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Abstracts

The photionization cross-section is shown to be
directly related to the immaginary part of the frequency dependent
polarizability.

Using this relation, an approximate representation
of the frequency-dependent polarizability is contructed from a dis
crete set of transition frequencies and bscillator strengths, which
in turn is used in an analytical continuation procedure for complex
values of the frequency. The great advantage of the method resides
on the fact that the use of a discrete repreentation for the dynamic
polarizability explicitly avoids the use of c'onti.nuum functions.

The method is applyed to the calculation of the pho
toionization cross-section for the 218 and 2 3S metastable sta-
tes of the He atom and for the H atom. Further improvements of

the technique are suggested.



Section I

The importance of photoionization processes
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When electromagnetic radiation interacts with a system
of atoms or molecules, several processes may occur depending
on the energy of the incident photens relative to the energy
states of the system.

For atomsl the rhost common processes are photoexcitation
and photoionization, where the system is left in an excited state
by absorption of the photon, or in case the photon energy is higher
than the ionization potential, in a continuum state, since in this
condition the excess of energy can be removed as kinetic energy
of the electron. Photoionization occurs in general from excitation
of vale‘nce electrons to the continuum. Another process can occur
leading to photoionization of the atom. Sometimes it is possible
that the photon energy is‘high enough to excite inner shell electrons.
These excited states can be mixed with continuum states of other

| terms lying in the same energy region. In this case a radiation-
less transitionfromthe discrete to the continuum state may occur,
The process is known as autoionization or pre-ionization. Auto-

. ionization in polyelectronic atoms may take place also as a result
of double excitation. In this process two electrons are excited
simultaneously to higher energy states. When the excitation energy

.of the two electrons exceeds the fi;'st ionization potential, the
atom may undergo a radiationless transition in which one of the
excited electrons falls into a lower state, the de-excitation energy

being used to eject the other electron from the atom.
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For mo}eculesz’3 the situation is much more complicated
due to the greater number of open channels, The most common
processes for atoms and molecules are summarized in Table 1.1,

When the system (atom or molecules) is a negative ion the
photoionization process is called photodetachment.

Photoionization studies are important in 1113n37 respects.
For instance, photodetachment provides a precise method for
determining electron affinities as well as photoionization to
determine ionization potentials. The knowledge of the photo-
detachment cross-section for a given system permits the cal-
culation for the reverse process, i.e., the process of electron
attachment to a neutral atom: or molecule. Both processes are
very important in monoatomic gases at low pressures.

Maybe one of the most important aspects related to these
phenomena is the study of the structure of the ionosphere, by
definition, the part of the earth's atmOSphére in which free

1

electrons exist in sufficient number to have an important effect

-on the travel of radio waves. 4,9,6

The free electrons produced
when the earth's atmosphere is photoionized by solar radiation,
have a peak concentration at heights near 250 Km. Of course the
distribution of the free electrons with height depends on the gas
composition of the atmosphere With/ height, and in the ability of

the gases, in each region, to suffer photoionization and the reverse

process, electron capture. Then, to understand the structure of



Table TI.1

PHOTON-MATTER INTERACTION PROCESSES

X+bhv— X*

X+ hv—>X*+ e+ KE

X+ hv—X¥—>X*+e +KE
XY 4 hv> XY*

XY+ he—~ X+ Y+ KE

XY+ hv-~X*+ Y4+ KE
XY+ hv—> X+ Y*+ KE
XY+ he—> X*+ Y*+KE
XY+ h > XY*> X+ Y+KE
XY+ hv-+ XYY +e- +KE
XY+ by XY*> XY* 4+ ¢ +KE

Atomic excitation
Atomic photoionization
Autoionization
Molecular excitation
Moelecular dissociation
Molccular dissociation
Moiecular dissociation
Molecular dissociation
Predissociation
Molecular photoionization
Preionization
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the ionosphere it is of fundamiental importance to know the rates
for thesce processes for difterent frequencies of the incident
radiation. Thatl is, photoicnization, photodetachment and
electron-attachment cross-sections arce quantities of funda-
mental importance in these studies.

In terms of distribution of electrons the ionosphere is
divided in layers, determined by relative maxima of the electron
distribution. Those distributions that occur near heights of
100, 170 and 250 Km. are said to belong to the E layer (some-
times called F), F, layer and F, layer, respectively. The part
of the ionosphere below 90 Km is called the D region. For the
composite F layer it seems that the major components are O and
N,. For the region D the ion chemistry seems to be largely
controlled by O, O,, NO, NO,, CO,, H,O and alkali metals
present only in very small proportionsl. So, at least for these
compounds and their ions, ‘the knowledge of good cross~sections
vis very important.

At higher altitudes II and He become the predominant
components.

Another important subject connected with these processes
is astrophysics. To give just one single but important example,
it was suggested, 7 an-d it now seems to be accepted, that the
continuum abscrption of H™ is mainly responsible for the
opacity in the visible and infra-red spectra of stellar atmospheres.
That is why this ion has been the subject of many calculations

and experiments,
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Of course, when good experimental values of the cross-
sections {or a given system are known, they can be used to test
-new theoretical models. And once a good theoretical model is
developed it can be useiul to determine the cross-sections for
important processes of difficult experimental investigation.

The main objective of our work is to try to develop one
such a method, In section II we will describe the methods which
have been used for this purpose, and which are extremely
laborious methods. Then we will present an allernative method

and some of its applications,
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Theoretical Description of
Photoionization Processes
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1. Rasic Definitions

While we are dealing exclusively with photoionization
processes, the definitions below are of genecral applicability, being
us.ed in connection with any kind ;)f scattering process (photons,
electrons, neutrons, o-particles, etc. )o

Consider a beam of monochromatic photons directed toward a
scattering target, which can be an atom or molecule. After impact,
if the photon energy is high enough to ionize the atom or molecule,
electrons will be ejected in all directions and can be detected by
methods to be sketched in Section IIL

Referring to Figure IL 1, let us define a polar system of
coordinates with origin at the scattering center and with the polar
axis {z-direction) being the direction of-the incident beam. Let us
now assume a detector located at P (characterized by the polar
coordinates r, 0, ¢) subtending a cone of a solid angle dQ at the
origin. We now define the '"differential cross-section' o (6, ¢) as the
ratio of the scattered electrons at the detector per unit angle solid

and of the flux of incident photons. Thus,

o(8,) = f};g = IGI; L, (IL. 1)

~

where I, is the number of photons incident from the left per umit
surface and unit time and I(8,¢) is _the flux of scattered electrons
through the cone subtended by the detector. From the definition of

(II. 1), we sec that 0 (0, ¢) has dimensions of an area.
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The '"total cross-section' for the process is defined as the
total number of electrons ejected per unit time divided by the

incident flux, which can be calculated from (IL 1),

2 g

o :fc(e,go)dﬂ = //G(e,qp) sin9 dode . (IL. 2)
0 o

The calculation of this quantity and its dependence on the

incident photon energy are the main objectives of our present work.

2. Expressions for the Total Cross-Section

Consider an atomic or molecular system in an initial state i,
having an energy Ej. Consider processes in which the system
absorbs a photon making a transition to.a state f in which one of
its electrons is free. The set of all states of the system in which
one electron is free and the residual system is in a state of
definite energy is called a continuum of the system.

