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Abstract

The thesis covers two topics in string theory and quantum field theory. First, we realize metastable

vacua in various supersymmetric gauge theories. Specifically, we consider the Coulomb branch of any

N = 2 supersymmetric gauge theory, and perturb it by a superpotential and engineer a metastable

vacuum at a point. We also study its relation to Kähler normal coordinates and Fayet-Iliopoulos

terms. Having studied the metastable construction, we apply this to general gauge mediation. We

show how to compute the current correlators when the hidden sector is strongly coupled in specific

examples.

Next, we consider gauge/gravity dualities. We apply dualities to the investigation of various

strongly coupled field theories. In one example, we construct M-theory supergravity solutions with

the nonrelativistic Schrödinger symmetry starting from the warped AdS5 metric with N = 1 super-

symmetry. We impose that the lightlike direction is compact by making it a nontrivial U(1) bundle

over the compact space. In another example, we show that, in a gravity theory with a Chern-Simons

coupling, the Reissner-Nordström black hole in anti-de Sitter space is unstable depending on the

value of the Chern-Simons coupling. The analysis suggests that the final configuration is likely to

be a spatially modulated phase.
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Introduction and Outline of Thesis

Supersymmetry extends the usual Poincaré symmetry by adjoining symmetries that relate bosons

and fermions. The Coleman-Mandula theorem [1] states that supersymmetry is essentially the only

possible extension of the Poincaré symmetry. Supersymmetry exhibits many virtues such as being a

possible solution to the hierarchy problem and to the gauge coupling unification, and it has captivated

high energy theorists for decades. In addition to being a viable model to describe nature above the

TeV scale, supersymmetric gauge theories have been analyzed in place of more realistic systems to

study physical phenomena such as confinement or chiral symmetry breaking, since supersymmetry

places additional constraints over the system and much more information can be inferred compared

to non-supersymmetric theories. The low energy effective theory of N = 2 supersymmetric gauge

theory with SU(2) gauge was found by [2, 3] and subsequent works extended this to more general

N = 2 supersymmetric gauge theories. See [4] for a review. For a class of N = 1 supersymmetric

gauge theories, Seiberg duality helps us examine some of the properties of the theories even when

the coupling is strong [5, 6].

However, supersymmetry has to be spontaneously broken to describe nature, and it is natural

to think that supersymmetry is broken at the TeV scale to suppress the radiative corrections to the

Higgs boson mass. Although it is generally difficult to construct a dynamically broken supersym-

metric model, it was pointed out in [7] that what we need is only a metastable vacuum, as long as the

tunneling rate to supersymmetric vacua can be parametrically suppressed. That is, if the lifetime

of a metastable vacuum is longer than the age of the universe, there is no problem considering it as

stable in all practical purposes.

In part I of the thesis, we examine closely a class of supersymmetric gauge theories where

metastable vacua exist. We will find a general method to construct such theories and investigate

their properties. The models with metastable vacua can be used as a hidden sector for a realistic

supersymmetric model to describe particle physics. We discuss how to obtain information of the

supersymmetry breaking effect to the visible sector in several examples.

In part II of the thesis, we turn to another interesting topic: gauge/gravity dualities. The original

and most concrete version is the correspondence between the AdS5 × S5 type IIB supergravity and

N = 4 super Yang-Mills theory. The initial observation was that there are two different descriptions
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of the low energy dynamics of D3-branes [8]. A more detailed prescription for the matching of the

two theories was made in [9, 10]. In [10], the Kaluza-Klein spectrum of the supergravity theory

is matched to the BPS operators in the N = 4 Yang-Mills theory. Since then, numerous checks

have been made to support the correspondence between the two theories. Also, many additional

examples are found that have gauge/gravity dual pictures. For a comprehensive review of works on

gauge/gravity dualities, see [11].

In addition to understanding gauge/gravity dualities and searching for the evidence in support of

them, given the overwhelming evidence in favor of the dualities, another useful direction to pursue is

to use gravity theories to study some strongly coupled gauge theories. Being strong/weak dualities,

strongly coupled gauge theories correspond to classical solutions in gravity theories. Even though

we do not have full information of the gauge theories, a substantial part of the classical gravity

solutions can be determined. In this case, gravity solutions give us the properties of the universality

class of strongly coupled gauge theories. We consider two applications of gauge/gravity dualities.

First, we will study field theories with nonrelativistic scale invariance, called Schrödinger symmetry

by constructing a supergravity solution in M-theory that has the required symmetry properties.

Then, we will consider gauge theories with chiral anomalies for some global U(1) symmetry, whose

corresponding gravity theories have a Chern-Simons coupling. We will show that, in some cases,

an inhomogeneous phase is favored over a uniform phase and investigate precise conditions for the

occurrence of such a phase.
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Part I

Metastable Vacua in

Supersymmetric Gauge Theories
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Chapter 1

Introduction

Presently, all physical phenomena up to the TeV scale are well described by the standard model.

Despite its beautiful success, however, it is conceivable that a new theory has to exist beyond the TeV

scale. One reason is that we need a Higgs boson to break electroweak symmetry, and for the radiative

corrections to the mass of the Higgs boson not to give an unacceptable large contribution, the cutoff

scale should be of the TeV scale. This is called the naturalness problem, and one way to address

this problem is to consider supersymmetric gauge theories [12–14]. Usually, the mass of a boson

receives a quadratic divergence. In contrast, the fermion mass obtains only a logarithmic divergence

due to the fact that an additional chiral symmetry appears in the absence of the mass term. In

the presence of supersymmetry, the mass of a boson is related with that of its fermionic partner.

As a consequence, a quadratic divergence is absent from the Higgs mass under renormalization. In

addition to addressing the naturalness problem, supersymmetric gauge theories provide the lightest

supersymmetric particle (LSP) as a natural candidate for dark matter.

Of course, supersymmetry should be broken below the TeV scale to describe our non-supersymmetric

world. We can introduce supersymmetry breaking terms by hand and in this case, they should break

supersymmetry softly in the sense that quadratic divergences are absent [15–17]. But a better way

will be to break supersymmetry dynamically: without an artificial introduction of soft terms, they

are generated in the low energy effective theory dynamically. However, it is not easy to realize

dynamical supersymmetry breaking. For example, N = 1 supersymmetric gauge theories with mas-

sive and vector-like matter fields have supersymmetric vacua due to the nonzero Witten index [18].

Therefore, the models that realize dynamical supersymmetry breaking vacua are rather elaborate.

However, it was pointed out by [7] that we do not actually need a complete supersymmetry

breaking. Even though supersymmetry is restored at some moduli of the theory, it may be possible

that there exist metastable vacua whose decay rate to the supersymmetric state is extremely low

and practically zero. The metastable vacua have appeared previously in models of supersymmetry

breaking [19–21], and in a superstring setup [22]. The novelty in the discovery of [7] is that metastable

vacua occur even in very simple supersymmetric gauge theories. They found out that SU(Nc)
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supersymmetric gauge theories with massive Nf hypermultiplets have metastable vacua for Nc+1 ≤

Nf < 3NC/2. Following their idea and techniques, various phenomenological models have been

proposed [23–31]. Moreover, one can construct supersymmetry breaking models in the context of

string theories as a low energy theories on D-branes [32–45]. We will later consider another way to

realize metastable vacua by studying the Coulomb branch of N = 2 supersymmetric gauge theory

perturbed by a small superpotential [46,47].

Realizing supersymmetry breaking is not enough for construction of a realistic model. Tree level

supersymmetry breaking is not attractive due to the constraint given by the supertrace [48]: quite

generally, the constraint predicts an existence of a supersymmetric partner lighter than its ordinary

partner particle. To circumvent the problem, we may assume that there exists a hidden sector where

supersymmetry is broken, but there is no direct tree level coupling between the hidden sector and

the observable sector, which contains observable particles and their superpartners. The observable

sector is usually a variation of the minimal supersymmetric standard model (MSSM).

There are several ways to realize the idea of the mediation between the two sectors. One is via

gravity; since it couples to the stress-energy tensor, it virtually couples to every field. The higher

dimensional operators are suppressed by powers of the Planck scale. One of such higher dimensional

operators give supersymmetric mass terms, called the µ-term to the Higgs particles, so the µ-term is

of the order of the supersymmetry breaking scale, which is of order 100GeV. This is one of the nice

features of this approach. However, in this approach, there is typically a significant flavor symmetry

violation. Note that the only place where the flavor symmetry is violated in the standard model is in

the Yukawa couplings. The problem is that the mechanism that breaks the flavor symmetry at some

higher scale may also introduce additional terms that break the flavor symmetry in supergravity

models and there is no obvious reason to prohibit that. Another problem for the flavor symmetry

is that it is not plausible that the ultraviolet theory has any kind of global symmetry. This comes

from the study of the string theory, which does not seem to possess exact global symmetries.

Another mediation mechanism is the gauge mediation. In this scenario, some of the hidden-sector

fields are gauged by the gauge group of the observable sector. As an example, in a simple model of

gauge mediation, there is a chiral superfield M in the hidden sector that obtains a nonzero F -term

expectation value by some dynamical supersymmetry breaking.

M = M + θ2F , F 6= 0 . (1.1)

The hidden sector superfieldM couples to the messenger chiral superfields Φ̃ and Φ that are charged

under the gauge group of the observable sector via the interaction

Lint =
∫
d2θMΦ̃Φ . (1.2)
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In the case when the messengers Φ̃ and Φ are weakly coupled in the hidden sector, the nonzero

F component of M splits the mass spectrum of Φ̃ and Φ and it can be computed explicitly. This

splitting does not affect the mass spectrum of observable particles at tree level. However, since

they are charged under the gauge group of the observable sector, loop corrections to the masses

of observable particles contain Feynman diagrams with messengers, which means there are loop

corrections to the mass spectrum.

A similar consideration can be made in the case when there are no apparent messenger fields

and the hidden sector is inherently strongly coupled. In such general settings, a precise definition

of gauge mediation is proposed by [49], which states that a model is called gauge mediated if the

model decouples into the observable sector and the hidden sector when the gauge couplings of the

observable sector vanish. An attractive feature of this scenario is that the mediation automatically

respects the flavor symmetry since gauge symmetry is flavor blind. Also, the mechanism is highly

predictive in the sense that just a few parameters that determine the soft supersymmetry breaking

determine all parameters in the observable sector while, for example, the MSSM has 100 or more

adjustable parameters. However, unlike the gravity mediated models, there is no apparent way to

produce the µ-term in this mechanism since the µ-term is supersymmetric. This problem can be

handled in various explicit models, but we do not discuss this issue in the thesis. The definition

encompasses most models with the supersymmetry breaking sector and the messengers, and models

with direct mediation. Many of the physically observable effects mediated to the observable sector

can be encoded by the current-current correlators of the global symmetry of the hidden sector. This

allows us to extract the soft supersymmetry breaking terms even in the strongly coupled hidden

sector and we will see some of such examples [50].

The organization of part I is as follows. In chapter 2, we will review the basics of supersymmetric

gauge theories for later discussions. In chapter 3, we will show that, for a generic choice of a point on

the Coulomb branch of anyN = 2 supersymmetric gauge theory, it is possible to find a superpotential

perturbation which generates a metastable vacuum at the point. We will also study its relation to

Kähler normal coordinates and Fayet-Iliopoulos terms. In chapter 4, we consider general gauge

mediation and compute current correlators when the hidden sector is strongly coupled.
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Chapter 2

Supersymmetric Gauge Theories

In this chapter, we present basic elements of supersymmetric gauge theories as a preparation for

later discussions. First, we introduce the superfield notation and construct N = 1 supersymmetric

gauge theories using superfields. Then we explain N = 2 supersymmetric gauge theories in terms of

N = 1 superfields and then introduce N = 2 superspace formalism for vector multiplets for abelian

gauge theories to discuss Fayet-Iliopoulos terms.

2.1 N = 1 Superfields

In the four-dimensional flat spacetime, a nice way to realize supersymmetry is to introduce super-

space coordinates. These consist of the usual space-time coordinates xµ, and additional fermionic

coordinates θα and θ̄α̇. The convention follows that of [51]. The supersymmetry transformation acts

on functions of the superspace by the operators

Qα =
∂

∂θα
− iσµαα̇θ̄

α̇∂µ ,

Q̄α̇ = − ∂

∂θ̄α̇
+ iθασµαα̇∂µ ,

(2.1)

which satisfy the anticommutation relation {Qα, Q̄α̇} = 2iσµαα̇∂µ. It is convenient to introduce the

supercovariant derivatives

Dα =
∂

∂θα
+ iσµαα̇θ̄α̇∂µ ,

D̄α̇ = − ∂

∂θ̄α̇
− iθασµαα̇∂µ ,

(2.2)

which anticommute with Qα and Q̄α̇ and have their own anticommutation relation {Dα, D̄α̇} =

−2iσµαα̇∂µ.

A superfield is a function on the superspace with coordinates (xµ, θα, θ̄α̇). Since fermionic co-

ordinates anticommute, a series expansion with respect to these coordinates always terminates at
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some finite order. Note that a sum or a product of two superfields is also a superfield. A general

superfield, however, contains too many degrees of freedom to describe a physical system. So we need

to impose some constraints on the superfield. One way is to impose the condition

D̄α̇Φ = 0 (2.3)

to a superfield Φ. If we introduce coordinates yµ = xµ+iθσµθ̄, this constraint is equivalent to saying

that Φ is a function of only yµ and θα and not of θ̄α̇. That is, the superfield Φ has the expansion

Φ(y, θ) = A(y) +
√

2θαψα(y) + θαθαF (y) . (2.4)

In terms of x, θ and θ̄, this can be written as

Φ(x, θ, θ̄) = A(x) + iθσµθ̄∂µA−
1
4
θ2θ̄2∂2A+

√
2θψ(x)− i√

2
θθ∂µψσ

µθ̄ + θθF (x) . (2.5)

We call a superfield Φ that satisfies (2.3) a chiral superfield. Note that a product of two chiral

superfields is also a chiral superfield.

There is another kind of constrained superfield that will be used later. It is called a vector

superfield and a vector superfield V satisfies the relation V = V †. It is used to describe a gauge

field. For an abelian gauge theory, V transforms as

V → V + Λ + Λ† (2.6)

under the supersymmetric version of the gauge transformation. Here Λ is a chiral superfield. We

can choose a gauge, called the Wess-Zumino gauge, where V takes the form

V = −θσµθ̄Aµ + iθ2θ̄λ̄− iθ̄2θλ+
1
2
θ2θ̄2D . (2.7)

Supersymmetry is broken by the choice of the gauge, but still there is an ordinary gauge symmetry

Aµ → Aµ + ∂µf for some function f(x). The supersymmetric version of the field strength in the

abelian theory is

Wα = −1
4
D̄2DαV . (2.8)

Wα satisfies D̄α̇Wβ = 0. That is, Wα is a chiral superfield. In components, it is written as

Wα = −iλα(y) + θαD −
i

2
(σµσ̄ν)αFµν + θ2(σµ∂µλ̄)α , (2.9)

where the field strength Fµν = ∂µAν − ∂νAµ.



9

For non-abelian gauge symmetry, the transformation law (2.6) is replaced with

e−2V → e−iΛ
†
e−2V eiΛ , (2.10)

where V and Λ are Lie-algebra valued vector and chiral superfields, respectively. The field strength

is given by

Wα =
1
8
D̄2e2VDαe

−2V . (2.11)

2.2 N = 1 Lagrangians in Superfield Formalism

Using the chiral and vector superfields introduced in the previous section, it is possible to write down

a Lagrangian that has N = 1 supersymmetry manifestly. By performing dimensional analysis or

direct calculation, it can be readily checked that the θ2 component of a chiral superfield, or the θ2θ̄2

component of a vector superfield yields a total derivative under a supersymmetric transformation.

Therefore, for a chiral superfield Φ, a general N = 1 supersymmetric Lagrangian has the form

L =
∫
d4θK(Φ,Φ†) +

∫
d2θW(Φ) + h.c. , (2.12)

where h.c. denotes the hermitian conjugate of its previous term. K(Φ,Φ†) is called the Kähler

potential and is a real function of Φ and Φ†.

For a vector superfield V for an abelian symmetry, there is a corresponding chiral superfield Wα,

which is a field strength, as defined in (2.8). Using this, the kinetic term for the gauge field is given

by

L =
1

4g2

∫
d2θWαWα + h.c. . (2.13)

For a non-abelian theory, we only need an additional trace. In general, there is a θ-term in the

Lagrangian of the form θεµνρσFµνFρσ, and to account for this, it is better to use a complex coupling

constant τ = θ
2π + 4πi

g2 . In this case, the Lagrangian for a non-abelian theory is

L =
1
8π

ImTr
∫
d2θ τWαWα + h.c. . (2.14)

2.2.1 R-symmetry

In supersymmetric gauge theories, there is sometimes a global symmetry called an R-symmetry. The

supercharges are in a representation of the R-symmetry. In N = 1 supersymmetric gauge theories,

the supercharges are in U(1) representation: Qα has charge +1 and Qα̇ −1. This in turn implies that

the fermionic superspace coordinate θ (resp. θ̄) has charge −1 (resp. +1) under the R-symmetry.

The superfields in the theory transform appropriately if there is an R-symmetry. Note that the
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superpotential W(Φ) has R-charge +2 as can be checked in (2.12).

2.3 N = 2 Lagrangian in N = 1 Superfield Formalism

We have seen that N = 1 supersymmetry has two kinds of superfields: one is a chiral superfield

and the other is a vector superfield. In this section, a Lagrangian that has N = 2 symmetry

will be described in terms of these N = 1 superfields. Note that in this case, the R-symmetry is

SU(2)× U(1): in addition to the U(1) R-symmetry that is manifest in N = 1 notation, there is an

additional SU(2) R-symmetry under which a pair of (Dirac) supercharges transform as a doublet.

Let Φ be a chiral superfield and V a vector superfield. Suppose both are in the adjoint representation

of the gauge symmetry. Then, combining them, we can construct an N = 2 vector multiplet (Φ, V ).

The N = 2 Lagrangian can be written as

L =
1
8π

Im
(∫

d2θ
∂2F

∂Φa∂Φb
W aαW b

α + 2
∫
d2θd2θ̄(Φ†e2gV )a

∂F(Φ)
∂Φa

)
, (2.15)

where a, b are indices for the adjoint representation of the gauge symmetry. F(Φ) is called a N =

2 prepotential and is a holomorphic function of Φ. Note that F(Φ) determines the Lagrangian

completely. N = 2 symmetry constrains the system very tightly so that this is the most general form

of the Lagrangian with only one N = 2 vector multiplet, and the only effect of the renormalization

is to change the prepotential F(Φ).

However, there is another N = 2 multiplet, called a hypermultiplet, and this consists of a chiral

superfield Q and an anti-chiral superfield Q̃† in some representation of the gauge group. The N = 2

Lagrangian for hypermultiplets (Qi, Q̃i), where i denotes flavor symmetry index, can be written as

L =
∫
d2θd2θ̄

(
Qi†e−2VQi + Q̃ie2V Q̃†i

)
+
∫
d2θ

(√
2Q̃iΦQi +mj

i Q̃
iQj

)
+ h.c. . (2.16)

Note that, unlike vector multiplets, a mass term is allowed without breaking N = 2 supersymmetry.

2.4 Supersymmetry-Preserving Vacua of N = 2 Abelian The-

ory with Fayet-Iliopoulos Terms

An abelian version of (2.15) of the N = 2 Lagrangian of vector multiplets Ai is written as

L =
1
2
Im
[∫

d4θFi(Ak)Āi +
1
2

∫
d2θFij(Ak)W i

αW
α j

]
, (2.17)

where the gauge group is U(1)n, i = 1, · · · , n and Fi1i2... = ∂i1∂i2 . . .F(ai). It is not possible to add

an ordinary superpotential and still have N = 2 supersymmetry. However, we can consider adding
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N = 2 Fayet-Iliopoulos (FI) terms to the Lagrangian and, in special cases, they can be written as

superpotentials. But it is more convenient to discuss the FI-terms in terms of the N = 2 superspace

language to see explicitly that the theory with FI terms preserves the full N = 2 supersymmetry in

an appropriate sense.

2.4.1 N = 2 Superspace and Superfields

We shall work in the N = 2 superspace conventions of [52] with two anticommuting coordinates θα

and θ̃α. The standard realization of N = 2 supersymmetry on this space is through the operators

Qα =
∂

∂θα
− i(σµθ̄)α∂µ , Q̃α =

∂

∂θ̃α
− i(σµ ¯̃

θ)α∂µ , (2.18)

and their conjugates. A generic chiral N = 2 superfield A can be constructed from two chiral N = 1

superfields, Φ and G, along with a chiral N = 1 spinor superfield Wα as

A(ỹ, θ, θ̃) = Φ(ỹ, θ) + i
√

2θ̃W (ỹ, θ) + θ̃2G(ỹ, θ) , (2.19)

where ỹµ = xµ + iθσµθ̄ + iθ̃σµ
¯̃
θ. The N = 1 superfields admit further component expansions

Φ(ỹ, θ) = φ(ỹ) +
√

2θψ(ỹ) + θ2F (ỹ) ,

Wα(ỹ, θ) = −iλα(ỹ) + θγ

(
δγαD(ỹ)− i

2
(σµσ̄νθ)γα Fµν(ỹ)

)
− iθ2ξα(ỹ) ,

G(ỹ, θ) = F̃ (ỹ) +
√

2θη(ỹ) + θ2C(ỹ) .

(2.20)

Note that Wα does not satisfy any constraints so it is not quite the superfield with which we are used

to constructing N = 1-invariant actions. In particular, Fµν does not satisfy the Bianchi identity

and ξα is not proportional to
(
σµ∂µλ̄

)
α
.

Let us now consider a chiral superfield AD satisfying the additional reducing constraint

(
DaαDb

α

)
AD =

(
D
a

α̇D
b α̇
)
A†D . (2.21)

This again admits an expansion of the sort (2.19),

AD(ỹ, θ, θ̃) = ΦD(ỹ, θ) + i
√

2θ̃WD(ỹ, θ) + θ̃2GD(ỹ, θ) . (2.22)
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The corresponding N = 1 expansion, though, becomes

ΦD(ỹ, θ) = φD(ỹ) +
√

2θψD(ỹ) + θ2FD(ỹ) ,

WαD(ỹ, θ) = −iλαD(ỹ) + θγ

(
δγαDD(ỹ)− i

2
(σµσ̄νθ)γα Fµν D(ỹ)

)
+ θ2σµ

αβ̇
∂µλ̄

β̇
D(ỹ) ,

GD(ỹ, θ) = F̄D(ỹ) + i
√

2
(
θσµ∂µψ̄D(ỹ)

)
− θ2∂2φ̄D(ỹ) ,

(2.23)

with

∂[µFνρ]D = 0 . (2.24)

Note that the reduced N = 2 superfield differs from the unconstrained one in several ways. In

addition to Fµν D satisfying the Bianchi identity, the θ2 component of WαD as well as the θ and θ2

components of GD are no longer independent but instead are given by total derivatives of other com-

ponent fields. Finally, the bottom component of GD is an auxiliary field, which is not independent

but instead set to the complex conjugate of the top component of ΦD, denoted FD.

2.4.2 FI Terms and Nonlinear Realization of N = 2 Supersymmetry

To describe N = 2 Lagrangian in terms of N = 2 superfields, we introduce two types of N = 2

chiral superfields:1 a generic N = 2 chiral superfield A and a reduced N = 2 chiral superfield AD
which satisfies the constraint (2.21). Using N = 2 chiral superfields Ai, the Lagrangian (2.17) is

written as, up to an overall factor,

L =
1
2
Im
[∫

d2θ d2θ̃
(
F(Ai)−AiAD i

)]
. (2.25)

To write FI terms, we introduce vectors of auxiliary components for both A and AD,

Y =


i
(
F − F̃

)
F + F̃
√

2D

 , YD =


i
(
FD − F̄D

)
FD + F̄D
√

2DD

 , (2.26)

where D and DD are the usual θθ̃ coefficients of A and AD, respectively. The addition of the FI

terms to the original N = 2 action leads to

S =
1
2
Im
[∫

d4x d2θ d2θ̃
(
F(Ai)−AiAD i

)]
+

1
2
Re
∫

d4x
(
EiY

i +M iYD i

)
. (2.27)

Ei and M i are electric/magnetic charge vectors, respectively. We will first consider the case where

the third components in Y and YD do not contribute to the action. That is, we consider the case
1We use the notation of Antoniadis et al. [53]. See [54] for an SU(2)-covariant approach that is equivalent.
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where the third component of each Ei and M i vanishes. Introducing n complex numbers ei and mi,

the vectors Ei and M i is expressed as

Ei =


Im ei

Re ei

0

 , M i =


Immi

Remi

0

 . (2.28)

In terms of the N = 1 superfield language, the addition of such FI terms is equivalent to the addition

of the superpotential

W = eia
i +miaDi . (2.29)

To recover the N = 1 version of the action, we note that integrating out AD imposes the reducing

constraint on A, up to a subtlety involving mj that we will address later.

The first term of (2.27) is manifestly invariant under the full N = 2 supersymmetry. Indeed, in

the absence of the second term, it is straightforward to write (2.27) in components and demonstrate

that integrating out AD when Ei = M j = 0 simply causes A to become a reduced N = 2 chiral

superfield. The situation of vanishing Ei and M j is also one in which the action (2.27) clearly

preservesN = 2 supersymmetry because it is simply the top component of anN = 2 chiral superfield,

which transforms into a total derivative.

Written in component form, the FI terms in (2.27) are given by

1
2
Re
∫

d4x
(
EiY

i +M iYD i

)
=

1
2

∫
d4x

{
Re
(
eiF

i + ēiF̃
i
)

+ Re (2mFD)
}
. (2.30)

Because FD is the θ2 component of a reduced N = 2 superfield, it is easy to see that it transforms

into a total derivative under the action of all N = 2 generators (2.18). This is not so for F and F̃ ,

though, as there are two problematic non-derivative transformations

εQ̃F =
√

2εξ , εQF̃ =
√

2εη . (2.31)

If A were reduced, the ξα would be proportional to (σµ∂µλ̄)α while ηα ∼ (σµ∂µψ̄)α. In this case,

the RHS of (2.31) would consist of total derivatives and invariance of (2.30) would be assured. As

it stands, however, (2.30) is not preserved by either Qα or Q̃α.

We can try to improve the situation by suitably adjusting the transformation law of AD. In

particular, because AD appears in (2.27) only via a term which is linear in both A and AD, we

can try to absorb the terms on the RHS of (2.31) by suitably shifting the transformation laws of

component fields of AD. Indeed, expanding in components we see that ξi and ηi appear in the AAD
term as ∫

d2θ d2θ̃
(
−AiAD i

)
= . . .+

1
2
Im
(
λD iξ

i + ψD iη
i
)

+ . . . (2.32)
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This means that the full action (2.27) can be made invariant under the full N = 2 supersymmetry

if we modify the transformation laws of λD and ψD under Q̃ and Q from

(
εQ̃
)
λαD =

√
2εαF̄D , (εQ)ψαD =

√
2εαFD , (2.33)

to (
εQ̃
)
λαD =

√
2εα

(
F̄D − ie

)
, (εQ)ψαD =

√
2 (FD − iē) . (2.34)

Because of the inhomogeneous terms now present in these transformation laws, the realization is no

longer linear. We can linearize one of the supercharges, though, by shifting FD appropriately. In

particular, if we take FD → FD + iē then the Q transformation of ψαD becomes linear. This can be

understood by noting that such a shift also effectively removes the eiF i term from the action. On

the other hand, taking FD → FD − iē renders the Q̃ transformation of λαD linear. In this case, the

shift of FD effectively removes the ēiF̃ i term from the action. Note that, while we have a choice

to linearly realize either supersymmetry, it is impossible to simultaneously do so for the full N = 2

supersymmetry algebra. This implies that at most N = 1 supersymmetry can be realized in vacua

of the model (2.27). That such a nonlinear realization of a subset of supercharges is possible despite

the general arguments of [55] was first pointed out in [56].

2.4.3 Conditions for Supersymmetry-Preserving Vacua

To study the conditions for a given vacuum to preserve some fraction of the N = 2 supersymmetry, it

is sufficient to look at the transformation laws of the fermions in (2.27). Grouping the supercharges

Q, Q̃ and fermions ψj , λj into SU(2)R doublets QI = (Q, Q̃)T and Ψj
I = (ψj , λj)T , we can write

these simply as

εαKQαKΨj
β I ∼ εIJ

(
M(j)

)J
K
εKβ , (2.35)

where2 (
M(j)

)J
K

=

 0 F̃ j

F j 0

 . (2.36)

Consequently, we see that a vacuum preserves the Q (Q̃) supercharges when the expectation values

of the F j (F̃ j) vanish for all j. To compute these expectation values, we start by integrating out

2In general,M(j) will take the form

„
Dj F̃ j

F j −Dj

«
but we have set Dj = 0 because we only consider adding electric

and magnetic F -terms to the theory.
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AD. The relevant part in the Lagrangian (2.27) is

S = . . .− 1
2
Im
∫
d4x d2θ d2θ̃AiAD i +

1
2
Re
∫
d4x

(
EiY

i +M iYD i

)
= . . .+

1
2
Re
∫
d4x

[
iFD j

(
F̃ j − F̄ j

)
+ ēj

(
F̃ j + F̄ j

)
+ 2mjFD j

]
. (2.37)

It is easy to see that the result is simply to set

F̃ j = F̄ j + 2imj . (2.38)

The expectation value of F j is then obtained by studying the F -term potential

1
2
Im
(
F̃ jτjkF

k
)

+
1
2
Re
(
ēj(F̃ j + F̄ j)

)
, (2.39)

and concluding that

F̄ j = −
(
Im τ−1

)jk (
ek +m`τ`k

)
,

F̃ j = −
(
Im τ−1

)jk (
ek +m`τ̄`k

)
.

