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FINITE OVA

Introduction.

In this thesis systems consisting of a finite number of
elements and one binary commutative associaté&ve rule of com-
bination are considered. Such systems are called ova. The
distinctness of ova is first discussed. The elements of ova
are then classified acooriing to their behavior when raised
to pvowers. A necessary and sufficient condition that an ovum
have no associate elements is found, and ovae having no asso-
ciate elements are discussed in detail. A necessary and suff-
icient condition that an ovum be a finite Abelian groun is also
found. All the distinet ova of orders 2,3,4, have been con-
puted ané are listed in‘the course of the paper. There are 3
distinet ova of order 2, 12 of order3, and 56 of order 4. All
concepts intrdduced in the discussion are illustrated in
these ova.

Before passing to the detailed developément of the theory
I wish here to express my thanks to Professor E. T. Bell for
his helpful suggestions in the course of the »reparation of

this thesgis.



FINITE COMMUTATIVE ASSOCIATIVE MARK OVA

The oconcepts assumed for a finite mark ovum are:

1. & finite set U of distinet marks (uw, ,u,,...,u_ ).

. 24 A binary rule of combination which to each double mark
uiu? formed from any ordered pair of marks of U, and to
each mark ui formed from any mark of U, associates or
makes correspond & unique mark of U, |

We call the rule of combination multiplication. If to
LAY is associated u, , we write WB, =Wy y OF U,= uﬁ.u_f .
We say that uy is equal to the product of u; and uy/in that
order. If to ui is associated U, ., We write uj- u, or
g&: ui » and say that v, is equal to the product of u
by itself, or to u; squared,
Having thus by postulation established the possibility of
forming the product of ordered pairs of elements of U, and
the product of an element of U by itself, we define the
mark ui(g}uﬁ) to be the product of u; by the product of
u, and u, .We define the mark qz'g?,to be the product of

&
the product of u by itself by u,_. In a similar manner we

define the marks u;(u;%?) and (u?;y)u& .

| Thus we establish a correspondence between the com-

pound marks of the above forms and the marks of U. If two

of these compound marks correspond to the same mark of U,

we say that they are equal to one another, and conversely

equality df such marks only has this significance, ‘
For a finite commutative associative merk ovum we

further postulate:



3. For each pair of marks u; and u_of U, w,u =un u_; .

2z
4, For each pair of marks u; and uf of U, uig?==u;(q237).

5, For each triad of marks u. , u

, and U, of T,

FProm 3, 4, and 5 it follows * that in a finite commutative
agsociative ovum we can form the product of any number 7
r<n of marks (u% ,...,u%r) of U, any integral power p
of a mark u, of U, and the product of integral powers

4 4
products will be unique and will depend only on the ele-

& ,e0e,8 , Of marks q&,...,q%; g<n, of U, and that these

ments which occur and the powers to which they occur, and
not on the order in which the products are formed. We use
the marks u. u. +..u. , qzv. and ui'u.*... u.” to indi-
7 3 - Y *g

cate these respective products.

We thus have a correspondence between any compound
mark of the form uf’u?a;..u7?',(qjsn), where 8 ,.e.,8

~ 'y "’y v

are integers, and the marks of U, If such a compound

mark corresponds to u, , we write ﬁz'q;%...@;?= Uy o
Two such compound marks are said to be equal when and
only when they correspond to the‘same mark of U,

The set of marks (u,,u,,...,u ) of a finite mark
ovum will be called the mark set of the ovum. The number
of marks in the set will be called the order of the ovum,
and the marks will be called the elements of the ovum.

Concept 2 implies that for every finite mark ovum
there are n relations giving products qz', and n(n-l)
relations giving products ui%?. These n@'relations will
be called the multiplication table of the ovum.

*Vaw o(b-"ﬂ/a-zao(&.—vl W %@&Vﬂ/%nzo— 2 2.



A finite mark ovum is ,then, completely determined
by its mark set and its multiplication table, It can be
convenlently pictured as a square matrix of order n,
where the element in the ith row and jth column is eqgual
to the product uigy,and the diagonal elements are equal
to the sqpares of the elements of the ovum. It must be
remembered, however, that by the multiplication table of

the ovum we mean the n™~ relations mentioned sbove,and

not the sqpare matrix itself.

SIMPLE ISOMORPHISMS OF MARK OVA,

Two mark ova which have the same mark set will be
said to be simply isomorphic to each other if and only
if the multiplication table of one can be obtained from
that of the other by a permutation of the elements of the

mark set,

Example: The ova 4 uwuwuu, and B wu,u u,
wuuu, L%,
wu.uu, wuuu,
uu uu, ?zuyﬂ;UV

are simply isomorphic to one another. The substitution

taking the multiplication table of A into that of B is

(u,uZHJU;) or, written as a permutation on the sub-

uuuu/ seripts, is (234),

3 4 2
Two mark ova of order n with different mark setsg
(“b’“1v°"’@~) and (3,,1;,...,1;) will be said to be

simply isomorphic if when every V. is replaced by u,;



(i::l....,n) the two mark ova with the set u ,...,u_, are

simply isomorphic, Mark ova which are not simply isomor-
phic will be said to be distinet.