The quantum-mechanical eX'preésion for the cross-section for
absorption of photons of frequency v, accompanied by such a tran-
sition, is, in the dipole approximation:

afv) = SI;C\) gIZZl/uf Zcr u; dv

<2
(IL. 3)

In the above expression u; are the wave functions of the gj-

fold degenerate initial state of the system, E denoting the sum
1

over all g; of these states. The functions uy are continuum
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eigenfunctions of the energy, belonging to the eigenvalue Ei+hv and,

for this expression, they are in cecnergy normalization, i.e.,

e
L

u, ue dv = §E, - EL) .
fa fBA A B

Other kinds of normalization for the continuum wave functions are
often used,” with corresponding modifications in the multiplying fac-
tor in (II.3). Expression (IL.3) is derived in Appendix I, where a
brief discussion of the normalization for continuum wave functions

is also presented. E denotes summation over all the continuum
f

states to which transitions are energetically possible.

When u, and u; are exact solutions of the Schroedinger equa-
tion for the system, the dipole matrix element can be transformed
into two other equivalent expressions commonly referred to as
dipole velocity and dipole acceleration matrix elements. The usual

expression is called dipole length matrix element.

<

f g r, U dv (dipole length) (IL. 4)
P.

it

(1/hv) f uf Z: Vi B dv (dipole velocity) (1. 5)
B

1

1/hv 2/. u* r /r3u, d (dipole acceleration) (1. 6)
(1/hv) £ D, T T e P
v

The equivalence among these expressions can be derived using

the commutation relationship (see Appendix I).
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(%, II] = =P (1. 7)

The importénce of these equivalent expressions lies in the
fact that, because exact wave functions are in general not known,
we are forced to use approximate ones, for which these expressions
are not equivalent anymore. Then, the results obtained by the use
of each one of these expressions will reflect the ability of the
approximate wave functions to describe the phenomenon in different
regions of the space. For instance, in the dipole length the inte-

grand is most important for large values of r , while the dipole

0
acceleration is most important for small values of Ty The dipole
velocity expression will be most important for intermediate values
of Iy Most of the calculations for two-electron systems used
variational Hylleraas type wave functions, which are most reliable
for ry of the order of the atomic radius, but are poor approxima-
tions for very large or very small values of Ty In such cases, we
should expect the dipole velé)city expression to be the most accurate
of the three forms. This fact has been confirmed in some calcula-
tions.

There is another important way of expressing the cross-
section. It can be shown that the oscillator-strength for a given

transition is related to the absorption coecfficient, k(v), by the

relation 1

¢ . mc fk(v)dv (IL. 8)

n N e?
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i.e., f is directly proportionzl to the arca under the absorption
band, N being the number of atoms per cm®. Now, since k(v) =

No (v}, we can write:

£, = me /. o(v)Ndv (1. 9)

T Ne?
n

which, by differentiating gives:

Iv s o (v)
or, since hdv = dE, and ‘expliciting o{v), we have:
wthe® df
o(v) = T2 IE (II. 10)

Expression (IL. 20) is important firstly because it enables us to
treat the photoabsorption cross-section and the spectral density of
oscillator-strengths as asynonymous; secondly, because it provides
a good test for the theoretical values of o (v), since the oscillator-
strength sum rule must be satisfied:

©

;o Inc
Yt T f oc(v)dv = Ne (IL. 11)

n Vo

where N, is the number of electrons of the system and Z £,

-~ n

indicates the summation over the discrete part of the spectrum.

Following this criteria, Dalganno and KingstonZ were able to show
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that the theoretical valucs for o (H™) calculated by Chandrasekhar

should be in error, since they violated the sum-rule (IL 11).

3. General Mecthods for Calculationn of o

The problem of calculating the photoionization cross-section:
lies in the calculation of the matrix elemenﬂs in {Ii.3}). Of course,
for its calculation, we need to spec;ify the initial énd final states of
the system. So, the methods of calculation differ, basically, on the
choice of the bound and continuum states. We proceed with a brief
summary of these methods. More details can be found in the
reviews. by Ditehburn and 6pik,4 Bransco:mb,5 Stewar‘c,() the  books
by Marr7 and Ch:r:'ts’cophorou,8 and the references c¢ited during the
discussion.

The only exact soluble systéms are hydrogen-like atoms, for
which the Schroedinger equation can be solved for the bound and
continuum states. For any other system, approximate methecds
have to be used to obtain the initial and final states. For the
bound states of two- and three-electron atoms, there are very
accurate wave functions, which have been extensively used for cal-
culations in He, H~", and Li. For other systems, application of

some of the methods described below must be made.

3a. Central Field Approximation Methods

pr

-~

In the central field approxima'tion for many electron systems,
the wave functions for the individual electrons are separated and

can be expressed in the following form, using spherical coordinates:
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2041 {-m !T% JIL i
o o |G Lk ) ) o) 0P arng)
fqr a bound state and
= g ibg g
ug = E (2L+1)1i7 e 7 RE,E(r) Py {cosB) (1. 13)
i=0

for a free state. In the expression for ug, 6E,ﬂ represents the

phase‘—shift for the partial wave £, which depends on the enmergy and
is determined uniquely by the differential equation for RE,E and the
requirement that R be regular at the origin. For the bound states,-

the radial wave functions are normalized to unity,

[+0]
2 _
f RZ,dr = 1
o]

and for the free states, it is such that the asymptotic behavior is

given by: 1

1 .
Rpg ~ 1:: sin [k, - EMT + éE,ﬂj (1. 14)

where 6E,£ may contain Coulomb and non-Coulomb shifts. In

(IL. 14), k = mv/# where v is the velocity of the ejected electron.
Now, suppose we are dealingf;«_rj,th an atom for whi'ch the LS

coupling is a good approximation; and let us characterize the initial

and final states by the set of quantum numbers SLM; Mg and

S'L'M;'Md.
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In order to obtain an expression for the cross-secction in
terms of (IL. 12) and (I1. 13), we note that, since the dipole moment

operator is spin independent, the IS coupling selection rules apply:

S =S MS_:]\’IS'; L =L', L't1; ML:ML‘,M

.
I+

In addition, since tbe dipole moment is a one -electron
operator, there will only be matrix elements between the states
directly involved in the process. Calling 'passive'' the electrons
not involved and '"active'' the involved ones, introducing expressions

(Il. 12) and (IL. 13) in (IL 3) gives, after integration over angular

coordinates:
_ S
U(V) = A lf Rn anﬂ dl"
passwe 5
electrons ‘
@« i 3 2 f 2
active o o
electrons

where A is a constant which depends on the incident photon fre-
quency, v, and C;_j and Cy,y are constants which depend on the
spectroscopic type of the initial and final states. Bates11 presented
tabulated values of these constants.

The problem now lies in the galculation of the integrals

@ .
i f 2 passive
./ - Rn,ﬂ Rn,ﬂ redr electrons
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f R Rf 2 dr active
1, f L.‘{ elcctrons
)

The integral over the passive electrons can be looked at as a
measure of the core distortion caused by the ejected electron.
These integrals will be close to unity if the core 1% slightly dis-
torted and cqual to unity in a frozen-core approximation. They are
not difficult to evaluate. Imtegrals involving active electrons are the
real problem. For their calculation several approximations have
been’used for the bound and free wave functions. Simple Hartree
wave functions have been used,lZ ‘but in some cases effects of
exchange and polarization have been consid'ered.l3 The main fact
that came out from these different calculations is that the integral
over active electrons is very sensitive to the choice of the states
involved, which makes its calculation much more difficult. We will
now discuss briefly some systematic ways of getting continuum

wave functions.

