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Abstract 

The Sfpi1 gene encodes PU.1, a critical transcription factor in multiple hematopoietic 

lineages.  PU.1 expression is upregulated as hematopoietic stem cells become 

granulocyte-macrophage progenitors.  In contrast, Sfpi1 must be silenced after 

progenitors undergo T-lineage specification.  If unrestrained in early T-lineage cells, 

PU.1 can both block developmental progress and induce diversion to a myeloid fate.  

When PU.1 expression is not sufficiently increased or maintained in myeloid lineage 

cells, myeloid hyperproliferation and cancer can result.  In mouse DN thymocytes, PU.1 

mRNA begins at high levels in early T-cell progenitors, but drops about fivefold as cells 

enter the T-cell program (DN2) and then falls tenfold further as the cells reach T-lineage 

commitment (DN3).  This implies operation of a stage-specific repression mechanism 

correlated with commitment.  Only one major cis-regulatory element has previously been 

described for Sfpi1, which is a compound conserved region around -14 kb that is thought 

to mediate activation as well as some repression.  However, it cannot account for all PU.1 

regulation in early T-lineage cells nor in myeloid cells.  In particular, that -14 kb element 

can show strong enhancer activity in an immature T-cell line in which the endogenous 

Sfpi1 gene is profoundly repressed.  Additionally, absence of the -14 kb element does not 

abolish PU.1 expression in myeloid lineages.  We now present evidence for another 

complex of conserved noncoding elements that appear to mediate several cell-type-

specific regulatory features, including cell-type-specific repression in early T-cells.  We 

describe fine mapping of a T-cell specific bipartite silencer and show that the T lineage 

specific repressive activity requires Runx1.  We also describe additional regulatory 

complexes that may contribute to lineage specific regulation of PU.1 in early 

hematopoietic progenitors, including a myeloid specific enhancer.  We provide evidence 
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of lineage restricted occupancy of these additional regulatory elements and show that the 

novel enhancer elements are additional sites of PU.1 auto regulation. 
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Hematopoietic Stem Cells, a Paradigm of Hierarchical Development 

Differential gene regulation provides the foundation of all biology.  In 

embryogenesis differential gene expression is the pivotal means by which the genetic 

program produces an organism with a predetermined DNA encoded body plan.   In a 

developing mouse embryo, as early as the fifth cleavage, or 16 to 32 cell stage, 

asymmetric distributions of cytoplasmic material, particularly maternal transcripts within 

blastomeres,  has generated spatial cues within the mutlicellular aggregate of the morula 

that lead to cellular differences in transcriptomes whose processing by a cell’s 

assemblage of cis regulatory elements directs commitment of the first two discernable 

cell lineages, cells of the inner cell mass and trophoectoderm, a point at which 

totipotency begins to be lost (Suwinska et al. 2008).  As embryogenesis continues, cell to 

cell interactions and/or signaling gradients from secreted molecules continue to provide 

spatial and temporal cues that lead to continued alterations in the regulatory 

transcriptome of new cells, ultimately giving rise to a programmed body plan.  Sometime 

after embryogenesis many organisms also undergo various types of maturation, such as 

sexual maturation where an organism generates additional pronounced physical changes 

to the body plan, often accompanied by changes in cell lineages and gain of novel cellular 

functions.  These changes are typically inevitable but temporally distinct in onset, 

reflecting another deeper layer of programming below that used in embryogenesis.  

Additionally, complex organisms must have developmental programs for homeostasis.  It 

is currently accepted that rare stem cells exist in multiple tissues, each able to give rise to 

a subset of cellular lineages that replace and maintain healthy tissue throughout an 

animal’s lifespan.  How the genome encodes multiple, diverse, developmental programs 

and how these programs are used hierarchically to produce distinctive body plans of 
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mixed cell types at the correct time and place is perhaps the most fundamental of all 

biological questions.   

We now know that such developmental programs are the product of highly 

controlled differential gene regulation through networked cis elements whose lineage 

specific outputs are controlled by the combinatorial interplay of multiple transcription 

factors.  To understand how the regulatory circuitry of networked cis elements process 

the information represented by the regulatory transcriptome (the combination of all 

transcription factors of a cell), giving rise to various developmental outcomes, the critical 

regulatory nodes within the developmental networks must be identified and dissected to 

uncover the logic of their functional interactions.   

Blood development from hematopoietic stem cells (HSCs) has historically been 

the most accessible mammalian developmental program.  The hematopoietic lineage is 

one of the earliest to arise in mammalian development, being specified from the first set 

of mesodermal precursors generated by gastrulation (reviewed in Kyba and Daley, 2003).  

Since first being isolated more than 20 years ago (Spangrude et al. 1988) HSCs and their 

development into immune cells has served as a paradigm for stem cell biology and the 

study of gene regulatory networks.  The immune system represents a complex 

developmental system that is particularly amenable to studying hierarchical gene 

regulatory networks (GRNs).  Cells of the immune system can be isolated in relatively 

pure form with various developmental stages delineated by surface proteins.  This 

accessibility has facilitated perturbation and monitoring of lineage decisions that has led 

to the identification of numerous factors involved in lineage choice, allowing the 

elucidation of regulatory subcircuits involved in cell fate decisions within the 
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hematopoietic compartment.   However, many pleiotropic effects and the factors that 

drive them are still undergoing identification and characterization, with new models of 

hematopoiesis being reiterated as evidence accumulates. 

 

A Hierarchical Model of Hematopoietic Lineage Development  

Recent work has led to a revised model of hematopoiesis (Figure 1) where short- 

and long-term hematopoietic stem cells (LSK: Lin-Sca-1Hic-kitHi) can be distinguished by 

their expression of the various surface markers, including CD34.  These cells are self 

renewing and must develop within a developmental gene regulatory network that is 

designed to enable maintenance of the HSC program while facilitating the ability of some 

cells to become nonself-renewing committed progenitors that subsequently enter various 

lineage specifying programs.  Short-term CD34+ HSCs (ST-HSC) give rise to a mixed 

population of VCAM-1+ multipotent progenitors (MPPs).  Various primed and/or lineage 

restricted progenitors emerge from the MPP population that can be further delineated by 

relative expression of the receptor tyrosine kinase Flt3, which mediates cell survival and 

proliferation (Adolfsson et al. 2001 and 2005; Lai et al. 2005; Lai et al. 2006).    

The MPP population contains the earliest lineage restricted progenitors, CMPs, 

GMPs, and LMPPs.  The Flt3-/Lo VCAM-1+ common myeloid progenitor (CMP) 

generates either a committed megakaryocyte/erythroid progenitor (MEP) or a committed 

granulocyte-macrophage progenitor (GMP), but not lymphoid cells (Lai and Kondo, 

2006).  The MPP population also contains a committed lymphoid primed multipotent 

progenitor (LMPP) that has lost the capacity to generate erythrocytes or megakaryocytes.  

This early segregation of lineage potential is marked by high expression of Flt3, with 

4



LMPPs being LSK CD34+Flt3Hi (Adolfsson et al. 2005).  The VCAM-1- LMPP fraction 

of the MPP population has lost most GM potential and preferentially produces early 

lymphoid progenitors (ELPs) that express Rag1, a factor critical to B and T-cell receptor 

rearrangement (Igarashi et al. 2002; Lai and Kondo, 2006).  ELPs are thought to be 

precursors to early T-cell progenitors (ETPs) and common lymphoid progenitors (CLPs), 

the latter gives rise to B-cells and is distinguished by earlier expression of IL-7Rα which 

mediates cell survival and proliferation (Allman et al. 2003).  LMPPs are also precursors 

to Flt3Hi VCAM-1+ GMPs.   

To understand how the process of commitment and lineage specification through 

these progenitor states is canalized to produce terminally differentiated cell types it is 

critical to identify the transcription factors expressed by the first HSCs and onward down 

their developmental hierarchy. Understanding how these factors are regulated, what their 

targets are, and how the combinatorial use of multiple factors might facilitate 

specification through multiple accessible lineage choices is a massive endeavor, but 

through identifying and dissecting the cis regulatory modules controlling critical nodes, 

in conjunction with genetic analysis, the entire hierarchical gene regulatory network can 

be constructed to advance understanding of lineage commitment from HSCs down 

through T-cells.    

 

Factors Controlling Emergence and Maintenance of HSCs 

Identifying critical nodes and their functions within the hematopoietic gene 

regulatory network should begin with an understanding of how HSCs themselves first 
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emerge and form a stable population of self-renewing cells.  It was recognized nearly a 

century ago that hematopoiesis shares origins with vasculogenesis, but what transcription 

factors and signaling pathways are pivotal to the process of HSC development has only 

recently been revealed (reviewed in Kyba and Daley, 2003).  The further question of how 

these factors are networked to specify HSC emergence from the precursor of endothelial 

progenitors and HSCs, the hemangioblast, is still being clarified.  Work with xenopus, 

zebrafish, and mouse embryos has led to construction of a tentative evolutionarily 

conserved core hemangioblast regulatory circuit (Liu et al. 2008; Pimanda et al. 2007).   

At the top of this circuit, Fli-1 expression is initiated and becomes autoregulatory, 

possibly with input from the bone morphogenic pathway (BMP) that functions through 

activation of the Smad family of transcription factors.  Next, the BMP pathway, Notch 

signals, and Fli-1 drive GATA2 expression, followed by Fli-1 and GATA2 driven 

expression of the bHLH factor SCL.  SCL then feeds back into GATA2 (and Fli-1 in the 

mouse).  In Pimanda and colleagues’ murine hemangioblast circuit, SCL and GATA2 are 

also autoregulatory (Gering et al. 1998; Kobayashi-Osaki et al. 2005).  The 

hemangioblast circuit also requires the function of SCL’s cofactor Lmo2, which can be 

regulated by SCL and Fli-1 and forms a complex with SCL and GATA factors to 

positively regulate targets (Liu et al. 2008; Landry et al. 2005).   It should be noted 

however, that SCL can bind corepressors like Sin3A and silence target genes, therefore 

reserving the potential to disrupt the same networks in which it promotes feed forward 

regulation in earlier developmental stages (Huang and Brandt. 2000).  Together, Fli-1, 

GATA2, and SCL/Lmo2 maintain the transient hemangioblast regulatory state until 

specification toward endothelium or HSCs is triggered.   
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Hemangioblast specification to HSCs requires further BMP signaling 

impingement on the hemangioblast core circuit, resulting in a complex of SCL/ GATA2 

/Lmo2, Ets factors, and Smad factors coordinating the initiation of Runx1 expression 

through binding to Runx1’s +23 enhancer element and its distal promoter (Pimanda et al. 

2007; Nottingham et al. 2007).  A failure to turn on Runx1 results in death due to its 

essential role in definitive hematopoiesis (Okuda et al. 1996).  Notch signals also 

contribute to Runx expression, however it is unclear if the effect is mediated by Notch 

regulation of GATA2 (Burns et al. 2005; Robert-Moreno et al. 2005; de Pooter et al. 

2006).  After initial expression, Runx1 is autoregulatory through Runx1 target sites in its 

distal promoter, and possibly through additional Runx1 binding to its +23 enhancer 

(Ghozi et al. 1996; North et al. 1999; Telfer and Rothenberg, 2001; Nottingham et al. 

2007).   

SCL is absolutely required for the emergence of HSCs and continues to be 

expressed with critical roles in megakaryopoiesis and erythropoiesis.  While SCL is 

dispensable for HSC maintenance and function an additional bHLH family member, 

LYL1, compensates for loss of SCL and loss of both impairs HSC function (Mikkola et 

al. 2003; Souroullas et al. 2009).  In contrast to SCL, Fli-1 remains essential for normal 

hematopoietic maintenance and function, as does Erg, another Ets family member that 

may facilitate Runx1 activation in cooperation with GATA2, Fli-1, and SCL (Pimanda et 

al. 2007; Loughran et al. 2008; Kruse et al. 2009).  Runx1 was also recently found to be 

dispensable for HSC maintenance and function in postnatal animals (Chen et al. 2009).  

In fact, an increase in the number of LSK CD34- LT-HSCs has been observed with 

Runx1 excision, indicating that Runx1 may function to limit HSC self renewal in addition 

to its roles in differentiation (Ichikawa et al. 2004).  As Runx1-/- mice die in early 
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gestation due to a lack of definitive hematopoiesis, Runx1 targets appear critical for HSC 

maintenance and function (Okada et al. 1998).  Therefore a closer examination of defects 

in Runx1-/- mice could reveal additional critical nodes within the hematopoietic GRN. 

 

Sfpi1, the Gene Encoding PU.1, Is a Critical Runx1 Target and Is First 

Expressed in Emerging HSCs  

Runx1-/- fetal liver lacked expression of Flt3, PU.1, and the pan-hematopoietic 

Vav, suggesting that one or more of these factors are downstream targets of Runx1 and 

might have a role in maintenance of HSCs (Okada et al. 1998).  While Flt3 is critical to 

early progenitors, it is not expressed by the LT-HSCs, implying that Vav and/or PU.1 

might have effects in LT-HSCs.  As Runx1 is dispensable to HSC function once Vav 

expression is initiated, and PU.1 has been shown to regulate Vav, Flt3, and itself, 

Runx1’s initiation of PU.1 expression may be one of its critical functions in HSCs 

(Denkinger et al. 2002; DeKoter et al. 2002; Okuno et al. 2005).  Consistent with this, 

targeted deletion of Sfpi1 in HSCs revealed it contributes to their maintenance and 

function, (Kim et al. 2004; Iwasaki et al. 2005).  Furthermore, forced expression of PU.1 

in SCL-/- embryonic stem (ES) cells, followed by in vitro differentiation, partially rescued 

myeloid lineage development (Tsuneto et al. 2005).  Since PU.1-/- mice are deficient in 

more than myeloid lineages (Scott et al. 1994), failure to rescue additional lineages in the 

SCL-/- suggests that SCL or its targets, such as Runx1, may be needed by PU.1 for 

combinatorial regulation of additional lineage programs.  Together, these results indentify 

Sfpi1 as a critical Runx1 regulated node in emerging HSCs. 
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Sfpi1 is a Critical Node within the Hematopoietic GRN, with Unique 

Functions in Multiple Developmental Stages  

 The Sfpi1 gene product PU.1, also called Spi-1, is a member of the divergent Spi 

subfamily of the E26 transformation-specific (Ets) transcription factor family, which also 

includes Spi-B and Spi-C (Laudet et al. 1999; Bemark et al. 1999).  PU.1 was first 

identified as a critical hematopoietic factor when it was observed that proviral DNA 

integration into its upstream region resulted in upregulation of PU.1 expression.  This 

Sfpi1 deregulation led to erythropoietin independent erythroblastic leukemia in mice 

(Moreau-Gachelin et al. 1988).  Fli-1 is also a frequent target of proviral insertion with 

deregulation contributing to leukemia, underscoring the critical need to maintain proper 

expression of Ets family members in hematopoietic development (Ben-David et al. 

1991).   

The Spi family is distinguished from other Ets family members through unique 

functional domains and their relatively low DNA binding domain homology (40%) with 

Ets-1.  In contrast to lower homology with Ets-1, PU.1, Spi-B, and Spi-C Ets domains are 

60% to 73% homologous.  While PU.1 and Spi-B are divergent across their N-terminal 

region, there is some low homology.  In contrast, Spi-C has no homology with PU.1 or 

Spi-B, or any other Ets family member outside of the Ets domain (Rao et al. 1999; 

Bemark et al. 1999).  PU.1 transactivation involves two domains, an acidic domain and a 

flanking glutamine rich region (Klemsz and Maki, 1996).  Spi-B also has an acidic 

domain, but it is highly divergent from PU.1, and its activation function is primarily 

thought to depend on its unique proline/serine/threonine rich region (Rao et al. 1999).  

Both PU.1 and Spi-B have a PEST domain that mediates protein-protein interactions, 
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most critically with members of the IRF family, but Spi-C does not interact with IRFs 

(Brass et al. 1999; Carlsson et al. 2003).   

Non Spi related Ets family members expressed in hematopoietic cells, including 

Fli-1, Erg, Ets-1, and GABPα contain a POINTED domain involved in divergent protein-

protein interactions and transactivation relative to the Spi subfamily; the POINTED 

domain may also facilitate Ets-Ets interactions (Slupsky et al. 1998; Anderson et al. 

1999).  The DNA binding domain of Ets family members also mediates important 

protein-protein interactions, such as interactions with Runx1 and C/EBPα (Petrovick et 

al. 1998).   

Despite similarities to PU.1, neither Spi-B nor Spi-C is fully redundant to PU.1.  

Unlike the severe loss of blood cells in PU.1-/- mice, Spi-B-/- mice are normal with only 

slight defects in B-cell signaling (Su et al. 1997).  Spi-C-/- mice also have essentially 

normal hematopoietic development, except for a loss of red pulp macrophages (Kohyama 

et al. 2009).  To investigate Spi family functions in myeloid and B-cell development, Spi 

factors were ectopically expressed in PU.1-/- fetal liver cells.  Ectopic Spi-B could only 

partially rescue myeloid and B lineage development at ~50% the efficiency of PU.1 

restoration.  Spi-C was even worse and could only restore 1% and 3% of myeloid and B 

lineage development compared to PU.1, respectively (Schweitzer et al. 2006).     

Collectively, these studies imply that PU.1 mediates essential functions through 

interactions unique amongst the Ets family.    
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PU.1 Expression Diverges as Early Progenitors Navigate Lineage 

Specifying Programs 

Early investigations demonstrated PU.1 expression to be restricted to 

hematopoietic cells (Hromas et al. 1993).  Initially, PU.1 is expressed at nearly equivalent 

levels with moderately high expression maintained across many of the earliest 

differentiation events.  However, PU.1 expression diverges (figure 1) when restricted 

megakaryocyte/erythroid progenitors (MEPs), restricted granulocyte-macrophage 

progenitors (GMPs), or committed lymphoid progenitors emerge from the multipotent 

progenitor population (MPPs).  PU.1 expression is thought to fall as MEPs are specified 

and expression is fully eliminated during terminal differentiation of erythrocytes.  Sfpi1 

transcriptional output increases in MPPs specified to become GMPs.  In contrast, MPPs 

that enter the lymphoid program maintain relatively stable PU.1 levels until cells commit 

to B or T lineages.  In the case of pro-pre-B-cells, commitment to the B lineage is 

accompanied by a reduction in Sfpi1 transcriptional output that is stably maintained.  On 

the other hand, while early T-cells maintain HSC levels of PU.1 expression, during the 

DN2 to DN3 transition Sfpi1 is silenced as cells become committed DN3 T-lineage cells 

(Nutt et al. 2005).   

The mechanisms controlling the divergent PU.1 expression levels described above 

have not been adequately explained yet.  So far, studies of Sfpi1 transcriptional output 

have focused on the promoter and a compound enhancer element (URE) located at -14 kb 

upstream of the Sfpi1 transcriptional start site (TSS).  This URE contains important 

Runx1 target sites thought to mediate the Runx1 dependent Sfpi1 activation previously 

discussed (Rosenbauer et al. 2006; Hoogenkamp et al. 2009).  The URE also has critical 

11



target sites through which PU.1 may be autoregulatory (Okuno et al. 2005).  However, 

the URE is dispensable for PU.1 expression.  The consequences and implications of 

deleting the URE, as well as discussions of what is known about how the URE functions 

to regulate Sfpi1 transcription will be discussed in greatest detail in the introductions to 

chapters 2 and 3 of this report.  Chapter 2 specifically will discuss the URE’s relevance 

and inadequacy in explaining Sfpi1 silencing during T-cell development and will 

introduce novel regulatory regions that include a T-lineage silencer.  Chapter 3 seeks to 

advance our understanding of how PU.1 expression might be autoregulated and 

maintained at a higher expression level in myeloid cells.      

The following sections will address some of what is known with respect to Sfpi1 

transcriptional control.  Much of what follows will also attempt to expound on the 

combinatorial roles PU.1 plays in various lineages where Sfpi1 transcription has diverged 

from HSCs.  Factors involved in Sfpi1 transcriptional control will be discussed in 

multiple contexts, and potential controversies and difficulties with respect to 

interpretations of factors’ involvement will be highlighted.    

 

PU.1 Is the Primary Competence Factor Facilitating Lineage 

Specification of Granulocyte-Macrophage Progenitors 

All myeloid lineages can be specified from granulocyte-macrophage progenitors 

(GMPs).  Whether a granulocyte lineage (eosinophil, basophil, mast cell, or neutrophil) 

or a monocyte lineage (macrophage, dendritic cell, or osteoclast) is the terminal cell fate 

of a GMP is contingent upon balanced PU.1 functional interactions with a select group of 
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regulatory proteins.  GMPs express PU.1, Ikaros, Gfi-1, Egr, C/EBP family members, 

MEF2C, c-Jun, IRF8, STAT3 and many cytokine receptors.  Each of these factors is an 

integral cog within the complex GMP lineage specifying machinery.  Different factors 

work together to construct unique gears that operate restrictive lineage programs.  In 

addition to cytokines, Notch1 and Notch2 signals also provide important cell extrinsic 

cues to promote or restrict differentiation by signaling cells to prevent or induce 

transcriptional gear shifts (Ohishi et al. 2000).  However, the universal feature of the 

myeloid machinery is the PU.1 cog, without which the myeloid specification, 

commitment, or terminal differentiation machinery screeches to a halt (Scott et al. 1994; 

Anderson et al. 1998; Dakic et al. 2005). Therefore closely examining PU.1 function and 

expression in myeloid cells should foster understanding of how the Sfpi1 node is built 

into other developmental programs in the hematopoietic compartment. 

 

Transcription Factors and Cytokine Pathways Associated With GMP 

Specification and Increased Sfpi1 Transcription 

After megakaryocyte and erythroid (MEP) potential is lost, lymphoid primed 

multipotent progenitors (LMPPs) can become restricted lymphoid progenitors or 

restricted myeloid progenitors (GMPs).  At least some less-restricted common myeloid 

progenitors (CMPs) that can give rise to MEPs can also become GMPs.  Regardless of 

which developmental branch GMPs originate from, important transcription factor 

expression changes correlate with GMP specification.  First, and of greatest relevance to 

this thesis, PU.1 expression rises during the specification of GMPs (Nutt et al. 2005).  

The increase in PU.1 is preceded by loss of GATA1 which is associated with loss of 
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MEP potential.  Greatly reduced expression of the important HSC factor GATA2, and 

elevation of C/EBPα expression also occurs (Yoshida et al. 2006).  

HSCs lacking C/EBPα have a profound loss of GMPs but still have less-restricted 

common myeloid progenitors (CMPs), consistent with a requirement for C/EBPα 

activation of PU.1 during GMP specification.  However, targeted deletion of C/EBPα in 

GMPs does not prevent their subsequent differentiation while deletion of PU.1 does 

(Zhang et al. 2004).  This suggests C/EBPα is needed independent of PU.1 for GMP 

specification, while PU.1 but not C/EBPα is required for further differentiation.  This is a 

somewhat surprising result as C/EBPα is needed for granulocyte and monocyte 

specification (discussed below).  However, it may be that excision of C/EBPα in the 

GMP population occurs late and after specification, or other C/EBP family members may 

be partially redundant after the GMP transition.  

Independently and/or collaboratively, PU.1 and C/EBPα regulate the 

development of myeloid lineages.  They do so in part by controlling the expression of 

several critical myeloid cytokine receptors.  These cytokine receptors then facilitate 

survival, proliferation, and differentiation, and include G-CSFR, CSF1R (M-CSFR), GM-

CSFR, and IL-6Rα (Anderson et al. 1998; Zhang et al. 1998; Petrovick et al. 1998).  

PU.1 also regulates the expression of Flt3, the cytokine receptor that delineates the LMPP 

population and is highly expressed by GMPs (DeKoter et al. 2002; Adolfsson et al. 

2005).   With the exception of CSF1R, all of these cytokine receptors are reported to 

activate STAT3 in the presence of ligand (and other STATs to varying degrees) which 

drives some but not all of the receptor’s effects.  In the case of Flt3, STAT1 and STAT5 

are also activated.  It should be noted that the combination and dosage of cytokines 

14



controls the strength of STAT responses and as activated STATs can form homodimers 

or heterodimers with other STATs, different cytokine combinations can also alter the 

stoichiometry of dimer formation to facilitate context dependent functions. 

The relevance and interest in STAT3 has risen because it was recently discovered 

that STAT3 contributes to Sfpi1 regulation in primary erythroblasts, possibly through 

binding to conserved target sites located at -8.7 kb (CE4B region described in chapter 2) 

and -9.6 kb upstream of the Sfpi1 TSS (Hegde et al. 2009).  These sites may also 

contribute to interferon induced STAT3 activation of PU.1 expression in cells with 

myeloid and erythroid potential (Panopoulos et al. 2003; Gutirrez et al. 1997).   

It turns out STAT3 can enhance C/EBPα expression in some contexts and 

C/EBPα can regulate cytokine receptors that activate STAT3, like IL-6Rα (Numata et al. 

2005; Zhang et al. 1998).  STAT3 physically interacts with C/EBPα too, and together 

they regulate targets in the liver (Kim et al. 2009; Choi et al. 2007; Numata et al. 2005).  

Moreover, C/EBPα can regulate PU.1 expression through binding to the Sfpi1 URE and 

promoter (Yeamanns et al. 2007; Cai et al. 2007).    

This potential crosstalk between STAT3 activation pathways,  C/EBPα and Sfpi1 

transcriptional control makes interpreting the causes of PU.1 upregulation and GMP 

specification difficult.  In STAT3 deficient mice, PU.1 levels in bone marrow progenitors 

are normal (Laouar et al. 2003).  However, STAT3 deficiency causes severe myeloid 

hyperproliferation which would be consistent with lower PU.1 expression in the myeloid 

compartment (Welte et al. 2003; Zhang et al. 2005; Rosenbauer et al. 2004).   It should be 

noted that while STAT3 deficient mice have severe myeloid defects, lymphoid 

development is essentially intact (Wei et al. 2008).  This implies that Flt3/STAT1/STAT5 
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signaling operates in LMPPs preferring a lymphoid fate while Flt3/STAT3 signaling 

influences LMPPs (and perhaps CMPs) primed to generate GMPs.  The STAT3 knockout 

results also indicate that STAT3 may be involved in PU.1 upregulation but not basal HSC 

and MPP PU.1 expression.  How then, do LMPPs decide to become GMPs and not 

lymphoid cells? 

