AAN}A [

e
& fidd

rmer
H

IONS OF A M

T,
i

7
ES

CA

PLI

AP

FUNCTIONS

CN WAVET

R

MANY-ELECT

sis by

Q
£
f

fudson

TY.

Suzanne

equirements

T
i

Fulfillment of the

+3a1
tlal

In Par

r of Science

e

L

Mas

ute of Technology

t

insti

11a L

i

lifor

Ca

Pasadena, California

NeJ
v



ACKNCOWLEDGMENT

D e N S VL UL

The author wishes to express her sincere appreciation for the
guidance and interest shown by Dr. Vincent McKoy during the course
of this work. Financial support in the form of a National Science

roundation Fellowship is gratefully acknowledged.



ABSTRACT

We show how the method of successive partial orthogonaii-
zations can be used to obtain approximate Hartree-Fock (HF) pair
functions directly from the hydrogenic pair functions. The method
is more practical than accurate but with the explicit Z-dependence
oi the bar -nuclei pair functions just eleven such pair functions are
needed to obtain an approximate HF pair function by this metnod iIor
any pair of orbitals in any first row atom. We use the same method
of analysis to extract HF orbitals directly irom suitable trial func-
tions for the He-He system at several internuclear distances and

1
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and also for the auto-ionizing 2s” 2p° states of helium. This approac

o dt

avoids a separate variational calculation for the HF wave function an
furthermore it provides approximate HF pair functions for these

auto-ionizing states.



I INTRODUCTION

The method of successive partial orthogonalizations was intro-
duced by Sinanoglu in his development of the many-electron theory. 1 The
method can be used; (a) to analyze a trial function of arbitrary form for
a many-electron system into its various correlation effects each involving
a specific number of electrons and (b) to obtain a Hartree-Fock wave-
function directly from accurate trial functions which bypass a Hartree-~
Fock (HF) calculation. This avoids a separate variational calculation
for the HF wave function. The applications illustrated in this paper
indicate the ability of this method not only to aid physical interpretation
but also to provide a simple way of obtaining some useful and practical
information concerning atomic pair correlation functions. The results
are certainly inore practical than highly accurate.

A brief review of the necessary theory is presented in Sec. II. In
Sec. III we describe how one can obtain approximate Hartree-Fock pair
functions ﬁij by first solving for the hydrogenic pair functions uij’ which
determine the first-order correction ¥ to the zeroth-order hydrogenic
eigenfunction, and then analyzing that wavefunction ¥ + ¢% into its
various HF correlation components by successive partial orthogonalizations.
The hydrogenic wavefuncl\'%ion accurate to first order in the entire inter-
electron repulsion H, = ; . 1/rij is not a terribly accurate wavefunction
but in this way it can p;ovi]de useful estimates of HF pair {functions. The
hydrogenic pair functions uij are solutions to simpler nonhomogeneous
differential equations than are the ZF pair functions and they can be

oL

obtained independently and with explicit Z-dependence. One just needs
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eleven such two~electron [unctions in order to write down the wave-
{function for :my first row atom accurate to first order in the pertvr-
N

bation H, = ) 1/1‘11..
i<j

In Secs. IV and V we illustrate how good HF wavefunctions can be
obtained by this method of analysis from existing accurate trial functidns
without a separate variational calculation. Examples include the HF
wavefunction {or the He, molecule as a function of R extracted from
Phillipson's 1962 Wavefunc‘tion2 and approximate SCF functions for the
auto~ionizing 2s” and 2p° (IS) states of He. These auto-ionizing states
are of particular interest since the variational foundation of the Hartree-

En !

Fock method is no longer valid and in fact no true variational principle
exists for such states. Nevertheless fairly accurate wavefunctions for
such systems can be obtained by a scaling-variation orthogonalization
procedure. 3,4 Analysis of these functions provides not only the SCF
functions but also approximate pair correlation functions for such doubly

excited states of the two-electron system.

iI, THECRY

The exact wavefunction for a many-electron system can be written
1,5
as 7’
N o N . -
=& + g+ L+ oo .
or L el 0 L ATt - 1)
1= i>7 i>j>k
with the one~ and two-electron clusters defined as
{3} = A(BLO GO o g f GO @)y (22}

i’ r2 i- i7i+1 N
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and €, is the orbital approximation to ¥
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The best orbital approximation of the form Eq. (3a) is the Hartree-Fock

wavefunction @
Q= A(p Py - ¢N) . (3b)

The form of the wavefunction, Eq. (1), can be derived in different ways
including the method of successive partial orthogonalizations. 1 The
derivation of this expansion for ¥ -%,, [ Eq. (1)], by the method of
successive partial orthogonalizations formally assumes that ¥is the exact
many-electron function. Clearly a meaningful clecomposition1 can be
obtained for any trial function \AI;that is a good approximation to ¥. Hence,
given an orbital approximation €, any accurate trial function of arbitrary
functional form can be decomposed into the form of Eq. (1). The meaning
and magnitude of each term in the decomposition depends on the orbital
approximation ®,, If one chooses the Hartree~Fock approximation for

%, then the only important terms8 in the decomposition of ¥- ¢ are the
pair functions ﬁi’j'