3a.]1. Hartree-Fock .Treatment of Initial and Final States

The Hartree-Fock scherne14 provides a systematic way of
getting equations to be solved for bound states. These are obtained
by .taki_ng an anti-symmetric orbital product for the total wave func-
tion and then applying the V.ariationalfp_rinciple to minimize the
energy. The resulting equations det;:rmine the optimum one-electron
orbitals. TI'or bound states the systematics have been known since

the work by Fock in 1930.15
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The application of the Hartree-Fock scheme to the calculation
of continuum states was first rigorously developed by Seaton in
1953,16 and first applied by him to the study of electron excitations
of the ground configuration terms of oxygen. It was shown by
Seaton16 that the most consistent and general way of obtaining con-
tinuum Hartree-Fock solutions is by applying the variational prin-
ciple on an explicitly anti-symmetric product wave function of N
one-electron orbitals (obtained self-consistently in a separate cal-
culation) and a continuum orbital, the equation for which is deter-
mined by substituting the total wave function into the N+l-electron

Schroedinger equation. Then, following Seaton, let us define the

total Hamiltonian for the N+1 electrons by

N
1
H - Hl + H(l 1) + Z '—.“‘
J: lJ
(3#1)
where
N Z
E T
i
N . N 1
Ha-1) = ) ()9 = 3 o=
‘ 4 jk
j=1 >k

The wave function which has already been determined is denoted by:
’,_/

(i-1) .
l = - { - > - X e o o
l!}n. ‘Pn(xu >s‘2: .. 7X1_1, hi_l_l) )XN)

The total wave function is then expressed as:
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v o= Y a6 (IL 15)

n
where the swummation is over the complete set of states of the core

system. As long as only electrostatic interactions are considered,

the angular momentum of the whole system is conserved. Then, if
we denote the states of the total system by LrlsTMEMST, each piece

of the expansion (II.15) can be written:
' (LsMS Msll 1) (kﬂ m, mg|i)

such that the coupling gives the total angular momentum of the

given state of the whole system. Then, expression (IL. 15) can be

rewritten:
T T [T T ME 1
y(L°, S ’NIL'MS) = A Z C\)‘pn(L S ML ’ S Il"l) ‘
n, v \Y
. gbn (kt mﬂv Ins\) ll) (1L 16)

where C, are the Clebesch-Gordon coefficients for the coupling.

Now, remember that gbn can be written in terms of an angular and

radial part
¢ ~ v, Lr
~ Y, (8, QP) r Tk (r)

Now, if we assume that y is the exact solution for the con-
-

finuum, we can write:

[H-E]y = 0
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and substituting the cxpression (IL 15) for vy, multiplying both sides
by ‘pxn and integrating over all coocrdinates except for dri, we get
the differential equation satisfied by the radial part of ¢ which has

the form:

gz [‘—1——~1 Ll ] = Y Vi) By (IL 17)
j

In (IL.17), Vij contains direct and exchange interactions and is, in
general, quite complicated. For details of the derivation of the
coupled equations (II.17) and for expressions for Vij for different
electronic configurations, the reader is rgferred to the papers by
Seatonl,é and Percival and Seaton.l7 A simple case, the electron
scattering by a hydrogen atom, is treated very clearly by

Moiseiwitsch. 18

3a.2 Close-Coupling Approxilnationsé’7’19’20

Basically, the close-coupling approximations are obtained by
truncation of the expansion (Il 15). With this truncation, it is hoped
that the continuum states of the total system can be well described
by a finite number of the core states. That is, only the remaining
terms will be closely-coupled. The non'le,n)clatl-lre varies from
author to author. For instance, Burke and Srnithzl in their review
of low-energy scattering of electroﬁ'é’by hydrogen atoms, classified
the various coupling treatments as follows:

a) static approximation - when only 1S state of the

hydrogen atom was considered in the expansion
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(3. 15). In this case, the radial equation uncoupled

and reduced to only one equation of the form (IL 17).

b) strong-coupling approximation - when any two S states,
for instance 1S and 2S of the hydrogen atom, are
considered in (II. 15). In this case, there are two

coupled radial equations to be solved.

c) close-coupling approximation - when other than S

states are added in the expansion (II. 15).
The convergence of the close-coupling approximation has been-
investigated by Burkez2 for different systems.

>

3a.3 Polarized Orbital Approximation

In this approximation, an attempt is made to take into account
the interaction between the continuum electron and the core. This
is done by adding to the core wave function a polarization term

such that the new core function is wriltten:

¥ = 40 o -1) 4y

core core pol

where “[[pol is a function of the N+1 electrons and this expression
is inserted in (IL. 15). This method was proposed by Tarnki_rn,Z3
who derived a method of getting ‘ppol“ The method has been applied

by him and others, and in certain cases the results are better than

the ones obtained with close-coupling.
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Another way of taking core polarization into account was sug-
gested by Batesz4 in his calculation of photodctachment of atomic
potassium. The same approximation was used by Klein and
Brueckncr25 for O°. Instead of tr'ying to get the continuum wave
functions for the total system, the equation for the continuum elec-
tron is solved in the field of the core (exchange neglected) and a
term is added to the potential to allow core polarization:

o
where o is the polarizability of the core and p is the core radius.
Both parameters can be calculated or used as semi-empirical quan-

tities to be wvaried to reproduce experimental results.

H4

3a.4 Correlated Orbitals Approximation

In this approach, the interaction between the continuum elec-
tron and core is fully accounted for by using a wave function which
explicitly depends on the inter-electronic distance rij' Of course,
there is little hope for the application of this approach to large
systems, while it has been successfully applied to the calculation of

photodetachment of H by Gelttman.26

3.b. Quantum-Defect Method6’ 7

This is a general approach desgigned to calculate the asymp-
totic behavior of continuum functions and corresponding phase-
shifts. It can be shown, by means of a partial wave analysis, that

the scattering amplitude, which is dircctly related to the
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cross-section, is a function of the phase shift (difference between
. . 27 .

the phases of the incoming and scattered waves). Then, if a
procedure to determine this phase-shift is found, we can calculate

. s . . 28
the cross-sections. This approach was developed by Seaton and
applied to the calculation of photoionization cross-sections by

o 29 . . . . .

Burges and Seaton. It was discussed in Section (IL. 1)} that in the
dipole length approximation, the larger contributions for the transi-
tion moment come f{rom large values of r, where the potential can
be taken as nearly Coulombic. The radial equation for the active

electron can be written:

d? L{4+1
[dr2 - T3 ) + E - v(r)] R(E, f]xr) = 0 (1L, 18)
where v(r) = -2Z/r for small r and = -2Z'/r for large r, E being

the effective nuclear change. The bound states {E < 0) occur fer
discrete values of E = E, , and can be related to the experimentally
L

observed Rydberg series by the relation

AL
2

E =
2y

where n' is the effective quantum number. This permits us to

define a quantum defect by
Bpp = 1 <! (L. 19)

which tends to zero in the limit of a pure Coulombic field. Now,

for the continuum states (e = k? >0), the solution of (II. 18) has the
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28

following asymptotic form:

R(®, £]r) ~ {Gile, r) coss, - HS

0 E(G’ r) sin §

£

where oy is the additional shift due to the departurc from an exact
Coulomb field, and GE and H; are the respective regular and

irregular solutions of the wave equation for motion in a Coulomb

field, which have the asymptotic form:

C .
Gg sin |
~ [kr - &M - oin (2kr) + Te]
c
H£ cos

where o = Z'/k.
29

In their treatment, Burgess' and Seaton chose for the con-

tinuum function,

R(KE,L’;r) = G;(G, r)cosé, + {1 - exp (-6221. /ao)}sz-1 .