In this discussion we will henceforth be treating
only finite commutative associative mark ova, and will
for brevity designate such systems merely as ova. It is
evident that due to the commutative property of the ova

the matrices representing them will be symmetric.

POWERS OF ELEMENTS IN OVA,.

Consider the chain of elements obtained by taking

8 z v
successive powers U; gU; 4T geoeyB; ye00

of an element of an ovum. Due to the finite order of the
ovam the successive powers can not be all distinct, Let
the pth power be the first one which gives an element

previously occurring in the chain, and suppose df; uj

. V%5 -
Let p-r-s, so that we have u; = u, . There are four

possibilities: l. r=1 s=1
2, r>1 s=1
e T=1 s>1
4, r>1 s>1

Idempotent Elements.

If u, is an element which comes under case 1 above,
2
u: = ur

< -

then u . will be called an idempotent element,. Evidently



then all powers of u, are equal to u.,

Elements of Type a.

If u; is an element which comes under case 2 above,
we shall call u, an element of type a.

2 3 -+ . A
We have u.,u. ,u. ,ees,u. , distinet and u- - u. .

Hence all powers greater than r of u. are equal bo uj.

The integer r will be called the index of the element u

and if uj =0, , We shall call u, the index element of
2 ar

u; « Since Uy=u. = w.=ug, , u&;s an idempotent ele-

ment. Moreover it is_.the only idempotent element occurr-

ing in the chain of powers of u. .

For, let t be any integer less than r and let

<

u".' = u7/ .
Then

s

u¢= u’ﬁ

for all integers s for which s t=r, Let 8, be the least

s for which s t 2Zr, Then s,>l and

2 55—/

are distinet and all highar powers of u?/ are equal to u, .
So uf is an element of type a with index element Uy

Hence we see that if u. is an element of type a of index r
and i:}dex el ement uy o, then uf(tzl,...,r-l) are elements

of type a with index element u, and indices less than r,

El ements of type b.

If u. is an element which comes under case 3 above,



u; will be called an element of type b.

We then have
S

e

-5
u',u‘-' gese i

~

distinet, and

We shall call s the period of the element u, .

-t Vs
Evidently uj = u; (tZ1),
and in particular
as S

so we see that uf is an idempotent element,

If w-u, ,we shall call u, the period element of u_.
We show that uy is the only idampotent element occurring
in the chain of powers of u, .

For if h=s/2 , uj” can not be an idempotent element,
since u};.uj,...,u_f are distinet. If s>h>s/2 ,

and uf is an idempotent element, then

24, £
. = u;‘—__
But since 2h> s,
24 24~5
u_ = 'D.J;
80
a -5 vy
. = .
—a o R
ad-s

However, 2h-s<h and so u,_ precedes uf" in the chain
of powers and so can not equal uf“. Hence we have a con-
tradiction, so that u’, h<s can not be an idempotent
element., ) » ‘

For p>8, if p is not & multiple of s we have p=s8t+gq,

g< 8 and



2+

7«;

Hence u’. 1s not an idempotent element.

If p>s and p is a multiple of s, say p=ts

7 Zzs
we have u;, =u, = u,
Hence u, is the only idempotent element in the chain of

powers of u_ .
£
Now let t<s and let = u

Let h be an integer such that sh is a multiple of t.
Then if k= 1-+sh/t we have

3 trsh. Z
u,o=u o= U o= u7/
and since w is not an idempotent element it must be an
element of type b,
Also A u,
172- o

Hence every element u, , t<s , is an element of type b

and has the same period element w as u; .

Elements of Type c.

If u; is an element which comes under case 4 of the

above, we call u; an element of type c,

3 - LS~
We then have U, yU.pgoeeyl;gooeyU.

distinet, and u:”:_ ul
whence for an integer p>r and h any integer
prhS g
u- = -

ke

We will call r the index and s the period of the element
U e

L

The elements W.,u:,...,u.  form the unrepeated part of



' - o+ 5=/
the chain of powers of u. ,the elements U peee, U

form the repeated part of the chain.

Let m be the least integer such that ms=r,

5 X M TE AT e S

Then (w, ) = u; = ug

2y

M S
so that w, is an idempotent element.

a4 5

then u, will be called the period element of u_ .
We show that u is the only idempotent element occurrig

ing in the chain of powers of u: .

£
Let t be any integer less than r and let u; = u7/
Then since u oceurs in the unrepeated part of the chain

of u_ , uylcannot be an idempotent element or an element
of type b. Hence it must be a type a or a type ¢ element
and it is easy to see that it is a type & element if and
only if & 4is s divisor of © . |

Now let t be an integer such that r=Zt<r+es

£
and let t not be a multiple of s. If u;_= u,
th St/ Zse L u,b u
en wo= U = . = »
So L is either an idempotent element of a type b
el ement.

If now u_ were an idempotent element we would have
4 2.4 &£
U._‘; = u.-

whence 2t=t+ ks where k is some integer, or t= ks.
But this im in contradiction to the fact tha¥r t was not
a multiple of s, S0 u7,is a type b element,

We thus see that the chain of powers of an element of



type ¢, index r and period s consists of an unrepeated
part of r-l elements of type a or of type ¢, and a re-
peated part of s elements, s-1 of which are type b el-
ements snd one of which is an idempotent element.