The C/EBPα studies described earlier may be critical to unraveling GMP 

specification and Sfpi1 transcriptional divergence at the LMPP to GMP transition.   ~60% 

of Flt3+ LMPPs express IL-6Rα, a C/EBPα dependent target gene, and activation of the 

IL-6/IL-6R pathway leads to Id1 upregulation (Maeda et al. 2009).  Id1 is a member of 

the Inhibitor of DNA (Id) binding family that acts as negative regulators of bHLH factors 

including E2A.  E2A promotes lymphoid development of LMPPs and restricts myeloid 

fates (Dias et al. 2008).   Taken together, a model of GMP specification independent of 

initial PU.1 dosage may emerge.   

GMP specification may involve a regulatory circuit built in part on Flt3/STAT-

C/EBPα-IL-6/IL-6R/Id1.  In this hypothetical model, C/EBPα is required for the 

expression of IL-6Rα and through IL-6 triggered Id1 upregulation a myeloid fate can be 

promoted.  Since STAT3 deletion does not prevent myeloid lineage specification, the IL-

6/IL-6R/Id1 pathway would be predicted to depend on other STATs.   Furthermore, 

C/EBPα might be regulated by Flt3L/Flt3/STAT3 in normal cells.  This could allow IL-

6Rα expression to depend on a threshold of C/EBPα-STAT3 activity within the LMPP 

compartment.  Only those LMPPs that have sufficient C/EBPα-STAT3 activity would 

then turn on IL-6Rα, followed by IL-6 enhancement of Id1.  This pathway would also 

sustain and/or augment STAT3 activation and C/EBPα expression that could then 

16



enhance Sfpi1 transcription coincident with GMP specification.  This is important as 

previous studies have suggested PU.1 dosage differences dictate myeloid versus 

lymphoid lineage specification (discussed later).  

While the above model is hypothetical, it is evident that potentially complex cross 

regulation between C/EBPα and STAT3 exists and this confounds understanding of how 

higher PU.1 expression and/or autoregulation might be stabilized where STAT3 

activation and C/EBPα are not present or steadily maintained.   In the absence of 

C/EBPα, It may be that C/EBPβ can compensate beyond the GMP stage, allowing for 

terminal differentiation of lineages and also maintenance of PU.1 expression.  

Alternatively, once PU.1 is upregulated during GMP specification, PU.1 may become 

sufficiently autoregulatory and/or rely on other inputs.  These considerations aside, what 

is not hypothetical or controversial is the critical role PU.1 plays in GMP lineage choice 

postspecification.  

 

PU.1 versus C/EBPα Activity in the Absence of GATA Factors 

Determines Neutrophil versus Monocyte Lineage Choice 

Neutrophil versus monocyte/macrophage lineage choice is influenced by the 

relative transcriptional activities of C/EBPα and PU.1 in GMPs (figure 2).  A high PU.1 

level relative to C/EBPα favors monocyte specification over a neutrophil fate choice 

(Dahl et al. 2003).    While cooperative with PU.1, it has been suggested that C/EBPα can 

inhibit PU.1 function in some contexts through direct binding to PU.1’s important 

coactivator, c-Jun. This may impair c-Jun autoregulation and activation of PU.1 targets, 
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thus favoring neutrophil over monocytic cell fates (Rangatia et al. 2002).  More recently, 

it has been shown that C/EBPα needs to interact with c-Jun to promote monocyte 

development.  This was demonstrated by showing that a C/EBPα variant able to form 

homodimers but unable to zipper with c-Jun could not enhance generation of monocytes 

(Wang et al. 2006).  In addition, C/EBPα can directly inhibit PU.1 through protein-

protein interactions at high concentrations, perhaps establishing an upper limit on PU.1 

expression in early myeloid progenitors (Reddy et al. 2002).  Collectively, these studies 

indicate that the stoichiometric balance of C/EBPα, c-Jun, and PU.1 is essential to 

lineage determination.     

PU.1 promotes monocyte development in part through regulation of MEF2C 

(Stehling-Sun et al. 2009).  C-Jun is sensitive to the maintenance of PU.1 expression and 

function as the direct PU.1 regulated transcription factor MEF2C enhances c-Jun 

expression (Schuler et at., 2008).  Consequently, enhanced PU.1 function relative to 

C/EBPα promotes MEF2C expression which sustains or augments c-Jun expression to 

prevail over C/EBPα interference.  This results in progenitors being pushed toward a 

monocyte/macrophage lineage choice over a neutrophil fate.  Stabilization of the 

monocyte fate results from persistent strong PU.1 expression and/or function to induce 

another secondary determinant, Egr.  Egr functions to repress the C/EBPα activated Gfi-

1.  If C/EBPα activity dominates over PU.1, Gfi-1 expression wins out and opposes PU.1 

activated factors Egr-1/2, stabilizing a regulatory state permissive to terminal 

differentiation of neutrophils (Laslo et al. 2006).   

Despite competing to specify neutrophil versus monocyte fates, C/EBPα and 

PU.1 may also work together to restrict other alternative myeloid fates.  C/EBPα and 
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PU.1 coregulate important genes like neutrophil elastase (NE) that is expressed at highest 

levels in myeloid progenitors (Oelgeschlager et al. 1996).   Interestingly, NE may itself 

be important in restricting lineage choice of GMPs.  NE enzymatic activity has been 

associated with proteolysis and inhibition of Notch2 function (Doan et al. 2004).  As a 

result, progenitor NE levels may affect Notch2 sensitivity thresholds to counteract 

Notch2 triggered C/EBPα repression and hinder Notch2 induced GATA3 induction 

(Sakata-Yanagimoto et al. 2008).  In this way, NE levels could hamper alternative 

granulocyte lineage specification (discussed below).  NE is later repressed by Gfi-1, but 

as Notch expression decreases during neutrophil differentiation, reduced NE may be 

inconsequential after specification away from alternative fates (Person et al. 2003; Ohishi 

et al. 2000).  In summary, sufficient NE levels may restrict lineage choice to either 

neutrophil or monocyte fates as a function of higher PU.1 and C/EBPα transcriptional 

competence.   

 

Relative Levels of PU.1, GATA Factors, and C/EBPα Help Dictate 

Granulocyte Sublineage Choice 

The eosinophil, mast cell, and basophil lineages are alternative granulocyte fate 

choices that require restoration of GATA factor expression after GMP specification. 

Should a GMP be undecided whether to enter the neutrophil or monocyte lineage 

program, and during that indecision should it receive sufficient Notch input, the 

alternative granulocyte lineage pathways become available (figure 3).  
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Mast cell specification from GMPs depends on the ratio of PU.1 and GATA2.  A 

high level of PU.1 relative to GATA2 represses GATA2 function and expression to 

promote a monocytic fate while a lower level of PU.1 collaborates with GATA2 to drive 

a mast cell fate (Walsh et al. 2002).  Although GATA2 and PU.1 are cross antagonistic 

they are not mutually exclusive and both factors remain expressed in terminally 

differentiated mast cells.  However, PU.1 is expressed at a low level in mast cells relative 

to its expression in GMPs (Arinobu et al. 2005).   Moreover, PU.1 and GATA2 

advancement of mast cell specification requires an ordered shifting of gears, with reduced 

expression of C/EBPα in GMPs preceding upregulation of GATA2; or else alternative 

granulocyte sublineage differentiation into eosinophils results (Iwasaki et al. 2006).   

Notch signaling induces the GMP gear shift that allows the developmental 

machinery to produce mast cells, basophils, or eosinophils.  Recently, C/EBPα repression 

by Hes-1 and GATA3 activation were shown to be triggered by Notch2 signaling, 

initiating mast cell differentiation (Sakata-Yanagimoto et al. 2008).  Which occurs first, 

loss of C/EBPα or GATA factor activation, may be fully cell intrinsic and stochastic, or it 

may also depend on cytokines and STAT activity. Regardless, if GATA factor expression 

rises before C/EBPα is lost, eosinophils are generated.  If C/EBPα goes down first, 

followed by GATA factor activation, PU.1 levels fall and bipotent mast/basophil 

progenitors are obtained (Arinobu et al. 2005).  As GATA2 and GATA1 are activated by 

GATA3, they may be constraining PU.1 autoregulation (discussed in a following section) 

and STAT3 activation leading to reduced Sfpi1 transcription.  To what extent GATA3, 

normally considered a T-cell factor, might also be capable of inhibiting PU.1 is unclear.  

Interestingly, PU.1 expression stays low in basophils despite return of higher C/EBPα 
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expression, suggesting the restoration of GATA factor expression has a dominant effect 

to prevent a reinstatement of GMP levels of PU.1.   

 

Combinatorial Use of PU.1 Decides Additional Terminal Monocyte 

Lineage Choices  

Once the balance of PU.1 and C/EBPα expression and function has led to 

monocyte specification, the monocyte progenitor still has access to the osteoclast and 

dendritic cell (DC) fates in addition to becoming mature macrophages (Servet-Delprat et 

al. 2002; Montesoro et al. 2006).  Several factors continue to affect PU.1 transcriptional 

output to dictate monocytic cell fate choices, including IRF8, MafB, C/EBPβ, the Ikaros 

family, Gfi-1, STAT3, and Notch signaling (figure 4). 

Osteoclast or dendritic cell differentiation from monocytes is mediated by specific 

PU.1 interactions.  PU.1 forms complexes with MITF and NFATc1, and in response to 

RANK ligand signaling promotes osteoclast differentiation (Matsumoto et al. 2004; 

Sharma et al. 2007).  The Ikaros family member Eos counters some PU.1 and MITF 

cooperative transactivation by converting PU.1/MITF into a repressive complex that 

restricts osteoclast related gene expression (Hu et al. 2007).  Additionally, Notch 

signaling blocks macrophage and osteoclast cell fate determination, but permits dendritic 

cell development, again reflecting the importance of Notch mediated spatiotemporal 

network steering to navigate lineage determining paths (Yamada et al. 2003; Bai et al. 

2008; Ohishi et al. 2001).  Moreover, PU.1 interacts with IRF8 to regulate monocyte and 

DC target genes (Tailor et al. 2008).  IRF8 is also important to monocyte versus 
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neutrophil fate choice as mice deficient in IRF8 have an increase in neutrophils relative to 

immature myeloid progenitors (Holtschke et al. 1996).  On the other hand, IRF8 

negatively regulates osteoclast development (Zhao et al. 2009).  In summary, IRF8, the 

Ikaros family member Eos, and Notch signals can act in parallel to promote dendritic cell 

fate determination by restricting alternative programs, but they do not do so alone as yet 

more factors are part of the PU.1 interplay controlling monocyte lineage choice.   

MafB was recently revealed to play a role in monocyte lineage choice by blocking 

osteoclast and dendritic cell fate decisions, thereby promoting macrophage specification 

and terminal differentiation.  MafB inhibits osteoclast development through binding to 

NFATc1 and MITF, competing with PU.1 (Smink et al. 2009). PU.1 and MafB are 

coexpressed in HSCs and monocytes, but upon PU.1 expression beyond a critical 

threshold relative to MafB, PU.1 becomes inhibitory to MafB function through protein-

protein interactions and also suppresses MafB expression, resulting in a DC fate (Sarrazin 

et al. 2009; Bakri et al. 2005).  The above studies imply Sfpi1 transcriptional output must 

either be stabilized while MafB expression drops, or there must be a mechanism to drive 

further PU.1 expression to prevail over MafB to promote a dendritic cell fate.   

The C/EBP family may also affect dendritic cell development.  A C/EBP 

dominant negative can block both macrophage and neutrophil development, switching 

lineage choice to the dendritic fate (Iwama et al. 2002). C/EBPβ cooperates with PU.1 

and c-Jun to drive macrophage target genes (Grondin et al. 2007).  In addition, C/EBP 

contributes to terminal macrophage differentiation and restricts other fates in part by 

regulating MafB expression in monocytes, in spite of MafB’s potential to limit activation 

of targets by interacting with and inhibiting c-Jun (Smink et al. 2009; Metcha-Grigoriou 
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et al. 2003).  Thus C/EBPβ provides itself a window of opportunity to complete 

macrophage commitment before other factors can impose alternative lineage programs.    

The above results raise some questions about Sfpi1 transcriptional control.  As 

C/EBPα or β can bind the Sfpi1 URE, the dominant negative (DN) result suggests a few 

possibilities (Yeamanns et al. 2007).  One possibility is that both MafB and PU.1 

transcription fall in the presence of the C/EBP DN, but without MafB and C/EBPα 

opposing a possibly lowered PU.1 expression, dendritic lineage specification still takes 

place.  Another possibility is that Sfpi1 transcription needs to remain high to drive a 

dendritic cell fate and is unaffected by a loss of C/EBP function at these stages.  In this 

case, blocking C/EBP function might act to more quickly close the window of 

developmental opportunity that MafB keeps open.  Examining PU.1 expression in a 

C/EBP DN system that gives rise to DCs could thus prove enlightening with respect to 

Sfpi1 transcriptional maintenance. 

How factors might work in combination with PU.1 to facilitate dendritic cell 

development is not well understood beyond PU.1 needing to overcome MafB, nor is it 

clear at what point the DC fate option is excluded, or what the primary in vivo precursors 

are.  While blood monocytes can differentiate into DCs, many subtypes exist with distinct 

phenotypes and functions.  Recent studies have indicated that most if not all DC subtypes 

come from a common precursor found amongst the Lin- Flt3+ CSF1R+ population of the 

bone marrow, with some precursors then migrating from the bone marrow to seed 

lymphoid tissues and complete Flt3 ligand dependent development (Karsunky et al. 2003; 

D’Amico and Wu, 2003; Liu et al. 2009).   Four factors have now been linked with the 

development of most DC subtypes, PU.1, Ikaros, STAT3, and Gfi-1.  Mice deficient in 
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either factor are severely defective in their generation of DCs (Scott et al. 1994; 

Anderson et al. 2000; Wu et al. 1997; Laouar et al. 2003).  The requirement of some of 

these factors may not be surpring as both PU.1 and Ikaros control Flt3 expression while 

STAT3 appears to be the primary mediator of Flt3 signals in myeloid cells.  Furthermore, 

Ikaros and Gfi-1 are expressed at high levels in GMPs (Yoshida et al. 2006; Zeng et al. 

2004). As PU.1 expression must either rise to overcome MafB, or stay steady while 

MafB falls, the requirement of Ikaros and Gfi-1 marks these factors as candidate 

regulators of Sfpi1 transcriptional output, perhaps working with STAT3 to maintain or 

augment PU.1 levels through monocyte lineage determining pathways.   

 

Sfpi1 Transcriptional Regulation and PU.1 Function in MEPs  

PU.1 is a dual functioning transcription factor able to activate or repress 

transcription, and through specific combinatorial mechanisms, antagonizes or promotes 

differing lineage choices.  In early progenitors mutual antagonism between PU.1 and 

GATA1 segregates myeloid from megakaryocytic and erythroid lineage potential (MEP).  

How GATA1 itself is first activated to generate MEPs is unclear, but once expressed at 

sufficient levels GATA1 dominates PU.1 function and inhibits its expression to promote 

MEP differentiation. 

At the transcriptional level, GATA1 may negatively regulate Sfpi1 in MEPs 

through binding to a recently identified region at -18 kb upstream from the Sfpi1 TSS 

(Chou et al. 2009).  GATA2 was shown able to bind the -18 kb region and the Sfpi1 

promoter in an MEP-like cell line deficient in GATA1.  As knockdown of GATA2 

increased PU.1 expression in these cells, this work suggests that GATA2 may constrain 
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PU.1 levels through the -18 kb region and/or promoter.  HSC-like PU.1 expression level 

is present in the GATA1 deficient MEP-like cells.  After restoration of GATA1 

expression, GATA1 is found to bind at the -18 kb and promoter target sites, accompanied 

by reduction in GATA2 occupancy.  Consequently, PU.1 expression was reduced 

approximately 5-fold by day three post GATA1 restoration.   This indicates that GATA1 

is a more potent repressor of PU.1 expression than GATA2. 

While GATA1 and GATA2 could bind the -18 kb region, the element and its 

GATA factor binding have not yet been directly tested for function.  Thus GATA factor 

regulation of Sfpi1 may not depend on this region and might primarily repress PU.1 

through well known protein-protein interaction mechanisms described below.   

To promote erythroid lineage development, GATA1 levels rise to overcome PU.1 

so that GATA1 antagonizes PU.1 transcription, possibly by competing with c-Jun, the 

essential PU.1 coactivator discussed earlier (Zhang et al. 1999).  Likewise, PU.1 

antagonizes erythroid lineage specification and commitment by concentration dependent 

interaction with DNA bound GATA1, followed by recruitment of Retinoblastoma (Rb) 

and repressor complexes (Stopka et al. 2005).  PU.1 interaction with Rb is mediated by 

the N terminus, yet the PU.1 N terminus was found dispensable for direct PU.1 

interactions with Sin3A and HDAC1.  Thus PU.1 can also mediate Rb independent 

repression (Kihara-Negishi et al. 2001).  GATA1’s ability to physically inhibit PU.1 

autoregulation, along with its potential to directly repress Sfpi1 may be enough to 

culminate in the eventual loss of PU.1 expression to promote terminal erythrocyte 

differentiation. 
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However, the recent work uncovering Sfpi1 transcriptional responses to STAT3 at 

regions not associated with GATA binding or PU.1 positive feedback cannot be fully 

accounted for with the above GATA1 repression mechanisms and implies there is more 

to the GATA story.  The PU.1 increase correlated with GATA2 knockdown in the MEP-

like cells was observed under cytokine conditions (TPO and GM-CSF) that can activate 

STAT3 (Chou et al. 2009). Moreover, there was more than a 6-fold increase in 

C/EBPα in the MEP-like cells, as well as activation of other monocyte related genes 

(Chou et al. 2009).  Since GATA1 and GATA2 can physically interact with STAT3, 

inhibiting expression of STAT3 target genes like c-myc, it is unclear if their effects on 

PU.1 expression directly involve the -18 kb cis element, or even the promoter (Ezoe et al. 

2005).  Therefore an alternative mechanism through which GATA factors could 

indirectly constrain or block Sfpi1 transcription may involve another concentration 

dependent protein-protein interaction, this time with STAT3 and not PU.1. Taken 

together, it is difficult to attribute changes in PU.1 expression to GATA factor binding to 

Sfpi1 cis elements. The potentially complex interplay between C/EBPα, GATA factors, 

and STAT3 obviates any conclusion about the mechanisms of Sfpi1 regulation in the 

work discussed.     

MEPs lack expression of the receptor tyrosine kinase Flt3 while CMPs, GMPs, 

and LMPPs express Flt3. Since signaling through Flt3 can activate STAT3, Flt3 

instructive potential was investigated by transducing Flt3- MEPs with human Flt3 (Onai 

et al. 2006).  Strikingly, signaling through hFlt3 was sufficient to reprogram MEPs into 

CMPs, increasing STAT3 expression, and restoring PU.1, C/EBPα, and myeloid related 

cytokine receptor expression (Onai et al. 2006). Interestingly, forced expression of 

STAT3 or PU.1 in MEPs repressed GATA1 expression and restored mouse Flt3 
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expression although hFlt3 alone did not do either.  These results indicate that the balance 

between GATA1 and PU.1 mutual antagonism could be tipped by the influence of 

cytokines acting through STAT3, thus extending our understanding of how lineage 

choice might be altered by extrinsic signals impinging on stable progenitor regulatory 

states.       

It is worth emphasizing the potential significance of the above results.  The ability 

of hFlt3 to increase STAT3 and the finding that even higher forced STAT3 expression 

can turn on mFlt3 indicates that the STAT3 pathway is sensitive to positive feedback.  

PU.1 also activated Flt3 expression.  Therefore PU.1 and STAT3 may be able to promote 

a self sustaining STAT3/PU.1 feedback loop past some threshold.  Moreover, the ability 

of Flt3 to restore and maintain myeloid lineage potential in MEPs highlights the need to 

constrain Flt3 expression as a mechanism of lineage fidelity control. 

Regardless of uncertainty over which possible mechanism might be in use, 

GATA1 inhibition of PU.1 function is well established and critical to erythroid 

development.  Nevertheless, the general portrayal of GATA1 and PU.1 as antagonistic 

factors in erythroid development is misleading as PU.1 may have positive benefits in 

MEPs too.  Low levels of PU.1 are present in early erythroid progenitors and experiments 

have shown it plays a function in self-renewal and proliferation before being fully 

silenced to allow terminal erythroid differentiation (Back et al. 2004). Furthermore, while 

not strictly required for megakaryocyte development, PU.1 may promote megakaryocyte 

over erythroid lineage choice by facilitating Fli-1 expression; and it may do so in 

collaboration with GATA1 (Starck et al. 1999; Barbeau et al. 1999).  Moreover, 

cytokines used in platelet development, including IL-11, IL-6, and TPO activate STAT3, 

27



which may maintain PU.1 expression and the proliferation of MEPs (Weich et al. 1997; 

Schulze et al. 2000; Tong and Lodish, 2004).  An additional MEP benefit may be PU.1 

collaboration with SCL to maintain the expression of MEF2C, which has recently been 

shown to be a direct SCL and PU.1 target with contributions to megakaryopoiesis (Gekas 

et al. 2009; Stehling-Sun et al. 2008).   

Though PU.1 is antagonistic to GATA1 at high levels, and ultimately expendable 

to MEP function and development, the above discussion further exemplifies several 

important lessons.  First, PU.1 regulation is very complex and involves the context 

dependent interplay of transcription factors and cytokine signaling crosstalk.  Second, 

overexpression or deficiency of PU.1 can obscure interpretation of PU.1’s normal 

physiological functions.  And finally, erythroid and megakaryocyte development, like 

other blood lineages discussed, illustrate the ubiquity of PU.1 function contributions to 

normal hematopoiesis.  

 

Sfpi1 Transcriptional Control Mechanisms in B-lineages Is Essentially 

Unknown  

There is a shortage of information on Sfpi1 transcriptional mechanisms in B-

lineages. As described earlier, Sfpi1 transcriptional output is reduced as early progenitors 

commit to the B-lineage.  How PU.1 expression is modulated has not been determined, 

but may involve IRF8 binding to the Sfpi1 promoter (Wang et al. 2008).  However, the 

Sfpi1 promoter cannot drive PU.1 expression in a chromatin context on its own (Li et al. 

2001).  So while several factors have been found to affect B-cell promoter activity, they 

28



cannot adequately explain Sfpi1 transcriptional output in the B-lineage. DMS footprinting 

indicates Runx1 and PU.1 sites in the Sfpi1 -14 kb URE are occupied, but to date, in B-

cells no factor has been shown to functionally regulate Sfpi1 through the URE althouth 

the URE does contribute to B-cell Sfpi1 transcriptional control.    

 

PU Is a Context dependent Regulator in B-cells 

While knowledge of B-lineage Sfpi1 transcription control mechanisms may be 

lacking, it has long been recognized that PU.1 is an important context dependent B-

lineage regulator.  It has been nearly twenty years since PU.1 was recognized to bind and 

positively regulate the immunoglobulin kappa enhancer in collaboration with IRF4/NF-

EM5 (Pongubala et al. 1992).  Identification of important context dependent targets of 

PU.1 and IRF4 collaboration continues.  For example, PU.1 interacts with IRF4 to 

regulate CD68 expression, but this time PU.1-IRF4 represses transcription.  In contrast, 

PU.1 collaborates with Elf-1 to activate CD68 expression in myeloid cells (O’Reilly et al. 

2003).  PU.1 is now well known for its interactions with multiple IRF family members.  

For instance, PU.1 interacts with IRF8 to regulate dendritic target genes, but in early B-

cells PU.1 cooperation with IRF4 or IRF8 helps activate the critical B-cell factor, Pax5 

(Decker et al. 2009; Tailor et al. 2008).  

Although important, IRFs are not the only B-lineage PU.1 collaborators.  PU.1 

also cooperates with Pax5 to recruit the Grg4 repressor and silence IgH, but in Pax5’s 

absence PU.1 activates IgH in combination with NFKappaB (Linderson et al. 2001 and 

2004).  PU.1 can also recruit BCL6 to repress target genes in germinal center B-cells 

(Wei et al. 2009).   
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These examples of PU.1 context dependent function provide a cautionary tale 

with important lessons.  First, despite very different PU.1 expression levels, myeloid and 

B lineages can still use PU.1 to regulate overlapping targets like CD68, therefore simple 

dosage models will sometimes mislead. Second, since PU.1-IRF4 complexes can activate 

or repress different targets, the amount of contextual information needed to predict 

function may be greater than often appreciated.  Third, the CD68 and IgH examples 

demonstrate that the directionality of PU.1 transcriptional effects are readily altered 

through different combinatorial occupancy patterns, further precluding easy prediction of 

PU.1 functional relevance even when binding is observed on the same target.  

 

Does PU.1 Dosage Affect Myeloid Versus Lymphoid Fate Choices? 

Previous sections highlighted the ways in which multidimensional PU.1 levels 

affect regulatory choices in erythroid and myeloid lineages.  It has also been argued that 

one dimensional PU.1 dosage influences myeloid versus B-cell lineage choice with 

higher PU.1 concentration promoting myeloid lineage choice at the expense of B-cells 

from a common precursor (DeKoter and Singh, 2000).  The authors noted in their original 

discussion that there could be two possible interpretations of their data.  Either differing 

amounts of PU.1 specify distinct lineage fates, or commitment may be initiated from 

nearly equivalent levels of PU.1 with levels consequently changing as a by-product of 

specification so that committed cells can complete terminal differentiation (DeKoter and 

Singh, 2000).  The authors favored the former argument because it was believed PU.1 

was expressed at low levels in multipotent progenitors.   
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Recent Sfpi1 reporter mice have established that the original premise for arguing a 

simple dosage effect is not valid.  PU.1 is expressed uniformly in HSCs, CMPs, and 

CLPs, but rises in GMPs and falls in B and T precursors only after lineage specification 

(Nutt et al. 2005; Back et al. 2004).  Furthermore, mice with reduced functional PU.1 

protein levels still undergo myeloid specification but are defective in differentiation.  

These mice also show defects in B-cell development, indicating a minimal threshold of 

expression is required to allow B lineage development and subsequent myeloid 

differentiation postspecification (Rosenbauer et al. 2004; Houston et al. 2007).  This does 

not come as a surprise as the B-cell compartment is not a mixture of lineages constructed 

by different PU.1 amalgams like the myeloid compartment, thus B-cells can simply 

change collaborators under conditions of relatively stable PU.1 expression to alter PU.1 

mediated transcriptional outputs. 

 

PU.1 Is a Subversive but Essential T-lineage Regulator 

Absence of PU.1 results in a T lineage developmental defect with PU.1-/- 

progenitors arrested at the T lineage specification stage where cells transition from DN1 

(CD44+CD25-) to DN2 (CD44+CD25+) (Spain et al. 1999).  Forced PU.1 expression in 

early thymocytes also induces a developmental arrest at a slightly later stage, indicating 

normal T lineage development is dependent on maintenance and silencing of Sfpi1 

(Anderson et al. 2002).   