. H;(e, r) sin §, (1. 19)

24+1

where the cut-off factor {1 - exp( )} was included to avoid

H;’ blowing up at small r. Now, it remains to find &, which will

define the continuum wave function.and will allow the calculation of
the cross-section. It is known from-the theory of the variation of
phase-shifts with energy, for low energies of the incident particle,

that:30
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YAES
lim k& cotg 6, ~ const.

k-0 )
So, a relation might be established between the phase-shift and the
quantum-defect for quasi—continixurn states of the system, i.e., when
n - ©, Seaton28 was able to show that this relation exists and that:

lim cotg mp. = lim cotg$, (11. 20)

n, 4 £

n - k "'O
Furthermore, he argued that it was possible to regard p_ 4, by
analytical continuation, as a function p, of the energy k®, where
-2mk®/#® is the energy of a bound state. If the function is extra-
polated to small positive values of‘energy, then (II.20) may be
extended to give:

cotg b, (k)

T - cotg TR, (IL. 21)
l-e

Once p, is known for a given k, the phase-shift can be calculated
and, consequently, the cross-section.

More recently, Seatom31 showed that this extrapoclation may be
carried out most effectively in terms of a function Yﬂ(kg), which is

such that

Al(kz ) Yl (k®) = ig,{w(kz )}

where

J
AR) =TI (1 +8%/a®)
s=0
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The bound state encrgies can be regarded as arising {rom solutions

of the equation:
tg{m' (%)} = -A,(K)Y, (K°) (IL 22)

Besides that, he showed that YJZ(kQ) can be expanded in the form:

Z an kZm
E. bs kzs

for both k®* § 0. Then, having obtained j.(-k®) from spectroscopic

Y, (k®) (11 23)

data for different values of the total quantum number n, Yﬂ—ké) is

obtained from (IL. 22). Using (IL 23), values of a__ and bg, with

m
small m and s, are obtained which give the best fit to Y,. Expres-

sion (II.23) is then used for extrapolation for k® > 0, allowing the

calculation of %(1{2) and the cross-section.

3c. Variational Principles1

While none of the variational principles cited below have been
used to calculate photoionization cross-sections, it is important to
note their existence and possible applicability.

Several variational priﬁciples have been developed for the
calculation of scattering amplitudes and phase-shifts. For scat-
tering amplitudes, there are the variational principleé due to
Schwinger and to Kohin. For the ph’:se shifts, there are the
principles of Hulthe'n, Tamm, Kato and Schwinger. - All these
variational principles are well described in the book by

. 18
Moiseiwitsch.
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4. An Alternative Approach

Until recently, most of the calculations of photoionization and
photodetachment cross-sections have been done with one of the
methods described above, sometimles_ with slight modifications. In
a recent discussion of the situation, Iano and Cooper?”Z pointed out
large deviations between experimental and theoretical results, which
could be mainly due to the lack of a good treatment of the multi-
electron correlation energy ignored in the Hartree;Fock approxima-
tion. The best agreement with experimental was obtained when
using correlated wave functions, at least for the bound state. This
is the case for He, H™ and Li. The impor’cance of correlation
effects are very clear from the work of Amusya, Cherepkov and
Chernoysheva.33 So, it is necessary to aevelop a scheme to cal-
culate cross-sections where correlation effects are included in a
systematic and practical way, so that it can be used for larger
atoms and molecules. This is our intention in this paragraph, but
first we will write the cross-section in another interesting and

useful form.

4.1 The Optical Theorem34

We want to comment first that quantum-mechanically a scat-
tering process can be looked at from two different points of view.
In the first one, we assume that the':/_incident beam has b'een
switched on a 1on.g time ago and the v&;hole system is in a stationary

state. In this approach we look to solutions to the Schroedinger

equation with asymptotic behavior described by
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e1kr

T

be@) v e e 10, )

assuming that V(r) has a finite range; that exludes pure Coulomb
po'tentialst If we refer to Fig. IL. 1, we see that the asymptotic
form is just a superposition of a plane wave of momentum k
propagating in Z direction and an outgoing spherical wave with
angular amplitude (8, ¢) and momentum k. In the other approach,
the time dependent approach, we consider the interaction between
the incident particle and the scattering target as a perturbation
which causes transitions from the initial states of the system to
the permissible final states. In our case, this perturbation is
simply the electromagnetic field of the photon.

In both approaches it is possible to establish a relation
between the cross-section for the photoabsorption and the forward
scattering amplitude, i.e., £(8,¢) for 8 = 0 and ¢ = 0. This rela-
tion, known as optical theorem, can be mathematically expressed

35
as:

o(w) = 4 £(0,w) (I1. 24)

This result is very general and can be derived classically
from the study of scattering waves by 'any kind'" of obstacie, and
in quantum mechanics it can be dexived without specifying the type
of potential. So, it is really a general result and the name of
""optical theorem!' appearing in the quantum mechanics books is proba-

bly derived from the analogy with the classical case.
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Now comes a beautiful and very important result. H can be
. . 36 . . .
shown cliassically that the index of refraction is related to the

forward scattering amplitude, £{0), by the expression:

i T -
n = Jl 4 4”1\5 0) (IL. 25)
<

where N is the number of atoms per unit volume. Now let us
square expression (IL 25) and rewrite it in the following form:

n?(w) - 1 = M}f—?’—‘”—) (IL. 26)

where (II.2¢) now implies the dependence of the index of refraction
on the light frequency. Now recall that the index of refraction is

defined by the rela’cion:37

¢ _ (o) ®

n = — =
M (pe)72

where ¢ and v are the velocities of the light in free space and in
the material, and p and € are the respective magnetic and electric

permitivities. For a non-magnetic material, p = py and

1

- E_E 11. 27
n o=z (I1. 27)

Both n and € depend on the frequency of the light, but we will not
show this dependence until the end of the derivation; just remember.
Now, the ratic c¢/e¢; is by defipition the dielectric’ constant, d, which

in turn is related to the clectric susceptibility by the relation:37
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d = 1 4+ 47X = 1 + 47 No (IL. 28)

where « is now the electric polarizability. So, squaring (1I.27) and

substituting in (IL. 28), we get:

n® - 1 = 4w No (I1. 29)
Now, comparing (IL 29) and (IL 26), we get:

£(0, w) = Ko (0) (IL. 30)
Subrstituting (1I.30) in (IL. 24), we finally get:

o(w) = 4rkIl,o(w)
or, since k = w/c

o(w) = — Lnho(w) (I1. 31)

That is beautiful. This expression just tells us that to calculate
the cross-section at any frequency all we need to know ‘is the
polarizability of the system at that frequency, or better its imagi-
nary part. Good. Now, we completely forget about the cross-
section and let us think in terms of polarizability and how to cal-
culate its frequency dependence.‘ Quantum-mechanics tell us how to

do that. The frequency dependent polarizability is given by:38

fno ” [4
alw) = Y =+ [ —g———ezfiz de (1L 32)
nfo Jon d e
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where {, ) is the oscillator strength for the transition ¢ - n and is

given by

foo = B (B, -Eo)|(0|d|n)|? (1L 33)

where (0|d|) is the dipole matrix element between the states and
in (IL. 32) g(¢) are the corresponding oscillator strengths for transi-
tions to the continuum. In (Il 32} the summation is over the dis-
crete states and the integration is over the continuum, €1 being the
first ionization potential. But here we are back with the continuum
problem again! Equat’ion (IL. 31) offers us an alternative, but we did
not get rid of the continuum at alll! But don't give up, there is still
some hope. There is an interesting result that seems to be due to
Dalgarno and Ly'n39 which says that if a given distribution of oscil-
lator strengths for a given system satisfies the oscillator strengths
sum rule, then it can be- used to»calcula’ce accurate values of the
properties which can be written as sums of oscillator-strengths.
This distribution can be '"unphysical', but if it satisfies the sum-
rule the final answer can be very accurate.