From considerstions of powers of non-idempotent

elements in an ovum we can immediately state

THEOREM I. Any ovum contains at least one idempotent

el ement,

DEFINITIONS.

At this stage we find it convenient to introduce

the following terms and concepts.

The idempotent element of a non-idempotent element.

If u is a non-idempotent element it has been
shown that in the chain of powers of u; there occurs
one and only one idempotent element, say Uy e The
idempotent element q&'will be called the idemnotent

element of u- .
¥4

Sub ovum.

Suppose S is a sub-set of r elements of the mark-
gset U of an ovum O of degree n, r<n, and suppose the
product of every pair of elements of S and the square
of every element of S as determineé by O is an ele-

ment of S. Then multiplication is cdefined for S, and
this multiplication is evidently commutative and

10,



associative., The set S together with the multivplication
relations fork the elements of S form an ovum P of
order r. The ovum P is said to be a sub-ovum of 0 of

order r,

Zero Element,

If an ovum contains an idempotent element u_ . such

that u.u = u-
- ? A
for every other element u _ in the ovum, the element -

7

is called a zero element of the ovum. There is evidently

not more than one zero element in an ovum.

Identity Element.

If an ovum contains an idempotent element u;

uch that u-u = u
s <%, L

for every other element u7 in the ovum, u is called an

identity element of the ovum. There is evidently not

more than one identity element in an ovum,

Divis©oz® of an Element,

Let u. and uf be any two elements of an ovum.

If u,=u. u (1)
or if u--u 2)

- F
or if there exists in the ovum a third element Uy
such that u: - uj/ LY (3)
then uf is said to divide or to be a divisor of u_
and we write uf/ u

If no such relations as (1),(2),0r (3) exist between

.
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u, and %f we say that %7 does not divide u, and write

If u; = u; (4)

or if there exists in the ovum an element u, such that
u;cu, u, (5)

the element u; is said to divide itself and we write
u;, u-

If u, is non-idempotent and mo relation such as (§)

holds fofu_ ,u; is said to not divide itself and we
write u;?‘q;

Proper Divisor,

If u. and u7,are any two elements of an ovum such
that u#/ u; but u?i/q; » then u_ is said to be &

proper divisor of u; .

Irreducible Elements.

If an element u; of an ovum has no proper divisors
other than the identity element of the ovum (if one ex-
ists) u; is said to be an irreducible element, otherwise

g reducible element,

Associate Elements.

If u; and uy,are any two elements of an ovum and if

u?/ u. and u;) u_, , the elements u_ and u_ are said to

1

be associated to one another and we write U,
Evidently if -~ vy
and uw, -~ u?/

. “~ F



We extend the use of the symbol ~ 80 that u ,~u_
will mean u;’q; . We reserve the word "associated™ for

pairs of elements only.

Reduced Ovum.

An ovum in which no pair of elements are associated to
one another is called a reduced ovum. Evidently in a reduced
ovum every divisor of an element, which is not that-ele-

ment itself, is a proper divisor of that element.

*
HOMOMORPHISMS IN OVA COKTAINING

NON" IDEMPOTENT ELELIENTS

In an ovum which contains at least one non-idempotent
element, consider the correspondence formed by letting each
idempotent element correspomd to itself and each non-idem-
potent element correspond to its idempotent element. ¥We
see that such a correspondence is preserved under multi-
plication. Fdr if u; and %? are two non-idempotent elements

having the idempotent elements u, and u __Jpespectively, then

&
u;u7 is either equal to the idempotent element w,u_or is
a non-idempotent element whose idempotent element is uLu .

For, for some integers r and s

g
u""= u’é
=
n :'uw
VS TS s
80 u.u = uu,” = uu_ .
(01/) A a, -‘m
If u. and %7 both have u, as their idempotent element, evi-

dently uiu# has u, as its idempotent element or else is

equal to the idempotent element U, . Similarly, if u%vis an

* Van der Waerden, lioderne Algebra, page 32.

/3,



‘4.

idempotent element, uw, u  either equals u,u  or is a non-

idempotent element having ueu ,as its idempotent element,

and u u, either equals u, or has u, as its idempotent elem

ment,

Ve have therefore

THEOREHM 2. Any ovum which contsins at least one non-idem-
potent element is homomorphié to the sub-ovam

formed by its idempotent elements.

ASSOCIATE ELEMENTS IN OVA.

THEOREM 3. In any ovum no two idemvotent elements can be
agsociated.
Let u; and u7,be two idempotent elements. Suppose
u, and %f are gssociated. Then
.l 1
w| v, (1)
. 2
and u?’ u- (2)
Prom (1) there must exist in the ovum an element
whose product with u; is equal to LI This element
is evidently not u; itself, so we either have
wu =u (3
<% % )
or there exists a third element Uy in the ovua such
that w-Uy=1 4
SIS (4)
However, if we multiply both sides of (4) by u; we
immediately get (3), so we see that (1) implies(3).
Similarly (2) implies
.1 = u- 5
U, T (5)
But (3) and (5) are contradictory, so the theorem

follows,



THEOREL 4. In any ovum no two non-idempotent elements
which have not the same idempotent element
can be associsted.
For, if u; and u7 are two non-idemmotent elements
whose idempotent elements are Uy, and u __respectively

and if r and s are integers such that

-
U._‘.' = 'u./£
5
mw = 1u
+F e

th imply that wu,|u and u. [u. .
en u,|u and u?l u. imply tha ui/u? and u_}/u; .