(2.40)

Consequently, we see that vacua for which (e+ τm)j = 0 preserve the Q supercharges while vacua

for which (e+ τ̄m) = 0 preserve the Q̃ supercharges.

2.4.4 Inclusion of D-terms

To this point, we have only considered the addition of F -terms to the theory. But one can also

consider the addition of D terms to the story. That is the third components of Ei and M i in (2.28)

need not vanish. This situation has been discussed by [57] in the context of IIB constructions.

In general, FI-terms are characterized by the 2n 3-vectors ~Ej and ~Y j of (2.28), which transform

under SU(2)R. With our choice of basis, non-vanishing D-terms correspond to ~Ej and/or ~Yj having

nonzero third components.3 Let us now suppose, for a moment, that a supersymmetric vacuum

exists. Using an SU(2)R rotation, we can change the original supercharges Q1 and Q2 into another

set of supercharges Q′1 and Q′2 such that the Q′1 annihilate the vacuum. Generalizing (2.36) along

with (2.40), the transformation matrix M is now given by

(
M(j)

)J
K

= −
(
Im τ−1

)jkξk + ξlD τ̄lk ek +mlτ̄lk

ēk + m̄lτ̄lk −ξk − ξlD τ̄lk

 , (2.41)

where ξk and ξlD are real and generically nonzero. Since we assume that Q′1 annihilates the vacuum,

3In general, we will have nonzero D-terms for any choice of basis if ~Ei and ~Y j are not all coplanar.
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the vector

1

0

 should be annihilated by
(
M(j)

)J
K

for all j. To that end, we want

ξk + ξlD τ̄lk = 0 and ek +mlτlk = 0 for all k . (2.42)

The first condition cannot be satisfied, though, unless ξk = ξkD = 0 for all k since Im τlk is positive

definite. Therefore, in N = 2 supersymmetric language, a necessary condition to have a supersym-

metric vacuum is that the 2n vectors ~Ej and ~M j lie on a common plane. For SU(2) gauge theory,

this is always possible since there are only two vectors, but for higher gauge groups, generic FI terms

necessarily break all of the supersymmetry.



17

Chapter 3

Metastable Vacua in
Supersymmetric Gauge Theories

In this chapter, we consider the Coulomb branch of N = 2 supersymmetric gauge theory, perturbed

by a small superpotential. Let us first recall the Seiberg-Witten theory, which is the low energy

effective field theory of a N = 2 supersymmetric gauge theory possibly with hypermultiplets. For

U(N) gauge group, the D-term contributes to the potential of the form

VD ∼ Tr[Φ,Φ†] . (3.1)

Hence vacuum states are characterized by the condition and Φ and Φ† are simultaneously diago-

nalizable. For a vacuum state, let ai, i = 1, . . . , N be the diagonal values of Φ in an appropriate

basis. Not all the ai cannot, however, be distinct since there is the Weyl symmetry that permutes

ai, which means that physical quantities are a gauge invariant combination, such as ur =
∑
i a
r
i ,

where r = 1, . . . , N . For SU(N) gauge group, the condition u1 = 0 is imposed. For each distinct

set of ur, we have a distinct gauge inequivalent vacuum. The set of the gauge inequivalent vacua

is called the moduli space. The low energy effective Lagrangian is shown in (2.17), which we write

here again for convenience.

L =
1
2
Im
[∫

d4θFi(Ak)Āi +
1
2

∫
d2θFij(Ak)W i

αW
α j

]
, (3.2)

where Fi1i2... = ∂i1∂i2 . . .F(ai). The Lagrangian is completely determined by a holomorphic prepo-

tential F which depends on the moduli. Due to the holomorphy of the prepotential, its quantum cor-

rection is severely restricted, and it is possible to obtain an expression of the prepotential [2,3,58–60].

Viewed in N = 1 language, the scalar field Φ is the lowest component of a chiral superfield. If

we add a superpotential for this chiral superfield, it will break N = 2 supersymmetry to N = 1.

However, as long as the superpotential is very small, we may ignore its effect on the metric, or

on the Kähler potential, to the leading order. The simplest example of this kind will be the pure
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N = 2 SU(2) gauge theory with the addition of a small superpotential W = λTrΦ2 with small λ.

However, it was already shown in [7] that there are no metastable vacua in this setup. Hence we need

to consider more complicated superpotentials. Fortunately, we will see that there is a systematic

way to find a superpotential that generates metastable vacua. This follows from the fact that the

sectional curvature of the Coulomb branch moduli space is positive semi-definite.

In the next section, we show that a metastable vacuum can occur at a generic point on the

Coulomb branch with an appropriate choice of a superpotential. After developing the general frame-

work, we discuss the case of the SU(2) theory without matter multiplet [3] in detail to show how the

mechanism works. In this case, the potential can be drawn as a three-dimensional graph, where we

can see how a metastable vacuum is generated explicitly. The case of a general SU(N) gauge group

discussed in a similar fashion, but the calculation is more involved. This is considered in appendix

B.

3.1 General Consideration

In this section, we show how to construct metastable vacua in the Coulomb branch of an arbitrary

N = 2 supersymmetric gauge theory with gauge group G, possibly with hypermultiplets, by intro-

ducing a small superpotential. The key property of N = 2 gauge theory is that the metric for the

moduli space is (the rigid limit of) special Kähler. The effective Lagrangian at the Coulomb branch

is generically N = 2 U(1)rank G supersymmetric gauge theory and is described by

Leff = Im
1
4π

[∫
d4θ∂iF(A)Āi +

1
2

∫
d2θ∂i∂jF(A)W i

αW
αj

]
, (3.3)

where i, j = 1, . . . , rank G. We sometimes denote Fij by τij , which is the period matrix of the

Seiberg-Witten curve. The metric on the moduli space M is given by

gij̄ = Imτij = Im
∂2F(a)
∂ai∂aj

. (3.4)

Later in this section, we will show that this relation implies that any sectional curvature of the

curvature operator R is positive semi-definite. That is, for any given holomorphic vector field

w ∈ TM,

〈w,R(v, v)w〉 ≥ 0 , for all v ∈ TMp and all p ∈M .

We call such curvature operator semi-positive.1 The curvature is called positive if the equality holds

only when v = w = 0. In our case, the tensor 〈w,R(·, ·)w〉 is strictly positive definite at almost

every point on the moduli space.
1That the Ricci curvature of the Coulomb branch is positive semi-definite was noted in [61]. Here we are making

a stronger statement that the sectional curvatures are positive semi-definite.
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For a generic point in the moduli space where the curvature is positive, we can show that a

suitable superpotential exists that generates a metastable vacuum at the point. Of course, the

superpotential has to be small so that it does not affect the Kähler potential significantly. Suppose

we parameterize the moduli space using some coordinate system xi (i = 1, 2, . . . , rank G) near a

point p. We may introduce the Kähler normal coordinates zi [62, 63] as

zi = x′i +
1
2
Γijkx

′jx′k +
1
6
gim̄∂l(gnm̄Γnjk)x

′jx′kx′l +O(x4), (3.5)

where connections are evaluated at p and x′ = x− x(p). The expansion is terminated at the cubic

order since higher order terms are not relevant for our purpose in this section. Then the metric in

the z coordinate system is

gij̄(z, z̄) = g̃ij̄ + R̃ij̄kl̄z
kz̄ l̄ +O(z3) ,

where ˜ means evaluation at p. The inverse metric is given by

gij̄(z, z̄) = g̃ij̄ + R̃ij̄
kl̄
zkz̄ l̄ +O(z3) . (3.6)

Let us consider a superpotential

W = kiz
i . (3.7)

Note that there are global coordinates for the moduli space. For example, ur = tr(φr) are global

coordinates in N = 2 SU(N) gauge theory, and we can write down W in terms of ur by coordinate

transformation. The corresponding superpotential is then expressed by replacing ur with tr(φr),

r = 2, . . . , N . Note that we might have used exact Kähler normal coordinates, which means including

all orders in (3.5). In this case, the superpotential would not be defined globally in the moduli space,

and the corresponding singular points in the moduli space would change the following analysis. This

case will be considered more carefully in the next sections.

Suppose ki is so small that corrections to the Kähler potential is negligible. Then the leading

potential is given by

V = gij̄kik̄j̄ + kik̄j̄R̃
ij̄

kl̄
zkz̄ l̄ +O(z3) . (3.8)

If R̃ is positive, the potential indeed gives a metastable vacuum at p. If R̃ is semi-positive, there

could be some flat directions. However, if ki is not along the null direction of R̃, and the tensor

kik̄j̄R̃
ij

kl̄
has positive-definite eigenvalues, we get a metastable vacuum. Generically, these conditions

can be satisfied. For example, in the semi-classical region of the N = 2 SU(N) gauge theory without

hypermultiplets, which we study in appendix A, we can make metastable vacua at any point. In

the examples studied in appendix B, there arise flat directions in ki because we choose a highly

symmetric point, which is not sufficiently generic. Even in these cases, we can find a superpotential
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to generate a metastable vacuum by choosing ki appropriately.

Now, let us prove the assertion that the curvature R is semi-positive. Since we are interested in

the local behavior, we can use ai (i = 1, . . . , rank G) as coordinates in which the metric is given by

(3.4). In N = 2 SU(N) supersymmetric gauge theory, these ai are the periods of a meromorphic

one-form describing the Coulomb branch. An important fact is that each τij is holomorphic. In

components, we want to show

wjw̄m̄gm̄iR
i
jkl̄v

kv̄l̄ ≥ 0 , for all v, w . (3.9)

Since τij is holomorphic,

Rijkl̄ = −∂l̄
(
gq̄i∂kgjq̄

)
= −(∂l̄g

q̄i)∂kgjq̄

= gq̄pgin̄∂l̄gpn̄∂kgjq̄ .

(3.10)

Plugging this into the LHS of (3.9),

wjw̄m̄gm̄ig
q̄pgin̄∂l̄gpn̄∂kgjq̄v

kv̄l̄ = wjw̄n̄gq̄p∂l̄gpn̄∂kgjq̄v
kv̄l̄

= gq̄p(wjvk∂kgjq̄)(w̄n̄v̄l̄∂l̄gn̄p) ≥ 0 ,
(3.11)

since gq̄p is positive definite. Therefore, (3.9) is satisfied. For a given holomorphic vector field w,

Pkq̄ = wj∂kgjq̄ is holomorphic, so its determinant is 0 only on a complex codimension one subspace

of the moduli space unless it is a constant. Thus, generically Pkq̄vk is nonzero for nonzero v, which

implies (3.11) is strictly positive for any nonzero v. We found that the curvature is semi-positive

and that the tensor wjw̄m̄gm̄iRijkl̄ is strictly positive definite at almost every point on the moduli

space.

The superpotential W = kiz
i can be expressed in terms of global coordinates of the moduli

space, such as ur = tr(φr) for SU(N), by coordinate transformation near the metastable vacuum.

Generally terms quadratic and cubic order in ur’s are needed (higher order terms are not relevant

for the metastability), and the superpotential would contain multiple-trace operators. On the other

hand, gauge theories realized in string theory often have superpotentials consisting of single-trace

terms only [64–66].2 To see when the superpotential can be chosen as a sum of single-trace terms,

let us consider N = 2 SU(N) gauge theory. For SU(2), the situation is easy since any multiple-

trace operator can be expressed in terms of a single-trace operator. This is not the case when

the gauge group is SU(3). However, in this case, we can show that the superpotential W = kiz
i

can be deformed in such a way that W turns into a single-trace operator without destabilizing the
2For discussion of theories with multiple-trace superpotentials, see [67].
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metastable point given by the bosonic potential V = gij̄∂iW∂̄j̄W̄ . To see this, let u = trφ2 and

v = trφ3 be the two coordinates for SU(3) and let u′ = u − u0 and v′ = v − v0 be the coordinates

centered at (u0, v0). We can express ui = trφi (i = 0, 2, 3, . . . , 9) as polynomials of u′ and v′.

They are all independent generically. To construct the superpotential that generates a metastable

vacuum at u′ = v′ = 0, we can ignore terms that are quartic and higher order in u′ and v′. Hence

ui span a 9-dimensional subspace of the 10-dimensional cubic polynomial space. But the missing

polynomial can be set to vanish by using deformation analogous to the one used in appendix B.1,

which does not disturb the metastability. For higher N , we have not been able to find out whether

it is possible to construct a single-trace superpotential that can generate a metastable vacuum at

a generic point in the moduli space. But at the origin of the moduli space, for any SU(N), the

single-trace superpotential

W = λ

(
1
N
uN +

(N − 1)2

6N3

1
Λ2N

u3N

)
for small coupling constant λ produces a metastable vacuum, where Λ is the scale of the gauge

theory, as we show in appendix B.

3.1.1 SU(2) Seiberg-Witten Theory

We can apply our mechanism to produce metastable vacua when the Seiberg-Witten theory is

strongly coupled. Let us demonstrate this at the origin in pure N = 2 SU(2) gauge theory [3]. We

first construct an appropriate superpotential using the Kähler normal coordinate near the origin

of the moduli space. Since all expressions for the periods and metric are given in terms of the

hypergeometric functions explicitly, we can easily determine the effective potential produced by

superpotential perturbation. Let u = trφ2 be the modulus of the theory. The elliptic curve that

describes the moduli space of the SU(2) Seiberg-Witten theory is

y2 = (x2 − u)2 − Λ4 .

The periods of the theory are given by

∂a

∂u
=
√

2
2

(e2 − e1)
−1
2 (e4 − e3)

−1
2 F

(
1
2
,
1
2
, 1, z

)
,

∂aD
∂u

=
√

2
2

[(e1 − e2)(e4 − e3)]
−1
2 F

(
1
2
,
1
2
, 1, 1− z

)
,

(3.12)

where

z =
(e1 − e4)(e3 − e2)
(e2 − e1)(e4 − e3)

,

and

e1 = −
√
u− Λ2, e2 =

√
u− Λ2, e3 =

√
u+ Λ2, e4 = −

√
u+ Λ2 .
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The periods determine the metric in the a coordinate by

τ =
∂aD/∂u

∂a/∂u
.

We are going to use the metric in the u coordinate. This can be expanded near the origin:

guū = Imτ
∣∣∣∣dadu

∣∣∣∣2 = r(1 + su2 + s̄ū2 − tuū) +O(u3) , (3.13)

where r = 0.174Λ−2, s = 0.125Λ−4 , and t = 0.0522Λ−4.

We can use the Kähler normal coordinate z given by (3.5) to choose a superpotential

W = mz, z = u+
1
3
su3 ,

for small, real coupling constant m. The corresponding effective potential is

V =
m2

gzz̄
=
m2

guū

∣∣1 + su2
∣∣2 .

The graphs for the potential are drawn in Figure 3.1 in two different scales. Although the metastable

vacuum is visible when magnified near the origin, it can hardly be seen at the scale of the graph

on the right. The potential is almost flat near the origin, and the metastable vacuum is generated

by a tiny dip! Interestingly, this is not due to some small parameters of the theory. Actually, other

than the scale Λ, there are no additional parameters that we can put in the theory if we consider a

metastable vacuum at the origin. The near-flatness of the potential around the origin is generated

without fine-tuning.

Figure 3.1: The appearance of a metastable vacuum at the origin. Note difference of scales.



23

We can consider a more general superpotential

W = mz +
1
2
αz2 +

1
3
βz3 . (3.14)

We have to set α = 0 to have a local minimum at z = 0. Using (3.6), the effective potential

V = gzz̄ |∂W/∂z|2 becomes

V = m2Rzz̄ +mguūβzz +mguūβ̄z̄z̄ + constant +O(z3) ,

where R = Rzz̄zz̄ = Ruūuū = −guū∂ū∂u log guū = 0.150Λ−2. In this case, it is straightforward to read

the range to have a local minimum at z = 0. We need

mR± 2guūβ > 0.

Hence
∣∣∣ βm ∣∣∣ < guūR

2 = 0.0261Λ−4. In the u coordinate system, 3.14 becomes

W = m

[
u+

1
3

(
s+

β

m

)
u3

]
+O(u4) .

So, we want s+ β/m to lie between (0.125− 0.0261)Λ−4 and (0.125 + 0.0261)Λ−4. We can confirm

numerically that, precisely in this range, do we have a metastable vacuum at the origin.

We can consider also a superpotential that makes a metastable vacuum at some point other than

the origin. This is possible for any points because the curvature is positive everywhere except at the

two singular points, where it diverges. Also, for SU(2) case, any polynomial of u can be expressed

as single-trace form.

Now that we have found a metastable vacuum, we want to check its longevity. Notice that the

SU(2) Seiberg-Witten theory has only one dimensionful parameter Λ. In Figure 3.1, we have set it

to be 1. If we change this, the coordinate u in the graph scales. Therefore, by sending the scale Λ to

some limit, we may have a long-lived metastable vacuum at the origin. To see this, consider slices

of the potential around the origin. Cutting through the real and imaginary axes, the potential looks

like Figure 3.2:

We see that the characteristic feature of the graph is that it gets really flattened near the origin,

and the local minimum at the origin and the peak of the graph are almost of the same height. But the

distance between the origin, where the metastable vacuum is located, and the supersymmetric vacua

can be arbitrarily large by setting Λ large. In such a case, we use the triangular approximation [68]

instead of the thin-wall approximation [69]. The tunneling rate is proportional to e−S where

S ∼ (∆u/Λ)4

V+
, (3.15)
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Figure 3.2: The real and imaginary slices of the potential through the origin, shown in two different
scales.

where ∆u is the distance between the peak and the origin and, and V+ is the difference of the

potentials between at the peak and at the origin. We insert Λ to make the u field of dimension

1. The distance ∆u is proportional to Λ2. V+ is proportional to the mass parameter m in (3.14).

Therefore, we can make the bounce action arbitrarily large: we choose m and Λ such that m/Λ � 1.

This limit agrees with our assumption that we have added a small N = 2-to-N = 1 supersymmetry

breaking term.

Since the superpotentialW = m
(
u+ 1

3su
3
)

has a cubic interaction, it introduces supersymmetric

vacua when u = u0 = ±
√
−1/s. We have to consider the tunneling rate to decay into those vacua.

However, the distance from 0 to u0 is also set by the scale Λ. Therefore, for sufficiently large Λ, the

decay process is arbitrarily suppressed.

3.1.2 Decay Rate of Metastable Vacua

In the previous subsection, we considered the decay rate of the metastable vacuum at the origin of

the moduli space of the SU(2) Seiberg-Witten theory. Extending the idea, let us estimate the decay

rate of metastable vacua constructed using the curvature for a general N = 2 theory. We do not

have an explicit expression for the effective potential. However, we can make a general argument

that metastable vacua can be arbitrarily long-lived by choosing parameters appropriately. Note that

whenever there appears a massless monopole or dyon in the moduli space, the metric diverges. In

such a case, the effective potential vanishes and we get a supersymmetric vacuum at that point. The

set of supersymmetric vacua is a subvariety of the moduli space. Additionally, the superpotentials

introduce more supersymmetric vacua. Therefore, it is difficult to compute the exact tunneling rate.

But we can estimate its dependence on the scale Λ and the typical scale of ki. We consider the

most efficient path to go from the metastable vacuum to a supersymmetric one. We expect that the

shapes of such one-dimensional slices enable us to use the triangular approximation [68], just as in
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SU(2) case. Equation (3.15) in this case becomes

S ∼ (∆Z)4

V+
. (3.16)

Here ∆Z is the distance between the metastable and supersymmetric vacua in z coordinates, scaled

by some power of Λ to have a mass dimension 1, and V+ is the difference of the effective potential

at the metastable vacuum and that at the supersymmetric vacuum. Since the metric of the moduli

space is determined by one dimensionful parameter Λ, (∆Z)4 is proportional to Λ4. If the coordinates

x in (3.5) has mass dimension n, the typical value of the potential goes like k2
iΛ

2n−2(each xi might

have different dimensions, e.g., ur = trφr for SU(N) case, but they can be made to have the same

dimension by multiplying Λ appropriately). Then the bounce action S scales like Λ6−2n/k2. As long

as this quantity is large enough, metastable vacua are long-lived.

3.2 Kähler Normal Coordinates and Fayet-Iliopoulos Terms

The construction described in the previous section makes use of the truncated Kähler normal coordi-

nates as shown in (3.5). That is, given a point u0 in the moduli space M, we obtain globally defined

superpotentials that are metastable at u0 generically. Such a truncation may not seem to impact

the physics to a great degree. Nevertheless, we will demonstrate that if one deforms the theory

by a superpotential built from exact Kähler normal coordinates then the supersymmetry-breaking

vacuum at u0 becomes instead a supersymmetry-preserving one.

In general, Kähler normal coordinates zi can be written in terms of special coordinates ai along

the moduli space as [62,63]

zi = ∆ai + gij̄(a0)
∞∑
n=2

1
n!
∂i3 . . . ∂inΓj̄i1i2(a0)∆ai1∆ai2 . . .∆ain , (3.17)

where

∆ai ≡ ai − ai0. (3.18)

In contrast to the previous section, zi keep all higher terms of ∆ai. In special coordinates, the

connections Γj̄i1i2 take a particularly simple form

Γj̄i1i2 =
1
2i
Fji1i2 =

1
2i
∂i2τji1 =

1
2i
∂i1∂i2aD j , (3.19)

where aD i = ∂iF . This allows us to recognize the infinite series in (3.17) as a Taylor expansion of

aD j about the point ai0. In fact, we can easily sum the series and write the exact Kähler normal
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coordinates zi as

zi = ∆ai +
(

1
τ0 − τ̄0

)ij ∞∑
n=2

1
n!

∂naD j(a0)
∂ai1 · · · ∂ain

∆ai1∆ai2 . . .∆ain

= ∆ai +
(

1
τ0 − τ̄0

)ij (
aD j(a)− aD j(a0)− τ0 jk∆ak

)
=

(
1

τ0 − τ̄0

)ij (
aD j(a)− τ̄0 jkak

)
+ const, (3.20)

where τ0 ij = τij(a0). This means that, up to irrelevant constant terms that we shall hereafter drop,

the superpotential (3.7) is a specific linear combination of electric and magnetic FI terms

W = eia
i +miaD i, (3.21)

where

ei = −kj
(

1
τ0 − τ̄0

)jk
τ̄0 ki, mi = kj

(
1

τ0 − τ̄0

)ji
. (3.22)

In particular the FI parameters satisfy

ei +mj τ̄0 ij = 0 . (3.23)

We are therefore able to identify the theory with superpotential (3.7) as the classic model of partial

supersymmetry breaking first introduced by Antoniadis et al. [53].3 In the next section, we will

study more closely how supersymmetry is realized at ai0.

While our focus is on deformed Seiberg-Witten theory, the structure considered makes a natural

appearance in flux compactifications of type II superstring theory [71–73]. In fact, it appears as a

geometric engineering limit of such a compactification, where the coefficients (ei,mi) of FI terms

W =
∑
i eia

i + miaDi are identified with the amounts of fluxes. The scalar potential constructed

from the superpotential W is invariant under the monodromy transformation of (ai, aDi) provided

the fluxes (ei,mi) are also transformed appropriately. Thus, the potential is single-valued if we

consider it as a function on the space of fluxes as well as on the Calabi-Yau moduli space. By

contrast, in the field theory limit, the fluxes are frozen and become non-dynamical parameters, and

the potential is multivalued in the Coulomb branch moduli space. This is caused since the field

theory limit defined at a generic point in the Coulomb branch breaks down at massless dyon points

because of the appearance of extra light particles at these points. It is exactly around each of these

singular points where W is multivalued in the field theory limit.
3For local supersymmtric theories, see [70].
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3.3 SUSY or non-SUSY at ai
0

As we have reviewed in section 2.4, the condition (3.23) at ai0 implies that the vacuum at ai0 is a

supersymmetric one which preserves the non-manifest Q̃ supercharges. When the superpotential is

truncated as in the previous subsections, however, we break invariance under Q̃ at the level of the

action and the ai0 then become supersymmetry-breaking vacua.

At first glance this might seem strange because the higher order terms of (3.17) that we neglect

when truncating do not affect the value of the scalar potential at τ0, which is given by

V = k̄i
(
Im τ−1

0

)ij
kj = (ei +mjτ0 ki)

(
Im τ−1

0

)ij (
ej +m`τ0 `j

)
. (3.24)

Because this quantity is manifestly positive,4 our intuition suggests that ai0 should be a supersymmetry-

breaking vacuum.

It is important to note, however, that having positive energy (3.24) is not sufficient for a vacuum

to be supersymmetry breaking because we are, in principle, free to shift our definition of energy by

a constant amount. It is the specific quantity that appears in the supersymmetry algebra which

matters and to determine this may require a bit more work. In the truncated theory, the situation is

actually pretty simple because there are vacua at the singular points in moduli space which preserve

the manifest N = 1 supersymmetry. Setting the energy of these vacua to zero fixes any ambiguity

and leaves us with the result (3.24).

The theory with full superpotential (3.7), on the other hand, exhibits no such vacua. The reason

for this is that the superpotential is singular at the degeneration points. In fact, the full superpo-

tential is actually multivalued on the moduli space with branch points where the supersymmetric

vacua of the truncated theory would otherwise be. This change in the global structure of the theory

suggests that we have to reexamine our definition of energy. To do so, let us start with the N = 2

formulation (2.27). In the conventional approach, where the Qα supercharges are linearly realized,

we shift FD j → FD j + iēj in the action (2.27) which effectively removes the F̃ j from the second

term of (2.39). In this case, the scalar potential is easily seen to be

V = (ei +mjτki)
(
Im τ−1

)ij (
ej +m`τ`j

)
, (3.25)

in accordance with our result for the energy (3.24) of the ai0 vacuum above. That this quantity fails

to vanish at ai0 simply means that the N = 1 supersymmetry generated by the Qα is broken there.

On the other hand, to linearly realize the Q̃α supercharges, we saw before that it is necessary to

instead shift FD j → FD j − iēj in (2.27). This effectively removes the F̄ j from the second term of

4The combination of ei + mk τ̄0 ki = 0 and Im τ0 > 0 imply that ei + mkτ0 ki 6= 0.
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(2.39), leading to the scalar potential

Ṽ = (ei +mk τ̄ki)
(
Im τ−1

)ij (
ej +m`τ̄`j

)
= V + 4Im

(
ēim

i
)
.

(3.26)

In other words, if we choose to linearly realize the N = 1 supersymmetry preserved by the vacuum

at ai0, the definition of energy (3.26) appropriate for that choice differs from (3.25) by a constant

shift.5 As expected, this suitably defined energy vanishes at ai0.

3.4 Critical Points, Stability, and Non-supersymmetric Vacua

It should now be clear that the theory obtained by adding a superpotential (3.7) constructed from

exact Kähler normal coordinates is significantly different from that obtained by truncating the series

(3.17). This also suggests that the vacuum structure away from ai0 may be fundamentally different

as well.

This opens up a new problem, though, namely to understand the full vacuum structure of theories

of the form (3.2) in the presence of superpotentials

W = eia
i +miaD i , (3.27)

for generic choices of ei and mj . In this section, we will take some initial steps along these lines.

More specifically, we classify non-supersymmetric critical points, study the conditions for stabilizing

them, and demonstrate that, in the simple example of a rank two gauge group, one can engineer

stable vacua which break the full N = 2 supersymmetry in part of the perturbative regime by

choosing the ei and mj appropriately.

3.4.1 Stability Conditions and Supersymmetric Vacua

The principal object that controls the vacuum structure is the scalar potential constructed from

(3.27). To start, let us write it in a covariant manner with respect to the Kähler metric gij̄ of the

Coulomb branch

V =
(
∇īW

)
gīj (∇jW ) . (3.28)

Critical points of this potential satisfy

∇kV =
(
∇īW

)
gīj (∇k∇jW ) = 0 , (3.29)

5From the analysis of section 2.4.3, we also see that it is the vanishing of Ṽ that is required for preservation the
corresponding N = 1 supersymmetry.
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while stability is determined by studying the second partials

∇¯̀∇kV =
(
∇¯̀∇īW

)
gīj (∇k∇jW ) +

(
∇īW

)
gījRmj ¯̀k (∇mW ) ,

∇`∇kV =
(
∇īW

)
gīj (∇`∇k∇jW ) .

(3.30)

From this, we see that the easiest way to find critical points is to impose either ∇iW = 0 or

∇k∇jW = 0. For the former, it immediately follows from (3.30) that the resulting critical points

are stable. For the latter, the same is also true at generic points provided ∇`∇k∇jW also vanishes

because the Rm
j ¯̀k

term of (3.30) is positive (semi-)definite.

