( )d ( ) ( ) ( ),
d
A x u i A x vB x

x
δ= − −  (9.6) 

 ( )d ( ) ( ) ( ),
d
B x u i B x vA x

x
δ= − − +  (9.7) 

whose generic solutions lead to 

 sinh[ ( )] cosh[ ( )]( ) (0) ,
sinh[ ] cosh[ ]

i x S x L S x LA x A e
SL SL

δ − + −
=

− +
 (9.8) 

 (0) [( ) ]sinh[ ( )] [ ( ) ]cosh[ ( )]( ) ,
sinh[ ] cosh[ ]

i xA e u i S S x L u i S S x LB x
v SL SL

δ δ δ− − − − + − − −
= ⋅

− +
 (9.9) 

where 2 2( )S u i vδ≡ − − ,  is a constant to be determined by specific boundary 

conditions, and L is a normalized length parameter (see Fig. 9.1). The determination of 

the constant  in Eqs. (9.8) and (9.9) requires the specific boundary conditions be 

applied to the grating under investigation. 

We focus on two typical boundary conditions to obtain  and the corresponding 

field reflectivity in each case. 
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Case I: As shown in Fig. 9.1(a), the grating extends from the center x = 0 to x = L. An 

inward propagating wave with amplitude B(L) impinges from outside on the grating. The 

reflectivity is defined as r1(L) = A(L)/B(L). The finiteness of E(x) at the center x = 0 

requires A(0) = B(0), leading to 

 ( )sinh[ ] cosh[ ]
sinh[ ] ( ) cosh[ ]

u v i SL S SL
S SL u v i SL

δ
δ

− − +
=

+ − −
 

and to the reflectivity 

 2
1

( ) ( )sinh[ ] cosh[ ]( ) .
( ) ( )sinh[ ] cosh[ ]

i LA L u v i SL S SLr L e
B L u v i SL S SL

δ δ
δ

− − +
= =

− − − +
 (9.10) 

Case II: As shown in Fig. 9.1(b), the grating extends from x = x0 to x = L. An outward 

propagating wave with amplitude A(x0) impinges from inside on the grating. The 

reflectivity is defined as r2(x0, L) = B(x0)/A(x0). No inward propagating wave comes from 

outside of the grating, i.e., B(L) = 0. This condition leads to ( )S u iδ= −  and to the 

reflectivity 

L
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(b)

rr22
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B(x0)
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B(L) = 0

(b)

rr22

Fig. 9.1. Two types of boundary conditions for calculating reflectivities. (a) A(0) = B(0),
r1(L) = A(L)/B(L); (b) B(L) = 0, r2(x0, L) = B(x0)/A(x0). 
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 020 0
2 0

0 0 0

( ) sinh[ ( )]( , ) .
( ) ( ) sinh[ ( )] cosh[ ( )]

i xB x v S L xr x L e
A x u i S L x S S L x

δ

δ
− −

= =
− − − −

 (9.11) 

It should be noted that, as seen from their definitions, the above reflectivities Eqs. (9.10) 

and (9.11) include the propagation phase. 

With the obtained reflectivities for the two types of boundary conditions, it is easy to 

derive the laser threshold condition for each circular Bragg laser configuration. 

(1) Circular DFB laser: 

The limiting cases r1(xb) → ∞ or r2(0, xb) = 1 lead to the same result 

 tanh[ ] .b
SSx

u v iδ
=

− −
 (9.12) 

(2) Disk Bragg laser: 

Considering the radially propagating waves in the disk and taking the unity reflectivity at 

the center, the threshold condition is 02
2 01 ( , ) 1Ag x

be r x x⋅ ⋅ = , which reads 

 
02( )

0

0 0

sinh[ ( )] 1.
( )sinh[ ( )] cosh[ ( )]

Ag i x
b

b b

e v S x x
u i S x x S S x x

δ

δ

− ⋅ ⋅ −
=

− − − −
 (9.13) 

(3) Ring Bragg laser: 

Considering the radially propagating waves in the annular defect, the threshold condition 

is 2 ( )
1 2( ) ( , ) 1A R Lg x x

L R br x e r x x−⋅ ⋅ = , which reads 

 
2( )( ) sinh[ ( )]( )sinh[ ] cosh[ ] 1.

( )sinh[ ] cosh[ ] ( )sinh[ ( )] cosh[ ( )]

A R Lg i x x
b RL L

L L b R b R

e v S x xu v i Sx S Sx
u v i Sx S Sx u i S x x S S x x

δδ
δ δ

− − ⋅ ⋅ −− − +
⋅ =

− − − + − − − −
(9.14) 

The above threshold conditions Eqs. (9.12), (9.13), and (9.14) govern the modes of the 

lasers of each type and will be used to obtain their threshold gains (gA) and corresponding 

detuning factors (δ). With these values, substituting Eqs. (9.4), (9.5), (9.8), and (9.9) into 
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Eq. (9.1) and then matching them at the interfaces yields the corresponding in-plane 

modal field patterns. Despite their much simpler and more direct forms, these threshold 

conditions automatically satisfy the requirements that E(x) and ( )E x′  be continuous at 

every interface between the grating and no-grating regions [78]. 

 

9.2 Numerical Mode-Solving Method 

When solving the modes at threshold with uniform gain (or pump) distribution across the 

device, gA is independent of x so that Eqs. (9.2) and (9.3) can have analytical solutions 

Eqs. (9.4) and (9.5), or (9.8) and (9.9). In the case of using a nonuniform pump profile 

and/or taking into account the gain saturation effect in above-threshold operation, gA 

becomes dependent on x and Eqs. (9.2) and (9.3) have to be solved numerically. The 

modes are then obtained by identifying those satisfying the boundary conditions. 

As explained in Section 9.1, the same boundary conditions (BCs) apply to all the 

three types of circular Bragg lasers: (i) A(0) = B(0); (ii) B(xb) = 0; (iii) A(x) and B(x) 

continuous for 0 < x < xb. In Eqs. (9.2) and (9.3), g0(x) for a certain gain distribution 

profile can be parameterized with a proportionality constant, say, its maximal value g0. 

The mode-solving procedure is as follows: Having BC(i), we start with an amplitude 

set [A B] = A(0)[1 1] at the center, then numerically integrate Eqs. (9.2) and (9.3) along x 

to the exterior boundary xb, during which both A and B values are kept continuous at 

every interface between grating and no-grating regions to satisfy BC(iii). After the 

integration, we have B(xb) whose absolute value marks a contour map in the 2-D plane of 

g0 and δ. Now each minimum point in this contour map satisfies BC(ii) and thus 
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represents a mode with corresponding g0 and δ. Retrieving A(x) and B(x) for this mode 

and substituting them into Eq. (9.1) give the modal field pattern. 

We can also calculate the modal pump level using the obtained g0. Assuming a 

linear pump–gain relationship above transparency, the unsaturated gain g0(x) follows the 

profile of pump intensity Ipump(x), and we may define the pump level Ppump ≡ ∫ Ipump(x) · 

2πρ · dρ = P0 ∫ g0(x) · x · dx, where P0 having a power unit is a proportionality constant 

determined by specific experimental setup. For simple g0(x) profiles, Ppump can have 

analytical expressions as will be shown in Section 11.2, otherwise, numerical integration 

always remains an option. 

 

9.3 Mode-Solving Accuracy Check 

In this section we derive an energy relation on which the examination of mode-solving 

accuracy is based. This energy relation is a direct result of the coupled-mode equations 

(9.2) and (9.3) combined with the boundary conditions and thus is exact. 