Analysis of PU.1 overexpression in pro-T-cells has demonstrated that PU.1 can 

repress T-lineage associated genes while activating myeloid lineage targets, even 

diverting some cells to a myeloid-like or dendritic cell fate (Dionne et al. 2005; Franco et 
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al. 2006; Lefebvre et al. 2005; Laiosa et al. 2006).  Additionally, when removed from 

thymic Notch signaling, PU.1 expressing DN2 thymocytes can generate DCs in the 

spleen after intravenous transfer (Wu et al. 1996).  Deletion of Notch1 in pro-T-cells also 

increases DC numbers in the thymus (Feyerabend et al. 2009).  Collectively, these studies 

indicate PU.1 provides both T lineage fidelity and instability with Notch signaling able to 

contextually restrain PU.1 dependent lineage competence functions in the normal thymic 

environment.  While it is clear PU.1 is required for efficient T-cell development, and 

PU.1 activity must be contextually limited to maintain the T-lineage program, it remains 

vague what the true functions and targets of PU.1 are at normal physiological expression 

levels in early T-cells. 

 At least one known PU.1 target benefits T-cell development, Flt3.  Early T 

progenitors (ETPs) are part of a mixed population of DN1 cells within the thymus.  

Several multipotent progenitors have now been found circulating in the blood that can 

seed the thymus to give rise to ETPs, thereby contributing to T-lineage development 

(Schwarz and Bhandoola, 2004).  The most efficient T-cell generators appear to be the 

Flt3Hi LMPPs and their early progeny.  Flt3 is essential to thymic seeding, in part due to 

its regulation of the thymic homing factor CCR9 (Schwarz et al. 2007; Zlotoff et al. 

2008).  After ETP seeding, Flt3 signaling continues to contribute to DN1 expansion 

within the thymus.  As already discussed, the Flt3 pathway is also associated with 

myeloid potential.  Additionally, Flt3Hi ETPs retain B lineage potential, in part due to 

insensitivity to early thymic Notch signaling through expression of Zbtb7a and MINT 

(Maeda et al. 2007; Tsuji et al. 2007).  So while Flt3 benefits the thymic citizenry, it is 

loss of Flt3 expression that in part marks B-cell restriction and limits myeloid potential 

(Sambandam et al. 2005).    
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Increasing Notch Signaling during the DN1 to DN2 Transition 

Constrains PU.1 Function and Facilitates T-lineage Specification, in 

Part through Altering Reliance on PU.1 Targets Flt3 and IL-7Rα 

Notch signaling potency increases during the DN1 to DN2 transition and 

facilitates T-lineage specification.  Notch target genes Hes1 and GATA3 are already 

activated in Flt3+ ETPs, suggesting Notch signaling has already begun, perhaps 

prethymically.  However, activation of the Notch target Deltex is not immediate.  Instead 

it coincides with Flt3 repression and CD25 upregulation at the DN1 to DN2 transition, 

suggesting strengthening Notch signaling with loss of Zbtb7a and MINT is needed to 

initiate the T-lineage program (Sambandam et al. 2005; Taghon et al. 2006).  

Furthermore, coculture of sorted Flt3+ ETPs on OP9 stroma lacking the Notch ligand 

DL1 fail to downregulate Flt3.  Collectively, these results demonstrate a requirement for 

increasing Notch signaling to constrain expression of a PU.1 target and in so doing, block 

alternative lineage potential.    

By downregulating Flt3 expression, Notch alters the cytokine landscape of early 

T-lineage cells.  In fact, Notch regulates the cytokine response pathways involved in 

multiple hematopoietic lineages.  In monocyte progenitors, Notch activation blocks 

nondendritic cell fates by triggering apoptosis in the presence of M-CSF (Ohishi et al. 

2000).  DCs overcome potential Notch induced cell death through GM-CSF and/or Flt3L 

activation of STAT3 and its target gene Survivin (Gu et al. 2007; Zhou et al. 2009).  In 

the absence of Flt3/STAT3 mediated Survivin expression, T-lineage cells shift to survival 

mechanisms that rely in part on c-Kit and the less myeloid friendly IL-7/IL-7Rα pathway 
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for survival and proliferation (Yu et al. 2004). Neither IL-7Rα nor c-Kit is known to be a 

strong activator of STAT3.   

The above results may seem inconsistent as Notch silences Flt3 in the thymus, but 

Notch has been shown to be necessary for some dendritic cell development.  This implies 

that Notch’s ability to modulate Flt3 expression may be contextually specific, possibly 

through quantitative control of Notch signaling potency (Cheng et al. 2003; Dallas et al. 

2005; De Smedt et al. 2005).  Additionally, recall that STAT3 has the potential for 

positive feedback to regulate Flt3 expression, therefore GM-CSF and Flt3L together may 

be enough to sustain Flt3 expression, preventing Notch mediated repression.  Consistent 

with the above, forced expression of GM-CSFR (or IL-2β), a potent STAT3 activator, 

can quickly convert DN1 or DN2 cells into myeloid cells (King et al. 2002).  Taken 

together, the ability of Notch1 to promote T lineage specification may be incompatible 

with coexpression of other myeloid/DC drivers.  As Flt3 and PU.1 together contribute to 

developmental instability by allowing alternative fate specification, one factor must give 

way. Therefore Notch silences Flt3 as PU.1 itself may yet be required for IL-7Rα 

expression and/or further maintenance of T-lineage fidelity.   
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Thymocytes Avoid a Notch, PU.1, and GATA3 Induced Mast Cell Fate 

through Mutual Constraint 

One PU.1 dependent myeloid fate is partially restrained by intrathymic Notch 

repression of Flt3.  However, the myeloid fate problem only becomes more paradoxical 

when considering the relationship of PU.1, GATA3, and Notch in the mast cell fate 

decision, as immature T lineage cells requires these very same developmental inputs. 

As discussed previously, mast lineage specification is dependent upon balanced 

PU.1 and GATA activity in the presence of little or no C/EBPα.  Primary myeloid 

progenitors exposed to Notch repress C/EBPα via HES1 and strongly activate GATA3 

expression, in turn leading to primarily mast cell formation in mixed colony assays 

(Sakata-Yanagimoto et al. 2008).   DN1 and DN2 cells express plentiful HES1 and 

GATA3 too (Sambandam et al. 2005; Taghon et al. 2005).  Moreover, DN2 cells have 

strongly downregulated C/EBPα expression, which may be related to losing Flt3 (Laiosa 

et al. 2006; Rothenberg et al. 2008).  Since C/EBPα can shut off Notch1 and GATA3 

expression when overexpressed, repressing C/EBPα is also an important event in 

maintaining T-lineage fidelity (Laiosa et al. 2006).  With plentiful PU.1 and GATA3, and 

little C/EBPα, why do DN1 and DN2 thymocytes not generate thymic mast cells en 

masse?  While Notch is a natural candidate for protecting DN1 and DN2 cells from 

transdifferentiation, another may actually be PU.1. 

Although Notch constrains PU.1’s subversive behavior, Notch may also be 

commandeering PU.1 and turning it into a T-lineage guardian. Notch has been observed 

to boost PU.1 expression in thymocytes (Taghon et al. 2007).  This could be due to 
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HES1’s reported ability to cross talk with the JAK/STAT pathway by directly binding 

STAT3, promoting its phosphorylation and enhancing its transcriptional activity in glial 

differentiation (Kamakura et al. 2004).  Thus Notch signaling may ironically induce a 

transient activation of PU.1 expression through the very same STAT3 mechanism that 

silencing of Flt3 would serve to prevent.  However, HES1 induced STAT3 activity could 

be short lived as Notch can also trigger the expression of the STAT3 inhibitor SOCS3, 

which may serve to limit or block cytokine or HES induced STAT3 activation in the 

wrong context (Narayana and Balaji, 2008).  Notch might not just transiently regulate 

PU.1 though.  In a myeloid progenitor cell line, overexpression of an activated Notch1 

triggers PU.1 upregulation and differentiation (Schroeder et al. 2003).  Since Notch 

activates GATA3, but GATA3 fails to trigger GATA2 and GATA1 expression unless 

forcibly overexpressed, it is conceivable that sustained PU.1 expression is constraining 

GATA3 just as Notch is constraining PU.1, likely with GATA3 also inhibiting PU.1 

(Taghon et al. 2007).  However, this is inconsistent with observed PU.1 downregulation 

observed in mast cells and suggests there is more to consider (Arinobu et al. 2005). 

Continuous direct or indirect Notch maintenance of PU.1 in the thymus may be 

protecting T-lineage fidelity in early development while transient or weaker Notch 

signaling in myeloid progenitors may be more permissive to mast cell specification.  

Transient or less potent Notch signaling must be sufficient for initial HES1 and GATA3 

activation, as evidenced by their expression in ETPs. Thus if myeloid progenitors within 

the bone marrow obtain transient or less potent Notch signals, they could still repress 

C/EBPα. Αdditionally, GATA3 can sustain Notch-independent HES1 expression while 

initiating GATA2 expression, which then autoregulates (Taghon et al. 2007).  So long as 

the spatiotemporal Notch signaling in the bone marrow is sufficient to allow GATA2 
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activation, but too impotent or transient to consequently activate a PU.1 maintenance 

program, PU.1 expression would be allowed to drop and a new regulatory state could be 

established.  In this way, Notch could prevent legacy Sfpi1 regulators from working 

against T lineage specification in the thymus, while coopting PU.1 to be a T lineage 

guardian able to counterbalance Notch activation of GATA3. 

Consistent with the above scenario, overexpression of GATA3 in early T-cells 

redirects some cells toward a mast cell fate, overcoming any PU.1 imposed constraint 

(Taghon et al. 2007).  Absence of Notch signaling enhances GATA3 induced mast cell 

diversion, which indicates PU.1 independent Notch regulted constraint of GATA3 is also 

important.  GATA3 rapidly induces GATA1 and GATA2 expression with accompanied 

suppression of high PU.1 expression, followed by establishment of an expression level 

similar to bone marrow derived mast cells (Taghon et al. 2007).  While GATA3 

overexpression could activate a mast cell diversion program even in the presence of 

Notch, only DN2 thymocytes in the absence of Notch could give rise to mast cells 

without forced GATA3 overexpression.  This is consistent with a hypothesis that DN2 

cells may have switched to reliance on a Notch dependent PU.1 maintenance program in 

the absence of other HSC legacy regulators. Subsequent removal from Notch signaling 

could then result in a drop in PU.1 expression unless Flt3 or other STAT3 activating 

cytokine receptor expression is restored first.  Without sufficient Notch and PU.1, some 

cells might then have an opportunity to enter the mast cell program.   
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Switching Gears, What T-lineage Player Throws the Wrench into the 

Sfpi1 Transcriptional Machinery?   

The preceding discussions in this chapter have highlighted many factors involved 

in Sfpi1 transcriptional control, partly with the hope of better understanding what factors 

might be relevant in thymocytes, but the main lesson here is that none of the factors 

discussed, nor any other literature can readily explain PU.1 expression in the T-cell 

compartment.  C/EBPα is expressed, but at relatively low levels and falls in the earliest 

T-cell precursors, before PU.1 is shut off.  Loss of STAT3 does not affect T-cell 

development and the cytokine receptors that early T-cells rely on are not known to 

activate STAT3.  GATA1 is not present, but GATA2 is expressed in early T precursors.  

However, its expression decrease before Sfpi1 silencing, and it might be expected to 

regulate PU.1 in the opposite direction (Rothenberg et al. 2008). While Notch was 

discussed as a potential regulator, that hypothesis has yet to be tested. Taken together, 

Sfpi1 transcriptional maintenance involves unrecognized players and will need to be 

further explored.   

A more pressing question is what factor disrupts the Sfpi1 transcriptional 

machinery at the DN2 to DN3 transition?  Examining DN3 cells reveals several 

interesting shifts in transcription factor family ratios and one that is particularly relevant 

is Runx1/Runx3 (Taghon et al. 2007; Rothenberg et al. 2008).   Runx1 has already been 

recognized as being an important silencer in the T-lineage. Although it was involved in 

turning on Spfi1 in the first place, its peak expression at the stage where most cells are 

committed to the T-lineage makes it an interesting candidate for Sfpi1 silencing, and will 

be the subject of the next chapter.   
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Abstract 

PU.1, a transcription factor critical in multiple hematopoietic lineages, is required 

during T-cell specification but is then silenced before commitment. If uncontrolled, PU.1 

can both block T-cell development and induce diversion to a myeloid fate. This implies 

operation of a stage-specific repression mechanism correlated with commitment. Two 

major cis-regulatory elements have been described for Sfpi1, the gene encoding PU.1, 

namely the promoter and a compound conserved region around -14 kb that is thought to 

mediate activation and repression. However, the -14 kb element is dispensable for most 

Sfpi1 downregulation in early T-cells, and it can exert enhancer activity in an immature 

T-cell line in which the endogenous Sfpi1 gene is repressed. We now present evidence for 

another complex of conserved noncoding elements that can mediate several discrete, cell 

type-specific regulatory features of Sfpi1, including cell type-specific repression in early 

T-cells. We describe mapping of the silencer core and show that the T-cell specific 

repressive activity requires Runx1 acting through multiple nonconsensus sites. These 

newly characterized sites recruit Runx1 binding in early T-cells in vivo and define a 

functionally specific scaffold for Runx-dependent repression complexes. 
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Introduction 

Differentiation of hematopoietic stem cells (HSCs) is a highly regulated process 

whereby sequence specific transcription factors drive differentiation through activation of 

lineage specific developmental programs and by restricting or repressing alternative fates. 

Some of these transcription factors are pleiotropic inputs acting as regulators of multiple 

cell fate decisions. Such functions depend on tight regulation of the factors themselves, 

distinguishing various cell lineages and differing developmental phases.  

One such dynamically regulated factor is PU.1, an Ets family DNA binding 

protein critical to many hematopoietic cell types. This transcription factor is essential for 

the development of myeloid and lymphoid lineages (20, 28). PU.1 expression is restricted 

to hematopoietic cells, and is highly expressed in HSCs. Initiation of PU.1 expression 

depends on Runx1 which unfolds the PU.1 chromatin structure and primes the gene for 

expression in HSCs (14, 23). Upon differentiation of HSCs, PU.1 expression diverges in 

distinct lineages. PU.1 expression is elevated in macrophages, continues at high levels in 

neutrophils and most types of dendritic cells, and is fixed at lower levels in committed B 

cells (22).  

A more dramatic shift of PU.1 expression occurs in the development of T-cells. 

Although the earliest intrathymic precursors express PU.1 at HSC-like levels, PU.1 

expression is silenced during the transition to the DN3 stage of T-cell development, as 

the cells undergo lineage commitment (3, 31, 33). This silencing is crucial as forced 

expression of PU.1 beyond this stage causes a developmental block. PU.1 overexpression 

in DN3 thymocytes or a DN3 like immature T cell line, Adh.2C2, can also cause the cells 

to gain myeloid characteristics (9, 17). This suggests that silencing of PU.1 is needed to 
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block alternative fate choices during commitment of cells to the T-lineage. The 

mechanism of this essential silencing event is not fully understood. 

To date, most aspects of PU.1 regulation have been explained by invoking just 

two regulatory elements: the promoter and an upstream regulatory element (URE) at ~14 

kb upstream of the transcription start site of the Sfpi1 gene which encodes PU.1. Early 

studies indicated that potential PU.1 regulatory differences might be mediated through 

cell type-specific use of different transcription factors at the promoter. The Sfpi1 

promoter contains octamer binding sites affecting B-cell expression (6), and PU.1 can 

bind its own promoter with Sp1 to regulate itself in myeloid cells (7). Sfpi1 promoter 

activity can also be directed in myeloid cells by C/EBPα and AP1 (4). These regulatory 

inputs to Sfpi1 may be modulated by cell type-specific DNA methylation (1). The PU.1 

promoter has also been shown to be more active in a myeloid cell line than in a mature T 

cell line, implying that it can mediate cell type specificity (18).  

The promoter alone cannot drive reporter expression in a chromatin context, and 

the search for added regulatory function yielded the conserved URE which acted as a 

myeloid specific enhancer, enhancing promoter activity in a myeloid cell line but not in a 

mature T cell line (18). In myeloid cells, the URE binds C/EBPα (5, 34) and PU.1 and 

may thus contribute to autoregulation as well (24, 29). Data suggest that the URE also 

mediates silencing function in T cells. To account for its repressive activity, two 

mechanisms have been offered. A TCF/LEF site in the URE was argued to mediate 

repression as long as Wnt signals are absent (26). However, this mechanism does not 

explain continued PU.1 repression later, when T cells must undergo canonical Wnt 

signaling (10, 34). Also, the proximal URE enhancer has three conserved Runx1 sites 

able to bind Runx1. This region of the URE is in an open state of accessibility, with the 
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Runx sites occupied in both myeloid and T lineage cells (13). This Runx input was 

argued to mediate both activation and silencing (15).  

This claim implies that opposite effects on Sfpi1 regulation can be mediated by 

the same factor binding to the same sites. Indeed, mice with a deletion either of Runx1 

itself or of these URE Runx sites showed a decrease in PU.1 expression in myeloid and B 

cells. In T-lineage cells, deletion of Runx1 produces a developmental block at the DN2 

stage (11, 16) and the surviving cells have higher PU.1 expression, which may add to this 

arrest (15). The argument is that not only the URE function overall, but also Runx1 

binding to the same cis-regulatory sites in the URE is inherently bifunctional. 

However, it is not proven that all regulation goes through the URE. Deletion of 

the URE (URE∆) neither fully blocked activation of PU.1 expression within 

hematopoietic cells, nor fully blocked T-cell silencing (26, 27). Thus, while required for 

normal regulatory output, the URE was dispensable for turning on PU.1 (27). Also, the 

URE∆ mice still had T-cells in which PU.1 expression was effectively silenced (26). 

Thus, even though the Runx1 bound to the URE in T-cells might be part of a repressive 

complex, lack of the URE was less harmful to T-cell development than the severe DN2 

developmental block observed with deletion of Runx1 itself.  

Here, we have identified a set of conserved, previously uncharacterized cis 

regulatory regions for Sfpi1. We show that at least one is a novel enhancer that can 

contribute to the myeloid specific expression of PU.1. We also show that in an immature, 

DN3-like T-cell line, in contrast to a mature T-cell line, the URE remains an active 

enhancer though endogenous PU.1 is repressed. However, another new element we 

define is a bipartite silencer that is necessary and sufficient for full silencing within a 

chromatin context in this immature T-cell line. Using scanning mutagenesis, we mapped 
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sites required for the core silencer’s function and we show that these sites are novel Runx 

binding sites. These Sfpi1 silencer Runx sites bind Runx1 in a dose-dependent, cell type 

specific way, and perturbations of Runx1 protein function block silencer activity 

mediated through these sites. Thus, this study identifies novel sites for nucleating a 

distinct set of transcription factor complexes through which Runx1 can influence PU.1 

expression. The existence of these lineage-specific, functionally dedicated cis-elements 

reveals a new set of mechanisms for cell type-specific regulation of PU.1. 

 

Materials and methods 

Cell culture: 

Adh.2C2 and EL4 cell lines were grown in RPMI media supplemented with 10% fetal 

bovine serum, penicillin/streptomycin/glutamine, non essential amino acids, sodium 

pyruvate, and 2-ME. Raw264.7 and NIH-3T3 cells were grown in DMEM media with 

10% fetal bovine serum, penicillin/streptomycin/glutamine.  

 

DNase I HS Mapping and Southern blot analysis experiments: 

DNase I hypersensitivity assay were carried out as described (21) with slight 

modifications.   Briefly, about 100 million cells were harvested and washed three times 

with RS buffer (10mM Tris-HCl, pH 7.5, 10mM NaCl, 5 mM MgCl2, and 2 mM CaCl2).  

Cells were resuspended in 0.5ml RS buffer and mixed with 0.5ml 1% NP-40 and 

incubated on ice for 10 min.  The pelleted nuclei were washed twice with RS buffer and 

resuspended in 0.2ml RS buffer.  Twenty five microliters of nuclei suspension were 

digested with 25 μl of DNase I (Roche) at varying concentrations ranging from 0 to 40 

unit/ml for 5 min at 20°C.  Reactions were terminated by adding 450 μl of digestion 
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buffer (100 mM NaCl, 20 mM EDTA, pH 8.0, 6mM EDTA, 0.5% SDS) containing 

100μg of RNase A and incubated for 30 min at 56°C.  Proteinase K was then added to 0.1 

μg/μl and the mixture was incubated at 56°C overnight.  The genomic DNAs were then 

extracted by phenol-chloroform and precipitated by ethanol, and resuspended in 50μl of 

H2O.  All obtained DNAs were digested with different restriction enzymes to completion 

according to the regions analyzed, and fragments were resolved by gel electrophoresis 

and transferred to a nylon membrane.  Probes were amplified by PCR from the mouse 

genomic DNA using the primer sets in the selected regions.  The PCR products were gel 

purified using the Qiagen gel extraction kit and radiolabeled by random priming.  

Hybridization was performed at 42°C for 24 hours according to the protocol provided by 

BD Clontech. 

 

Cloning of reporters and expression constructs: 

 PU.1 DNA was obtained by PCR using the BAC RP23-20F9 (bacpac.chori.org). 

Reporter constructs were made by cloning PU.1 sequences into Promega’s pGL3-basic 

vector. Detailed maps of reporters and their construction are available upon request. For 

scanning mutagenesis analysis, CE4A core silencer fragments with M2, M14, or M5+M9 

mutations were synthesized by GenScript and used to construct reporters.  All other 

L98+4A-5 mutants were made using overlap PCR to produce mutated core silencers for 

reporter construction.  L9-3mut-Runx was made by excising the CE4 region and 

replacing it with a mutated sequence synthesized by GenScript. Runx1 dominant negative 

and full length Runx1 cDNAs were kind gifts from Dr. Janice Telfer, and were cloned 

into Invitrogen’s pEF1/Myc-His B vector. The Ikaros dominant negative, Plastic, was 

synthesized by GenScript based on published sequence (Papathanasiou et al. 2003) and 
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cloned into pEF1. The following sequence with the M5a mutation and predicted Runx 

sites mutated was synthesized by GenScript and used to replace the wild type sequence in 

L93 to construct L93-M5-mut-Runx: 

AGCTCTTAAGGGACTGAGGACTAAGCAAGATGCTGAGTTCTGGAGACGGGAC

TGTCTTCTTCCCCAGATTGAGATGCCAGGCATGTGTGTCTCACACAGACTCTG

TGCCTACTACCTCAGTTAGCCTTGAGAAATCCCCACCTCCATTCCCAGAGGTA

TCTTCTATTATTGCTCCTATCTGGGGACAAAGAGCCTGAGGTCCCTAGAAGTG

GGTTCCTGGCTCTCAGTTGTGAAGATAATTAGGTATAGGGAGTCACACTGCA

GGTCACAGAAAGCACTGGCAGAAGCCAATGAAAGAGGCACATACTAAGTAG

ACTTTTAGTCTTGGAAACAAGGCTAGGAGGTGATTCTTGTTGATGTCTCTCTG

TAGAGCTGAGCCTAAGTTCTGGAGAGGGGAAGGAACTCAGAAGGCTACATG

GCCAATCCATGGGGGTTGGGGGAGAACCCGTGGAGCTAGAGATGGGATGGT

AGAGGGGGCGCCTTAGAGGAGGTAGGCCTGAGTGGGGAAGCAGCTCTTGTCC

TTGGTGAGCAAGCTGGAGGTGTTCTGCTGCCCGTGGCGAGCAGACGACAGTT

GCTGTTAGTTACGGTTAGTTTGATCTGCAGGAGACTGAGTGATGTTACCAGGA

GGTGAGAGCTCCGCATCTGCAGGCCTGGTCAGCAGGAGACGGGGTTCAGTAA

GATTCAGAGGAGTGTTAGCTGAACTGGAGATTTGTATCTCTCAGTCACCGGCC

CTGGAACACATGGGACCAGGAACCGGAATAGAACAGGAGGAGAAACTGAGG

CAAGGCTTGGGAAAGACAGAGCAAACTGAAAAAAAAAAAAAAAGGGCACTT

AGAGGAGTGTCCAGTAGGGTGTTAAAGACAGTGAGAGCCTGTGTGAGCAAA

GCCTGTTAGAGATTGAGAAAGAGCAGAGCTTCTGGACATGTTGAGTCTTCTT

ACGCATCATGGGGGTAGGGCTAGCTGGACTCCCAGTGTAGGAGGCTCCAGCA

CAGGCCTCCAAGGTATGGGCTCCAGCTCTGGACAGGTAAGAGCTGAGGAAGA
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CTTCCAGGTAGGGAGAGACACAAGAAGCCAAGAGGTGAGACAGCTGAAGAA

GGCCAGGCCCTAGG.   

The M5a mutation in L93-M5-mut-Runx was corrected by PCR mutagenesis to generate 

L93mut-Runx. The M5 mutation was introduced into L93-M5 by overlap PCR of CE4 

which was then used to replace the wild type sequence. Sequences of primers used to 

construct reporters are available upon request.  All reporter constructs were sequence 

verified. 

 

Transfections and luciferase assays: 

Cells were transfected in some experiments with FuGENE 6 reagent, at a FuGENE:DNA 

ratio of 3:1. Alternatively, cells were transfected by Nucleofection (Lonza/Amaxa).  

Solution-V kits were used when nucleofecting Adh.2C2 cells with program D-19, or 

Raw264.7 cells with program D-32 (Lonza/Amaxa). EL4 cells were nucleofected with 

Solution-L kits and program C-09. Cells were harvested ~48 hours post FuGENE 

treatment or ~24 hours post nucleofection. Cells were cotransfected with pRL-CMV and 

lysates were analyzed using Promega’s Dual Luciferase system. 3-6 µg Sfpi1 reporters 

were used in transfections with 100-200 ng pRL-CMV control.  For stable transfections, 

Sfpi1 reporters were linearized with Not I prior to transfection. The renilla luciferase was 

cloned into Invitrogen’s pTracer EF/Blasticidin A and the construct was linearized for 

mixed transfection with the Sfpi1 reporters. After transfection, cells were aliquot into 6-

well plates then selected with 5-15 µg/ml Blasticidin for their duration in culture, 

beginning one day post transfection. The pTracer-Renilla control was linearized with Fsp 

I.  10 µg of Sfpi1 reporters were transfected with 1-2 µg of pTracer-Renilla. For some 

stable transfections, insert copy number was determined by quantitative PCR with 
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primers specific to firefly luciferase and the pTracer-Renilla control vector’s GFP-

Blasticidin sequence: Luc-F ACGATTTTGTGCCAGAGTCC and Luc-R 

AGGAACCAGGGCGTATCTCT; GFP/Blast1-F GTCAGTGGAGAGGGTGAAGG and 

GFP/Blast1-R ACGGGAAAAGCATTGAACAC. All antisense morpholino transfections 

were performed by nucleofection with 2 nanomoles of morpholinos.  The following 

morpholino antisense oligos were order from Gene Tools, Inc.: anti-Runx1 

CAGGCAGGAGTACCTTGAAAGCGAT; anti-PU.1 

GAGGACCAGGTACTCACCGCTATG; anti-CBFβ 

CCTCCCCAACCGCCTCACCTCGCAC 

 

Transcription factor binding site predictions: 

TRANSFAC analysis was used to predict potential transcription factor binding sites.  