First ¢, is removed from ¥
X=¥-% (4)

and ¥is normalized so that (¥, &) =1and (%, X) = 0. If § isthe HF
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wavelunciion then X is the correlation wavelunction and it simply repre-
sents what is lelt in ¥after ¢, has been removed. Next one orthogc-
nalizes X to products of (N-1) orbitals obtained from the orbital product
of ¢, by dropping one spin orbital at a time. The result is some portion
of X, i.e.,

]
— - 2 (0) . ©0) (€ ) I N (o)) (o) )
X'=X =~ (N!) Z AL SR ONSICWRIEEL Y

L T S S R

N
(@3]
~—

©) .. .0 |
(b1+1 ¢N_}'

Note that in the orbital product of Eq. (5) the orbital d)i(O) has been replaced
by a one~electron function, %i’ defined by a-partial integral over (N-1)

electron coordinates, i.e.

)

:
BG) = D25 G %o ) 90 (o) -9 1 Gy ) L9 G L)
©) . 5
SO ) Ay g A gy (8)

The second term on the right hand side of Eq. (5)are just the {fi} clusters
of Eq. (1). One can continue this analysis by orthogonalizing X’ to pro-
ducts of (N-2) orbitals obtained from the orbital product of ¥, by dropping
two spin orbitals at a time. The result is X”

N

(0) , . . A0 ) VIR (') BN (¢} (o) <0> wr o, L.
2 A4 ¢1-1‘P3-1<M¢1 P11 1%
i<j

N

X”:X -(N’)

= l

o« ch(0) (0) (0) .. o
4 PP ‘)N
---Xi~1Xi_1Xi+1Xj+1..
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Again orbitals ¢ and «1>j“” are replaced by a two-electron function

Ui’j (ggi, §j), defined by a partial integral over (N-2) electron coordi-

11ates7, 1. e.,

1
e . _ (NY)E- X7 (0) ‘
Uiy G 25) = S X G 90 G923 Gy L) Ly G )

(o)) (0) | {0)
1 D& L) ey
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(8)

The second term on the right-hand side of Eq. (7) is the cluster term

j} of Eq. (1). This procedure is continued by orthogonalizing each

new remainder, e.g., X’ to all the orbital products from which one

T $vr
lUi

more orbital has been dropped.

These results are sufficient to illustrate how we will go about
obtaining approximate HF pair functions aij indirectly starting from the
bare-nuclei (i. e., hydrogenic) pair functions, Uy But it has also been
shown that this same method provides a way of obtaining Hartree-Fock
orbitals directly from a good trial function without a separate varia-

1,8 . . ‘ . ‘
»® If &, is the Hartree-Fock wavefunction the dominant

tional calculation.
term in the correlation wavefunction X will be the pair functions fji’j. In
particular the fi's have been shown to be small in typical closed-shell
systems. 6,9 Suppose that we have both a good trial function ¥ which is
close to ¥ and an arbitrary orbital approximation &,. With these orbitals

¢ and Egs. (5), (6) and (7) one can calculate the fi“’) for each orbital



C.b_,f") . But the I, are negligible for HF orbitals so each fi“” is simply
{rying to turn the approximate orbital ﬁi){o’ into a HF orbital ¢,. Each
orbital can therefore be improved by adding to it its {;* obtained from

the trial function {IVI

) & d):(lm +f;O)
¢ — &, =
i

i” (1_*_ <%j(_0)7 %]_(-0)> )%

. . s . N] o~ . N
and reorthogonalizing the set of orbitals {qbif. If all the orbitals O{ ' are

LT T4
(

replaced by orbitals 51 and this procedure successively repeated the ori
should converge to the generalized SCF orbitals. These generalized SCF
orbitals are very close to the HF orbitals. This method for obtaining
approximate HF orbitals is particularly applicable if ¥ is a CI wave-
function generated with an orthogonal basis set. After the first iteration
the form of the orbitals {7;1} is limited to a linear combination of the CI
wvasis set, and if this basis is orthogonal the integrations become very

simple.

5,6

From the many-~electron theory”’ ~ the total correlation energy

of an N-electron closed-shell system is, to a very good approximation

N

corr Lo i
1<j

~
fesn)
()
S’

E

where EI’J is the exact pair energy10
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with
v { oy . Q (1 -
mij(1,2)~1/r12 L (1) - s (2)- 3’\2) sj(L)JrJij Kij
(12)
and
5,(2)=5.(2) -R; (2). (13)

S, (2) and R; (2) are the Coulomb and exchange potential of orbital “bi The

11 : e
operator B is the two-electron antisymmetrizer. =~ The pair function in

’

£q. (11) is de noted by lower case ulj so as to distinguish it from the U,

N

which is the function formally obtained by the method of successive partial
orthogonalizations. These uij*s are obtained by minimizing a very large
portion of the correlation energy using a correlation wavefunction which

contains only the u_.j’s and their unlinked clusters. The U.’.'s depend in
4

12

principie on the other cluster terms, e.g., { r, {U’ka, etc From

i
the many-electron theory the functions u. ij and U’J should be almost

identical. For the practical considerations of this paper we need not
distinguish between such functions.
The pair functions U, i; can be obtained by minimizing each &,

~
-~

with respect to the variational parameters in some trial function u..

r by direct numerical integration of its equivalent efiective Schrédinger



equation}‘3

+Qm [B( b.) + 1. =&, u.. | (14)

(e +ej)uyy
where Q makes a two-electron function orthogonal to all occupied HF

orbitals and E'ij is the extremum value of E’i,j’ i. e,

-~

s
Pt
(@3]

e

€. B (¢, JJ) u.s).