Similar to the procedure in [79], multiplying Eq. (9.2) by A* and Eq. (9.3) by B*, 

then adding each equation to its complex conjugate, one obtains 

 ( )
2

2 2 2
1

d
2 ,

d
i x i x

A r

A
g h A v A B e v AB e

x
δ δ∗ ∗ ∗ −= − − ⋅ ⋅ − ⋅ ⋅  (9.15) 

 ( )
2

2 2 2
1

d
2 .

d
i x i x

A r

B
g h B v AB e v A B e

x
δ δ∗ − ∗ ∗= − − + ⋅ ⋅ + ⋅ ⋅  (9.16) 

Subtracting Eq. (9.16) from Eq. (9.15) yields 

 ( ) ( ) 22 2 2 2
1

d 2 2 .
d

i x i x
A rA B g A B h Ae Be

x
δ δ−− = + − +  (9.17) 
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Integrating Eq. (9.17) from x = 0 to x = xb and applying the boundary conditions A(0) = B(0) 

and B(xb) = 0 leads to 

 ( )
grating

22 2 2
1 0

peripheral leakage power generated in the gain mediumvertical laser emission

( ) 2 d 2 d ,bxi x i x
b r AA x h Ae Be x g A B xδ δ−+ + = +∫ ∫  (9.18) 

which is interpreted as the energy conservation theorem for the surface-emitting circular 

Bragg lasers. This equation states that, in steady state, the net power generated in the gain 

medium is equal to the sum of peripheral leakage power and vertical emission power. Due 

to its exactness, we may use this relation to monitor the accuracy of mode solving by 

substituting into Eq. (9.18) the obtained modal g0(x), δ, A(x), and B(x) and comparing the 

left-hand and right-hand sides of the equation. 

As an aside, it should be noted that all the power terms in Eq. (9.18) are in units of a 

saturation power defined by 

 2
sat sat 4 ,P E D β≡  (9.19) 

where Esat is the saturation field that relates to the saturation intensity by Isat = cnε0|Esat|2/2 

(c, the speed of light; n, transverse effective index; ε0, the vacuum permittivity), and D is 

the thickness (vertical dimension) of the laser resonator. 
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Chapter 10 

Near-Threshold Modal Properties 

This chapter is reproduced and adapted with permission from [75, 76], © 2008, 2009 OSA. 

 

10.1 Threshold, Frequency Detuning, and In-Plane Modal Pattern 

For numerical demonstration, we assume all the lasers possess a vertical layer structure as 

described in [73] that was designed for 1.55-μm laser emission. The grating design 

procedure is detailed in Section 8.2. The effective index neff is calculated to be 2.83 and 

the in-plane propagation constant β = k0neff = 11.47 μm−1. The circular grating is 

designed to follow the phase of Hankel functions with m = 0 to favor circularly 

symmetric modes. A quarter duty cycle is chosen to have both large feedback for in-plane 

waves while keeping a considerable amount of vertical emission. The coupling 

coefficients were found to be h1 = 0.0072 + 0.0108i and h2 = 0.0601. 

Since we would like to compare the modal properties of different types of lasers with 

a same footprint, a typical device size of xb = 200 (corresponding to ρb ≈ 17.4 μm) is 

assumed for all. For the disk Bragg laser, the inner disk radius x0 is assumed to be xb/2 = 

100. For the ring Bragg laser, the annular defect is assumed to be located at the middle 
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xb/2 = 100 and the defect width is set to be a wavelength of the cylindrical waves therein, 

yielding xL + xR = xb = 200 and xR − xL = 2π. The calculated modal field patterns, along 

with the corresponding threshold gain values (gA) and frequency detuning factors (δ), of the 

circular DFB, disk, and ring Bragg lasers are listed in Table 10.1. 

A comparison of these modal properties concludes the following features of the three 

laser structures: 

(1) All the displayed modes of the circular DFB laser are in-band modes on one side of 

the bandgap (all δ > 0). This is due to the radiation coupling induced mode selection 

mechanism [80]. Increased gain results in the excitation of higher-order modes. 

Table 10.1. Modal field patterns, along with their threshold gains (gA) and frequency 
detuning factors (δ), of the circular DFB, disk, and ring Bragg lasers. All the three types of 
lasers have an exterior boundary radius of xb = 200 
 

Mode number 1 2 3 4 5 
Modal 
field  
gA (10−3) 0.283 1.03 2.04 3.11 4.12 

Circular 
DFB laser 

δ (10−3) 61.8 66.6 74.1 83.6 94.6 
Modal 
field  
gA (10−3) 0.127 0.288 0.454 0.690 1.21 

Disk Bragg 
laser 

δ (10−3) 49.8 21.2 –8.09 –37.4 –66.5 
Modal 
field  
gA (10−3) 0.457 1.06 1.92 3.14 4.09 

Ring Bragg 
laser 

δ (10−3) 55.9 66.9 71.0 84.4 91.6 
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(2) All the displayed modes of the disk Bragg laser are confined to the center disk with 

negligible peripheral power leakage and thus possess very low thresholds and very 

small modal volumes as will be shown in Section 10.3. 

(3) All the displayed modes of the ring Bragg laser, with the exception of the 

fundamental defect mode, resemble their counterparts of the circular DFB laser. The 

defect mode has a larger threshold gain than the fundamental mode of the circular 

DFB laser, but the former possesses a much higher emission efficiency as will be 

shown in Section 10.3. 

 

10.2 Radiation Field and Far-Field Pattern 

As mentioned earlier, by implementing a second-order circular grating design, the 

gratings can not only provide feedback for the in-plane fields but also couple the laser 

emission vertically out of the resonator plane. As derived in Section 8.1, Eq. (8.12) 

relates the in-plane fields with the vertical radiation field in the grating regions. The 

radiation pattern at the emission surface is known as the near-field. For the grating design 

with m = 0, the near-field is expressed as 

 ( ) (1)
1 1 0 ,i x i xE s Ae s Be Hδ δ−

−Δ = +  (10.1) 

where s1 and s−1 at the emission surface can be obtained numerically according to Eq. 

(8.13) for a given grating structure. Following the design procedure in Section 8.2, both 

s1 and s−1 at the emission surface were calculated to be 0.1725 − 0.0969i. Using the 

Huygens–Fresnel principle, the diffracted far-field radiation pattern of light from a 

circular aperture can be calculated under the parallel ray approximation ( | | | |′r r ) [81]: 
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 (10.2) 

where 

 ˆ ˆcos sinρ ϕ ρ ϕ′ = +r x y  

is the source point and 

 ˆ ˆ ˆsin cos sin sin cosr r rθ φ θ φ θ= + +r x y z  

is the field point. The far-field intensity pattern is then given by 

 2( ) ( ) ( ) ( )I U U U∗= =r r r r  (10.3) 

and plotted in Fig. 10.1 for the fundamental mode of circular DFB, disk, and ring Bragg 

lasers.  

In the far-field patterns, the different lobes correspond to different diffraction orders 

of the light emitted from the circular aperture. In the circular DFB and ring Bragg lasers, 

most of the energy is located in the first-order Fourier component thus their first-order 

diffraction peaks dominate. In the disk Bragg laser it is obvious that the zeroth-order peak 

dominates. These calculation results are similar to some of the experimental data for 

circular DFB and DBR lasers [82, 83]. 
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10.3 Single-Mode Range, Quality Factor, Modal Area, and Internal 
Emission Efficiency 

In the previous sections we have compared the modal properties for devices with a fixed 

exterior boundary radius xb = 200. In what follows we will vary the device size and 

investigate the size dependence of modal gains to determine the single-mode range for each 

laser type. Within each own single-mode range limit, the fundamental mode of these lasers 

will be used to calculate and compare the quality factor, modal area, and internal emission 

efficiency. Similar to the prior calculations with a fixed xb, we still keep x0 = xb/2 for the 

disk Bragg laser and xL + xR = xb, xR − xL = 2π for the ring Bragg laser even as xb varies. 

 

Single-Mode Range 

In the circular Bragg lasers, since a longer radial Bragg grating can provide stronger 

feedback for in-plane waves, larger devices usually require a lower threshold gain. The 

downside is that a larger size also results in smaller modal discrimination, which is 
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 Fig. 10.1. Far-field intensity patterns of the fundamental mode of (a) circular DFB, 
(b) disk, and (c) ring Bragg lasers.  
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unfavorable for single-mode operation in these lasers. As a result, there exists a range of 

the exterior boundary radius xb values for each laser type within which range the single-

mode operation can be achieved. This range is referred to as the “single-mode range.” 

Figure 10.2 plots the evolution of threshold gains for the 5 lowest-order modes as xb 

varies from 50 to 350. The single-mode ranges for the circular DFB, disk, and ring Bragg 

lasers are 50–250, 60–140, and 50–250, respectively, which are marked as the pink 

regions. Since single-mode operation is usually preferred in laser designs, in the rest of 

this section we will limit xb to remain within each single-mode range and focus on the 

fundamental mode only. 