Biobase’s (https://portal.biobase-international.com/cgi-bin/portal/login.cgi) TRANSFAC 

suite’s MATCH tool was used for the analysis.  Matrix similarities >0.925 were shown. 

 

Gel Shift Assays: 

Nuclear extracts were prepared by hypotonic swelling in buffer A, followed by NP40 

lysis, nuclei pelleting, and extraction with buffer C containing protease inhibitors (Roche 

#11873580001). Buffer A: 10 mM HEPES pH 7.9, 60 mM KCl, 1 mM DTT, 0.1 mM 

EDTA, 0.1 mM EGTA, followed by addition of NP40 to 0.625%. Buffer C: 20 mM 

HEPES pH 7.9, 0.4 M NaCl, 1mM EDTA, 1mM EGTA, 1 mM DTT.  Protein was 

quantified by the Bradford method. Gel shifts were performed with ~6 µg extract in 30 µl 

volume containing 1-2 µg poly di-dc and final concentrations of 15 mM HEPES pH 7.9, 

80 mM NaCl, 15 mM KCl, 0.02 mM EDTA, 1 mM DTT, and 3% glycerol. Five 
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picomoles of probes were end labeled with T4 polynucleotide kinase followed by 

purification with G-50 columns (Roche #100609).  Complexes were allowed to form for 

10 minutes with competitors prior to addition of radiolabeled probes.  After probe 

addition, samples were incubated for an additional 30 minutes.  All incubations were 

carried out on ice.  Complexes shown in Fig, 5B were resolved by 4% PAGE, run at 

constant 350 volts for 4hours.   Complexes shown in Fig. 5C and 6C were resolved by 

6% PAGE run at constant 350 volts for 2.5 to 3.5 hours.  All gels were run at 4oC with 

0.5x TBE gels and 0.25x TBE running buffer.  4% gels were prerun for 30 minutes.  

Quantification was performed by Phosphorimager and ImageQuant 5.2 analysis. Runx1 

N-terminal antibody was from Calbiochem (Catalog #PC284). Runx1 antibody against 

amino acids 231-245 was from Active Motif (Catalog #39000). Pan-Runx antibody was a 

kind gift from Masanobu Satake (Tohoku University, Sendai, Japan). Ikaros (sc-13039) 

and Myb (sc-516) antibodies used in gel shift assays were from Santa Cruz. 

 

Western Blots: 

Nuclear extracts were mixed with 2x Laemmli sample buffer, boiled, and then run on 8% 

SDS-PAGE. Gels were transferred to Immobilin (Millipore) by semi-dry transfer. Blots 

were blocked with 5% milk in TBS-T (Tris-buffered saline, 0.5% Tween-20) then 

incubated overnight with primary antibody at 1:3000 dilution. After washing, blots were 

incubated for 90 minutes with secondary antibody at 1:3000 dilution, washed, then 

incubated with substrate (SuperSignal, Pierce #1859675 and #1859674).  Substrate was 

drained from blots then blots were exposed to film. Primary Runx1 antibody PC284 was 

from Calbiochem. Sp1 antibody was from Santa Cruz (sc-59). 
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ChIP assays: 

ChIP assays were performed as recommended by Upstate Biotechnology (Millipore). 

Briefly, 2-3 x 107 cells were fixed with 0.33-1% formaldehyde for 10-30 minutes, and 

then lysed in 0.8 ml with protease inhibitors. Lysate was sonicated to produce an average 

fragment size of ~ 250 bp. Lysate (130 µl) was diluted and used for each ChIP sample 

with 9 µg of antibody. Crosslinking was reversed by overnight incubation at 68°C. 

Proteinase K digests were for 30 minutes at 55°C. DNA was purified by ethanol 

precipitation and resuspended in 100 µl water. Analysis of recovered DNA was 

performed by SYBR green based QPCR with an AB 7900HT. One µl of purified DNA 

was used per 10 µl PCR reaction, in triplicate. Whole thymi from Rag2-/- mice were 

excised and thymocytes were recovered by cutting and scraping thymic lobes through 

steel mesh.  Thymocytes were then immediately fixed and processed for ChIP assays.  

Approximately 4x106 thymocytes were used per ChiP.  Runx ChIPs performed with an 

equal mix of antibodies from Calbiochem and Active Motif (above).  Rabbit Ig (sc-2027) 

and GABPα (sc-22810) antibodies were from Santa Cruz. Primer pairs used for analysis 

of ChIP enriched DNA by QPCR are: CE1-F AGCTCAGCTGGATGTTACAGG and 

CE1-R AGATGGTCACACATCCCAAAG; -2kb-F TTCTCACATCCCAGACCATTC 

and -2kb-R CGCCAGCAGTTGTAGTTCTTC; -2.8kb-F 

GCAGCTCACTGCTCCAAGTT and -2.8kb-R GAGACGGGGAGTGGGTATGT; CE3-

F TGGAGCTCTGAGGGGCCTAA and CE3-R GGCTGGGAAAGCTGACCATAA; -

8.4kb-F AGAGGAGCTGACATTGGCATAC and -8.4kb-R 

TGAGCCTCTGAAGTGGCTTTAT; CE4B-F AGCAAAGCCTGTGGGAGATT and 

CE4B-R ATACCTTGGAGGCCTGTGCT; CE4A-F GGAAGCAGCTCTTGTCCTTGG 

and CE4A-R TCACCTCCTGGCCACATCACT; CE5-F 
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GCTCTGAAAAGCACCGTTTCC and CE5B-R CTGTGTTGGACCTGCAAGGAG T; -

11.8kb-F CTCTGCCCGCTCTTAACCTT and -11.8kb-R 

GATCTGACACGGGGATGAAA; CE76-F CACACGGAGTCAGAGCGGGCAG and 

CE76-R AGGAAAGAGGAAGCCATGGGGAGA; CE8-F 

AGGCAGAGCACACATGCTTC and CE8-R CTTCTGGGCAGGGTCAGAGT; CE9-F 

CAGGAGAGGCAGGAGGAAGGA and CE9-R 

AGAGAGCAGAGCACTTCATGGCT; -17.8kb-F CTGGACAAGTGGAAGGTGACA 

and -17.8kb-R TCAGAGGGCTTCAAAGTGGA; CD4-F 

TGACGGAAGGGAGGATGTAG and CD4-R AGTGGGTGGGAGCTCTGTAA; 

MEF2C-F AGCACACTCAGCCTGCTCTAC and MEF2C-R 

GGTGTAAAGGTGCTTCCTTCC; IL-7Rα-F GTCTGAGCAAAAGGATTGCTG and 

IL-7Rα-R GGAGCTTCAGGGAATACCAAG.  
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Results 

The PU.1 URE is a stage specific T-cell enhancer 

A 2.2-kb PU.1 promoter fragment could not drive reporter expression in myeloid 

cells in a chromatin context, but was able to do so when joined to the 3.5 kb URE 

fragment. This URE failed to enhance promoter driven expression in mature T-cells (18). 

In order to elucidate the dynamic mechanism of PU.1 silencing during early T-cell 

development, we tested the regulatory function of the URE in a more immature T-cell 

line representing the DN3 stage, i.e. the developmental state in which endogenous PU.1 

expression is actively being silenced. We made reporters with the 2.2 kb PU.1 promoter, 

with or without the conserved regulatory regions of the URE (Fig. 1A). These reporters 

were named L98 and L1, respectively, and tested for activity by transient transfection 

into a mature myeloid cell line, Raw264.7, and an immature DN3 like T-cell line, 

Adh.2C2. As expected, we observed L98 reporter activity enhanced by ~14 fold relative 

to L1, in a myeloid cell line (Fig. 1B). We also transiently transfected a more mature T-

cell line, EL4, and showed that here L98 failed to show enhanced activity relative to L1, 

as expected from previous reports (Fig. 1D). Unexpectedly, however, the L98 construct 

containing the URE also reproducibly showed ~3 fold enhanced reporter expression in 

the immature T-cells (Fig. 1C). These results suggest that the activity of the URE is not 

exclusively repressive in T-cells, but rather developmental stage dependent. 
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Cell type-specific patterns of DNase hypersensitivity associated with conserved 

regions outside the URE 

To look for other cis regulatory elements that may contribute to PU.1 silencing in 

immature T-cells, we used multigenome sequence alignments to identify more conserved 

noncoding elements across the ~50 kb PU.1 mouse locus (Fig. 1A). Besides the 

conserved elements of the promoter (CE1) and the two previously identified within the 

URE, which we have termed CE9 and CE8, our alignments revealed other conserved 

regions, mapping from about -12.5 kb to -7.5 kb upstream of the Sfpi1 transcriptional 

start site. These were named as CE7, CE6, CE5, CE4 (A+B), and CE3. 

To assess whether any of these regions might show cell type-specific differences 

in accessibility or transcription factor engagement, a range of hematopoietic cell lines 

including myeloid (32D), multipotent progenitor (FDCP-mix and EML-c1), and pro-T 

cell lines (Adh.2C2) were tested to map DNase hypersensitive (HS) sites across the 5’ 

flanking region and first two introns of Sfpi1 (Fig. 1E, F, and Fig. S1). One DNase HS 

site related to the promoter was only formed in PU.1 expressing cells, as earlier reported 

(18). A HS site at -14kb was previously identified (18) to mark the URE and was 

detected in all the hematopoietic cell lines tested (Fig. 1E, band at 9.6 kb from SphI site). 

Also confirmed were two reported sites in the second intron, which were seen in both 

PU.1-expressing and –nonexpressing cell types (1)(Fig. 1F; see Fig. S1). In addition, five 

new sites were found. Two novel DNase HS sites formed to varying extent in all the cell 

lines tested (Fig. 1A & E, black arrows). The first of these was found at -12.3 kb, near 

CE7 and CE6. This site is just downstream of the boundary of the 3URE fragment. The 

second cell type-nonspecific HS site was seen at -8.8 kb, between CE4A and CE4B. Of 

more interest, two other upstream DNase HS sites were detected only in PU.1 expressing 
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cell lines (Fig. 1A and F, red arrows). These two HS sites were found at -10.8 kb and -7.4 

kb (5 kb and 1.6 kb from the SphI site in Fig. 1E), flanking CE5 and CE3, respectively. 

Notably, we also detected a doublet of DNase HS sites specific to immature T-cells, at -

8.5 kb (Fig. 1A and 1F, blue arrow; Fig. 1E right, bands around 2kb from the SphI site), 

and not seen in any of the PU.1-expressing cell types. We hypothesized that a regulatory 

feature associated with Sfpi1 silencing could be near this region. 

 

Identification of a novel cell type-specific PU.1 regulatory element with T lineage 

repressive activity 

Reporters were made as shown in Fig. 1A to test if any conserved elements from 

CE7-CE3 might have regulatory activity independent of the URE in immature T-cells. 

The L7-6 construct was made to combine the Sfpi1 promoter with a 2 kb region including 

CE7 and CE6, where an overlapping non cell type-specific HS was found in myeloid and 

T-cells (Fig. 1A). L7-6 showed enhanced and nonspecific activity in both myeloid and 

immature T-cell lines, with ~2× increased activity in transient transfection assays (Fig. 

1G, black bars) as compared to L1(Fig. 1G, gray bar). In contrast, a construct containing 

the promoter plus the new conserved elements from CE5 through CE3, L5-3, showed 

activity that was clearly cell type-specific. L5-3 (Fig. 1G, blue bars) was strongly 

repressed in the Adh.2C2 cells as compared to L1 (Fig. 1G, gray bar). Strikingly, the 

same L5-3 construct was found to have enhanced activity in Raw264.7cells, with CE5-3 

increasing promoter-driven reporter expression by ~4x. In summary, the conserved 

sequences CE9-CE6 span aregion of ~4 kb and contain multiple regulatory elements that 

increase promoter activity in both myeloid and immature T-cells. In contrast, the ~3 kb 
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region containing CE5-CE3 was found to mediate cell type-specific activating or 

repressive regulatory function.  

The regulatory elements in CE5-3 not only showed lineage-specific effects on 

promoter activity, but also strongly modulated the combined activity of the promoter and 

the URE. These effects were strongest when the reporters were stably integrated and 

expressed from a chromatin context in myeloid and immature T cell lines. We stably 

transfected linearized reporters containing elements CE9-CE6 (L9-6) or a longer 

sequence extending further to include CE9-CE3 (L9-3). The L9-6 reporter efficiently 

expressed luciferase when stably integrated into chromatin, as expected (Fig. 2A), both in 

myeloid cells and in our DN3 like immature T-cell line to similar levels (Fig. 2B). The 

CE9-6 enhancer activity was hematopoietic specific, as the L9-6 reporter generated >100 

fold increase in luciferase expression in both myeloid and immature T-cells compared to 

nonhematopoietic NIH 3T3 fibroblasts (Fig. 2C).  

The addition of the CE5-CE3 region to L9-6 to make the L9-3 construct yielded 

sharply different results. This construct gave an ~8 fold increase in reporter expression in 

myeloid cells as compared to L9-6 (Fig. 2A). In the T-cells, however, addition of CE5-

CE3 repressed reporter expression to a level comparable to the background level in NIH 

3T3 fibroblasts (Fig. 2B & C). These data show that the CE5-CE3 cis-regulatory region 

can contribute to a >500 fold difference in reporter expression between myeloid and 

immature T-cells.  
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Mapping of a bipartite region necessary for silencing in a chromatin context and a 

core silencer sufficient for silencing in transient assays 

DNAse HS mapping revealed a pan-hematopoietic HS site between CE4A and 

CE4B, as well as a T lineage-specific HS site just downstream of CE4B (Fig. 1A, E, F). 

This suggested that the CE4A-B region might be involved in the T-cell silencing effect. 

As shown in Fig. 2B, deletion of CE4A and CE4B did abolish the repressive function 

within the L9-3 construct. To map regions within CE5-CE3 that contribute to the cell 

type-specific regulatory function, we made more reporters combining individual 

conserved regions together with the 2.2 kb PU.1 promoter and then tested their function 

in transient transfection assays. While the dynamic range of these assays is less than in 

the stable transfections, these rapid surveys yielded results that could be verified in the 

stable transfectants.  

This functional mapping showed that the myeloid enhancing activity and the pro-

T cell silencing activity are mediated by different cis-regulatory sequences. The CE5 

region confers myeloid-specific enhancer activity. As shown in Fig. 3B, CE5 (in 

construct L5) was able to enhance promoter activity by ~7-fold in myeloid cells, but by 

only 1.5 fold in the immature T cells (Fig. 3C). In contrast, all the repressive activity in 

immature T cells mapped to the CE4 region. Results with the L4A construct showed that 

the CE4A region alone could repress Sfpi1 promoter activity in the immature T cells (Fig. 

3C), but with little or no effect in the myeloid cells (Fig 3B). The CE4B region did not 

confer independent regulatory function in transient assays (Fig 3B and 3C), though it 

contains one reported Stat3 site implicated in Sfpi1 induction by cytokines (12). 

However, the presence of both CE4A and CE4B was necessary for full silencing when 
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integrated stably in a chromatin context (Fig. 3D), indicating that the CE4A-B region is a 

bipartite T-specific silencer.  

The CE4A region spans ~450 nt in which the central ~120 nt are most conserved. 

To map the sequences within the CE4A region that are vital for silencing, we truncated 

this 450 nt region and made reporters with these truncations flanked by the URE elements 

and promoter(Fig. 4A). These experiments showed that a minimal conserved core is 

necessary and sufficient for repression in the transient assays (Fig. 4B). Construct 

L98+4A-5, containing only the minimal core silencer region of ~120 nt from CE4A, was 

sufficient to repress the enhancer activity of the CE9-CE8 region in immature T-cells 

(Fig. 4B). 

 

Scanning mutagenesis analysis of the core silencer 

The CE4A core silencermapped to a peak of conservation identified by the 

multigenome alignment (Fig 1A). The precise nucleotide alignment is shown in Fig. 4C, 

with asterisks marking nucleotides that are 100% conserved amongst eleven organisms, 

and with predicted transcription factor binding sites shown (see Materials and Methods). 

To unmask the most influential repression sites in an unbiased way we carried out 

scanning mutagenesis and tested for loss of repression in transfection assays, mutating 6-

nt blocks (M1to M15, Fig. 4C) across the core CE4A silencer region within the reporter 

construct L98+4A-5. The first four mutants examined,M1-M4, did not  affect the 

repressive function of the core silencer (Fig. 4D). However, mutantsM5-M9 caused a loss 

of core silencer function (Fig. 4D). These mutants span a region of 30 nt across the 

largest conserved block within the core silencer (Fig. 4C). Another mutant, M13, also 

blocked core silencer activity (Fig. 4D). Close examination of the sequences where 
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mutations abolished core silencer function showed that 5/6 mutations, M6-M9, and M13, 

overlap sequences with ~90% similarity to the canonical Runx binding motif, 

(Py)G(Py)GGT (Fig. 4C, red boxes). Mutant M5 does not overlap a predicted Runx site, 

but crosses a conserved site, “site X”, predicted to contain an Ets family target site (Fig. 

4C, blue box).  

 

Identification of T-cell specific protein complexes 

To identify transcription factors vital for the T-cell-specific repressive activity of 

the CE4A core silencer, probes spanning the CE4A core region were used in gel shift 

assays with nuclear extracts from Adh.2C2 and Raw264.7 cells to determine the nature of 

cell type-specific protein-DNA complexes. Complexes were identified by mobility, and 

by cross-probe competition and antibody treatments. These assays showed that at least 

three regions of the CE4A+B elements could nucleate cell type-specific protein-DNA 

complexes that differed qualitatively when formed with T or myeloid extracts (Fig. 5C). 

The cell type specificity of the complexes formed with these probes contrasted with those 

detected by the CE8 region of the URE, where similar patterns of complexes were 

formed with extracts from T and myeloid cells alike (Fig. S2)  

Fig. 5B shows that a large probe spanning the whole critical repression region 

(CE4A-P6) could nucleate a single complex from Adh.2C2 extracts. This large, slow-

migrating complex (T1) depended on binding to two distinct regions, as defined by 

competition with mutant and wildtype competitors. One critical site was element X 

(compare CE4A-P6 and CE4A-P6m5) and the other was the region of predicted Runx 

site CBF3 (compare CE4A-P3 and CE4A-P3m7a). To define the distinct component 

complexes that might contribute to the large T1 complex and to identify those that might 
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be cell type specific, gel shift assays were then carried out with a tiling array of smaller 

CE4A probes. Two distinct complexes formed on these smaller probes which were T cell 

specific: one named A3, and a larger, slow-migrating complex named A1 (Fig. 5C, lanes 

1, 3, 5). Using probe CE4A-P3, which formed both complexes, Fig. S3A shows that the 

sequence requirements for these two complexes can be dissociated. Complex A3 mapped 

to element X, which is mutated in CE4A-P3m5a (lanes 1-4), while complex A1 depended 

on the region of the CBF3 site that is mutated in CE4A-P3m7a (lanes 1-4). 

Because the full silencing activity in a chromatin context depends on region 

CE4B as well as CE4A, we carried out a screen for potential T-cell-specific binding 

complexes to CE4B probes too. Of seven CE4B probes tested, only two formed 

complexes and only probe CE4B-P3 formedcell type-specific complexes(Fig. S3B). This 

probe was also found to form a very slow moving complex, designated B1, which was T-

cell specific (Fig. 5C, lane 11, red arrow; Fig. S3B). Strikingly, the CE4B B1 complex 

was similar to the large A1 complex formed with CE4A, based on cross competition and 

mutational analysis (Fig. S3A, lanes 1, 2, 5; Fig. S3C, lanes 1, 2, 4). Both complexes 

depended on the integrity of predicted Runx sites (Fig. S3A, lanes 1-3 & 5-7; Fig. S3B, 

lanes 1 vs 6 and 7; Fig. S3C). As these are likely to be higher-order complexes with 

multiple protein components, we also tested them for the presence of additional factors 

predicted to bind nearby (Fig. 4C, Fig. S3E). Both A1 and B1 complexes were super-

shifted by antibodies against Ikaros, though not by anti-Myb (Fig. S3A, lanes 9-10; S3D, 

lanes 2-3). 

Together, the analyses suggest that the T-cell specific bands A1 and B1 represent 

redundant T-cell specific complexes dependent on predicted Runx sites while A3 is a T-

cell specific complex that depends on site X. The higher-order T1 complex could thus be 
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a composite of A1 and A3. The possibility that the A1 and A3 complexes on CE4A 

interact at the protein level was supported by the ability of a pan-Runx antibody to 

interfere not only with T1 and A1 but also with A3 (Fig. S4, lane 5; Fig. 5B, lane 10). 

The composition and precise role of the complexes depending on the X site are still 

unresolved (data not shown). However, further experiments strongly support direct 

involvement of Runx1 protein in the T-cell specific repression activity of the bipartite 

silencer, as described below. 

 

CE4A silencer contains multiple nonconsensus Runx binding sites that contribute to 

T-cell specific complexes 

Although similar to Runx sites, the core silencer defined by mutations does not 

contain precise matches to the Runx consensus sequence (Py)G(Py)GGT, and more 

evidence was needed to determine whether Runx proteins could be part of complexes A1, 

B1, and T1. Pan-Runx antibodies shifted or inhibited these complexes and Runx1-

specific antibodies seemed to crosslink them, but the slow initial mobility of these 

complexes made the results difficult to interpret (data not shown). Therefore, the binding 

of Runx proteins to CE4A was confirmed by competition in gel shifts against a validated 

Runx-dependent silencer sequence, the Cd4 silencer (31)(Fig. 6, Fig. S5).  

The Cd4 silencer probe contains two canonical Runx motifs (Fig. 6B) and formed 

a strong band with nuclear extract prepared from Adh.2C2 cells (Fig. S5, black arrows). 

The complex is competed by cold Cd4 probe, and this competition depends on the two 

Runx motifs (Fig. S5A, lane 3). The band can also be super-shifted with Runx1-specific 

antibodies, but not control Ig, confirming that the Cd4 probe gel shift complex contains 

Runx1 (Fig. S5, red arrows). Competition for this complex thus affords an assay for 
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Runx1 binding to other sequences. Probe CE4A-P1, though outside the core region 

required for silencing, does contain a canonical Runx motif, CBF1, and competed with 

the Cd4 probe for Runx binding (Fig. S5A). CE4A-P2 lacks the canonical Runx motif 

and did not compete for Runx binding. Competitor probe CE4A-P3 competed for Runx 

binding (Fig. S5A) but when the potential Runx site CBF3 was mutated (Fig. 5A, CE4A-

P3m7a), it could no longer compete for the Cd4 silencer Runx complex (Fig. S5A, lane 6 

vs. 7). However, this is not the only site in the CE4A region where Runx could bind. 

CE4A-P4 contains predicted Runx sites CBF4 and 5 that also competed with the Cd4 

probe for Runx binding (Fig. S5A). Note that the Runx sites in all these probes, except 

for CE4A-P1, map to the locations of mutations that damaged repression in Fig. 4, i.e. 

mutants M6- M9. The predicted CBF6 sequence in probe CE4A-P5, which is disrupted 

by mutant M13, also competed with the Cd4 probe for Runx binding (Fig. S5A). When a 

longer probe that spanned the M5-M13 regions of CE4A was used as a competitor, 

mutations in at least four distinct sites were needed to abolish all Runx competition 

activity (Fig. S5C, “M-all”). The CE4B-P3 probe also competed against Cd4, again 

indicating that this region has a Runx binding site (Fig. S5A, lane 10). These results 

suggest not one but multiple potential Runx binding sites in the functionally vital regions 

of the bipartite silencer. 

The one mutation that affected repression in transient assays without sequence 

similarity to a Runx site was the M5 mutant, a 6-bp mutation which spans the X site (Fig. 

4C). Consistent with the specificity of the assay, smaller mutations in the region of the X 

site did not prevent the CE4A-P3 oligo from competing for Runx binding to the Cd4 

silencer probe (Fig. S5B, lanes 5-7). Thus, the X site per se, and specifically its Ets site-

like GGAA core, is not required for the binding of Runx to the CBF3 site. However, the 
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full six-nucleotide M5 mutation also destroys the ability to compete away the Cd4 Runx 

complex (Fig. S5B, lane 4), implying that this sequence is important to stabilize Runx 

binding to the flanking CBF3 site. Thus, all of the mutations that abolished core silencer 

function in the scanning mutagenesis assay are associated with the sites of Runx 

complexes in vitro. 

 

Quantitative impact of Runx levels on binding to the CE4A silencer 

Runx1 was implicated in the regulation of PU.1 expression already and was 

shown to bind to three canonical Runx sites in the CE8 element. These CE8 sites are 

organized as a doublet of sites with ~50 nt separating them from another single Runx site. 

We therefore asked whether the ability of Runx1 to bind CE8 is distinct from its ability to 

bind CE4. 

Western Blot analysis of Adh.2C2 and Raw264 nuclear extracts showed that these 

T-cells have ~4x more Runx1 protein than the myeloid cells (Fig. 6A). Note also that the 

Runx sites in the functionally important regions defined by mutants M6-M9, and M13 all 

deviate from the consensus, (Py)G(Py)GGT, whereas CE8 has consensus sites. Thus, we 

hypothesized that occupancy of the repression-linked Runx sites in CE4A-4B might 

require higher Runx expression levels than the activating or bivalent sites in CE8.  

We examined the binding affinities of the CE8 and CE4A-P3 Runx sites by 

titrated and quantified competitions against the Cd4 Runx probe. As shown in Figure 6C, 

cold Cd4 probe competed against itself in a dose-dependent way. The CE8-P1 and CE8-

P3 probes both competed fully for Runx binding. When the Runx sites were mutated in 

CE8-P1m1 and CE8-P3m1, competition was lost. The Cd4, CE8-P1, and CE8-P3 probes 

all reduced Cd4 probe Runx binding by ~80% at 20 fold excess under these conditions, 
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and eliminated binding to below the threshold of detection when used at 100 fold excess 

(Fig. 6D). In contrast, the CE4A-P3 probe was a weaker competitor. This is notable as it 

includes not only the highest-scoring Runx site across the functionally important silencer 

region, but also the adjacent X site which seemed to enhance Runx binding. The CE4A-

P3 competitor reduced the Cd4 complex by only 65% at 20 fold excess and by only 79% 

at 100 fold excess. Taken together, these data suggest that the most dominant Runx site in 

CE4A indeed has a weaker binding affinity than the Runx sites in the URE.  