Some atteinpts have been made to establish a systematic way
of getting such a distribution. Our approach is to obtain a distri-
bution of oscillator-strengths using. the Random Phase Approximation
(from now on abbreviated RPA), which will be briefly described in
the next section. This method offeTs the advantages of furnishing
a distribution of oscillator-strengths satisf{ying the sum rule and of
including correlation effects in a practical and systematic way. So,

in principle we can calculate the frequency dependent polarizability



IL. 24

using a discrete distribution of oscillator-strengths, thus avoiding
the continuum states, using the RPA approach. As a matter of
fact, a good description of o{w) has already bcen obtained for He
and H, using this approach.

So, to make effective use of equation (Ii.31) we procecd as
follows. First, we assume that we have a discrete distribution of

oscillator-strengths which gives us a good value of o(w),

Ll

on
W)= ),

W =W

where Eon and 'Jgon are now approximate oscillator-strengths and
transition frequencies obtained by the RPA method. The sum over
n does not mean that we are summing over the discrete states of
the system. It only means that we are trying to replace the sum-
mation over all discrete states and integratioh over the continuum
by a finite summation over an approximate distribution. In general,
this summation also includes transitions to the continuum. So, the
summation includes some bound-bound and bound-free transitions.

Now, we extend that to complex arguments writing:

f
on
@lz) ~ 30 =3
W< - 72
n ‘on

Now, to obtain values of the imaginary part of @(Z) for real argu-

ments, that is, in the real axis, we do the following: we calculate
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the values of o(Z) for some values of Z in the upper half plane.
Then we obtain a set 9f boints {a(z)} in ‘the complex plane,
Following this we try to fit these points by some procedure to get
an analytical representation of cy(Z) in the complex plane. After
that, all we need,to do is to project it back on to the real axis
for values of Z such that ﬁﬁ(Z) corresponds to the values of energy
which we are interested in and extract the imaginary part of the
result. What we get from this is the imaginary part of the fre-
quency dependent poiarizability for the real argument, that is

I 2(w). Once we have the analytical representation of o(Z), we
can do that for as many points as we want and, using (IL 31), we
can finally obtain c(w). We proceed now with a discussion of how

to do this analytical continuation. Figure IL 2 schematically shows

the process.

4.2 The Process of Analytic Continuation. Pade’ A}pprox,irnantéco—46

Basically, the process we use to make the analytical continua-
tion can be divided in five steps. The first step is to obtain a set
of oscillator-strengths and transition frequencies using the RPA
method. The second step is to choose points in the complex plane
where «(Z) is to be calculated. The choise of these points is
arbitrary to a certain extent. This can be justified and we will
comment about that later. We chogs(e to pick these pOiIlltS in the
following way: Let w(l) be the IQl transition ffequency. Then we

define:
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ZIV = [w (1) - w (II-'l)]/Z
' (1L 36)
DIF = [w(I)-w (I-1)]- FAC

«here FAC is an arbitrary factor. Then the points x(I), where the

complex polarizability will be calculated, are defined by:
x(I-1) = [ZIF + o (I-1), DIF]

The third step is to calculate o(Z) at these points using
(i1. 35). The fourth step is to fit these points to obtain the analyti-
¢al continuation. The fifth and last step is using the representation
obtained in step four to calculate o (Z) at the real axis, that is o(w)
[ Z = wHil, 0], and extract its imaginary part. With these last
results (IL 31) can be used.

The arbitrary way of choosing the points can be more or less
justified by saying that, since «(Z) is analytic in the upper half
plane, it has a defined value at any point in that region. Now, if
(II. 35) was the true expression, we could develop a Taylor series
for «(Z) and a Pade’ Approximant (we shall talk about that later)
can be formed from the coefficients of this series. Then, if the
Approximant exists, it is unique, since it is uniquely related to the
cocfficients of the Taylor series. Since (IL 35) is only an approxi-
mation to the exact @(Z), we allow the complex part of the points to
vary by varying the factor FAC in)’ll.?xé). If we are cl‘ose to the
true representation, the values obtained for small variations of
FAC should not differ too much; that is, we try to get a conver-

gence to the truc representation-of w(Z), by varying the value of FAC.
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The method which we used to {it the values of «(Z) is the
o . 4 . .
onc described by Haymaker and Schlessinger. 0 The idea is to
find a continued {raction such that it is equal to o(Z) at N points

sz (I).

f(51) (% -3 )ay Ge gl

Cn&) = 5 =33 — 7"

(IL. 37)

Requiring that

G ls _ fix) &ppq-mla (41 = %002y
Onbpn) = ) = o T T T

the coefficients ap can be calculated by the following recursive

algorithm:

1 {1 Gepir ~ %0 1020 g1 =% 202
"—'-——"—) + X

B (g =211 1+ 1T
Goppr = %2 ) |
1 - [f(xl)/f(xlﬂ)]; (1L 38)
and
= {f0e)/E0xp) - 13/ (xp =) (IL. 39)

We have been talking about Pade’ Approximant and now we
Care using a continued fraction. But the continued fraction is just
a special case of the Pade’ Approxiﬁmant and is directly related to
it; that is, given a continued fraction, it is always possible to find
a Pade’ Approximant.ql6

An [M, N] Padc' Approximant to a given function f(x) is

4
. defined by the relation:
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PM(X)

fx) ~ [M,N] = SN“KT (1. 40)

where P,,(x) is a polynomial of degrece M and Q(x) is a polynomial
of degrée N. Unfortunately, this definition is not uniformly used;
sometimes people use [M, N] as [N, M] in our definition, so we
need to be carecful.

Now, one question that could be asked is why we have to use
a Pade’ Approximant to fit «(Z). Why not a simple polynomial
fitting? The answer is, we don't. But if we want a good represen-
tation which can be used to make the continuation, Pade’ Approxi-
mants offer the best possible representation. In general, poly-
nomial fittings will not converge to the function when the coﬁtinua—
tion is made. ‘

There are a lot of interesting results from the theory of
Pade’ Appx:oxi.rnants; we will quote some of them related to our
discussion without any proof or details. Those can be found in the
abundant literature that has accumulated in the last ten years,
resulting from an increasing use of Pade’ Approximants in many
branches of physic:s.lm"46 From all the reviews, in our opinion,
the best one for its clarity is the one by Basdevant.45 Recently,
Baker,46 who is very active in this field, published a book where
. the main features of the theory can be found and, contrary to his
style, the book is quite clear. Now follows some results. For a
given function which has a Taylor series around, for instance,
7Z = 0 and which converges in a circle |Zl < R. The Pade’ Approxi-

mant to this series coverges for |Z| > R, while the new radius of
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convergence cannot always be precise..’ Then Pade’ Approximants
can be used to analytically continue the series outside its circle of
convergence. Inside the convergence circle of the Taylor series,
Pade’ Approximants usually proviae a much better estimate for the
function than the series itself, and it accelerates the convergence.
Now an important remark. The convergence of the Pade’ Approxi-
mant has not yet been formally proved. Even inside the circle of
convergence of the Taylor series there is no general proof that its
Pade Approximant converges. So, it is quite frequent to find
quasi-theorems and quasi-corollaries in the theory of convergence
of Pade’ Approximants. The convergence is assumed because it is
gencrally observed. Pade’ Approximants can simulate the behavior
of a given function £(Z) near its singula‘rities with one or more
poleé. This is important in connection with the analytical continua-
tion procedure that we used. Another important property of Pade’

Approximants is related to the Stieltjes series,4 ’

which provides
a new way of looking to the problem. The frequency dependent
polarizability can be put in terms of a Stieltjes series, and for one

such series it can be shown that:

[N,N] = £(Z) = [N-1, N]

[N,N]' = £1(z) = [N-1, N]'

So, it is possible to calcllate uppe‘r’_;nd lower bounds for the fre-
quency dependent polérizabilities and related properties. This
approach has been explored mainly by Langhoff.48 For the special

case where the function can be represented by a Stieltjes series,
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it can be shown that there will be a Pade’ Approximate and that it
will converge to the funciion. This is an important fact again

related to the analytical continuation procedure that we used.