 

Quality Factor 

As a measure of the speed with which a resonator dissipates its energy, the quality factor 

Q for optical resonators is usually defined as PωE  where ω denotes the radian 

resonance frequency, E  the total energy stored in the resonator, and P the power loss. In 
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 Fig. 10.2. Evolution of threshold gains of the 5 lowest-order modes of (a) circular DFB, 
(b) disk, and (c) ring Bragg lasers. The modes are labeled in accord with those shown in 
Table 10.1. The single-mode range for each laser type is marked in pink.  
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our surface-emitting circular Bragg lasers, the power loss P has two contributions: 

coherent vertical laser emission coupled out of the resonator due to the first-order Bragg 

diffraction, and peripheral power leakage due to the finite radial length of the Bragg 

reflector. 

Jebali et al. recently developed an analytical formalism to calculate the Q factor for 

first-order circular grating resonators using a 2-D model in which the in-plane peripheral 

leakage was considered as the only source of power loss [84]. To include the vertical 

emission as another source of the power loss, a rigorous analytical derivation of the Q 

factor requires a 3-D model be established. This is much more complicated than the 2-D 

case. However, since we are interested in comparing different laser types, a relative Q 

value will be good enough. Considering that the energy stored in a volume is proportional 

to ∫|E|2 dV and that the outflow power through a surface is proportional to ∫|E|2 dS, we 

define an unnormalized quality factor 
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∫ ∫
∫ ∫

 (10.4) 

where Z(z) denotes the vertical mode profile for a given layer structure [see Eq. (8.3)] and 

D the thickness of the laser resonator. For a circularly symmetric mode, the angular 

integration factors are canceled out. The expressions for the in-plane field E and radiation 

field ΔE are given by Eqs. (9.1) and (10.1), respectively. 
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The unnormalized quality factor Q′  as defined in Eq. (10.4) is obviously proportional 

to an exact Q, and the former is more intuitive and convenient for calculational purposes. 

The Q′  of the fundamental mode for the three laser types is calculated and displayed in Fig. 

10.3. As expected, increase in the device size (xb) results in an enhanced Q′  value for all 

three types of lasers. Additionally, the disk Bragg laser exhibits a much higher Q′  than the 

other two laser structures of identical dimensions. As an example, for xb = 100, the Q′  

value of the disk Bragg laser is approximately 3 times greater than that of the circular DFB 

or ring Bragg lasers. This is consistent with their threshold behaviors shown in Table 10.1. 
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Fig. 10.3. Unnormalized quality factor of circular DFB, disk, and ring Bragg lasers.  
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Modal Area 

Based on the definition of modal volume [85], an effective modal area is similarly 

defined: 

 
2

eff
mode 2

| | d d
.

max{| | }

ϕ
= ∫∫ x x

A
E

E
 (10.5) 

The modal area is a measure of how the modal field is distributed within the resonator. A 

highly localized mode having a small modal area can have strong interaction with the 

emitter. Figure 10.4 plots eff
modeA  of the fundamental mode, within each single-mode range, 

for the three laser types. The top surface area of the laser resonator ( 2π bx ) is also plotted 

to serve as a reference. The modal area of the disk Bragg laser is found to be at least one 
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Fig. 10.4. Modal area of circular DFB, disk, and ring Bragg lasers. The top surface area of 
the laser resonator ( 2π bx ) is also plotted as a reference.  
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order of magnitude lower than those of the circular DFB and ring Bragg lasers. This is 

not surprising and can be inferred from their unique modal profiles listed in Table 10.1. 

 

Internal Emission Efficiency 

As mentioned earlier, the generated net power in the circular Bragg lasers is dissipated by 

two kinds of loss: vertical laser emission and peripheral power leakage. The internal 

emission efficiency ηin is thus naturally defined as the fraction of the total power loss that 

is represented by the useful vertical laser emission. Figure 10.5 depicts the ηin of the 

fundamental mode, within each single-mode range, for the three laser types. As expected, 

all the lasers possess a larger ηin with a larger device size. Comparing devices of identical 

dimensions, only the disk and ring Bragg lasers achieve high emission efficiencies. This 
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Fig. 10.5. Internal emission efficiency of circular DFB, disk, and ring Bragg lasers.  
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is a result of their fundamental modes being located in a bandgap while the circular DFB 

laser’s fundamental mode is at a band edge, i.e., in a band. Bandgap modes experience 

much stronger reflection from the Bragg gratings, yielding less peripheral power leakage 

than in-band modes. 

 

Summary of Comparison 

In this section, by varying the device size we have obtained the single-mode range and 

compared the quality factor, modal area, and internal emission efficiency of the three 

types of lasers. It is demonstrated that, under similar conditions, disk Bragg laser has the 

highest quality factor, the smallest modal area, and the highest internal emission 

efficiency, indicating its suitability in high-efficiency, low-threshold, ultracompact laser 

design, while ring Bragg laser has a large single-mode range, large modal area, and high 

internal emission efficiency, indicating its wide application as a high-efficiency, large-

area laser. 
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Chapter 11 

Above-Threshold Modal Properties 

In Chapter 10 we have solved the modes and compared the near-threshold modal properties 

of the three types of surface-emitting circular Bragg lasers. This chapter focuses on an 

above-threshold modal analysis that includes the gain saturation effect. The coupled-mode 

equations (9.2) and (9.3) will be solved numerically with boundary conditions. The relation 

of surface emission power versus pump power will be simulated. The laser threshold and 

external emission efficiency will be compared for these lasers under different pump profiles. 

Last, with the device size varying in a large range, the evolution curve of pump level for 

several lowest-order modes will be generated and the optimal design guidelines for these 

lasers will be suggested. 

This chapter is reproduced and adapted with permission from [76, 77], © 2009 OSA. 

 

11.1 Surface Emission Power versus Pump Power Relation 

The numerical mode-solving recipe is described in detail in Section 9.2. Simply put, Eqs. 

(9.2) and (9.3) are integrated along x from x = 0 to x = xb with the initial boundary 

condition [A B] = A(0)[1 1]. By identifying those satisfying the final boundary condition 

B(xb) = 0 one finds the modes with corresponding g0 and δ. The modal pump level is then 
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given by Ppump = ∫ g0(x) · x · dx in units of a proportionality constant P0. Explained in 

Section 9.3, the surface emission power Pem from the laser is just the second term on the 

left-hand side of Eq. (9.18). By varying the value of A(0) at the beginning of the 

integration process, we are able to get the (Ppump, Pem) pairs, which basically form the 

typical input–output relation for a laser mode. 

As an example, we consider the circular DFB laser with xb = 200 and the other 

structural parameters the same as those used in Chapter 10. The additional parameter 

used in the numerical integration, the nonsaturable internal loss α, is assumed to be 
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Fig. 11.1. Surface emission power Pem (in units of Psat) versus pump power level Ppump for 
the fundamental mode of circular DFB laser (xb = 200) under uniform pumping. The laser 
threshold Pth is defined as the pump level at the onset of surface laser emission. The 
external emission efficiency ηex is defined as the slope of the linear fit of the simulated data 
points up to Pem = 10Psat. 
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0.2 × 10−3 (already normalized by β) for typical III–V quantum well lasers. With the 

simulated (Ppump, Pem) pairs, the typical laser input–output relation is obtained for the 

fundamental mode and plotted in Fig. 11.1. The laser threshold Pth is defined as the pump 

level at the onset of surface laser emission. The external emission efficiency (or, energy 

conversion efficiency) ηex is defined as the slope dPem/dPpump of the linear fit of the 

simulated data points up to Pem = 10Psat. As can be seen, the output power varies linearly 

with the pump power above threshold, which is in agreement with the theoretical and 

experimental results for typical laser systems (see, e.g., Section 9.3 of [54]). 

 

11.2 Nonuniform Pumping Effects 

So far our studies on the circular Bragg lasers have assumed a uniform pumping profile and 

thus a uniform gain distribution across the devices. In practical situations, the pumping 

profile is usually nonuniform, distributed either in a Gaussian shape in optical pumping [73, 

86] or in an annular shape in electrical pumping [87]. The effects of nonuniform pumping 

have been investigated theoretically [88, 89] and experimentally [68] for circular DFB 

lasers. In this section we will study and compare the nonuniform effects on the three types 

 

Fig. 11.2. Illustration of different pump profiles: (a) uniform; (b) Gaussian; (c) annular. 
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of surface-emitting circular Bragg lasers.  

