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Abstract

We study the problem of communication scheduling for finite-time average-consensus

in arbitrary connected networks. Viewing this consensus problem as a factoriza-

tion of 1
n
11T by network-admissible families of matrices, we prove the existence of

finite factorizations, provide scheduling algorithms for finite-time average consen-

sus, and derive almost tight lower bounds on the size of the minimal factorization.
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Chapter 1

Introduction

1.1 Consensus Problems

In a consensus problem, a group of agents (or network nodes) try to reach agree-

ment on a certain quantity of interest that depends on their states [29]. Consensus

problems arise in diverse areas such as oscillator synchronization [32, 31], flock-

ing behavior of swarms [42], rendezvous problems [2, 18, 26], multi-sensor data

fusion [35], multi-vehicle formation control [16], satellite alignment [3, 28], dis-

tributed computation [25], and many more. When the objective is to agree upon

the average, it is an average-consensus problem. A motivating example (from [5])

is a network of temperature sensors needing to average their readings to combat

fluctuations in ambient temperature and sensor variations.

Many efficient algorithms exist under various settings, e.g., [13, 9, 5, 7, 22]. Al-

though the majority of the proposed algorithms offer rapid convergence, in gen-

eral, many cannot guarantee consensus in finite time. In this thesis, we study al-

gorithms that achieve average-consensus in finite time for arbitrarily connected

networks under various constraints. We view the network consensus problem as

a network commodity redistribution problem. To make these ideas concrete, we

begin with an example.
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1.2 An Example with Milk and Cookies

Consider n children going to school, each equipped with a backpack of unit capac-

ity. The children fill their backpacks with a combination of milk and cookies. If a

child brings x units of milk (0 ≤ x ≤ 1), then the backpack also contains 1−x units

of cookies. At school, they sit in an assigned seating arrangement. Once seated, the

children begin to exchange milk and cookies amongst themselves in hopes that ev-

eryone has the same share of milk and cookies at the end of the exchange process.

The exchange process is subject to the following constraints:

• (Proximity Communication) Because we don’t want children wandering in

the classroom, each child can only exchange with someone seated in close

proximity.

• (Serial Communication) Because we want to maintain order, at most one pair

of children can exchange their goods at any given time.

• (Proportional Fairness) Because we want to maintain fairness, the exchanges

must be proportionally fair. That is, if Alice gives Bob 10% of everything she

has, then Bob must give Alice 10% of what he has.

Our role as the teacher is to devise a sequence of pairwise exchanges (i.e., a sched-

ule) so that at some finite time, say T , all the children have equal shares of milk

and cookies. Furthermore, we require that our schedule achieve even distribution

regardless of initial conditions. That is, our schedule can only depend on the seat-

ing configuration and not on the initial quantities of milk and cookies brought by

the children.

Using symbols, we now make this problem more precise. Let xi(t) denote the

amount of cookies possessed by child i at time t. Initially, at time t = 0, each i-th

child brings xi(0) units of cookies and 1 − xi(0) units of milk in his/her backpack

where

0 ≤ xi(0) ≤ 1.
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We assume that the total quantity of milk and the total quantity of cookies are

non-zero. That is, someone has brought some cookies to school and someone has

brought some milk to school:

0 <
n∑
i=1

xi(0) < n.

After following our schedule, we desire that at some finite time T ≥ 0, we have for

all i,

xi(T ) =
1

n

n∑
j=1

xj(0)

for all initial values of xj(0). That is, our schedule must lead to finite-time average-

consensus regardless of what quantity of goods each child has brought to school.

The seating arrangement is represented by a connected undirected graph G =

(V,E) with n nodes where V = {1, 2, . . . , n}. The i-th child is seated at node i. If

(i, j) ∈ E, then we say that i and j are neighbors in G. The proximity constraint

dictates that each child can only exchange goods directly with his/her neighbor in

the graph. The fairness constraint requires that if neighbors i and j exchange their

goods at time t then

xi(t+ 1) = λt xi(t) + (1− λt)xj(t),

xj(t+ 1) = (1− λt)xi(t) + λt xj(t).

Here, λt (0 ≤ λt ≤ 1) represents the proportion of goods exchanged at time t. It

shall be useful to view the exchange process as a weighted-averaging operation

between two students.

1.3 Averaging in Wireless Sensor Networks

At this point, we can draw an analogy with wireless sensor networks. Instead of

children and snacks, imagine a deployment of n wireless temperature sensors in
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an area. These sensors measure the local temperature, establish a communication

network, then run an averaging protocol to average their readings so that at some

time T , we can query any sensor to get the exact global average temperature. In

this setting, we run into similar constraints:

• (Proximity Communication) Sensors are typically power-constrained, so they

can only communicate with other sensors in close proximity.

• (Serial Communication) To minimize communication interference, we may

only want one pair of sensors to communicate at any given time.

The proportional fairness constraint from our classroom example does not have

an exact analogy here. In a typical sensor network, the quantity that is exchanged is

information. We can do much more with information than we can with a physical

commodity: we can use source coding to decrease redundancy, channel coding to

increase robustness, and network coding to increase throughput. In a commodity

distribution network, we cannot do such coding operations on physical goods. We

are often limited by local capacity constraints (e.g., unit-capacity backpacks in the

children example).

1.4 Basic Notation

Although most of the material in this thesis is self-contained, we will make use of

elementary knowledge of graph theory, linear algebra, and algorithms. We refer

readers unfamiliar with these areas to [14], [36], [10], as basic references to graph

theory, linear algebra, and algorithms, respectively.

Before we venture into the problem formulation in its full generality, we need

to establish some basic notations:

• G = (V,E) denotes a connected undirected graph on n vertices with vertex

set V and edge set E ⊆ V × V . For convenience, we sometimes write v ∈ G

to denote a vertex v from the vertex set V of graph G.
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• Given a graph G and two vertices u, v ∈ G, we write ∆(u, v) to denote the

distance between nodes u and v. That is, ∆(u, v) is the length of the shortest

simple path between u and v.

• Given a graph G, we define its diameter, DG, as

DG = max
u,v

∆(u, v),

its pairwise total distance, Dtotal
G , as

Dtotal
G =

1

2

∑
u∈G

∑
v∈G

∆(u, v),

its pairwise average distance, D̄G, as

D̄G =
Dtotal
G(
n
2

) ,

and its median, µG, as

µG = arg min
u∈G

∑
v∈G

∆(u, v).

When the underlying graph is clear from the context, we omit the subscript

G and simply write D, Dtotal, D̄, and µ to refer to its diameter, total distance,

average distance, and median, respectively.

• A tree is a graph without cycles. That is, any two vertices in the tree are

connected by exactly one simple path.

• A spanning tree T of G is a subgraph that is a tree and contains all vertices of

G.

• R ,Q, and N denote the set of real, rational, and natural numbers, respectively.

• Given functions f and g, we write f(n) = O(g(n)) if there exist positive con-

stants c and n0 such that 0 ≤ f(n) ≤ c g(n) for all n ≥ n0.
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• Given functions f and g, we write f(n) = Ω(g(n)) if there exist positive con-

stants c and n0 such that 0 ≤ c g(n) ≤ f(n) for all n ≥ n0.

• Given functions f and g, we write f(n) = Θ(g(n)) if f(n) = O(g(n)) and

f(n) = Ω(g(n)).

• Boldface 1 ∈ Rn denotes a column vector of all 1’s.

• I ∈ Rn×n denotes the n× n identity matrix.

• ei ∈ Rn is an unit vector with 1 in the i-th coordinate and 0’s in other coordi-

nates.

• Given a matrix M , MT denotes its matrix transpose.

• For a sequence of T square matrices

{W (0),W (1),W (2), · · · ,W (T − 1)} ,

where W (t) ∈ Rn×n for 0 ≤ t < T , we write
∏T−1

t=0 W (t) to denote the product

T−1∏
t=0

W (t) = W (T − 1) ·W (T − 2) · · ·W (0).

We will also need the notion of G-admissible matrices:
Definition 1.1. Given a graph G = (V,E), we say a matrix W ∈ Rn×n is G-admissible

if

1. (Conservation) W is column stochastic: Wij ≥ 0 for all i, j; 1TW = 1T; and

2. (Connectivity) For i 6= j, Wij = 0 if (i, j) /∈ E.

With slight abuse of notation, we write W ∈ G if W is G-admissible; and S ⊆ G to denote

that S is a subset of G-admissible matrices.

Loosely speaking, a G-admissible matrix performs averaging according to the

topology specified by G. Notice that the proximity communication constraint is

implicit in the definition.
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1.5 Problem Statement

Given a connected undirected graph G = (V,E), imagine vertices V as nodes in

a network connected according to E. For each node i ∈ V , let xi(t) denote the

value of node i at time step t. Define x(t) = [x1(t), x2(t) · · · , xn(t)]T. Given any set

of initial values x(0), we are interested in a finite sequence of weighted-averaging

operations, W (t) ∈ G, that allows all nodes to reach average-consensus in finite

time T , i.e., x(T ) = 1
n
11Tx(0). Expressed as a linear dynamical system, the values

in our network evolve as

x(t+ 1) = W (t)x(t) (1.1)

with W (t) ∈ G. The G-admissibility requirement limits our averaging operations

to those that are consistent with the network topology. Ultimately, we desire a

finite sequence of G-admissible matrices W (0), · · · ,W (T − 1) such that

x(T ) =
T−1∏
t=0

W (t)x(0) =
1

n
11Tx(0)

for all x(0) ∈ Rn. The requirement that the sequence of G-admissible matrices

results in average-consensus for all x(0) ∈ Rn suggests a matrix factorization per-

spective to finite-time average-consensus. This is made precise by the following

lemma:

Lemma 1.2. Let W (0),W (1), · · · ,W (T − 1) ∈ Rn×n be a finite sequence of T matrices,

then W (T − 1)W (T − 2) · · ·W (0) = 1
n
11T iff

W (T − 1)W (T − 2) · · ·W (0) x(0) =
1

n
11Tx(0) (1.2)

for all x(0) ∈ Rn.