4.3. Applications

We proceed now describing three applications of the scheme
described above. We applied it to the calculation of photoiogization
cross-sections for the metastable states 2'S and 2°S of helium
and for H™. The method has also been applied to the photoioniza-

49 50 51

tion cross-sections of H, He and H.

4.3,1, 2'S and 2%S Metastable States of HeliumSz

The photoionization cross-section of these metastable states
below the threshold n = 2 has been studied by several authors. In
almost all these calculations the bound states were described by
Hylleraas or Pekeris-type wave functions, the continuum functions
being calculated by the close-coupling approximation.53~55

In our calculation we used a simple [12s/8p] contracted set
of Gaussian atomic orbitals. The basis set and its specifications
are shown in Table II. 1. Now, since for the metastable states we
need transition matrix elements between excited states, an approxi-
mation was developed to obtain these clements from the set of
ground -state -excited—sta;te transitions obtained by the RPA approxi-
mation. We will discuss that later. Figures II.3 and II.4 show
our results ‘cornparcd with two recent calculations —by Norcross54
and Jacobs‘.55 The agreement is good and within the experimental

uncertainty of *14% the various calculations agree well with



Table II.1

He (12s/8p) basis set specifications

______ FUNCTION ___CENTRE_ _____TYPE ____ EXPONENT __ __COEFF,
1 HE S 3293,6940000 0.00465146
_____________ 2 HE 8§  4BB,8941000 ___0.0365754______________.
3 HE S 108.7723000 0.1978343
e 4 HE S 30.1799000 0.8270723 ____ .
5 HE S 9.7890530 1. 0000000
. 6 HE S 3.5222610 1.00000060
7 HE S 13524360 1.0000000
o 8 HE s 0.5526100 _  1.0060000
Q HE S “0.2409200 1.0000000
N io HE S 0.1079510 _  1.0000000
11 HE S 0.0483700 1.0000000
12 ; HE S 0.021674G__ 1.0000060_
13 HE S 0.0097120 1., 0000000
N 4 HE S 0.0030000 1.0000000
15 HE S 0.0010000 1.0000000
U U - HE_ ) S 4.5000000 1.0000000__ -
17 HE X 1.4583690 1.000006G0
. 18 -~ HE X _0.3462700_____1.0000000
' 19 HE X 0.1119120 1.0000000
____________ 20 HE__ X ______ .. 0.0421630 ___ 1.0000000_ _________.___
21 HE X 0.0170230 1. 0006000
e 22 HE ) S 0.0112650  1.0000000 ___________.
‘ 23 HE X 0.0051045 1.0000009
24 HE Y 4.5000000 __ 1.0000000
25 HE Y 1.4583690 1.0000000
e 26 HE © Y 043462700 _ 1.0000000 _ ____ .. .
27 HE Y 0.1119120 1.0000000
] 28 . HE ¥ . 040421630 _  1.0000000  __ __ ____._
) 29 HE Y 0.0170230 1.0000000
30 HE Y 0.0112650  1.0000000__ .
31 HE Y 0.0051045 1.0000000
e 32 HE Z . 4.5000000 _ 1.0000000 _ _ ___ . ..
33 HE b4 1.4583690 1.0000000
e 34  HE r 0.3462700  1.0000000
35 HE 2z 0.1115120 1.0000000
N 36 __HE_ 1z 0.0421630_____1.0000000 __ . . -
) 37 HE Z 0.0170230 1.0000000
38 . HE z _ 0.0112650 _ 1.0000000
39 HE z 0.0051045 1.0000000



Figure Captions

Fig. 77.3 Photoionization cross sections of the 2'S state of
helium in megabarns. The curve shows the present
cross sections obtained by numerical analytic continua-
tion. The triangles and cctagons are the calculated
results of Norcross (ref.5*) and Jacobs (ref. 55)
respectively.

Fig. I1.4 Photoionization cross sections of the 2°s state of
helium in megabarns. The curve shows the present
cross sections obtained by nuimerical analytic contin-
uation. The triangles and octagons are the calculated
results of Norcross (ref.s4) and Jacobs (ref. 55)

respectively.
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s

experin‘lent.gé Figurcs 1.5 and II. 6 show the results chtained for

threc different values of the factor FAC in (IL 36).

4,3,2. Photoionization of 1~

This specie has been extensively studied due to its astrophysi-
cal importance. Cl‘xan,clrasolillax’g” 57 and his associates in a series
of papers from 1942 to 1958 studied this system using increasingly
more accurate two-electron wave functions for the bound state, but
using a plane wave approximation for the free state, with exception
of the last paper where a Hartree-type wave function was used for
the free state. Their results did not show much improvement in
going to more accurate bound wave functions and the Hartree-type
wave function did not show much improvement over the plane wave
approximation. A calculation by John58 using exchange wave func-
tions for the free-state showed an appreciable improvement. But

59

in the light of experiments by Smith and Burch; ’ all theoretical
calculations showed bad agreement with experiments. Another point
was the gréat disagreement among the results calculated using
length, velocity and acceleration formulas for the transition mornent.
GeltrnanZ6 did one of the best calculations using a fully correclated
free wave function and a Schwartz 70 parameters bound wave func-
tion. The results are in excellent .agreelnent with experiment, if
the velocity form is used for the transition moments. This result
is also observed by Chandrasekhar. DBut, contrary to the older

calculations, the disagreement among the various forms of transi-

tion moment is much smaller in his calculation. The more recent
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calculations by Bell and Kingstonbo and by Duta, Duta and Das61

agree well with the Geltman results and experiments. More
recently, Langhoff62 presented a calculation using his Stielijes
imaging approach. The results are presented in terms of 'differen-
tial and cumulative oscillator-strength distributions." He claims
that the results are correct. Now, using the oscillator strength
distribution given in his paper, together with the. expression that he
gave for the Stieltjes imaging, we calculated the cross-sections.
The values are in agreement with Geltman's results near the
threshold and on the tail but not in the region of the maximum,
where most of the experimental points are. So, it is not clear

for us how to classify his results.

We performed two set,s of calculations, one using a [10s/8p]
and the other using a [10s/9p] basis set of contracted Gaussian
type orbitals. The basis set specifications are shown in Tables
IL2 and IL 3 and the respective oscillator-strengths and transition
frequencies in Tables II.4 and IL. 5. The resulting cross-sections
for two different values of the parameter FAC in (II. 36), together
with Geltman's results, are shown in Fig. IL. 7 for the [10s/8p]
basis set. We did not plot the results for the [10s/9p7] basis set
‘because the results do not differ appreciably. It is quite clear that
we are very far from the correct results. Besides that, the analy-
tical continuation shows a very poor ‘convergence. We tried several
choices of points in the complex plane without any improvement.