 

Runx protein perturbations and Runx binding site mutations abolish silencer 

function 

 We used two approaches to determine whether Runx1 itself was functionally 

important for the silencing mediated by CE4A in the T-cell context. First, we used co-

transfections of a Runx1 dominant negative expression construct (d190) (32) together 

with the reporters to compete against endogenous Runx1 (Fig. 7A). This Runx1 DN 

construct includes the full Runx1 DNA binding domain but lacks the C-terminal effector 

domains associated with silencing and transactivation. Second, we used transfection of 

morpholino antisense oligonucleotides to knock down Runx1 protein levels (Fig. 7B). In 

both assays, the effects on silencing mediated by the CE4 region were assessed by 

comparison with effects on activity of L98 in the absence or presence of the silencer (the 

full CE5-CE3 region or CE4A alone). We compared the effects of these Runx1 

antagonists with effects of full-length, wildtype Runx1 and of morpholinos against the 

Runx complex partner, CBFβ. In addition, these results were compared with effects of a 

“dominant negative” mutant form of another candidate silencing factor, Ikaros (25), and 

with effects of a morpholino against PU.1 itself. 
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 Fig. 7A shows that competition with Runx1 DN blocked repression mediated by 

the CE4 silencer. There was clear enhancer activity of the CE9-CE8 URE in the T-cells 

in this assay (Fig. 7A, lanes 3, 4 vs. lanes 1, 2) which was eliminated by addition of CE5-

CE3(Fig. 7A, lanes 11, 12 vs lanes 1, 2). Cotransfection of full length Runx1 had no 

effect on this silencer activity, nor did the dominant-negative “Plastic” mutant of Ikaros 

(lanes 15-18). However, cotransfection of the Runx1 DN relieved silencer activity in a 

dose dependent way (Fig. 7A, red bars, lanes 13, 14). The repression-alleviating effect of 

the Runx1DN was also detectable when assayed with the L98 reporter, consistent with 

evidence that endogenous Runx1 can be repressive at CE8 as well (15); however this 

effect was much weaker than when the CE5-CE3 region is present.  

 Endogenous Runx1 protein in the Adh.2C2 cells could be knocked down by 

transfection with an antisense morpholino (Fig. 7C). This treatment also blocked silencer 

activity of CE4A, as measured by the ratio of expression driven by L98 plus the CE4 

element to expression driven by L98 alone (Fig. 7B). As Runx1 binds DNA in a 

heterodimer with CBFβ, a morpholino was made to block CBFβ expression and this also 

relieved some repression (Fig. 7B). All these effects were cell type specific. In contrast, a 

morpholino against PU.1 had no effect, nor did a control morpholino against the inverse 

of the Runx1 sequence.  

 Finally, we confirmed the role of the Runx sites in stable transfections by testing 

the L9-3mut-Runx reporter in which all predicted Runx sites across CE4A-B were 

mutated. We also evaluated the impact of the M5 mutation in L9-3 and in combination 

with mut-Runx (L9-3 M5 mut-Runx), as the X site stabilized Runx1 binding in vitro. As 

shown in stably transfected cells, the L9-3mut-Runx reporter, with or without the M5 

mutation, could no longer be silenced in Adh.2C2 cells (Fig. 7D). In contrast, the L9-3 
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M5 construct which retains all Runx sites but has the M5 mutation, was still moderately 

silenced. 

 

Runx1 binds to the CE4A core silencer in vivo specifically in immature T-cells 

 These results raised the question why Runx1 could exert repression via CE4 in T-

cells but not in myeloid cells. The competitive titration assays predicted that recruitment 

of Runx1 to the silencer element might depend on the higher level of expression found in 

T-cells more than recruitment to the URE, but this remained to be verified in vivo. 

Therefore, we carried out ChIP assays against Runx1 on chromatin from Raw264.7 and 

Adh.2C2. The results confirmed that Runx1 binding on CE4A is cell type specific in vivo 

(Fig. 8A, B). No strong Runx1 binding was detected across any part of the PU.1 upstream 

region in the myeloid cells (Fig. 8A, right), consistent with evidence that it may act there 

in a hit and run style (14). In contrast, there was a strong peak of Runx1 binding at CE4A 

in the immature T-cell line, stronger than its binding to the URE (Fig. 8B, right). The 

disparity between strong Runx1 binding at CE4A and weaker signals at CE8 in the T-

cells was unexpected in view of the established activity of Runx at CE8 and the open 

chromatin at CE8 in T and B cells alike (13), but this was highly reproducible. Both T 

and myeloid cells showed similar binding of the Ets family factor GABPα to CE8 (left 

panels, Fig. 8A, B), confirming that protein-DNA complexes could be detected at CE8 at 

least as efficiently in the T-cells as in myeloid cells, if they were there. Thus, in immature 

T-cells but not in myeloid cells Runx1 is selectively recruited to CE4A, even more than 

to the URE, consistent with a role in T-cell specific silencing activity of this element in 

vivo. 
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 Finally, to verify whether Runx1 binding to CE4 occurs in normal T-cell 

precursors at the stage when they first turn off PU.1 expression; we carried out ChIP 

assays on chromatin of primary thymocytes from Rag2-/- mice. These are populations in 

which >90% of cells are blocked in vivo at the pro-T-cell DN3 stage and have newly 

silenced Sfpi1. Control Ig did not generate strong relative enrichment of any region 

examined. However, a mix of Runx1 specific antibodies strongly enriched for CE4Ain 

Rag2-/- thymocytes, at least as strongly as CE8 (Fig. 8C). The magnitude of enrichment 

was comparable to the enrichment of the Cd4 silencer in these cells, an internal positive 

control because Runx1 is known to be repressing Cd4 at this stage of development (31) 

(Fig. 8C). Thus, Runx1 binds to CE4A preferentially and lineage-specifically under 

physiological conditions within primary T-cell precursors.  

 

Discussion 

We have identified multiple novel conserved elements of Sfpi1 that can mediate 

developmentally lineage-specific transcriptional regulation. The nature of these elements 

contrasts with the roles proposed for the promoter and the URE, which are essentially 

bifunctional. Thus, dedicated regulatory modules also exist that can contribute to Sfpi1 

regulation in a lineage-restricted way. The new elements seem specific not only for 

context-dependent activity but also for valency of function, activation versus repression. 

They correspond to conserved sequences and are thus likely to have been evolutionarily 

selected for these functions. Although the factors that bind these new modules include 

ones like Runx1, which also binds to three conserved sites in the URE, our results show 

that the new element CE4A can provide these factors with an alternative site organization 

and an alternative selection of interaction partners. Thus, at CE4A and CE4B, Runx 
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factors participate in cell type-specific complexes that they do not generate at CE8. These 

alternative complexes, organized by binding to the distinct cis-regulatory DNA 

“scaffolds”, are likely to explain why the impact of Runx1 binding at sites like CE4A can 

be focused on mediating a repressive transcriptional response. 

Identification of novel regulatory elements was needed to explain the early 

repression of Sfpi1 during T-cell development, because the Sfpi1 URE elements CE9 and 

CE8 retain their enhancer function in an immature DN3 like T-cell line even though they 

lose enhancer function in more mature T cells. The residual expression of PU.1 observed 

in URE∆ hematopoietic cells (27) already implied the existence of additional positive 

regulatory sites outside the URE. Our results in fact identify at least two novel, conserved 

cis-elements: one that can act as an enhancer in myeloid cells at about -10 kb, CE5, as 

well as the bipartite CE4A+4B element that mediates profound silencing in immature T-

cells, ~9 kb upstream of the Sfpi1 transcriptional start site. At least CE4A appears to be 

fully T-cell specific in its function and a selective mediator of negative regulation.  

Discovery of CE4 and the ability of this element to exert dominant silencer 

activity over continued URE enhancer function in immature T-cells together offer an 

elegant explanation for how the dual functionality of the URE is temporally switched in 

T-cell development. Our results show that Runx proteins, specifically Runx1 in these 

immature T cells, are dose-limiting for the effect of this silencer, that Runx1 binds to the 

CE4A and CE4B regions, and that its sites in the CE4A conserved element are crucial for 

repressive function of the silencer. In vivo, Runx1 rises to its highest level in immature T 

cells at the DN3 stage, just as PU.1 expression is first shut off (19, 30). T cells then 

continue to express one or more of the Runx family members throughout their continued 

development and mature function, potentially preserving the silence of PU.1 by active 
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repression. Even if this were not the case, the Runx-dependent silencing of the Cd4 gene 

provides a precedent for a hit-and-run silencing mechanism that Runx proteins can use 

for lasting effects (31).  

Nevertheless, Runx1 is clearly not T-cell specific, and so its effectiveness at the 

CE4 silencer must be subject to other conditions. Its selective recruitment to the CE4 

repression module in T-cells likely depends both on increase of Runx1 beyond a dose-

dependent threshold, from our evidence that the silencer Runx1 sites are relatively weak, 

and also on interaction with a T-cell specific repression cofactor. The evidence for the 

latter is indirect, based on two findings. First, Runx1 is recruited to the CE4 element in T- 

cells more strongly than to the CE8 element, in spite of the fact that individual Runx 

binding sites in CE8 are “stronger” by criteria of match to the consensus and in vitro gel 

shift competition. This could be explained if Runx1 interacts with a partner that binds at 

CE4 but not at CE8. The other finding, from our mutagenesis screen and gel shift 

complex analysis, suggests that a T-cell specific partner might bind at the “site X” region 

of CE4A. This site does show an effect on Runx binding affinity as well as an effect on 

repression in the context of the whole silencer. Clearly, the factor or complex that binds 

here is of great interest. One motif within site X suggests that a T-cell specific Ets-family 

factor could be involved, but to date this has been impossible to confirm even with a 

large range of antibodies that have been tested in both gel shift and ChIP assays (M. 

Zarnegar, unpublished data). However, note that the factor that binds to this site must still 

collaborate with a critical mass of Runx1 binding in order to mediate repression, and that 

in the most rigorous stable transfection assays, the multiplex Runx sites can mediate 

silencing in the absence of the X element. 
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Formally, the T-cell specific recruitment of Runx factors to CE4 could depend on 

the removal of an antisilencing factor. Against this possibility is the evidence that the 

CE4 region shows more “open” histone marks in T-cells than in myeloid or B-cells (M. 

Zarnegar, unpublished results). The CE4 region is marked by H3K4m1 and H3K4me2 

marks even in mature CD4+ human T cells, as defined by the ChIP-seq studies (4) (Fig. 

S6). Nevertheless, it is interesting that the CE4B region includes a Stat3 binding site 

shown to mediate Sfpi1 activation (11). The Stat3 site does not overlap but is adjacent to 

the sites needed for complex B1 formation, and possibly Stat3 mobilization by growth 

factor receptors such as Flt3 or gp130 could prevent assembly of the silencer complex 

until a key stage of T cell development, and until inflammatory cytokines are absent.  

In a larger sense, the characterization of the Runx-dependent CE4 silencer 

provides a prototype for other functionally dedicated, developmentally specific cis-

regulatory elements that may collaborate with the URE and the promoter to shape the 

complex expression pattern of PU.1. For example, we have identified a new myeloid 

enhancer at -10.3 kb, CE5. There is an additional conserved cluster, CE6 and CE7, 

located from -12.5 to -12 kb that can mediate enhancer activity in a non cell type-specific 

way in transient assays, but may have more restricted functions in a chromatin context 

(M. Zarnegar, unpublished results). Additional lineage-specific elements may refine PU.1 

expression in other cell types. Recent evidence from others shows that in erythroid cells 

GATA factors may modulate PU.1 gene expression through binding to another conserved 

site at -17.8 kb, upstream of the URE (7). Although T-cell GATA-3 should also 

recognize these sites, in vivo GATA-3 does not appear to bind to the -17.8 site or 

promoter-associated GATA sites in immature T cells as they silence PU.1 expression (M. 

Zarnegar & Jingli Zhang, unpublished results), so these sites may be specific for 
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regulation in erythroid and megakaryocytic lineages. Thus, the complex lineage-specific 

regulation of Sfpi1 is not played out simply through transcription factor interactions at the 

URE and the promoter, but also through lineage-specific intermodular interactions 

between the URE and a variable set of other conserved regulatory elements.  
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Figure legends: 

Figure 1. Sfpi1 upstream region contains novel cis regulatory elements. (A) Sfpi1 

multigenome alignment from exon 1 to ~15 kb upstream. Schematic of regions used in 

reporters are shown. (B and C) The CE9-CE8 (URE) region is an enhancer in the myeloid 

cell line Raw264.7 and in the immature DN3-like Adh.2C2 pro-T cell line. The Renilla 

luciferase expressing control vector pRL-CMV was used as an internal standard. The 

empty pGL3-basic was used as a control, LB. The average RLUs of triplicates from a 

representative experiment is shown with standard deviations. (D) The CE9-CE8 region 

does not possess enhancer activity in a mature T cell line, EL4. Data shown are the 

averages of three independent experiments performed in duplicate with standard 

deviations. (E, F) Novel DNase I HS sites are identified. Probe 2 southern blot of SphI 

digested DNA from nuclei of indicated cell lines, -/+ DNase I, is shown. Bands are 

defined by sites of DNase I sensitivity.  Right panel shows T-cell specific doublet of HSs 

at ~2 kb from Sph I site (box). Schematic summarizes HS mapping with various probes. 

S=Sph I, H=Hind III, E=EcoRV. (G) The L5-3 reporter shows lineage-specific activity. 
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RLUs normalized to L1. The average RLUs of triplicates from a representative FuGENE 

transfection experiment is shown with standard deviations. 

 

Figure 2. The CE5-3 region has cell type specific regulatory functions in stably 

transfected cells. A schematic of the reporters used is shown. Data reported as RLU/insert 

copy number. (A) Extension of L9-6 to include the CE5-3 region increases activity in 

RAW264.7 myeloid cells. (B) Inclusion of the CE5-3 region silences activity in immature 

Adh.2C2 T-cells. (C) Background activity of reporters in the nonhematopoietic NIH/3T3 

fibroblast cell line. Dots represent independent wells containing multiple founders and 

bars show the geometric mean for the wells.  

 

Figure 3. T-cell and myeloid cell type-specific regulatory activities map to distinct 

regions within the CE5-3 fragment. (A) A diagram of the CE5-3 truncations used in 

transient transfection experiments is shown. (B and C) Myeloid enhancer activity mapped 

to the CE5 region. T-cell silencer activity mapped to the CE4A region. Representative 

experiments with RLUs normalized against L1 and standard deviations are shown. (D) 

Both CE4A and CE4B contribute to silencing in a chromatin context. Diagram of 

reporters used for stable cell lines is shown. Data points are as described in Fig. 2. Data 

are shown as RLU. 

 

Figure 4. T-cell silencer activity mapped to a conserved core region (A) A diagram of 

reporters with CE4A truncations flanked by the CE9-CE8 enhancer and the promoter is 

shown. (B) The L98+4A5 reporter contains the core silencer sufficient for silencing (red 

bar). Data shown is from a representative transient experiment performed in duplicate 
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with Adh.2C2 T-cells. (C) A multigenome alignment of the CE4A core silencer is shown. 

Nucleotides conserved in all eleven organisms are marked by an asterisk. Six nucleotide 

blocks mutated in scanning mutagenesis analysis are labeled (M1-M15). Sequences with 

>0.925 similarity to TRANSFAC predicted binding sites are shown. (D) Scanning 

mutagenesis reveals multiple sites contributing to core silencer activity. Data shown are 

averages from four or more independent Adh.2C2 transfections with standard deviations. 

RLUs normalized against L98 activity. Red bars mark reporters with mutations blocking 

silencer activity 

 

Figure 5. The CE4 region nucleates T-cell specific protein complexes in vitro. (A) 

Schematic shows alignment of probes relative to the core silencer. Wild type probe 

sequences shown with asterisks marking bases mutated in competitors. (B) Mapping of 

sites contributing to “T1” complex formation on probe CE4A-P6 by Adh.2C2 nuclear 

extracts. (C) Multiple CE4A probes form T-cell specific complexes in vitro. Probes were 

incubated with nuclear extracts from Adh.2C2 (T) or Raw264.7 cells (M). T-cell specific 

complexes A1/B1 and A3 are indicated by arrows.  

 

Figure 6. The nonconsensus CE4A-P3 Runx site has weaker binding affinity than the 

consensus sites of CE8. (A) Western blot of Runx1 and Sp1 protein. The same blot was 

probed for Runx1 then Sp1. (B) Sequences of Cd4 and CE8 oligos are shown. Asterisks 

mark bases mutated in competitors. (C, D) CE4A-P3 binds Runx more weakly than CE8 

probes. The CD4 silencer probe was used to assay Runx1 binding potential. Competitors 

were used at 100 fold excess except where indicated. Band intensity was quantified with 
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a phosphorimager and background was subtracted with data plotted as relative intensities 

normalized against lane 1.  

 

Figure 7. Runx perturbations abolish silencing activity in the immature T-cells, Adh.2C2. 

(A) Cells were nucleofected with PU.1 reporters, plus 1-2 µg of indicated plasmids. Only 

cotransfection with the Runx dominant negative expression vector relieved silencing (red 

bars). (B) Antisense morpholino knockdown of endogenous Runx1 blocks silencing (red 

bar). Data from two independent experiments, in duplicate, were averaged and shown as 

a ratio of L98+4/L98 reporter activity. (C) Western blot of whole cell lysates from 

Adh.2C2 cells transfected with or without Runx1 morpholino, showing Runx1 loss. (D) 

Runx sites are essential for silencing in a chromatin context in stably transfected 

Adh.2C2 cells. L93 mut-Runx: all predicted Runx sites in CE4A-B region mutated.  L93 

M5, L93 with M5 mutation.  L93 mut-Runx M5, mutations combined. Data plotted as in 

Fig. 3D. 

 

Figure 8. Runx1 binds the CE4A silencer region in vivo in T-cells. A schematic of the 

PU.1 upstream region with conserved elements and their approximate location is shown. 

(A, B) ChIP assays in Raw264.7 cells (A, red) and Adh.2C2 (B, green). Left panel shows 

ChIP analysis with antibody against the Ets factor GABPα. Right panel shows Runx1 

ChIP. Results shown are from three or more independent experiments. (C) ChIP assays 

with Ig failed to enrich any region in Rag2-/- thymocytes (left panel). ChIP assays 

demonstrate Runx1 binding to the CE4A core silencer in primary thymocytes (right 

panel). Runx binding to the CD4 silencer is shown for comparison (green bars). Results 
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shown are from two independent experiments. Standard deviations are shown (error 

bars.) 

 

Figure S1. DNase HS mapping detects HS sites in the first two Sfpi1 introns. (A) Pro-T-

cell line scid.adh lacks HS sites flanking exon 1 (E1).  Probe 3 (P3) was used in a 

southern blot of EcoRV digested DNA from nuclei of indicated cell lines, -/+ DNase I.  

Bands correspond to sites of DNase I sensitivity.  Size markers are shown.  Schematic 

depicts HS mapping results with Probe 3.  Red arrows indicate HS sites detected in PU.1 

expressing cells and correspond to the bands in the southern blot.  S=Sph I, H=Hind III, 

E=EcoRV. (B) Nonspecific DNase HS sites detected across intron 2 in PU.1 expressing 

cells and nonexpressing pro-T-cells (scid.adh).  Probe 3 was used in a southern blot of 

Sph I digested DNA, -/+ DNase I, as described above. 

 

Figure S2. The CE8 region does not form cell type specific bands in vitro. (A) Pro-T-cell 

line Adh.6D4, Rag2-/- mouse thymocytes, P388D1 myeloid cells, and NFS-25 pre-B-cells 

all nucleate the CE8 probe in vitro with complexes equivalently abolished by 

competitions. (B) The sequence requirements for complex formation can be separated.  

When the Runx site is mutated in CE8-P3m1 (B, lane 3), complexes C1 and C3 are lost, 

indicating the Runx site is not needed to form bands C1 and C3, but is required for 

complex C2 (also  A, lanes 2, 5, 8 and 11).  Mutating the Ets sites in CE8-P3m2 abolishes 

C2 (B, lane 4; A, lanes 3, 6, 9, and 12), indicating complexes C1 and C3 require Ets sites. 

(C) A shorter CE8 probe lacking the three prime Ets site is similarly nucleated by pro-T-

cell and myeloid extracts.  Probe CE8-P2 does not form complex C1 (lanes 1 and 5) 
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indicating it requires both Ets sites. (D) The sequences of probes and competitors are 

provided.  Asterisks indicate nucleotides mutated in competitors. 

 

Figure S3.  The CE4B region forms a pro-T-cell specific complex in vitro and can cross 

compete with the T lineage specific A1 complex formed by the CE4A region probe.  (A) 

Sequence requirements for T lineage complex formation on probe CE4A-P3 can be 

separated.  Competition cannot abolish complex A1 when the Runx site is mutated (lane 

3), indicating the Runx site is needed for A1 formation. Complexes A2 and A3 cannot be 

abolished by competition with the probe when the Ets site is mutated (lane 4).  

Competition with a probe from the CE4B region eliminates complex A1 and this 

competition depends on the CE4B probe’s Runx like site (lanes 6-8).  Ikaros antibody 

(sc-13039) can supershift complex A1 (lane 9).  (B) The CE4B-P3 probe nucleates a pro-

T-cell specific complex, B1 (B, lane 1).  Complex B1 does not depend on the STAT site 

previously shown to contribute to PU.1 expression (lanes 3 and 4). In contrast, the 

myeloid complex B3, and the weaker T lineage complex B2, do require the STAT site for 

formation of complexes (lanes 3 and 4, and 10 and 11).  Complex B1 depends on the 

sequences spanning nonconsensus Runx and Ikaros sites (lanes 6 and 7).  Complex B1 

can be supershifted by Ikaros antibody (lane 17). Probe CE4A-P3 can be used in 

competition to eliminate complex B1 formation and ability to compete requires the Runx 

site (lanes 24 and 25).  (C) The sequence of probe CE4B-P3 is shown with asterisks 

indicating mutated nucleotides. TRANSFAC predicted transcription factor binding sites 

are shown with their matrix similarity score in parenthesis.   
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Figure S4.  Pan-Runx antibody inhibits complex formation on multiple probes nucleated 

by Adh.2C2 pro-T-cell extract (red arrows, lanes 2, 5, and 15). Ets2 antibody (sc-351) 

had no effect on any complex. 

 

Figure S5.  Multiple Runx sites are present across the CE4A core silencer region.  A Cd4 

silencer reference probe was used to assay for Runx binding potential.  (A)  The strong 

complex nucleated by the Cd4 probe is dependent on Runx sites (lane 3) and can be 

supershifted by anti Runx1 antibodies (lanes 13 and 14).   The CE4A probes (Fig. 5C) 

were used to compete with the Cd4 probe for Runx protein binding.  CE4A-P3 cannot 

abolish complex formation when its Runx site (CBF3 site) is mutated (lane 7).  (B) The 

CE4A-P3 probe’s site “X” is needed to compete with the Cd4 probe for Runx binding, 

but the nts needed for the overlapping Ets site and CBF3 site(see Fig. 4C) are dispensable 

(lane 4 vs 5 and 7).  (C) All Runx sites across the CE4A-P8 competitor must be mutated 

to abolish competitive inhibition of the Cd4 probe Runx complex formation.  Compare 

CE4A-P8 M-all (lane 15) with lanes 7, 9, 11, and 13.  (D) The CE4A-P8 probe is shown 

in relation to other CE4A probes.  The CE4A-P3 and CE4A-P8 probe sequences are 

provided and asterisks indicate mutated nucleotides in competitors. 

 

Figure S6.  CD4+ T-cell ChIP-seq experiments suggest open chromatin across CE4.  

Histone 3 lysine 4 dimethylation (H3K4me2) ChIP-seq data is borrowed from Barski et 

al. (2007) (http://dir.nhlbi.nih.gov/papers/lmi/epigenomes/hgtcell.aspx) CE4 is marked by 

H3K4me2 to a similar extent as the URE elements CE8 and CE9. 
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This chapter represents a manuscript describing the PU.1 autoregulation through lineage 

restricted recruitment and binding of transcription factors to novel cis regulatory 

modules. 
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ABSTRACT 

PU.1, a critical transcription factor in multiple hematopoietic lineages is upregulated 

during specification of granulocyte-macrophage progenitors, and is dynamically 

regulated thereafter. PU.1 is most elevated in monocyte derived lineages, particularly 

macrophages. If PU.1 is under expressed, myeloid hyperproliferation occurs and terminal 

differentiation of macrophages is severely blocked. This suggests maintenance of higher 

PU.1 expression after myeloid specification is critical both to facilitate normal 

development and to prevent neoplasia. Maintenance of PU.1 expression is thought to 

depend in part on PU.1 autoregulation through its promoter and URE, a previously 

described compound conserved region with regulatory functions in multiple blood 

lineages. However, the URE cannot account for all PU.1 regulation in myeloid cells, nor 

is PU.1 the only Ets factor able to act through the URE. We now present evidence for 

another complex of conserved noncoding elements that appear to mediate cell type-

specific PU.1 dependent enhancement of Sfpi1 transcription in myeloid cells.  We show 

that the novel regulatory regions are additional myeloid specific RNApol II nucleation 

centers and that they do not bind a broad number of non-PU.1 Ets factors, in contrast to 

the URE.  We also show that Ikaros binds these new regulatory elements, and the URE, 

and collaborates with PU.1 to regulate Sfpi1 transcription in macrophages. 
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Introduction 

PU.1, encoded by the Sfpi1 gene, is a differentially regulated pleiotropic Ets 

family transcription factor utilized in the lineage decisions of many hematopoietic cell 

types (22, 29). Initially expressed at relatively uniform levels in hematopoietic stem cells 

and early progenitors, PU.1 levels rise in granulocyte macrophage progenitors (GMPs) 

but fall in pro-pre-B-cells (23).   

GMPs enter various lineage specification programs through context dependent 

combinatorial use of PU.1, sometimes accompanied by modulation of PU.1 expression 

level. PU.1 expression continues to rise in GMP derived monocytes, with elevated PU.1 

expression levels needed to overcome MafB to specify a dendritic cell fate (4).  In 

osteoclasts, also derived from monocytic progenitors, PU.1 but not other Ets family 

factors can collaborate to activate the beta three integrin promoter in cooperation with 

NFATc1 (5, 9). In contrast to monocytes, granulocyte lineages such as mast cells and 

basophils have lowered PU.1 expression relative to GMPs (3, 10). Together, these studies 

suggest that dynamic PU.1 expression together with unique PU.1 specific functions not 

shared by other Ets factors are important to monocyte lineages. How PU.1 expression is 

modulated, elevated, or maintained in monocytes is not fully understood. 