These two types of vacua are in fact nothing other than the supersymmetric ones we have

studied thus far. To see this, we simply evaluate ∇iW and ∇j∇kW in special coordinates, for which

gij̄ = Im τij . Because the only nonvanishing Christoffel connections are

Γijk = −gk ¯̀∂jg
i¯̀ (3.31)

and their conjugates, this is particularly simple and results in

∇iW = ei + τijm
j ,

∇i∇jW = − 1
2i
Fijn (Im τ)nk (ek + τ̄ksm

s) .
(3.32)

The supersymmetric vacuum that preserves Q is simply the ∇iW = 0 case while the supersymmetric

vacuum that preserves Q̃ corresponds to ∇i∇jW = 0. Note that there is no issue with stability of

the latter because ∇k∇i∇jW = 0 when (e+ τ̄m)j = 0.6

3.4.2 Non-supersymmetric Vacua

While it is comforting to see the supersymmetric vacua and their stability emerging naturally from

this framework, it is at the same time disappointing that the simplest ways to realize critical points

of the potential fail to yield anything new.

In principle, the mechanism by which new critical points of the potential can be found is quite

simple. We need a mixture of sorts of the supersymmetric and hidden supersymmetric cases where

gīj∇īW and ∇k∇jW are both nonzero but, in a suitable basis, have complementary components

vanishing so that the contraction in (3.29) is zero. Unfortunately, there is no apparent reduction

in complexity of (3.30) in this case so it is difficult to spell out simple conditions for a vacuum

constructed in such a manner to be stable.

To describe the idea more precisely, let us drop the covariant notation of (3.29) and (3.30) and

6Even though this second order analysis only guarantees stability when the positive semi-definite term involving
Rm

j ¯̀k
does not have any flat directions, we know from the fact that the (e + τ̄m)j = 0 vacua preserve an N = 1

supersymmetry that the higher order analysis required when this condition fails must lead to stability.



30

instead reexpress the various derivatives of V in special coordinates as

∂qV = − 1
2i
F fFqfeF̃ e , (3.33)

and

∂p∂qV = − 1
2i
F f
(
Fpqfe −

1
2i

[
Fpfm

(
Im τ−1

)mn Fqne + (p↔ q)
])

F̃ e ,

∂̄p̄∂qV =
1
4

[
¯̃F aFpam

(
Im τ−1

)mn FqnbF̃ b + F aFqam
(
Im τ−1

)mn FpnbF̄ b] , (3.34)

where F a and F̃ b are the auxiliary field expectation values of (2.40).

In general, rather than looking for stable vacua at fixed ei and mj , we will find it easier to

reverse our thinking and approach the problem in a manner analogous to our previous construction

in section 3.1. That is, we instead specify a point u0 along the Coulomb branch at which we would

like to engineer a stable critical point and develop an algorithm for obtaining values ei and mj that

do the job, if such exist.

To aid in this task, let us first use (3.33) and (3.34) to study the general structure of supersymmetry-

breaking vacua. The first thing to note is that the vectors F a and F̃ a at such a vacuum can

never be parallel. The reason for this is that a critical point for which they are parallel satisfies

F̄ p̄∂̄p̄∂qV F
q = 0 from (3.33) and (3.34) and

(
eiφF p e−iφF̄ p̄

)∂p∂̄q̄V ∂p∂qV

∂̄p̄∂̄q̄V ∂q∂̄p̄V

e−iφF̄ q̄
eiφF q

 = 2Re (e2iφF p∂p∂qV F q) , (3.35)

where φ is a real phase. There is always a choice of φ for which this is negative so we see that such

a critical point can never be stable. Incidentally, this means that for real ei and mj , achieving a

metastable supersymmetry-breaking vacuum is impossible since F a = F̃ a in this case. Since neither

ei + τijm
j = 0 nor ei + τ̄ijm

j = 0 is attainable either, the only possible minimum occurs when

the metric is singular. That is, when we have a dyon condensation point and the dyon charge is

proportional to (ei,mj), the effective potential vanishes at that point and we have a supersymmetric

vacuum there.

Let us now consider a coordinate transformation matrix Qii′ under which Fqfe transforms as

Fqfe → F ′q′f ′e′ = FqfeQqq′Q
f
f ′Q

e
e′ . (3.36)

Because F a and F̃ a are not parallel, we can always perform a coordinate transformation Qii′ so that

the only non-vanishing component of F a (F̃ a) is the first (second) one. In this basis, Fq12 = 0 for

all q.
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It should now clear how to engineer a critical point at u0 that can potentially be stabilized.

Given F , we use a coordinate transformation (3.36) so that Fq12 = 0 for all q. Such a coordinate

transformation should generically exist because we have (N − 1)2 degrees of freedom in Q to satisfy

only N − 1 conditions. With such a Q, we then choose values of F a and F̃ a as

F = Q


ζ

0

0
...

 , F̃ = Q


0

ξ

0
...

 . (3.37)

Once such a choice is made, we can generically solve (3.37) for the corresponding values of ei and

mj because this is a system of 2(N − 1) linear equations in 2(N − 1) variables.

Now that we have constructed critical points, we must turn to the question of their stability.

Given that we can actually engineer families of critical points parametrized by ζ and ξ, one might

hope that there is enough freedom left over to achieve stability as well. Studying this issue is very

complicated in practice, though, so to demonstrate the principle in action we focus on the most

basic example we can find. It is clear that vacua of this sort cannot be generated when the gauge

group has rank 1, so we turn instead to the rank 2 case of SU(3) Seiberg-Witten theory.

3.4.3 An SU(3) Example

In what follows, we shall work exclusively in the perturbative regime ai � Λ, where the Seiberg-

Witten prepotential F appearing in (3.2) takes the approximate form [74–76]

F(ai) =
i

4π

3∑
i<j

(ai − aj)2 ln

[
(ai − aj)2

Λ2

]
. (3.38)

We will henceforth set Λ = 1 and use the coordinate basis

x = a2 − a1 , y = a3 − a2 . (3.39)

In terms of these, the prepotential is given by a simple expression

F =
i

4π
(
x2 lnx2 + y2 ln y2 + (x+ y)2 ln(x+ y)2

)
. (3.40)
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The various derivatives we shall need when studying (3.33) and (3.34) are now easily evaluated. We

start with the period matrix

τ =
i

2π

6 + lnx2 + ln(x+ y)2 3 + ln(x+ y)2

3 + ln(x+ y)2 6 + ln y2 + ln(x+ y)2

 , (3.41)

and proceed to its derivatives

∂xτij = Fxij =
i

π(x+ y)

2 + y
x 1

1 1

 , ∂yτij = Fyij =
i

π(x+ y)

1 1

1 2 + x
y

 , (3.42)

and second derivatives

Fxxij =
1

iπ(x+ y)2

2 + 2
(
y
x

)
+
(
y
x

)2 1

1 1

 ,

Fxyij =
1

iπ(x+ y)2

1 1

1 1

 ,

Fyyij =
1

iπ(x+ y)2

1 1

1 2 + 2
(
x
y

)
+
(
x
y

)2

 .

(3.43)

In this simple example, we can set Fq12 = 0 using a transformation of the form (3.36) with Q

given by

Q =

 −x x+ y +
√

(x+ y)2 − xy

x+ y +
√

(x+ y)2 − xy −y

 . (3.44)

To find a choice of ei,mj for which the potential has a critical point at (x0, y0), we turn then to the

equations

F = Q

ζ
0

 , F̃ = Q

0

ξ

 , (3.45)

where here ζ and ξ are nonzero constants that we are free to choose, Q is as in (3.44), and F, F̃ are

given in terms of ei,mj , τk` as in (2.40). Given our result (3.44) for Q, (3.45) is equivalent to the

requirement

F = −ζ

 −x

x+ y +
√

(x+ y)2 − xy

 , F̃ = −ξ

x+ y +
√

(x+ y)2 − xy

−y

 . (3.46)

As mentioned before, we generically expect that it is possible to choose ei,mj for any nonzero

choice of ζ and ξ such that (3.46) is satisfied at a fixed point (x0, y0). From this point onward, we

will assume that the situation is indeed generic and take the existence of such a solution for granted.
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3.4.3.1 Stability

Engineering a critical point is one matter, but achieving stability is the real challenge. However, as

we will now demonstrate through a simple scaling argument, it is possible to take advantage of the

freedom to adjust ζ and ξ to choose FI terms that engineer stable supersymmetry-breaking vacua

in part of the perturbative regime.

In particular, let us consider the regime y � x� 1. We will now show that if we choose ζ and ξ

to be of order 1, the critical point constructed by solving (3.45) is always locally stable. Expanding

the Hessian

H =

∂p∂̄q̄V ∂p∂qV

∂̄p̄∂̄q̄V ∂q∂̄p̄V

 (3.47)

at the critical point, it is straightforward to check whether the eigenvalues λ1 . . . λ4 of H are all

positive. In the limit mentioned above, H scales near infinite y as follows:

H =


h11y

2 h12y h13y h14

h21y h22 h14
h24
y

h31y h41 h11y
2 h21y

h41
h42
y h12y h22

 , (3.48)

where the hij depend logarithmically on y (and on x, ξ, ζ). To leading order in y, the four eigenvalues

are

h11y
2 and

h11h22 − h12h21

h11
, (3.49)

with multiplicity two for each. Since the matrix ∂p∂̄q̄V is positive definite from (3.30), the critical

point is locally stable.

To illustrate potential subtleties that can arise when studying stability, let us also consider a

second regime, namely x ∼ y � 1. If we use r to denote the scale of x and y, the quantities

appearing in (3.34) behave at large r as

τij ∼ ln r ,

Fijk ∼ r−1 ,

Fijk` ∼ r−2 ,

F ∼ ζr ,

F̃ ∼ ξr .

(3.50)

This means that ∂p∂qV ∼ ζξ while ∂̄p̄∂qV ∼ ζ2(ln r)−1 + ξ2(ln r)−1 at large r. If we take ζ and ξ to

be of order 1 in this case, then the ∂p∂qV terms dominate and the Hessian necessarily has at least

one negative eigenvalue.



34

Given the above scalings, though, one might naively think that stability can be achieved by taking

ζ to be very large, say ζ ∼ r for example, and ξ to be small, as in ξ ∼ r−1, because this ensures

that the dominant contribution to the Hessian comes from ∂̄p̄∂qV . This looks good for stability but

unfortunately ∂̄p̄∂qV has an obvious flat direction in this case proportional to F̃ q because

F aFqamF̃ q = 0 . (3.51)

The corresponding zero eigenvalue is generically lifted by the next-leading contribution to the Hes-

sian, which comes from the off-diagonal term ∂p∂qV . This means that the leading correction to this

zero eigenvalue is, in fact, negative and our critical point is actually unstable.

3.5 Connection with Flux Compactifications

Until now, we have mainly focused on the field theory perspective of Seiberg-Witten theories de-

formed by electric and magnetic FI terms. Here we will briefly discuss the geometric realization

of the vacua that we have studied so far in the context of string theory compactifications in the

presence of NS and RR fluxes. In a series of papers [77–80], Seiberg-Witten theories were geometri-

cally engineered in Type IIA and IIB string theories compactified on Calabi-Yau manifolds in a rigid

limit of special geometry. For example, in type IIB, SU(N) Seiberg-Witten theory was realized on

a geometry constructed as a K3 fibration over a P1 base. Near the singular locus of K3 over P1,

the Calabi-Yau manifold becomes

z +
Λ2N

z
+ 2WAN−1(x1, ui) + 2x2

2 + 2x2
3 = 0,

where WAN−1(xk, ui) corresponds to the characteristic polynomial of the Seiberg-Witten theory.

Non-vanishing NS and RR fluxes, H = HRR + τstHNS , generate a superpotential [81] and lift

the vacuum degeneracy in the Calabi-Yau manifold [73],

WGVW =
∫
H ∧ Ω =

∫
Bi

H

∫
Ai

Ω−
∫
Ai

H

∫
Bi

Ω

≡ eia
i +miaD i ,

where (Ai, Bi) = δij comprise a symplectic basis of three-cycles. Since the integrals of the holo-

morphic 3-form, Ω, are naturally identified with the periods of Seiberg-Witten theory while turning

on generic fluxes yields a set of complex valued (ei,mj), we can realize the model treated here by

adding fluxes appropriately.

Supersymmetry-breaking in Calabi-Yau compactifications of this sort have also appeared in con-

nection with brane/antibrane systems in [72] and more recently in [57,82–87]. In particular, a notion
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of geometric transition involving gauge/gravity duality was generalized to the non-supersymmetric

setting, allowing configurations of branes and antibranes to be studied using the same sort of abelian

gauge theory with FI terms considered here. Because the vacua studied here have natural realiza-

tions on the flux side in this context, it would be interesting to follow the geometric transition in

reverse and study them from this perspective.

The flux realization of the model with FI terms also gives us a clear picture of how the potential

behaves near a singular point in moduli space. At such a point, a massless dyon with charges

(nei , n
m
i ) emerges and the corresponding cycle γ = neiAi + nmi Bi shrinks. When we turn on generic

FI-terms, the scalar potential diverges there for the simple reason that non-zero fluxes penetrate the

cycle ∫
γ

H = nei ei − nmi mi 6= 0 ,

and render infinite the energy cost associated with closing it up.
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Chapter 4

Current Correlators for General
Gauge Mediation

So far, we considered a general way to engineer metastable vacua by deforming N = 2 supersym-

metric gauge theories by a small superpotential. One way to construct a realistic model is to use a

hidden sector to break supersymmetry and mediate its supersymmetry breaking effect to the visible

sector by the effect of gauge coupling. Gauge mediation has been an attractive mechanism for me-

diating the supersymmetry breaking effects. Meade, Seiberg, and Shih [49] presented a very general

definition of the gauge mediation mechanism that includes most models with the supersymmetry

breaking sector and the messengers, and models with the direct mediation. They also computed

several physical quantities such as gaugino and sfermion masses on a general ground. Many of the

physically observable effects mediated to the observable sector, which is sometimes taken to be a

variant of the Minimal Supersymmetric Standard Model (MSSM), can be encoded by the current-

current correlators of the global symmetry of the hidden sector. This allows us to extract the soft

supersymmetry breaking terms even in the strongly coupled hidden sector.1

In this chapter, we provide methods to compute the zero-momentum current correlators in some

classes of strongly coupled gauge theories. The way we calculate the current correlators is to weakly

couple the system to some “spectator” gauge theory. Sometimes the coupled system is solvable,

in which case, by taking the decoupling limit, we are able to obtain useful information about the

current correlators.

We will review the idea of general gauge mediation of [49] briefly and then understand that the

correlators of the global currents essentially characterize a wide range of gauge mediation models.

Then we go on to the basic scheme of our computation of current correlators. To illustrate the

technique, we provide a number of computable examples.
1For an earlier work for gauge mediation with strongly coupled hidden sector, see [88].
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4.1 Review of General Gauge Mediation

In this section, we briefly review the definition of the gauge mediation and the determination of the

effect of the hidden sector via current correlations in [49]. Following their definition, a model has the

gauge mediation mechanism if the theory decouples into the observable sector and a separate hidden

sector that breaks supersymmetry (SUSY) in the limit the observable sector gauge couplings αi all

vanish. In this setup, we may be able to compute various quantities in perturbation theory in the

gauge coupling αi, but the hidden sector may be strongly coupled. The information of the hidden

sector, however, can be parametrized by the current correlation functions in the hidden sector. In

the supersymmetric gauge theory, a global current superfield JA has the component form

JA = JA + iθjA − iθ̄j̄A − θσµθ̄jAµ +
1
2
θ2θ̄σ̄µ∂µj

A − 1
2
θ̄2θσµ∂µj̄

A − 1
4
θ2θ̄2�JA , (4.1)

and satisfies the current conservation conditions

D̄2J A = D2J A = 0 , (4.2)

with jµ satisfying ∂µjAµ = 0. Here A is an index for the adjoint representation of the global symmetry

group. The current-current correlators have the following general forms:

〈JA(x)JB(0)〉 = δAB
1
x4
C0(x2M2) ,

〈jAα (x)j̄Bα̇ (0)〉 = −iδABσµαα̇∂µ
(

1
x4
C1/2(x2M2)

)
,

〈jAµ (x)jBν (0)〉 = δAB(ηµν∂2 − ∂µ∂ν)
(

1
x4
C1(x2M2)

)
,

〈jAα (x)jBβ (0)〉 = δABεαβ
1
x5
B1/2(x2M2) ,

(4.3)

where M is the characteristic mass scale of the theory. B1/2 may be complex but all Ca are real.

There could also be nonzero one-point function 〈J(x)〉, but it vanishes for nonabelian currents.

When supersymmetry is not broken spontaneously, we have the relations

C0 = C1/2 = C1 , and B1/2 = 0 . (4.4)

Since supersymmetry is restored in UV, whether SUSY is spontaneously broken or not,

lim
x→0

C0(x2M2) = lim
x→0

C1/2(x2M2) = lim
x→0

C1(x2M2) , and lim
x→0

B1/2(x2M2) = 0 . (4.5)
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We now gauge the global current by coupling it to a gauge field. The part of the original Lagrangian

for the gauge field is given by

L =
1
8π

Im
(
τTr

∫
d2θ2WαWα

)
+ . . .

=
1

2g2
DADA − i

g2
λAσµDµλ̄

A − 1
4g2

FAµνF
Aµν + . . . ,

(4.6)

where Imτ = 4π
g2 and we use normalization such that TrTATB = δAB . After integrating out the

hidden sector, its effect is determined by the current correlation functions. Here we will only consider

one gauge group and not a product of gauge groups, such as in the MSSM, for simplicity. Ignoring

higher derivative terms, the change of the effective Lagrangian is

δLeff =
1
2
C̃0(0)DADA − C̃1/2(0)iλAσµ∂µλ̄A −

1
4
C̃1(0)FAµνF

Aµν − 1
2
(MB̃1/2(0)λAλA + c.c.) + . . . .

(4.7)

Here C̃a and B̃ are Fourier transforms of Ca and B, respectively:

C̃a

(
p2

M2
;
M

Λ

)
=
∫
d4xeipx

1
x4
Ca(x2M2) ,

MB̃1/2

(
p2

M2

)
=
∫
d4xeipx

1
x5
B1/2(x2M2) .

(4.8)

The gaugino and sfermion masses are also determined by the current correlation functions. The

gaugino mass at tree level can be read off from the change of the Lagrangian (4.7):

Mλ = g2MB̃1/2(0) . (4.9)

When the one point function 〈J〉 is zero, the sfermion mass occurs at one loop. In this case, we

have to know the current correlation functions at the momentum of order M , the typical scale of

the hidden sector. The sfermion mass is then

m2
f̃

= g4c2fA , (4.10)

where c2f is the quadratic Casimir of the representation of f under the gauge group and

A = −
∫

d4p

(2π)4
1
p2

(
3C̃1

(
p2

M2

)
− 4C̃1/2

(
p2

M2

)
+ C̃0

(
p2

M2

))
. (4.11)

4.2 Basic Idea

In this section, we present the basic idea to compute the current correlators in non-supersymmetric

vacua, which encode the gaugino and sfermion masses. Schematically, the full theory can be written
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in the following form:

L = Lhid + Lint + LMSSM , (4.12)

where Lhid is the supersymmetry breaking hidden sector, LMSSM is the visible MSSM sector, and

Lint is the interaction between the two sectors, which transmits the supersymmetry breaking effects

to the MSSM. For simplicity, hereafter, we assume the observable sector is the MSSM. When we

integrate out Lhid + Lint, we produce the soft terms that break supersymmetry in the MSSM

Lagrangian.

L → Leff = LMSSM + δLsoft . (4.13)

This can be done explicitly if the hidden sector is weakly coupled, but it is hard to do so for the

strongly coupled case in general.

However, we can circumvent the difficulties in certain cases. As we have reviewed in the previous

section, many of the parameters of the soft terms can be determined by calculating the current

correlation functions. To achieve this, we will replace the MSSM with another theory such that we

have control over the combined theory. That is, we are going to consider the following Lagrangian:

Lg′ = Lhid + L′int + L′spec . (4.14)

Here, if the gauge coupling constant g′ for the spectator Lagrangian goes to zero, the spectator fields

decouple. Supposing this new theory is solvable, we integrate out the hidden sector and obtain

Lg′,eff = L′spec + δLsoft . (4.15)

Now, by taking g′ small and extracting nontrivial terms, we get the desired soft terms for the original

theory.

In the following sections, we will be more specific and gauge the flavor symmetry of the hidden

sector. Suppose the hidden sector is a gauge theory with gauge group G1 and global symmetry

group G2, and each field lives in the representation (Ai, Bi) under G1×G2. Now by weakly gauging

G2, we get the theory with the product gauge group G1 ×G2:

L = LG1 + Lint + LG2 . (4.16)

Let the dynamical scales associated with gauge groups G1 and G2 be Λ1 and Λ2, respectively, and

g′ gauge coupling for the gauge group G2. We set the scale Λ1 � Λ2, so that we can treat the

gauge interaction for G2 to be very weak at the scale we probe. If we can integrate out the whole

Lagrangian (4.16) in this limit, we are able to extract information about the current correlation

functions of the flavor symmetry of the hidden sector. Note that this probe Lagrangian should not
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be confused with the Lagrangian for the real visible sector, although the structure is very similar.

Here, this is just a probe to extract the information of the hidden sector. In the next section, we

provide certain classes of examples in which we can follow this procedure.

Before we go on, let us briefly mention that we do not really have to gauge the full global

symmetry. It is actually enough to gauge any subgroup H of the global symmetry group G, because

the global currents are only sensitive to group theory factors. To see this, suppose the global current

for G is in a representation R. Let the generators of G be {T a} and H {tα}. The global current

correlators can be written as

〈Ja(x)Jb(0)〉 = f(x)δab , (4.17)

where we have omitted Lorentz indices. This is the only possible form by symmetry. The current

correlators come with the group theory factor

〈Ja(x)Jb(0)〉G = f̃(x)DG(R)δab , (4.18)

where DG(R) is the Dynkin index of the group G in the representation R and we have omitted the

Lorentz indices. Now, let us decompose the representation in terms of the representations of the

subgroup H by R = ⊕iri where ri is a representation of H. Then, the correlators we get by gauging

the subgroup can be written as

〈Jα(x)Jβ(0)〉H = f̃(x)
∑
i

DH(ri)δαβ . (4.19)

Therefore, we can multiply the currents obtained by gauging the subgroup by the group theory

factors to get the desired current correlators.

〈Ja(x)Jb(0)〉G =
DG(R)∑
iDH(ri)

〈Ja(x)Jb(0)〉H . (4.20)

4.3 Examples

4.3.1 L = 2 SQCD with a Superpotential

Here we will consider N = 2 SU(Nc) Seiberg-Witten theory with Nf hypermultiplets [2, 3] with

an appropriate superpotential as the hidden sector. This theory has U(Nf ) global symmetry. We

will weakly gauge the SU(Nf ) part of the global symmetry. So the hidden sector is given by the
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Lagrangian

L =
1
8π

Im
[
τ

(
Tr
∫
d2θWαWα + 2

∫
d2θd2θ̄Φ†e−2V Φ

)]
+
∫
d2θW (Φ) + c.c.

+
∫
d2θd2θ̄

(
Q†ae

−2VQa + Q̃ae
2V Q̃a

†)
+
∫
d2θ

(√
2Q̃aΦQa +MQ̃aQa

)
+ c.c ,

(4.21)

where a = 1, . . . , Nf and W (Φ) is a superpotential for the adjoint chiral superfield Φ. Note that

M in the mass term MQ̃aQa is proportional to the Nf ×Nf identity matrix, which is of the most

general form to preserve SU(Nf ) global symmetry. We will consider the Coulomb branch of the

hidden sector, whose special coordinates are denoted by ai where i = 1, . . . , Nc with
∑
ai = 0.

With a suitable choice of the superpotential W (Φ), the hidden sector can be in a metastable SUSY

breaking state. For example, we can use a Kähler normal coordinate truncated at some finite order

as a superpotential to get a metastable SUSY breaking state at a generic point in the Coulomb

branch as we see in Chapter 3. Note that ai may have nonzero F -component, which we denote by

F i. Our purpose is to compute the current-current correlators of the SU(Nf ) global current below

the typical scale of ai.

To achieve this, we gauge the flavor symmetry of the hypermultiplets. Since our purpose is to

calculate the current-current correlators, we need not gauge the flavor symmetry using the MSSM.

To facilitate computations, it is better to gauge the flavor symmetry by another N = 2 SU(Nf ) SW

gauge theory. So the total Lagrangian can be written as

L′ =
1
8π

Im
[
τ

(
Tr
∫
d2θWαWα + 2

∫
d2θd2θ̄Φ†e−2V Φ

)]
+
∫
d2θW (Φ) + c.c.

+
∫
d2θd2θ̄

(
Q†e−2V−2V ′

Q+ Q̃e2V+2V ′
Q̃†
)

+
∫
d2θ

(√
2Q̃aΦQa +MQ̃aQa +

√
2Q̃aΦ′abQb

)
+ c.c.

+
1
8π

Im
[
τ ′
(

Tr
∫
d2θW ′αW ′

α + 2
∫
d2θd2θ̄Φ′†e−2V ′

Φ′
)]

,

(4.22)

where primes denote similar multiplets in the SU(Nf ) gauge theory and the trace in the last line is

over the flavor SU(Nf ) indices. Also, in the second line, the first term may be explicitly expressed

as

Q†ia
(
e−2V

)j
i

(
e−2V ′

)a
b
Qbj , (4.23)

where i, j = 1, . . . , Nc and a, b = 1, . . . , Nf . The gauge coupling of the spectator gauge theory is

assumed to be very weak, so τ ′ = 4πi/g′2 with g′ very small.

Treating the theory as N = 2 SU(Nc) × SU(Nf ) SW gauge theory, the low energy effective
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theory in the Coulomb branch is given by

L′eff =
1
8π

Im
[∫

d2θ
(
FijWαiW j

α + 2FiaWαiW ′a
α + FabW ′αaW ′b

α

)]
+

1
4π

Im
[∫

d2θd2θ̄
(
Fiāi + Fam̄a

)]
,

(4.24)

where ai and ma are eigenvalues of Φ and Φ′, respectively, and subscripts under F denote differen-

tiations. Note that the prepotential F depends both on ai and ma. Usually, it is hard to compute

F for product gauge groups. However, using the fact that the spectator gauge theory is weakly

coupled, we may obtain necessary information out of F0 of the original N = 2 SU(Nc) SW theory.

To see this, note that the low energy effective theory of (4.21) is

Leff =
1
8π

Im
[∫

d2θF0ijW
iαW j

α + 2
∫
d2θd2θ̄F0iā

i

]
, (4.25)

where F0(a) is the prepotential for N = 2 SU(Nc) SW theory. Let us consider the case where g′ goes

to zero. In such a limit, ma is treated as constant. Note that the dynamics of ai in (4.24) and (4.25)

agree when Fi = F0i and ma ∼ 0. The condition ma ∼ 0 is necessary since we set all nonabelian

mass parameters to vanish in (4.25). It really means that the typical scale of ma is much smaller

than that of ai. That is, of the moduli space of the Coulomb branch of the product gauge group,

in the region where |a| � |m|, we may interchange Fi and F0i freely. Therefore, if our interest is to

consider the low energy effective theory whose typical scale of m is much lower than that of a, we

may use the prepotential of the original N = 2 SU(Nc) SW theory to compute quantities.

In the Seiberg-Witten curve language, one can obtain the prepotential in this limit by taking

appropriate mass deformation of the curve, and regarding it as the moduli of the gauge theory. To see

this, let us compare (4.21) and (4.22). In the limit where the second gauge group SU(Nf ) decouples,

the only difference is the term
√

2Q̃aΦ′abQb in the superpotential. The adjoint scalar component of

Φ′ab acts as a mass term for the hypermultiplets. Therefore, by identifying the massive deformation

parameter m̃a to be
√

2ma, and computing the period integrals, we can obtain the prepotential F

and its derivatives in the limit of |m| � |a|.

4.3.1.1 Calculation of B̃1/2(0)

From (4.24), we can read off the coefficients of D′2, λ′σµ∂µλ̄′, F ′µνF
′µν and λ′λ′ of the spectator

gauge theory. Let us first consider the coefficient of λ′λ′. To show what is going on explicitly, let us
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write down the Lagrangian in terms of the component fields ignoring terms involving derivatives:

L′eff = . . .+gIJF I F̄ J +
1
2π
gIJD

IDJ +
1

8
√

2π
FIJKDIψJλK +

1
8
√

2π
F̄IJKDI ψ̄j λ̄K

+
i

16π
FIJK F̄ IψJψK −

i

16π
FIJKF IλJλK + c.c.

+
i

32π
FIJKL(ψIψJ)(λKλL) +WIF

I − 1
2
WIJψ

IψJ + c.c.

(4.26)

Here I = (i, a) and the prepotential F has the superfields AI = (ai,ma) as its arguments. Note that

Wa = 0, and gIJ = 1
4π ImFIJ is the metric for the product group gauge theory. After integrating

out the auxiliary fields F I , we can read off the coefficients of λIλJ , which are given by

L′eff = . . .+
i

16π
FIJKgKLW̄Lλ

IλJ + . . . . (4.27)

If the hidden sector is very weakly interacting with the spectator gauge theory, gKLW̄L should nearly

be the same as (gij0 W̄j , 0) where gij0 is the inverse metric of the original N = 2 SU(Nc) gauge theory.