1] ’ r12 i]

If very accurate pair functions and energies are required one must even-
tually solve Eq. (14) or its variational equivalent, Eq. (11), for every
pair of orbitals qbi and fbj. For many purposes pair functions of lcwer
order may be sufficient in which case we may solve for a first-order

(1)

pair function uji’. These u‘l’ 's determine the total first-order cor-

rection to the zeroth-order HF wavefunction. Each uﬁ) satisfies the

differential equation

(e; +63) ‘1)=—Qm B(ib <l>) | (16)

and determines its pair energy 61?)

38 )

b4
r12 1]

~ &L = (B )

One can always use ul(.%) in Eq. (11) to obtain an estimate of the exact
pair energy gz
Every pair function aij for every pair of HF orbitals #Di and @j in

any atom is a separate problem. For many purposes one may need only
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approximale information about a set of pair functions. In such cascs i
fort required to solve [or ui} or 1‘1“ may not seem worthwhile. Ixumples

J

y»w-;

e

o

of such cases can include (a) calculations in which one may want pair
energies to within 15% to 20%; (b) an investigation of the effects of ¢lec~
tron correlation on properties other than the energy, e.g., transition
moments (here the pair energy may be of secondary importance), (¢
the behavior of a given ulj in an isoelectronic series and (d) estimates
of the exclusion effect of outer electrons on inner-shell correlation
energies. 14 The pair functions of Egs. {14) and (16) represent cor-
rections to the Hartree~Fock orbital approximation and these functions
therefore depend explicitly on the medium through the HF potentials in
the operators e : and the exclusion efiect requiring each u i to be orthogo-
nal to occupied HF orbitals. Instead of starting from a HF €, one can
apply the same formalism used to obtain the pair functions satisfying
Eq. (16) to a hydrogenic orbital approximation €,. The first-order

. cee 1
correction can then be written o

gr{l) _ 0) , ., . A0) (©) (0 <o) e 100
k4 - 75“ Z\< A(,P ¢1 - 1 ¢j0— (1[)1 +1 (p QDN) . (Adj
1<)

The function ¥ gatisfies the usual first-order equation
H W = 1) 7% 0\
(Ho - Eo )¢ = (E; - I"11)<:u (18)

where H, is the bare-nuclel Hamiltonian and H; the entire interelecironic

repulsion. A pair function Uy of Eq. (18) satisfies the differential cquation

r; Ty i 73771
_ ___{J -K..- -1 }B{d){m(l)@(m(z)] (20}
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for an :ed;om16 of nuclear charge Z. Here €5 Jij and Kij are the hydrogenic
orbital eigenvalues, the Coulomb and exchange integrals over hydrogenic
orbitals respectively. The HF &, plus its correlation function does have
the advantage of greater accuracy than the bare-nuclei & plus its first-
order correction. The expressions for the energy corrections are much
simpler starting from a HF $, due to the nature of the HF potential. But
the pair functions of Eq. (18) are totally independent of the medium and
represent first-order corrections to the actual states of real two-electron
systems; They can be obtained with explicit Z-dependence through a
Z-expansion of the wavefunction and only eleven such uij 's determine

the first-order corrections for all the atoms and ions of the first row.

This is a feature that cannot be easily dismissed. The functions uij
satisfy simpler differential equations than do the functions ﬁ;}l) We are
currently solving by direct numerical integration the differential equations
which determine all eleven pair functions uij'of the first row atoms and
ions, 175 . , 1s?, 1s2s(*Sand ®S), 1s2p (*P and °P), 2s2p (‘P and °P),

25 and 2p? (*S), 2p° P and ‘D).

We now propose that for certain purposes, e.g., as discussed
above, one can combine the advantages of the hydrogenic pair functions
with the method of successive partial orthogonalizations to obtain approx-
imate Hartree-~Fock pair functionsl8 ﬁij in a straightiorward and simple

way. One just assumes that the trial wavefunction &
E,:\Ti;(o) + T (2:)

where ¥’ is the hydrogenic orbital approximation and ¥ its first-order



j

(@)

e T Ta 0 o I A Ty oyt ey B ey by Y TN ~
orreciion, is Q gooa enough approximaliion to the exact waveiunclion

parial orthogonalizations. With a simple coordinate transfor: ation

one obtains the explicit Z-~dependence of ¥ and therefore of the v..'s
1
~
in Eq. (18). Next we take the ¥ of Eq. (21) and a Hartree-Fock

&, and begin to extract approximations o the functions Ei and {11-; by the
simple integrations indicated by Egs. {6) and (8). We do not expect these
functions to be highly accurate but at the same time very little effort is
required to obtain them. For many purposes they may be satisfaciory.