Let us focus on three typical pumping profiles—uniform, Gaussian, and annular—as 

shown in Fig. 11.2. The pump level Ppump can be expressed analytically in terms of the 

pump profile parameters: 

(a) Uniform: 

 21
0 0 pump 0 020
( ) , 0 , d ,bx

b bg x g x x P g x x g x= ≤ ≤ = ⋅ ⋅ =∫  (11.1) 

(b) Gaussian: 

 ( ) ( )2 2

2 2
21

0 0 pump 0 020
( ) exp , 0, exp d ,

p p
p

x x
w wg x g x P g x x g w

∞
= − ≥ = − ⋅ ⋅ =∫  (11.2) 

(c) Annular: 

 ( ) ( )2 2

2 20 0
( ) ( )( ) exp exp , 0,p p

p p

x x x x
w wg x g x− +⎡ ⎤= − + − ≥⎢ ⎥⎣ ⎦

 

( ) ( ) ( ) ( )2 2 2

2 2 2
2

pump 0 00

( ) ( )exp exp d exp π erf ,p p p p

p p p pp p p
x x x x x

w w w
x
wP g x x g w w x

∞ − +⎡ ⎤ ⎡ ⎤= − + − ⋅ ⋅ = − +⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦∫
 (11.3) 

where the error function 2
π 0

2erf( ) exp( ) d .
x

x t t≡ −∫  

To compare the nonuniform pumping effects, the typical exterior boundary radius xb 

= 200 is again assumed for all the circular DFB, disk, and ring Bragg lasers. In addition, 

for the disk Bragg laser the inner disk radius is set to be x0 = xb/2, and for the ring Bragg 

laser the two interfaces separating the grating and no-grating regions are located at xL = 

xb/2 − π and xR = xb/2 + π. Following the calculation procedure in Section 11.1, the 

threshold pump level Pth and the external emission efficiency ηex of the fundamental 

mode of the three types of lasers were calculated with the uniform, Gaussian, and annular 
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pump profiles, respectively, and the results are listed in Table 11.1. Without loss of 

generality, the Gaussian profile was assumed to follow Eq. (11.2) with wp = xb/2 = 100, 

and the annular profile was assumed to follow Eq. (11.3) with xp = xb/2 = 100 and wp = 

xb/4 = 50. The numbers shown in Table 11.1 indicate an inverse relation between Pth and 

ηex. The lowest Pth and the highest ηex are achieved with the Gaussian pump for the 

circular DFB and disk Bragg lasers and with the annular pump for the ring Bragg laser. 

These observations can actually be understood with fundamental laser physics: In 

any laser system the overlap factor between the gain spatial distribution and that of the 

modal intensity is crucial and proportionate. In semiconductor lasers once the pump 

power is strong enough to induce the population inversion the medium starts to amplify 

light. The lasing threshold is determined by equating the modal loss with the modal gain, 

which is the exponential gain constant experienced by the laser mode. This modal gain is 

proportional to the overlap integral between the spatial distribution of the gain and that of 

the modal intensity. Therefore if one assumes that, to the first order, the gain is 

proportional to the excess pump power over the transparency, then the threshold pump 

level Pth is inversely proportional to the above overlap integral (see, e.g., Section 11.3 of 

Table 11.1. Threshold pump level Pth (in units of P0) and external emission efficiency ηex 
(in units of Psat/P0) of circular DFB, disk, and ring Bragg lasers under different pump 
profiles 
 

Circular DFB laser Disk Bragg laser Ring Bragg laser Pump profile Pth ηex Pth ηex Pth ηex 
Uniform 9.760 0.7369 6.565 0.4374 13.162 0.9278 
Gaussian 5.967 0.9961 2.373 0.8741 8.570 1.379 
Annular 6.382 0.9742 5.855 0.7358 7.010 1.500 
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[54]). On the other hand, since the rate of simulated emission per electron and thus the 

gain are proportional to the modal intensity as seen by the electron (see, e.g., Section 8.3 

of [54]), this leads to a direct proportion between the external emission efficiency ηex and 

the overlap integral. The bottom line is that a larger overlap between the pump profile 

and the modal intensity distribution results in more efficient energy conversion in the 

gain medium, which consequently leads to a lower Pth and a higher ηex. 

 

11.3 Considerations in Optimal Design 

To obtain the optimal design for these circular Bragg lasers, we will again vary their device 

size in a large range and inspect their size-dependent behavior. Like what we have done in 

Section 10.3, we will vary the exterior boundary radius xb for all the lasers while keeping x0 

= xb/2 for the disk Bragg laser and xL = xb/2 − π, xR = xb/2 + π for the ring Bragg laser. 

Figure 11.3 shows the dependence of the pump level Ppump and the frequency 

detuning factor δ on the device size xb for the 3 lowest-order modes, under uniform pump 

profile, of the three types of lasers. In each subfigure, the modes are numbered in accord 

with those shown in Table 10.1. For both Ppump and δ, dashed lines mark their values 

obtained at threshold and solid lines at Pem = 10Psat. 

Seen from the upper left and right subplots of Fig. 11.3, the circular DFB and ring 

Bragg lasers still possess large discrimination between the modes even when operated in 

above-threshold regime (e.g., at Pem = 10Psat), which ensures them a large single-mode 

range of at least 50–250. Additionally, we have identified low-pump ranges for their 

Mode 1 at Pem = 10Psat, which are 100–160 for the circular DFB laser and 80–130 for the 
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ring Bragg laser. The low-pump range is another important factor in designing such lasers 

for high-efficiency, high-power applications. The existence of this low-pump range is a 

result of competition between the pumped area and the required gain level: although 

larger devices require a larger area to be pumped, their longer radial Bragg gratings 

reduce the needed gain because of stronger reflection of the optical fields from the 

gratings. 
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Fig. 11.3. Device-size-dependent pump level Ppump and frequency detuning factor δ of 
the 3 lowest-order modes, under uniform pump profile, of (a) circular DFB, (b) disk, and 
(c) ring Bragg lasers. xb is the exterior boundary radius for all types of lasers. The inner 
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Seen from the upper middle subplot of Fig. 11.3, the Ppump for the disk Bragg laser 

exhibits interesting behaviors: (1) at xb = 200, the order of Modes 1 and 2 exchanges from 

at threshold to above threshold due to the gain saturation effects; (2) the single-mode 

range (for Mode 2) shifts from 60–140 at threshold to 90–175 at high surface emission 

level Pem = 10Psat. Therefore the single-mode range for designing the disk Bragg laser 

should be the overlap of these two ranges, i.e., 90–140. 

Seen from the lower subplots of Fig. 11.3, all the laser modes have overlapped 

dashed and solid lines, which means their frequency detuning factors δ are unaffected by 

the surface emission level. This is because of δ being an intrinsic property of a laser 

mode. 
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Chapter 12 

Conclusion and Outlook 

We have described and analyzed a type of on-chip microlasers whose surface emission is 

very useful for many applications. The main advantage of these lasers would be the relative 

high (say, more than tens of milliwatts), single-mode optical power emitted broadside and 

coupled directly into a fiber or telescopic optics. Other areas of applications that can benefit 

from such lasers include ultrasensitive biochemical sensing [90], all-optical gyroscopes 

[91], and coherent beam combination [92] for high-power, high-radiance sources in 

communications and display technology. Furthermore, a thorough investigation of such 

lasers may also lead to a better understanding in designing and fabricating a nanosized 

analogue, if a surface-plasmon approach is employed. 

We have studied the circular Bragg lasers for their applications as high-efficiency, 

high-power, surface-emitting lasers. We have covered the basic concepts, calculation 

methods, near- and above-threshold modal properties, and design strategies for such lasers.  