To see this, note that among the components of the metric gIJ , gab is very large compared with gij

and gia in the limit g′ → 0. From the expression

δKJ = gIJg
JK =

gij gib

gaj gab

gjk gjc

gbk gbc

 , (4.28)

we see that gij is much larger than gib and gab and this is more so as g′ → 0. Also gij is the inverse

of gij , which is the same as g0ij , all in the limit g′ → 0. Therefore, gaLW̄L can be ignored compared

to gijW̄j , and

gIJW̄J = (gij0 W̄j , 0) =: (−F i, 0) . (4.29)

Next, we need to integrate out λi fields in (4.27). When we do this, we get

L = . . .− i

16π
(
F iFiab − (FijmFm)−1FaikFbjlF kF l

)
λaλb + . . . , (4.30)

where (FijmFm)−1 is the inverse of the matrix Xij = (FijmFm) and we use the relation (4.29) in

our limit. There are two terms in the coefficient of λaλb. The first term is the usual one, but the

second is from integrating out the gaugino λi in the hidden sector. However, when we gauge the

SU(Nf ) flavor current, the second term can be neglected. The point is that, in the second term, F

is differentiated only once by ma. Note that F0 in the original N = 2 SU(Nc) SW theory depends

smoothly on the symmetric polynomials of ma’s, such as
∑
a≤bm

amb,
∑
a≤b≤cm

ambmc, . . .. Hence,

when differentiated once, F0 necessarily contains at least one factor of ma and so goes to zero when

|m|/|a| → 0. On the other hand, F0 itself or its second derivatives by ma need not vanish when ma
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is small. Since F0i = Fi in our limit, in the region of the moduli space where |a| � |m|, the first

term dominates and we can safely ignore the second term. Therefore, when the hidden sector fields

are integrated out, we may say that the relevant gaugino mass term is

L = . . .− i

16π
F kFkabλaλb + . . . . (4.31)

Note that, if we gauged the U(Nf ) flavor current, the prepotential would depend on
∑
am

a and we

would not be able to ignore the second term in (4.30).

Next, we will look for a theory at the scale of |a| which gives the low energy effective theory

described above. That is, we hide all signals of the hidden sector into the gauge coupling of the

spectator gauge theory and consider N = 2 SU(Nf ) SW theory

L =
1
8π

Im
[
τ2

(
Tr
∫
d2θW ′αW ′

α + 2
∫
d2θd2θ̄Φ′†e−2V ′

Φ′
)]

, (4.32)

where τ2 = 4πi/g′2 + θ2Fτ is the gauge coupling of the probe Lagrangian at the scale of |a|.

This is a theory at the scale of |a|. We will go to the low energy effective theory in the Coulomb

branch where the superfield Φ′ has eigenvalues ma, a = 1, . . . , Nf (so
∑
ma = 0). Although |a| �

|m|, the coupling g′ is so small that one loop correction is enough when we consider the dynamics

at the scale of |m|. The prepotential at one loop is given by

F(m) =
τ2
2

∑
a

(
ma −

∑
bm

b

Nc

)2

+
i

4π

∑
a<b

(ma −mb)2 log
(ma −mb)2

Λ2
, (4.33)

and the low energy effective theory is

L =
1
8π

Im
[∫

d2θFabW ′αaW ′b
α + 2

∫
d2θd2θ̄Fam̄a

]
. (4.34)

Note that the θ2 component of F is not corrected by the one-loop effect. So the gaugino mass term

is given by

L = . . .− 1
8π
Fτλ

aλa + . . . . (4.35)

Note that we use coordinates for the second gauge group such that
∑Nf
a=1 λ

a = 0. Comparing this

with (4.31), we obtain

Fτ

(
δab −

1
Nc

)
=
i

2
F kFkab , (4.36)

at ma = 0. Note that, since Fk depends on the masses ma by the combination ma −
∑
bm

b/Nc,

taking derivatives with respect to ma and mb, Fkab in the right-hand side has the same index
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structure as that in the left-hand side. From (4.7),

MB̃1/2(0)
(
δab −

1
Nc

)
=

i

8π
F kF0kab . (4.37)

It is instructive to actually calculate the gaugino mass using this formula in the semiclassical

regime. That is, we check the expressions in the case where the expectation value of the chiral

superfield Φ of the hidden sector is much larger than the scale of the hidden sector gauge theory.

Additionally, we assume that the hypermultiplets Q and Q̃ are massless: i.e., M = 0 in (4.22).

The chiral superfield Φij has nonzero F -term FΦij where i and j are the gauge group indices for

the hidden sector. Note that we are in the Coulomb branch of the hidden sector. We use gauge

transformation such that 〈Φij〉 is diagonal with diagonal elements ai(
∑
ai = 0). Let Fi be the

corresponding F -term of ai. We will calculate the gaugino mass in this setup. We start with the

Lagrangian (4.22) and go to the low energy effective theory at the scale of |m|, where 〈Φ′〉 has

eigenvalues of ma with the constraint
∑
ma = 0. The ai dependent part of the prepotential F ,

given by [89] with the constraint
∑
ma = 0 built in, is

F =
2π
g2

∑
i

(
ai −

∑
j aj

Nc

)2

+
i

4π

∑
i<j

(ai − aj)2 log
(ai − aj)2

Λ2

− i

8π

∑
i,b

(
ai −mb −

∑
a

Nc
+
∑
m

Nf

)2

log

(
ai −mb −

P
a

Nc
+

P
m

Nf

)2

Λ′′2
+ . . . ,

(4.38)

where τ = 4πi/g2, τ ′ = 4πi/g′2. Λ is the scale for the first gauge group and Λ′′ is some scale which

does not change the answer that follows. Then

Fkab = − i

2π

∑
i

1
ai −mb

(
δik −

1
Nc

)(
δab −

1
N f

)
, (4.39)

after imposing tracelessness conditions. Since the scale of the spectator gauge theory does not enter

into the expression, we may set F0kab = Fkab. In the limit mb → 0, we have, from (4.37),

MB̃1/2(0) =
1

16π2

∑
k

Fk
ak

, (4.40)

which gives the usual one-loop gaugino mass through (4.9)

Mλ =
g2

16π2

∑
k

Fk
ak

, (4.41)
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if we identify
√

2ak with masses of the messengers(The F -term of
√

2ak is
√

2Fk).

4.3.1.2 Calculation of C̃a(0) and Sfermion Masses

Using the same technique, we may compute C̃a(p2/M2) at zero momentum. Note that the effect of

integrating out the hidden sector fields is to change the gauge coupling τ ′ to τ2 as shown in (4.32).

Also, in this case, all C̃a(0) are the same. Using (4.7),

C̃a(0) =
1
4π

Im (τ2(a)− τ ′) . (4.42)

When we go to the low energy effective theory, τ2(a) gets renormalized. But since g′ is very small,

it is enough to consider only the one-loop effect. So τ2(a) gets only additive renormalization of the

form logm, which is independent of a. Hence we have

∂τ2(a)
∂ak

(
δab −

1
N

)
= Fkab . (4.43)

Integrating this equation, we are able to obtain τ2(a), which then may be fed into (4.42) to get

C̃a(0). The additive constant is determined by noting that C̃a(0) goes to zero in the limit where

a→∞.

Since we are required to calculate C̃a(p2/M2) when p2/M2 is of order 1, the information we have

just obtained is not enough to calculate the sfermion masses of the MSSM. Alternatively, we can

introduce a matter multiplet charged with respect to SU(Nf ) and evaluate its low energy effective

action terms.

4.3.1.3 Generalization to Other Gauge Groups

Let us briefly comment on how the expressions (4.37) and (4.43) change for other non-abelian groups.

We start from (4.32). Let TA be a basis of the adjoint representation of the flavor symmetry group

and Ha be a basis of the Cartan subalgebra. The prepotential as a function of the N = 2 adjoint

chiral superfield Φ′ at classical level is given by

F(Φ′) =
1
2
τ2
cadj

Tradj(Φ′2) , (4.44)

where cadj is the Dynkin index for the adjoint representation:

Tradj(TATB) = cadjδAB . (4.45)
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In the Coulomb branch, all massive modes are integrated out and Φ′ is diagonalizable due to D-term

constraint. Hence Φ′ =
∑
am

aHa and the prepotential above becomes

F(a) =
1
2
τ2
cadj

Tradj(HaHb)mamb =
τ2
cadj

mamb
∑
α

αaαb , (4.46)

where the summation is over all positive roots of the flavor group. Therefore λλ term in (4.34)

becomes

L = . . .− 1
4π

Fτ
cadj

∑
α

αaαbλ
aλb . . . . (4.47)

We now compare this with the λλ term in the low energy theory of the product gauge group (4.31).

Therefore

Fτ
∑
α

αaαb =
icadj

4
F kFkab . (4.48)

Since the θ2 component of τ does not receive corrections at one loop, this Fτ can be used to calculate

MB̃1/2(0). That is, the part of λλ consisting of the Cartan subalgebra part in (4.7) is

δLeff = . . .−MB̃1/2(0)
1
cadj

∑
α

αaαbλ
aλb . . . . (4.49)

Therefore the relation corresponding to (4.37) is

MB̃1/2(0)
∑
α

αaαb =
i

16π
cadjF

kF0kab . (4.50)

Similarly, corresponding to (4.43), we have

∂τa(a)
∂ak

∑
α

αaαb =
1
8π
cadjF0kab . (4.51)

4.3.1.4 Hypermultiplet Condensation

It may be of interest to check whether the hypermultiplet bilinear Q̃aQb develops a nonzero expecta-

tion value. The Lagrangian for the product SU(Nc)× SU(Nf ) gauge theory (4.22) has some terms

containing the F component of Φ′:

L′ = . . .+
1
g′2

Tr
(
F̄Φ′FΦ′

)
+ Q̃aFΦ′abQb + c.c.+ . . . . (4.52)

Therefore we can calculate the expectation values of the bilinear Q̃aQb by differentiating the partition

function with respect to FΦ′ . More precisely, we will calculate the traceless part of 〈Q̃aQb〉 since

the source FΦ′ is traceless. To get the effective Lagrangian for the spectator gauge theory, we start

with (4.26) and set all vevs for the fermions to zero. Then we integrate out the F and D terms for
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the hidden sector. The equation of motion for Di sets Di = 0. The equation of motion for F i is

F̄ j̄ = −gij̄giāF̄ ā − gij̄Wi , (4.53)

Plugging the result into the Lagrangian, we get

L′eff = −gjī(gaīF a + W̄ī)(gjb̄F̄
b̄ +Wj) + gab̄F

aF̄ b̄ . (4.54)

Now we can read off the linear term in F a:

L′eff = . . .− gjīgaīWjF
a + . . .

= . . .− gjī0 g0aīWjF
a + . . . ,

(4.55)

where the second line follows in the limit g′ → 0. But as we argued below (4.31), giā vanishes as

ma goes to 0 since we differentiate the prepotential F only once with respect to the second gauge

indices to get giā. Therefore, the linear term vanishes and the hypermultiplet bilinear can have at

best an expectation value of the form

〈Q̃a(0)Qb(0)〉 = h(a)δab , (4.56)

for some function h(a). This does not break U(Nf ) symmetry. Also, Q or Q̃ cannot have nonzero

expectation values perturbatively in the superpotential W . The reason is that we have a U(1)

subgroup of SU(2) R-symmetry of N = 2 theory even after including a superpotential if we assign

charge +2 to the superpotential. Since Q and Q̃ have charge +1, it cannot be expressed as a series

in W . Therefore, although there could be hypermultiplet condensation, U(Nf ) symmetry is still

preserved. Note that, if we gauged U(Nf ) symmetry instead, the bilinear would be diagonal with

ath diagonal element gij̄giāWj . In this case, this would not vanish when ma → 0. However, by

symmetry, giā would be the same for all a for a fixed i. Hence the vev of the bilinear would be

proportional to the identity matrix, and U(Nf ) symmetry would still exist. Of course, the answer

does not depend on which global symmetry we gauge. Therefore h(a) in (4.56) is determined and

we have, for any index c,

〈Q̃a(0)Qb(0)〉 = gjī0 g0c̄iWjδab , for the metric g0 of U(Nf ) . (4.57)

Note that we actually calculate 〈Q̃a(0)Qb(0)〉 at the scale of |m|. But 〈Q̃a(0)Qb(0)〉 both at the

scale of |m| and at the scale of |a| have the same form since when we go from the scale |a| to |m|,

we receive only perturbative effects, and this does not change 〈Q̃a(0)Qb(0)〉.

Having derived the formula for the quark condensate (4.57), let us verify it in the semiclassical
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Figure 4.1: One loop diagram contributing hypermultiplet condensation.

regime. The leading contribution of
√

2Q̃iaF
j
ΦiQ

a
j to 〈Q̃iaQbi 〉 for small FΦ, shown in Figure 4.1, is

〈Q̃iaQbi 〉 =
∑
i

∫ Λ0

0

d4p

(2π)4
F̄iδ

b
a

(p2 + (
√

2ai)2)2

= − 1
16π2

δba
∑
i

F̄i log(
√

2ai)2 .
(4.58)

Note that the interaction is insensitive to the cutoff Λ0. Let us compare this with (4.57). The

relevant part of the prepotential is similar to (4.38):

F =
2π
g2

∑
i

(ai)2

+
i

4π

∑
i<j

(ai − aj)2 log
(ai − aj)2

Λ2
− i

8π

∑
i,a

(ai −ma)
2 log

(ai −ma)2

Λ′′2
+ . . . .

(4.59)

Note we do not impose the constraint
∑
ma = 0 since (4.57) is valid when gauging U(Nf ) symmetry.

The metric component gia at weak coupling is given by

gaī =
3

16π2
+

1
16π2

log
(ai −ma)2

Λ′′2
. (4.60)

Let us go to the limit ma → 0. Then gjī0 Wj = −F̄ ī and using (4.57),

〈Q̃kaQbk〉 = −F̄ k̄g0ck̄δba = − 1
16π2

δba
∑
k

F̄k log(
√

2ak)2 . (4.61)

The result agrees with (4.58).

4.3.2 Geometrically Realized Models

As another controllable model, we study geometrically induced supersymmetry breaking configura-

tion in Type IIB string theory on A2-fibered geometry. This has been studied in [87] somewhat in
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a different context. Consider A2 fibred geometry [66] defined by

x2 + y2 + z (z −m1(t− a1)) (z +m2(t− a2)) = 0.

There are three singular points, t = a1,2 and a3 = (m1a1 +m2a2)/(m1 +m2). Wrapping Nc anti-D5

and Nf D5 branes on two S2s that resolve the singularities at t = a1 and a2 respectively, we can

construct a supersymmetry breaking configuration. We do not wrap any brane at t = a3, because

this can decay into a lower energy configuration. Our present setup does not have an unstable mode

as has been discussed in [90]. Therefore we can take field theory limit. Here we claim that as long

as the size of S2 at t = a2 is much bigger than that at t = a1, there is a field theory description

for this brane/anti-brane system. According to the conjecture proposed in [43, 82, 87, 91], there

is a glueball description with respect to the hidden sector gauge group corresponding to a partial

geometric transition. Thus it is reasonable to claim that the low energy field theory description is

an interacting product U(1)× U(Nf ) gauge theory. The kinetic term is

∫
d4θK(S1)Φ2Φ

†
2 + Im

[∫
d4θS̄1

∂F0,0(S1)
∂S1

]
+
∫
d2θ [τ (S1)WαWα] + c.c.+ . . . , (4.62)

where . . . includes higher derivative terms and U(1) gauge kinetic terms. F0,0(S1) is the prepotential

for the geometry after the transition,

2πiF0,0 =
S2

1

2

[
log
(

S1

m1Λ2
0

)
− 3

2

]
.

where Λ0 is a cutoff scale of this description. The superpotential terms are

W = αS1 +Nc
∂F0,0

∂S1
+ W̃2(Φ2, S1) . (4.63)

In application to phenomenology we will identify a subgroup of SU(Nf ) as the standard model

gauge group. So the adjoint field Φ2 for SU(Nf ) gauge group should be integrated out by taking

m2 →∞. In the limit, the superpotential W̃2 becomes a relatively simple function,

W̃2 =
∫ a2

Λ0

[
m1

2
(t− a1) +

1
2

√
m2

1(t− a1)2 −
4S1

m1

]
dt.

Our goal in this section is to compute the function τ(S1) and extract Cis and B1/2 from it. In

the open string description we can say that this S1 dependence is generated by the bifundamental

matter. On the other hand, after the transition in closed string point of view, it is generated by

closed string modes. To extract the interacting part, we use the glueball description for U(Nf )

gauge group as well and assume that the glueball fields and U(1) ⊂ U(Nf ) gauge supermultiplet wα
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are background fields. Following [92, 93], we use glueball description for evaluating the interacting

part even though the SU(Nf ) theory is weakly coupled and is not confined. Turning on these

backgrounds modifies the geometry slightly. At the leading order of the modification, we read off

the kinetic term for the gauge group. The low energy description is given by

L = Im
(∫

d4θS̄i
∂F0

∂Si
+
∫
d2θ

1
2

∂F0

∂Si∂Sj
wiwj

)
+
∫
d2θW (Si) + c.c. , (4.64)

where W (Si) is Gukov-Vafa-Witten superpotential [81] generated by the flux. Solving the equation

of motion for F 1, we obtain the potential

V =
1
g11

∣∣g12F̄ 2 + ∂1W
∣∣2 − g22F 2F̄ 2 − F 2∂2W − F̄ 2∂̄2W̄ , (4.65)

where we ignored U(1) gauge fields. The metric is defined by Im ∂i∂jF0. Since we are interested in

coefficients of correlation functions B1/2 and Ci, which are related to linear terms in S2 and F 2, we

can put these to be zero when we evaluate the minimum of the potential,

V (S2 = 0, F 2 = 0) =
1
g11

∣∣∂1W
∣∣2.

To find the minimum it is useful to expand the prepotential F0 for A2 geometry as

F0 =
∞∑
b=0

S2
bF0,b(S1),

where we ignored S1 independent part, which can be combined with the classical action of SU(Nf )

and construct the one-loop running coupling constant. In the matrix model computation, F0,b are

contributions of diagrams with b boundaries, which are perturbatively calculable order by order.

With this expansion, the superpotential and metric become

W (S2 = 0) = α1S1 +Nc
∂F0,0(S1)
∂S1

+NfF0,1(S1),

g11(S2 = 0) = Im
∂2F0,0

∂S1∂S1
.
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In our setup, the disk and annulus amplitudes are exactly known [94–96],

2πiF0,1 = S1

(
log

∆ +
√

∆2 − 4S1
m1

2Λ0
+

∆

∆ +
√

∆2 − 4S1
m1

− 1
2

)

' S1 log
∆
Λ0
− S2

1

2m1∆2
+ . . . ,

2πiF0,2 =
1
2

log
(

∆ +
√

∆2 − 4S1

m1

)
− 1

2
log
(

2
√

∆2 − 4S1

m1

)
' S1

2m1∆2
+ . . . ,

where ∆ = a1 − a2. With these expressions, we see that W (S2 = 0) reproduces the superpotential

in (4.63) in the limit m2 → ∞ and S2 → 0. At the leading order, the minimum of the potential is

given by

〈S1〉|Nc| = (m1Λ0)|Nc|
(

∆̄
Λ̄0

)Nf
e2πiᾱ1 . (4.66)

Note that Nf > 0 > Nc. Since there is an exponential suppression factor, vev of S1 exists in physical

region, which we regard as a dynamical scale of the theory on the anti-D5 branes.

Expanding the potential (4.65) around the minimum we can read off coefficients of linear terms

in S2 which yield the gaugino mass term for SU(Nf ) part,

2πi
g2
YM

mλ =
2πiF1

16π2

[
−|Nc|

∂2F0,1

∂S1∂S1
+ 2Nf

∂F0,2

∂S1

] ∣∣∣∣
〈S1〉

− |F1|2

32π2iΛ4

∂2F0,1

∂S1∂S1

∣∣∣∣
〈S1〉

' 1
16π2

[
|Nc|+Nf
m1∆2

F1 +
|F1|2

2im1∆2Λ4

]
, (4.67)

where we supplied a dimensionful parameter Λ. In the field theory limit, we take the string scale

to be infinity, keeping the scale Λ finite which should be identified with the scale of S1 in (4.66) in

our model. The α1, which is the size of P1, also has to scale appropriately [78].2 The vev of F 1 is

cut-off independent and a finite quantity in the limit,

F 1 = −g−1
11 ∂1W

∣∣
0
' βΛ4,

where the β is defined by 2i Imᾱ1 ∼ β log Λ0,3 which encodes geometric data of the P1. On the
2In the geometric engineering one focuses on the leading effect of the small parameter Λ/Mst. Geometric quantities

scale with the small parameter, for example the potential scales V ∼ (Λ/Mst)4. Thus the original string scale in the
potential cancels and it becomes field theory scale vacuum energy V ∼ O(Λ4).

3Note that without loss of generality we can take the phase of ∆/Λ0 to be real. With this normalization, we
defined the β.
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other hand, another correlation functions can be read off from the linear term in F 2.

2πiCi(0) =
−2πi
16π2

Re
[
Im
(
∂F0,1

∂S1

)
Λ−4F̄ 1 + |Nc|

∂F0,1

∂S1
− 2NfF0,2

] ∣∣∣∣
〈S1〉

' 1
16π2

[
Im
(
〈S1〉
m1∆2

)
Λ−4ReF 1 + (|Nc|+Nf )Re

(
〈S1〉
m1∆2

)]
. (4.68)

Finally let us comment on the diagrammatical computation of the gaugino mass. Although our

present geometric configuration does not include an unstable mode, we do not know explicitly the

UV Lagrangian for the brane/anti-brane system. Thus it is not easy to compute the correlation

functions studied above from matrix model computations directly. However, the flop of the S2

wrapping the anti-brane is a smooth process because its physical volume can never be zero [87,91].

The new geometry yields the brane/brane configuration. The world volume theory on the branes is

quiver gauge theory with a superpotential,

WSUSY =
m1

2
tr(Φ1 − a1)2 +

m2

2
tr(Φ2 − a2)2 +Q12Φ2Q21 +Q21Φ1Q12.

Using this explicit Lagrangian and technology developed in [92,93,97,98], we can compute the non-

perturbative effect from perturbative Feynman diagram computations. In fact, explicit formulae for

F0,0, F0,1 and F0,2 have been perturbatively computed by this method.
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Part II

Gauge/Gravity Dualities

and Their Applications
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Chapter 5

Introduction

We have seen in Part I of the thesis that supersymmetric gauge theories play a vital role in con-

structing a realistic model for a theory above the TeV scale. But there are many known cases where

supersymmetric gauge theories are related to gravity theories. In the second half of the thesis, we

will discuss the understanding and applications of gauge/gravity dualities. The most well-studied

example is the correspondence between the AdS5 × S5 supergravity and N = 4 super Yang-Mill

theory [8–10]. The correspondence can be thought of as an equivalence between the two descriptions

describing the low energy dynamics of N multiple parallel D3-branes in flat space in type IIB string

theory. The low energy limit can be equivalently thought of as keeping the energy scale fixed while

sending the string length ls =
√
α′ to 0. On the one hand, the system is described by open strings on

the D3-branes and the closed strings in the ten-dimensional bulk. In the low energy description, the

D3-branes is described by N = 4 SU(N) supersymmetric Yang-Mills theory and it decouples from

the free bulk dynamics described by closed strings. The gauge coupling constant becomes g2
YM = gs

where gs is the string coupling constant. On the other hand, we may view the D3-branes as a source

of the energy-momentum tensor and consider its effect on the metric and other fields in supergravity.

The metric is then given by

ds2 = f(r)−
1
2 dxµdx

µ + f(r)
1
2 (dr2 + r2dΩ2

5) ,

f(r) = 1 +
R4

r4
, R4 = 4πgsα′

2
N ,

(5.1)

where dxµdxµ is the four-dimensional Minkowski metric and dΩ2
5 is the metric for the unit five sphere.

Sending α′ to 0 and keeping the energy fixed means keeping U = r
R2 fixed where R4 = 4πgsNα′

2.

In that limit, the metric becomes

ds2 = R2

(
dU2

U2
+ U2dxµdx

µ

)
+R2dΩ2

5 . (5.2)
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That is, the near horizon region of the geometry becomes AdS5 × S5. In the limit, the near horizon

dynamics decouples from the free bulk physics. Combining the two, it is natural to identify N = 4

SU(N) supersymmetric Yang-Mills theory and the supergravity theory in AdS5 × S5. Of course,

this argument is not rigorous since we do not treat string theory non-perturbatively. Moreover, the

supergravity description is valid when R� ls or gsN � 1, while the N = 4 super-Yang-Mills theory

is perturbatively described when g2
YMN = gsN � 1 in the large N limit. Despite the difficulty,

there is overwhelming evidence that the correspondence is correct: for example, operators with

some amount of supersymmetry does not receive quantum corrections when the coupling constant

gs changes, so it is possible to compare these operators in two different descriptions [10,99].

Moreover it is believed that the essence of the correspondence does not depend on supersymmetry

[100], so it makes sense to discuss non-supersymmetric versions of the correspondence also. It is a

strong/weak duality, which makes it difficult to prove while beneficial to use. For example, we can

learn about a strong-coupling behavior of a field theory by studying classical solutions of its gravity

dual. Also, a gravity theory is lacking a UV definition, and the dual field theory may provide a way

to define the gravity theory rigorously.

If we assume gauge/gravity dualities, we can study the strong-coupling behavior of some field

theories by its classical dual gravity solutions. Even though we do not know an exact pair, sometimes

a classical gravity geometry is determined by symmetries of the corresponding field theory to a great

degree. Hence we can extract much information for a field theory if we assume the existence of a

gravity dual.

Along this line, we will consider a field theory with Schrödinger symmetry, which is a nonrelativis-

tic version of scale symmetry [101]. The Schrödinger symmetry is an extension of the nonrelativistic

Galilean symmetry [102,103]. Just as in the relativistic scale symmetry, there is a dilatation opera-

tor, by which time and space scale differently. However, unlike its relativistic counterpart, there is

only one special conformal operator. One of the most interesting physical examples with such sym-

metry is a set of fermions in an optical lattice with the magnetic field. The magnetic field induces

Feshbach resonances and the strength of attraction is tunable arbitrarily [104–107]. The interaction

of the fermion gas arises mainly through the binary s-wave collisions with the scattering length a.

When the attraction between the fermions is very weak, the fermions favor to form Cooper pairs,

forming a Bardeen-Cooper-Schrieffer (BCS) state. On the other hand, if the attraction is sufficiently

strong, two fermions form a bound state and the system is effectively described by the Bose-Einstein

condensation (BEC). In both the BCS and BEC limits, the system can be described as a weakly

interacting system with the interaction parameter akF , where kF is the Fermi momentum. As we

change the magnetic field strength, there is an intermediate regime, called the unitarity limit, where

the scattering length a becomes infinite. In this regime, we expect to see a nonrelativistic version of

scale symmetry, i.e., Schrödinger symmetry. Perturbation theory does not work well here since akF
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diverge, but the gauge/gravity correspondence may provide a useful technique to study the problem.

Another application of gauge/gravity dualities is to study phase transitions of field theories.

Finite temperature states in a field theory correspond to black hole solutions in the dual gravity

theory [108]. A non-zero charge density solution in the field theory can be realized by turning

on the chemical potential in the grand canonical ensemble. This corresponds to a charged black

hole solution in the gravity theory. An instability of a black hole signals a phase transition in the

corresponding field theory. The instability may occur due to charged or neutral scalar fields as

discussed in [109–111]. But a supergravity theory typically has Chern-Simons terms, and it may

cause an instability [112], which we will verify in Chapter 7.

Let us consider a five-dimensional gravitational system with the Maxwell field and its Chern-

Simons term. By the gauge/gravity duality, the system is dual to a four-dimensional gauge theory.

The effect of the Chern-Simons term can be analyzed as follows [10]. Suppose the geometry of the

gravity solution is of the form M ×X where M is a five-dimensional space that asymptotes to AdS5

and X is some compact five-dimensional space. The Chern-Simons term appears in the gravity

action as

SCS = k

∫
M

A ∧ dA ∧ dA , (5.3)

where k is some constant. Since we are going to study the Maxwell field, we confine ourselves to

the consideration of abelian gauge group only, even though the extension to the non-abelian gauge

group is straightforward. Note that the space M , being asymptotically AdS5, has a boundary ∂M ,

which means that the action (5.3) is not gauge invariant: under the gauge variation δA = dΛ for a

zero-form Λ,

δSCS = k

∫
∂M

Λ ∧ dA ∧ dA . (5.4)

Note that the change δSCS of the Chern-Simons action depends only on the values of the gauge field

on the boundary. From the view point of the boundary field theory, there is a U(1) global symmetry

corresponding to the U(1) gauge symmetry of the gauge field A in the bulk. The corresponding

global current J is coupled to an external source field A on the boundary. The change of the action

(5.4) can be thought of as the change of the action of the boundary theory. The global current J

couples to the external source field A in the form
∫
AµJ

µd4x. Under the change of the source field

δAµ = ∂µΛ, this term changes by −
∫

Λ∂µJµd4x after partial integration. Therefore, we obtain the

relation ∂µJ
µ ∼ kF ∧ F , which tells us that the effect of the chiral anomaly of the global U(1)

symmetry is proportional to the coefficient of the Chern-Simons action k.

Given a gravity action with Chern-Simons term, we may consider a charged black hole solution.

There is the Reissner-Nordström black hole in a gravity theory without Chern-Simons term. The

additional terms in the equations of motion due to Chern-Simons term vanish in that background.