Hence if u_; and u#,are associated, it follows that

the idempotent elements u, and u are associated,

which is impossible by theorem 3.

THEOREI 5. In any ovum a non-idempotemt element can not
be associated to an idempotent element which
is not its idempotent element.

The proof of this theorem is similar to that of

theorem 4.

THEORE!! 6. In any ovum, no type a or type ¢ element can
be associated to its idempotent element, but
every type b element is associated tc its
idempotent element.

Let u; be a non-idempotent element and let uﬁ_be

its idempotent element. Then if

we have either
U= u (2)

or there exists a third element u ,in the ovun

such that wu = u, (3)



/€.

Multiplying (3) by u, however immediately gives (20,
so (1) dimplies (2).
How if u; is a type a element of index r, q&.is its

index element and we have

e
u_;: u&

= f¥’— (4)
u_;'l&ﬂ-u& = u’A

If u. is a type ¢ element, u, is its period element
and we know that u,u, is equal to a type b element,
as it equals a non-idempotent element in the repeat=-
ed part of the chain of u:.
So, (1) is impossible if u. is either a type a or a
type ¢ element,

However, if u; is a type b element, with period
r, qﬁ_is its period element so that
U, =u, (5)

ot/
whence uiuﬁ= u; = u

and we see that (1) holds. Moreo ver from (5)
u:ju, (6)
and from (1) and (6) U~ g -
THEOREM 7. In any ovum no type a or type ¢ element can
be associated to an idemmotent element or to
an element of type b.
- This follows immediately on combining theorems 5,6.
THEOREK 8. In any ovum, two type b elements are associated
if and only if they have the same period element.
This follows on combining theorems 4,6,
THEOREN 9. In any ovum, two type a elements, two type ¢

elements, or an element of type a and an ele-



/7.

ment of type ¢, can not be associated if they do
not have the same index.

Let u; and %? be two elements, either of which
is either an element of type a or an element of

type ¢, with different indices r; and 37 respectively.

Assume U ~u (1)
. X
Then u, ~ u;; (2)
—V'? s
and u~ u;’ (30
Firgt we consider the case in which u; and u,_ are

7
ot
both type a elements. IfQLA.%f, u, is an idempotent

element, while q;b is a type a element, so that (2)
is in contradiction to theorem 7, If r,<r, we find
similarly that (3) is in contradiction to theorem 7.
Secondly, let u; and u_ both be elements of tyve
¢. Then if r. < %7, df;is a type b element or an i-
dempotent element while u;? ig a type a or a type ¢

element. Again, then, (2) contradicts theorem 7. Sim-

ilarly if r < r; we arrive at a contradiction.

<
Thirdly, If u; is a tyve a element snd uz,is a
type ¢ element and if 2;4.{%, uz; is_an idempotent
element while u;?is 8 type a or a type ¢ element. If
%;‘::L R u:?’is a type a element, while u;? is a type

b element or an idempotent element. Again theorem 7
is contradicted in either case by (2) and (3) resmect-
ively.

Thus in all cases (1) leaés to contradiections, so

we conclude that u,; can not be associated to u .

7
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OVA OF TYPE I.

1Y

we now discuss vpnroperties of those ova which con-~

tain only elements of certain of the four possible types,
and first consider those elements which contain no ele-
nents of type b and no elements of type c¢. Such ova will

be called ova of type I. An ovumn of type I, then, may con-
sist only of idempotent elements, or it may have idemvotent
elements and elements of type a. 4 reduced ovum is easily

seen to be an ovum of type I *. Conversely we now nrove

THEOREL! 10. Every type I ovum is a reduced OVWi.
From theorems 3,4,7,9, it is seen that the theorem
will follow if we show that in an ovum of tyve I,
no two type a elements which have the same index
element, and the same index, can be associated.
To do this we make use of the following lemmas:
LEMMA 1. In any ovum, if u; is a type a element with

index element u,, and u,_is another icempotent

element such that g, = (a)
then wu su,. (b)

for, from vproperties of a type a element
W, WU, (c)
Multiplying both sides of (¢) by u, _and using (a)
immediately gives (b).
LEMMA 2. In any ovum, if u_ and %7 are two type a elements

with the same index element Uy and the same index,

then none of the relations

* A. Clifford, Thesis for Ph.D, Degree, C.I.T., 1933,
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(a)
(b)
= u (c)
(a)
is possible.
From properties of a type a element
B u,ug-1u,
so that (a) and (b) are false,.
Let r be the index of u, and of %7 e« If =2, then
weuw=

Assuming that (¢) holds and multiplying both sides
of (¢) by u; gives

UL W T U U o= g (e)
which contradicts (e¢), so that (e¢) can not hold if r
equals 2.

If r>2 and we assume that (¢) holds , we get

A= ey A~y
ALY (£)

But u. and u;?' for r>2 are type a elements of
index 2, and so (f) is not possible, by what we have
just shown above. Hence (c) does not hold for any
value of r.