So, if we insist on having coﬁidence in the analytical continuation

procedure, we have to attribute the failure of our results to the
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Table IT.4

Oscillator Strengths and Tran-
s . . . . Y

sition freguencies for H{-),

(10s/8p) bvasis set,

f e(ev)

1, A5 AL
AL BOV R
3L TARE I
6, 7207700

i

13056787
Cl 32,2157
117, 45447

AL
417, RS IR 27

L
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Table JI.5

Oscillatros Strengths and Tran-
sition frecusncies for H{=-),
(10s/9p) btasis set,

f c(ev)

0.00210 1.32270
0.02949 .30260

015330 1.95600
0.440L0 3.09E70
0.67430  5,8048D

0.501C0 12.76760

C 0.16320 32.20840

0.02120 102,85830
D.00060 416.56T750
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basis set. After all, somebody has to be guilty, the choice being
done in a hicrarchal manner, of course, But, at least in this case,
the basis set, besides being the last member of the hierarchy, did
a very bad job indeed. If we look to our distrib‘ution of transition
frequencies, we see that the first pole occurs far away from the
threshold (0.745 eV). And looking to the experimental resultis
(better Geltman's results), we see that near the threshold the
cross~-section raises rapidly until a maximum value of 39.5 ‘Mb
(1078 cm®) at 1.45 eV. Since we do not have any poles at that
region, we are not giving any information at all to the continued
fraction in that region'. That could be the main reason for the
failure of the. caléulation. But to be really sure of that we need to
perform a calculation with a larger basis set including more diffuse
functions to get poles near the thfeshold.

We Waht now to make some comments about the method of

analytical continuation and discuss some possible improvements.

4.4, Comments and Possible Improvements

There are a few things about the method, as it stands now,
on which we would like to comment.

First of all there are some instabilities in the method which
'we. still don't quite understand. For instance, in the 2°S metastable
state of helium it was necessary to remove one of the poles of the
spectrum to obtain a good analytical continuation. The same was

necessary for the H, case.64~ For the case of the hydrogen atom,

it was noted, without comments, that the best agreement was
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obtained if the bound-bound transitions were omitted from the spec-
trum. In our ‘ca_ses the type of instability noted was that for points
near the omitted pole where the values of the cross sections sud-
dezﬂy changed sign. It has beén suggested that what is needed to
obtain a good analytical continuation is a smooth distribution of
poles and oscillator-strengths. But now the problem is to define
what is a smooth distribution. For instance, the distributions for
A ; 48, 62

H™ and H; given by Langhoff appear to be smooth. We tried to
analytically continue’ those distributions and the results are com-
pletely crazy. In this respect, note that the distributions for He
2'S and 2°S are not so smooth. It has something to do with the
characteristics of the distribution, no doubt, but we don't know yet
what exactly. It could be the srnoothneés of the spectrum, in the
sense of having almost equally spaced poles carrying almost the
same oscillator-strengths. It could be, but we are really afraid
that what will come out when the whole story is solved is that '"a
smooth representation is that one which gives the right results."
Some group565 are trying to refine the spectra, that is to obtain
a new set of oscillator-strengths .and transition frequencies from
the ones found by some procedure, heping that the new spectra
~would give a better analytical continuation. We don't know exactly
what they are doing, but this could be done using>the roots of the
denominator of the Pade’ Approxinlzh’:c as the new poles. For the
case of H™, since we have only 9 poles, the best Pade’ which we
could construct is a [4,4] or maybe a [3, 5], which would give us

a new spectra with only four or five poles. -Since we don't know
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how many iterations would be necessary to get a smooth represen-
tation, if a sccond iteration should be necessary it would give us
one or two poles. This is too little information to get a good
analytical continuation. To test such a procedure we would neced a
large number of poles in the initial spectrum.

Another source of instability in the present method is the
procedure that we used to fit the points in the complex plane.
While the Schlessinger40 algorithm provides a practical way of
evaluating the coefficients of the continued fraction, the iterative
nature of the process introduces serious instabilities. We observed
several cases where, for very small differences in the parameter
FAC, the coefficients of the continued fraction changed drastically,
causing serious troubles for the convergence. Not only the evalua-
tion of the coefficients are subject to instabilities, but also the
evaluation of the continued fraction. Due to its application, the
numerical stability in evaluating continued fractions is now being
carefully '1nvestiga‘ced.66

We decided to investigate a possible improvement of the
fitting procedure. Since a continued fraction is related to a Pade’
Approximant, we could evaluate the Pade’ instead of the continued
. fraction, avoiding this way the iterative procedure to calculate the
‘coefficients of the continued fraction and its value. We want to
form a Padc’ Approximant from a given set of values of the func-
tion at N points. In the Pade’ literature, this is called a Pade’
Approximant of type II. That is, we want a Pade’ to f(z),

f[M’ Lj’(z) such that:
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3 et
(ML) = Pu®) i
YT PLE T L
N oqozt
2, %
i=0
MG ) = () k= 1,N

This is also called a N-point Pade’ Approximant, but, due to the
confusion in the literature, we call it from now on a multipoint-
unipiece Pade’ Approximant, indicating that the Pade’ is formed
from N given points but with only one piece of information at that
point, namely, the value of the function at that point. Now, instead
of the recursive relation (II.38), we have a set of linear equations
that can be solved with highly accurate methods. ZF¥or instance, in
case we have the value of the function at five different points, we
can form a [2,2] Pade’ by equating:

2 . 2
i=

i i . g
2 Pif 7 He) ), ey i LS

0 i=0

or putting qgo = 1

N

2 . 2 .
1 1
T 1 DT e i=1,5
>0 Pi% (ZJ)[ 209 J] )
i=0 i:l.a‘
/ N

Once the p's and g's are obtained, the evaluation of the Pade’ is

straightforward. Its calculation will involve the evaluation of two
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polynomials and only one division. Since the system of linear
equations can be solved accurately and since the same number of
operations are involved in the evaluation of a continued fraction and
a ?ade’ of the same order, we expect that this scheme will repre-
sent an improvement on the fitting procedure. We have just set
up a prograrn67 to do that, but we have not tested it yet. This
will be just a test to verify how much improvement we can get
avoiding the use of continued fractions. But we think that the best
improvernent will come from the procedure which we will describe
below.

The basic assumption was that we could express the fre-

quency dependent polarizability by

~

£
on
afw) = Z ~a 2

n#0 Yon ” w

The analytical form is correct. We are only assuming thet the
infinite series can be replaced by an "effective summmation.'" But
we are not making use at all of this analytical form. We are only
using the expression to calculate o(z) at arbitrary points z. The
analytical continuation may be improved if we give to the Pade’,
besides the valuec of the function at some points, some information
about its analytical behavior. To accomplish this, we e;xpand a(z)

in a Taylor series around some arbitrary point z..