Y 3

The Hartree-Fock functions €, are readily available and accurate

numerical solutions to the differential equations, Eq. (20), are now
i7

being obtained. For more accurate pair functions one must solve
Ea. (14) or Ea. (16) for a . oF ugg’ respectively. We have already shown
i J

that the same nui.erical techniques™™ used to solve Eq. (20) for u.. are
l

f 1 - o 1
applicable to the equation for u,. or u,(_)

A w7
i .LJ
Although these approximate functions could be of independent inter
est we normally want estimates of the pair correlation energies &'...
P
The numerical solutions for u.. of Eq. (18) will just give approximate
Ay

values of a OF u., at a discrete number of points, i.e., tabular values.

of Bg. (11) quite easily. Exirapolation of such estimates for &’..
L8]

ccrresponding to numerical soiutions at various mesh sizes can yiald

a

pelter estimates™ of &7... Bul perhaps the accuracy desired may not

S

pomd
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justify doing even this. A less accurate alternative can be as {ollcws.

The &.. of Bq. (11) attains its minimum value if the U in this cguation
1j J

is the solution of the effective Schrodinger equation Eq. (14). For the

exact u.. ¢.. of Eq. (11)is equal to 6_;. of Eq. (15). In our approach

1] 1]
we have an approxirmate u,. and we should use the variational expressicn,
Efij’ to estimate the pair energy 513.. However for crude estimates it

is not unreasonable to use Eq. (15) directly. One clearly loses the
advantage of Eq. (11), i.e., Ei] > &gy Equation {15) is extremely

imple to evaluate and this approach may yet yield estimates within 25%
of the correct values.

We now illustrate the above procedure using the helium atom pair

function as an example. The results for this example are encoura
and we give reasonable arguments to suggest that similar results can be
cotained for pair functions of other atoms. In this example we did not
use the numerical solutions for the u(isz) but just evaluated the pair
function directly using a basis set of ten associated Laguerre polynomials.

i8
The general form of these orbitals”

2 3 1 [
- . {1 Y
(nfm) = @m2{ 0+ L+ )1} 72 {(n- £-1)1}3 (297)" &7
2 2 + 2 e P B
L22EE enr) vy (0,9) (22)
- 20+2 . N . . ” . U
where L | ¢4 are Laguerre fanctions of order (24+2), 17 is a scale
factor and ‘im is a spherical harmonic. This set of orbitals is similar

1

to the hydrogenic orbitals but they form a complete discrete sel, Cur
basis set contains the 1s, 2s, 3s, 4s, 2p, 3p, 4p, 3d, 4d, and 4{ orbitals.

The pair function u{1s®) is most conveniently expressed in terms of
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normalized two-clectron functions formed {rom this basis sel. 1o our

tables the L (1s (1) 2s (2} +

1s(2) 25 (1)] —2= [a (1) (2) -a(2)B (1)] and that for 1s®is 1s (1) is(g)

V2
L o)L (2)-¢(2)B1)]. The 1s orbital of Eq. (22) is the same s {he
V2
nydrogenic 1s orbital and therefore €, = Blls (1) a(1) 1s (2)B(2)]. The

function u{is®) is obtained by straightforward solution of the matri

equation arising from Eq. (20) with Z = 2, € = 63 =-2a.u., J7s =

=1.25 a.u. The approximate HF pair function determined from this

bk
n

trial function, i.e., & + u(is?), (the bare-nuclei approximation plus
its first-order correction), by the method of successive partial
orthogonalizations is listed in the first column of Table I. In the next

i

column we give the first-order HF pair function u;}” obtained by direct

[
yo]

solution of Eq. (18) with the same basis functions. For further com-
parison we also list in thie third column of this table the approximate

EHF us . extracted from the configuration interaction wavefuncticn, i.e.,

e.,-

-

diagonalization of the tocal Hamiltonian in this basis. The €, use

A

in
the analysis was the best approximation to the H¥Y wavefunction using
the same basis setl. The HF orbital is therefore expanded in terms

of the 1s, 2s,3s and 4s basis functions of Eq. (22). The coefficients of
this expansion are listed in Table II. This basis sef gives an orbital

igenvalue of - 0. 91768 and a Hartree-Fock energy of -2. 86158 a. u.

o

compared to the very accurate values of -0. 91795 and -2. 86167 a. u.,
AV , oy
respectively. The hydrogenic orbital product plus its first-order

41 ;T
correction obtained with this basis set gives an upper bound”” to the
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is the best value obtainable with this basis set.
To compare these various approximate pair functions we evaluale
their corresponding pair energies. The first column of Table III gives

estimates of the exact nai

-
i P

n

L
w
o
%,

ies E’i_.: opbtained by using these tiwrce

J

pair functions directly in Eq. (11). 1In the second column we list the
values obtained by inserting the approximate pair functions directly

into the expression for the extremum value of the exact pair encryy,

~

Eq. (15). For the first-order HF ul?