Proof. The “only if ” direction is clear, so we show the “if ” direction. Let ei denote

an unit-vector in Rn with 1 in the i-th coordinate. If we take x(0) = ei, then equation
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(1.2) becomes
1

n
1 = W (T − 1)W (T − 2) · · ·W (0) ei.

So the i-th column of the product W (T − 1)W (T − 2) · · ·W (0) must be 1
n
1 for any i

and the lemma follows.

To characterize the fastest consensus time (i.e., minimal factorization) we define

the following:

Definition 1.3. Given a set of matrices S ⊆ Rn×n, define

T ∗S , min

{
T : ∃W (t) ∈ S with

T−1∏
t=0

W (t) =
1

n
11T

}

when it exists. When such a finite factorization does not exist, we define T ∗S = ∞. For

convenience, we write T ∗G when S is the set of G-admissible matrices.

Thus, T ∗G is the minimum consensus time.

In this thesis, we shall address the following problems:

• (Existence) Given G, does there exist a sequence of W (t)’s such that T ∗G is

finite?

• (Algorithm) How can we find a G-admissible factorization, if it exists?

• (Minimality) If it exists, what is the minimal of such factorization?

As it turns out, the set of G-admissible matrices may be too general in the

context of network consensus problems. Some scenarios, such as the classroom

example in Section 1.2, require additional constraints that further restrict the fac-

tors to certain subsets of G-admissible matrices. In addition to connectivity and

conservation constraints imposed by G-admissibility, networked nodes may act

synchronously or asynchronously, nodes may be power-constrained, and nodes

may have different levels of knowledge or computation power. Each of these re-

strictions further constrain the factors of 1
n
11T to specific subsets of G-admissible

matrices in the context of consensus problems.



9

Definition 1.4. Given a graph G on n vertices and a set S ⊆ Rn×n of matrices, we define

S ∩G =
{
W ∈ Rn×n : W ∈ S and W ∈ G

}
.

Many existing consensus algorithms correspond to factoring 1
n
11T using S ∩G

with differing S. For example, it may be desirable to factor 1
n
11T using doubly

stochastic matrices:

W (t) ∈ {W : W1 = 1 and W ∈ G}

so the average is a fixed point of iteration (1.1); i.e., 1
n
11Tx(0) = W (t) · 1

n
11Tx(0) for

all t. In this thesis, we shall explore the following specific subsets of G-admissible

matrices:

• (Pairwise Exchanges) Factorization using W (t) ∈ G ∩ P1 where

P1 , {W : |{i : Wii 6= 1}| ≤ 2} .

That is, we restrict each averaging step to a pair of nodes in G. This is similar

to the one-child-at-a-time serial communication constraint of Section 1.2.

• (Pairwise 50%-50% Exchanges) Factorization using W (t) ∈ G ∩ S ′1 where

S ′1 ,

{
I − (ei − ej)(ei − ej)T

2
: 0 ≤ i, j < n

}
.

In addition to the proximity and serial communication constraints of Section

1.2, we enforce a 50%-50% exchange where each time two nodes average their

values. This restriction also corresponds to the gossip-based asynchronous

algorithms, c.f. [5].

• (Pairwise Symmetric Weighted Exchanges) As we will discover shortly, the

set G ∩ S ′1 often fails to admit finite-time average-consensus (i.e., TG∩S′1 = ∞

for many graphs G) and we must look beyond G ∩ S ′1 if we desire a finite

factorization of 1
n
11T. Therefore, we consider the following generalization of
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S ′1:

S1 ,

{
I − (ei − ej)(ei − ej)T

m
: 1 ≤ m ∈ Q; 0 ≤ i, j < n

}
.

The set S1 allows pair-wise weighted-averages and notice that S ′1 ⊂ S1.

• (Symmetric Exchanges) Lastly, we consider

S ,
{
W ∈ Qn×n : W = W T} .

Note that the matrices in S are doubly stochastic (i.e., 1TW = 1T andW1 = 1).

The set S allows distribution of mass by symmetric weighted averages; yet

disallows aggregation steps such as those matrices in the G-admissible set.

Such operations are often impossible under typical network node assump-

tions (i.e., topology awareness, computational limitations, distributed behav-

ior... etc.) or capacity constraints.

1.6 Contributions

Our main contributions are as follows:

• We show that any connected graph admits a finiteG-admissible factorization

of 1
n
11Tand T ∗G = Θ(D), where D is the diameter of the graph.

• In the context of gossip-based asynchronous algorithms (e.g., [5]), we provide

necessary conditions for the finiteness of T ∗G∩S′1 . We derive a lower bound on

T ∗G∩S′1
= Ω(n log n) and show that it can be achieved when G is the boolean

hypercube.

• When we are restricted to proportionally fair serial averaging (i.e., one pair

of nodes at a time), we exhibit a tree-based algorithm proving

T ∗G∩S1
= O

(
n log n+ n · D̄G

)
.
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• When G is a tree, our algorithm is provably optimal. That is,

T ∗G∩S1
= Ω

(
n log n+ n · D̄G

)
.

• More surprisingly, when G is a general graph, our tree-based algorithm is off

by, at most, a polylog factor:

T ∗G∩S1
= Ω

(
n log n+ n log−2(n) · D̄G

)
.

Interestingly, this result implies that using the entire network for averaging

can yield, at most, a modest increase in performance. It is an open question

whether this O(log2n) gap can be eliminated.

Since our results are of a centralized nature, our consensus algorithm runtime

lower bounds the runtime of any distributed finite-time average-consensus algo-

rithm.

1.7 Organization

The rest of the thesis is organized as follows: In Chapter 2, we review the relevant

existing literature. In Chapter 3, we show that aG-admissible factorization of 1
n
11T

always exists and that T ∗G = Θ(D), where D is the diameter of G. In Chapters 4, 5,

and 6, we study factorization by subsets of G-admissible matrices, G ∩ S ′1, G ∩ S1,

and G ∩ S respectively. Finally, we close with potential research directions and

concluding remarks in Chapter 7.
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Chapter 2

Related Work

We introduced the finite-time average-consensus problem as a matrix factorization

problem to emphasize that we require an exact average in finite time. Much of

the existing work analyzes asymptotic properties of
∏

tW (t) as t → ∞; see, for

example, [5, 29, 16]. If we relax our exactness requirement and allow a randomized

choice of product matrices, one can define the ε-average time of distribution D [5]

as

Tave(ε,D) , sup
x(0)

inf

{
PD

(‖x(t)− 1
n
11T‖

‖x(0)‖
≥ ε

)
≤ ε

}
,

where ε > 0 andD is a probability distribution on the set ofG-admissible matrices,

and W (t) are drawn independently from D. The choice of D reflects the behavior

of different distributed consensus algorithms. For a trivial D, e.g., pick a W ∈ G

with W1 = 1 and let W (t) = W for all t; the ε-average time is governed by the

second largest eigenvalue of W [29, 16]. Optimization of Tave(ε,W ) over W can be

written as a semidefinite program (SDP) [43], hence solved efficiently numerically.

Tight bounds on Tave(ε,D), whenD corresponds to synchronous and asynchronous

distributed gossip algorithms, can be found in [5]. For a more comprehensive and

detailed overview of convergence behavior of consensus-type problems, we refer

the reader to [5, 29, 16] and the references within.

Although exponentially-fast convergence is sufficient in many cases, it is some-

times desirable to achieve exact convergence in finite-time. A number of authors

have studied finite-time consensus in the framework of continuous-time systems:



13

Cortés [11] employed nonsmooth gradient flows to design gradient-based coordi-

nation algorithms that achieve average-consensus in finite-time. Using finite-time

semi-stability theory, Hui et al [17] designed finite-time consensus algorithms for

a class of thermodynamically motivated dynamic network. Wang and Xiao [41]

used finite-time Lyapunov functions to derive finite-time guarantees of specific

coordination protocols.

In the discrete-time setting, Sundaram and Hadjicostis [38, 37] studied the finite-

time consensus problem for discrete-time systems. By allowing sufficient compu-

tation power and memory for the network nodes, [38] showed that nodes in certain

linear time-invariant systems can compute their averages after a finite number of

linear iterations. The basic idea is that of observability from control theory. Given

enough time, the nodes will have observed enough to reconstruct the initial state

of the system. At which time, they can compute the correct average. Kingston

and Beard [20] studied average-consensus problems in networks with switching

topologies. Using a special consensus protocol, they showed that if the topology

switches to a fully connected graph, then finite-time average-consensus is possible.

As consensus problems have and continue to receive wide interest, researchers

have considered many model variations. Some popular variations include: quan-

tization [4, 19, 23, 24, 8, 6], switched topologies [30, 27, 40, 44], time delay [30, 33,

39, 45], and routing and node mobility [15, 34, 45].

Our work is most closely related to [22] and [21]. In [22], Ko and Shi examined

link scheduling on the complete graph to achieve finite-time average-consensus.

They provided necessary and sufficient conditions for finite-time consensus and

computed the minimum consensus time on the boolean hypercube. In [21], Ko

and Gao introduced the matrix factorization perspective to consensus problems.

They provided algorithms for finite-time average consensus and showed worst

case graph examples which matched the algorithm runtime. This thesis provides

several tight bounds for general graphs and thus subsumes [22] and [21].
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Chapter 3

G-admissible Factorization

3.1 Pairwise Exchanges

We begin our study with factorization by (G ∩ P1) matrices, instead of the G-

admissible factorization, because (G ∩ P1) factorization is more easily understood

and its algorithm is more straightforward. Since (G ∩ P1) ⊆ G, the existence of a

(G ∩ P1) implies the existence of a G-admissible factorization.

Recall the definition of the set P1:

P1 , {W : 1 ≤ |{i : Wii 6= 1}| ≤ 2} .

The set G ∩ P1 restricts our averaging operation to one pair of nodes at any given

time. This is similar to the one-child-at-a-time serial communication constraint of

Section 1.2.