PU.1 expression in the hematopoietic compartment is dependent on Runx1 (16, 

24), yet Runx1 does not appear to occupy its target sites within known PU.1 regulatory 

regions in more mature myeloid cells.  This implies that PU.1 expression may rely on 

other factors to drive expression upon lineage specification after transcriptional 

competence is first established in hematopoietic stem cells (HSCs) (16). Many non Runx 

factors have been shown to bind the Sfpi1 promoter and its previously characterized 
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URE, a compound enhancer element located at about -14 kb upstream of the Sfpi1 

transcriptional start site. Some of the factors thought to positively contribute to PU.1 

expression through the promoter and URE include Sp1, C/EBPα, Octamer factors, AP1, 

Elf-1, and Fli-1 (6, 8, 16, 25, 34).   While all of these factors seem to play important roles 

in regulating Sfpi1 transcription, one of the most interesting contributors to Sfpi1 

transcriptional control may be PU.1 itself.   

PU.1 has long been thought to regulate its own expression in myeloid cells as it 

has been shown to occupy target sites within the Sfpi1 promoter and URE (8, 25, 30). 

Additionally, mutation of PU.1 target sites reduces URE enhancer activity (15, 25). 

However, the potential PU.1 autoregulation through these URE sites has not been 

formally verified. These target sites may be bound by other Ets family transcription 

factors, such as Elf-1 or Fli-1, and in PU.1’s absence these factors may be responsible for 

Sfpi1 transcriptional output through the URE (15, 16, 25). Nonetheless, PU.1 is able to 

occupy at least one distal URE target site in myeloid cells that remains unoccupied by 

any Ets family factor in B-cells (16). This suggests the existence of lineage specific 

mechanisms able to control PU.1’s ability to occupy specific target sites and potentially 

autoregulate. Furthermore, such finely controlled myeloid versus lymphoid lineage 

specific recruitment of PU.1 to its own cis regulatory elements likely contributes to 

observed differences in myeloid versus B-cell PU.1 expression levels. Therefore, a 

deeper understanding of how PU.1 is transcriptionally regulated is needed.  

The hypothesis that lineage specific PU.1 autoregulation might involve myeloid 

versus lymphoid lineage context dependent recruitment to the URE is complicated by 

studies showing that the URE region is dispensable for PU.1 expression (28). Mice with 
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the URE deleted (URE∆) might still benefit from autoregulation mediated in part through 

the Sfpi1 promoter, but the promoter cannot drive expression in a chromatin context on 

its own (21). Additionally, while deletion of the URE perturbed normal PU.1 

transcriptional output, proper developmental expression of PU.1 remained largely intact 

(17, 27, 28). Ultimately, the dispensability of the URE arouses some critical regulatory 

questions. Specifically, it remains unclear whether PU.1 is necessary or sufficient for its 

own expression in more mature myeloid cells and it is unknown what other regulatory 

elements may contribute to PU.1 expression and what other factors are relevant to these 

elements. Moreover, it is difficult to explain the biochemical mechanisms limiting PU.1 

autoregulation if dynamic PU.1 expression is controlled from a cis-regulatory region like 

the URE through which other Ets factors may also act. If PU.1 is necessary for its own 

expression after its transcription is first initiated in HSCs, then the reduced but continued 

expression of PU.1 in URE∆ mice predicts unidentified and potentially more restricted 

PU.1 target sites may be within additional Sfpi1 regulatory modules.  

  We recently identified novel Spfi1 noncoding conserved elements located from 

about -12.5 to -7.5 kb upstream of the Sfpi1 transcriptional start site, just downstream of 

the previously characterized -14 kb URE (Zarnegar et al., submitted).  One of the 

conserved elements in this region, CE5, located at about -10.3 kb, was relatively inactive 

in an immature T-lineage cell line in which the URE maintained enhancer function.  In 

contrast, the CE5 module demonstrated robust myeloid enhancer activity in transient 

transfections or when stably integrated into chromatin (Zarnegar et al., submitted).  An 

additional compound element, CE7-CE6, located at about -12.3 kb, may also contribute 

to Sfpi1 transcriptional output. Together, these novel elements may be the sources of 

regulatory control mechanisms affecting dynamic PU.1 expression by acting as additional 
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transcription factor nucleation centers able to confer lineage specific functions that may 

also explain how developmentally regulated PU.1 expression is sufficiently maintained in 

URE∆ animals.  

Here, we present evidence that the myeloid enhancer CE5 and the CE7-CE6 

region (CE7/6 hereafter) are myeloid restricted PU.1 and RNApol II target elements. We 

provide evidence that these regions are restricted in their capacity to bind other Ets family 

members, unlike the URE, which appears to be a nonspecific enhancer able to associate 

with RNApol II in non cell-type-specific ways. We also demonstrate that Ikaros binds to 

the CE5 and CE7/6 regions, and even binds to the URE, in vivo. RNApol II and Ikaros 

occupancy of these PU.1 regulatory regions may be facilitated at least in part by PU.1 

itself, in a context dependent fashion with myeloid and lymphoid cells showing 

differential abilities to recruit PU.1 and Ikaros to specific cis-regulatory modules. 

Reporter assays validated the ability of Ikaros to contribute to transcriptional activation 

through these modules in a myeloid cell line.  Most importantly, we provide evidence that 

PU.1 itself is strictly required for the enhancer activity of a DNA fragment harboring 

CE7, CE6, and CE5. Collectively, our data indicates that PU.1 collaborates with Ikaros in 

a myeloid specific multimodular positive autoregulatory loop that has the potential to 

contribute to the establishment and/or maintenance of high PU.1 expression in the 

myeloid compartment.    
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Materials and methods 

Cell culture 

Adh.2C2 and NFS-25 cells were grown in RPMI media supplemented with 10% fetal 

bovine serum, penicillin/streptomycin/glutamine, non essential amino acids, sodium 

pyruvate, and 2-ME.  Raw264.7 cells were grown in DMEM media with 10% fetal 

bovine serum and penicillin/streptomycin/glutamine.   

 

Cloning of reporters and expression constructs: 

 PU.1 DNA was obtained by PCR using the BAC RP23-20F9, obtained through 

BACPAC resources of CHORI (bacpac.chori.org).  Reporter constructs were made by 

cloning PU.1 regulatory sequences into Promega’s pGL3-basic vector. Detailed maps of 

reporters and their construction are available upon request.  The Ikaros dominant 

negative, Plastic, was synthesized by GenScript based on published sequence (26) and 

cloned into pEF1. 

 

Transfections and luciferase assays 

In some experiments, cells were transiently transfected with FuGENE 6 reagent at a 

FuGENE:DNA ratio of 3:1.  Cells were harvested ~30-48 hours post FuGENE 

transfection.   Cells were cotransfected with pRL-CMV and lysates were analyzed using 

Promega’s Dual Luciferase system.   For stable transfections, Sfpi1 reporters were 
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linearized with Not I prior to transfection.  The renilla luciferase was cloned into 

Invitrogen’s pTracer EF/Bsd A and the construct was linearized with Fsp I for 

cotransfection with Sfpi1 reporters.  Cells were selected with 5-15 µg/ml Blasticidin for 

their duration in culture, beginning one day post transfection.  Cotransfection 

experiments were performed by Nucleofaction (Lonza/Amaxa) using Solution-V kits and 

program D-32 for RAW264.7 cells or program D-19 for NFS-25 cells. The following 

morpholino antisense oligos were ordered from Gene Tools, Inc., anti-PU.1 (E2) 

GAGGACCAGGTACTCACCGCTATG; anti-PU.1 (E1) 

GTAGTGAAGCCCCAGTACTCACAGG; Standard Control oligo 

CCTCTTACCTCAGTTACAATTTATA. 

 

Transcription factor binding site predictions 

TRANSFAC analysis was used to predict potential transcription factor binding sites.  

Biobase’s (https://portal.biobase-international.com/cgi-bin/portal/login.cgi) TRANSFAC 

suite’s MATCH tool was used for the analysis.  Matrix similarities >0.9 were shown in 

black and selected predictions between 0.9 and 0.8 were shown in gray. 

 

Gel Shift Assays 

Nuclear extracts were prepared by hypotonic swelling in buffer A, followed by NP40 

lysis, nuclei pelleting, and extraction with buffer C containing protease inhibitors (Roche 

#11873580001). Buffer A: 10 mM HEPES pH 7.9, 60 mM KCl, 1 mM DTT, 0.1 mM 
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EDTA, 0.1 mM EGTA, followed by addition of NP40 to 0.625%. Buffer C: 20 mM 

HEPES pH 7.9, 0.4 M NaCl, 1mM EDTA, 1mM EGTA, 1 mM DTT.  Protein was 

quantified by the Bradford method. Gel shifts were performed with ~6 µg extract in 30 µl 

volume containing 1.5 µg poly di-dc and final concentrations of 15 mM HEPES pH 7.9, 

80 mM NaCl, 15 mM KCl, 0.02 mM EDTA, 1 mM DTT, and 3% glycerol. Five 

picomoles of probes were end labeled with T4 polynucleotide kinase followed by 

purification with G-50 columns (Roche #100609).  Complexes were allowed to form on 

ice for 10 minutes with competitors prior to addition of radiolabeled probes.  After probe 

addition samples were incubated for an additional 30 minutes on ice. Complexes were 

resolved by 6% PAGE, run at constant 300 volts for ~3 hours. All gels were run at 4oC 

with 0.5x TBE gels and 0.25x TBE running buffer. Anti-PU.1 antibody was from Santa 

Cruz (sc-352). Anti-Ikaros antibodies, sc-13039, sc-9861, and sc-9859 are from Santa 

Cruz.  Anti-Ikaros antibody #39291 is from Active Motif. 

 

Retroviral Infections:  

Viral sups were prepared by transfection of pMX-PU.1-IRES-hCD8 plasmid into 

Phoenix packaging cells with FUGENE 6 reagent.  Virus containing media was collected 

at 48-72 hours post transfection.  Adh.2C2 cells were subsequently infected with PU.1 

virions using the TAKARA RetroNectin method.   
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Western blots and RNA processing: 

Nuclear Extracts were mixed with 2x Laemmli sample buffer, boiled, and then run on 8% 

SDS-PAGE.  Gels were transferred to Immobilon (Millipore) by semi-dry transfer.  Blots 

were blocked with 5% milk in TBS-T then incubated overnight with primary antibody.  

After washing, blots were incubated with secondary antibody, washed, then incubated 

with substrate (SuperSignal, Pierce #1859675 and #1859674) and exposed to film.  Ikaros 

and Sp1 antibodies were obtained from Santa Cruz (sc-13039 and sc-59). Western 

showing PU.1 knockdown performed using anti-PU.1 antibody (sc-5948) and anti-Ets-1 

(sc-350) as a control.  32Dcl5 cells were grown in RMPI media supplemented with IL-3. 

Total RNA from cell lines were isolated using Trizol Reagent and manufacturer’s 

protocol.  For PU.1 RNA analysis, one microgram total RNA was used to synthesize 

cDNA using the Superscript III system (#18080-400).  cDNA was diluted and analyzed 

by QPCR, in triplicate.  Genes of interest were normalized to GAPDH.       

 

ChIP assays: 

ChIP assays were performed according to Upstate’s protocol.  2-3 x 107 cells were fixed 

with 1% formaldehyde for 15-30 minutes.  Glycine was used to stop fixation, followed by 

washing.  Cells were then lysed in 0.8 mls SDS lysis buffer with protease inhibitors.  

Lysate was sonicated to produce an average fragment size ~ 250 bp. 130 µl lysate was 

diluted and used for each ChIP with 9 µg anitbody.  Crosslinking was reversed by 

overnight incubation at 680C.  Samples were difested with Proteinase K for 30 minutes at 

550C.  DNA was purified by ethanol precipitation and resuspended in 80-100 µl water.  
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Analysis of recovered DNA was performed by SYBR green based QPCR with an AB 

7900HT.  1 µl of purified DNA was used per 10 µl PCR reaction, in triplicate, in 384 

well plates.  Primer pairs used for analysis of ChIP enriched DNA by QPCR are: CE1-F 

AGCTCAGCTGGATGTTACAGG and CE1-R AGATGGTCACACATCCCAAAG; -

2kb-F TTCTCACATCCCAGACCATTC and -2kb-R CGCCAGCAGTTGTAGTTCTTC; 

-2.8kb-F GCAGCTCACTGCTCCAAGTT and -2.8kb-R 

GAGACGGGGAGTGGGTATGT; CE3-F TGGAGCTCTGAGGGGCCTAA and CE3-R 

GGCTGGGAAAGCTGACCATAA; -8.4kb-F AGAGGAGCTGACATTGGCATAC and 

-8.4kb-R TGAGCCTCTGAAGTGGCTTTAT; CE4B-F 

AGCAAAGCCTGTGGGAGATT and CE4B-R ATACCTTGGAGGCCTGTGCT; 

CE4A-F GGAAGCAGCTCTTGTCCTTGG and CE4A-R 

TCACCTCCTGGCCACATCACT; CE5-F GCTCTGAAAAGCACCGTTTCC and 

CE5B-R CTGTGTTGGACCTGCAAGGAG T; -11.8kb-F 

CTCTGCCCGCTCTTAACCTT and -11.8kb-R GATCTGACACGGGGATGAAA; 

CE76-F CACACGGAGTCAGAGCGGGCAG and CE76-R 

AGGAAAGAGGAAGCCATGGGGAGA; CE8-F AGGCAGAGCACACATGCTTC 

and CE8-R CTTCTGGGCAGGGTCAGAGT; CE9-F 

CAGGAGAGGCAGGAGGAAGGA and CE9-R 

AGAGAGCAGAGCACTTCATGGCT; -17.8kb-F CTGGACAAGTGGAAGGTGACA 

and -17.8kb-R TCAGAGGGCTTCAAAGTGGA; CD4-F 

TGACGGAAGGGAGGATGTAG and CD4-R AGTGGGTGGGAGCTCTGTAA; 

MEF2C-F AGCACACTCAGCCTGCTCTAC and MEF2C-R 

GGTGTAAAGGTGCTTCCTTCC; IL-7Rα-F GTCTGAGCAAAAGGATTGCTG and 

IL-7Rα-R GGAGCTTCAGGGAATACCAAG. Antibodies from Santa Cruz that were 
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used for ChIPs include: GABPα (sc-22810), Ets-1 (sc-22802 and sc-111), Elf-1 (sc-631). 

Anti-Ikaros ChIPs were performed with an equal mix of sc-13039 and Active Motif 

#39291. RNApol II ChIPs were performed using ABCAM (ab5408). 

 

Statistical Analysis of ChIP Data: 

One way ANOVA analysis was used to analyze ChIP enrichment data.  ANOVA was 

performed with all regions to determine if a significant difference in enrichment was 

present between regions being analyzed.  If ANOVA generated a p-value < 0.01, data for 

“regions of interest” were removed from the initial ANOVA test group and ANOVA was 

repeated until a group of regions generated a p > 0.1.  The regions remaining in the test 

group that lacked a statistically significant enrichment difference were then used a control 

group against which to compare the removed “regions of interest” individually.  The 

resulting p-values were adjusted using the Bonferroni correction method and regions with 

p < 0.0001 were marked by asterisks in ChIP data figures. 
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Results 

A~3 kb DNA fragment, CE5-CE3, is a myeloid specific enhancer lacking B-cell 

regulatory function in a chromatin context 

Once PU.1 expression is initiated in the hematopoietic compartment, its 

expression diverges as lymphoid-myeloid multipotent progenitors differentiate to become 

myeloid cells or lymphoid cells (1, 23). Changes in PU.1 expression levels continue as 

myeloid and B lineage cells mature, with relative PU.1 expression in pro-pre-B cells 

several fold reduced versus myeloid cells. In contrast, PU.1 expression in developing T-

cells shuts off at the commitment stage (23). We recently described characterization of a 

~3 kb DNA fragment, CE5-CE3, which was found to possess cell-type-specific 

regulatory functions.  The CE5-CE3 fragment was a potent silencer in immature T-cells 

with silencing activity precisely mapping to the CE4 region (Fig. 1A)(Zarnegar et al., 

submitted). We also demonstrated that CE5, on its own or as part of the CE5-CE3 

fragment, was a myeloid enhancer able to augment reporter expression in conjunction 

with the PU.1 promoter (Zarnegar et al., submitted). Since the CE5-CE3 fragment could 

account for myeloid versus T-lineage divergence of PU.1 expression, we sought to 

expand our understanding of the CE5-CE3 fragment’s enhancer specificity by testing its 

function in a PU.1 expressing lymphoid lineage, the pre-B cell line NFS-25. 

  Several luciferase reporters were constructed as depicted in Fig. 1A, with 

fragments of the Sfpi1 upstream region joined to a ~2.2 kb fragment containing the Sfpi1 

basal promoter element, CE1. These reporters were transiently transfected into NFS-25 

pre-B-cells and RAW264.7 monocyte/macrophage cells. As shown in Fig. 1B, the L5-3 

reporter generated similar luciferase expression compared to L1, the promoter only 
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reporter, but L5-3 produced strong enhanced reporter expression in RAW264.7 cells.  

This result indicated that the CE5-CE3 fragment contains myeloid restricted enhancer 

activity. In contrast to the CE5-3 fragment’s cell type-specific regulatory function, the 

conserved URE elements CE9 and CE8 within the L98 reporter could act to enhance 

promoter driven luciferase expression in both the pre-B and myeloid cell lines, as 

expected from previous reports (Fig. 1B)(27).   

To further confirm the myeloid specific enhancer activity of CE5-CE3, we tested 

its function when integrated into chromatin using stable cell lines. Linearized reporters 

containing the URE and the novel region CE7/6 without the CE5-CE3 fragment (L9-6) or 

with it (L9-3), were stably transfected into NFS-25 and RAW264.7 cells. A linearized 

control luciferase plasmid harboring a blasticidin resistance cassette was cotransfected 

with the Sfpi1 reporters.  L9-6 generated equivalently strong luciferase expression in both 

cell lines, but CE5-CE3 only enhanced reporter activity in the RAW264.7 cells (Fig. 1C). 

These results confirmed that the CE5-CE3 fragment only contains enhancer function in 

myeloid cells. 

 

The myeloid specific CE5 enhancer is an additional RNA polymerase II nucleation 

site  

Recent work has shown that the URE may function as a nucleation center 

directing Sfpi1 transcription through the assembly of the RNA polymerase II containing 

pre initiation complex, which could produce local enhancer initiated sense and anti-sense 

noncoding RNAs (15).  Those RNA transcripts may contribute to regulation of PU.1 

expression levels (13). Since deletion of the URE does not block all PU.1 expression, and 
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the CE5-CE3 fragment could enhance reporter expression independently of the URE, we 

considered the possibility that the myeloid enhancer activity of CE5 might involve cell-

type-specific recruitment of RNA pol II.  

We performed RNA pol II ChIP assays and found cell-type-specific occupancy 

patterns across the Sfpi1 upstream region. RNA pol II was found associated with the URE 

element CE8 in all three cell types examined, including immature T-cells that have 

silenced PU.1 expression (Fig. 2A-C).  While the URE was associated with RNApol in 

PU.1 expressing and nonexpressing cell lines, RNApol II was detected at the proximal 

promoter element CE1 only in the PU.1 expressing myeloid (Fig. 2A) and pre-B cells 

(Fig. 2B). RNA pol II was also found associated with the URE element CE9 in pre-B and 

myeloid cells (Fig. 2A, 2B).  Most notably, and in stark contrast to the proximal URE 

enhancer, RNApol II binding was detected at CE5, and also at CE7/6, but only in the 

myeloid cells (Fig. 2A). These results support a role for CE5 in myeloid specific PU.1 

regulation and also suggest CE7/6 may contribute to myeloid specific Sfpi1 

transcriptional control. 

 

PU.1 cis-elements CE5 and CE7/6 contain numerous conserved target sites 

predicted to bind Ets and Ikaros family factors 

 After verifying the myeloid enhancer specificity of the CE5-CE3 fragment and 

detecting RNA polymerase II binding to CE5, we sought to identify additional factors 

that could bind to CE5 and contribute to its regulatory function.  Since we also detected 

myeloid restricted RNA polymerase II association with the CE7/6 region, we included 

that region in our analysis. We conducted multigenome alignments of the CE5 and CE7/6 

142



regions and then subjected sequences spanning the conserved peaks to TRANSFAC 

analysis to identify potential transcription factor binding sites (Fig. 3). Predicted sites 

with average matrix similarities >0.9 and present in all six species used in the alignments 

are shown.  Some conserved sites with matrix similarities less than 0.9 are also shown (in 

gray) and only hematopoietic expressed transcription factor target sites are presented. 

The CE5 and CE7/6 regions have densely packed and overlapping predicted 

transcription factor target sites. CE7/6 and CE5 contain several conserved core binding 

factor sites which are target sequences for the Runx family of transcription factors that 

has been associated with PU.1 regulation previously (16, 19, 24). The CE5 enhancer also 

has sites predicted to bind C/EBP family members, AP1, and Sp1, factors previously 

shown to regulate Sfpi1 transcription through other elements (6, 25, 34).  Intriguingly, the 

most frequently predicted sites were target sequences belonging to members of the Ets 

and Ikaros family of transcription factors.  Most of these sites share the core nucleotides 

GGA(A) and are overlapping Ikaros/Ets sites.  However, some sites were predicted to be 

either PU.1/Ets or Ikaros sites, but not both (Fig. 3, boxes). 

 

The Sfpi1 regions CE5 and CE7/6 show myeloid restricted PU.1 recruitment 

Since PU.1 is thought to autoregulate and PU.1also has been shown to contribute 

to production of URE derived RNA transcripts (15), we hypothesized that PU.1 may also 

bind to PU.1 target sites in CE5 and CE7/6 to contribute to RNA polymerase II 

recruitment and PU.1 autoregulation. Therefore, we sought to detect PU.1 occupancy of 

these modules in various hematopoietic lineages by ChIP analysis using a high PU.1 

143



expressing myeloid cell line, RAW264.7 macrophages; a low PU.1 expressing pre-B-cell 

line, NFS-25; and a DN3-like pro-T-cell line that lacks PU.1 expression, Adh.2C2.   

PU.1 ChIP assays revealed cell-type-specific PU.1 occupancy patterns across the 

Sfpi1 upstream region.  Previous reports suggested PU.1 could bind to its own promoter 

and autoregulate (7).  Our ChIP analysis did detect PU.1 at the promoter region (Fig. 4A, 

CE1), but that binding was relatively weak.  In contrast, very strong PU.1 binding was 

detected at the URE elements CE9 and CE8 in the myeloid cells (Fig. 4A).  We also 

detected PU.1 association with two known PU.1 target genes, Mef2c and IL7Rα (Fig. 4A, 

orange and purple bars) (11, 31). Significantly, very strong PU.1 binding was also 

detected at CE5 and CE7/6 in the myeloid cells (Fig.4A).  While PU.1 associated 

strongly with CE8, Mef2c, and IL7Rα, no other Sfpi1 element was strongly enriched in 

the pre-B-cells (Fig. 4B).  As expected, no region was enriched by anti-PU.1 ChIP with 

the PU.1 negative immature T-cell line, Adh.2C2 (Fig. 4C).  Collectively, these results 

indicate that the myeloid enhancer CE5 is a cell-type-restricted PU.1 target element. 

 

Forced expression of PU.1 facilitates RNApol II recruitment to Sfpi1 regulatory 

elements in immature T-cells, but PU.1 is insufficient to initiate a positive 

autoregulatory loop 

The immature T-cell line Adh.2C2 does not express PU.1, but when retrovirally 

infected with PU.1, some Adh.2C2 cells gain myeloid characteristics (12).  We therefore 

asked where ectopic PU.1 could bind in Adh.2C2 cells and whether PU.1 might alter 

RNApol II recruitment to the Sfpi1 locus in these cells. To investigate this question, we 
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infected Adh.2C2 cells and performed ChIP assays to examine the capacity of PU.1 and 

RNApol II to bind regulatory modules in these immature T-cells.  

Cells were infected with PU.1 virions that also generate coexpression of human 

CD8 to mark infected cells. A representative CD8 staining of infected cells at the time of 

cell harvesting is shown (Fig. 5A).  After infection, cells were expanded for 48-72 hours 

to provide enough cells for ChIP experiments.  We first examined PU.1 mRNA levels in 

the infected Adh.2C2 cells and compared them to uninfected Adh.2C2, RAW264.7, and 

NFS-25 cells. Figure 5B shows that infected cells expressed very high levels of PU.1, 

even more than RAW264.7 macrophages.  We next examined where ectopic PU.1 could 

bind in infected Adh.2C2 cells. Despite having more PU.1 than myeloid cells, PU.1 

binding was restricted in Adh.2C2 cells.  As indicated in Figure 5C, anti-PU.1 ChIP 

assays with infected cells allowed for strong enrichment of CE9, CE8, Mef2c, and IL7Rα.  

Significantly, PU.1 could not bind CE5 in these cells.  Note that the cells being used in 

these ChIP assays are not all PU.1+ (hCD8+ in Fig. 5A) so the enrichments reported in 

Fig. 5C and 5D are under representations of actual binding relative to the total non 

infected cells.  We next looked to see if PU.1’s occupancy of CE9 allowed for detection 

of RNApol II as well. As shown in Figure 5D, RNApol II associated with CE9 only in 

the presence of PU.1 (green bars for PU.1 infected cells versus black bars for normal 

immature T-cells). The relative enrichment of other regions by RNApol II ChIP also 

correlated with regions with detectable PU.1 binding. Together, these results show that 

PU.1 binding and its facilitation of RNA pol II recruitment is cell-type-restricted to a 

subset of target regions.  
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ChiP assays with PU.1 infected immature T-cells implied concomitant binding of 

PU.1, and RNA pol II at CE9.  PU.1 and RNApol II could also bind CE8, and to a lesser 

extent, could also be detected at CE4. As these cells now had three regulatory modules 

occupied by factors with potential positive transcriptional regulatory effects, and PU.1 is 

thought to be autoregulatory, we asked if ectopic PU.1 expression could affect 

endogenous Sfpi1 transcription.  We analyzed endogenous PU.1 expression (Fig. 5E), but 

found infected Adh.2C2 cells were still lacking endogenous PU.1 mRNA.  This result 

suggests that either PU.1 alone is incapable of overcoming a dominant silencing 

mechanism to establish a multimodule autoregulatory loop in these immature T-cells, or 

that PU.1 autoregulation through CE7-CE5 is also needed. 