]1 this is just the second-order
pair energy 1 ) since u‘}’ solves Eq. {16). For the first pair funcion

1.. (MSPO) one does not have a variational estimate but the other

- 22

u.. (MSPO) must essentially give a variational estimate. The best
value for the exact pair energy obtainable with these basis functicns is
-0. 0384 a.u. compared to the accurate value of -0. 0419 a. u. 23 The

M

approximate u.. exiracted by this simple analysis from a hydrogenic

1j
&, plus its u., gives a variational estimate of -0. 0359 and a non-
ij
variational but very direct estimate of -0. 0444. 1In view of the advan-
tages of this simple approach to obtaining approximate Hartree-Fock

sults are very encouraging. Reliable estimates

o]
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o
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Pin
o
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n
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Sy
[¢¥]
wn
D
I
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the second and third order coefficients of the Z-expansion of the
energy derived by empirical analysis of atomic energies indicate that
the energy to third order in hydrogenic perturbation theory for 3 to 1C
electron atoms can be sufficient for many purposes. 24 Tnis is just tie

energy obtainable from ¥© 4 of £q. (21) and this does indicate that



such functions are “uimble for the kind of analysis we are proposing. o

1143 . A bals . A 3 3T 3 B N I
this procedure we lake a very simple zero-order Hamiltonian and nd e

T byt with the method of successive partial orthogonalizations we rezain

the many advantages of the simple expressions for the correlation ecnerg:

.L A. <

resulting from a Hartree-Fock choice for ¢ . One also has the advan-

taces of the explicit Z-dependence of the bare-nuclel u..'s.
fe 1 i J

It is alsc interesting to compare the estimates of the second-craer

air enercy obtainable with these two approximate u..'s. A variational
o i i 13

estimate of the second-order pair energy 5{?’ is given by
- 2) « 2 I p Jo o
=, 0 = . R .. 11 + u + . O
el (B9, 3), mys Ty + (Byy, (o + &) uyy) (23)
This is a2 minimum for u,. = au“ . The 513 also breaks down into a sum

over partial wave coniributions. The partial wave coniributions obtained

with ‘he approximate uij extracted from the bare-nuclei uij compare

quite well with those given by the first-order HF pair function ul¥’. The

1]
agreement for the £ =1 and 2 waves is particularly good. The largest

error occurs in the £ = O partial wave. The £ = 0 component of the bare-
nuclei U is by far the largest in its partial wave expansion since most

J
of this is orbital average polarization which is trying to turn the hydro-

genic orbitals into HF orbitals. One can start with screened hydrogenic

orbitals so as to reduce the size of this term bul for the present purpcses
L

g

the agreement between the {irst two columns of Table IV is encouraging.

O
In analyzing these trial functions one obtains not only the pair

's. A good trial function should give neg-

functions u.. out &
ij 3

ligible fi terms in such an analysis and any {rial function that yields



6
non-negligivle ii terms can be improved by simply dropping them.” Tuc
- . s . 21
bare-nuclei “o plus its uij in this basis gives an energy ~ of -2. 64305 a. u.
and the approximate u,. extracted from this function gives a pair energy
ij

of -0. 0359 a.u. Therefore removal of the fi terms now gives an energy

EH"’" £ 3 = -2,89748 a.u. which is 0. 00443 a. u. lower than the cneroy
A

(2. 89305 a. u. ) originally obtained with the trial function containing the
P

fi S

We have already discussed how this method of analysis provides

a way of obtaining Hartree-Fock orbitals directly from a good many-
electron trial function without a separate variational calculation. 1,8
We take a trial function and an arbitrary orbital approximation and find
the fi“” . DBut the f s are negligible for HF orbitals so a non-negligible
fm) is simply trying to turn the approximate orbitals of Q’i(o’ into HF
orbitals. Each orbital can therefore be improved by adding to it its
f(‘” i see Eq. (9)].

To illustrate this application we have obtained a good HF wave-

function directly from Phillipson's extensive configuration interaction

[~

wavelunction for the He-He system at several internuclear separations.
The most extensive CI function contained 64 components constructed
out of a 1s, 1s; 2po, 2pr STO basis set. Our choice for the initial
orbitals at all internuclear distances is the sum and difference of 1s

Slater orbitals centered on each nucleus with the exponent optimized



for the unperturbed helium atom:

log = Ng (lsa + lsb)

loy, = Ny (lsa - 1sb)

1s =N exp(-1.6875r)

& = A(1<72g 16%) - (24)

The vectors for the improved ¢ _ and du orbitals for three successive

iterations are listed in Table V.g For comparison we also list the vectors
obtained by direct solution of the SCF equations. Convergence to the SCF
orbitals is rapid despite the poor initial guess for the starting orbitals.
These starting orbitals were just the molecular orbitals formed from

the single Slater atomic orbitals appropriate to the noninteracting atoms.
In Table VI we list the electronic energies for the initial orbital approx-
imation and the three successive iterations and compare these with the
SCEF value obtained directly. The energy at each iteration, including the
final, has been computed in this example specifically for purposes of
comparison. The results of Tables V and VI clearly illustrate that good
HTF wavefunctions can be obtained by this method of analysis without a
separate variational calculation. If the accurate trial wavefunction is
obtained within a given basis set then the resulting HF orbitals are the
best obtainable within that basis. One can then tell "how much' of the
correlation energy has actually been obtained. This would have been