To prove the existence of a finite (G∩P1)-admissible factorization of 1
n
11T, con-

sider Algorithm 3.1. The basic idea of this algorithm is simple: nodes pass all their

goods to one fixed “aggregator” node. The aggregator node then propagates the

appropriate amount of goods back into the network so that everyone has an equal

amount at the end. More specifically, we start with a spanning tree of G and ar-

bitrarily designate a node as the root. After designating the root, we keep track

of the number of descendants of each node (including itself) in the n-dimensional

vector d. Starting from the leaves of the spanning tree, the algorithm traverses up
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towards the root. Along the way, each node gives all its goods onto its parent and

then removes itself. This process terminates when a only single vertex remains.

At this point, the remaining node contains the sum of all initial node values. The

second part of the algorithm (Algorithm 3.2) traverses back down the tree while

re-distributing the values to achieve average-consensus at termination. The vector

d allows us to propagate an appropriate amount of goods to each child node in

order to achieve consensus.

Algorithm 3.1: GATHER-PROPAGATE

Input: Graph G, initial values x
Output: x← 1

n
11Tx

d← vector of 1’s indexed by V (G)1

T ← a spanning tree of G2

while T is not a single vertex do3

Pick a leaf v ∈ V (T )4

Let e = (u, v) be the edge attaching v to T5 [
xu
xv

]
←
[
1 1
0 0

] [
xu
xv

]
6

du ← du + dv7

T ← (V \{v}, E\{e})8

end9

Let u← remaining vertex of T10

PROPAGATE(T, u, d) // See Algorithm 3.211

Algorithm 3.2: PROPAGATE

Input: T , u, d
Output: x← 1

n
11Tx

foreach neighbor v of u do1 [
xu
xv

]
← 1

du

[
du − dv
dv

]
xu

2

E ← E\{(u, v)}3

PROPAGATE(T, v, d)4

du = du − dv5

end6

To translate Algorithm 3.1 into a (G ∩ P1)-admissible factorization, notice that
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line 6 corresponds to a (G ∩ P1)-admissible matrix W with

Wij =


1 if i = j 6= v,

1 if i = u and j = v,

0 otherwise.

(3.1)

Similarly, line 2 of Algorithm 3.2 corresponds to a (G ∩ P1)-admissible matrix W

with

Wij =



(du − dv)/du if i = j = u,

dv/du if i = v and j = u,

1 if i = j 6= u,

0 otherwise.

(3.2)

Thus, one can construct a finite factorization of 1
n
11Tusing 2(n − 1) (G ∩ P1)-

admissible matrices: n − 1 matrices of type (3.1) followed by n − 1 matrices of

type (3.2). Summarizing into a theorem:

Theorem 3.1. For any connected graph G = (V,E) on n vertices, there exists a finite

(G∩P1)-admissible factorization of 1
n
11T. Furthermore, T ∗G∩P1

≤ 2(n−1) and Algorithm

3.1 exhibits such a factorization.

To see that our upper bound is tight (up to constants), we consider a connected

graph on n vertices: let G = (V,E) with V = {0, · · · , n − 1}. Fix the initial values

x(0) as

xi(0) =

1 if i = 0

0 otherwise.

Since all of the mass is contained in node-0, we require at least n − 1 averaging

operations to distribute mass to other nodes, because each operation (i.e., multipli-

cation by a matrix in (G ∩ P1)) can only propagate goods by one additional node.

Thus, T ∗G∩P1
= Ω(n). Summarizing into a theorem:
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Theorem 3.2.

T ∗G∩P1
= Θ(n)

3.2 G-admissible Factorization

The existence of a finite G-admissible factorization of 1
n
11T is implied by the ex-

istence of a finite (G ∩ P1) factorization (see Theorem 3.1). Unlike a (G ∩ P1)-

factorization, a G-admissible factorization allows one to use several edges at each

consensus step. We can rewrite Algorithm 3.1, as in Algorithm 3.3, and combine

several G ∩ P1 matrices into a G-admissible matrix to reduce the complexity of the

factorization.

Algorithm 3.3: GATHER-PROPAGATE

Input: Graph G, initial values x
Output: x← 1

n
11Tx

d← vector of 1’s indexed by V (G)1

T ← a spanning tree of G with root r arbitrarily picked2

foreach v ∈ V (T ) do3

lv ← ∆(r, v) i.e., the distance from r to v4

end5

for α← maxv lv to 1 do6

foreach v such that lv = α do7

v gives all its value onto its parent u, i.e., ,
[
xu
xv

]
←
[
1 1
0 0

] [
xu
xv

]
8

du ← du + dv9

end10

end11

for α← 0 to maxv lv − 1 do12

foreach u such that lu = α do13

{v1, · · · , vβ} ← set of children of u14 
xu
xv1
xv2

...
xvβ

← 1
du


du − dv1 − dv2 − · · · − dvβ

dv1
dv2
...
dvβ

xu
15

end16

end17



18

Algorithm 3.3 starts from vertices farthest from the root of a spanning tree of

G and traverses upwards to give all goods to the root. The second part of the

algorithm traverses back down the tree while re-distributing the values to achieve

average-consensus at termination. The main difference from Algorithm 3.1 is that

all nodes at each level simultaneously transfer their goods to their parents. In the

propagation stage, a node propagates the appropriate value to all its children at

once.

To translate Algorithm 3.3 into a G-admissible factorization, notice that the

computations of x updates in each for loop (line 6) can be translated into a single

G-admissible matrix, W , with

Wij =


1 if i = j /∈ Vα,

1 if j ∈ Vα and i is j’s parent,

0 otherwise,

(3.3)

where Vα = {v : lv = α}.

Similarly, updates in each for loop of line 15 corresponds to a G-admissible

matrix W with

Wij =



(dj −
∑

v: v is a child of j dv)/dj if i = j ∈ Vα,

di/dj if j ∈ Vα and i is a child of j,

1 if i = j /∈ Vα,

0 otherwise,

(3.4)

where Vα = {v : lv = α}.

The number of for iterations at line 6 needed for root r to gather all initial

node values is maxv∈V ∆(r, v). The number of for iterations at line 12 needed

for re-distributing the values is also maxv∈V ∆(r, v). It is straight forward to con-

struct a finite factorization of 1
n
11Tusing 2 maxv∈V ∆(r, v) G-admissible matrices:

maxv∈V ∆(r, v) matrices of type (3.3) followed by maxv∈V ∆(r, v) matrices of type
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(3.4). Summarizing into a theorem:

Theorem 3.3. For any connected graph G = (V,E) on n vertices with diameter D, there

exists a finite G-admissible factorization of 1
n
11T. Furthermore, T ∗G ≤ 2D and Algorithm

3.3 exhibit such a factorization.

Proof. This follows from the above discussion and the fact that diameter D =

max{∆(i, j) : i, j ∈ V }.

To see that our upper bound is tight (up to constants), we consider a connected

graph G = (V,E) on n vertices with diameter D. Assume that the vertex pair (i, j)

has maximal distance, i.e., ∆(i, j) = D. Fix the initial values x(0) as

xv(0) =

1 if v = i

0 otherwise.

Since all of the mass is contained in node-i, we require at least D averaging op-

erations to distribute mass to other nodes, because each operation (i.e., multipli-

cation by a G-admissible matrix) can only propagate goods by distance 1. Thus,

T ∗G = Ω(D) and

Theorem 3.4. For any connected graph G = (V,E) with diameter D, there exists a finite

G-admissible factorization of 1
n
11T. Furthermore,

T ∗G = Θ(D).
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Chapter 4

Factorization under Additional
Constraints - Pair-wise Averages

In terms of network consensus, allowing factorization by G-admissible matrices

may be too strong of a requirement. Often times, communication constraints in-

herent in the network may restrict the types of G-admissible matrices that we are

allowed to use. For example, gossip-based asynchronous consensus algorithms [5]

correspond to factorization using W (t)’s from G ∩ S ′1 where

S ′1 ,

{
I − (ei − ej)(ei − ej)T

2
: 0 ≤ i, j < n

}
.

Each matrix in G ∩ S ′1 corresponds to the averaging of two neighboring node val-

ues. Boyd et al [5] studies the ε-average time of system (1.1) when the W (t)’s are

drawn independently and uniformly at random from G ∩ S ′1. In terms of finite-

time consensus, we will show that T ∗G∩S′1 ≥ (n log n)/2 using a potential function

argument. But first, we require a brief information theory interlude.

4.1 Information Theory

Let p = (p1, p2, . . . , pn) and q = (q1, q2, . . . , qn) be n-dimensional probability vectors.

Let H(p) = −
∑

i pi log pi denote the binary entropy function. Unless otherwise

specified, all log’s are base-2 and we adopt the convention that 0 log 0 = 0.
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Because H(·) is concave (see Theorem 2.7.3 in [12]), for 0 ≤ λ ≤ 1,

H (λp + (1− λ) q) ≥ λH(p) + (1− λ)H(q)

by Jensen’s Inequality. Therefore if we replace both p and q by their average, the

total entropy does not decrease:

∆H , H(λp + (1− λ) q) +H((1− λ)p + λq)−H(p)−H(q) ≥ 0.

Let D(p ‖q) =
∑

i pi log(pi/qi) denote the Kullback-Leibler divergence between

p and q. We have

Lemma 4.1.

D(p ||λp + (1− λ) q) ≤ − log λ.

Proof.

D(p ||λp + (1− λ) q) =
∑
i

pi log
pi

λ pi + (1− λ) qi

=
∑
i

pi log
λ−1 λ pi

λ pi + (1− λ) qi

=
∑
i

pi

(
log λ−1 + log

λ pi
λ pi + (1− λ) qi

)
≤

∑
i

pi log λ−1 (4.1)

= − log λ,

where the inequality (4.1) is because λ pi ≤ λ pi+(1−λ) qi so log λ pi
λ pi+(1−λ) qi

≤ 0.