Relation (d) implies that the index of u, is less

than that of u, which is contrary to hypothesis.

.
To return to the main theorem, let u; and %7

be two type s elements with index element u, and

index r, in an ovum O of type I.

Then u; Uy cuy (1)



Assume L (3)
Then there exists in 0 an element whose product
with u, is equal to u,_ , and by lemma 2 this ele-

ment is neither u_, nor ug; . There must there-

,'(17 s
fore exist in O another element, say uw, , whieh is
such that up s U (4)

From (3) there must also exist in O an element
whose vproduct with o is equal to u. . From lemms 2
thig element is neither u. ,g? , NOT U,y o Ve show
that it cannot be u, .

Assume u, u,= u- (5)

and combine this with (4) and we have

S
LAY (6)
2
U Up=u, (7)
1
Now, u,*u,
implies from (6 u u,= u
plies m (6) L Ypm Uy

in contradiction to (5), so that qz' can not equal

u, . From lemma 2 and (6) and (7) it follows that qz
can not equsal any of u, , %f ,
holds O must contaih another element u__ such that

or ug . Ience if (5)

1

Bt U, (8)
uou =u 9
L u = (9)
u-u *u; (10)

From (8) w,_ is either the index element of u, or is
a type a element having the same index element as u,
Hence, for s suffieiently large ( s =1 if u__ is

idempotent, s =t where t is the index of u__if u

AV
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is a type a element )

k 5
u, u =u,, (11)
“rom (9) and (10) we have
5 s~/
u. u_ =u u see W W Fu (12)
and
u. g:i: u, uiz cee U u_=u, (13)

Multiplying both sides of (4) by uj;,gives

s -5
u., u, u =11 1u
% £ T 5

which on employing (11) and (12) gives

S
s 7/
in contradiction to (13).
Thus (5) is impossible, so O must contain besides
u, ,%? »Up U, , &1 element u_ _which is such that
u u =u-: (14)
From (4) and (14)
U, u U, u,
u u.,u,-u
a/ e
P 7 4 1 neith -
rom lemma 2, u_u, can equal nei erz;k,uiA,%P.
Prom (4) it cannot equal u, , and from (l4) it can

not equal u 6 . Hence O contains another element u  w

14\:
which is such that
o, u?d (15)
. u ocu, (16)
R 44
u u <u (17
7 r 7 2
We show now that of the three elemsnts ge YU,y

and u, , no one can be the index element of any other,

Tv

no pair of them can have the same index element, and

no one of them has index element qﬁ_‘



For if %ﬂ is the index element of u_, or if u _ is

the index element of ?7,, or if u__  and %ﬁ,both have the

same index element, for t sufficiently large, ( t=1 1if

u, is an idempotent element, t greater than or equal to

7!/

the index of u, if o, is a type a element )
v ou - ul
M A o

Moreover from (16) and (17) we have

w. u ‘.. (19)
7;- [v >

= (20

%7 u u7, )

(18)

and from (14)
u u, = u,u
which using (18) and (19) gives
v u- u
7t
in contradiction to (20).

Similarly %ﬂ can not be the index element of u, ,u,

can not be the index element of %W , and u_ and can

1, and u,
not have the same index element.

Also, if u_ and u, had the same index element, u

7\/
would be that index element or would have the same index

element by (15), in contradiction to what we have just

shown, If u _were the index element of u, or if u

1, 1, were

the index element of u_, we would have

wou,=u
or W U,s Uy

in contradiction to (15).

To show that no one of u, ,u__, or %f‘ has index element

L &

uy , We first assume that u, has index element qﬁﬁ,so that

7:/



R 3,

for t greater than or equal to the index of G,

£
bt e
whence from (1)
Z
u. g%/= U
in contradicetion to (19); hence u. can not have u, as

s 4

its index element.

Assume thsat u

L, hag index element Ug o Then, by the

above u, does not have index element %ﬂ , and does not
have index element U, « 50 u_ is either an idemnotent
element or there exists in 0 another element ug/which
i1s the index element of u_ . If u_is an idempotent

element, from (14) and theorem 2 follows

u, w, -u, (21)
otherwise for u _a type a element , from (14) and the-
orem 2 , U, w o= U, (22)
From (15), for any integer s

<5 & s
u, u,= u

and for s sufficiently large

=
LR gf, (23)
if u_ is an idempotent element, otherwise
S
u, u7° (24)
For u_, an idempotent element, combining (21) and (23)
ives 2= u (25)
g Yo 5

and for u_ a type & element, combining (22) and (24)
also gives (25).

But (25) indicates that u,

which we hgve proved imvossible. Hence u, and similarly

is the index element of u_ ,
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u, can not have u, as its index element.

We have now shown that assumption (3) implies that
0 contains besides the three elements u; ,%% YRy at
least three more elements u,
six elements satisfy the seven relationsg

»u_  ,u _, and that thesge
7’1

W Uyt (1)
Wou,-u, (2)
uuy - (4)
uLu s (14)
u, qw=lyw (15)
u. u - u- (16)
R o
uou-=u (17)
7z 7 F
Moreover, of the three elements u, ,u__,u, , no one can

e 7
be the index element of any other, no pair of them can

have the same index element, and no one of them can heave
index element u, .