 

Elf-1, Ets-1, and GABPα can bind a limited subset of PU.1target sites but are 

excluded from occupying the CE5 and CE7/6 modules  

At least two possible explanations for the absence of PU.1 binding to non CE8 

Sfpi1 target sites in B-cells exist. First, some target sites may be bound by other factors in 

B cells, out competing PU.1.  Alternatively, targeting of PU.1 to non CE8 modules may 

be combinatorial and require additional binding to sites flanking PU.1 interacting regions. 

Both possibilities were explored through additional ChIP analyses.  

As the immature T-cells lack PU.1 (Fig. 5B), we performed ChIP assays with a 

broad range of hematopoietic expressed Ets family members in an attempt to detect non 

PU.1 occupancy of either CE5 or CE7/6 in lymphoid cells. ChIP assays with numerous 

Ets family members (Ets-2, NERF, SAP1A, NET, TEL, Erg, and Elk-1) failed to enrich 

Sfpi1 upstream regions in any cell line (data not shown). However, three Ets family 
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members known to be expressed in all hematopoietic lineages examined, Elf-1, Ets-1, 

and GABPα (2), demonstrated restricted binding to PU.1 target sites.  

Elf-1 was previously shown to be able to bind to CE8 in addition to PU.1 (25). 

Elf-1 ChIP assays were performed and confirmed that Elf-1 could bind the proximal URE 

enhancer element, CE8, and at least one of the control PU.1 targets (Mef2c or IL7Rα) in 

each cell line examined (Fig. 6A-C). Importantly, Elf-1 could not significantly bind the 

myeloid enhancer CE5, nor could Elf-1 be detected at CE7/6 in any of these cell lines.  

We next examined Ets-1 binding across the Sfpi1 upstream region. Like Elf-1, Ets-1 was 

found to have lineage restricted access to PU.1 target elements. Ets-1 did not strongly 

bind any Sfpi1 upstream region in myeloid cells (Fig. 6D).  In contrast, Ets-1 could 

occupy multiple sites in pre-B-cells, including the CE10 region, a region PU.1 fails to 

bind (Fig. 6E). Additionally, CE1 could be bound by Ets-1 in the pre-B-cells, although 

Ets-1 failed to bind CE1 in myeloid cells. Notably, Ets-1 could not bind any region in the 

immature T-cells, nor could Ets-1 associate with CE5 or CE7/6 in the pre-B-cells (Fig. 

6E, 6F). Finally, we investigated GABPα binding to Sfpi1 elements as GABPα is an Ets 

factor argued to bind the same sites through which PU.1 regulates some target genes (11). 

We performed GABPα ChIP assays and found that GABPα could associate with CE8 in 

myeloid and lymphoid cells, and could also bind to Mef2c in the PU.1 expressing cell 

lines (Fig. 6G-I).  Like Ets-1 and Elf-1, no GABPα binding to PU.1 target sites in CE5 

and CE7/6 could be detected.    

Together, the Elf-1, Ets1, and GABPα ChIP results indicate that the majority of 

PU.1 target sites within Sfpi1 regulatory modules, especially CE5 and CE7/6, are not 

promiscuous Ets family sites and preferential PU.1 occupancy of these sites may be 
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dictated by yet unknown biochemical mechanisms in myeloid cells. Since we performed 

a nearly exhaustive search for Ets factor binding to PU.1 target regions in myeloid and 

lymphoid cells, but were unable to detect any occupancy of CE7/6 or CE5, except by 

PU.1, we next turned to a non Ets factor expressed throughout the hematopoietic 

compartment. 

 

Ikaros binds CE7/6 and CE5 in myeloid but not lymphoid cells and Ikaros 

recruitment is not dose dependent 

TRANSFAC analysis predicted numerous Ikaros sites within the CE5 and CE7/6 

regions. Ikaros is a bifunctional transcription factor able to activate or repress 

transcription and Ikaros is known to compete with the Ets family factor Elf-1 for the 

same sites in some contexts (32). While most of the predicted Ikaros sites overlap 

potential Ets sites that are not specifically predicted to bind PU.1, some flank Ets family 

sites explicitly predicted to bind PU.1 (Fig. 3, boxes). We considered the possibility that 

Ikaros may be binding these regions in myeloid cells in collaboration with PU.1.  

Alternatively, Ikaros could be bound to these modules in lymphoid cells, perhaps 

suppressing enhancer function by preventing Ets factor binding. To address these 

possibilities, we investigated the ability of Ikaros to associate with the Sfpi1 upstream 

regions. 

ChIP analysis revealed lineage specific patterns of Ikaros binding to Sfpi1 cis-

elements.  Consistent with the PU.1 and RNApol II ChIP results, we found CE5 and 

CE7/6 were also myeloid restricted in their ability to bind Ikaros (Fig. 7A).  In contrast to 

myeloid specific Ikaros occupancy at CE5 and CE7/6, the URE elements CE9 and CE8 
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were both comparably associated with Ikaros in myeloid and pre-B-cells (Fig. 7A, 7B).  

Additionally, Ikaros binding to CE10 was detected and like RNApol II, association with 

CE10 was restricted to the pre-B-cells (Fig. 7B and Fig. 2B).  In the immature T-cells, 

Ikaros could also associate with the proximal URE element CE8 (Fig. 7A) but was not 

detected at the distal URE enhancer CE9. Given that Ikaros was relatively weakly 

associated with some regions in immature T-cells compared to the PU.1 expressing 

myeloid and B-cells, we considered the possibility that Adh.2C2 cells might be lacking 

sufficient Ikaros protein expression. We therefore examined Ikaros protein levels in 

nuclear extracts from myeloid cells and immature T-cells. Adh.2C2 cells had higher 

levels of Ikaros protein, implying that the absence of Ikaros binding to Sfpi1 regulatory 

elements is not dosage restricted in these cells (Fig. 7D).  Since ectopic PU.1 expression 

was able to alter RNApol II recruitment to Sfpi1 regions, we considered the possibility 

that some Ikaros binding to Sfpi1 regions might also depend on the presence of PU.1.  We 

therefore examined Ikaros binding in PU.1 infected Adh.2C2 cells. Indeed, Ikaros 

binding to CE9 and also to IL7Rα, like RNApol II, was strongly increased in the presence 

of PU.1 protein (Fig. 7E). Collectively, these results demonstrate that CE5 and CE7/6 are 

myeloid restricted Ikaros target elements and suggest that PU.1 binding may be 

facilitating Ikaros occupancy, in addition to RNApol II, in highly context dependent 

ways.  
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The CE7/6 and CE5 regions can nucleate formation of PU.1 and Ikaros protein-

DNA   complexes in vitro 

 PU.1 and Ikaros ChIP analysis showed all-or-none occupancy of the CE5 and 

CE7/6 regions in myeloid cells.  To formally demonstrate these factors can concomitantly 

occupy these modules, we designed several DNA probes for use in gel shift assays (Fig. 

3, red bars).  Probes CE5-P2 and CE76-P4 were designed to span DNA sequences with 

specifically predicted PU.1 target sites adjacent to additional Ikaros sites (Fig. 3, boxes).  

These probes were then used in gel shift assays.  Since the ChIP analysis indicated cell-

type-specific occupancy of CE5 and CE7/6 in vivo, we examined the ability of Adh.2C2 

(T), RAW264.7 (M), and NFS-25 (B) cells to nucleate protein complexes on probes CE5-

P2 and CE76-P4.  RAW264.7 extract nucleated complexes on both probes, labeled M1 

and M2 (Fig. 8A).  In contrast, extracts from the T- and B-cells produced distinct banding 

patterns on either probe.  Notably, complex M1 was not formed by the T or B extracts.  

The nature of the myeloid M1 and M2 protein complexes was examined more 

closely with probe CE76-P4.  As shown in Fig. 8B, competition with cold probe could 

eliminate bands M1 and M2 formed by probe CE76-P4 (Fig. 8B, lane 1 vs 2), 

demonstrating probe/complex specificity.  Significantly, probe CE5-P2 could cross 

compete with the CE76-P4 probe (Fig. 8B, lane 1 vs 7) to eliminate band M1 and M2 

formation, confirming that the CE5 and CE7/6 M1 and M2 bands represent redundant 

myeloid specific protein complexes formed by two distinct Sfpi1 regulatory modules.  

We also subjected the M1 and M2 complexes to antibody treatments to test for the 

presence of PU.1 and Ikaros protein. Significantly, anti-PU.1 antibody super shifted the 

myeloid specific M1 complex (Fig. 8B, lane 13).  Complex M2 was also supershifted by 
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anti-PU.1 antibody (Fig. 8B, lane 13). One of the anti-Ikaros antibodies appeared to 

crosslink Ikaros with probe CE76-P4 to form a novel band (Fig. 8B, lane 14, red arrow).  

More significantly, an anti-Ikaros antibody inhibited the formation of complex M2, but 

appeared not to affect M1 (Fig.8B, lane 17). This Ikaros antibody also inhibited complex 

M1 formed by the CE5-P2 probe (data not shown). Also noteworthy, none of the other 

CE5 or CE7/6 probes could competitively inhibit complex M1 or M2 at a high 250 fold 

excess relative to labeled probe even though most have predicted Ikaros/Ets sites (see 

Fig. 3).  In contrast to other CE5 and CE7/6 probes, a competitor probe from CE4A, a 

region ChIP assays showed could weakly associate with PU.1 and Ikaros in PU.1 infected 

Adh.2C2 cells, could competitively eliminate bands M1 and M2 (Fig. 8B, lane 11), but 

not when the Ets site in CE4Am1 is mutated (Fig. 8B, lane 12). Collectively, these gel 

shift analyses critically show that the M2 complex is formed at least in part by PU.1 and 

Ikaros, thus demonstrating that Ikaros and PU.1 are not simply competing for the same 

sites but can concomitantly occupy regions within both CE5 and CE7/6 regulatory 

modules.  

 

PU.1 is required for CE5 enhancer activity 

The fundamental question of whether the myeloid specific PU.1 recruitment to 

CE5 and CE7/6 can actually contribute to myeloid enhancer activity remained to be 

addressed.  As the in vivo and in vitro PU.1binding ability of CE5 and CE7/6 appeared to 

be redundant, we constructed an additional reporter, L75, with a ~2.5 kb DNA fragment 

from CE7-CE5 joined to the PU.1 promoter to test these modules’ combined dependence 

on PU.1 regulatory function in myeloid cells.  To analyze PU.1’s regulatory role, we 
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employed an antisense morpholino knock down strategy to perturb PU.1 regulatory 

function in RAW264.7 cells.  We first tested two morpholinos designed to target different 

PU.1 exon/intron boundaries to see if they could knockdown PU.1 protein levels.  As 

shown in Figure 9A, either morpholino targeting PU.1 transcripts could eliminate 

detectable PU.1 protein expression as anylyzed by Western blot.  We then cotransfected 

Sfpi1 reporters into RAW246.7 cells with anti-PU.1 E2 or control morpholionos.  

Transfection of L98 with PU.1 E2 morpholino did affect reporter activity, lowering URE 

driven luciferase expression ~40% (Fig. 8B).  However, as this URE enhancer activity 

remained moderately strong in these cells, other factors appear to independently drive 

expression through the URE elements CE9 and CE8. In stark contrast, knockdown of 

PU.1 completely destroyed the enhancer function of the CE7-CE5 fragment (Fig. 8B).  

These results demonstrate that the URE is PU.1 responsive but independent, while the 

CE7-CE5 fragment is strictly dependent on PU.1 for enhancer activity. 

 

Ikaros contributes to the enhancer function of both the URE and CE7-CE5 regions 

in myeloid cells 

The potential regulatory contribution of Ikaros was examined last.  We 

cotransfected L1, L98, and L75 reporters into myeloid cells with empty pEF plasmid, 

pEF-Runx1, or pEF-Plastic.  Plastic is a version of Ikaros harboring a point mutation that 

inhibits DNA binding while maintaining the ability to heterodimerize with wild type 

Ikaros family members (26). As shown in Figure 9B, cotransfection with the dominant 

negative Ikaros version Plastic strongly reduced the activity of the L98 and L75 reporters, 

demonstrating Ikaros is a functionally relevant positive regulator of Sfpi1 in 
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macrophages.  In contrast to the myeloid cells, cotransfection of L98 with Plastic in the 

pre-B-cells did not inhibit reporter activity.  Thus, Ikaros’ positive regulatory 

contribution through the URE, and not just binding to the myeloid enhancer CE5 is cell-

type-specific.    

 

DISCUSSION 

We have characterized a new myeloid restricted Sfpi1 enhancer element that 

provides a preferential PU.1 nucleation center able to recruit RNApol II and mediate cell-

type-specific PU.1 autoregulation. Discovery of another Sfpi1 enhancer element was 

required to explain how dynamic PU.1 expression could be produced because the well-

established Sfpi1 URE elements CE9 and CE8 confer similar levels of reporter expression 

in high PU.1 expressing macrophages and low PU.1 expressing B-cells.  Until now, 

dynamic control of PU.1 dosage has been argued to be mediated through the URE.  

Although we have identified some of the factors that bind to CE5 and CE7/6, including 

RNApol II, PU.1, and Ikaros, these factors also bind the URE, but their occupancy of the 

URE is not all-or-none dependent on PU.1.  In contrast, the CE7-CE5 region appears to 

have a more restricted combinatorial all-or-none occupancy that depends on preferential 

use of PU.1, and not other Ets family members.  Thus, the Sfpi1 CE5 enhancer module 

appears to have evolved to depend specifically on cell-type-specific context dependent 

PU.1 recruitment to provide autoregulatory control of PU.1 dosage even where the PU.1 

binding and autoregulatory contributions at the URE may be subject to competition with 

other Ets family members.  
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Formally, it is possible that the observed myeloid restricted PU.1 occupancy of 

CE5 is due to limited chromatin accessibility or is itself a consequence of PU.1 dosage.  

Evidence against these interpretations comes from three sources.  First, it has been shown 

by others that bone marrow derived lympoblasts are marked by H3K4me1 and H3K4me2 

in ChIP-seq studies from Dr. BE Bernstein’s lab and available through ENCODE (Fig. 

S1).  Second, when we examined the PU.1 expression levels in our cell lines by RNA 

analysis we found that the NFS-25 pre-B-cells had ~8 fold less PU.1 mRNA compared to 

the RAW264.7 macrophages, as expected.  Despite lower PU.1 expression in pre-B-cells, 

two known PU.1 target genes, IL7Rα and Mef2c (11, 31) were strongly enriched to a 

similar extent as in the myeloid cells. Lastly, forced high level expression of PU.1 in 

immature T-cells did not generate detectable PU.1 binding to CE5.  These results imply 

that the relative absence of PU.1 binding to CE7-CE5 in pre-B-cells is not the result of 

inadequate PU.1 dosage or chromatin accessibility and instead indicates that additional 

factors influence PU.1 and Ikaros recruitment.   

Our results showing all-or-none cell-type-specific PU.1 and Ikaros binding to 

CE5 also distinguishes this regulatory module from other PU.1 and Ikaros target elements 

present in genes such as Mef2c and IL7Rα.   These PU.1 regulated modules were equally 

bound by PU.1 in pre-B-cells and myeloid cells, but only pre-B-cells had Ikaros 

associated with the IL7Rα promoter. This is an intriguing result for two reasons.  First, 

IL7Rα is a known PU.1 target gene but is not expressed in myeloid cells. We analyzed 

IL7Rα mRNA levels in our cell lines and verified that the pre-B-cells do express IL7Rα 

while RAW264.7 macrophages do not (data not shown).  Thus, PU.1 is not sufficient for 

regulating IL7Rα transcription. Secondly, the absence of Ikaros binding to IL7Rα in 
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myeloid cells suggests that an additional factor regulates its recruitment to the IL7Rα 

promoter independently of PU.1 occupancy.  As ectopic PU.1 expression was sufficient 

to recruit Ikaros to the distal URE enhancer, CE9, in immature T-cells, these results 

illustrate that cis-regulatory elements have evolved multiple combinatory mechanisms to 

discriminate context dependent use of PU.1 for lineage restricted functions. In contrast to 

IL7Rα, Mef2c is reportedly expressed by both myeloid and B-cells (31) and was occupied 

by Ikaros in both RAW264.7 and NFS-25 cells. Taken together with the IL7Rα results, 

this suggests that PU.1 is not the limiting transcriptional input controlling IL7Rα 

expression. In fact, Ikaros expression has been correlated with IL7Rα regulation 

previously (35). Our results are therefore consistent with other reports and suggest that 

Ikaros may be required for IL7Rα expression, with PU.1 and Ikaros acting in parallel 

with other factors to positively control IL7Rα transcription in a B-cell specific fashion.  

Our functional results in transient transfect experiments showing that Ikaros can 

collaborate with PU.1 in cell-type-specific contexts may have important implications.  

We showed that Ikaros contributes to URE enhancer activity in myeloid cells, but while 

Ikaros also was found to bind the URE in pre-B-cells, it did not appear to contribute to 

URE regulatory function.  This result indicates that Ikaros’ regulatory contribution and 

not just binding is dictated by mechanisms yet to be identified.  Interestingly, Ikaros has 

been suggested as a suppressor of PU.1 expression in multipotent progenitors that have 

not yet been specified to become lymphoid or myeloid lineages (30).  Additionally, it has 

been recently shown that the Ikaros family member Eos can directly interact with PU.1 

and MITF, which leads to repression instead of activation of some PU.1 target genes in 

myeloid progenitors (18). Our results here suggest the possibility that Ikaros too, may 
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have the capacity to modulate Sfpi1 transcriptional control differently in distinct lineages 

or at varied developmental stages depending on context dependent collaborations.  And 

like Eos, it may be possible that Ikaros can block or change the directionality of PU.1 

autoregulation in some contexts. 

Like PU.1, Ikaros expression has also been shown to be dynamically regulated as 

HSCs differentiate. While the mechanisms controlling Ikaros expression are not 

understood, an Ikaros GFP reporter mouse has correlated Ikaros and PU.1 expression and 

shown that like PU.1, Ikaros reaches its highest levels in GMPs (2).  Ikaros is thought to 

be dispensable for most myeloid cell development while being essential for lymphocyte 

development (14).  However, both Ikaros and PU.1 are required for generating high PU.1 

expressing dendritic cells (29, 33).  Additionally, it is worth noting that Ikaros mutant 

mice suffer from myeloid hyperplasia which is consistent with dysregulated PU.1 

expression and a role in positively regulating Sfpi1 transcriptional output after myeloid 

specification (14, 28).   
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CE5

CE7/6

MOUSE      GGCTGCCTGAGTGCTGAGTTGGCTGAGTTGGCGACACAGCAGCTGC-CCTGGCCATGGAGGCCCAGTTATAAATAAGC-GCCATCTGGCCAGGTCATCAAGTTCCGCAGATCCTCCGGTC
RAT        GCCTGCCTGAGTGCTGAGTTGGC---------GACAAAGCAGCTGT-CCCGGCCACGGAGGCCCAGTTATAAATAAGC-GCCATCTGGCCAGGTCATCAAGTTCTGTAGCTCCTCCAGGC
HUMAN      GCCAGCCTGAGTGCTGAGTTGGC---------GGCTCAGCAGCTGC-TCTGGCCACGGAGGCCCAGTTATAAATAAGC-CCAGGGTGGCCGAGTCATCATGTTCTGAAGCTCCCCCAGCC
ORANGUTAN  GCCAGCCTGAGTGCTGAGTTGGC---------GGCTCAGCAGCTGC-TCTGGCCACGGAGGCCCAGTTATAAATAAGC-CCAGGGTGGCCGAGTCATCATGTTCTGAAGCTCCCCCAGCC
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Figure Legends: 

Figure 1. The CE5-CE3 fragment is a myeloid restricted enhancer and does not have B-

cell regulatory activity. (A) A schematic showing a multigenome alignment of the ~18 kb 

upstream region of the Sfpi1 gene with peaks of conservation is shown (UCSC genome 

browser.)  Regions contained in luciferase reporters are depicted.  (B) Transient 

transfection assays showing Sfpi1 reporter activity in NFS-25 pre-B-cells and RAW264.7 

macrophages.  Data represents the average fold difference relative to L1.  NFS-25 data 

are from five independent experiments.  RAW264.7 data shown are from a single 

representative experiment performed in triplicate.   Error bars represent standard 

deviations.  (C)  The CE5-CE3 fragment is a myeloid specific enhancer in a chromatin 

context.  NFS-25 pre-B-cells and Raw264.7 macrophages were stably transfected with 

the L9-6 and L9-3 constructs and a control luciferse reporter conferring Blasticidin 

resistance.  Bars represent the geometric mean of five independent mixed pools (dots) of 

stably transfected cells 30 days post transfection under continuous selection. Data are 

reported as relative light units (RLU).  

 

Figure 2.  The myeloid enhancer CE5 is a cell-type-specific RNApol II nucleation center. 

(A) A schematic of regions examined in the ChIP assays is shown. The PU.1 

transcriptional start site is depicted by the arrow. Conserved Elements are labeled below 

and approximate locations of forward primers used for QPCR analysis are labeled above. 

(B) RNApol II binds CE5 and CE7/6 in RAW264.7 cells.  Data shown are from three 

independent experiments. (C) RNApol II binds to the URE in NFS-25 cells, but not to 

CE5 or CE7/6.  Data shown are from three independent experiments. (C) RNApol II also 
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binds to the proximal URE enhancer CE8, in immature T-cells.  Data shown are from 

four independent experiments.  Orange and purple bars in each graph show data for 

positive control regions of reported PU.1 target genes Mef2c and IL7Rα. ChIP enriched 

DNA was analyzed by QPCR in triplicate for each experiment. Individual ChIP 

experiments were normalized first to input DNA then normalized against a region that 

lacked enrichment to provide relative fold enrichment. Independent experiments were 

then averaged.  Error bars represent standard deviations. Asterisks mark peaks with 

statistically significant enrichment (p < 0.0001).  See Materials and Methods for details 

of statistical analysis.  Primer pairs used for each region labeled on the x-axis. 

 

Figure 3.  Multigenome alignments and transcription factor target site prediction analysis 

of the CE7/6 and CE5 regions are shown.  The mouse sequence used is shown in 

parenthesis. TRANSFAC analysis was performed through the Biobase TRANSFAC 

suite’s MATCH tool. Predicted hematopoietic transcription factors with matrix similarity 

matches above 0.9 are shown (black).  Some matches below 0.9 are also shown (gray).  

CBF = Core Factor Binding sites for the Runx family.  “Ets” labeled sites are general Ets 

family sites that potentially bind to multiple Ets family factors. Asterisks mark conserved 

sites present in only 4/6 aligned sequences.  All other sites are present in all six 

sequences. Boxes surround sequences with specifically predicted PU.1 target sits having 

adjacent Ikaros target sites.  Red bars underneath sequences represent DNA probes 

designed for gel shift assays in Figure 8. 
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Figure 4.  ChiP analysis reveals cell-type-restricted PU.1 binding to Sfpi1 upstream 

regions.  PU.1 ChIP assays were performed and reported as described earlier. ChIP data 

shown are the average fold enrichment from two independent experiments for immature 

T-cells (A), five independent experiments for NFS-25 pre-B-cells (B) and three 

independent experiments for RAW264.7 myeloid cells (C). 

 

Figure 5.  Forced expression of PU.1 in immature T-cells permits enhancer restricted 

PU.1 recruitment and facilitates RNApol II binding.  (A) Flow cytometric analysis of 

PU.1 infected immature T-cells at the time of harvesting for ChIP analysis.  Cells were 

stained with anti hCD8-PE antibody to mark infected cells coexpressing hCD8 from the 

pMX-PU.1-IRES-hCD8 vector. (B) PU.1 RNA expression analysis demonstrates high 

PU.1 levels in infected cells. RNA levels were analyzed by QPCR analysis. PU.1 levels 

were normalized against GAPDH. Data is plotted on a log (10) scale. (C) PU.1 ChIP 

experiments are shown as described previously.  Data shown are from five independent 

infections/ChIP experiments. (D).  RNApol II ChIP assays with PU.1 infected immature 

T-cells (Green bars) were performed and reported as described earlier.  Black bars 

represent noninfected ChIP data from Figure 2C. RNApol II data are from two 

independent experiments.  (E) Forced PU.1 expression is not sufficient to reestablish 

endogenous PU.1 mRNA transcription in immature T-cells (Adh.2C2).  A primer pair 

that cannot recognize virally introduced transcripts was used as described earlier.  

 

Figure 6.  Non PU.1 Ets family factors are restricted in their ability to bind PU.1 target 

sites. (A-C) Elf-1 ChIP assays were performed as described in Fig. 2. Data shown are 
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from three independent experiments for each cell line. (D-F)  Ets-1 ChIP assays, as 

described previously.  Data shown are from three independent experiments for each cell 

line.  (C)  GABPα ChIP assays, as described previously.  Data shown are from three or 

more independent experiments.  Graphs with green bars represent data from immature T-

cells (also labeled Adh.2C2 on right axis).  Graphs with blue bars are from pre-B-cells 

(NFS-25).  Graphs with red bars are from myeloid cells (RAW264.7). 

 

Figure 7.  Ikaros binds the URE region in all cell lines but only binds the CE5 enhancer 

in myeloid cells.  (A-C) Ikaros ChIP assays shown as previously described. Adh.2C2 (A) 

Data are from four independent experiments. NFS-25 (B) and Raw264.7 (C) Data are 

from three independent experiments.    (D) Western blot of Ikaros and Sp1 protein.  2-8 

micrograms of nuclear extract from Adh.2C2 and Raw264.7 cells were separated on an 

8% SDS-PAGE gel.  This Blot was had been previously probed for Sp1 (Zarnegar et al., 

submitted). That blot was stripped and reprobed here with anti-Ikaros antibody (sc-

13039). (E) PU.1 facilitates Ikaros binding to the distal URE element CE9.  PU.1 infected 

Adh.2C2 cells were used for ChIP assays as described earlier.  Data shown are from two 

independent experiments. 

 

Figure 8. The CE5 and CE7/6 regions nucleate cell-type-specific myeloid complexes in 

vitro and contain PU.1 and Ikaros. (A) Probes CE5-P2 and CE76-P4 (see Fig. 3) were 

radiolabeled and incubated with nuclear extracts from Adh.2C2 cells (T), RAW264.7 

cells (M), or NFS-25 cells (B). Complexes were resolved, dried, and then exposed to 

film. Myeloid specific complexes marked by black arrows and labeled M1 and M2. (B) 
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PU.1 and Ikaros are shown to be part of the myeloid specific complexes.  Probe CE76-P4 

was used as described above.  Competitors (see Fig. 2) were used at 250 fold molar 

excess. Note that all probes and competitors used were mouse sequences. 4 mg of 

antibodies were used as labeled.  