22

Now, we can upper bound the increase in entropy due to averaging:

∆H = H(λp + (1− λ) q) +H((1− λ)p + λq)−H(p)−H(q)

= H(λp + (1− λ) q)− (λH(p) + (1− λ)H(q)) +

H((1− λ)p + λq)− ((1− λ)H(p) + λH(q))

= λD(p||λp + (1− λ) q) + (1− λ)D(q||λp + (1− λ) q) +

(1− λ)D(p||(1− λ) p + λq) + λD(q||(1− λ) p + λq)

≤ 2 [−λ log λ− (1− λ) log(1− λ)] (4.2)

= 2H(λ)

≤ 2, (4.3)

where inequality (4.2) is due to Lemma 4.1 and inequality (4.3) is because the bi-

nary entropy function is upper bounded by 1 [12]. Stated as a lemma:

Lemma 4.2. The change in total entropy, ∆H , due to the averaging of two probability

vectors is bounded by

0 ≤ ∆H ≤ 2.

We remark that when λ = 1/2,

∆H = 2 · JS(p,q) = D

(
p

∥∥∥∥ p + q

2

)
+ D

(
q

∥∥∥∥ p + q

2

)
,

where JS(p,q) is the Jensen-Shannon divergence, a symmetrized version of the

Kullbeck-Leibler divergence. With an upper bound on the entropy change, we can

derive a lower bound on the necessary consensus time for any graph.

Lemma 4.3. For any connected graph G with n vertices, T ∗G∩S′1 ≥ (n log n)/2.

Proof. Recall that x(t) = [x0(t)x1(t) · · · xn−1(t)]
T ∈ Rn denotes the node values at

time t. For each node i, we can express its value at time t as

xi(t) = pi(t)
Tx(0),
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where pi(t) is a n-dimensional probability vector. Intuitively, pi(t) represents the

weighted contributions of x(0). Initially, for all i,

xi(0) = pi(0)Tx(0) = eT
i x(0),

where ei is the i-th column of the n×n identity matrix. When consensus is reached

at some time, say T ,

xi(T ) = pi(T )Tx(0) =
1

n
1Tx(0)

for all i. Define φi(t) , H(pi(t)) and φ(t) ,
∑n

i=1 φi(t) so that

φ(T ) = nH
(
n−11

)
= n log n.

Note that φi(0) = 0. Since each averaging operation increases the total entropy by

at most 2 (Lemma 4.2), we need at least (n log n)/2 such operations to reach φ(T ).

Therefore, T ∗G∩S′1 ≥ (n log n)/2.

4.2 Necessary Condition for Finite-time Consensus

Now that we’ve established a lower bound on consensus time, the question regard-

ing the existence of a finite factorization still remains. As it turns out, restricting

the nodes to pairwise averaging prevents the possibility of finite-time consensus

in many graphs.

Lemma 4.4. If the number of vertices n is not a power of 2, then one cannot achieve finite

time consensus with G ∩ S ′1.

Proof. By contradiction, suppose that finite time consensus is possible. Consider

initial node values:

xi(0) =

n if i = 0

0 otherwise.

At any time t > 0, the values of each node is in the form of n a/2b for some a, b ∈

Z+ ∪ {0}. At consensus time T , we have xi(T ) = 1 so n a/2b = 1 for some a, b ∈
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Z+ ∪ {0}. This means

n a = 2b

which implies that n is a power of 2, a contradiction.

4.3 Consensus on the Boolean Hypercube

It is natural to wonder whether there are graphs that achieve the lower bound

of Lemma 4.3. As it turns out, the boolean hypercube is optimal for finite-time

average-consensus. A boolean hypercube is a graph on n = 2m vertices for some

m ∈ N. Its vertex set is the set of 2m binary strings of length m. An edge exists

between two vertices if the Hamming distance between the vertices is one (i.e.,

if the two m-bit strings differ by only one bit). It is not difficult to see that per-

forming pairwise averaging along every edge of the hypercube leads to finite time

consensus. Since a hypercube with 2m vertices has m2m−1 edges, the lower bound

of Lemma 4.3 is achieved.

For a more formal presentation, consider Algorithm 4.1. The “⊕” in the algo-

rithm denotes bit-wise XOR. The overall consensus time of this strategy is

(n log n)/2 = m 2m−1

as the outer for loop executes log n times, the inner loop executes n/2 times, and the

set of operations in the inner loop corresponds to a single matrix in (G ∩ S ′1). The

correctness of Algorithm 4.1 follows from recognizing that it is essentially a divide

and conquer algorithm: dividing a size-n hypercube into two size-n/2 hypercubes,

performing consensus on both halves, and then averaging between them. Summa-

rizing everything:
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Theorem 4.5. Given a connected graph G on n vertices, finite factorization of 1
n
11Twith

G ∩ S ′1 is possible only if n = 2m for some m ∈ N. Furthermore,

T ∗G∩S′1 ≥ m 2m−1

and equality is achieved when G is the boolean m-hypercube.

Algorithm 4.1: SINGLEEDGECONSENSUS

Input: {x1, x2, . . . , xn}
Output: For all i, xi = n−1

∑n
j=1 xj

for i = 0 to log n− 1 do1

foreach a, b ∈ {0, 1, . . . , n− 1} such that a⊕ b = 2i do2

M = (xa + xb)/23

xa = M4

xb = M5

end6

end7

The boolean hypercube is one of a few graphs that allow for finite-time average-

consensus with G ∩ S ′1. Furthermore, the lower bound of Lemma 4.3 shows that

the hypercube structure is optimal in terms of average-consensus time.

Given the negative result of Lemma and the fact that a boolean hypercube has

2m vertices, it is natural to wonder whether all graphs of size n = 2m admit finite-

time average-consensus. This turns out to be false when we examine a path of

length n = 2m. If we initialize the “left-most” node with 1 and the rest of the nodes

with 0, i.e.,

x(0) = [1, 0, . . . , 0]T,

then it’s easy to see that if xi−1(t) 6= 0, xi(t) 6= 0, and xi+1(t) 6= 0 then either

xi−1(t) ≤ xi(t) < xi+1(t), or

xi−1(t) < xi(t) ≤ xi+1(t)

since all masses must flow from “left” to “right.” Therefore, there’s no way to
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achieve an even distribution in finite time on the path with pairwise 50%-50% av-

erages.
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Chapter 5

Factorization under Additional
Constraints: Pair-wise Symmetric
Weighted Averages

We saw the previous section, i.e., Lemma 4.3, that for arbitrary G, the set G ∩ S ′1 is

too restricting for finite-time consensus. Therefore, we must look beyond G ∩ S ′1 if

we desire a finite factorization of 1
n
11T.

Consider the following generalization of S ′1:

S1 ,

{
I − (ei − ej)(ei − ej)T

m
: 1 ≤ m ∈ Q; 0 ≤ i, j < n

}
.

Notice that S ′1 ⊂ S1 and that the matrices in set S1 allow pair-wise weighted-

averages. To show that finite-time average-consensus is possible using only pair-

wise weighted averages at each step (i.e., T ∗G∩S1
< ∞), we present Algorithm 5.1.

The algorithm first constructs a spanning tree T of G. After picking an arbitrary

leaf node, say v, as the tree’s root, the algorithm performs reverse depth-first

traversal of T (c.f. Algorithm 5.2) while propagating the appropriate amount of

goods upward toward v. When the process is complete, v contains the average

amount of goods of all nodes in the tree and can thus be removed from future

consideration. At this point, another leaf node is designated as the root and the

process repeats until all vertices have been examined. At which time, all nodes

will have reached average-consensus.



28

It is straight forward to construct a sequence of (G∩S1) matrices from Line 6 of

Algorithm 5.2. Its runtime is O(n2) since depth-first traversal takes time O(n) (see

§22.3 of [10]) and we perform n− 1 such traversals.

Algorithm 5.1: CONSENSUS

Input: Graph G, initial values x
Output: x← 1

n
11Tx

T ← a spanning tree of G1

d← vector indexed by V (T )2

while T is not a single vertex do3

Initialize d to all 1’s4

Pick a node v ∈ V (T ) such that degree(v)=15

Designate v as the root of T6

DFS(T , v, x, d) // See Algorithm 5.27

T ← T \{v}8

end9

Algorithm 5.2: DFS
Input: Tree T , vertex v,vectors x, d
Output: xv ← |T |−1

∑
u∈T xu

if v has no children then1

return2

else3

foreach child u of v do4

DFS(T , u, x, d)5 [
xv
xu

]
←
[

dv
dv+du

du
dv+du

du
dv+du

dv
dv+du

] [
xv
xu

]
6

dv ← dv + du7

end8

end9

To better understand Algorithm 5.2, we illustrate its steps on a complete binary

tree in Figure 5.1. The letters inside the nodes of the figure denote their initial

values. The blue arrows and weights denote the flow of values. For example, in

Figure 5.1(c), the orange node is giving the yellow node 1/3 of its value. Colored

nodes denote the active nodes in the algorithm. A yellow coloring means that the

node value is the average of its subtree: that it contains the average of itself and all
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its descendants.

Exmample: Binary Tree

root ab

c

d

e

f

g

(a) Picking a leaf node as root

Exmample: Binary Tree

1/2

1
2c +

1
2a

(b) Averaging toward the root

Exmample: Binary Tree

1/3

2
3
a+c
2 + 1

3b

(c) Averaging toward the root

Exmample: Binary Tree

3/4

1
4d +

3
4
a+b+c
3

(d) Averaging toward the root

Exmample: Binary Tree

4/5

1
5 f +

4
5
a+b+c+d

4

(e) Averaging toward the root

Exmample: Binary Tree

1/6

5
6
a+b+c+d+f

5 + 1
6e

(f) Averaging toward the root

Exmample: Binary Tree

6/7

1
7g +

6
7
a+b+c+d+e+f

6(g) Root node has the global average

Figure 5.1: Sample execution the Algorithm 5.2.

Algorithm 5.1 serves as a simple proof that T ∗G∩S1
< ∞. However, it produces

a length O(n2) factorization from (G ∩ S1), which we know is not always optimal.