25

particularly useful at the time of Phillipson's calculation. The results

of extensive calculations which bypass the HF ¢,, e. g., in calculating

26

potential energy surfaces, ®~ can be easily analyzed not only to yield
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the Hartree-Tock oruitals but also to display explicitly the correlation

effects contained in the wavefunction.
£, w3,

As another example we have excoacted an approximate B7F function

rom Boys' 1953 CI wavefunction. 21 Boys' function is not very

by

for Be
accurate but there is some historical interest in using it here. At ihe
time of his calculation the only convenient and accurate method for

finding atomic HF functions was direct numerical integration. Boys

CD

n

uggested using functions of simple analytic form to generate accurat

ag

many-electron functions in the form of a CI expansion. Such functions

were more convenient than tapular values of a numerical sclution but

L

they did bypass the HF wavefunction. At that time no attempt was made
to generate a ZF ¢, in the same basis. This method of analysis can

provide such a HF ¢, which should be essentially identical to those

now obtained by matrix HF techniques. In this analysis the dominant

[y}
f""1

term in Boys' z"cmction‘rZ was chosen as the initial orbital product. The
resulting orbitals were orthogonalized afier each iteration. In Tabie Vil
the energy of the improved orbital product after three iterations is com-~
pared to the energy of the SCTF function in the same basis and to the

accuratle HI energy.

V. APPLICATIONS TCO AUTC-IONIZING STATES

There are no assumptions in the theory of successive partial
orthogonalizations which limit either the analysis of a wavefunction into
!

the form of Eq. {1) or the extraction of a HF function from an accurate

trial function to the lowest state of a given symmetry. We now illus-
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trate how this method of analysis can be used to obtain both approximucc

ET {functicns and pair correlation functions for the doubly-excited aulc-
4 3 G2 1(‘1 - - 7
ionizing 2s® and 2p° {"S) states of He. These auto-ionizing states are of

e

interest since the variational foundation of the HF equations is no longer
valid. For auto-ionizing states truncated diagonalization of the Zamiltcrian
is no longer justified by the variational proof since there is an infinite
number of states of identical symmetry and lower energy. Nevertheless
the truncated diagonalization method can be justified for other

4,28

3
reasons”’ and Holoien" has demonstrated the stabilizing abilily of

particular roots corresponding to auto-ionizing levels as the basis is
enlarged if orthogonalization is effectively achieved. Pair functions for
these states are of interest since it is intuitively clear that correlation
effects are quite important in auto-ionization transitions. Part of the
interelectronic repulsion term is actually responsible for the auto-
ionization transition itseli.

For the analysis of the 2s® and 2p2 doubly-excited states of heliun
the many-electron wavefunctions were those derived by Holoien using
his scaling-variation orthogonalization procedure. With the basis
functions of Eq. (22) the secular equation is solved and the scale para-

meter 7 varied until the energies of the roots which probably correspond

Py

oy

. 5 2 L ... . .
to the 25° and 2p® states are minimized. The optimum scale parameters

n o 2 N 2
are C.76 and 0. 8125 for the 2s” and states respectively. The
optimum scale parameter for the ground state in the same basis is

2.222 and the lowest eigenvalue increases by 0. 0837 a.u. when 7 is

changed to 0.76. The overlaps of the approximate 2s*{n = 0.76) and
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nality prob.em may not be too serious. The approximate HF

O OTioiuils LOL

S

~

these two states were extracted from Hololen's twenty componer -iricl

function and are listed in Table VIII. The orbital and AF energy I{or the

Zs® state agree wel previous I resulls obtained by direct inte-

[
£
pte
('ﬁ*-

gration of Hartree-Fock-like equations for this state. The agreement

by

or the 2p” state is not as good, e.g., an orbital energy of -C. 1504 a. u.

compared o Wilson's value of -0. 1931 a.u.. In view of the agreement

) 1 7 2 e
for the 2s” state we feel that our results for the 2p° state are reliable.

L1

With these approximate HF functions in the orbital products & the
approximate pair functions for the 2s” and 2p® states were extracted

from the trial functions and are listed in Table IX.

4

We have illusirated that the method of successive partial crihogo-

nalizations provides a simple way of obtaining u e;ul and practical inicr-

.

mation concerning oboth Hartree-Fock and pair correlation funclicns.

‘ R ahron]

With an example we have shown how one can obtzin approximate H&

he hydrogenic pair functions which determine
the wavelunction accurate to first-order in the entire interelectron

repulsion and analyzing it into its various Hartree-Fock correlation
components by successive partial orthogenalizations. The method is

7 3

out it can provide pam eﬂermes tc witoin

A

R . VAL T 4T
more pracuicas than accurate

15% to 20% of the exact values. The bare~nuclei u. i can be obtained
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with explicit Z-dependence and therefcre just eleven such u,
needed in order lo obtain an apnroximate HF u,. for any pair of oroiicis
in any first-row atom. We have also suggested scme simple and direct
ways {or estimating the pair energies using these approximate functions.

Y

Reilable empirical estimates of the second and third order coefficient:

o

of the Z-expansion of the energy indicate that the general approach is

The method does provide a simple iterative scheme for extraciing

HT orbitals from accurate trial functions directly and without a sepa-

With this technigue we obtained SCF criitals
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rate varis
for the He-He system at severs cernuclear distances directly from
Phillipson's CI calculation and could then tell "how much' of the cor-

relation energy was actually included in the original function. These

results indicate that this same approach should be used to interpret the

for auto-ionizing states. In this way we have obtained not only SCF

2

L 2 11 o\ ~
functions for the Zs° and 2p° (*S) states of helium but also approximate

pair functions for these doubly excited states.