Therefore, we may think that the Reissner-Nordström black hole is still a valid solution in the
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presence of Chern-Simons terms. However, we will show later that the fluctuation analysis shows

that there are unstable modes, depending on the Chern-Simons coupling and temperature. Such an

instability is interesting since it exhibits a spatially modulated phase. In condensed matter physics, a

spatially modulated phase, called the Fulde-Ferrell-Larkin-Ovchinnikov phase, occurs when two kinds

of fermions with different Fermi surfaces condense with non-vanishing total momentum [113, 114].

[115] studied a similar effect in QCD. Also, in finite density QCD, the chiral density wave studied

in [116, 117] exhibits such a spatially modulated phase. In addition, the Brazovskii model [118]

generates a spatially modulated phase, and it has been applied to a variety of physical problems [119].

In this model, a non-standard dispersion relation is postulated so that the fluctuation spectrum has

a minimum at non-zero momentum. Gravity theories with the Chern-Simons term may provide dual

descriptions for these systems.

The organization of part II is as follows. In chapter 6, we construct M-theory supergravity

solutions with the nonrelativistic Schrödinger symmetry starting from the warped AdS5 metric with

N = 1 supersymmetry. We impose that the lightlike direction is compact by making it a non-trivial

U(1) bundle over the compact space. In chapter 7, we show that, in a gravity theory with a Chern-

Simons coupling, the Reissner-Nordström black hole in anti-de Sitter space is unstable depending on

the value of the Chern-Simons coupling. The analysis suggests that the final configuration is likely

to be a spatially modulated phase.
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Chapter 6

Supersymmetric Nonrelativistic
Geometries in M-theory

In this chapter, we are going to consider an example of gauge/gravity dualities applied to the study

of a strongly coupled field theory. We construct M-theory supergravity solutions with Schrödinger

symmetry starting from the warped AdS5 metric with N = 1 supersymmetry.

We first recall what Schrödiner symmetry is [120]. Let us start with the Galilean algebra in (1+d)

dimensions consisting of the particle number operator N , the Hamiltonian H, spatial momenta Pi,

rotations Mij and Galilean boosts Ki. The last symmetry acts on the spacetime as

t→ t , xi → xi − vit , for some constant vector vi . (6.1)

An interesting feature of this algebra is that it is a subalgebra of the Poincaré algebra in 1 + (d+ 1)

dimensions. That can be most easily shown by introducing the light-cone coordinates x± = x0±xd+1.

Then we consider a subalgebra of the Poincaré algebra that commutes with the lightcone momentum

P̃−, where tilde denotes elements in the Poincaré algebra. Then the following identification can be

made:

N = −P̃− , H = −P̃+ , Pi = P̃i , Mij = M̃ij , Ki = M̃−i . (6.2)

Just as the Poincaré algebra can be extended to include scale symmetry generator D̃, we can add a

dilatation generator D to the Galilean algebra by the identification D = D̃+ 2(z− 1)M̃−+ for some

number z, called the dynamical exponent. The commutation relation of D with other generators

are

[D,Pi] = −iPi , [D,H] = −izH ,

[D,Ki] = i(z − 1) , [D,N ] = i(z − 2)N .
(6.3)

Note that, when z = 2, the particle number operator N commutes with all other generators. In that

case, we can extend the algebra further by adding a special conformal transformation generator C
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that satisfies

[C,Pi] = iKi , [D,C] = 2iC , [H,C] = iD . (6.4)

The special conformal generator C can be identified with −K̃− in the Poincaré algebra. The final

algebra that contains D and C in addition to the Galilean algebra is the Schrödinger algebra.

Note that the Schrödinger algebra can be thought of as a subalgebra of the Poincaré algebra in

one higher dimension, such that its elements commute with the lightcone momentum P̃−. P̃− is

identified with the particle number generator N , which takes discrete values. Therefore, it is natural

that the direction associated with P̃− in the gravity dual is compact. We impose this condition by

making it a non-trivial U(1) bundle over the compact space.

One motivation to consider M-theory supergravity to find a solution with Schrödinger symmetry

with non-trivial U(1) bundle is that the mass-deformed limit of three-dimensional N = 8 maximally

supersymmetric gauge theory has a concrete description in M-theory supergravity [121,122]. Let us

first see what developments have been made in the understanding of the mass-deformed theory in

the field theoretic Lagrangian description.

The Lagrangian description of the maximally supersymmetric gauge theory in three dimensions

was found by Bagger and Lambert [123–125] (see also [126]), by developing the idea of [127]. However,

it was difficult to increase the rank of the gauge group. This is in some sense related to the fact that

the maximally supersymmetric M2-brane solution does not have an adjustable parameter. Later,

Aharony et al. [128] constructed N = 6 U(N)×U(N) Chern-Simons-matter theory (ABJM theory)

that describes multiple M2-branes on the orbifold C4/Zk, where k becomes the level of the Chern-

Simons action in the field theory. This orbifold provides us with an adjustable parameter, which

enables us to treat weakly coupled field theories in some limit. A mass-deformed version of ABJM

theory was considered in [129] and its vacuum structure was identified in [130]. Especially, in the

most symmetric vacuum, the system has SU(2) × SU(2) × U(1) × Z2 symmetry. The mass term

breaks the relativistic scaling symmetry. However, there is a nonrelativistic limit of this theory that

has the Schrödinger symmetry [131,132].

Turning our attention to the gravity side, we can turn on an anti-self-dual four-form flux for

multiple M2-branes in flat space, which corresponds to adding a fermionic mass term to the field

theory. The four-form flux polarizes M2-branes into M5-branes [121, 133] and the discrete set of

vacua of the theory has a one-to-one correspondence with the partition of N , the number of M2-

branes [122]. For multiple M2-branes on the orbifold C4/Zk, we do not have a clear answer yet, but

expect that a similar kind of solutions with desirable properties may be found.

Note that the Chern-Simons-matter theory is a good model to study the nonrelativistic limit

since gauge fields are not propagating. Therefore, it is natural to seek for a supergravity solution

that corresponds to the nonrelativistic limit of the mass-deformed ABJM theory. Assuming the clas-
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sical analysis of the vacuum structure of the field theory is still applicable to the supergravity limit,

the solutions will have SU(2)×SU(2)×U(1)×Z2 global symmetry and several additional U(1) sym-

metries corresponding to the nonrelativistic particle number symmetry, depending on which fields

to retain in the nonrelativistic limit [131]. In the most supersymmetric case, it has 14 supercharges.

Although we were not able to find a supergravity solution with the same number of supersymmetries,

we will present a class of supersymmetric solutions with the Schrödinger symmetry in two space di-

mensions in M-theory, and then consider a specific case with the same global bosonic symmetry of

the nonrelativistic limit of the mass-deformed ABJM theory.

The Schrödinger symmetry considered in [134, 135]1 breaks the AdS symmetry explicitly due

to the term −dx+2

r4 in the metric, where x+ is one of the two lightlike coordinates. Soon after,

the geometry was embedded in string theory [120, 138, 139]. The supergravity solutions with the

Schrödinger symmetry does not have supersymmetry mainly due to the term −dx+2

r4 in the metric and

the lightlike three form flux H3 that supports it. Supersymmetry can be recovered if the coefficient

of dx+2

r4 depends on the compact space [140]. However, in their case, the coefficient is necessarily

negative in some region of the compact space and the stability of the spacetime is not guaranteed.

This problem was remedied and supersymmetric solutions were obtained with negative coefficient of
dx+2

r4 by turning on some lightlike fluxes, which can be related either to a Killing vector that leaves

some Killing spinors invariant [141], or to the properties of the Calabi-Yau structure [142]. Also, it

is possible to explicitly break the AdS symmetry by adding a term dx+C to the metric where C is a

one-form that does not depend on the worldvolume coordinates [142,143]. There are also proposals

where the breaking occurs due to the fact that the lightlike direction is compact without explicitly

adding a term to the AdS metric [144,145].

In the following, we will explore supergravity solutions having the Schrödinger symmetry in M-

theory. As we mentioned above, we make the compact lightlike direction a non-trivial U(1) bundle

over the compact space. We begin with the N = 1 warped AdS5 solutions in M-theory given in [146],

and modify the geometry to obtain the Schrödinger symmetry. Initially the AdS5 solution has eight

supercharges and they reduce to two after the modification in general. However, there is a special

case when there remain six supercharges, which is the same number as in the DLCQ of AdS. After

general remarks, we specialize to a specific example with SU(2)×SU(2)×U(1) isometry. We consider

the Kaluza-Klein spectrum of the theory, and show that the non-trivial U(1) bundle structure of

the lightlike compact direction sets an upper bound for the nonrelativistic particle number for given

quantum numbers of the compact space. The initial motivation to consider a Schrödinger invariant

geometry with SU(2)×SU(2)×U(1) was to find a candidate theory for the dual of the nonrelativistic

mass-deformed ABJM theory. In line with this, we also provide a non-supersymmetric solution with

the same global symmetry briefly at the end.
1See [136] for an earlier discussion, whose relation is explained in [137].
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6.1 General Consideration

In this section, we will deform the supergravity solutions given in [146] in such a way that the

resulting solutions have the Schrödinger symmetry.

6.1.1 Warped AdS5 solutions in M-theory

Before dealing with nonrelativistic solutions, let us describe the general N = 1 supersymmetric

solutions of the supergravity limit of M-theory consisting of a warped product of AdS5 and a six-

dimensional space considered in [146]. We summarize our supergravity notation in appendix C. The

metric is of the form

ds2 = e2λ
[
ds2AdS5

+ ds2M6

]
, (6.5)

and the four-form flux lies along the compact six dimensions. The overall coefficient eλ is a warping

factor that depends on M6. The authors of [146] obtained the most general condition for N = 1

supersymmetry, and then specialized to a special case where the six-dimensional manifold M6 is

a complex manifold with a Hermitian metric. In this case, the supersymmetry condition becomes

significantly simplified and they can obtain many explicit solutions. Let us describe the manifold

M6 first. The metric of M6 is given by

ds2M6
= e−6λ(y)

[
ĝij(x, y)dxidxj + sec2 ζ(y)dy2

]
+

1
9

cos2 ζ(y)(dψ + P̂ )2 . (6.6)

There is a four-dimensional Kähler manifold M4, whose metric is ĝijdxidxj . The complex structure

of the metric is independent of y and ψ. ∂
∂ψ is a Killing vector of M6 and the y dependence of the

metric warps the spacetime. P̂ is the canonical Ricci-form connection defined by the Kähler metric

ĝ. That is, the Ricci form R = dP̂ . P̂ is independent of y and ψ. ζ is a function of y which is

implicitly defined by

2y = e3λ sin ζ . (6.7)

We fix the AdS5 radius to be 1. The four-form field strength is given by

F
(0)
4 = −(∂ye−6λ)V̂4 +

1
3
dy ∧ (dψ + P̂ ) ∧ L̂

L̂ =
1
3

cos2 ζ∗̂4dP̂ − 4e−6λĴ ,

(6.8)

where V̂4 is the volume form and Ĵ is the Kähler form of M4. In addition to these, we have two

more constraints:

∂yĴ = −2
3
ydP̂ ,

∂y log
√
ĝ = −3y−1 tan2 ζ − 2∂y log cos ζ .

(6.9)
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Given these conditions, the Bianchi identity and the equations of motion for F (0)
4 , and the Einstein

equations are all satisfied.

6.1.2 Deformation to Solutions with Schrödinger Symmetry

Let us first write the AdS5 metric in a form that will be suitable for later analysis:

ds2AdS5
=
−2dx+dx− + dx2

1 + dx2
2 + dr2

r2
. (6.10)

The DLCQ of AdS5 makes the x− direction compact. The modification we do here is to make

x− a coordinate for a U(1) bundle over the compact space. In the case when the U(1) bundle is

non-trivial, the lightlike direction is necessarily compact and breaks AdS5 symmetry down to the

Schrödinger symmetry.2 Let us call the geometry Sch5.

Note that making the lightlike direction compact makes it subtle to deal with the system in

the supergravity approximation. The situation gets better if we add large momenta along the

compact lightlike direction [120]. This will involve making a black hole solution that asymptotes

to the geometry that we give below. We will not consider such a finite temperature/finite density

solution here, but we note that the compact lightlike direction changes the causal structure of the

spacetime drastically. In particular, any two points in the geometry can be joined by a timelike

or lightlike curve: Suppose we want to connect some point P = (x+, x−, xi, r) to Q = (0, 0, 0, 0)

using a timelike curve when x+ < 0. Due to the periodic identification, we can equally start at

P = (x+, x− − N∆x−, xi, r) for some large N where ∆x− is the period of the x− direction. For

large enough N , there is indeed a timelike curve connecting the points P and Q. This is a property

that is expected for the dual theory of a nonrelativistic system.

Note that we can also add a term proportional to dx+2

r4 , which does not break the Schrödinger

symmetry. The coefficient depends on the compact space. Such a possibility was explored previously

in [140]. Specifically, we consider the following metric:

ds2 = e2λ
[
ds2Sch5

+ ds2M6

]
,

ds2Sch5
= −f(y)

dx+2

r4
+
−2dx+(dx− +A) + dx2

1 + dx2
2 + dr2

r2
,

ds2M6
= e−6λ(y)

[
ds2M4

+ sec2 ζ(y)dy2
]
+

1
9

cos2 ζ(y)(dψ + P̂ )2 ,

ds2M4
= ĝij(x, y)dxidxj .

(6.11)

A is a gauge field on M4 and f(y) is some function that depends only on y. We need to determine

these two quantities. To support this geometry, we turn on the four-form field strength along the
2There was a paper [147] that also considers modification of the warped AdS5 solutions of [146]. They added

dx+C component to the metric, where C is a globally defined one-form on the compact space, which means the U(1)
bundle corresponding to the the x− direction is trivial.
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lightlike direction:

F4 = F
(0)
4 +

1
r3
s(y)dx+ ∧ dr ∧ dA− 1

2r2
s′(y)dx+ ∧ dy ∧ dA . (6.12)

We demand that A depends only on xi, and not on y: otherwise, the second term includes a part

proportional to dx+ ∧ dr ∧ dy ∧ ∂y(dA), and then it is impossible to satisfy the equations of motion

for F4. F
(0)
4 is the original four-form field strength of the warped AdS5 solution, and s(y) is some

function to be determined. By construction, dF4 = 0. Just as in the original warped AdS5 solution,

we also require F4 ∧ F4 = 0. This requires

L̂ ∧ dA = 0 . (6.13)

Let us consider the equations of motion for F4 first. The dual seven-form F7 is given by

F7 = ∗11F4 =F (0)
7 + e6λ

1
r5
dx+ ∧ dx1 ∧ dx2 ∧ dr ∧A ∧

[
2λ′(y)dy ∧ (dψ + P̂ ) + ∗̂4L̂

]
+
s(y)
3r4

dx+ ∧ dx1 ∧ dx2 ∧ dy ∧ (dψ + P̂ ) ∧ ∗̂4dA

+
s′(y)
6r5

e6λ cos2 ζdx+ ∧ dx1 ∧ dx2 ∧ dr ∧ (dψ + P̂ ) ∧ ∗̂4dA ,

(6.14)

where F (0)
7 is the seven-form field strength of the corresponding warped AdS5 solution. Since we

only consider the case when F4 ∧ F4 = 0, the equation of motion of F4 is satisfied when dF7 = 0.

This is satisfied provided

dA = ±∗̂4dA ,

dP̂ ∧ ∗̂4dA = 0 ,

dA ∧ ∗̂4L̂ = 0 ,

(6.15)

as well as

±12e6λλ′ + 8s(y) + ∂y(s′(y)e6λ cos2 ζ) = 0 . (6.16)

The last equation is satisfied when

s(y) = −2y if dA is self-dual ,

s(y) = 2y if dA is anti-self-dual .
(6.17)

due to the relation (6.7). In the cases we are interested, y takes values between two roots of

cos ζ = 0. Since (6.16) is a second order differential equation and the coefficient of s′′(y) vanishes

when cos ζ = 0, the other solution necessarily blows up when cos ζ = 0. Therefore, s(y) = 2y is the

regular solution we want. The third equation implies dA ∧ Ĵ = 0. We will see presently that the
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Einstein equations are also satisfied by choosing the coefficient f(y) of dx
+2

r4 appropriately. However,

it is possible that the coefficient can take both positive and negative values over the compact space

and, in the example that we consider in the next section, indeed this is the case. This is analogous

to the situation considered in [140], where the coefficient of 1
r4 dx

+2 is a harmonic function, which

implies that it is necessarily negative in some region of the compact space. They show that there

is an instability of a field with sufficiently large particle number due to the unboundedness of the

Hamiltonian H(the conjugate momentum to x+). Supersymmetry cannot guarantee H is positive

since there is no dynamical supercharge. We expect a similar instability in our geometry unless

f(y) vanishes. However, as we will see in section 6.1.3, when f(y) = 0, there are two dynamical

supercharges and the Hamiltonian H is bounded by the condition {Q,Q†} = H for dynamical

supercharges Q and Q†.

To sum up, if there is a harmonic (anti)self-dual two-form dA that satisfies

dP̂ ∧ dA = 0 , Ĵ ∧ dA = 0 , (6.18)

then we can construct a supergravity solution with the Schrödinger symmetry as described above.3

Note that A is a one-form on M4 and does not depend on y. Since ∂yĴ = − 2
3ydP̂ and P̂ is

independent of y, if (6.18) is satisfied at one y, it is automatically satisfied for all y.

One case where a solution is easily found is when the manifold M4 is Kähler-Einstein and y and

ψ give a CP1 bundle over M4. The isometry of CP1 is broken to U(1) by the warping factor that

depends on y. In this case, dP̂ , the Ricci form, is proportional to Ĵ . Since dP̂ is y-independent, Ĵ

factorizes into a y-dependent function and a y-independent form. Hence, given a harmonic (anti)self-

dual two-form dA with Ĵ ∧ dA = 0, we can construct a Schrödinger solution. To do that, the

dimension of the second cohomology class has to be greater than 1, which means we cannot construct

our solution on CP3. However, there are cases when the dimension of the second cohomology class

is greater than 1, and we will consider such an example where the manifold M4 is S2 × S2.

Given the above requirement, the Einstein equations are satisfied by choosing a suitable f(y).

3dA represents a non-trivial element of the second cohomology class H2(M4). For this to be a non-trivial element
of H2(M6), we need to assume a global structure of the six-dimensional complex manifold M6. In the examples
of [146], M6 is taken to be a CP1 bundle over the Kähler base M4. Then the Gysin sequence 0→ H2(M4)→ H2(M6)
implies dA is also a non-trivial element of H2(M6) as long as the orientability condition is satisfied.
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Let us first introduce the following vielbeins:

E0 = eλ
(

1 + f(y)
2

1
r2
dx+ + dx− +A

)
,

E1 = eλ
1
r
dx1 , E2 = eλ

1
r
dx2 ,

E3 = eλ
(

1− f(y)
2

1
r2
dx+ − (dx− +A)

)
,

E4 = eλ
dr

r
,

Ey = e−2λ sec ζdy , Eψ =
1
3
eλ cos ζ(dψ + P̂ ) ,

Ei = e−2λêi , i = 1, 2, 3, 4 ,

(6.19)

where êi are vielbeins for the metric ds2M4
in (6.11). Knowing that the original warped AdS5 solution

satisfies the Einstein equations of motion, all we need to check is the change of the component

G03 = κ2
11T03 of the Einstein equation. This will be satisfied if

−f(y) + yf ′(y)− 1
12
e6λ cos2 ζf ′′(y) = 0 . (6.20)

There are two linearly independent solutions and one obvious solution is f(y) = βy for an arbitrary

constant β. In the case when y and ψ combine to give topologically a two-sphere S2, cos ζ = 0 at

the two poles of the sphere, and we take the solution f(y) = βy as the smooth solution. The other

solution diverges when cos ζ = 0.

6.1.3 Supersymmetry

The Killing spinor equation is given by

δΨA = DAε = ∇Aε+
1
12

(
ΓAF(4) − 3F(4)

A

)
ε = ∂Aε+

1
4
ωABCΓBC +

1
12

(
ΓAF(4) − 3F(4)

A

)
ε , (6.21)

where ε is a Killing spinor and

F(4) =
1
4!
FABCDΓABCD ,

F(4)
A =

1
2

[
ΓA,F(4)

]
.

(6.22)

We use A,B, . . . for vielbein indices and M,N, . . . for coordinate indices of eleven dimensions. Our

strategy is to divide the operator DA into two: one is independent of β and A, while the other is

not. Then, given a Killing spinor ε of the corresponding AdS solution, we impose the condition that

ε is annihilated by β,A-dependent part. Let us denote by ∆∂A the change of the derivative ∂A due

to the presence of β and A, and similarly denote by ∆ωA the change of the connection ωABCΓBC .
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If we define a matrix ΛAM by EA = ΛAMdx
M , (ΛT )−1 M

A ∂M = ∂A. Then it is easy to see that the

only components that depend on β are (ΛT )−1 −
0 and (ΛT )−1 −

3 , and those that depend on A are

(ΛT )−1 −
i . Therefore, we keep Killing spinors of the AdS solution when it is independent of x−. We

will see later that the Killing spinors consistent with the compactification of x− are all independent

of x−. Hence it does not give a new condition.

Next, let us consider the change of the connection ∆ωA. They are given by

∆ω1 = ∆ω2 = ∆ω4 = ∆ωy = ∆ωψ = 0 ,

∆ω0 = ∆ω3 = βe2λ
(
− sin ζΓ4 + cos ζΓy

)
Γ+ + e5λF(2) ,

∆ωi = −e5λFijΓjΓ+ .

(6.23)

Here Γ+ = Γ0+Γ3 and F(2) is a product of gamma matrices 1
2FijΓ

ij where F = dA and 1
2Fij ê

iêj = F .

The change in the four-form field strength is

∆F(4) = e5λ
(
− sin ζΓ4 + cos ζΓy

)
Γ+F(2) . (6.24)

The condition that the differential operators D0 and D3 still annihilate a Killing spinor ε of the AdS

solution imposes

β Γ+ε = 0; , F(2)ε = 0 . (6.25)

The second equation is satisfied if, for example, the manifold M4 is Kähler-Einstein and the two-

form field strength F is a (1, 1)-form on M4. To see this, let us decompose gamma matrices and

spinors into AdS5 and M6 parts (note that we are looking for a Killing spinor of the original AdS5

geometry which survives after we change the metric to the Sch5 geometry). First, we decompose

the eleven-dimensional gamma matrices as

Γa = γa ⊗ τ7 ,

Γm = 1⊗ τm ,
(6.26)

where a = 0, . . . , 4 and m = 1, . . . , 6 are orthonormal indices for AdS5 and M6, respectively, and

τ7 = τ1 . . . τ6. They satisfy

{γa, γb} = −2ηab ,

{τm, τn} = 2δmn ,
(6.27)

where ηab = diag(−1, 1, 1, 1, 1). Note τ2
7 = −1.

The Killing spinor ε is decomposed as ψ(x) ⊗ e
λ
2 ξ(y) for x ∈ AdS5 and y ∈ M6. ψ satisfies the
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Killing spinor equation for AdS5:

∂aψ −
1
4
ωabcγ

bcψ =
1
2
iγaψ . (6.28)

There are two types of Killing spinors of AdS5. They are given as (see, for example, [148])

ψ+ = r−
1
2ψ+

0 , ψ− = (r
1
2 + ir−

1
2xµγµ)ψ−0 , (6.29)

where −iγrψ±0 = ±ψ±0 . ψ+ generates a Poincaré supersymmetry and ψ− a superconformal one. In

our case, the lightlike direction x− is compactified. The coordinate ψ+ depends only on r, so ψ+

survives compactification. The coordinate ψ− is position dependent, and to be periodic in x−, it

should not have x− dependence. This is the same as requiring that γ+ψ−0 = 0. Hence half of the

superconformal supersymmetries survive compactification.

The Killing spinor equation Daε = 0 implies that ξ has to satisfy

(
τm∇mλ+

1
6
e−3λF(4)

0 − iτ7
)
ξ = 0 , (6.30)

where F(4)
0 is a gamma matrix expression using τm constructed from the four-form field strength

(6.8). Let us multiply the above equation by F(2), where now F(2) is made up of τm matrices:

F(2)

(
τm∇mλ+

1
6
e−3λF(4)

0 − iτ7
)
ξ = 0 . (6.31)

From (6.15), we obtain L̂ ∧ F = L̂ ∧ ∗̂4F = 0. This implies {F(2), L̂} = 0 since {τmn, τpq} =

2γmnpq − 4δpqmn. Also, since we assume M4 is Kähler-Einstein, [F(2), L̂] is proportional to Fij Ĵ
j
kΓ

ik,

which vanishes if F is a (1,1)-form. Now, we can simplify the expression (6.31) in the form QF(2)ξ = 0

where Q is some linear combination of gamma matrices. By examining the explicit expression, we

see that Q has determinant (1−4y2(λ′)2)4, which does not vanish. Therefore we conclude F(2)ξ = 0.

The remaining constraints come from examining Diξ = 0 for i = θ1, φ1, θ2, φ2. In the case F(2)ξ = 0,

they impose an additional condition

Γ+
(
1 + sin ζΓ4 − cos ζΓy

)
ε = 0 . (6.32)

This is satisfied if Γ+ε = 0.

In conclusion, a Killing spinor of the AdS solution survive if it satisfies Γ+ε = 0. Therefore, at

each point, a Killing spinor has to lie in some four-dimensional space. This does not necessarily mean

that there are four Killing spinors, since higher order integrability condition may not be satisfied. In

fact, a superconformal supercharge cannot satisfy Γ+ε = 0. To see this, note that a superconformal
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supercharge is represented in the Poincaré coordinates as in the second expression in (6.29). Γ+ε = 0

translates into γ+ψ− = 0, which is written as

γ+
[
r

1
2 + ir−

1
2 (xiγi − x+γ− − x−γ+)

]
ψ−0 = 0 . (6.33)

At x = 0, this implies γ+ψ−0 = 0. Now, we move γ+ to the right. Then, since {γ+, γ−} = 2, we

end up getting ψ−0 = 0, which means the only solution to this equation is the trivial one. Hence no

superconformal supersymmetries survive, which means there remain only two Poincaré supercharges

that are annihilated by γ+.

When β = 0, there can be more supercharges since the first equation of (6.25) is trivial and

all we require is (6.32) as well as F(2)ε = 0. We have already considered the case when Γ+ε = 0.

Another possibility is that ε is annihilated by the second factor. Under the decomposition, this can

be rewritten as

(1± i sin ζτ7 − cos ζτy) ξ = 0 , (6.34)

depending on −iγrψ± = ±ψ±.

Now, we will prove that (6.30) implies (6.34) with plus sign in the second term if M4 is Kähler-

Einstein and F is anti-self-dual. F(2)F(2)ε = 0 implies τ3456ε = −ε if F is anti-self-dual. The indices

for M6 are such that {y, ψ, θ1, φ1, θ2, φ2} ↔ {1, 2, 3, 4, 5, 6}. For a Kähler-Einstein manifold M4, L̂

is given by [146]

L̂ =
(

cos2 ζ(1 + 6yλ′)
e6λ − 4y2

− 4e−6λ

)
Ĵ . (6.35)

Define Ĵ = 1
2e

6λĴijτ
ij where Ĵ = 1

2 Ĵij ê
iêj , and define L̂ similarly. Since Ĵ is self-dual,

ĴĴ =
1
2
{Ĵ, Ĵ} = e12λ(τ3456 − 1) , (6.36)

We can rewrite (6.30) as

(
e3λλ′ cos ζτ1 + e3λλ′τ3456 +

1
6
τ12L̂− iτ7

)
ξ = 0 . (6.37)

By multiplying by τ7
(
e3λλ′ cos ζτ1 − e3λλ′τ3456 + 1

6τ12L̂ + iτ7

)
to the left, up to an overall factor,

we obtain (6.34) with plus sign in the second term if we use (6.35), (6.36) and τ3456ε = −ε. That

implies that the corresponding Killing spinor in the AdS5 part is a Poincaré supercharge. Therefore,

when β = 0, we have four Poincaré supercharges.

However, there should be additional supercharges that we might have overlooked when we an-

alyze (6.32). Indeed, if we keep all four Poincaré supercharges of the AdS solution, there are two

kinematical supercharges and two dynamical ones.4 In this case, the commutator of the special
4For a related discussion about Schrödinger superalgebra, see [149–152].
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conformal generator C and a dynamical supercharge Q produces a superconformal supercharge S:

[C,Q] ∼ S. Therefore, there has to be a way to obtain a superconformal supersymmetry. To see how

it comes about, let us look at the expression for a superconformal supersymmetry in AdS5 space

ψ− = (r
1
2 + ir−

1
2xµγµ)ψ−0 =

[
r

1
2 + ir−

1
2 (xiγi − x+γ− − x−γ+)

]
ψ−0 , (6.38)

with −iγrψ−0 = −ψ−0 . Since x− is compactified, we demand γ+ψ−0 = 0. If we set ε = ψ− ⊗ e
λ
2 ξ(y)

with ψ− as just given, (6.32) becomes

(1 + i sin ζτ7 − cos ζτy) ξ = 0 , (6.39)

which we have already verified. Therefore, two superconformal supercharges that are constructed

from ψ−0 with γ+ψ−0 = 0 survive.

In this section, we have shown that, if M4 is Kähler-Einstein and F = dA is a harmonic anti-

self-dual two-form of type (1,1) on M4, it preserves two Poincaré supercharges when β 6= 0. This

corresponds to the kinematical supercharges. If β = 0, we additionally have two dynamical super-

charges and two superconformal supercharges, adding up to six in total. The number of surviving

supercharges are the same as those of the discrete light cone quantization (DLCQ) of the AdS

solution. Note that the presence of the dynamical supercharges guarantees that the Hamiltonian

H(the conjugate momentum to the x+ coordinate) is positive definite: {Q,Q†} = H for dynamical

supercharges Q and Q†.