The hypercube example from Section 4.3 demonstrated that some graphs admit a

factorization of 1
n
11T using only O(n log n) matrices from (G ∩ S1). This motivates

us to develop a better algorithm. But first, let’s explore what basic matrix theory

can tell us about consensus algorithms.
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5.1 Matrix Insights

Many of our finite factorization results have been derived constructively from con-

sensus algorithms. We now examine what basic matrix theory can tell us about the

algorithmic structure. Let us consider factorization of 1
n
11T with W (t) ∈ S1 ∩ G.

Except for matrices in S ′1 ∩ S1, all of the matrices in S1 are non-singular. Thus, for

det
T−1∏
t=0

W (t) = det
1

n
11T

we must have W (t) ∈ S ′1 for at least one t. In fact,

Theorem 5.1. If a finite sequence of T matrices W (0), · · · ,W (T − 1) satisfy

T−1∏
t=0

W (t) =
1

n
11T

withW (t) ∈ S1∩G, then, there exists a sequence of n−1 indices I = {t1, t2, · · · , tn−1} ⊆

{0, 1, · · · , T − 1} such that W (ti) ∈ S ′1 ∩G for all ti ∈ I.

Proof. First notice that rank A = n − 1 for A ∈ S ′1, rank B = n for B ∈ S1\S ′1, and

rank 11T = 1. Since multiplication by a rank-(n − 1) matrix can decrease the rank

of a matrix by at most one, we need n− 1 such matrices to reach a rank of one.

Corollary 5.2. For any connected graph G with n vertices, T ∗G∩S1
= Ω (n).

Compared with the Ω(n log n) bound derived using information theory, this lower

bound based on elementary matrix theory is very loose. Nevertheless, it is inter-

esting to note its ramifications on the structure of consensus algorithms.

5.2 Consensus Algorithms for Trees

The hypercube example of Section 4.3 taught us that certain graph structures al-

low for fast consensus. This is a good motivation for a fast consensus algorithm.

That is, given a graph G, we shall look for certain subgraphs that allow for fast
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finite-time average-consensus. Since the matrices in (G ∩ S1) allow for “swaps”

(i.e., two neighbors in G can completely exchange their values), we will use swap

operations to transfer the values to the “fast” parts of the graph for fast averaging.

Let us first restrict our attention to graphs that are trees: for the remainder of this

section, all graphs will be trees and G denotes a tree. For clarity and conciseness of

presentation, we shall also assume that |V (G)| = n = 2k.

Given a graph G with n = 2k vertices, define a sequence of k − 1 graphs as

follows:

Gi = Gi+1 ∪G′i+1, G0 , G,

where Gi+1 is a connected subgraph of Gi with |V (Gi+1)| = |V (Gi)|
2

and Gi∩G′i = ∅.

Notice that |V (Gi)| = 2k−i. Along with each partition, we define a bijection

gi : V (Gi)→ V (G′i).

For suitably chosen partitions and bijections, a consensus algorithm on G can be

described recursively as follows:

Algorithm 5.3: TREE-CONSENSUS

Input: Tree Gi−1, bijection gi
Output: Finite-time average-consensus is achieved on Gi−1

if Gi−1 has only 2 nodes then1

Perform pairwise averaging2

return3

else4

TREE-CONSENSUS(Gi) // Perform averaging on Gi5

Swap values in Gi and G′i6

// This takes
∑

v∈Gi ∆(v, gi(v)) operations.

TREE-CONSENSUS(Gi)7

// Perform averaging on Gi with swapped values
Swap values again while simultaneously averaging.8

// This takes
∑

v∈Gi ∆(v, gi(v)) operations.

end9

An illustration of the recursive partitioning process is shown in Figure 5.2.
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μ

(a) A sample tree, G, with median µ.

G1

μ

(b) G partitioned into G1 and G′1.
G1 highlighted in yellow.

G2 G1

μ

(c) G1 partitioned into G2 and G′2.
G2 highlighted in blue.

G1G2

G3

μ

(d) G2 partitioned into G3 and G′3.
G3 highlighted in green.

Figure 5.2: Recursive partitioning process of Algorithm 5.3



33

The total number of operations in Algorithm 5.3 is:

n

2
+

k−1∑
i=1

2i
∑
v∈Gi

∆(v, gi(v)).

The double summation only counts the number of swap operations (this includes

the simultaneous swap-out and average). The n/2 term comes from the averaging

operations on Gk−1 for the n/2 pair of vertices that get swapped in. With suitable

partitioning and bijections, we can get a desirable runtime (i.e., a short factorization

of 1
n
11T). Before proceeding, we need a couple definitions:

Definition 5.3. For a, b ∈ G, let a  b denote the path from a to b in G. For c ∈ G,

define

∆(a b, c) = min
x∈a b

∆(x, c).

That is ∆(a b, c) is the distance of node c to the path a b.

Lemma 5.4. If ∆(µ v, u) ≤ 1 for all u ∈ V (Gi) and v = gi(u), then

k−1∑
i=1

2i
∑
v∈Gi

∆(v, gi(v)) = O(n(D̄G + log n)).

Proof. For u ∈ V (Gi), ∆(µ gi(u), u) ≤ 1 implies

∆(u, gi(u)) ≤ ∆(µ, gi(u))−∆(µ, u) + 2.

Now we take the summation over Gi

∑
u∈Gi

∆(u, gi(u)) ≤
∑
u∈Gi

(∆(µ, gi(u))−∆(µ, u) + 2)

=
∑
u∈Gi

(∆(µ, gi(u)) + ∆(µ, u)− 2∆(µ, u) + 2)

=
∑

v∈Gi−1

∆(µ, v)− 2
∑
u∈Gi

∆(µ, u) + 2 |V (Gi)|

=
∑

v∈Gi−1

∆(µ, v)− 2
∑
u∈Gi

∆(µ, u) + 2k−i+1

= Di−1(µ)− 2Di(µ) + 2k−i+1,
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where Di(µ) =
∑

u∈Gi ∆(µ, u). Now,

k−1∑
i=1

2i
∑
u∈Gi

∆(u, gi(v)) ≤
k−1∑
i=1

2i
(
Di−1(µ)− 2Di(µ) + 2k−i+1

)
=

k−1∑
i=1

(
2iDi−1(µ)− 2i+1Di(µ) + 2k+1

)
=

k−2∑
i=0

2i+1Di(µ)−
k−1∑
i=1

2i+1Di(µ) + (k − 1)2k+1

= 2D0(µ)− 2kDk−1(µ) + (k − 1)2k+1

= O(n · D̄G)−O(n) +O(n log n).

To see that D0(µ) = O(n · D̄G), observe that

Dtotal
G =

1

2

∑
u∈G

∑
v∈G

∆(u, v)

≥ 1

2

∑
u∈G

∑
v∈G

∆(µ, v)

=
n

2

∑
v∈G

∆(µ, v) =
n

2
D0(µ).

Now just look at the definition of average distance:

D̄G =
Dtotal
G(
n
2

) ≥ D0(µ)

n− 1
≥ D0(x)

n
.

Using Algorithm 5.4, we show how to partition and pair the Gi-G′i vertices to

satisfy the condition in Lemma 5.4.

As an illustration, we demonstrate the pairing process on a sample tree in Fig-

ure 5.3.

Since each node is paired with its sibling or its parent, the output of Algorithm

5.4 easily satisfies Lemma 5.4 condition. Even though the pairings produced by

Algorithm 5.4 promote efficient G1-G′1 exchange, they cannot be used directly be-
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Partitioning and pairing attempt

(a) A sample tree, G.

Partitioning and pairing attempt
∈ G1
∈ G 01

(b) A node paired with its parent.Partitioning and pairing attempt
∈ G1
∈ G 01

(c) A node paired with its sibling.

Partitioning and pairing attempt
∈ G1
∈ G 01

(d) Complete pairing.

Figure 5.3: Pair assignment process of Algorithm 5.4.
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Algorithm 5.4: INITIAL PAIRING

Input: Tree G rooted at x
Output: A partition G1 ∪G′1 = G and mapping g : G1 → G′1 satisfying

Lemma 5.4

if |G| is odd then1

Get rid of a leaf by DFS-like averaging.2

end3

i← deepest level (descendants farthest from root x) repeat4

foreach unpaired node v at level i do5

if v has an unpaired sibling, say u then6

Pair (u, v) together.7

The vertex closest to x is assigned to Gi and the other to G′i8

else if v has no unpaired sibling then9

u← Parent of v10

Pair (u, v) together.11

u is assigned to Gi and v to G′i12

end13

end14

Decrease level: i← i− 115

until i = 0 or all nodes are paired16

cause G1 might be disconnected and averaging on G1 may take a long time. We

need to fix the pairings with Algorithm 5.5:

An illustration of the fixing process is shown in Figure 5.4.

To see the correctness of Algorithm 5.5, first note that:

Lemma 5.5. Each node’s membership in G1 or G′1 is modified by the algorithm at most

once.
Proof. It is clear that eachG′1 node on level i is enters the foreach loop exactly once:

the algorithm changes the pairing so that v belongs in G1.

Now we consider a node in the tree that played the role of w (line 5) at some

iteration of the algorithm. Line 7 of the algorithm would have changed w so it

now belongs to G′1. This means that w and all its descendants are in G′1 (since

w was chosen as the farthest G1 node before the membership change). So w will

never enter the foreach loop again.

In terms of problematic pairings addressed by Line 3 of Algorithm 5.5, there

are only 4 cases to consider:
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Algorithm 5.5: FIX PAIRING

Input: Tree G rooted at x with |G|=even
Output: A partition G1 ∪G′1 = G and mapping g : G1 → G′1 satisfying

Lemma 5.4 where G1 is connected subgraph of G

i← 1 (start with nodes in G′1 that are closest to x)1

repeat2

foreach node v ∈ G′1 on level i that has a descendent w ∈ G1 do3

u← g−1(v)4

w ← farthest descendent ∈ G1.5

z ← g(w)6

Pair u with w, put w in G′1 (Remove w from G1).7

Pair v with z, put v in G1 (Remove v from G′1).8

end9

Increase level: i← i+ 110

until (i = depth of G) or (G1 is connected)11

Fixing the pairings
u

v

w

z

(a) Problem pairs (u, v) and (w, z)

Fixing the pairings
u

v

w

z

(b) ReassignmentFixing the pairings

u

v

wz

(c) Problem pairs (u, v) and (w, z)

Fixing the pairings

u

v

wz

(d) Fixing complete. Blue nodes (i.e., nodes
in G1) are now connected.