Now let uL_denote the index element of u, if u, is a
type a element, and let uL_denote u, itself if u, is idein-
potent, Let qv,and %o have similar significance with re-
spect to u_and u, .

o
Then from (15) and theorem 2 follows

LY AR (26)
Multiplying both sides of (26) by u, gives

w, w, < U, (27)
which by lemma 1 gives

u, W, U, (28)

Prom (16) for any integer %,



u u = u.
7’ "
which for t sufficieently large gives

U, =ug (29)

Similarly from (17)

u u-=u (30
rp 7 7 )
FProm (4) multiplying both sides by u,

wou, u,su Uy
which on employing (28) and (30) $ields
u. u/g:u?,
in contradiction to (29).
Thus assumption (3) leads to a contradiction so
that we conclude that in a type I ovum no type a elements
having the same index and the same index element can
be associated., The proof of the theorem is now complete.
THEOREM 1l. A reduced ovum must contain a zero element.

Let 0 be a reduced ovum having the idempotmnt elements

u ,u syeee, ¢ The product of these idempotent
Za p

Fr
elements is one of them,_say ?7' « That is
u?_/ 1}71 oooufm = uy/‘;

and for any other one of them, say uzx , evidently

u = 1

7 7 T (1)
For a type a element u, with index element %74, from=
properties of type a elements

u- %?2 =u, (2)

end for a type a element uirwith index element &« some
other idempotent say Uy by lemma 1 of the previous

theorenm wew, o=ou, (3)

(1),(2),(3), show that o, is the zero element of O.
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THEOREM 12, If a reduced ovum has an identity element, that

element is an irreducihle element.

Let u. be the identity element in a reduced ovum 0. If
u?/is another element of O with index element u; , we
have u. u =u;

“ 7
in contradiction to the fact that u; is the identity

element, Thus, u; can not equal the power of any element

in O.
Moreover, there exist in 0 no elements u?,and u*.such
that ?% Ug=u,
For, this implies
e
whence u$/ u, u,
or uz’ U,

Also, in a similar manner,
w, | u
% | Py
But O is a reduced ovum. Thus, u. has no proper divisors

and hence is an irreducible element,

FProm theorem 12 follows:
COROLLARY 1. A reduced ovum O containing an identity element
has a reduced sub-ovum of order n-l, consisting

of all the elements of 0 except the identity.

COROLLARY 2, From a reduced ovum O of order n, mark set
(u/ »U, yess,0_ ), We can form a reduced ovum
of oréer nt+l, containing an identity element,
by adjoining to the mark set of O an element u

ety

and to the multiplication table of O the relations
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[
-y;,f-/—- u/wf'(
u o, ou, - ouu v u, (i= 1,2,3,¢00,11)

®i5 13, A reduced ovum has at least one irreducible

element which is not an identity element.

First let O be s reduced ovum which contains ho iden-
tity element, and assume that O possesses no irreduc-
ible element. Then any element ue has a proper divis-
or u;i , which in turn has a proper divisor wi o, and
so on, so that we get 2 chain of elements each of
which is a proper divisor of all those elements which
precede it . However , due to the finite number of el-
ements in O we must eventually come to an element uéf
whieh has occurred earlier in the chain. Suppose the
chain is W 43U, geeesU: HJU. ,ee0,U. 400

2 7 T# ~r
Then , this implies

- ’ u.
“ges -

F4
and u.) u,
F #t!

in contradiction to the fact that uf#f was & proper
divisor of u;f .

Thus, O contsins an irreducible element which is not an
identity element.

If 0 has an identity element, congsider the sub-ovum O'
formed of all the elements of C except the identity.
Then , as above 0' possesses an irreducible element

which is salso irreducible in O and which is not the

identity element of 0. Thus, O contains an irreducible



el ement which is not the identity element.
Since in a reduced ovum an irreducible element possesses
no divisors excent itself and the identity element if one em-

ists in the ovum , we can conclude from theorem 13

CORCLLARY 1, Every reduced ovum of order n has at least one reé

duced sub-ovum of order n-l.

Cyclic Reduced Ova,

Consider an ovum of orier n in which every element is s
power of & certain element . Such an ovum will be said to be

cyclic. 'e prove

THEOREI! 14, For a given n there exists one and only one cyclic

reduced ovum of order n..

Let the n elements be powers of one u, . That is

u_‘;= u7 (“ i=l,2,...,n)

The zero of the ovum is evidently u_, , since if u.
i<n, were a zero element we should have

<+

u = 0. u =u;

~

and the ovum would not contain n elements.

Then, the multiplicatiom table is given by the relations

2
u, =ou, 2i<n

1 .
u-= u__ 2irn
w.ow, = u. i+j<n
Q;u?= u___ i+ jzn

It is evident that such a multirlication table is both

commutative and associstive so that the theorem follows.

2 £,
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Construction of Reduced or Type I Ova.

Corollary 1,theorem 13 shows that from all vossible
distinct reduced ova of order n~l we can obtain all possible
distinet ova of order n by adjoining to the ova of order n-1
another idemnotent or type a element , making multiplication
of this element with itself and with the original elements
commutative and associative, and examining the ova thus formed
to see which are simply isomorpljic to one another.