6.2 Specific Example

Here we present a specific example of the above analysis. We consider the case when the four-

dimensional manifold M4 is S2 × S2 and y and ψ describes a CP1 bundle, but warped by the

y coordinate. The symmetry of the six-dimensional compact space is SU(2) × SU(2) × U(1) × Z2

where the U(1) is related to ∂
∂ψ and Z2 exchanges the two spheres. Such a solution may be interesting

since this is the symmetry of the nonrelativistic limit of ABJM theory [131,132]. Let us first consider

the warped AdS5 solution.

6.2.1 Warped AdS5 solution before modification

This solution appeared in [146] as a specific example. The base manifold M4 is S2×S2 of the same

radius, and is a Kähler-Einstein manifold. The six dimensional manifold M6 has SU(2)× SU(2)×
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U(1) symmetry and also a Z2 symmetry that switches the two S2s. The metric is given by

ds211 = e2λ(y)
[
ds2AdS5

+ ds2M6

]
,

ds2AdS5
=
−2dx+dx− + dx2

1 + dx2
2 + dr2

r2
,

ds2M6
=

1
3
e−6λ(1− y2)(dθ21 + sin θ21dφ

2
1 + dθ22 + sin θ22dφ

2
2)

+ e−6λ sec2 ζdy2 +
1
9

cos2 ζ(dψ + P̂ )2 ,

(6.40)

where

P̂ = A1 +A2 ,

A1 = − cos θ1dφ1 , A2 = − cos θ2dφ2 ,

e6λ =
2(1− y2)2

2 + cy + 2y2
,

cos2 ζ =
−3y4 − 2cy3 − 6y2 + 1

(1− y2)2
.

(6.41)

The four-form field strength is given by

F4 = p1(y)ω1 ∧ ω2 + p2(y)dy ∧ (dψ + P̂ ) ∧ (ω1 + ω2) , (6.42)

where ωi = dAi and

p1(y) =
4y3 + 3cy2 + 12y + c

18(y2 − 1)
, p2(y) =

y4 − 6y2 − 2cy − 3
9(y2 − 1)2

. (6.43)

The coordinates θ1 and φ1 parametrize one S2, and θ2 and φ2 the other S2. The period of ψ is 2π

to have a smooth geometry. The coordinates y and ψ combine to give a S2 fibration over S2 × S2.

However, due to the y dependence here and there, only U(1) symmetry survives. Also c is constant,

0 ≤ c < 4 and y runs between the two roots of the equation cos2 ζ = 0. Since cos2 ζ > 0 for y = 0,

one root is positive and the other negative. It preserves 8 supercharges.

6.2.2 Transformation to Schrödinger Solution

Now we modify the geometry (6.40) according to section 6.1.2. We make x− a non-trivial U(1)

bundle over S2 × S2 with gauge field A = n(A1 −A2), where n is some integer. The metric is given
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by

ds211 = e2λ(y)
[
ds2Sch5

+ ds2M6

]
,

ds2Sch5
= −βydx

+2

r4
+
−2dx+(dx− +A) + dx2

1 + dx2
2 + dr2

r2
,

ds2M6
=

1
3
e−6λ(1− y2)(dθ21 + sin θ21dφ

2
1 + dθ22 + sin θ22dφ

2
2)

+ e−6λ sec2 ζdy2 +
1
9

cos2 ζ(dψ + P̂ )2 ,

(6.44)

Note that dA is anti-self-dual, dA ∧ dP̂ = 0 and A does not depend on y. The four-form flux is

modified as follows:

F4 = p1(y)ω1 ∧ ω2 + p2(y)dy ∧ (dψ + P̂ ) ∧ (ω1 + ω2)

+ 2ny
1
r3
dx+ ∧ dr ∧ (ω1 − ω2)− n

1
r2
dx+ ∧ dy ∧ (ω1 − ω2) ,

(6.45)

Note that the solution exists for each c ∈ [0, 4) and each integer n. Given the general analysis in the

previous section, the equations of motion for the four-form field and the metric are guaranteed to be

satisfied. Note that −βy, the coefficient of 1
r4 dx

+2, takes both positive and negative values over the

compact space. As mentioned in section 6.1.2, this signals an instability due to the unboundedness

of the Hamiltonian [140] unless we set β = 0.

Note that dA is an anti-self-dual two-form of type (1,1) in M4. Hence, according to the argument

in section 6.1.3, there are two kinematical supercharges when β 6= 0, and six supercharges when

β = 0. The six supercharges consist of two kinematical, two dynamical, and two superconformal

supercharges. Especially, when β = 0, the Hamiltonian will be bounded below due to the presence

of the dynamical supercharges.

6.2.3 Solution with Plane Wave Boundary

In the previous sections, we use the Poincaré coordinate system for (deformed)AdS5. In general, the

AdSn+2 metric in Poincaré coordinates is given by

ds2 =
−2dx+dx− + d~x2 + dr2

r2
, (6.46)

where ~x = (x1, . . . , xn−1). The boundary is R1,n. There is another coordinate system in which the

boundary approaches the plane wave metric [144,145,153]. It is given by

ds2 =
−2dx′+dx′− − ~x′2dx′+2 + d~x′2 + dr2

r2
− dx′+2

. (6.47)



73

The relation between the two coordinate systems is

x+ = tanx′+ ,

r = r′ secx′+ ,

~x = ~x′ secx′+ ,

x− = x′
− +

1
2
(r′2 + ~x′2) tanx′+ .

(6.48)

Note that ∂
∂x− and ∂

∂x′−
generate the same flow in different coordinates: both are related to the

number operator of the Schrödinger algebra. This also suggests that not much will change even if

the x′− direction is a line bundle over the compact space. That is, instead of (6.44), we may consider

the metric

ds211 = e2λ(y)
[
ds2Sch5

+ ds2M6

]
,

ds2Sch5
= −βydx

+2

r4
+
−2dx+(dx− +A)− (x2

1 + x2
2)dx

+2 + dx2
1 + dx2

2 + dr2

r2
− dx+2

+ e−6λ sec2 ζdy2 +
1
9

cos2 ζ(dψ + P̂ )2 .

(6.49)

This and (6.44) are related by an obvious coordinate transformation. The first term −βy dx
+2

r4 may

look troublesome at first, but actually −dx+2

r4 itself is invariant under (6.48). This form of the

metric may be useful since the time direction in this coordinate system is associated to the harmonic

oscillator potential

Hosc = H + C (6.50)

of the Schrödinger algebra. Here H generates the time translation in the Poincaré coordinates and

C is the special conformal generator.

6.3 Kaluza-Klein Mass Spectrum

The fact that the lightlike compact direction is a non-trivial bundle over the compact space has an

interesting consequence on the spectrum of the Kaluza-Klein states. We will show below that the

nonrelativistic particle number is bounded above by the quantum numbers of the compact space. It

seems at first a bit strange that there is such a bound. However, we can view the system from the

compact space point of view and consider the Kaluza-Klein particles charged under the momentum

conjugate to the x− coordinate. Due to the non-trivial gauge field A, we can think that the Kaluza-

Klein particles are in a magnetic monopole background field. Then it is well known [154] that the

quantum numbers of the compact space of a wave function describing a Kaluza-Klein particle is

bounded below by the “electric” charge of the particle, which in this case means the U(1) charge
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along the x− direction. The eigenstates are expressed as monopole harmonics. Below, we will follow

the classical analysis, but in a way that can be more easily applicable to our situation.

Let us first consider the three sphere S3 as a preparation. The metric is given by

ds2S3 = (dψ − cos θdφ)2 + dθ2 + sin2 θdφ2 , (6.51)

where 0 ≤ ψ ≤ 4π, 0 ≤ θ ≤ π and 0 ≤ φ ≤ 2π. The manifest symmetry is SU(2)× U(1) of SO(4).

The Killing vectors are

L1 = sinφ
∂

∂θ
+ cosφ

[
cot θ

∂

∂φ
+ csc θ

∂

∂ψ

]
,

L2 = cosφ
∂

∂θ
− sinφ

[
cot θ

∂

∂φ
+ csc θ

∂

∂ψ

]
,

L3 =
∂

∂φ
,

Lψ =
∂

∂ψ
.

(6.52)

They satisfy [Li, Lj ] =
∑
k εijkLk and [Li, Lψ] = 0, which comprise SU(2) × U(1) Lie algebra. We

will construct a wave function Φ(ψ, θ, φ) carrying definite quantum numbers of SU(2) and U(1).

First, let us demand

LψΦ = −imψΦ . (6.53)

Since ψ has period 4π, mψ ∈ Z
2 . For SU(2) part, the analysis is very similar to the standard angular

momentum analysis in quantum mechanics. For the l representation of SU(2), let us consider the

highest state (l,m) = (l, l). It will be annihilated by L+ = L1 + iL2. It is easy to see that

L+e
−imφf(θ) = 0 for f(θ) =

(
sin θ

2

cos θ2

)mψ
sinl θ . (6.54)

The wave function is then given by Φ(ψ, θ, φ) = e−imψψe−imφf(θ). Since we want a wave function

not to diverge at θ = 0 or 2π, |mψ| ≤ l. By applying the lowering operator L− = L1−iL2 repeatedly,

we obtain a wave function with definite quantum numbers (mψ, l,m):

Φmψ,l,m = e−imψψe−imφ(1− u2)−
l
2

(
1− u
1 + u

)−mψ
2 dl−m

dul−m

(
1− u
1 + u

)mψ
(1− u2)l , (6.55)

where u = cos θ. Since Φmψ,l,−l−k has to vanish for any k = 1, 2, . . ., l ±mψ has to be integral and

positive. In particular, l can be half-integral since mψ can. The Laplacian of S3 is written as

∆ = L2
1 + L2

2 + L2
3 , (6.56)
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which means the eigenvalues of the Laplacian ∆ is l(1 + 1) with l ∈ Z
2 . That is, 1

4L(L + 2) with

L ∈ Z.

In sum, for a given quantum number (l,m) of SU(2), the possible mψ range from −l to l with

spacing 1. Of course, the fact that the possible values of mψ are finite for a given pair of (l,m)

is obvious since S3 has actually SO(4) symmetry and for a given value of the quadratic Casimir,

there are finite number of states. However, the analysis we have done shows that the finiteness

can be derived by using SU(2) × U(1) symmetry alone as well as the existence of a well-defined

wave function. For example, we would arrive at the same conclusion even though the coefficient of

(dψ − cos θdφ)2 in (6.51) were different from 1.

Let us turn to the case we are interested in. The metric is given in (6.44). There are two sets of

SU(2) Killing vectors L(1)
1,2,3 and L(2)

1,2,3 satisfying [L(i)
a , L

(j)
b ] =

∑
c εabcδ

ijL
(i)
c . Explicitly,

L
(1)
1 = sinφ1

∂

∂θ1
+ cosφ1

[
cot θ1

∂

∂φ1
+ csc θ1

(
∂

∂ψ
+ n

∂

∂x−

)]
,

L
(1)
2 = cosφ1

∂

∂θ1
− sinφ1

[
cot θ1

∂

∂φ1
+ csc θ1

(
∂

∂ψ
+ n

∂

∂x−

)]
,

L
(1)
3 =

∂

∂φ1
,

L
(2)
1 = sinφ2

∂

∂θ2
+ cosφ2

[
cot θ2

∂

∂φ2
+ csc θ2

(
∂

∂ψ
− n ∂

∂x−

)]
,

L
(2)
2 = cosφ2

∂

∂θ2
− sinφ2

[
cot θ2

∂

∂φ2
+ csc θ2

(
∂

∂ψ
− n ∂

∂x−

)]
,

L
(2)
3 =

∂

∂φ2
.

(6.57)

For each S2, the only change from the analysis of S3 is that ∂
∂ψ is replaced by ∂

∂ψ ±n
∂
∂x− . Denoting

the quantum numbers for U(1)ψ and U(1)x− by mψ and N , respectively, then we have the following

constraints for given quantum numbers (l1,m1; l2,m2) of SU(2)× SU(2):

−l1 ≤ mψ + nN ≤ l1 ,

−l2 ≤ mψ − nN ≤ l2 .
(6.58)

In particular, N has to satisfy |nN | ≤ l1 + l2.

To see some implication of this result, let us consider the massive Klein-Gordon equation in

eleven dimensions:
1√
−g

∂M (
√
−ggMN∂NΦ)−m2Φ = 0 . (6.59)

Due to the warping factor, the Laplacian becomes a little complicated. The result can be written as

e−2λ

[
−2r2

∂2Φ
∂x+∂x−

+ r2
∂2Φ
∂x2

1

+ r2
∂2Φ
∂x2

2

+ r5
∂

∂r

(
r−3 ∂Φ

∂r

)
−M2Φ

]
= 0 . (6.60)
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We put all y dependence except the overall factor into a function M2, which is given by

−M2 = βy
∂2Φ
∂x−2

− e2λm2Φ +
e6λ

(1− y2)2
∂

∂y

[
(1− y2)2 cos2 ζ

∂Φ
∂y

]
+ 9 sec2 ζ

∂2Φ
∂ψ2

+
3e6λ

1− y2

[
(∆1 + ∆2)Φ− 2

∂2Φ
∂ψ2

− 2n2 ∂
2Φ

∂x−2

]
.

(6.61)

∆1 and ∆2 are the Casimir operators of the two SU(2) isometry groups, which are given by ∆i =

(L(i)
1 )2 + (L(i)

2 )2 + (L(i)
3 )2 using (6.57). For a wave function with definite quantum numbers of

SU(2)×SU(2)×U(1)ψ and definite particle number, this equation becomes an ordinary second order

differential equation in y. Note that the last term in (6.61) looks problematic since, by increasing

the momenta along the ψ and x− directions, this part can be negative and large in absolute value.

However, this cannot happen since the quantum numbers mψ and N are bounded. That is, from

(6.58), we have

l1(l1 + 1) + l2(l2 + 1) ≥ l21 + l22 ≥ (mψ + nN)2 + (mψ − nN)2 = 2m2
ψ + 2n2N2 . (6.62)

It implies that the operator

O = ∆1 + ∆2 − 2
∂2

∂ψ2
− 2n2 ∂2

∂x−2
(6.63)

cannot have positive eigenvalues. Therefore, the last three terms in (6.61)(multiplied by e−2λ) gives

positive contribution to the mass parameter M2. That is, when β vanishes, the Kaluza-Klein mode

does not suffer an instability due to the violation of the Breitenlohner-Freedman bound.

If we solve (6.61) and get the spectrum of the mass parameter M , the scaling dimensions and

the correlation functions can be computed [134, 135]. Let ν =
√
M2 + 4. The scaling dimension ∆

of the corresponding operator in the field theory is given by ∆ = 2+ν and the two point correlation

function of two such operators is given by

〈O1(x, t)O2(0, 0)〉 ∼ δ∆1∆2θ(t)
1
t∆1

e−
iNx2

2t , (6.64)

where ∆i are the scaling dimensions of Oi. ∆ = 2− ν is possible if 0 < ν < 1 [134,155].

6.4 Solution with No Supersymmetry

In the absence of supersymmetry, there may be many solutions with the symmetries we want. The

solution given here can be thought of as a deformation of the non-supersymmetric AdS5 × CP3

solution in [156]. As such, the solution here does not preserve any supersymmetry. We simply state

the solution since it is straightforward to check that the solution satisfies the equations of motion.

We take the lightlike direction x− to be a non-trivial U(1) bundle over the compact direction. That
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is, an invariant combination is dx−+nA where A is a gauge potential given below. For each integer

n there is a solution. The metric is given by

ds2 =− 10n2 dx
+2

r4
+
−2dx+(dx− + nA) + dx2

1 + dx2
2 + dr2

r2
+

1
2
ds2N6

,

ds2N6
=
dα2

f(α)
+ f(α) sin2 α

2
cos2

α

2
(dχ+ cos θ1dφ1 − cos θ2dφ2)2

+ cos2
α

2
(dθ21 + sin2 θ21dφ

2
1) + sin2 α

2
(dθ22 + sin2 θ22dφ

2
2) ,

A =cos θ1dφ1 + cos θ2dφ2 + cosα(dχ+ cos θ1dφ1 − cos θ2dφ2) ,

f(α) = 1− k

sin4 α
.

(6.65)

The parameter k is some constant and θi ∈ [0, π], φi ∈ [0, 2π] and χ ∈ [0, 4π]. The four-form field

strength F4 is given by

F4 =
√

2
16
ω2 ∧ ω2 +

n√
2

1
r3
dx+ ∧ dr ∧ ω2 + 12n

1
r5
dx+ ∧ dx1 ∧ dx2 ∧ dr , (6.66)

where ω2 = dA is proportional to the Kähler form. N6 is a six-dimensional compact manifold. It

is a variant of CP3: When k = 0, N6 becomes CP3. k is fixed once we require the manifold N6 to

be smooth. If k = 0, N6 is smooth since it is CP3, in which case the global symmetry is SU(4). To

get reduced symmetry, we want to take non-zero k. For non-zero k, since f(α) is supposed to be

positive, α runs between the two roots of sin4 α = k. Calling the roots ±α0, near α0, the metric

becomes

ds2 = tanα0

[
du2 + cos2 α0u

2(dχ+ cos θ1dφ1 − cos θ2dφ2)2
]
+ . . . , (6.67)

where α = α0 + u2. Since χ has period 4π, cosα0 = 1
2 to have a smooth geometry. Therefore,

k = 9
16 and α ∈ [ 2π3 ,

4π
3 ]. In this case, the surviving global symmetry is SU(2)×SU(2)×U(1)×Z2.

Note that this construction can be easily generalized to the case when the compact six-dimensional

manifold is Kähler-Einstein.
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Chapter 7

Gravity Dual of Spatially
Modulated Phase

In this chapter, we show that the five-dimensional Maxwell theory with a Chern-Simons coupling in

the Reissner-Nordström black hole geometry has tachyonic modes. This instability has an interesting

property that it happens only at non-vanishing momenta, suggesting a spatially modulated phase

transition in the holographically dual field theory.

In three dimensions, the Maxwell theory becomes massive when the Chern-Simons term is in-

cluded [157,158]. In higher dimensions, the Chern-Simons term starts with a higher power in gauge

fields, but it can contribute to quadratic fluctuations if there is a non-zero background gauge field.

We will show that the Maxwell theory in five dimensions with the Chern-Simons term becomes

tachyonic if we turn on a constant electric field. In contrast, a background magnetic field does not

cause instability, but it makes the gauge field massive as in three dimensions.1

Chern-Simons terms abound in supergravity theories, and charged black hole solutions in these

theories provide an interesting laboratory in which to study the instability and its implications since

these solutions carry background electric fields. The near-horizon geometry of the five-dimensional

extremal Reissner-Nordström black hole in AdS5 is AdS2×R3 with the gauge field strength propor-

tional to the volume form of AdS2. The background electric field causes mixing of the gauge field

with the metric at the quadratic order, and we will take it into account in our stability analysis. We

find a critical value αcrit of the Chern-Simons coupling α above which the near-horizon geometry

becomes unstable for some range of momenta k in R3. Interestingly, the range excludes k = 0, i.e.,

the instability happens only at non-zero spatial momentum.

The Reissner-Nordström black hole solution in AdS5 gives a holographic description of a ther-

modynamic state in the dual conformal field theory at finite temperature T and chemical potential
1To our knowledge, [159] is the first paper to point out that the Chern-Simons term in five dimensions induces

instability. They considered a system consisting of two non-Abelian gauge fields coupled to an adjoint scalar field
with a tachyonic mass as a holographic model of QCD and reduced it to four dimensions before studying its spectrum.
Though their setup and analysis are different from ours, the dispersion relation we derive in section 7.1 is related to
theirs. We will point this out at an appropriate place in section 7.1.
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Figure 7.1: Critical temperature as a function of the Chern-Simons coupling α. The shaded region
indicates a phase with a non-zero expectation value of the conserved current ~J which is helical and
position dependent.

µ.2 We find that, for α > αcrit, there is a critical temperature Tc(α) below which the black hole

solution becomes unstable, as shown in Figure 7.1. The instability happens at a range of momenta,

which becomes wider as T is lowered but never includes k = 0, as shown in Figure 7.2. We find

an interesting subtlety in the zero temperature limit; the unstable range is wider than the range

expected from the analysis near the horizon of the extremal black hole. It turns out that the near-

horizon analysis gives a sufficient but not necessary condition since there are unstable modes in the

full Reissner-Nordström solution which do not reduce to normalizable modes in AdS2 × R3 in the

near-horizon limit.

Figure 7.2: The left figure indicates unstable regions for various values of the Chern-Simons coupling
α. The right figure is for a particular choice of the Chern-Simons coupling α = 1.6αcrit. The critical
temperature TC is the maximum temperature with unstable modes. The figure indicates the unstable
range a for some temperature T < TC . The range b is derived from the near-horizon analysis at
T = 0. Note that the actual range of unstable momenta is wider.

In the dual field theory in (3 + 1) dimensions, the instability of the Reissner-Nordström solution

can be interpreted as a signal of a novel phase transition at finite chemical potential where the charge
2 [160,161] studied the thermodynamic properties of the Reissner-Nordström AdS black hole. Its relation to Fermi

liquid is discussed in [162].
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current ~J(x) dual to the gauge field develops a position dependent expectation value of the form,

〈 ~J(x)〉 = Re
(
~ueikx

)
, (7.1)

with non-zero momentum k. The constant vector ~u is circularly polarized as

~k × ~u = ±i|k|~u, (7.2)

where the sign is correlated to the sign of the Chern-Simons couping as we will explain later. The

vacuum expectation value (7.1) is helical and breaks translational and rotational symmetries in three

spatial dimensions, while preserving a certain combination of the two. The configuration reminds

us of the cholesteric phase of liquid crystals.

We use the Maxwell theory with the Chern-Simons term coupled to the gravity in AdS5 as

a phenomenological model of quantum critical phenomena in the spirit of [163, 164]. To have an

explicit description of the field content and interactions of the dual field theory, we need to identify

a specific superstring construction where the instability takes place. We examined the simplest case

of the three-charge black hole in the type IIB superstring theory on AdS5 × S5 and found that the

Chern-Simons coupling of the low energy gravity theory barely satisfies the stability bound. More

specifically, when the three charges are the same, the effective Chern-Simons coupling α is only 0.4%

less than the critical value αcrit for the instability. There is a limit of an extreme ratio of charges,

where an effective α coincides with αcrit and the black hole becomes marginally stable.

This seems to indicate that if we survey a wider class of examples, we may be able to find a theory

with a Chern-Simons coupling large enough to cause an instability. Generally speaking, the Chern-

Simons coupling for a gauge field in AdS5 is proportional to the chiral anomaly of the corresponding

current in the dual conformal field theory [10]. In particular, for the type IIB superstring theory on

AdS5 times a toric Sasaki-Einstein manifold, the Chern-Simons coupling is determined by the toric

data, or equivalently by the combinatorial data of the quiver diagram for the dual gauge theory [165].

It would be interesting to find an explicit example where the Chern-Simons coupling exceeds the

stability bound. Or, one may try to prove that such theories are all in the Swampland [61,166].

We should also point out that another type of instability of rotating charged black holes was

suggested in [167, 168]. While the Chern-Simons term seems to play a role there, we have found

no obvious connection to the instability discussed here. Effects of the bulk Chern-Simons terms on

hydrodynamics of the dual field theories have been studied in [169–172]. In [173, 174], dispersion

relations of hydrodynamic waves in the Reissner-Nordström geometry with the Chern-Simons term

are discussed. Since the authors of these papers relied on power series expansions around k = 0,

they did not observe the instability we found since the range of instability is away from k = 0 as

shown in Figure 7.2.
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This chapter is organized as follows. In section 7.1, we show that the five-dimensional Maxwell

theory with the Chern-Simons term is unstable in the presence of a constant electric field. The

metric is treated as non-dynamical in this analysis. In section 7.2, we turn on the metric fluctuation

and study the stability of the near-horizon geometry of the extremal Reissner-Nordström black hole

in AdS5. In section 7.3, we generalize the analysis of section 7.2 to the full Reissner-Nordström

solution. We solve the linearized equations around the black hole geometry and identify the critical

temperature Tcrit of the phase transition. We examine the onset of the phase transition and interpret

the result from the point of view of the dual field theory. In section 7.4, we show that the three-

charge black hole in the type IIB superstring theory on AdS5 × S5 is barely stable against the type

of instability we discussed.

7.1 Maxwell Theory with Chern-Simons Term

It is well known that the three-dimensional Maxwell theory with the Chern-Simons term is massive

[157,158]. The equation of motion for the 2-form field strength F is given by

d∗F + αF = 0, (7.3)

where α is the Chern-Simons coupling constant. Applying d∗ to this equation and using the Bianchi

identity dF = 0, one finds

�F = d∗d∗F = −αd∗F = α2F.

Thus, the Chern-Simons term in three dimensions induces the mass |α| of the gauge field.

Surprisingly, we find that the Chern-Simons term in five dimensions can turn the Maxwell theory

tachyonic. In this section, we will demonstrate this by treating gravity as non-dynamical. Coupling

to gravity will be studied in the following sections. Consider the following Lagrangian density,

L = −1
4
√
−gFIJF IJ +

α

3!
εIJKLMAIFJKFLM , (7.4)

with the equation of motion,

∂J(
√
−gF JI) +

α

2
εIJKLMFJKFLM = 0. (7.5)

We use the almost positive convention for the metric gIJ (I, J = 0, ..., 4). Choose a background

solution F (0) and linearize (7.5) around it by substituting F = F (0) + f in (7.5). The linearized

equation for f is given by

∂J(
√
−gfJI) + αεIJKLMF

(0)
JKfLM = 0. (7.6)
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If F (0) is magnetic, this equation is similar to (7.3); the fluctuation fIJ is massive and the con-

figuration is stable. If F (0) is electric, on the other hand, (7.6) has tachyonic modes as we now

explain.

Suppose the five-dimensional space is flat R1,4, regard it as the product R1,1 × R3, and use

coordinates (xµ=0,1, yi=2,3,4). Let us turn on a constant electric field in the x1 direction,

F (0)
µν = Eεµν ,

F
(0)
µi = 0, F

(0)
ij = 0. (7.7)

The equation of motion (7.6) is then,

∂µfµν + ∂ifiν = 0,

∂µfµi + ∂jfji − 2αEεijkfjk = 0. (7.8)

Our ε-symbol convention is such that ε01 = 1 and ε234 = 1. By multiplying εijk∂j to the second

equation, we obtain (
∂µ∂µ + ∂j∂j

)
fi − 4αEεijk∂jfk = 0, (7.9)

where

fi =
1
2
εijkfjk.

To derive (7.9), we used the Bianchi identities,

∂ifµj − ∂jfµi = ∂µfij , εijk∂ifjk = 2∂ifi = 0.

In the momentum basis eipµx
µ+ikiy

i

, the operator εijk∂j has eigenvalues ±k and 0, where k = |~k|.

However, the eigenvalue 0 corresponds to fi ∼ ki, which is prohibited by the Bianchi identity

kifi = 0. Thus, the linearized equation (7.9) gives the dispersion relation,3

(p0)2 − (p1)2 = k2 ± 4αEk

= (k ± 2αE)2 − 4α2E2. (7.10)

We find tachyonic modes in R1,1 in the range of 0 < k < 4|αE|.
3At this point, we should note that there is a similarity of this dispersion relation to eq. (17) of [159] if we set

mρ = ma1 in the paper and interpret m2
ρ as being equal to (p1)2.
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It is instructive to compare this with the case when we turn on a constant magnetic field,

F
(0)
34 = −F (0)

43 = B,

F
(0)
IJ = 0 (otherwise). (7.11)

By repeating the previous analysis, we find the dispersion relation,

(p0)2 − (p1)2 − (k2)2 =
(√

(k3)2 + (k4)2 + 4α2B2 + 2|αB|
)2

.

In particular, when k3 = k4 = 0, the equation gives p2
0 − p2

1 − k2
2 = (4αB)2, reproducing the

topologically massive gauge field in three dimensions.

In the following sections, we will examine stability of the extremal Reissner-Nordström black

hole in AdS5. If the boundary theory is on R1,3, the near-horizon geometry of an extremal black

hole takes the form AdS2 × R3 with an electric field proportional to the volume form of AdS2. In

such a configuration, the effective mass squared in AdS2 is again given by the right-hand side of

(7.10). The configuration is unstable if −4α2E2 violates the Breitenlohner-Freedman bound m2
BF

in AdS2, namely,

4α2E2 > |m2
BF | =

1
4r22

, (7.12)

where r2 is the curvature radius of AdS2. If this inequality is satisfied, the instability happens for

non-zero momenta in the range,

2|αE|

(
1−

√
1− 1

16α2E2r22

)
< k < 2|αE|

(
1 +

√
1− 1

16α2E2r22

)
. (7.13)

It is interesting to note that the zero momentum k = 0 is excluded from the instability range.

Thus, the condensate of the gauge field happens for non-zero momentum in the R3 direction of the

near-horizon geometry.