Figure 5.4: Pair fixing process of Algorithm 5.5.
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• u-v, w-z (see Figure 5.5(a))

• u-v, w ∧ z (see Figure 5.5(b))

• u ∧ v, w-z (see Figure 5.5(c))

• u ∧ v, w ∧ z (see Figure 5.5(d)),

where u-v denotes that nodes u and v are neighbors (more precisely, they have a

parent-child relationship); u ∧ v denotes that nodes u and v are siblings that share

the same parent node. These cases are illustrated in Figure 5.5. It is easy to see

that each of these four cases are correctly handled by lines 7 and 8 of Algorithm 5.5

thus:

Theorem 5.6 (Upper bound). For any connected graph G with n vertices, T ∗G∩S1
=

O(n(D̄G + log n)).Configuration 1

u

v

w

z

u

v

w

z

(a) u-v, w-z

Configuration 2

u

v

w z

u

v

w z

(b) u-v, w ∧ z
Configuration 3

u v

w

z

u v

w

z

(c) u ∧ v, w-z

Configuration 4

u v

w z

u v

w z

(d) u ∧ v, w ∧ z

Figure 5.5: Four problematic pairing configurations and their fixes.
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5.3 Lower bound on Trees

To see that the algorithms presented in the previous section are optimal, we now

derive lower bounds on the consensus time.

Definition 5.7. Given a tree G and an edge e = (l, r) in G, define

m(e) , min{|Le|, |Re|},

where

Le , {v ∈ G : ∆(v, l) < ∆(v, r)}, Re , {v ∈ G : ∆(v, l) > ∆(v, r)}.

In other words, m(e) is the minimum number of nodes on the “left” and “right”

side of edge e.

Lemma 5.8. For any tree G on n vertices,

T ∗G∩S1
= Ω

 ∑
e∈E(G)

m(e)

 .

Proof. Given an edge e = (l, r) in G, consider the initial condition

xi(0) =

0 if i ∈ Le}

1 if i ∈ Re}.

The total mass is |Re| and average-consensus is achieved when x(T ) = |Re|
n

1 for

some T . In this proof, it is useful to view each matrix in G ∩ S1 as a “use” of a

particular edge in E(G). Using a mass-balancing flow argument, we show that

m(e)/2 is a lower bound on the number of times edge e must be used.

In aggregate, the nodes in Le require |Le|/n fraction of the total mass. Since the

total mass is |Re| and each use of an edge carries at most 1 unit of mass, we know

that edge e must be used at least

⌈
|Le||Re|

n

⌉
≥ |Le||Re|

n
=
m(e)(n−m(e))

n
≥ m(e)

2
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times. Since a consensus algorithm must achieve average-consensus for all initial

distributions, we must have

T ∗G∩S1
≥
∑

e∈E(G)

m(e)

2

as a lower bound on its consensus time.

To see that each edge can carry a flow of at most 1, observe that matrices in S1

correspond to a convex combination of a pair of node values. Since initial values

are xi(0) ∈ {0, 1}, any sequence of convex combinations must keep the values in

the closed interval [0, 1], i.e., 0 ≤ xi(t) ≤ 1 for all t.

One can relate this lower bound to the graph average distance by

Lemma 5.9. ∑
e∈E(G)

m(e) ≤ D̄G · (n− 1) ≤ 2
∑

e∈E(G)

m(e).

Proof.

Dtotal
G =

∑
i∈V

∑
j∈V,j 6=i

∆(i, j)

=
∑
e∈E

|Le| · |Re|

=
∑
e∈E

m(e) · (n−m(e)).

For the “≤”, notice that

∑
e∈E

m(e) · (n−m(e)) = n
∑
e∈E

m(e)−
∑
e∈E

m2(e) ≤ n
∑
e∈E

m(e).

Since total distance is just average distance times
(
n
2

)
, we have

D̄G ·
n(n− 1)

2
≤ n

∑
e∈E

m(e)

D̄G ·
(n− 1)

2
≤

∑
e∈E

m(e).
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For the “≥”, we note that m(e) ≤ n/2 so that n−m(e) ≥ n/2.

∑
e∈E

m(e) · (n−m(e)) ≥ n

2

∑
e∈E

m(e)

which means

D̄G ·
n(n− 1)

2
≥ n

2

∑
e∈E

m(e)

D̄G · (n− 1) ≥
∑
e∈E

m(e).

Thus, we can restate Lemma as,

Lemma 5.10. For any connected graph G with n vertices, T ∗G∩S1
= Ω (n · avg dist).

This lower bound is based on the structure of the underlying graph. We can use the

same argument as in Lemma 4.3 to obtain an information-theoretic lower bound:

Lemma 5.11. For any connected graph G with n vertices, T ∗G∩S1
= Ω (n log n).

Combining Lemma 5.10 and Lemma 5.11, we have

Theorem 5.12 (Lower bound). For any connected graph G with n vertices, T ∗G∩S1
=

Ω
(
n(D̄G + log n)

)
.

5.4 Consensus Time on Trees

The lower bound of Theorem 5.12 matches the complexity of the recursive finite-

time average-consensus algorithm developed in Section 5.2 so the problem of schedul-

ing for finite-time average-consensus on trees subject to the constraints of S1 is

solved:

Theorem 5.13.

T ∗G∩S1
= Θ

(
n(D̄G + log n)

)
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5.5 General Graphs

For general graphs that are not trees, the upper bound from Section 5.2 still holds.

That is, given a graph G, we can always construct a spanning tree and run the tree-

based algorithm of Section 5.2. The question remains on how much do we lose

by considering only a spanning tree and not the entire graph. In general, graphs

can have very rich structure and high connectivity compared to its spanning tree.

Surprisingly, we only lose a log2 n factor when considering only the spanning tree.

As a caveat, one needs to be careful when choosing the spanning tree as certain

trees (such as the path on n vertices) do not admit fast consensus. We need to

choose a spanning tree that preserves the average distance (up to a constant).

5.5.1 Graph Lower bound

Recall the lower bound technique for trees used in Lemma 5.3 of Section 5.3 where

we picked edges e from the graph G and argued that each edge must support of

flow of m(e) units. In trees, edges are precisely the bottlenecks because removing

an edge disconnects the tree into two trees. In graphs, however, there may be many

paths between a given pair of nodes. Removing an edge may not be enough to

disconnect the graph so if we want to proceed with the same mass flow argument,

we need to consider graph cuts.

Definition 5.14. A cut C = (S, T ) of a graph G = (V,E) is a partition of the vertex set

V where

S ∪ T = V, S ∩ T = ∅.

The cut-set of a cut C is the set

{(u, v) ∈ E : u ∈ S, v ∈ T.

We say two cuts are edge-disjoint if their cut-sets do not share any edges.
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Given a cut C = (S, T ), we can define

m(C) = min{|S|, |T |}

to refer to the smaller side of the cut. That is, the side with the fewest vertices.

If we have a sequence C1, C2, · · · , Ck of edge-disjoint cuts, then a lower bound on

T ∗G∩S1
is

T ∗G∩S1
= Ω

(
k∑
i=1

m(Ci)

)
by using a similar mass flow argument as in Lemma 5.3.

It is clear that if we can find a suitable set of edge disjoint cuts, then we have

a good lower bound. The trouble is that collections of good (i.e., maximal) edge-

disjoint cuts are hard to find. If we are careful in accounting the amount of goods

that flow across each edge, then we don’t need edge-disjoint cuts and we can use

the solution to the following integer program as a lowerbound:

minimize 1Tx

s.t. A x ≥ m

0 ≤ xe < n,∀e ∈ E

xe ∈ Z,∀e ∈ E.

Here, x ∈ R|E| is a vector indexed by the edges of the graph. For e ∈ E, xe

indicates how many times edge e is used in the consensus protocol. The matrix A

is a cut-edge incidence matrix of G. It is a “tall” matrix of size O(2n) × |E|. The

rows of A are indexed by cuts of G and columns of A are indexed by edges of G.

Given a cut C of G and an edge e ∈ E, AC,e = 1 if e is in the cut-set of C and 0

otherwise. The vector m is a vector indexed by the cuts of G; it is of size O(2n).

Given a cut C, mC = m(C). The program solves for the minimum number of edge

uses across all edges subject to a mass flow constraint.
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Although the solution to the program is a valid upper bound, integer programs

are generally hard to solve. Even if we relax the integer constraint and turn it into

a linear program, we still have to deal with the exponential number of constraints

in the program. This motivates us to seek alternative methods of lower bounding

the consensus-time on general graphs.

5.6 Metric Space Embeddings

The key idea in our lower bound techniques was our search for graph cuts which

are representative of the bottlenecks in the graph. If we can find a maximal set

of edge-disjoint paths, then we can get a “good” lower bound. As maximal edge-

disjoint paths can be hard to find, we use some tools from metric space embedding

to map our graph into a different space where the edge-disjoint cuts are easier to

find. This allows us to find a “good-enough” collection of edge-disjoint cuts that

provide a “good-enough” lower bound. To be more precise, we need to introduce

some tools from metric space embedding:

Theorem 5.15. [Abraham, Bartal, Neiman [1]] For any 1 ≤ p ≤ ∞, every n-point metric

space embeds in Lp with distortion O(log n) in dimension O(log n).

The theorem implies that there exists a mapping f : V (G) → RO(logn) with

distortion

∆(u, v) ≤ ‖f(u)− f(v)‖ ≤ O(log n) ·∆(u, v), ∀u, v ∈ G, (5.1)

where ‖f(u)‖ =
∑

j |fj(u)| denotes the L1-norm. Let i denote the “heaviest” coor-

dinate in terms of total pairwise distance:

i = arg max
j

∑
u,v∈G:u6=v

|fj(u)− fj(v)|.