Three typical configurations of such circular Bragg lasers—namely, circular DFB 

laser, disk Bragg laser, and ring Bragg laser are investigated. Following the grating 

design principle for linear DFB lasers, the gratings of circular Bragg lasers have to be in 

sync with the phases of optical waves in a circular (or cylindrical) geometry. Since the 
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eigensolutions of wave equation in a circular geometry are Hankel functions, this leads to 

a varying period of the gratings in radial direction, i.e., radially chirped gratings. To 

obtain efficient output coupling in vertical direction, a second-order scheme has been 

employed, and a quarter duty cycle has proven to be a good choice. 

After a series of comparison of the modal properties, it becomes clear that disk and 

ring Bragg lasers have superiority over circular DFB lasers in high-efficiency surface 

emission. More specifically, disk Bragg lasers are most useful in low-threshold, 

ultracompact laser design while ring Bragg lasers are excellent candidates for high-power, 

large-area lasers. 

Considering above-threshold operation with a nonuniform pump profile, it has been 

numerically demonstrated and theoretically explained that a larger overlap between the 

pump profile and modal intensity distribution leads to a lower threshold and a higher 

energy conversion efficiency. To achieve the same level of surface emission, disk Bragg 

laser still requires the lowest pump power, even though its single-mode range is modified 

because of the gain saturation induced mode transition. Circular DFB and ring Bragg 

lasers find their low-pump ranges at high surface emission level. These results provide us 

useful information for designing these lasers for single-mode, high-efficiency, high-

power applications. 

Looking ahead, there is still more work to be done on this special topic. For example, 

it would be interesting to further investigate how the grating design effects on the modal 

far-field pattern and what design results in a pattern having all, or almost all, of the energy 

located in the zeroth-order lobe with narrow divergence. This will be useful for applications 

that require highly directional, narrow-divergence laser beams. On the other hand, since the 
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above study is mainly theoretical analysis oriented, experimental work, of course, has to 

develop to verify the theoretical predictions. In the field of optoelectronics, a single-mode, 

high-power laser having controllable beam shape and being compatible with on-chip 

integration is still being highly sought. Due to the many salient features that have been 

described, it is our belief that the surface-emitting circular Bragg lasers will take the place 

of the prevailing VCSELs and make the ideal on-chip light source for next-generation 

optical communications and many other areas. 
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Appendix A 

Derivation of Coupled Local Mode 
Equations 

In this appendix we derive the coupled local mode equations for the optical modes in 

waveguides with index profile variation in the lightwave propagation direction. The 

derivation draws upon the analogy to the time-dependent perturbation theory in quantum 

mechanics. The results for both vector field and scalar field are in agreement with those 

derived from coupled local mode theory in standard textbooks [93].  

 

A.1 Vector Field 

In a linear, time-invariant medium, the vector electromagnetic field can be decomposed by 

time-harmonic modes  
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Substituting (A.1) into the Maxwell equations, 
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yields 

 ˆ ˆt z z t tzE z E i Hωμ∇ × + ∂ × = − , (A.3) 

 ˆt t zE i zHωμ∇ × = − , (A.4) 

 ˆ ˆt z z t tzH z H i Eωε∇ × + ∂ × = , (A.5) 

 ˆt t zH i zEωε∇ × = . (A.6) 

Insert (A.4) into (A.5), (A.6) into (A.3), it follows 
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If we define  
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(A.7) is expressible as  

 ˆˆ
zi B A∂ =F F . (A.8) 

In the space of { },t tE H , we define the inner product as  

 ( ) ( ), t t t tA A
dA dA E E H H

∞ ∞

∗ ∗ ∗′ ′ ′ ′≡ ⋅ = ⋅ + ⋅∫ ∫F F F F , (A.9) 
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where the integral is over the infinite cross section A∞ at a fixed z. It is easy to verify that 

under the above definition of inner product, Â  and B̂  are both Hermitian as long as ε and 

μ are real.1 

If the nonuniformity of the waveguide along the propagation direction (z) varies 

slowly enough, then F  depends on z only through a phase factor ( )i z ze β−  where β(z) 

depending on z is the “local propagation constant.” To the lowest order, we ignore the 

dependence of β on position z, then ˆ ˆ ˆ ˆ( )z zi B iB iB i Bβ β∂ = ∂ = − =F F F F , resulting in 

 ˆ ˆA Bβ=F F , (A.10) 

which is a generalized Hermitian eigenproblem. Considering ˆ ˆBB = I , we get ˆB̂A =F  

ˆ ˆBBβ β=F F . Even though we can write Ĥ β=F F  in form by defining ˆˆ ˆH BA= , Ĥ  is not 

Hermitian since Â  and B̂  do not commute! 

The orthogonality relation, which follows from the properties of Hermitian 

eigenproblems, is expressible as 
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where ( ) ( ) ( )a b a b a b∇⋅ × = ∇× ⋅ − ⋅ ∇×  and t t
∗∇ = ∇  have been used and a real μ has 

been assumed. Since Â  is block diagonal, it is then obvious that ( ) ( )ˆ ˆ, ,A A′ ′=F F F F . 
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where P(i) denotes the power carried in the ith mode. This orthogonality relation agrees 

with that derived from the Lorentz reciprocity theorem in electromagnetic theory. 

So far we have shown that the time-harmonic Maxwell equation in a lossless (real ε 

and μ), time-invariant medium is analogous to the time-independent Schrödinger equation 

in quantum mechanics. By the famous adiabatic approximation, if the Hamiltonian Ĥ  (or 

Â , equivalently) varies very slowly along the propagation direction (z), we expect to be 

able to approximate the solutions of the Maxwell equations in the real configuration by 

means of “stationary” eigenfuncitons of the local Hamiltonian, so that a particular 

eigenfunction at a z plane goes over continuously into the corresponding eigenfunction at a 

later z plane.  

At each z plane, the bound solutions of the eigenvalue equation (A.10) are assumed to 

be known, 

 ( ) ( )ˆ ˆ( ) ( ) ( ) ( )n n
nA z f z z Bf zβ= , (A.12) 

where βn(z) are real and the dependence of ( ) ( )nf z  on transverse coordinates is implicitly 

included. Suppose we know the field at z = 0 plane,  

 ( )

0
( ) ( ) ( ) exp ( )

zn
n n

n
z a z f z i z dzβ⎡ ⎤′ ′= −⎢ ⎥⎣ ⎦∑ ∫F . (A.13) 

Substituting (A.13) into (A.8) and employing (A.12), in first-order approximation, yields 
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Multiply by ( ) ( )kf z∗  and integrate over the infinite cross section A∞, using the 

orthogonality relation (A.11),  
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Next we seek a doable expression for 
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⎜ ⎟∂⎝ ⎠

. Differentiate (A.12) with 

respect to z, 

 
( ) ( )

( ) ( )
ˆ ( )( ) ( ) ( )ˆ ˆ ˆ( ) ( ) ( ) ( )

n n
n nn

n
zA z f z f zf z A z Bf z z B

z z z z
β β∂∂ ∂ ∂

+ = +
∂ ∂ ∂ ∂

. (A.16) 

Multiply by ( ) ( )kf z∗  (k ≠ n) and integrate over the infinite cross section A∞, 

 
( ) ( )

( ) ( ) ( ) ( )
ˆ ( ) ( )ˆ ˆ( ), ( ) ( ), ( ) ( ),

n n
k n k k

n
A f z f zf z f z f z A z f z B
z z z

β
⎛ ⎞ ⎛ ⎞ ⎛ ⎞∂ ∂ ∂

+ =⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎜ ⎟∂ ∂ ∂⎝ ⎠ ⎝ ⎠⎝ ⎠
, (A.17) 

where  

 

( ) ( )
( ) ( )

( ) ( )
( ) ( )

( ) ( )ˆ ˆ( ), ( ),

( ) ( )ˆ ˆ( ) ( ), ( ) ( ), .

n n
k k

n n
k k

k k

f z f zf z A Af z
z z

f z f zz Bf z z f z B
z z

β β∗

⎛ ⎞ ⎛ ⎞∂ ∂
=⎜ ⎟ ⎜ ⎟∂ ∂⎝ ⎠ ⎝ ⎠
⎛ ⎞ ⎛ ⎞∂ ∂

= =⎜ ⎟ ⎜ ⎟∂ ∂⎝ ⎠ ⎝ ⎠

 

Therefore for k ≠ n,  

 

( ) ( )
( )

( )

ˆ
( ), ( )

( )ˆ( ),
( ) ( )

k n
n

k

n k

Af z f z
zf zf z B

z z zβ β

⎛ ⎞∂
⎜ ⎟∂⎛ ⎞∂ ⎝ ⎠=⎜ ⎟∂ −⎝ ⎠

. 