In forming thus reduced ova of order n from reduced ova
of order n-1 theorems 2 and 11 are found to be useful.

T™he distinet reduced ova of order 2 are two in number.

R2, I223L
u‘/ u/ u/ u/
and
u uz u, u,

From R2, ad joining the element u; we obtain the following

reduced ova of order 3.

R‘% R 3 R3

2
'(1/ u/ 11/ 11/ u/ 11, u, u, u/
u, u, u, u, u, u, u, u, u,
u/ 11/ u3 u/ ua uJ 11/ 'll/ u/
R 3, R J

u/ Il/ u/ '(1/ u/ u,

u o u, u, u, u, u,

u/ uz u‘/ u/ ui u:{.

From R.Qk'we obtain only two more reduced ova of ordier 3, which



are distinet from one another and from the ova already ob-

tained from R:Z,, « They are

R 3, R 3,
u o uw ou u, u, u,
u/ 11/ 11/ U./ U./ u,
U./ u/ u/ U./ U./ ui

Proceeding in this way from RJ3, adjoinig the element u,

we get the distinct reduced ova of order 4.

R4, R 4,
u, w, u, u u, uw, u, u,
11/ ui 'IJ., 11/ U./ 'llz u, U./
11/ 'UL/ u} 11/ U./ u/ '(13 u3
u/ u/ U_/ U.L’ u/ U./ 113 ug‘
R 4 R &,
u/ u, 11/ U./ u/ u/ u, u/
u/ 119‘- u, '(11 '(1/ ux u/ 11/
'U., 11/ 113 U.3 u/ 11, ug U./
11/ U.X u3 ué( 11/ U./ u/ U./
R 4% R G
u/ u, u/ u, u/ u/ u/ u,
'D./ 1.12 u/ u/ U./ u& u/ u:{,
'll/ u/ u3 u(/ 11, U.I u_? U.I
u/ u{ 114( u/ u/ ui u, uz

M'f'?:
From R31 we get the further distinct ova



R
%y
ul 11/
u u
A A
U.z_ u;
u u
2 2
R 4
7
u, u,
'llx uz_
'l].=L U.J
u u
/4
Rl"//
u u
/ /
uk ui,
ufl_ u3
u w
p-3 2
R l/‘/}
'll/ U.,
u u
X 2
u& u.;
uz 113
R4,
u/ U.’
u nu
0
'!.1, u,
u u
/ b &

&g

u, u,
u, u,
u, u,
u, u,
&,o
u, u,
w, u,
u, w,
u o,
b1q

u, u,
u?v u?.,
uy v,
u, U,
e,

u, u,
w, u,
u, u,
u, u,
& se

u, u,
u, u,
ul u/
u, u

37,



From R3,we get

R G2

u, 'lll
u, u,
u, u,
u, u,
R [_,_16
u/ ul
£ Uy U,
u, u,
L YT,
R 4‘22,
u, v,
2 %z Y
u, u,
u, g
R LF“
ul u(
u, u,
uﬁ?\, u‘i,
uk 113
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Réz:’ R "'ﬂ_é
'U./ U./ u/ u, 11, u( U./ u,
"(1/ 'Ll, 11/ 'lll u/ U./ U./ u/
u/ u, 'll/ U./ 11’ U./ 'll/ uz
'!1/ 11, '(1' u/ u, u/ 1.1_;L U.’

R 427, % 25
u/ u/ 'll/ U_/ 11' 'll’ U., 11,
u/ 11/ 'lll '(1, 11, u, 11' u,
11/ U.’ 11/ u’ 'll' u' U.( ux
u, U./ ul uz U.’ u, U.i 111

R4,

U., 12.3 U., ux

From R3, we get only one further distinct ovum

7
R 4‘30

OVA OF TYPE II.

An ovum which contsins no elements of type a or of type
c¢, but at least one element of tyve b will be called an ovunm

of type II.
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If G is a finite Abelian groun L of order n>1 and if

i is its identity element, every element a of G has the

2 L

property a =1
s+
“whence 8 =a

and so G is an ovum of type II with only one idempotent el~-
ement, the identity.

Conversely, an ovum O of type II conteining only one
idempotent element is a groun. For, let the idemrotent ele-
ment of O be Uy . Then u, is the period element of any type

b element u. in 0, and so for some integer s

St/
U ow, s u o= u.
s0 that Uy is an identity element.
. 5~/
I‘oreover, u, u. = U,

so that u, has an inverse in O . Thus 0 is a grour.

The vproduct of two type b elements having period element
u, , or of a type b element and its period element ue 1is
either U,
Thus all tyve b elements with period element Uy together with

or a type b element having period element u, .

u, form a sub-ovum of O. By what we have just shown, such a
sub-ovum is 2 group. Remembering also that an idempotent el-
ement is itself a zroum of orier:,l, we can then state
THEOTEM 15, Zvery ovum O of type II is either a group or
consists of sub-ovawhich have no element in common
and each of whiech is a groun. Zach of these
groups consists of an idempotent element and of
all the tyne b elements which have this idem-

potent element for period element.