This means that ∑
u6=v

‖f(u)− f(v)‖
O(log n)

≤
∑
u6=v

|fi(u)− fi(v)| (5.2)
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because

∑
u6=v

‖f(u)− f(v)‖ =
∑
u6=v

∑
j

|fj(u)− fj(v)| ≤ O(log n)
∑
u6=v

|fi(u)− fi(v)|.

We also know that

|fi(u)− fi(v)| ≤ ‖f(u)− f(v)‖, ∀u, v ∈ G. (5.3)

Combining the first inequality of (5.1) with (5.2), we see that

∑
u6=v

∆(u, v)

O(log n)
≤
∑
u6=v

|fi(u)− fi(v)|. (5.4)

Combining the second inequality of (5.1) with (5.3), we see that

|fi(u)− fi(v)| ≤ O(log n) ∆(u, v), ∀u, v ∈ G. (5.5)

Thus, on average, edges in G are “stretched” by at most O(log n) under fi. This

property allows us to use fi to embed the graphG onto R and look for edge-disjoint

cuts on the embedded line. Starting from the left-most point (i.e., minu fi(u)), con-

sider partitioning the embedded points on R using a sequence of cuts spaced

O(log n) apart. These partitions correspond to a sequence of edge-disjoint cuts

{Ck} in G: if not, then some edge in G must have been stretched longer than

O(log n) by fi which contradicts (5.5).
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Pick a point x that has n/2 points to its left: |{v : fi(v) ≤ fi(x)}| = n/2. We have

∑
k

m(Ck) ≥
∑
v∈G

⌊
|fi(v)− fi(x)|
O(log n)

⌋
(5.6)

≥
∑
v∈G

(
|fi(v)− fi(x)|
O(log n)

− 1

)
=

∑
v∈G

(
|fi(v)− fi(x)|
O(log n)

)
− n

≥
∑
u6=v

(
|fi(u)− fi(v)|
nO(log n)

)
− n (5.7)

≥
∑
u6=v

(
∆(u, v)

nO(log2 n)

)
− n (5.8)

= Ω

(
n · D̄G

log2 n

)
, (5.9)

where inequality (5.6) is because in the summation, each point v contributes its

distance to x divided by O(log n); inequality (5.7) is because

∑
u6=v

|fi(u)− fi(v)| ≤
∑
u6=v

|fi(u)− fi(x)|+ |fi(v)− fi(x)| = 2(n− 1)
∑
v∈G

|fi(v)− fi(x)|;

inequality (5.8) is because of (5.4). The final inequality follows from the definition

of D̄G.

Since T ∗G∩S1
= Ω(

∑
km(Ck)) for any sequence {Ck} of edge disjoint cuts and the

information-theoretic lower bound of Ω(n log n) remains valid for all graphs, we

conclude that
Theorem 5.16. For any graph G,

T ∗G∩S1
= Ω

(
n

(
D̄G

log2 n
+ log n

))
.

Interpreting this result in light of the tree-based consensus algorithm in Section

5.2, we see that taking into account all edges of the graph offer at most an O(log2 n)

speedup over our spanning tree-based algorithm. This is quite surprising as the

number of edges between a graph and its spanning tree can differ by as much as a

factor O(n).
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Chapter 6

Factorization under Additional
Constraints - Parallel Symmetric
Weighted Averages

Instead of allowing only one pair of neighbors to exchange values at any given

time, we now explore the possibility of parallel communications. Consider the set

S ,
{
W ∈ Qn×n : W = W T} .

Note that the matrices in S are doubly stochastic (i.e., 1TW = 1T and W1 = 1). The

motivation for S is to allow parallel distribution of mass by symmetric weighted

averages; yet disallow drastic aggregation steps such as line 6 of Algorithm 3.1

where nodes transfer all their mass to another. Such operations are often undesir-

able due to trust considerations: why should one node send everything to another

node in hopes of getting his/her fair share in the future. Furthermore, node ca-

pacity constraints often disallow such aggregation by any individual node. In the

example of Section 1.2, each child has a backpack of unit capacity. Therefore, they

are unable to store goods in excess of one unit. We want to consider the possibility

of parallel communications to investigate the speed up between parallel commu-

nication and serial communication in the context of finite-time average-consensus

problems. We will see shortly that by using G ∩ S instead of G ∩ S1, the consensus

time is improved to Θ(n).
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6.1 Upper bound: T ∗G∩S = O(n)

As S1 ⊂ S, we can still use Algorithm 5.1 to achieve consensus. But instead us-

ing the reverse depth-first traversal in Algorithm 5.2, we modify it slightly (see

Algorithm 6.1) to use fewer matrices (i.e., Algorithm 5.1 using the improved DFS

of Algorithm 6.1 is faster than Algorithm 5.1 using the DFS of Algorithm 5.2). Al-

gorithm 5.1 with improved DFS (Algorithm 6.1) can be further improved by using

a pipelined architecture to yield Algorithm 6.2 which allows factoring using only

O(n) matrices.

Algorithm 6.1: DFS-IMPROVED

Input: Tree T , vertex v,vectors x, d
Output: xv ← |T |−1

∑
u∈T xu

if v has no children then1

return2

else3

foreach child u of v do4

DFS-IMPROVED(T, u, x, d)5

end6

{u1, · · · , u`} ← set of children of v7

D ← dv +
∑̀
j=1

duj
8 

xv

xu1

xu2

...
xu`

←


dv

D

du1
D

du2
D · · · du`

D
du1
D

D−du1
D 0 · · · 0

du2
D 0 D−du2

D

...
...

...
. . . 0

du`

D 0 · · · 0 D−du`

D



xv

xu1

xu2

...
xu`


9

dv ← D10

end11

Intuitively speaking, Algorithm 6.2 implements a pipelined version of Algo-

rithm 5.1. We employ parallel consensus steps when they do not interfere with

each other. For clarity, we use a simple example to illustrate the pipelined algo-

rithm. Consider G as the path with V = {1, 2, 3, 4, 5} and E = {a, b, c, d} as shown

in Figure 6.1.

First, let us run Algorithm 5.1 on our simple example. Suppose that line 5 of
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k1 k2 k3 k4 k5a b c d

Figure 6.1: A line graph.

Algorithm 5.1 examines nodes 5, 4, 3, 2, 1 in that order, then the sequence of pair-

wise weighted averages corresponds to the following sequence of edges:

a b c d 5©

a b c 4©

a b 3©

a 1©& 2©

Time: 1 2 3 4 5 6 7 8 9 10

Here, time runs left-to-right and each time column enumerates all edges used dur-

ing that time slot. With Algorithm 5.1, each time slot only utilizes one edge and

we need 10 edges. The right-most annotation indicates that the sequence of edges

allowed a node to obtain the correct average. For example, after the edge sequence

a, b, c, d in time steps 1-4, node 5©will have the correct global average. Since edges

a and c are vertex-disjoint, the averaging on a will not effect the values of nodes in

edge c. We can thus perform some averages in parallel and implement a pipelined

architecture:
a b c d 5©

a b c 4©

a b 3©

a 1©& 2©

Time: 1 2 3 4 5 6 7

Pipelining allows us to use multiple edges per time step (e.g., At time 4, edges b and

d are used in parallel. At time 5, edges c and a are used in parallel). The parallel

edges can be incorporated into a single matrix leading to savings in terms of the

number of matrices used. Once again, the right-most labels annotate the epochs
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dedicated to each node obtaining the global average (e.g., after edge sequence a, b, c

in time 3-5, node 4© obtains the global average). This pipelined architecture is the

key innovation of Algorithm 6.2.

Algorithm 6.2: CONSENSUS

Input: Graph G, initial values x
Output: x← 1

n
11Tx

T ← a spanning tree of G1

r1, r2, · · · , rn ← a postordering of V (T ) by depth-first search2

d← vector of 1’s indexed by V (T )3

φ← vector of 0’s indexed by V (T )4

foreach v ∈ V (T ) do5

if degree(v)=1 then φv = 16

end7

i← 18

Let ri be the root of T9

φri = 010

while |V (T )| > 1 do11

Consensus-While Loop (Algorithm 6.3)12

if φri = 1 then13

let ri ∼ u1 ∼ · · · ∼ um ∼ ri+1 be the path from ri to ri+1 in T14

foreach 0 < j ≤ m do15

duj ← 116

φuj ← 017

end18

if degree(u1)=2 then19

φu1 ← 120

end21

T ← T\{ri}22

i← i+ 123

Let ri be the root of T24

φri = 025

end26

end27

Now we examine the inner workings of Algorithm 6.2. We begin by estab-

lishing a postordering (r1, r2, · · · , rn) of vertices by a depth-first search from an

arbitrary vertex. During the execution process, we keep track of φ, an indicator of
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Algorithm 6.3: CONSENSUS-WHILE LOOP

d′ ← d;1

φ′ ← φ;2

foreach v ∈ V (T ) do3

if (φv = 0) and (∀ child u ofv, φu = 1) then4

{u1, · · · , u`} ← children of v;5

D ← dv +
∑̀
j=1

duj ;
6 

xv

xu1

...
xu`

←


dv

D

du1
D · · · du`

D
du1
D

D−du1
D 0

...
. . .

du`

D 0 D−du`

D



xv

xu1

...
xu`

;

7

d′v ← D;8

φ′v ← 1;9

foreach child u of v do10

if du 6= 1 then11

d′u ← 1;12

φ′u ← 0;13

end14

end15

end16

end17

d← d′;18

φ← φ′;19
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whether a vertex’s value is the average of its descendants:

φv =


1 if xv = 1

|decedents(v)|+1

(
xv +

∑
u∈decedents(v)

xu

)
0 otherwise.

The computations of x-updates in each while loop (line 11 of Algorithm 6.2) can be

translated into a single matrix inG∩S as each vertex appears at most once in line 7

of Algorithm 6.3 for each iteration of the while loop (i.e., all operations inside line

3’s foreach loop of Algorithm 6.3 can be combined into one matrix). The number of

while iterations needed for r1 to achieve the average is at most n−1. After ri reaches

the average, the number of while loops needed for ri+1 to achieve the average is at

most the length of the path from ri to ri+1. Since the sequence r1, r2, · · · , rn is a

postordering of V (T ) by depth-first search,

n−1∑
i=1

(length of path from ri to ri+1) ≤ 2n.