For k = n, we can set it zero by choosing a proper phase of ( ) ( )kf z . The argument follows: 

From (A.11),  
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( )

( ) ( )
( ) ( ) ( ) ( )

( ) ( )
( ) ( )

( ) ( )ˆ ˆ ˆ0 ( ), ( ) , ( ) ( ),

( ) ( )ˆ ˆ( ), ( ), ,

k k
k k k k

k k
k k

f z f zf z Bf z Bf z f z B
z z z

f z f zf z B f z B
z z

∗

⎛ ⎞ ⎛ ⎞∂ ∂ ∂
= = +⎜ ⎟ ⎜ ⎟∂ ∂ ∂⎝ ⎠ ⎝ ⎠

⎛ ⎞ ⎛ ⎞∂ ∂
= +⎜ ⎟ ⎜ ⎟∂ ∂⎝ ⎠ ⎝ ⎠

 

which means 
( )

( ) ( )ˆ( ),
k

k f zf z B
z

⎛ ⎞∂
⎜ ⎟∂⎝ ⎠

 must be pure imaginary.  

Let 
( )

( ) ( )ˆ( ), ( )
k

k f zf z B i z
z

α
⎛ ⎞∂

=⎜ ⎟∂⎝ ⎠
, we can change the phase of ( ) ( )kf z  by an amount of γ(z) 

such that ( ) ( ) ( )( ) ( )k k i zf z f z e γ′ = , so 

  

( )

( ) ( )
( ) ( )

( ) ( ) ( )

( ) ( )ˆ ˆ( ), ( ) ,

ˆ( ) , ( ) ( ) 4 .

k k
k k i i

k i k i k

f z f zf z B f z e B e
z z

d df z e Bf z e i i z P i
dz dz

γ γ

γ γ γ γα

⎛ ⎞′ ⎛ ⎞∂ ∂′ =⎜ ⎟ ⎜ ⎟⎜ ⎟∂ ∂⎝ ⎠⎝ ⎠

+ = +

 

We are free to choose γ(z) such that ( )

( )
4 k

d z
dz P
γ α
= −  to make 

( )
( ) ( )ˆ( ), 0

k
k f zf z B

z

⎛ ⎞′∂′ =⎜ ⎟
⎜ ⎟∂⎝ ⎠

. 

Since ( ) ( )kf z  and ( ) ( )( )k i zf z e γ  denote the same eigenstate, we proved that 

( )
( ) ( )ˆ( ),

k
k f zf z B

z
⎛ ⎞∂
⎜ ⎟∂⎝ ⎠

 can be set zero. 

Furthermore, from the definition of Â , we have  

 

2

2

2

2

1 1

1 1

1 1

1 1

0ˆ

0

0 000 00
.

000 0 0 0

t tz z

t tz z

t tzz

t tzz

A
z

με
ω μ

μ ε
ω ε

με
ω μ

μ ε
ω ε

ω

ω

ω
ω

∂∂
∂ ∂

∂ ∂
∂ ∂

∂∂
∂∂

∂ ∂
∂∂

⎛ ⎞+ ∇ × ∇ ×∂ ⎜ ⎟=
⎜ ⎟∂ + ∇ × ∇ ×⎝ ⎠

⎛ ⎞∇ × ∇ × ⎛ ⎞⎛ ⎞⎛ ⎞
= + + +⎜ ⎟ ⎜ ⎟⎜ ⎟⎜ ⎟ ⎜ ⎟ ∇ × ∇ ×⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎝ ⎠

(A.18) 

It is obvious from the definition of inner product that 
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( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( )
2 2 2

2

( ) ( ) ( ) ( ) ( ) ( )1 1 1

( ) ( ) 2 ( ) ( ) 2 ( ) ( )1

,

ˆ ˆ ˆ ˆ ˆ ˆ, .

k n k n k n
t t t t t t t t t t t tA A

k n k n k n
z z z z z zA A

e e dA e e dA e e

dA i zh i zh dA zh zh zh zh

μ μ μ

μ
ωμ ωμ ω ω

∞ ∞

∞ ∞

∗∗

∗ ∗

∇ × ∇ × = ⋅ ∇ × ∇ × = ∇ × ⋅ ∇ ×

= − ⋅ − = ⋅ =

∫ ∫

∫ ∫
 

Likewise, ( ) ( )2
( ) ( ) 2 ( ) ( )1 ˆ ˆ, ,k n k n

t t t t z zh h ze ze
ε

ω∇ × ∇ × = . 

As a result, ( ) ( ) ( ) ( ) ( ) ( )
ˆ

( ), ( )k n k n k n

A

Af z f z dA e e h h
z z z

ε μω
∞

∗ ∗⎛ ⎞∂ ∂ ∂⎡ ⎤= ⋅ + ⋅⎜ ⎟ ⎢ ⎥⎜ ⎟∂ ∂ ∂⎣ ⎦⎝ ⎠
∫ , 

where ( ) ( ) ( ) ( ) ( ) ( )ˆ ˆ,i i i i i i
t z t ze e ze h h zh= + = + . 

Now we get  

 

( ) ( ) ( ) ( )
( )

( ) ( )ˆ( ),
( ) ( )

k n k n
n Ak

n k

dA e e h h
f z z zf z B

z z z

ε μω

β β
∞

∗ ∗∂ ∂⎡ ⎤⋅ + ⋅⎢ ⎥⎛ ⎞∂ ∂ ∂⎣ ⎦=⎜ ⎟∂ −⎝ ⎠

∫
. (A.19) 

Inserting (A.19) into (A.15) leads to the coupled local mode equation, 

 ( )
0

( ) ( ) ( ) exp ( ) ( )
zk

n kn n k
n k

da z a z z i z z dz
dz

β β
≠

⎡ ⎤′ ′ ′= − − −⎢ ⎥⎣ ⎦∑ ∫ , (A.20) 

where 
[ ]

( ) ( ) ( ) ( )

( )( )
4 ( ) ( )

k n k n

A

kn k
n k

dA e e h h
z zz

P z z

ε μω

β β
∞

∗ ∗∂ ∂⎡ ⎤⋅ + ⋅⎢ ⎥∂ ∂⎣ ⎦=
−

∫
. 

In dielectric materials, 
2

2
0 0 0, , 0, nn

z z z
μ εμ μ ε ε ε∂ ∂ ∂

= = = =
∂ ∂ ∂

, and if e  and h  are 

power normalized, i.e., ( ) 1kP = , 

 
1
2 2

( ) ( )0

0

1( )
4 ( ) ( )

k n
kn A

n k

k nz dA e e
z z z

ε
μ β β ∞

∗⎛ ⎞ ∂
= ⋅⎜ ⎟ − ∂⎝ ⎠

∫ . (A.21) 

We arrive at the same result as that derived from the first-order vectorial coupled local 

mode theory [93]. 
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A.2 Scalar Field 

In the case that the polarization effects due to the waveguide structure are unimportant, we 

can introduce the “weak guidance approximation,” under which the local modal fields 

,t te e h h , and the Cartesian components of te  are approximated by the solutions of 

the scalar wave equation, 

 ( )ˆ ˆ( , , ) ( , ) ( , ) ( , ) ( , )i z i z i z
t x yE x y z e x y e e x y e xe x y ye x y eβ β β− − −= = + . 

Let Ψ denote ex(x, y) or ey(x, y), then Ψ satisfies the scalar wave equation, 

 2 2 2 2( , , ) ( )t k n x y z zβ⎡ ⎤∇ + Ψ = Ψ⎣ ⎦ . (A.22) 

In the space of { }Ψ , the inner product is defined as ( ),
A

dA
∞

∗′ ′Ψ Ψ ≡ Ψ Ψ∫ . It is obvious 

that under this definition, the operator 2 2 2ˆ ( ) ( , , )tH z k n x y z≡ ∇ +  is Hermitian, and positive 

definite. Therefore (A.22) is a typical Hermitian eigenvalue problem. 