1 Vo Der (/l/a},y\o[ew, lew-ale/me W""*’/" 7S
1' o o ’ ¥ . 7/le 27



THEOREM 16, Irom g finite Abeliasn grouv G of order n-l we
can obtain two and only two ova of order n, by

the adjunction of an idemmotent element.

For, let the identity element of ¢ (u,...,u_ ) be u.
and suppose u, 1is an idempotemt element which we wish
td attach to G to form an ovum of orier n. The product
u; uw, is then an idempotent element and hence must
equal either u; or u_, . From theorem 2 it then follows
that u__ must either have vproperties of a zero element
or of an identity element in any ovum formed from u_,
and G. Letting u _, be either a zero or an identity
gives us commutative and associative multiplication
for the mark set (uw, ,...,u,, ) and thus we can form
the two ova of order n each of which has G as a sub-

Oovulll.

In a group every element divides every other element so that
every element is associated to every other element. From the-
orems 3,6 it follows that an ovum in which every element is
associated to every other element can have only one idemnwotent
element and type b elements and is therefore a group. So we
have
THEORE.. 17. A sufficient condition that an ovum ¥e a group

is that every element be associated to every

other element.

It must be noted that the condition given in this theorem

is not the same as the condition given by Van der Waerden
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in his postulates for groups *. His postulate 5 not only de-
mands that every element be associated to every other element

but also that every element divide itself,

Construction of Ova of Type II.

From theorem 15 we know that all type II ova of order n
can be obtained by compounding sroups of order = n, only
those combinations being taken the sum of whose orders is n,
The commutative and associative laws must be satisfied and
ova simply isomorphic to one already listed must be thrown
out. In particular, to groups of ordier n-1 we adjoin one
idempotent element , and to groups of order n-2 we adjoin 2
idemvotent elements, and so on. Ye use the letter S to dec-
ignate type II ova.

Thee only type II ovam of order 2 is the Abelian group

sz,
'(1/ 'llx'
uk u,

Type II ove of order 3 are 3 in number:

The Abelian group 3 3, u u, u

and the two ova obtained from Szlon ad joining an idempotent

el ement
S.zi S 33
u, u, u, u, u, u,
u, u, u, u, u, u,
u u, u, u, u, u,

* Van der Waerden Illoderne Algebrs, page 19, 5,



Type II ovse of order 4 are 11 in number. The two Abelian

groups 5] 4, S 41
u u, u, u, u, u, u, uS‘
w, u, ué u, u, u, u‘f u,
u, uq ul w, u, u‘/ u, u,
E“, uJ u, u, u, u; u, u,

The two ova obtained from the group S3, by adjoining an

idemppotent element

[
b3 Sy,
u, uz u, uq u/ u2 u3 u,
u u u u u u u u
2 3 ’ ¢ 2 2 / =z
u u u u u u u u
2 / 2 & 2 / 2.
u u u u u u u u
4 & & ' / 2 2 &

Two ove obtained on compounding two groups simply isomor-

phic to S 2/

S 7, S &,
u/ ux u/ u/ U., 111 11, 'l].,v
'Ill 11’ ux uz 'll"L 11/ ul u,
u/ ‘\lz’ u3 u‘/ u, "ll9~ U.3 '(1"
u, '(J.a uL' '(13 uz 11/ u‘f Ils

Ad joining two idempotent elements to 5Z, which is the same

thing as adjoining one idempotent element to S31and 53, gives,

from S 3, 54, S &5
u uz u, u, w, u, uw, u,
uz u, u, uz u, u, u, u,
11/ 117L u}__ 11/ u, u, u_ u
u u u u u u u u



and from 833

Sé"‘f S("Io
u/ 'I.J.1 U._? '[1/ 'll/ 111— U.B 113
u u

ui '(1/ u? uz 2. / u? u3

u u
u; us uJ u) u3 u_? 3 3
u u u u u u n u
/ 2 3 & 3 =2 3 G

S 4,
u, '!.Zl.1 U.3 u.q

FURTHER OVA OF ORDER N=4

i7e 1list here the remaining distinet ova of order 2,95,4.
There are no more of order 2.

There are only two more of order 3:

T3/ T 31
u, u, u, u, u, u_
n u n m n un
2 z 2 / f
u, u, u, U, v,y

and 15 of order 4.

T by T & o
w,ou, ou,  u, u, u, u, u,
U, W, uy ug u, u, u, u,
u, o u, u u, wu, uw, w, u
u u u u uou, u, u



T 4,
u u
’ {
n u
z /
ul u/
u u
Y g
T4
u’_ ul
un u
A 2
u& u/
m un
2 4
T
by
u/ u/
u uw
2 7/
u/ u/
m u
4 /
p 47
'D.’ U.}
ul U.3
uz U./
n u
X 3
T4,
U.z U.l
11’ U.,L
uz u,
n w

J?_

u3 11‘ u,
u‘! u, ul
Tq‘
u, u, u
uz u?\ u&
ul u, u,
uz u, 11’
T4,
u, u, u,
ui ug u(f
u3 u, u3
u(’ u} U.L
T(/_IO
U %y Yy
Tl/ u& uz
uk u, u/
u.ou, u
T["IL