TABLE L Comparison of various approximate pair [uncticns®,

i (MsP0)” ag © i, duspo)
18" -0. 001856 ~0. 001480 ~0. 001522
1s2s -0, 015506 ~0. 011610 ~0. 014924
25 -0. 065559 ~0. 046284 ~0. 058915
1535 -0. 000090 0. 002074 0. 002805
2835 -0. 003565 0. 007504 0.011848
35" -0. 005831 ~0. 608756 ~0. 008686
isds 0. 001658 0. 000411 0. 000637
2545 0. 008315 0. 002195 0. 003371
3s4s ~0. 004080 ~0. 000835 ~0. 001165
4s ~0. 003378 ~0. 002854 ~0. 002364
% -0, 053346 ~0. 053534 -0. 060749
253p ~0. 024647 ~0. 011873 ~0. 014146
35 -0. 013787 -0. 012081 -0. 010658
4D ~0. 062972 0. 000067 0. 000722
Spép ~0. 069632 ~0. 006118 ~0. 006229
4y -0. 007237 _0. 005992 ~0. 005134
3d ~0. 009092 ~0. 011996 ~0. 009729
3d4d ~0. 009078 ~0. 007276 ~C. 007485
ad ~0. 007261 ~0. 006998 ~0. 05850
af ~0. 062544 ~0. 006022 -0, 002981

Ko L

{Lls table gives the cceificients of the normalized components

indicated in the lefi-hand cclumn,e. g.,1s2s stands for



Table I continued

Y
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—= |a(D)B{2) - «2)3(1)].
75 (1)8(2) 2)B(1)]
basis functions have 7 = 2,

). Al
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hese coefficients specify the approximate Hartree-Tock
uij determined from a hydrogenic orbital product plus its u

joht4

A,)j
the method of successive partial orthogonalizations.
c

This is the first-order Hartree-TFock pair function u‘ij?’ obtained

by solving Eq. (16) with the same basis functions.
d

Tais column gives the approximate HF pair function cetermined

from the configuration interaction wavefunction by the method o
successive partial orthogonalizations.



TABLE II. Hartree-TFock orbital used in this analysis

. a
HEigenvector

1s 0.98384
2s -0.16735
3s 0. 06360
4s -0. 00406
-0. 91768

13}

is

E -2.86158

HEF

a , pos . . . . . oA
These are the coefficients of the basis functions shown in Eq. (22).



TABLE III. Estimates of the pair energy (in a.u.)

~, Bl (2 L a. (1.2
€1 EADGE), 77 vy (L 2D
5 Fad b
4;(MSPO) -0. 0359 0. 0444
S -0. 0384 -0. 0346
ﬁij(MSPO) -0. 0394 -0. 0394

YEstimates of the pair energies obtained by evaluating
Eq. (11). Tae three values correspond to the three pair functions
listed in Table I. See footnotes b,c, and d of Table I respectively.
’These estimates are obtained by using the approximate pair
functions directly in the egquation for the extremum value of Zgj’ i. €.,
E‘ij' See Eq. (15). The first value is not a variational estimate but
the third value should be very close to being one--the difference her:

is concerned with the presence of small {fi} terms.



TABLE IV. DPartial wave contributions to 5—%’
- (ina.u.) for the various pair functions

Id @, (MSPO)? wy b i, (MsPO)° a d
0 ~0. 00885 ~0.01318 ~0. 01230 -0. 01347
1 ~0. 01763 -0. 01926¢ ~0. 01894 ~0. 01894
2 -0, 00199 ~0. 00204 _0. 00201 ~0. 00317
3 ~0. 00011 ~0. 00018 ~0. 00012 ~0. 000¢2
Total -0. 02858 ~0. 03464 _0. 03336 ~0. 03650

n -
“See footnote b of Table I for description of this approximate U

J
b )

Approximate ﬁg obtained with this basis and Eq. (23).

CSee footnote d of Table I for 2 description of this approximate u..,
d

1]
Accurate results of ¥. W. Byron, Jr. and C. J. Joachain, Phys.

Rev. 157, 1 (1967). Inclusion of higher £-values gives their final value of
-0.03725 a. u.
©This value does seem slightly lower than expected. This may -

due to a small error in some particular integral.



TABLE V. Approximate HF orbitals for He, obtained by

iterative analysis of a CI wavefunction®

R 0.5A 0. 75A 1.0A 2.0A
s qu 1o, gqm 1o, HQm lo, qu lo,
1 . 547172 . 06984 . 53242 . 31811 . 35788 . 26472 . 23968 . 24618
2 . 54624 . 15011 . 52869 . 35467 . 35581 . 27354 . 24861 . 25222
3 . 54505 . 14427 . 527175 . 35205 . 35564 . 27298 . 24986 . 25175
SCF . 54531 . 14090 . 52984 . 35556 . 35866 . 27327 . 2498¢€ . 25009
18!
1 . 01686 2,1884 . 06979 . 95390 . 27805 . 67340 . 46671 . 50313
2 . 01201 2. 0233 . 06960 . 89002 . 27754 . 65893 . 45841 . 49711
3 . 01387 2, 0346 . 07071 . 89385 L 277175 . 65959 . 45885 . 49758
SCF . 01349 2. 0389 . 06863 . 88718 . 27509 . 65907 . 45741 . 49895
2po
1 . 01854 -. 00166 . 01285 ~. 00697 . 00847 -. 00587 . 00131 . 00361
2 . 03447 -. 01449 . 02490 -. 01349 . 01757 -. 01151 . 00215 . 00561
3 . 03353 -. 01401 . 02440 -. 01366 . 01737 -. 01157 . 00215 . 00562
SCF . 03364 -, 01471 . 02435 -. 01469 . 01730 -. 01183 . 00115 -. 00102
orbital mxwo:msﬁmc
1s 2.25 2.05 2.25 2.39
1st 0. 84 0.99 1.24 1,33
2po 3.4 2,8 2.5 2.5