The orthogonality relation is thus 

 
( )

1
2

1 1 1
2 2 2

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) 0

0

( ) ( ) ( ) ( ) ( )0 0 0

0 0 0

ˆ,

ˆ ˆ 2 ,

i j i j i j i j
t t t tA A A

j

i j i j i
t t ijA A

j j i

kdA dA e e dA e z h

k k kdA z e h dA z e h P

μ
ε β

μ μ μ δ
ε β ε β ε β

∞ ∞ ∞

∞ ∞

∗ ∗ ∗

∗ ∗

⎡ ⎤⎛ ⎞⎢ ⎥Ψ Ψ ≡ Ψ Ψ = ⋅ = ⋅ − × ⎜ ⎟
⎢ ⎥⎝ ⎠⎣ ⎦

⎛ ⎞ ⎛ ⎞ ⎛ ⎞
⎡ ⎤ ⎡ ⎤= ⋅ × = ⋅ × =⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎣ ⎦ ⎣ ⎦

⎝ ⎠ ⎝ ⎠ ⎝ ⎠

∫ ∫ ∫

∫ ∫

(A.23) 

where we have used 
1
2

0

0

ˆt th z e
k

ε β
μ

⎛ ⎞
= ×⎜ ⎟
⎝ ⎠

 under the weak guidance approximation. 

Let us follow the standard time independent perturbation theory. Assuming at some z 

plane, we have found a set of eigenstates { ( )}n zΨ  satisfying (A.22), 



 120 

 

 ( ) 2 ( )ˆ ( ) ( ) ( ) ( )n n
nH z z z zβΨ = Ψ , (A.24) 

we need the new set of eigenwave functions at z + dz plane. We may write  

 

2 2 2

( ) ( ) ( )

( ) ( ) ,

( ) ( ) ,
ˆ ˆ ˆ( ) ( ) .

n n z n
n n n

z

z

z dz z dz

z dz z dz

H z dz H z dz H

β β β+ = + ∂

Ψ + = Ψ + ∂ Ψ

+ = + ∂

 (A.25) 

Substituting them into ( ) 2 ( )ˆ ( ) ( ) ( ) ( )n n
nH z dz z dz z dz z dzβ+ Ψ + = + Ψ +  then equating the 

coefficients of term dz leads to 

 ( ) ( )( ) ( ) 2 ( ) 2 ( )ˆ ˆ( ) ( ) ( ) ( )n n n n
z z n z z nH z H z z zβ β∂ Ψ + ∂ Ψ = ∂ Ψ + ∂ Ψ . (A.26) 

Generally, we may well assume ( ) ( )( ) ( )n j
z nj

j
z z∂ Ψ = Ψ∑  and introduce (A.24) into 

(A.26), 

 ( ) ( )2 ( ) ( ) 2 ( ) 2 ( )ˆ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ).j n j n
nj j z n nj z n

j j
z z z H z z z z zβ β βΨ + ∂ Ψ = Ψ + ∂ Ψ∑ ∑ (A.27) 

Multiply by ( ) ( )k z∗Ψ  then integrate over the infinite cross section A∞, then 

 
( )( )

( )

1
2

1 1
2 2

2 ( ) ( ) ( )0

0

2 ( ) 2 ( )0 0

0 0

ˆ( ) ( ) 2 ( ), ( )

( ) ( ) 2 2 .

k k n
nk k z

k

k k
n nk z n kn

k k

kz z P z H z

k kz z P P

μβ
ε β

μ μβ β δ
ε β ε β

⎛ ⎞
⋅ + Ψ ∂ Ψ⎜ ⎟
⎝ ⎠

⎛ ⎞ ⎛ ⎞
= ⋅ + ∂ ⋅⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠

 (A.28) 

For k ≠ n,  

 
( )( )

1
2

( ) ( )

( ) 2 20

0

ˆ( ), ( )
( )

2 ( ) ( )

k n
z

nk

k
n k

k

z H z
z

k P z zμ β β
ε β

Ψ ∂ Ψ
=

⎛ ⎞
⎡ ⎤−⎜ ⎟ ⎣ ⎦

⎝ ⎠

. (A.29) 

By the same argument as in Section A.1 we can set ( ) 0nn z = . 
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Recall 2 2 2ˆ ( ) ( , , )tH z k n x y z≡ ∇ + , 
2

2ˆ
z

nH k
z

∂
∂ =

∂
, therefore 

 1
2

2
( ) ( )

2

2 2

( )0

0

( ), ( )
( )

( ) ( )
2

k n

nk
n k k

k

nz z
zkz

z z k P
β β μ

ε β

⎛ ⎞∂
Ψ Ψ⎜ ⎟∂⎝ ⎠=

− ⎛ ⎞
⎜ ⎟
⎝ ⎠

i . 

If ( ) ( )k zΨ  and ( ) ( )n zΨ  are power normalized, i.e., 

 
( )

( )

1
2

1
2

( ) ( ) ( )0

0

( ) ( ) ( )0

0

, 2 1,

, 2 1,

k k k

k

n n n

n

k P

k P

μ
ε β

μ
ε β

⎛ ⎞
Ψ Ψ = =⎜ ⎟

⎝ ⎠

⎛ ⎞
Ψ Ψ = =⎜ ⎟

⎝ ⎠

 

by requiring ( ) ( )k nP P=  and assuming k nβ β  under weak guidance approximation, we 

get 

 
2 2

( ) ( )
2 2( ) ( ), ( )
( ) ( )

k n
nk

n k

k nz z z
z z zβ β

⎛ ⎞∂
= Ψ Ψ⎜ ⎟− ∂⎝ ⎠

. (A.30) 

Being dependent on z, the wave function is generally expanded as  

 ( )

0
( ) ( ) ( ) exp ( )

zn
n n

n
z a z z i z dzβ⎡ ⎤′ ′Φ = Ψ −⎢ ⎥⎣ ⎦∑ ∫ . (A.31) 

After Φ(z) propagates a small distance of dz, 

 
( ) ( )

0

( ) ( )

0 0

( ) ( ) ( ) exp ( )

( ) ( ) exp ( ) ( ) ( ) ( ) exp ( ) ,

z dzn
n n n

n

z zn k
n n nk k k

n k n

z dz a z da z dz i z dz

a z z i z dz dz z a z z i z dz

β

β β

+

≠

⎡ ⎤′ ′Φ + = + Ψ + −⎢ ⎥⎣ ⎦

⎧ ⎫⎡ ⎤ ⎡ ⎤′ ′ ′ ′= Ψ − + Ψ −⎨ ⎬⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦⎩ ⎭

∑ ∫

∑ ∑∫ ∫
(A.32) 

we arrive at 



 122 

 

 ( )
0

( ) ( ) ( )exp ( ) ( )
zn

k nk k n
k n

da z a z z i z z dz
dz

β β
≠

⎡ ⎤′ ′ ′= − −⎢ ⎥⎣ ⎦∑ ∫ , (A.33) 

which is exactly the same as that from the scalar coupled local mode theory [93]. 
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Appendix B 

Calculation of the Green’s Function 

In this appendix we present the detailed procedure of calculating the numerical Green’s 

function ( , )G z z′  for a given wafer layer structure n(z).  

Assuming a refractive index profile of layer structure  

 

2
1

2
1 1 22
2
2 2 3
2

3

( ),

( ),
( ) ( )

( ),

( ),

l

r

u

n region i z z

n region ii z z z
z n z

n region iii z z z

n region iv z z

ε

⎧ −∞ < <
⎪

< <⎪= = ⎨
< <⎪

⎪ < < +∞⎩

 (B.1) 

we want to obtain the Green’s Function ),( zzG ′  that satisfies  

 
2

2
0 2( ) ( , ) ( )rk z G z z z z

z
ε δ

⎛ ⎞∂ ′ ′+ = −⎜ ⎟∂⎝ ⎠
, (B.2) 

with z′  located in region iii ( 32 zzz <′< ). The Green’s function for z′−∞ < < +∞  has to 

be obtained piecewise according to different locations of z′ . Using the same recipe, the 

( , )G z z′  with z′  in other regions can also be obtained.  