As we shall see in the next section, the value of α for the minimal gauged supergravity is such

that 4α2E2 exceeds the stability bound as in (7.12). This, however, does not mean that extremal

charged black holes in the minimal gauged supergravity are unstable since we must take into account

the coupling of the Maxwell field to other degrees of freedom in the supergravity theory. We will

perform this analysis in the next section.

7.2 Coupling to Gravity

The background electric field causes mixing of the gauge field with the metric at the quadratic order,

and it modifies the stability condition. In this section, we will study stability of the near-horizon



84

geometry of the extremal Reissner-Nordström solution in AdS5. It is a solution to the Maxwell theory

with the Chern-Simons term coupled to the Einstein gravity with negative cosmological constant,

16πG5L =
√
−g
(
R+

12
`2
− 1

4
`2FIJF

IJ

)
+
α

3!
`3εIJKLMAIFJKFLM . (7.14)

The curvature radius r5 of the AdS5 solution in this theory is equal to `. In the following, we will

work in the unit of ` = 1. This is also the Lagrangian density of the minimal gauged supergravity

in five dimensions [175]. In this case, supersymmetry determines the Chern-Simons coupling α as

α =
1

2
√

3
. (7.15)

In this and next sections, we will treat (7.14) as a phenomenological Lagrangian with α as its

parameter.

7.2.1 AdS2 × R3

Let us first consider the extremal black hole solution which is asymptotic to AdS5 in the Poincaré

coordinates. It describes the dual conformal field theory on R1,3 with non-zero chemical potential

and at zero temperature. The near-horizon geometry of the extremal black hole is AdS2 × R3 with

the metric

ds2 =
−(dx0)2 + (dx1)2

12(x1)2
+ d~y2, ~y = (y2, y3, y4). (7.16)

Note that the curvature radius r2 of AdS2 is 1/
√

12; the curvature is stronger near the horizon. The

electric field strength near the horizon is proportional to the volume form of AdS2 and is given by

F
(0)
01 =

E

12(x1)2
, E = ±2

√
6. (7.17)

For the minimal gauged supergravity with α given by (7.15),

4α2E2 = 8 > |m2
BF | =

1
4r22

= 3. (7.18)

Thus, if gravity is treated as non-dynamical, the gauge field fluctuation near the horizon violates

the Breitenlohner-Freedman bound for this value of α.

We decompose the metric gIJ into the background g(0)
IJ and the fluctuation hIJ as gIJ = g

(0)
IJ +hIJ .

The indices are raised/lowered by using the background metric. Notice that gIJ = gIJ(0) − hIJ +

O(h2) so that gIJgJK = δIK . In the presence of the background electric field F
(0)
µν , the unstable

gauge field components fµi, fij 6= 0 mix with the off-diagonal elements h i
µ of the metric perturbation
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through the gauge kinetic term,

FIJF
IJ = 4F (0)µνh i

µ fνi + . . . . (7.19)

Thus, in the stability analysis, we have to take into account the mixing. One can think of h i
µ as

the Kaluza-Klein gauge field upon reduction on R3. Since we are considering a sector with non-zero

momentum ~k along R3, the Kaluza-Klein gauge field on AdS2 has mass ~k2.

To examine the stability of the black hole solution, we can apply the standard linear perturbation

theory. In the present situation, however, there is a simpler way as we describe here. Suppose that

the momentum ~k on R3 is in the y2 direction. To derive the effective action for the Kaluza-Klein

gauge field hiµ in AdS2, it is convenient to reduce the Einstein action in (7.14) along the y3,4

directions first. This gives rise to two gauge fields (h i
µ , h

i
2 ) (i = 3, 4) on AdS2 × Ry2 , with the

effective Lagrangian

√
−g(0)

5d (R+ 12)

→
√
−g(0)

3d

− ∑
i=3,4

(
1
4
Ki
µνK

iµν +
1
2
Ki
µ2K

iµ2

)
+ (terms not involving h i

µ , h
i

2 )

 , (7.20)

where the gauge field strengths are

Ki
µν = ∂µh

i
ν − ∂νh i

µ , K
i
µ2 = ∂µh

i
2 − ∂2h

i
µ (µ, ν = 0, 1; i = 3, 4).

Upon further reduction in the y2 direction with momentum k, the effective Lagrangian density for

the Kaluza-Klein gauge field is

Leff = −
√
−g(0)

2d

∑
i=3,4

[
1
4
Ki
µνK

iµν +
1
2

∣∣∂µh i
2 − ikh i

µ

∣∣2] . (7.21)

We see that the off-diagonal elements h i
µ (i = 3, 4) of the metric fluctuation give rise to two massive

gauge fields of mass |k| on AdS2 with h i
2 serving as the requisite Stückelberg fields.

Let us dualize the Kaluza-Klein field strength Ki
µν on AdS2 and write it as a function Ki times

the volume form,

Ki
01 =

Ki

12(x1)2
.

The equations of motion for fi = 1
2εijkfjk and Kj are derived from the Lagrangian density, which
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is (7.4) plus (7.21) with the coupling (7.19). They can be organized into the form,

(
�AdS2 + ∂j∂j

)
fi − 4αEεijk∂jfk + Eεijk∂jKk = 0,

E �AdS2fi +
(
�AdS2 + ∂j∂j

)
εijk∂jKk = 0. (7.22)

The effective mass m of these fields in AdS2 can then be computed by solving

det

 m2 − k2 − 4αEk E

Em2 m2 − k2

 = 0, (7.23)

where k = ±|k|. We find

m2 =
1
2

(
2k2 + E2 + 4αEk ±

√
E4 + 8αE3k + 4(1 + 4α2)E2k2

)
. (7.24)

Minimizing m2 with respect to k and choosing the minus sign in (7.24), we obtain the lowest

value of m2 as

m2
min =

E2
(
−64α6 − 24α4 + 6α2 −

(
16α4 + 4α2 + 1

)3/2 + 1
)

2 (4α2 + 1)2
.

Substituting E = 2
√

6 for the near-horizon geometry, we find numerically that the lowest value of

m2 violates the Breitenlohner-Freedman bound if

|α| > αcrit = 0.2896 . . . . (7.25)

The value of α for the minimal gauged supergravity is

α =
1

2
√

3
= 0.2887 . . . .

Thus, the supergravity theory is stable against the fluctuation of the gauge field, but barely so (with

a margin less than 0.4%).

7.2.2 AdS2 × S3

For completeness, let us consider the case when the boundary theory is on R×S3. The near-horizon

geometry is AdS2×S3. Let us denote the curvature radii of AdS2 and S3 by r2 and r3, respectively.

They are related to the electric field strength E and the cosmological constant Λ, which is −6 in the
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AdS2 × R3 limit, by

Λ = − 1
2r22

+
2
r23
,

E2 =
2
r22

+
4
r23
. (7.26)

Note that, in the limit r3 →∞, where S3 becomes R3, this reproduces E = ±2
√

6 in our unit.

As in the previous case, we consider fluctuations of the metric gIJ = g
(0)
IJ + hIJ and the gauge

field FIJ = F
(0)
IJ + fIJ from their classical values indicated by (0). We expand the Einstein equation,

RIJ −
1
2
gIJR =

1
2

(
FIKF

K
J − 1

4
gIJFKLF

KL

)
, (7.27)

and the Maxwell equation modified by the Chern-Simons term,

√
−g∇JF JI +

α

2
εIJKLMFJKFLM = 0, (7.28)

to the linear order in hIJ and fIJ .

The linearized equations for fij andKi, whereKi is defined such thatKi(vol AdS2)µν = 2∇[µhν]i,

can be written as

(�AdS2 + ∆S3) f − 4αEd∗f + EdK = 0,

E�AdS2f +
(

�AdS2 + ∆S3 +
4
r23

)
dK = 0. (7.29)

These equations are similar to (7.22), except for the last term 4
r23

in the second equation. Here ∗

means the Hodge dual on S3. Since d∗ is hermitian when acting on the space of two-forms on S3,

decompose f into its eigenstate. Its eigenvalue is known to be k = ±(n+2)/r3, where n = 0, 1, 2, ....

Since ∆S3 = −(d∗)2 when acting on f satisfying the Bianchi identify df = 0, we can set ∆S3 = −k2.

The mass m on AdS2 then satisfies the determinant equation,

det

 m2 − k2 − 4αEk E

Em2 m2 − k2 + 4/r23

 = 0. (7.30)

This can be solved to obtain

m2 =
1
2

[
2k2 + E2 + 4αEk − 4

r23
±

√
E4 + 8αE3k +

16
r43

+
32αk
r23

+ 4E2

(
k2 + 4α2k2 − 2

r23

)]
.

(7.31)

In the limit of r3 →∞, this reduces to the previous result (7.24).

We have numerically checked that, for a wide range of Λ and E, the Breitenlohner-Freedman
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bound is not violated in the minimal gauged supergravity, where α = 1
2
√

3
. It is interesting to note

that, in the limit of Λ → 0 but with non-zero E, the lowest m2 in (7.31) saturates the Breitenlohner-

Freedman bound [176], which is

− 1
4r22

= − 1
12

(E2 − 2Λ) = −E
2

12
. (7.32)

7.3 Phase Transition and Critical Temperature

In the last section, we studied the instability of the near-horizon region of the extremal Reissner-

Nordström solution. This gives a sufficient condition for the solution to be unstable. However, as

we will see in this section, the condition turns out to be not necessary. To clarify the nature of

the phase transition and identify the critical temperature, we study linear perturbation to the full

Reissner-Nordström black hole in AdS5.

7.3.1 Geometry and Equations

The Reissner-Nordström black hole has the metric

ds2 = −H(r)dt2 +
1

H(r)
dr2 + r2d~y2 , ~y = (y2, y3, y4) . (7.33)

Note
√
−g(0) = r3. The gauge field strength is given by

F (0) =
Q

r3
dt ∧ dr . (7.34)

The function H(r) is given by

H(r) = r2
[
1−

(
1 +

µ2

3r2+

)(r+
r

)4

+
µ2

3r2+

(r+
r

)6
]
, (7.35)

where Q = −2µr2+.

The equation of motion coming from the variation of the gauge field ai is

∂µ(
√
−g(0)fµi) + ∂j(

√
−g(0)f ji)− 2α

Q

r3
εijkfjk − ∂ρ

(√
−g(0)

Q

r3
εµρh i

µ

)
= 0 . (7.36)

In the black hole background (7.33), it becomes

− r

H(r)
∂tfti + ∂r(rH(r)fri) +

1
r
∂jfji − 2α

Q

r3
εijkfjk +QKi = 0 , (7.37)
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where Ki = ∂th
i
r − ∂rh i

t . By operating εijk∂j on this equation, we obtain

− r

H(r)
∂2
t fi + ∂r(H(r)r∂rfi) +

1
r
∆R3fi − 4α

Q

r3
εijk∂jfk +Qεijk∂jK

k = 0 , (7.38)

where fi = 1
2εijkfjk and ∆R3 = ∂2

y2 + ∂2
y3 + ∂2

y4 .

To obtain the equation of motion that comes from the variation of the off-diagonal metric ele-

ments, let us use the Kaluza-Klein reduction in the presence of momentum ~k along the y2 direction.

The effective Lagrangian has the form

Leff = −r3
√
−g(0)

2d

∑
i=3,4

[
1
4
r2Ki

µνK
iµν +

1
2

∣∣∂µh i
2 − ikh i

µ

∣∣2] . (7.39)

The r3 factor comes from the volume form on the R3 directions with coordinates ~y. The equation

of motion coming from the variation with respect to the metric is given by

∂ν(r5Kνµi) + r3(−ik)(∂µh i
2 − ikhµi)−Qεµρfρi = 0 . (7.40)

Acting on the operator εαµ∂βgαβ(0) 1
r3 , we can eliminate the term containing ∂µh i

2 . Using εαµ∂ν +

εµν∂α + ενα∂µ = 0 in two dimensions, we obtain

−1
2
εµν∂βg

αβ(0) 1
r3
∂αr

5Kνµi + k2Ki −Q∂µ(gµν(0)
1
r3
fνi) = 0 . (7.41)

Further operating εijk∂j on the equation,

∂β [gαβ(0) 1
r3
∂α(r5εijk∂jKk)] + ∆2

R3εijk∂jK
k +Q∂µ(gµν(0)

1
r3
∂νfi) = 0 . (7.42)

More explicitly,

(
− 1
r3H(r)

∂2
t + ∂rH(r)

1
r3
∂r

)(
r5εijk∂jK

k +Qfi
)

+ ∆2
R3εijk∂jK

k = 0 . (7.43)

We have two sets of equations of motion (7.38) and (7.43). To simplify them, let us perform the

following rescaling,

r → r+
u
, t→ t

r+
, ~y → ~x

r+
, (7.44)

and make the change of variables,

fi(r) → φ(r),

εijk∂jK
k → 1√

3r2+
u3ψ(r), (7.45)
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and set q = µ√
3r+

. The temperature T is

T =
r+
2π

(
2− µ2

3r2+

)
. (7.46)

With the rescaled variables, the Reissner-Nordström black hole is

ds2 =
1
u2

(
−H̃(u)dt2 +

1
H̃(u)

du2

)
+

1
u2
d~x2 , (7.47)

where

H̃(u) = 1− (1 + q2)u4 + q2u6 . (7.48)

In these coordinates, the AdS5 boundary is at u = 0 and the black hole horizon is located at u = 1.

Suppose that the fields φ and ψ have time dependence e−iωt. Then the equations of motion for

the fields φ and ψ give the following set of ordinary differential equations,

ω2

H̃(u)
φ+ u∂u

(
H̃(u)u−1∂uφ

)
− k2φ+ 8

√
3αqku2φ− 2qu2ψ = 0 ,

ω2

H̃(u)

(
ψ − 6qu2φ

)
+ u−1∂u

[
H̃(u)u3∂u

(
u−2(ψ − 6qu2φ)

)]
− k2ψ = 0 .

(7.49)

Introducing a new function ξ = ψ − 6qu2φ, the equations can be written as

ω2

H̃(u)
φ+ u∂u(H̃(u)u−1∂uφ)− (k2 + 8

√
3αqku2 + 12q2u4)φ− 2qu2ξ = 0 ,

ω2

H̃(u)
ξ + u∂u(H̃(u)u−1∂uξ)− 6qk2u2φ− (k2 − 8u2 − 9u2q2 + 12q2u4)ξ = 0 .

(7.50)

Interestingly, the two equations can be diagonalized by a u-independent matrix. That is, for some

linear combinations φ1 and φ2 of φ and ξ, we have

ω2

H̃(u)
φi(u) + u∂u(H̃(u)u−1∂uφi(u))− κi(u)φi(u) = 0 , (7.51)

where i = 1, 2 and

κi(u) =k2 − 4
√

3αkqu2

− 2u2

(
2 + q2(2− 6u2)∓

√
4 + 4q4 − 8

√
3αkq − 8

√
3kq3α+ q2(8 + k2(3 + 12α2))

)
,

(7.52)

where κ1(κ2) chooses the minus (plus) sign on the right-hand side. Our numerical analysis shows

that only φ2(u) can be an unstable mode. It is related to the fact that, in the extremal limit, κ2

corresponds to the smaller mass-squared in (7.24) in the near-horizon limit.
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7.3.2 Numerical Analysis

To solve the equations of motion (7.51) numerically, we impose the in-going boundary condition

near the horizon u = 1, and then evolve the solution to u = 0, the AdS5 boundary. The asymptotic

behavior of φi near u = 0 is either φi ∼ u2 or constant. The former is normalizable and the latter is

non-normalizable. To find normalizable modes in the full Reissner-Nordström solution, we scan the

initial conditions and see when the fields vanish at u = 0.

Figure 7.3: For a given value of the Chern-Simons coupling α, there is a discrete set of momenta k
for which static solutions exist. The curves I and II indicate two of such momenta for each α. The
red curve is the lower end of the momentum range that violates the Breitenlohner-Freedman bound
near the horizon. Note that the red curve coincides with the curve II. However, there is another
curve I with a lower momentum. This means that the near-horizon analysis gives a sufficient but
not necessary condition for the instability. Both curves end at the same critical value of α.

First, let us consider the zero temperature limit (q =
√

2) and search for static solutions (ω = 0),

which signal the onset of an instability. The behavior of the fields near u = 1 can be found from

(7.51) as

φi = (1− u)−
1
2+

q
κi(1)+3

12 (1 + . . .) , (7.53)

where terms in . . . vanish at u = 1. In the actual numerical calculation in this section, we include

several subleading terms to improve accuracy. For a given Chern-Simons coupling α, static modes

appear at discrete values of momentum k. The lowest two modes are plotted in Figure 7.3. As

mentioned before, only the second field φ2 has normalizable static solutions.

The two curves in Figure 7.3 are denoted as I and II. Both curves terminate at α/αcrit = 1 and

k/µ = 1.52 . . .. The critical value of the Chern-Simons coupling αcrit = 0.2896 . . . is the one we

found from the stability analysis of the near-horizon geometry in the previous section. The curves

are supposed to extend over k/µ = 1.52 . . . and come back to the right in a bell-shaped curves. The

upper branches of the curves represent the upper bounds of unstable modes. However, we have not

been able to plot them due to inaccuracy of our numerical computation.

We also found out a static solution at zero momentum. However, for this solution, the curl of

the off-diagonal metric component εijk∂jKk is constant on R3. This means that Ki is linear in R3,

and the solution is not normalizable.
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We note that the curve II fits with the red curve which is at the lower end of the momentum

range that violates the Breitenlohner-Freedman bound in the near-horizon AdS2 × R3 geometry.

As we saw in the previous section, the near-horizon geometry is unstable in this momentum range,

thus the full Reissner-Nordström solution should also be unstable. In fact the momentum range

that violates the Breitenlohner-Freedman bound is specified by κ2(1) < −3, where φ2(u) oscillates

infinitely many times as they approach the horizon as can be seen from (7.53). On general ground,

we expect an instability to occur in this range [177].

Interestingly, the instability condition κ2(1) < −3 of the near-horizon geometry is not necessary

for the instability of the full solution. This is because there is yet another curve I, located outside of

this momentum range. What happens is that the curve I corresponds to a normalizable perturbation

to the full Reissner-Nordström geometry, but the corresponding mode becomes non-normalizable in

the near-horizon limit. Our numerical analysis shows that the critical Chern-Simons coupling αcrit

for the curve I is the same as that for the curve II, even though the value of αcrit was derived from

the near-horizon analysis.

To see that these static solutions indeed signal instability, let us turn on ω with positive imaginary

part in (7.51). We impose the in-going boundary condition, which is

φi = e−
|ω|

12(1−u) (1− u) 7
36 |ω| (1 + . . .) , (7.54)

in the zero temperature limit and

φi = (1− u)
|ω|

4−2q2 (1 + . . .) , (7.55)

at a positive temperature. Figure 7.4 shows the negative frequency squared as a function of the

momentum k at zero and finite temperature. It shows that the upper and lower curves in Figure

7.3 are boundaries of unstable modes.

The occurrence of instability by the Chern-Simons coupling is summarized concisely in Figure

7.1 and Figure 7.2. For each Chern-Simon coupling α, Figure 7.2 shows an unstable region in the

momentum-temperature plane. This is related to the curve I in Figure 7.3. The range of unstable

momenta never includes k = 0. The highest temperature with unstable modes is denoted as TC(α).

Figure 7.1 shows this critical temperature as a function of α. Below the critical temperature TC(α),

we expect an instability and the charge current gets a position dependent expectation value of the

form of (7.1).
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Figure 7.4: Left: Negative frequency squared as a function of momentum k at zero temperature when
α = 1.6αcrit. Only positive −ω2 is plotted. The curves starting around 1 and 3 join to represent a
tachyonic dispersion relation for the unstable mode predicted by the near-horizon analysis. The curve
starting below 1 is also expected to be connected with another line in the higher momentum region
to form a larger bell-shaped curve, but the large momentum part is difficult to analyze numerically.
The zero momentum static solution does not extend to an unstable mode. Right: Negative frequency
squared as a function of momentum at temperature T = 8.7× 10−4µ.

7.3.3 Spontaneous Current Generation

The vacuum expectation value of the current ~J in the dual field theory can be evaluated by extracting

the asymptotic behavior of the corresponding gauge field toward the boundary of AdS5. In the

absence of the Chern-Simons term, it is well known that 〈 ~J〉 is given by the normalizable part of√
−g(0)fri evaluated at r →∞. The normalizable mode of fri decays, but that effect is compensated

by the scaling behaving of the metric so that we find a finite limiting value in the low temperature

phase. The Chern-Simons term gives rise to an additional term of the form αµεijkfjk. However,

it vanishes at the boundary and does not contribute to the expectation value. Thus, the vacuum

expectation value of the current in the low temperature phase is given by
√
−g(0)fri evaluated at

the boundary of AdS5. It takes the form,

〈 ~J(x)〉 = Re
(
~ueikx

)
, (7.56)

where the polarization vector ~u obeys

~k × ~u = ±i|k|~u. (7.57)

From the analysis in the previous section, it is clear that we should choose the plus (minus) sign when

αE is positive (negative). Namely, the sign of the Chern-Simons coupling determines whether the

circular polarization of the current expectation is clockwise or counterclockwise. This configuration

breaks translational and rotational symmetries, but a certain combination of the two is preserved.

The polarization of the current is helical and reminds us of the cholesteric phase of liquid crystals.
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Since the gauge field mixes with the metric fluctuation hµi in the bulk, the corresponding compo-

nent T0i of the energy-momentum tensor has a non-zero expectation value at the boundary. This is

expected since the non-zero current in the spatial direction means that there is a momentum density.

7.3.4 Spontaneous Breaking of Internal Symmetry

So far, we have considered the case when the gauge group in the bulk is U(1). Since the U(1)

current commutes with itself, its expectation value does not break the U(1) global symmetry on the

boundary.

To realize spontaneous breaking of an internal symmetry, one possibility would be to choose the

gauge group to be non-abelian. The Chern-Simons term can be written in five dimensions if there

is a symmetric tensor dabc in the Lie algebra, such as in SU(n) with n ≥ 3. Suppose we turn on

an electric field strength in a direction T a in the Lie algebra. According to [178, 179], the gauge

kinetic term can generate instability in directions in the Lie algebra that do not commute with T a.

This breaks the symmetry homogeneously. On the other hand, the Chern-Simons term can cause

a spatially modulated instability in directions where dabc 6= 0 with T a. The competition of the

two effects would be decided by the relative strength of the gauge coupling and the Chern-Simons

coupling. It would be interesting to study such an effect in a more explicit manner to identify the

gravity dual of a spatially modulated phase with spontaneous breaking of an internal symmetry.

7.4 Three-Charge Black Holes in Type IIB Theory

The consistent truncation of the type IIB theory on AdS5 × S5 to the U(1)3 gauged supergravity

in five dimensions was given in [180]. The bosonic action contains three gauge fields for U(1)3 and

three scalar fields X1, X2, X3 subject to the constraint X1X2X3 = 1, in addition to the metric. This

low energy theory admits the three-charge black hole solutions of [181]. Here we will examine the

stability of the near-horizon region of the three-charge black holes in the extremal limit.

7.4.1 Case with Equal Charges

Let us consider the case when the three charges are identical, which implies the scalar fields are

constant X1 = X2 = X3 = 1. In this case, both the Lagrangian and the black hole configuration are

symmetric under exchange of the three gauge fields F1, F2, F3. It is convenient to take their linear
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combinations as

F =
1√
3

(F1 + F2 + F3) ,

F+ =
1√
3

(
F1 + ωF2 + ω2F3

)
,

F− =
1√
3

(
F1 + ω2F2 + ωF3

)
. (7.58)

They are eigenstates of the Z3 permutation with eigenvalues 1 and ω±1, where ω = e2πi/3. In the

black hole geometry, the Z3 invariant gauge field F has an electric component with E = 2
√

6, and

F± = 0. Similarly, fluctuations of the scalar fields from X1 = X2 = X3 = 1 can be organized into

eigenstates with eigenvalues ω±1 under the Z3 permutation.

The Z3 invariant sector is the minimal gauged supergravity with α = 1/2
√

3. To the quadratic

order, the metric and the Z3 invariant gauge field do not mix with other fields. Thus, the stability

analysis with respect to them is exactly the same as the one we performed in the previous section.

The three-charge black hole is barely stable in this sector, being within 0.4 % of the stability bound.

Since the gauge fields F± have zero expectation value on the black hole geometry, the R3 com-

ponents of these gauge fields do not couple with other degrees of freedom in the quadratic order. It

is convenient to write them as

F± =
1√
2
(f (1) ± if (2)).

With the standard normalization of their kinetic terms, the Chern-Simons term takes the form,

1
8
√

3
εIJKLMFIJ

(
a
(1)
K f

(1)
LM + a

(2)
K f

(2)
LM

)
, (7.59)

where a(i)
I are the vector potentials for f (i)

IJ (i = 1.2). To the quadratic order, we can take the Z3

invariant FIJ to be its background value F (0)
IJ .

Since these gauge fields do not couple to other fields in the quadratic order, their linearized

equations of motion are

∂J(
√
−gf (i)JI) +

1
4
√

3
εIJKMLF

(0)
JKf

(i)
LM = 0, (a = 1, 2). (7.60)

Comparing this with (7.6), we find α = ±1/4
√

3. Since E = ±2
√

6 as in the previous example, the

mass squared is given by

−4α2E2 = −2. (7.61)

It is greater than the Breitenlohner-Freedman bound (m2
BF = −3 in our unit), and quadratic

fluctuations in these gauge fields are stable.
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7.4.2 Case with Non-Equal Charges

Next, let us consider the case when the three charges are different. The five-dimensional Lagrangian

is derived in [180],

16πG5L

=
√
−g

(
R− 1

2
(∂φ1)2 −

1
2
(∂φ2)2 + 4

∑
a

X−1
a − 1

4

∑
a

X−2
a (F a)2

)
+

1
4
εIJKLMF 1

IJF
2
KLA

3
M .

(7.62)

Xa are functions of the two scalars φ1 and φ2 subject to the constraintX1X2X3 = 1. The Lagrangian

admits AdS5 black holes parametrized by three charges q1, q2 and q3. The metric is given by

ds2 = −(H1H2H3)−
2
3h(r)dt2 + (H1H2H3)

1
3

(
dr2

h(r)
+ r2dΩ2

3

)
,

Ha(r) = 1 +
qa
r2

, qa = µ sinh2 βa , a = 1, 2, 3 ,

Xa = H−1
a (H1H2H3)

1
3 ,

h(r) = 1− µ

r2
+ r2H1H2H3 ,

Aa = (1−H−1
a ) cothβadt . (7.63)

This is the metric whose foliating transverse space is S3. If it is R3 instead, the S3 metric dΩ2
3 is

replaced by the flat metric and h(r) and Aa are replaced with

h(r) = − µ

r2
+ r2H1H2H3 ,

Aa =
1−H−1

a

sinhβa
dt . (7.64)

Given the charges qa, it may be possible to choose µ such that the black hole becomes extremal.

That is, the inner and the outer horizons coincide. For the extremal case, the near-horizon geometry

is AdS2 × S3 or AdS2 ×R3: if the horizon occurs at r = r0, for small ρ = r − r0, h(r) = 1
2h

′′(r0)ρ2.

Hence the geometry becomes

ds2 =
1
a1

[
−ρ2dt2 +

dρ2

ρ2

]
+

1
a2
dΩ2

3 , (7.65)

where a1 = 1
2 (H1H2H3)−

1
3h′′, and a2 = (H1H2H3)−

1
3 r−2

0 for S3 and a−1
2 dΩ2

3 is replaced with the

flat metric for R3. Ha and h′′ are implicitly evaluated at r = r0.

We want to analyze the linear fluctuations near the horizon in the extremal limit. Let Fa =

F
(0)
a + fa = F

(0)
a + daa and gIJ = g(0) + hIJ . If we focus on the fluctuations of the ai and hµi
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fields only, we find that the linear fluctuations of the scalar fields φ1 and φ2 do not couple to them.

Therefore, we may use the background value of the scalar fields. In this case, we can derive the

equations of motion as in the previous case, and the result is

(∆2 + ∆3)f1 −X2
1E3d

∗f2 −X2
1E2d

∗f3 + E1dK = 0 ,

−X2
2E3d

∗f1 + (∆2 + ∆3)f2 −X2
2E1d

∗f3 + E2dK = 0 ,

−X2
3E2d

∗f1 −X2
3E1d

∗f2 + (∆2 + ∆3)f3 + E3dK = 0 ,

E1

X2
1

∆2
∗f1 +

E2

X2
2

∆2
∗f2 +

E3

X2
3

∆2
∗f3 + (∆2 + ∆3 + 4a2)dK = 0 . (7.66)

Ea are the electric fields such that dAa = Ea(H1H2H3)−
1
6 dt ∧ dr. The above four equations give a

mass matrix equation

det


m2 − k2 −E3X

2
1k −E2X

2
1k E1

−E3X
2
2k m2 − k2 −E1X

2
2k E2

−E2X
2
3k −E1X

2
3k m2 − k2 E3

E1
X2

1
m2 E2

X2
2
m2 E3

X2
3
m2 m2 − k2 + 4a2

 = 0 . (7.67)

Solving this equation for m2, we obtain the mass spectrum.