AThese are the coefficients of the normalized atomic orbitals centered on nucleus a and b respectively. The coefficients are listed
in order of the first, second and third iterations followed by the SCF orbitals computed directly (Nesbet-Stevens SCF program).

cH:m orbital exponents were varied with internuclear distance. See Ref. 2.



TADLE VI. The electronic energy (in a.u. ) of the successive

crhbital approximations for the He~He system™

Py

R C.5 A 0.75 A 1.0 A 2. Gh
Initial ~8. 277068 ~7. 950395 -7. 635261 ~6.761438
Ieration

1 -8. 901508 -8. 130681 -17. 679876 6. 777663

2 ~8. 918400 -8, 135249 -7.681278 -6. 777657

3 -8.918564  -8.135230 7. 681276 ~6. 777657

SCF -8.918584  -8.135289 1. 681300 -6. 778156

AP 0. 000020 0. 000020 0. 000032 0. 060533
CI Energy® -8. 96695 -8.18023 -7.72183 -6. 81759
- ~0. 0484 -0. 0450 ~0. 0405 -0. 0394

“An additional calculation was done R = 0. 625 A but the error in
the resulis was so much larger (4= 0. 007 a. u.) that we believe there
must be a misprint in the coefficients listed in Ref. 2.

1

YA is the difference between the best energy of the improved orbital
approximation and the SCI energy with the same basis set.

Cry . . . : .
Th t a gies for the vefuncti given in
These are the total energies for the CI wavefunction as given in

& P ; . N g
The difference between the energy after the third iteration and
the CI energy, i.e., the correlation energy contained in Phillipsc.. 5

CI wavefunction.



TABLE VIL Analysis of a trial function for Be.

[ . a - :
Boys' Cl.iunction Exact
improved
orbital product -14. 56067
SCF -14.58674 -14. 5702
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The CI waveiunction used in this analysis. See Rul. 7

o
Yy

A is the difference between the best enerovy of the improved
<) 7

orbital approximation and the SCF energy with the same basis set.



ABLL VIII. Approximate H

fariree~Fock orbitals for the
2s” and 2p° (°S) states.
2 ~_A2 28 1
28 21’ \ o)

1s ~0. 63972 2p
Zs 0. 7450 3D
3s 0.1687 4p
43 0. 0854
it o 2 3+ b N TR OA
orbital cnergy -0. 2239 crbital energy -0. 1504
e - - d N o
HY energy -0.7185 HF energy -0, 6228
e C ) B g e . e
orvital energy” -0.2302 orbital energy -0. 1832
HF energy -0. 7197 HI energy -C. 8182

a %
“These are the coefficients of the basis functions of Eq. (&

Orbital energy and HF energy for the €, extracted from the trial
function of Ref. 3.

P

. - 5 1 : . P iy e D
CHartree-Fock approximation to the (ns?) 'S auto-ionizing states of
helium. D. E. Ransker, R. E. Stevenscn and D. M. Schrader (preprint

1968).

The energies of the trial functions for the 2s? and 2p° states are
-0.7738 and -0.5189 a.u. respectively. That the energy of the approximaic

HF function for the 2p° (*S) state comes out slightly lower than the encrov

fe

of the original function reflects the absence of a2 true variational princinle

S o ~a
CI &0 C8

’.

for these states. Furthermore in the perturbation sum for E,

o

that are not the lowest of a given symmetry s

@]

me terms will be positive

W. S. Wils son, Phys. Rev. 48, 538 (1935). The resulis of this

S~

state are almost identical to those of footnote ¢ hove,
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TABLE IX, Pair functicns for the 2s and
2 e a
Zp auto-ionizing states

252 2p2

15" ~0. 00871 0. 21515
1s2s -0. 02411 -0, 41745
28 ~0. 02264 0. 42488
1s3s 0. 03674 0.15142
253s 0. 03305 ~0. 12506
35" -0. 01061 ~0.12114
1sds 0. 04550 _0. 09868
2545 0. 03350 0.10895
3sds 0. 01649 -0. 00430
45" 0.01133 ~0. 00194
2p -0, 61353 ~0. 00214
2p3p ~0. 03579 ~0. 02499
3p 0. 03896 ~0. 18762
9p4p ~0. 00092 0. 00626
3pép 0.01886 0. 01543
45" 0.00198 -0. 02472
3d° 0. 01487 -0. 22695
3d4d 0. 01547 -0. 05913
4d” 0. 00858 ~0. 03473
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hand column, e.g., 1
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e coeflicients of the normalized components
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