In different z regions, Eq. (B.2) takes different forms: (Recall in the open regions i and 

iv, ),( zzG ′  has to take the form of outward propagating plane waves.) 

)( 1zziregion <<−∞ :  022
0 =+ iil GGnk  ⇒  )sin()()cos()( 00 znkziAznkzAG lilii ′−′= ; 



 124 

 

)( 21 zzziiregion << : 02
1

2
0 =+ iiii GGnk  ⇒  )sin()()cos()( 1010 znkzBznkzAG iiiiii ′+′= ; 

)( 32 zzziiiregion << : )(2
2

2
0 zzGGnk iiiiii ′−=+ δ  ⇒  

 0 2 0 2 2

0 2 0 2 3

( ) cos( ) ( ) sin( ), ,
( ) cos( ) ( ) sin( ), ;

iii iii
iii

iii iii

A z k n z B z k n z z z z
G

A z k n z B z k n z z z z
′ ′ ′+ < <⎧

= ⎨ ′ ′ ′ ′ ′+ < <⎩
 

)( 3 +∞<< zzivregion : 022
0 =+ ivivu GGnk ⇒ 0 0( ) cos( ) ( )sin( )iv iv u iv uG A z k n z iA z k n z′ ′= + . 

The remaining boundary conditions are 

(1) ),(),( 11 zzGzzG iii ′=′ , 

)sin()cos()sin()cos( 1101101010 znkBznkAznkiAznkA iiiilili +=− ; 

(2) ),(),( 11 zzGzzG iii ′=′ , 

)cos()sin()cos()sin( 110111011010 znknBznknAznkniAznknA iiiillilli +−=−− ; 

(3) ),(),( 22 zzGzzG iiiii ′=′ , 

)sin()cos()sin()cos( 220220210210 znkBznkAznkBznkA iiiiiiiiii +=+ ; 

(4) ),(),( 22 zzGzzG iiiii ′=′ , 

)cos()sin()cos()sin( 2202220221012101 znknBznknAznknBznknA iiiiiiiiii +−=+− ; 

(5) ),(),( zzGzzG iiiii ′+′=′−′ , 

)sin()cos()sin()cos( 20202020 znkBznkAznkBznkA iiiiiiiiiiii ′′+′′=′+′ ; 

(6) 1),(),( −′+′=′−′ zzGzzG iiiiii , 

1)cos()sin()cos()sin( 2020202020202020 −′′+′′−=′+′− znknkBznknkAznknkBznknkA iiiiiiiiiiii ; 

(7) ),(),( 33 zzGzzG iviii ′=′ , 

)sin()cos()sin()cos( 3030320320 znkiAznkAznkBznkA uivuiviiiiii +=′+′ ; 



 125 

 

(8) ),(),( 33 zzGzzG iviii ′=′ , 

)cos()sin()cos()sin( 303032023202 znkniAznknAznknBznknA uuivuuiviiiiii +−=′+′− . 

Technically, the coefficients iviiiiiiiiiiiiiiiii ABABABAA ,,,,,,, ′′  (note they also depend 

on z′ ) can be solved by rewriting the above 8 equations 

[ ]
[ ]

0 1 0 1 0 1 1 0 1 1

0 1 0 1 1 0 1 1 1 0 1 1

0 1 2 0 1 2 0 2 2 0 2 2

1

cos( ) sin( ) cos( ) sin( ) 0,

sin( ) cos( ) sin( ) cos( ) 0,
cos( ) sin( ) cos( ) sin( ) 0,

sin

i l l ii ii

i l l l l ii ii

ii ii iii iii

ii

A k n z i k n z A k n z B k n z

A n k n z in k n z A n k n z B n k n z
A k n z B k n z A k n z B k n z

A n

− − − =

− − + − =

+ − − =
− 0 1 2 1 0 1 2 2 0 2 2 2 0 2 2

0 2 0 2 0 2 0 2

2 0 2 2 0 2 2 0 2 2

( ) cos( ) sin( ) cos( ) 0,
cos( ) sin( ) cos( ) sin( ) 0,

sin( ) cos( ) sin( ) cos(

ii iii iii

iii iii iii iii

iii iii iii iii

k n z B n k n z A n k n z B n k n z
A k n z B k n z A k n z B k n z

A n k n z B n k n z A n k n z B n k

+ + − =
′ ′ ′ ′ ′ ′+ − − =

′ ′ ′ ′ ′− + + −

[ ]
[ ]

0

1
0 2

0 2 3 0 2 3 0 3 0 3

2 0 2 3 2 0 2 3 0 3 0 3

) ,

cos( ) sin( ) cos( ) sin( ) 0,

sin( ) cos( ) sin( ) cos( ) 0,

k

iii iii iv u u

iii iii iv u u u u

n z

A k n z B k n z A k n z i k n z

A n k n z B n k n z A n k n z in k n z

⎧
⎪
⎪
⎪
⎪
⎪⎪
⎨
⎪
⎪ ′ = −
⎪

′ ′⎪ + − + =
⎪

′ ′− + + − =⎪⎩

 

in matrix form 

 

0

11 12

21 22
1

0
0
0
0
0

0
0

i

ii

ii

iii

iii

kiii

iii

iv

A
A
B
AM M

M M B
A
B
A

⎛ ⎞ ⎛ ⎞
⎜ ⎟ ⎜ ⎟
⎜ ⎟ ⎜ ⎟
⎜ ⎟ ⎜ ⎟
⎜ ⎟ ⎜ ⎟

⎛ ⎞⎜ ⎟ ⎜ ⎟=⎜ ⎟⎜ ⎟ ⎜ ⎟⎝ ⎠⎜ ⎟ ⎜ ⎟
−′⎜ ⎟ ⎜ ⎟

⎜ ⎟ ⎜ ⎟′⎜ ⎟ ⎜ ⎟
⎜ ⎟⎜ ⎟
⎝ ⎠⎝ ⎠

, (B.3) 

where 

0 1 0 1 1 0 1 1

0 1 1 0 1 1 1 0 1 1
11

0 1 2 0 1 2 0 2 2

1 0 1 2 1 0 1 2 2 0 2 2

exp( ) cos( ) sin( ) 0
exp( ) sin( ) cos( ) 0

0 cos( ) sin( ) cos( )
0 sin( ) cos( ) sin( )

l

l l

ik n z k n z k n z
in ik n z n k n z n k n z

M
k n z k n z k n z

n k n z n k n z n k n z

− − −⎛ ⎞
⎜ ⎟− − −⎜ ⎟=
⎜ ⎟−
⎜ ⎟

−⎝ ⎠

, 
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12
0 2 2

2 0 2 2

0 0 0 0
0 0 0 0

sin( ) 0 0 0
cos( ) 0 0 0

M
k n z

n k n z

⎛ ⎞
⎜ ⎟
⎜ ⎟=
⎜ ⎟−
⎜ ⎟
−⎝ ⎠

, 

0 2

2 0 2
21

0 0 0 cos( )
0 0 0 sin( )
0 0 0 0
0 0 0 0

k n z
n k n z

M

′⎛ ⎞
⎜ ⎟′−⎜ ⎟=
⎜ ⎟
⎜ ⎟
⎝ ⎠

, 

and 

0 2 0 2 0 2

2 0 2 2 0 2 2 0 2
22

0 2 3 0 2 3 0 3

2 0 2 3 2 0 2 3 0 3

sin( ) cos( ) sin( ) 0
cos( ) sin( ) cos( ) 0

0 cos( ) sin( ) exp( )
0 sin( ) cos( ) exp( )

u

u u

k n z k n z k n z
n k n z n k n z n k n z

M
k n z k n z ik n z

n k n z n k n z in ik n z

′ ′ ′− −⎛ ⎞
⎜ ⎟′ ′ ′−⎜ ⎟=
⎜ ⎟−
⎜ ⎟

− −⎝ ⎠

. 

The coefficients array [ ]T
i ii ii iii iii iii iii ivA A B A B A B A′ ′  can easily be solved by matrix 

manipulations of (B.3). Then we get ),( zzG ′  with +∞<<∞− z  and 32 zzz <′< . Using 

the same recipe, the ( , )G z z′  with z′  in other regions can also be obtained. With the z′  

regions stitched together, the Green’s function for z′−∞ < < +∞  is then obtained.  
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