When two of the three charges are the same, we can analyze the mass spectrum analytically

for the AdS2 × R3 geometry. In this case, only the ratio of the charges matter. Let the charge

assignments be (qa) = (1, q, q). Demanding f(r0) = f ′(r0) = 0 at some r = r0, we obtain the

relation q = x(2x+ 1) and µ = 4x(1 + x)3 where x = r20. Let us parametrize the extremal solutions

in terms of x. Then the various functions at the horizon are given by

H1 = x−1(1 + x) , H2 = H3 = 2(1 + x) , H1H2H3 = 4x−1(1 + x)3 , (7.68)

X1 = 2
2
3x

2
3 , X2 = X3 = 2−

1
3x−

1
3 , (7.69)

E1 = 2
7
3x

5
6 , E2 = E3 = 2

1
3x−

2
3 (1 + 2x)

1
2 , (7.70)

a1 = 2
4
3x−

2
3 (1 + 4x) , Λ = −2

1
3x−

2
3 (1 + 4x) . (7.71)

When the two charges are the same, there is a Z2 symmetry exchanging the two charges. Since the

gravity is insensitive to this exchange, only the combination f2+f3 couples to the metric component

and f2 − f3 decouples. The decoupled mode is analyzed by considering the mass matrix in (7.67)

with the eigenvector (0, 1,−1, 0) for some m2. Due to the fact that E2 = E3 and X2 = X3, the only

condition that we need to satisfy is

m2 − k2 + E1X
2
2k = 0 . (7.72)
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Therefore m2 has the minimum value when k = E1X
2
2

2 , in which case m2 = −E2
1X

4
2

4 = −2
4
3x

1
3 . The

Breitenlohner-Freedman bound is −a1
4 = −2−

2
3x−

2
3 (1 + 4x). Their ratio is 4x

1+4x , which is always

lower than 1. That is, the mass squared is always above the bound.

Of course, it is possible that there are other modes that go below the bound. But this turns

out not to be the case. To see this, let us evaluate the determinant (7.67) when the mass-squared

m2 takes the value − 1
4a1, which is the Breitenlohner-Freedman bound. Then this is a function

of k and x. We can check that this function is always positive, meaning that the roots of the

determinant equation, which are the possible values of the mass-squared, are all greater than the

Breitenlohner-Freedman bound.

When all three charges are different, we have not been able to solve the equations analytically,

so we resorted to a numerical method. Given three charges, we first adjust the parameter µ in

(7.63) so that it gives an extremal black hole. Then we evaluate the metric and the functions at

the horizon and solve the mass matrix equation (7.67) for m2. In both AdS2 × S3 or AdS2 × R3,

however, no unstable modes are found for a large range of the three charges. The bound is always

barely satisfied.

In this section, we studied stability of the three-charge black hole in the near-horizon limit. As we

saw in the previous section, the near-horizon analysis gives a sufficient but not necessary condition

for the instability at T = 0. However, the critical value of the Chern-Simons coupling is given

correctly from the near-horizon analysis. Thus, we expect that our conclusion in this section would

not be modified even if we perform the analysis in the full black hole geometry.
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Chapter 8

Conclusions

In this thesis, we first discussed metastable vacua in various supersymmetric gauge theories and ex-

amined the consequence when they play a role in the construction of realistic particle physics models.

Next, we applied the gauge/gravity duality technique to study strongly coupled field theories.

In Part I, we showed that there is a general method to construct a small superpotential of

the scalar field in the vector multiplet in the N = 2 supersymmetric gauge theories such that it

produces a metastable vacuum generically at any point in the moduli space in the Coulomb branch.

The superpotential is intimately related to Kähler normal coordinates: the superpotential is a linear

combination of truncated Kähler normal coordinates to some finite order. We also observe that

when all orders of Kähler normal coordinates are included in the construction of the superpotential,

the superpotential actually becomes a linear combination of electric and magnetic Fayet-Iliopoulos

terms. Hence a previously metastable point preserves N = 1 supersymmetry if we include all higher

order terms of Kähler normal coordinates. The occurrence of supersymmetry is related to the fact

that Kähler normal coordinates are not globally defined in the moduli space.

It is an interesting problem to see such a construction in string or M-theory setup. There are

several works [182,183] that attempt to realize the perturbed N = 2 supersymmetric gauge theories

by deforming M5-branes appropriately in M-theory. Especially, in [183], it was shown that the scalar

potential that results from a small superpotential perturbation of N = 2 theory can be described

by the off-shell M5-brane worldvolume action. Being non-supersymmetric, the M5 configuration is

non-holomorphic, but it is still a harmonic embedding and they give a geometric explanation for the

stability of the M5 configuration.

In addition to developing a method to generate metastable vacua, we apply it to the construction

of realistic models. Following the definition of the general gauge mediation in [49], we computed

correlation functions and gaugino masses in various models. According to the definition, we are

interested in the properties of the system when the gauge couplings of the observable sector are

small. In that case, for computational purposes, we may replace the observable sector with some

‘spectator’ gauge theory. Then, sometimes the system can be solved even in strongly coupled regime,
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and we obtain correlation functions in this way.

Part II of the thesis was devoted to the study of gauge/gravity dualities. We studied the appli-

cations of gauge/gravity dualities to possible condensed matter problems. First, we consider a field

theory with nonrelativistic version of conformal symmetry, called the Schrödinger symmetry. In

search of a gravity dual of the nonrelativistic limit of the mass-deformed version of ABJM, we found

a supergravity solution in M-theory with SU(2) × SU(2) × U(1) × Z2 global symmetry. However,

it turns out that the number of supercharges are at most 6, which is less than the required number

14 to be a proper dual of the nonrelativistic limit of the mass-deformed ABJM theory. Also, it was

difficult to introduce a term proportional to −dx+2

r4 in the metric, which makes the x+ direction

timelike. The problem is mainly that it is difficult to keep the supersymmetry with this term. How-

ever, this term was considered in the paper [141, 184] preserving some supersymmetries. A more

thorough analysis on M-theory solutions with Schrödinger symmetry is done in [185], where it was

shown that the most general M-theory solution with SU(2)× SU(2)× U(1)× Z2 global symmetry

and N = 2 super-Schrödinger symmetry cannot have more than six supercharges. As discussed

in [185], the impossibility may be due to the fact that the gravity geometry may be singular, which

is the case for the level k = 1 of ABJM theory with mass-deformation, and it cannot be resolved

by taking any limit. In that case, either nonrelativistic mass-deformed ABJM theory does not exist

quantum mechanically, or the duality does not work in the nonrelativistic limit. Or it is possible

that the ground state of the field theory may break some of the supersymmetries present in the

theory. The last possibility is supported by [186], who computed the Witten index and pointed out

that the classical analysis of nonrelativistic Chern-Simons-matter theories should receive substantial

quantum corrections when N/k > 1, which includes the parameter region where the supergravity

approximation is valid.

Figure 8.1: The configuration of the gauge fields in the spatially modulated phase

In the last chapter, we study five-dimensional gravity theories with Chern-Simons term, that

are dual to four-dimensional gauge theories with U(1) chiral anomaly. We show that if the Chern-

Simons coupling α is above some critical value αC , there exists unstable modes above some critical
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temperature TC(α) that depends on α. The corresponding phase is spatially modulated; some of the

gauge field components point along helical directions, as shown in Figure 8.1. It will be interesting

to investigate the final configuration of the instability. In addition to the works in Chapter 7 related

to the five-dimensional gravity theories with Chern-Simons term, there are recent studies in the

same theory with the addition of the magnetic fields [187–189]. It would be interesting to include

magnetic fields in our analysis and see whether a spatially modulated phase still exists, and in which

condition it is favored over the uniform phase.
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Appendix A

Semiclassical Consideration

Although it is very complicated to derive explicit geometric quantities for general points of the

moduli space of N = 2 SU(N) supersymmetric gauge theory, there are simple expressions available

in the semiclassical region. This is the region where only perturbative corrections are enough.

For simplicity, we consider the case without hypermultiplets. Since there is a possibility that the

curvature is semipositive and the flat directions are not lifted for any choice of ki in W = kiz
i, it is

useful to see that this actually does not happen in this regime. In the semiclassical approximation, we

have to consider the region in which each Ai in (3.3) is different from each other to prevent enhanced

gauge symmetry. The prepotential F(A) in (3.3) is given by, up to nonperturbative corrections [74]

,

F(A) =
Nτ0
2

∑
i

(
Ai −

∑
j Aj

N

)2

+
i

4π

∑
i<j

(Ai −Aj)2 log
(Ai −Aj)2

Λ2
.

Here Ai are the coordinates of a point p in the moduli space. Of course, they are not independent

and subject to the constraint
∑
iAi = 0. From this, it is straightforward to derive the various metric

and their derivative components. In particular, the curvature does not vanish and is of order O(g4).

Hence we see that the nonzero curvature is induced by the perturbative effects. The derivatives of

the metric are given by

∂kgjq̄ =
1
2π

(
δjq̄δjk

∑
m

1
Aj −Am

− δjq̄
Aj −Ak

− δjk − δq̄k
Aj −Aq̄

)
.

If we contract this with a vector wj at p,

Pkq̄ = wj∂kgjq̄ =
1
2π

∑
m

(
wk − wm

Ak −Am

)
δkq̄ −

wk − wq̄

Ak −Aq̄
, (A.1)

where we implicitly omit terms whose denominators vanish. Note that this is precisely the expression

that entered (3.11). Pkq̄ in (A.1), treated as a matrix, is nonsingular at least at one value of wj :
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When wj = Aj ,

Pkq̄ =
N

2π

(
δkq̄ −

1
N

)
,

which is non-degenerate (note that the vector (1, . . . , 1) does not count). This implies Pkq̄ is non-

degenerate for generic choices of wj . In (3.11), gq̄p is positive definite. So the equality holds only

when v = 0 for the above given w. Therefore, we can choose a superpotential to make a metastable

vacuum at any point in the semiclassical regime.
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Appendix B

Metastable Vacua at the Origin of
the SU(N) Moduli Space

In section 2, we showed how our mechanism applied to the simplest case when the gauge group

is SU(2). We can extend this to the more general SU(N). For simplicity, we will consider the

SU(N) theory without hypermultiplet. Though it is hard to find an explicit form of the moduli

space metric for the SU(N) theory and compute its curvature, it turns out to be possible at the

origin of the moduli space. This result in turn determines the normal coordinates and hence the

superpotential which generates a metastable vacuum at the origin. Later, we consider a deformation

of the superpotential so that it becomes a single-trace operator.

Let ur = tr(φr), i = 1, . . . , N . These parameterize the moduli space. They become ur =
∑
i(ai)

r

at weak coupling where ai are the expectation values of the eigenvalues of the chiral supermultiplet.

It is more convenient to use the symmetric polynomials whose expressions at weak coupling are

given by

sr = (−1)r
∑

i1<...<ir

ai1 . . . air , r = 2, . . . , N .

At strong coupling, these are defined by

rsr +
r∑

α=0

sr−αuα = 0, r = 1, 2, . . . . (B.1)

The moduli space are given by the elliptic curve [58,59]:

y2 = P (x)2 − Λ2 , where P (x) =
N∑
α=0

sαx
N−α . (B.2)

At the origin of the moduli space, all sr = 0 and P (x) = xN . s0 is defined to be 1 and s1 = 0 for

SU(N) case.

We choose the basis cycles αi and βj such that their intersection form is (αi, βj) = δij , i, j =
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1, . . . , N − 1. Then

aDi =
∮
αi

λ , aj =
∮
βj

λ , (B.3)

where

λ =
N−1∑
α=0

(N − α)sαxN−α
dx

y
.

There is an overall constant in front of λ which can be determined by examining the classical limit.

But it can be absorbed in the coefficients kα in the superpotential W = kαz
α. So the exact coefficient

is not necessary. Since
∂λ

∂sα
= −x

N−α

y
+ d

(
xN+1−α

y

)
,

the differentials of aD and a are

∂aDi
∂sα

= −
∮
αi

xN−α

y
,

∂aj
∂sα

= −
∮
βj

xN−α

y
. (B.4)

Since we are going to compute the connection and curvature at the origin, we also need expressions

for multiple differentiation. Differentiating the above equation with respect to sβ ,

∂2λ

∂sα∂sβ
' xN−α

y3
P (x)xN−βdx

=
N∑
ρ=0

sρ
x3N−α−β−ρ

y3
dx ,

(B.5)

where ' means equality up to exact pieces. Differentiating once more,

∂3λ

∂sα∂sβ∂sγ
'

N∑
ρ=0

sρ
−3x4N−α−β−γ−ρ

y5
P (x)dx+

x3N−α−β−γ

y3
dx .

These are general expressions. Now we consider the values at the origin of the moduli space. Using

the relations

d

(
xN−k

y

)
= (N − k)x

N−k−1

y
dx− Nx3N−k−1

y3
dx ,

d

(
x3N−k

y3

)
= (3N − k)x

3N−k−1

y3
dx− 3Nx5N−k−1

y5
dx ,

(B.6)

it follows that

∂2λ

∂sα∂sβ
' N − α− β + 1

N

xN−α−β

y
dx ,

∂3λ

∂sα∂sβ∂sγ
' (α+ β + γ − 2N − 1)(N − α− β − γ + 1)

N2

xN−α−β−γ

y
dx .

(B.7)
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When the moduli are set to the origin, the curve is given by y2 = x2N − 1. Here we set the

scale Λ of the theory to 1. We place the branches on the unit circle as follows [190, 191]: The nth

branch lies along the angle 2π
N (2n − 2) to 2π

N (2n − 1). The αn cycle encloses the nth branch. The

γn cycle runs between n − 1 and nth branches (indices are modulo n). For example, when N = 4,

the branches are distributed as in Figure B.1.

Figure B.1: The cycles αi and γi, and the branches for the moduli sα = 0 when N = 4.

We choose the cycles βn by

βn =
∑
i≤n

γi . (B.8)

Then the intersection matrix for αm and βn are given by (αm, βn) = δmn. Since we are considering

the moduli space at the origin, the periods have many relations among each other. These eventually

determine all periods in terms of one function. Let us start with the period

∂aDm
∂sα

= −
∮
αm

xN−α

y
dx

= −2
∫ 2π(m− 1

2 )/N

2π(m−1)/N

eiθ(N−α)eiθ√
e2iNθ − 1

idθ .

(B.9)

By changing integration variables, we get the recursion relation

∂aDm+1

∂sα
= e

2πi
N (N−α+1) ∂aDm

∂sα
.

That is,
∂aDm
∂sα

= e
2πi
N (N−α+1)(m−1) ∂aD1

∂sα
,

and the same relations hold for their differentiations with respect to sβ (resp. sβ and sγ) by replacing

α with α+ β (resp. α+ β + γ). Also, an analogous result can be drawn for a by using the cycle βn
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in (B.8). Moreover, aD1 and a1 are related by

∂a1

∂sα
= e−

iπ
N (N−α+1) ∂aD1

∂sα
,

∂2a1

∂sα∂sβ
= e−i

π
N (N−α−β+1) ∂

2aD1

∂sα∂sβ
,

∂3a1

∂sα∂sβ∂sγ
= e−i

π
N (N−α−β−γ+1) ∂3aD1

∂sα∂sβ∂sγ
,

(B.10)

which can also be obtained by change of integration variables. So, let us define

h(α) = 2
∫ π/N

0

eiθ(N−α+1)

√
1− e2Niθ

dθ ,

so that
∂aD1

∂sα
= −h(α) .

The rest are determined by the above relations.

The metric is given by

gαβ̄ =
1
2i

∑
j

(
∂aDj
∂sα

∂āj
∂s̄β̄

− ∂aj
∂sα

∂āDj
∂s̄β̄

)
.

By substitution, we reach

gαβ̄ = Aα,β̄h(α)h̄(β̄) ,

where

Aα,β̄ =
1
2i

N−1∑
i=1

i∑
j=1

e
2πi
N [(N−α+1)(i−1)−(N−β̄+1)(j−1)+ 1

2 (N−β̄+1)]

− 1
2i

N−1∑
i=1

i∑
j=1

e
2πi
N [(N−α+1)(j−1)−(N−β̄+1)(i−1)− 1

2 (N−α+1)] .

(B.11)

The summation can be done straightforwardly. This is nonzero only when α = β̄ provided α, β̄ ≤ N .

Evaluating when α = β̄, we get

Aα,β̄ =
N

2 sin π(β̄−1)
N

δα,β̄ .

When evaluating ∂γgαβ̄ , we get a very similar expression but with Aα+γ,β̄ instead of Aα,β̄ . Since

α + γ can be N + 1, in which case Aα+γ,β̄ is non-zero, it may cause a problem. But, fortunately,

such terms do not contribute by (B.7) . Aρ+γ+α,β̄ is nonzero when ρ+ γ+α = β̄+ 2N and we have

to take this into account.
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The results of the computation are summarized as follows:

gαβ̄ =δαβ̄
N

2 sin π(β̄−1)
N

|h(β̄)|2 ,

gαβ̄ =δαβ̄
2 sin π(β̄−1)

N

N
|h(β̄)|−2 ,

∂γgαβ̄ =− δγ+α,β̄
N − β̄ + 1

2 sin π(β̄−1)
N

|h(β̄)|2 ,

∂ρ∂γgαβ̄ =− δρ+γ+α,β̄
(N − β̄ + 1)(β̄ − 2N − 1)

2N sin π(β̄−1)
N

|h(β̄)|2

+ δρ+γ+α,β̄+2N

(β̄ − 1)2

2N sin π(β̄−1)
N

|h(β̄)|2 ,

∂δ̄∂γgβρ̄ =δβ+γ,ρ̄+δ̄

(N − β − γ + 1)2

2N sin π(β+γ−1)
N

|h(β + γ)|2 ,

Γαβγ =gαδ̄∂βgγδ̄ = −δα,β+γ
N − α+ 1

N
,

Rαβγδ̄ =gαp̄gqρ̄∂δ̄gqp̄∂γgβρ̄ − gαρ̄∂δ̄∂γgβρ̄

=


−δα+δ̄,β+γ

(N−α−δ̄+1)2

N2

∣∣∣h(α+δ̄)
h(α)

∣∣∣2 sin
π(α−1)
N

sin
π(α+δ̄−1)

N

for α+ δ̄ > N

0 otherwise.

(B.12)

Let us try W = λsα as our starting superpotential where λ is a small coupling constant. Due

to the curvature formula, Rααβγ̄ for fixed α is a diagonal matrix with some zeroes on the diagonal

unless α = N . Hence the only plausible case is W = λsN . In this case,

RNNγδ̄ = δγδ̄
(δ̄ − 1)2

N2

∣∣∣∣h(N + δ̄)
h(N)

∣∣∣∣2 sin π
N

sin π(δ̄−1)
N

, (B.13)

which is manifestly positive-definite.

The correction we need to add to make a normal coordinate is given by (3.5). Using the following

values

gNN̄ =
N

2 sin π
N

|h(N)|2 ,

∂αgN−α,N̄ = − 1
2 sin π

N

|h(N)|2 ,

∂α∂βgN−α−β,N̄ =
1

2 sin π
N

N + 1
N

|h(N)|2 ,

∂N∂NgN,N̄ =
1

2 sin π
N

(N − 1)2

N
|h(N)|2 ,

(B.14)
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we have

W = λzN = λ

sN − 1
2N

∑
α+β=N

sαsβ +
N + 1
6N2

∑
α+β+γ=N

sαsβsγ +
(N − 1)2

6N2
(sN )3

 . (B.15)

In the case N = 2, we have W = λu+ 1
24λu

3, u = −s2, which is the superpotential that we used

to check the metastability for SU(2).

B.1 Deformation to a Superpotential with Single-trace Terms

The superpotential (B.15) is not a sum of ur where ur = tr(φr). Actually, sα is given by the

implicit relation (B.1) and there are quadratic and cubic terms in s in (B.15). For N = 2 and 3,

the superpotentials are already of single-trace type because we have few independent coordinates

(s2, . . . , sN ). For N = 2, it is trivial. Let us consider N = 3. Here, all ∂αgβ,3̄ vanish since α+β = 3

cannot be satisfied both being greater than or equal to 2. Considering other terms also similarly,

the only terms we get are s3 and (s3)3. s3 = −u3/3 and (s3)3 = −u9/3 up to cubic orders of u2 and

u3. But, for large N , this does not work. So we have to consider a deformation.

We will first consider a general deformation and apply this to our case. Given a superpotential

W = kαz
α, consider a deformation of the form

W = kαz
α +

ααβ
2
zαzβ +

βαβγ
3

zαzβzγ . (B.16)

We may add quartic or higher degree terms in z. This will not change the local behavior of the

leading potential near p, however. From the inverse metric (3.6), the leading effective potential is

given by

V =
(
gαδ̄ +Rαδ̄ρλ̄z

ρz̄λ̄
) (
kα + ααβz

β + βαβγz
βzγ
) (
k̄δ̄ + ᾱδ̄β̄ z̄

β̄ + β̄δ̄β̄γ̄ z̄
β̄ z̄γ̄
)

= kαk̄
α + ααβ k̄

αzβ + ᾱᾱβ̄k
ᾱz̄β̄ + βαβγ k̄

αzβzγ + β̄δ̄β̄γ̄k
δ̄ z̄β̄ z̄γ̄

+
(
kρk̄λ̄R

ρλ̄
βγ̄ + ααβᾱ

α
γ̄

)
zβ z̄γ̄ +O(z3) ,

(B.17)

where gαβ̄ and gαβ̄ are used to raise and lower indices. All tensors are evaluated at the origin. If we

demand a deformation leave the local minimum invariant, ααβ should satisfy

ααβ k̄
β = 0 . (B.18)

Given such ααβ , (B.17) becomes

V = kαk̄
α +Mαβ̄z

αz̄β̄ + Lαβz
αzβ + L̄ᾱβ̄ z̄

ᾱz̄β̄ , (B.19)
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where Mαβ̄ = kρk̄δ̄R
ρδ̄

αβ̄
+ αγαᾱ

γ

β̄
and Lαβ = k̄γβγαβ . The second term is positive definite, so it

tends to give a local minimum at p. But the last two terms develop tachyonic directions. So, roughly,

when βγαβ is smaller than the order of kρR
ρ
γαβ schematically, we have a metastable minimum.

We now consider a specific deformation. Note that the last term of (B.15) can be converted into

− (N−1)2

6N5 (uN )3 to cubic order, and this is

− (N − 1)2

6N3
u3N ,

to the same order.1 So the last term is fine. That is, if we express u3N in terms of u2, . . . , uN , we

have a term 1
N2 (uN )3, but all other terms are of quartic and higher orders.

To deform the first three terms of (B.15), note first that, from (B.1),

uN = −NsN −
N−1∑
α=1

sN−αuα

= −NsN −
N−1∑
α=1

sN−α(−αsα −
α−1∑
β=1

sα−βuβ)

= −NsN +
N−1∑
α=1

αsN−αsα −
N−1∑
α=1

α−1∑
β=1

βsN−αsα−βsβ +O(s4) .

(B.20)

Therefore,
1
N
uN = −sN +

1
2

∑
α+β=N

sαsβ −
1
3

∑
α+β+γ=N

sαsβsγ +O(s4) . (B.21)

We can invert (3.5) and get

sρ = zρ − 1
2
gρᾱ∂βgγᾱz

βzγ +O(z3) . (B.22)

We will consider a superpotential

W = λ

(
1
N
uN +

(N − 1)2

6N3
u3N

)
, (B.23)

for small coupling constant λ. Note that we have set the scale Λ of the theory to 1.

This is indeed a sum of single-trace operators. We will see that this superpotential produces a

metastable vacuum at the origin. Note that (sN )3 = − 1
N u3N + O(s4). Using (B.15), (B.21), and

1Actually, the chiral ring is modified due to instantons as discussed in appendix A of [192]. We will discuss this
effect later.
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(B.22), we can express W in terms of zα:

−λ−1W =zN +
1−N
2N

∑
α+β=N

zαzβ

+
(

1
3
− N + 1

6N2

) ∑
α+β+γ=N

zαzβzγ −
∑

α+δ=N

gδρ̄∂γgβρ̄z
αzβzγ +O(z4) .

(B.24)

Referring to (B.16), the deformation corresponds to

−λ−1ααβ =
1−N
N

δα+β,N

−λ−1βαβγ =
(

1− N + 1
2N2

)
δα+β+γ,N − 3

∑
δ,ρ̄

δN−δ,(αg
δρ̄∂γgβ)ρ̄ ,

(B.25)

where (· · · ) in indices denotes symmetrization.

When we deform the superpotential W according to (B.16), the tree level potential is given by

(B.17) . From this, we see that deformations given by ααβ and βαβγ such that

ααβ k̄
β = 0 ,

βαβγ k̄
γ = 0

(B.26)

leave the metastable vacuum at the origin of the effective potential. Since the metric is diagonal

at the origin, these amount to requiring ααN = βαβN = 0. Note that gδρ̄ vanish unless δ = ρ̄ and

∂γgβρ̄ vanish unless γ + β = ρ̄. Considering all combinations of indices, ααN = βαβN = 0.

As noted before, we also have instanton corrections on the chiral ring. Quantum mechanically

[192],

u3N =
1∑

m=0

2m

m

Λ2Nm 1
2πi

∮
C

z3N P ′(z)
P (z)2m+1

dz ,

where C is a large contour around z = ∞.

The m = 0 term gives the classical relation, i.e., u3N = 1
N2 (uN )3 +O(u4). The m = 1 term gives

the instanton correction. This changes the coefficients ααβ and βαβγ . However, the relations (B.26)

are still satisfied since the additional contribution to ααβ (resp. βαβγ) occurs only when α+ β = N

(resp. α + β + γ = N). We conclude that the superpotential (B.23) gives a metastable vacuum at

the origin.

B.2 Large N Behavior

The first and the second terms of (B.23) are both of order N−1 when expressed in terms of sα.

Hence we may consider a deformation that eliminates the second term. This turns out not to be
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possible.

Since λ is just an overall coefficient, we can set it to −1 in the following discussion. Note that

u3N is −N(zN )3 in zα coordinates to cubic order. Hence (B.25) change to

ααβ =
1−N
N

δα+β,N ,

βαβγ =
(

1− N + 1
2N2

)
δα+β+γ,N − 3δN−δ,(αgδρ̄∂γgβ)ρ̄ −

(N − 1)2

2N2
δα,Nδβ,Nδγ,N .

(B.27)

Since we have shown that ααN = βαβN = 0 were it not for the additional term, we have

βαβN = − (N − 1)2

2N2
δα,Nδβ,N .

Then Lαβ = gNN̄βαβN in (B.19) are all zero except when α = β = N and

LNN = − (N − 1)2

N3

sin π
N

|h(N)|2
.

Since h(N) ∼ 1/N , this scales like N0 for large N . But Mαβ̄ are given by, using (B.13),

Mαβ̄ = RNN̄αβ̄ + αγαᾱ
γ

β̄
= gNN̄RNNαβ̄ + gγδ̄αγαᾱδ̄β̄

= δαβ̄
2(β̄ − 1)2

N3

∣∣h(N + β̄)
∣∣2

|h(N)|4
(sin π

N )2

sin π(β̄−1)
N

+
(

1−N
N

)2∑
γ

2 sin π(γ−1)
N

N
|h(γ)|−2

δα+γ,Nδβ̄+γ,N .

(B.28)

Mαβ̄ are diagonal and the second term vanishes when α = β̄ = N . Therefore,

MNN̄ =
2(N − 1)2

N3

|h(2N)|2

|h(N)|4
sin

π

N
.

Since h(2N) scales like N−2, MNN̄ scales like N−2. Since LNN introduces saddle point behavior at

the origin along the N -th direction and MNN̄ is not large enough to lift it, the metastability could

not be maintained in the large N limit if we did not include the second term of (B.23) . Actually,

LNN/MNN̄ > 1/2 for all N(we have explicit formulae), so we cannot remove the second term of

(B.23) for any N .

The components of (B.13) is of order N−2 when γ = δ is near N and of order N−1 when

γ = δ is near N/2. So although the metastable vacuum at the origin persists for any finite N , the

mechanism to make metastable vacua using the curvature becomes harder and harder to implement

as N increases in the current setup.
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Appendix C

Notation for the
Eleven-dimensional Supergravity

We mostly follow the notation of [193]. In the supergravity approximation of M theory, the La-

grangian is given by

L =
1

2κ2
11

[∫
d11x

√
−g
(
R− 1

2
|F4|2

)
− 1

6

∫
A3 ∧ F4 ∧ F4

]
. (C.1)

The quantity |Fp|2 is defined by

|Fp|2 =
1
p!
gM1N1 . . . gMpNpFM1...MpFN1...Np . (C.2)

Indices M,N, . . . run from 1 to 11 and denote coordinate indices. The metric is mostly positive.

The vielbein indices are denoted by A,B, . . .. The equation of motion for A3 is

dF4 = 0 ,

d ∗ F4 +
1
2
F4 ∧ F4 = 0 .

(C.3)

The equation of motion for the metric gMN is

GMN = κ2
11TMN , (C.4)

where GMN is the Einstein tensor, and

TMN = − 2√
−g

δSA3

δgMN
, (C.5)

where SA3 denotes the part of the action excluding the Ricci scalar term. Explicitly,

TMN = − 1
4κ2

11

(
1
4!
gMNF

M1...M4FM1...M4 −
2
3!
FMM1M2M3F

M1M2M3
N

)
. (C.6)
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In terms of the gamma matrices,

TMN = − 1
4κ2

11

1
32

Tr(ΓMF(4)ΓNF(4)) . (C.7)

where F(4) = 1
4!FMNPQΓMNPQ. The eleven gamma matrices satisfy the relation

{ΓA,ΓB} = 2ηAB , (C.8)

where ηAB = diag(−1, 1, . . . , 1).
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