Therefore, the number of matrices in this factorization is O(n).

For a rigorous argument of the correctness and consensus time of Algorithm

6.2, we rewrite it as more abstract pseudo code in Algorithm 6.4. To prove the

correctness of Algorithm 6.4, we need definitions of “ready” nodes and “progress”

nodes:

Definition 6.1. Node v is a progress node if it is ready (i.e., φv = 1) and the path from

root to v contains no other ready nodes.

We will show, through a series of arguments, that there is a wave of progress

nodes moving toward each root node and that the total time for all waves to com-

plete is O(n).

Lemma 6.2. Let δi denote the maximal distance from root ri to a farthest progress node.

After the ”foreach” loop, δi decreases by 1.

Proof. We shall proceed inductively. Initially, before the first execution of the loop,

all progress nodes are leaves. Let S denote the set of leaf-nodes whose distances
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Algorithm 6.4: PIPELINED

r1, r2, · · · , rn is a postodering by depth-first search.1

Start with r1 as the root2

repeat3

foreach node v whose children are ready do4

Average v with its children5

Set φv = 1 (v is ready)6

(book-keeping) reset all non-leaf children to not ready7

end8

(*)9

if Root ri is ready (i.e., φri = 1) then10

Reset nodes along path ri  ri+111

Remove old root ri12

(book-keeping) if node connected to ri becomes leaf then set it to13

ready
Make ri+1 the new root14

(**)15

end16

until no more nodes left17

from the root are maximal. The parents of nodes in S will become progress nodes

after (*). Assume the contrary: that there exists a v ∈ S who has an unready sibling

u /∈ S, φu = 0. Since leaves are always ready, u cannot be a leaf. If u is not a leaf, it

must have a descendant w that is a leaf and φw = 1. The distance from the root to w

is strictly greater than the distance from root to v, contradicting the maximality of

v. Thus, no such siblings exist for all nodes in S. Parents of nodes in S will become

progress nodes at (*) and δi decreases by 1.

Notice that the advancement of progress nodes depends only on other progress

nodes. So we can discard all descendants of progress nodes from our considera-

tion. Effectively, all progress nodes can be seen as “leaf-nodes” and the previous

argument applies for each iteration.
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Definition 6.3. A node v is good if

1. v is a leaf, or

2. v is not ready but all its children are ready and good, or

3. v is ready and all its children are good.

Lemma 6.4. Once a node becomes good, it will never become non-good.

Proof. We will use backward induction on the distance from the root to the node.

The base cases are the leaf nodes, which are always good by definition. Assume the

claim is true for all nodes at a distance t from the root. Now consider a good node

v at distance t− 1 from the root. We show that after the iteration of the algorithm,

v remains good. There are three cases to consider:

1. (v is a leaf) A leaf is always good and ready.

2. (v is not ready but all its children are ready and good) After one iteration of

the algorithm, v becomes ready and all its children remain good by induction

hypothesis.

3. (v is ready and all its children are good) There are two subcases to consider:

• (After an iteration, v remains ready) v remains good since all its children

remain good by induction hypothesis.

• (After an iteration, v becomes not ready) We need to show that v’s chil-

dren are ready and good. Since v’s children were good by assumption,

we shall show that they are ready. Consider the children of v that are

not ready (if there are no such children then we are done). These chil-

dren are good by induction hypothesis and therefore their children (i.e.

v’s grandchildren) must be ready. Thus after an iteration, the unready

children of v will become ready.
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Lemma 6.5. At (**), all nodes at distance 1 away from ri  ri+1 path are good.

Proof. By the time ri becomes ready, all remaining nodes will be good. The book-

keeping resets only affect the nodes on the path ri  ri+1 so the nodes attached to

this path (at distance 1 away) are good.

Lemma 6.6. At (**), δi+1 ≤ ∆(ri, ri+1).

Proof. First, observe that a good node that is not ready will become ready within

one iteration. Thus, within one iteration, all nodes attached to the ri  ri+1 will

become ready.

Let ri → u1 → u2 → · · ·um → ri+1 be the path from ri to ri+1. There are two

cases to analyze:

• (After removing ri, u1 becomes a leaf) Since u1 became a leaf, it will be set as

ready. Let’s consider some possible cases for farthest progress nodes:

– (u1 or children of u2 that are not on the ri  ri+1 path) Distances from

ri+1 to these nodes are strictly less than ∆(ri, ri+1).

– (grand children of u2 that are not on the ri  ri+1 path) Distances from

ri+1 to these nodes are equal to ∆(ri, ri+1).

Since all nodes attached to the ri  ri+1 path are good, these are the only

candidates for farthest progress nodes.

• (After removing ri, u1 is not a leaf) Let’s consider the state of things at (*)

when φu1 = 1. The process of making φri ready will have made φu1 = 0.

But since u1 remains good, we know that the children of u1 are all ready.

With respect to the new root ri+1, these children u1 are progress nodes at a

maximal distance away. This maximal distance is the ∆(ri, ri+1).

Theorem 6.7. [Upper bound] For any connected graph G with n vertices,

T ∗G∩S = O(n).
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Proof. The time it takes to complete r1 is at most n. The time it takes to complete

ri+1 is δi+1 ≤ ∆(ri, ri+1). So time to total completion is at most

n+
n∑
i=2

∆(ri, ri+1) ≤ n+ 2(n− 1) ≤ 3n.

Because the ri’s are a postordering by depth-first search, the summation
∑n

i=2 ∆(ri, ri+1)

is analogous to tracing an outline around the entire tree. A tree on n vertices has

n−1 edges, an outline of the tree traces each edge twice so that’s where the 2(n−1)

term comes in.

6.2 Lower bound: T ∗G∩S = Ω(n)

To show that the lower bound of T ∗G∩S is Ω(n), we use a similar mass flow argument

as Lemma 5.3 in Section 5.3. To make the argument, we need to first identify some

bottle-neck nodes in our tree:

Lemma 6.8. Given a tree T , there exists a node v and corresponding sets A and B such

that

1. T \{v} = A ∪B with A ∩B = ∅,

2. v ∈ a b for all a ∈ A and b ∈ B,

3. min{|A|, |B|} ≥ bρnc for 0 < ρ < 1/2.

Proof. Assume for contradiction that all nodes possess a neighbor whose subtree

contains ≥ d(1 − ρ)ne nodes. Pick an arbitrary node u1 and let u2 be the neighbor

whose subtree contains ≥ d(1− ρ)ne nodes. By assumption, u2 must have a neigh-

bor u3 whose subtree contains ≥ d(1 − ρ)ne nodes. Now u3 6= u1 because u2 was

picked as the “heavy” neighbor of u1 so there aren’t enough nodes on u1’s side.

Proceed similarly until we get a sequence of k = d(1 − ρ)ne nodes: u1, u2, · · · , uk.

By assumption, uk has a neighbor uk+1 6= uk−1 whose subtree contains≥ d(1−ρ)ne

nodes. But there are ≥ d(1 − ρ)ne nodes not in this subtree (e.g., u1, u2, · · · , uk),

leading to a contradiction.
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Pick a node v such that V \{v} = A∪B with min{|A|, |B|} ≥ n/4 as in the above

lemma. Initialize all nodes in A with weight 1 and all nodes in B with weight 0 so

that the total mass in the system is ≥ n/4. Because all the mass are on the A side

of v, we must move a mass of ≥ n/8 across v in order to reach average consensus.

Since each use of an edge adjacent to v can move mass at most 1 (matrices in G∩S

are doubly stochastic), we must use them at least ≥ n/8 = Ω(n) times. Together

with the upper bound of Theorem 6.7, we see that

Theorem 6.9. For any connected graph G with n vertices,

T ∗G∩S = Θ(n).
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Chapter 7

Discussion and Extensions

We close with some discussions on future research directions:

• There is a gap of O(log2 n) between the graph and tree lower bounds. One of

the O(log n) factors is due to the distortion in the embedding process when

we embed the graph into the L1 space in order to easily find edge-disjoint

cuts. The other O(log n) factor is an artifact of our projection after the em-

bedding. The embedding used in Theorem 5.15 due to [1] is tight in gen-

eral since metric spaces induced by expander graphs require Ω(log n) dis-

tortion and Ω(log n) dimension (see Theorem 4 of [1]). It is possible that the

O(log2 n) gap is not intrinsic to our consensus problem and there are other ap-

proaches to arrive at a graph lower bound which is consistent with the tree

lower bound. Alternatively, we can hope for better algorithms that achieve

the current lower bound.

• All of the algorithms given thus far are of a centralized nature. We assume

that the scheduler has access to the graph and is able to construct a sched-

ule ahead of time. It would be very interesting to investigate distributed

algorithms that result in finite-time average-consensus under similar node

constraints.

• In our analysis, we have assumed that network nodes are homogeneous and

capable of performing only weighted average operations. If nodes are inho-

mogeneous (e.g., a network of mobile phones and base stations) then their
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ability to compute weighted averages may differ. It is interesting to con-

sider the implications of inhomogeneous networks on finite-time average-

consensus.

• If nodes communicate wirelessly using directional antennas, then their topol-

ogy is represented by a directed graph. Also, if we think of a commodity dis-

tribution network, it is conceivable that some networks allow unidirectional

flow of goods in certain portions of the network. Hence, the analysis of G-

admissible factorizations of 1
n
11T, when G is a directed graph, is a natural

extension.

• We studied the case of average-consensus where nodes tend to a n−11 distri-

bution. Often times there is a need to arrive at a distribution other than n−11.

For example, consider the emerging smart grid. Different times and different

regions have varying demands on electricity. We would like to rapidly redis-

tribute the resources in the network to match the changing demand profile.

Phrased in our problem setting, we would be exploring G-admissible factor-

izations of general left-stochastic matrices.
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