 

Figure 9.  PU.1 and Ikaros perturbations demonstrate that both factors contribute to Sfpi1 

regulatory activity in myeloid cells. (A) Anti-PU.1 morpholinos (E1 and E2) knockdown 

PU.1 protein expression.  Morpholinos (2 picomoles) were transfected into 32Dcl5 

myeloid cells by nucleofection.  Cell samples were harvested at 24 and 48 hours then 

analyzed by Western. (B) PU.1 knockdown abolishes L75 reporter activity.  RAW264.7 

cells were transfected with Sfpi1 reporters and 2 picomoles of standard control 

morpholino (Con.) or antisense morpholino targeting PU.1 as indicated. Data shown are 

from three independent experiments performed in duplicate and reported as fold 

difference relative to L1 + Con. (C) Ikaros contributes to myeloid enhancer activity.  

Raw264.7 cells were cotransfected with Sfpi1 reporters and empty pEF or pEF-Plastic 

(dominant negative Ikaros). (D) Ikaros does not contribute positively to URE enhancer 

activity in NFS-25 pre-B-cells. Data shown are from three independent experiments 

performed in duplicate.  Error bars show standard deviations. Data are shown as fold 

difference relative to L1+pEF.  

 

Figure S1.  ChIP-seq data (Broad/MGH ENCODE track) showing H3K4me1 and 

H3K4me2 demonstrates chromatic accessibility of CE7-CE5 in immature B-cell like 

bone marrow derived lymphoblast cells (GM12878). 
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Introduction 

 The previous chapters described the discovery of novel regulatory regions that 

can form cell-type-specific transcription factor assemblages able to provide mechanistic 

explanations for how Sfpi1 can be dynamically regulated in different hematopoietic 

lineages.  In chapter 2, a dedicated Runx1 dependent silencer was found that could 

provide cell-type-specific PU.1 silencing in early T-lineage cells. In chapter 3, a novel 

myeloid enhancer was characterized and shown to provide PU.1 dependent and context 

specific autoregulation, which extends our understanding of how PU.1 positive feedback 

may be critical and lineage restricted. We also revealed Ikaros to be a new direct Sfpi1 

regulatory input that appears to have lineage specific functions.   

The next sections will discuss some implications of this work with respect to gene 

regulatory networks and will attempt to integrate findings into newer network models. 

Runx1 and PU.1 will be discussed first in the context of the HSC GRN. A discussion of 

Ikaros and what role it may play in Sfpi1 regulation and PU.1 related regulatory circuitry 

will follow.  Lastly, a discussion of how the newly discovered regulatory elements imply 

the existence of yet other context determining functional contributors will be provided. 
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Identification of Runx1 dependent Sfpi1 silencing and PU.1 dependent 

autoregulation enrich our understanding of the recursive HSC network 

circuitry 

Runx1 is a pivotal regulator of blood development.  As discussed in chapter 1, 

Runx1 deficiency results in a lack of definitive hematopoiesis.  That deficiency is due at 

least in part to lack of PU.1 expression.  While Runx1 is required for Sfpi1 transcriptional 

initiation, chapter 2 reported how Runx1 is also crucial for silencing PU.1 expression in 

the T-lineage.  The dual role Runx1 plays is not novel, nor is it the only member of the 

HSC gene regulatory network that is linked to activation and repression of key HSC 

nodes.  Runx1’s pleiotropic target PU.1 can function to activate or repress another core 

HSC GRN node, SCL.  PU.1 can regulate SCL through binding to its promoter and/or 

silencer (Bockamp et al. 1998; Le Clech et al. 2006).  Not to be outdone, Runx1 has the 

potential to feedback into SCL too, as the AML1-ETO translocation product can turn off 

SCL (Yeh et al. 2008).  Thus, the relative expression of Runx1 and PU.1 may also control 

SCL dosage and contribute to overall network stability. 

PU.1’s pleiotropic functions may also be relevant to its own balanced expression 

in HSCs.  For example, although we showed Ikaros contributes to activation of PU.1in a 

mature myeloid lineage, Ikaros appeared nonfunctional in B-lineage cells even though 

bound to one of the same enhancer elements as in myeloid cells.  This indicated that 

Ikaros’ function varies with cell-type differences and not just DNA context.  A similar 

situation with PU.1was discussed in chapter 1 with respect to the regulation of CD68.  In 

myeloid cells, IRF-4 could alter the directionality of PU.1 regulatory effects through 

binding to CD68.  Furthermore, the Ikaros family member Eos can repress some myeloid 
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target genes of PU.1 through direct interaction with PU.1.  However, it may do so only 

when PU.1 is also collaborating with MITF for transcriptional control (Hu et al. 2007).  

These studies are critical in the context of the HSC network because they suggest that 

PU.1 autoregulation may not necessarily be positive.  Indeed, PU.1 may potentially be 

required for negative autoregulatory modulation of Sfpi1 transcriptional output, possibly 

in conjunction with Ikaros. 

Other components of the hemangioblast network subcircuit discussed earlier, Fli-

1 and GATA2, are also potential contributors to Sfpi1 transcription in multiple contexts, 

possibly in HSCs too (Hoogenkamp et al. 2007; Chou et al. 2009).  Intriguingly, PU.1 has 

been shown able to occupy the Runx1 +23 enhancer in a myeloid progenitor cell line, and 

PU.1can also regulate Fli-1 (Nottingham et al. 2007; Stark et al. 1999).  Moreover, PU.1 

can cooperate or antagonize GATA2 transcriptional activity and affect its expression, 

(Walsh et al. 2002).  Additionally, Ikaros can bind to the GATA2 promoter, possibly in 

cooperation with GATA1 (Bottardi et al. 2009).  These studies raise the possibility that  

Ikaros may also indirectly affect PU.1 expression through context dependent modulation 

of GATA2.  Intriguingly, in chapter 3 it was shown that Ikaros can bind to the -18 kb 

CE10 element in pre-B-cells.  This region also binds GATA1 in megakaryocyte erythroid 

progenitors (MEPs) and may be involved in erythroid silencing of PU.1 expression.  It is 

conceivable that Ikaros may be bound to CE10 with GATA1 and from that element both 

factors may contribute to context dependent Sfpi1 regulation in MEPs after HSCs begin 

to differentiate due to GATA1 activation. 

The HSC network gets even more complicated when one considers the noncoding 

micro RNA, miR-27a.  Mir-27a blocks translation of Runx1, but since Runx1 itself 
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regulates miR-27a, at least in MEPs, a quasistable Runx1 protein level can be maintained 

with other factors contributing to a rheostat function (Oren-Ben Ami., 2008).  As the 

miR-27a regulatory region contains predicted Ets and GATA sites, there appears to be 

layer after layer of regulatory options in HSCs and immediately downstream progenitors. 

Taken together, these potential interactions necessitate a reimagining of the network 

circuitry underlying the emergence and maintenance of HSCs, with Fli-1 at the top of the 

hierarchy and PU.1 at the bottom (figure 1).  Moreover, the dual functionality of all these 

factors, with the ability to activate or repress targets in highly context dependent ways, 

provides a complicated framework for an extraordinarily recursive network that provides 

ample avenues for feedback to maintain, remap, or outright break the network to direct or 

restrict lineage specification and commitment. 

 

An HSC subcircuit containing PU.1 and Ikaros may control lineage fate 

choices 

In the preceding section, Ikaros was discussed in relation to PU.1 in a recursive 

gene regulatory network that may act to maintain HSCs in an undifferentiated state.  

However, Ikaros was not included in the network diagram (figure 1).  Instead, Ikaros will 

be presented in a separate subcircuit that may be important for facilitating escape from 

the HSC stable state to initiate lineage fate choice decisions.  This undertaking is being 

performed as Ikaros and PU.1 have recently been proposed to be part of a recurring 

regulatory network controlling myeloid versus B lineage choice (Spooner et al. 2009).  In 

Spooner’s proposed gene network, two factors are thought to suppress PU.1 expression, 

Ikaros and Gfi-1.  In light of discovering Ikaros bound to Sfpi1 regulatory modules in 
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both myeloid and B-cells, discussed in chapter 3, an updated network consisting of PU.1 

and Ikaros will be proposed.  Before doing so, a short discussion of the evidence for 

Ikaros and Gfi-1 regulation of Sfpi1 transcriptional output will be provided. 

 

Does Ikaros regulate Sfpi1 transcriptional output in HSCs and early 

progenitors? 

Whereas chapter 3 discussed Ikaros as a novel positively acting direct regulator of 

Sfpi1 in the context of myeloid specific PU.1 autoregulation, other recent work has also 

offered evidence proposing Ikaros is a modulator of PU.1 expression (Spooner et al. 

2009).  However, that work claims Ikaros is a suppressor of Sfpi1 transcription.  The 

work claims that Ikaros may suppress PU.1 expression at the time when MPP 

specification is being decided between myeloid and lymphoid lineage choice, specifically 

the myeloid versus B lineage decision.  This hypothesis was based on a comparison 

between wild type MPPs and Ikaros-/- MPPs.  In the comparison provided, Ikaros-/- MPPs 

were shown to have elevated FcγRII/III and Csf1R surface markers.  This comparison is 

problematic as the wild type MPP data shown does not include high FcγRII/III or Csf1R 

expressing cells even though such cells are a known subset of total MPPs.  Why those 

cells are not present in the normal MPP population being analyzed was not accounted for.  

Additionally, it has been reported that the population of high expressing FcγRII/III cells 

in total MPPs are reduced in Ikaros deficient animals (Yoshida et al. 2006).  Accordingly, 

the comparison presented in Spooner et al. (2009) is not only inappropriate and invalid, 

but also inconsistent with other reports.  Consequently, the aforementioned link between 
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Ikaros and Sfpi1 regulation was improperly postulated. Nonetheless, the ChIP assays 

discussed in chapter 3 do affirm that Ikaros can bind to numerous Sfpi1 regulatory 

modules and the role Ikaros might play when associated with those distinct cis-elements 

at different developmental stages remains to be explored.    

While Ikaros may negatively affect PU.1 expression in some contexts, like PU.1, 

Ikaros expression is dynamic during lineage specification of HSCs to LMPPs and GMPs.    

The mechanisms controlling Ikaros expression are not understood, but an Ikaros GFP 

reporter mouse has provided great insight into Ikaros expression patterns within early 

progenitor populations.  Ikaros expression correlated with PU.1 expression, with GFP+ 

progenitors showing higher levels of PU.1 transcripts (Yoshida et al, 2006).  

Additionally, the level of GFP also more finely correlated with the level of PU.1, with 

intermediate levels in cells thought to correspond to CMPs and and higher GFP in GMPs 

(Yoshida et al, 2006).  PU.1 is required for the formation of both CMPs and GMPs, and 

PU.1 expression is upregulated in GMPs as previously described (Nutt et al, 2005).   

Taken together, these studies support a hypothesis that Ikaros might positively contribute 

to PU.1 expression in myeloid cells, a hypothesis validated in results reported in chapter 

3. 

  

Does Gfi-1 constrain PU.1 autoregulation and expression in an early 

acting HSC subcircuit? 

  Another reported suppressor of Sfpi1 transcriptional control that may be part of a 

recurring Ikaros and PU.1 network is Gfi-1. One of the mechanisms proposed for Gfi-1 
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antagonism of Sfpi1 transcription is inhibition of PU.1 autoregulation through the Sfpi1 

URE (Spooner et al. 2009).  With the discovery of the CE7-CE5 enhancer modules able 

to provide restricted PU.1 autoregulation in addition to the URE, the role of Gfi-1 in 

relation to PU.1 function and expression merits reexamination.   

 Two mechanisms for negative regulation of PU.1 by Gfi-1 are offered in the 

literature.  Already mentioned, the first mechanism proposed is that Gfi-1 inhibits PU.1 

autoregulation by competing with PU.1 for binding to the Sfpi1 URE. However, the 

expression patterns of Gfi-1 and PU.1 make such a mechanism problematic.  Both Gfi-1 

and PU.1 are expressed together in HSCs and both are at their highest levels in GMPs 

(Zeng et al., 2004; Nutt et al., 2005).  Futhermore, Gfi-1 must also outcompete othet Ets 

factors that can also bind to the URE.  As discussed in chapter 1, C/EBPα is critical for 

specification of GMPs and C/EBPα is thought to regulate both PU.1 and Gfi-1 

(Yeamanns et al. 2007; Dahl et al. 2003).  Additionally, it should be noted here that Gfi-1 

indirectly regulates STAT3 activity, sensitizing cells to STAT3 activation (Yeamanns et 

al. 2007; Dahl et al. 2003). As also discussed earlier, not only can C/EBPα and STAT3 

activate PU.1 expression, they also can potentially cross regulate.  Gfi-1 may actually 

facilitate that cross regulation which would be predicted to increase PU.1 expression.  

Even if Gfi-1 does repress PU.1 expression in early progenitors, potential suppression in 

myeloid cells must be blocked or compensated for in order to allow Sfpi1 transcriptional 

output to rise as GMPs are specified.     

The original argument for Gfi-1 opposition to PU.1 in a neutrophil versus 

monocyte/macrophage subcircuit reportedly originated with the observation of increased 

PU.1 expression in RNA from bone marrow cells of Gfi-1-/- mice that also have an 
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increased number of GMPs (Hock et al., 2003; Laslo et al., 2006).  However, C/EBPα 

expression is also increased in those mice (Hock et al. 2003).  Consequently, it is unclear 

if elevated PU.1 expression is due to loss of negative regulatory constraint or a gain in 

GMPs due to increased C/EBPα that may also provide too much activation of Sfpi1, even 

where STAT3 activation might be impaired due to loss of Gfi-1.   

Another mechanism postulated for Gfi-1 inhibition of PU.1 may be similar to the 

way GATA1 can block PU.1 protein function.  A recent study showed that Gfi-1 can 

physically interact with PU.1 and suggested that this physical interaction might suppress 

PU.1 transcriptional activity (Dahl et al., 2007). Part of the evidence for this claim is 

based on loss of CD64/FcγRI expression as GMP like progenitors become neutrophils.  

However, CD64/FcγRI is a dual PU.1 and STAT1 dependent gene (Aittomaki et al., 

2002). As neutrophils continue to express PU.1, loss of CD64 expression could be due to 

more restricted cytokine/STAT1 signaling as cells differentiate.  Consistent with this, 

CD64 expression is lost when cells differentiate into neutrophils and is only rexpressed 

with interferon gamma activation of STAT1 (Bovolenta et al., 1998). That report clearly 

indicates that PU.1 remains competent to regulate CD64 in normal Gfi-1 and PU.1 

coexpressing neutrophils.  Consequently loss of CD64 expression cannot be due to a 

block of PU.1 function by Gfi-1 as originally interpreted. 

While it is unlikely that Gfi-1 directly constrains PU.1 expression and 

transcriptional activity in mature myeloid cells, the potential for binding to the URE in 

competition with PU.1 in early progenitors does remain an interesting possibility.  In fact, 

once PU.1 expression has risen, PU.1 secondary targets repress Gfi-1 expression which 

would prevent any competitive inhibition of PU.1 autoregulation through the URE in 
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more mature cells (Laslo et al. 2006).  It remains an intriguing possibility that Gfi-1 

dependent suppression may provide a developmental stage dependent limit on URE 

enhancer function in HSCs with the ability to constrain Sfpi1 transcription also dependent 

on relatively lower PU.1 expression in HSCs versus GMPs. If so, then how could Sfpi1 

expression ever be augmented as HSCs undergo differentiation into GMPs?  This 

question is more vexing when one considers that Ikaros is also argued to suppress PU.1 

expression.  Moreover, Ikaros, Gfi-1, and PU.1 are all coexpressed in HSCs before Sfpi1 

transcriptional output is dramatically altered in committed lymphoid and myeloid cells.  

Discovery of the myeloid specific CE5 enhancer offers a solution to the above 

dilemma.  In fact, CE5 also has two conserved C/EBPα binding sites flanking a site able 

to bind PU.1 in vitro.  It is possible that CE5 is also C/EBPα responsive are plays a role 

in C/EBPα mediated PU.1 expression and GMP specification as discussed in chapter 1.  

Importantly, and in contrast to the URE, the PU.1 target site in CE5 does not appear to be 

sensitive to potential competition by Gfi-1.  Thus, even if the URE’s regulation of Sfpi1 

transcriptional output is suppressed, C/EBPα and/or context dependent PU.1 input into 

CE5, and possible CE7/6, may more than compensate for Gfi-1 constraint to drive higher 

PU.1 expression during GMP specification. 

 

Mef2c is another recursively wired node in an early HSC subcircuit 

controlling lineage choice decisions 

In chapter 3, PU.1 and Ikaros ChIP assays showed these factors could bind to 

Mef2c in both myeloid and B-cells.  Mef2c is expressed in HSCs as well (Schuler et al. 
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2008).  Moreover, loss of Mef2c has been linked to defective lymphoid specification 

(Stehling-Sun et al. 2009).  A possible contributing mechanism to defective lymphoid 

development may be lowered Ikaros expression reported in Mef2c deficient cells 

(Stehling-Sun et al. 2009).  In light of the finding that Ikaros directly binds Mef2c, it 

appears that Mef2c may be a middle man providing indirect PU.1 regulation of Ikaros, 

with Ikaros feedback wired back into Mef2c and Sfpi1.  In addition, Ikaros expression 

was also linked to Gfi-1 expression (Spooner et al. 2009).  Taken together, we have a 

basis for postulating a four node regulatory subcircuit (figure 2A).  

 

Building an HSC subcircuit that may control both PU.1 dosage and 

lineage specification 

 In the previous sections, regulatory associations were discussed that provide a 

potential framework for the construction of a new gene regulatory network subcircuit.  At 

the core of this subcircuit are four nodes, Sfpi1/PU.1, Mef2c, Ikaros, and Gfi-1 (figure 

2A).  Note that while Ikaros may activate Sfpi1 in myeloid cells, Ikaros may be neutral or 

even a suppressor when bound to the Sfpi1 URE.  Additionally, while Gfi-1 may inhibit 

PU.1 expression, it can potentially augment STAT3 transcription of C/EBPα and/or 

Sfpi1.  As the C/EBPα node can also regulate Gfi-1, Sfpi1, and STAT3, we can add it to 

the growing subcircuit along with STAT3.  We now have a six node circuit of recursively 

wired factors all expressed in HSCs.  Note that these nodes can be considered a part of 

the larger HSC network presented earlier (figure 1). Together, and in the absence of 

strong differentiating signals, this network subcircuit construction may provide 
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potentially competing and multidirectional control of moderate PU.1 expression levels 

(figure 2B). 

 In chapter 1 of this thesis, several cytokine receptors were discussed that can 

activate STAT3.  Some of those cytokine signaling pathways, like Flt3, also activate 

C/EBPα, perhaps dependent on STAT3 activation. If sufficient STAT3 and C/EBPα 

activation is achieved, GMP specification might occur and PU.1 expression should rise.  

This specification may involve activation of myeloid determinants such as IL6Rα 

mediated Id expression which will block the E2A family of B-cell promoting factors 

(discussed in chapter 1).  Other predicted consequences of network dynamics include 

sufficiently high PU.1 expression to block residual Gfi-1 constraint.  Additionally, 

C/EBPα in combination with high PU.1 expression may be needed to activate additional 

myeloid determinants that allow the combinatorial all-or-none lineage-restricted CE7-

CE5 PU.1 autoregulation described in chapter 3.  Once established, that PU.1 

autoregulation could provide a regulatory loop that no longer requires C/EBPα or other 

STAT3 activation signals, thus locking in a myeloid fate and promotion of continued 

myeloid differentiation (figure 2C). 

 In the absence of myeloid promoting conditions, or within a B-cell promoting 

environment, signaling pathways may allow for activation of E2A in HSCs/MPPs to 

prime a lymphoid fate (figure 2D)(Dias et al. 2008). Together with low PU.1 expression, 

PU.1 and E2A can activate EBF (Medina et al. 2004).  Once sufficiently expressed, EBF 

inhibits C/EBPα expression and blocks activation of higher PU.1 expression, thus 

promoting a B-cell program while blocking myeloid developmental programming 

(Pongubala et al. 2008).  While Gfi-1 expression may initially require C/EBPα 
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expression, secondary B-cell determinants may alter Ikaros regulation of several targets, 

including Gfi-1.  For example, in chapter 3 we found that Ikaros was bound to IL7Rα in 

pre-B-cells, but not myeloid cells. Thus, a B-cell determinant, possibly EBF, E2A, or 

their target(s), could then facilitate that binding.  Similarly, a B-cell determinant might 

allow continued Gfi-1 expression to continue to constrain PU.1 expression until B-cell 

commitment is achieved.  Alternatively, once C/EBPα expression and potential PU.1 

activation is neutralized, Gfi-1 constraint and expression may no longer be required.  It is 

also possible that continued restraint of high PU.1 dosage is instead mediated by B-cell 

context dependent Ikaros input into Sfpi1 regulatory modules, which may eventually fix 

PU.1 expression to the familiar lower B-cell level. 

 Identification of what myeloid and B-cell determinants control where PU.1 and 

Ikaros can bind is obviously of great interest. It is unknown how many additional 

collaborators might dictate when and where these factors bind nor is it known to what 

extent cell-type-specific post translation modification of PU.1 protein might alter choice 

of collaborators when myeloid and B-cell factors have overlapping expression in these 

lineages. Examining PU.1 and Ikaros complexes more closely should help clarify how 

these factors are regulated and will allow further refinement of this network while 

providing far greater understanding of how context dependent use and regulation of PU.1 

is fully achieved. 
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Unresolved questionns regarding Runx1 silencing of Sfpi1 in T-cells 

Many lingering questions remain to be addressed and more experiments are 

needed to resolve how T-cells terminate PU.1 expression.   One question remaining to be 

asked is to what extent does Runx or CE4 maintain active Sfpi1 silencing?  The Sfpi1 

locus does not appear to have chromatin marked by silencing related histone 

modifications such as H3K27me3.  This suggests that continued Sfpi1 silencing may be 

ongoing throughout the later T-cell developmental stages.  Interestingly, PU.1 expression 

has been reported in Th2 cells and may regulate GATA3 function therein (Chang et al. 

2005). Also intriguing, Th2 cell expansion is enhanced by Gfi-1 (Zhu et al. 2006).  This 

raises the possibility that Gfi-1 is functioning to sensitize cells to STAT3 signaling which 

may allow low level PU.1 expression in some cells where Runx expression is not 

adequate to maintain active repression of Sfpi1 transcription.  While STAT3 deficiency 

does not affect early T-cell development, STAT3 does affect mature T-cell signaling 

through IL-6, IL-21, and IL-2.  As Runx1 is repressed in Th2 cells, CE4B or other STAT 

binding modules may be in a state of chromatin accessibility and available for STAT3 

activation of PU.1 expression. 

A more immediate question is why is Runx1 repressive in T-cells when bound to 

CE4?  Runx1 is expressed throughout the hematopoietic compartment and it is unlikely 

to be sufficient for silencing.  Idetification of what factor may confer a silencing function 

to Runx binding is still needed.  Interestingly, Ikaros was also found associated with 

CE4A in immature T-cells. Moreover, pre-B-cells and immature T-cells formed Runx 

and Ikaros related complexes on CE5 in vitro.  Although ChIP assays failed to detect in 

vivo binding of CE5 by these factors in lymphoid cells, it remains possible that they do 
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bind in vivo and block occupancy by other factors that might inappropriately provide 

enhancer function.  While the Ikaros dominant negative Plastic did not affect silencing in 

our assays, it is possible Ikaros is present as a cofactor and part of a repressive complex 

independent of DNA binding, similar to how the Ikaros family member Eos could turn a 

PU.1 containing activation complex into a repressive complex.  

Recruitment of Runx1 to regulatory elements may depend on combinatory 

interactions with Ets factors in very specific contexts.  While we could not detect Ets 

factor interactions with CE4 in vivo in immature T-cells, it may be possible that many of 

the antibodies are simply not viable for use in ChIP assays and are thus false negative 

results.  It also appeared that the Ets site in CE4 might not be required per se, although an 

overlapping site does seem to stabilize Runx binding.  As Runx and Ets interactions may 

cooperatively alter DNA interactions, it may be that an Ets factor really is involved but its 

contact points could be altered across the CE4 module.   

In megakaryocytes, the Ets factor Fli-1, which can also bind to the Sfpi1 URE in 

myeloid cells interacts with and cooperates with Runx1 to activate target genes (Huang et 

al., 2009).  Significantly, Fli-1 could only interact with Runx1 when dephosphorylated 

upon activation of megakaryocyte differentiation. This indicates posttranslational control 

can be critical to development, independent of obvious shifts in transcription factor 

expression profiles.   In this way, PU.1/Ets interactions with Runx1 might occupy the 

URE or CE4 in highly controlled contexts.  It is also possible that Runx binding to CE4 is 

facilitated by loss of a competing Ets factor in conjunction with an increase in Runx 

protein level through transcriptional or posttranslational mechanisms.  Other mechanisms 

may affect Runx DNA binding as well.  For example, myeloid differentiation is blocked 
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by the PU.1 target CDK6 that can interfere with Runx1 DNA binding, perhaps able to 

inhibit only non cooperative concentration dependent Runx1 binding (Fujimoto et al., 

2007).   Whereas active recruitment of Runx1 through combinatory mechanisms may be 

possible, T-cells could use interactions across multiple lower affinity Runx sites within 

CE4 to give sensitivity to changes in Runx protein levels that subsequently generate 

stable repressive complexes, but only when Runx is at a sufficient level of availability 

and not inhibited by Runx1 interfering factors like CDK6 or out competed by an Ets 

factor across the Runx stabilizing region of CE4, the M5 region discussed in chapter 2.. 

 

Cis-regulatory elements define context and function 

Throughout this thesis, three pervasive hematopoietic players have been discussed 

Runx1, PU.1, and Ikaros.  Remarkably, all three factors are pleitropic transcription 

factors that can activate and repress transcription in various contexts.  Moreover, these 

factors are known to perform both activating and repressive functions within the same 

cells at the same time.  This remarkable achievement is not ultimately dictated by the 

factors intrinsic properties.  Instead, their diverse and evolved context specific functions 

are the result of dedicated context  dependent cis-elements like CE4 and CE5, which can 

act together with bifunctional and nonspecific cis elements like the Sfpi1 URE. The 

contributions described herein provide enhanced insight not only for our understanding of 

Sfpi1 transcriptional control, but also presents a complicated and archetypical example of 

how multiple  cis-regulatory elements work together to dictate transcriptional output and  

the specific roles of bifunctional transcription factors  that are used repeatedly and 

recursively to drive development gene regulatory networks.     
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