Y

- E)—Z—!zo (z ~2zo) + + ¢+ +

a(z) = a(zy) 4
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Calculating the derivatives we get:

fon 5\ fon
of(z) = Z —:—:-—-———- + » —(—:-;-—-"-—*; (z~2g) + »o» +
on = %o ((”on - Zg)

} : on k
t . kH ‘) (z - 20)

Now, given zp we can calculate the values of the coefficients of the

Taylor series. Iquating:

— 9 Py (z)
a(z) = a(zg) + Z >—4 Py — k+1 (Z—ZO)k - QM(Z)
k=1 | » (®2 - 2o) N

we get again a set of linear equations which can be solved for the
coefficients of PM and QN. With these coefficients the Pade’
Approximant can be evaluated. One possible argument against the
procedure is the arbitrary choice of z. But the other. procedure
also involves the choice of arbitrary points and the same justifica-
tion used for that can be Aused here. We set up a program to
carry out this procedure and we chose helium as a test case.
Helium was chc;sen because almost everything works fcr helium
despite its known inactiveness. We obtained some reasonable
results for the cross-section up to~60 eV where, for many choices
of z; the cross-section started to raise again. Another observa-
tion was that at sorme choices of z, the cross-section exhibited

jumps near some points. We decided to investigate if this behuvior
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could be related to the zeros of QN(z),‘but we found that the poles
were far from those points. Conscquently, we are led to conclude
that the raisings al higher energies and the jumps for certain
choices of #, were associated with the convergence of the Pade’.
With this procedure, following the nomenclature that we adopted,
we have a unipoint-multipicce Pade’ Approximant. So, although we
now have information about the analytical behavior of the function,
we have the value of the function at only one point. Maybe we are
asking too much from the Pade’, since with information about one
single point we want a description in a large range of energy
values. The natural extension should be a muitipoint-multipiece

69

Pade’ Approximant. That is a Pade’ formed from a given 'set of
points where the value of the function and some of its derivatives
are known. Now the problem can be very complicated. We have
been talking about the necessity of having a certain number of
poles to obtain a good representation. And now, with the conclu-
sion above, the first thing that we could ask is how many points
would be necessary to do that. In case a large number of points
is necessary, this would imply the expansion in a Taylor series
around all these points, equating these expansions to the Pade’ and
solving a big number of linear equations involving the coefficients
of the Pade’. But surprisingly enough, recent applications of multi-
point-multipiece Pade’ Approximant‘%‘_,showed that a two-point Pade’
Approximant can provide an accurate approximation to the expan-

70,71
n.

sio So there is some hope that his procedure could be éppli—

cable in a practical way. We will try to see that.
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Section III

Experimental determination of the cross-sections



It is not our intention to give a complete account of the
experimental techniques used to determine the photoionization
cross-sections. This section was included to give a general idea
of the techniques and the main difficulties involved in the measuring
process. For the details the reader is referred to the literature
cited along the discussion as well ab the reviews by Samson, 1

McDaniell, 2 Branscomb, 3 and Mann.4

We will discuss mainly
the techniques for photodetachment cross-sections, where the
prpduction of the ions in a workable concentration poses a special
problem over the photoionization of neutral species. The impor-
tance of knowing photodetachment cross-sections for several
negative species has been discussed in the introductory section
(Part I). Since one of the main problems for the measurement is
the production of a workable ion-current, this fact per se amply
justifies the theoretical calculation of the cross-sections. Even
in the éases where a workable ion-current is obtained, the
measurements are subject to several other sources of errors
and, again, theoretical results are important to clarify the

situation. On the other hand, if a very accurate measurement

is possible, that will help in deciding the quality of the calculations.

1. Crossed-Beam Method

-

o
This is a general method that can be used to measure cross-

sections of almost all scattering processes. It has been used to
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study elastic and inelastic collisions of electrons with atoms and
molecules, including metastable states and ionized atoms. But,
in fact, the {first use of this technique was made in the study of
photodetachment of H= ions by Branscomb and Fite. 1 In this
first experiment the photodetachment was obsgerved but no
measurement of the cross-section was possible. One year later
Branscomb and Smith5 succeeded in measuring absolute cross-

2 detachment. The apparatus was further improved

sections for H
and in 1959 Smith and Burch6 did a careful relative measurement
of the cross-section for H® in a range of 40004 to 13,0004A.
Basically, the technique consists of crossing a beam of
photons of known wavelength at right angle with 2 beam of ions (Hg)
with known velocity. The detached electrons are collected and
detected. Let's see how many problems are involved in the
measurement process. Let's divide the problem in three separate
parts: a) photon beam, b) ion beam and c) detection of the electrons.
The photon beam must be a stable source of light, of well
known spectral distribution, Now, since the cross-section is to
be measured as a function of the wavelength, and since the source
is obviously not monochromatic, filters have to be used to select
the wavelength. This introduces a new problem, that of the
bandwidth versus transmitiance of the filters, and the dependence
on the wavelength, After the filtering and focusing thé beam
intensity must be measured by means of a radiometer, which

introduces another source of error. In the earlier experiments,



-3

a projection lamp of tungsten filament was used, being later
replaced by a brighter but less stable carbon arc projection lamp.
This instability forced the development of a method for monitoring
he light beam.

The ion heam if produced by electrical discharge in the
vapor which can produce the desired ion. In case of H it was
found that the mixture of D,0 + H, was more effective in producing
H and D™ ions. The ions are separated by means of a 90° sector
magnetic field. The velccity of the ion has to be known and
besides that it has to be focused.

Finally in the reaction chamber, the ejected electrons have
to be all collected and a small current has to be measured. THe
ejected electrons are collected. by double-focusing electric and
magnetic fields. Electron currents generated are of the order of
107" amp.

Now, consider a H® ion moving in the x direction with a
velocity v. At a point x it is illuminated with 2 normally incident
radiant flux, ¢(x,x)dx, of light in the wavelength range X to x +dax.
The probability that the ion will lose an electron in the path

interval dx is

_ dx !
Pdx = —— J o) e ) ada

Uxas
y

Define ¢’()\) as the normalized radiant flux such that

¢ (x,0) = ¢/ (1) 2L
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where s is a distance, perpendicular to the ion beam, over which
the light intensity is reasonably constant, and w(x)/s is the power
density at the ion beam, Then the probability of detachment when

an ion passes a distance L through the ion beam is:

1 : .
P=— ! (x)dxd
= [ o ¢ W [ wx)dxdx

A X

W

= o= fo)¢’ ()nda (IL. 1)
A
_ L
where W = [ w(x)dx is the average total power incident on the
0

area sL.. Now, if ji is the ion current and jo is the electron

current in the illuminated region,

Pexp = je/ji and
je W ’

— = o dx .
; g fo) e ()ada

Then, a measurement of je and ji gives the experimental
probability of detachment per ion. If the spectral densily of the

light source ¢’()) and the quantities W, s, v are measured,

Pth eo, Can be calculated from (III.1) inserting theoretical values
of 0. Inthe 1955 measurement of Branscomb and Smith, 0 Pexp
o

was determined with 10-13% of error, the main errors coming
from the measurement of W, electron current and radiometer

height. When compared with the Py, - obtained from the
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available calculations, the conclusion was that all the calculalions
were in the range of the experimental error. While the experi-
ment showed a great efforttc develop experimental methods to
measure cross-sections, it didn't clarify the theoretical sifuation,
since the shape of the curves for o (H ) at that time varied from
calculation to calculation, but in the light of the experiment all
were equally correct.

Because of the difficulties involved inradiometric calibrations
and in proving that all photodetached electrons are collected,
absolute cross-sections are much more difficult to obtain than
relative ones. Besides that, in the 1955 experiment, the fact
that monochromatic light of sufficient intensity was not available
forced the measurements of integrated cross-sections over 2
wide spectral range.

A relative measurement of o (H ) was made in 1959 by
Smith and Burch. 6 The apparatus is shown in Figures 1 and 2,
and is fully described in the references.G’ T

To counterbalance the use of narrow band filters, the
source of light had to be much more intense, and the tungsten
filament lamp was replaced by a carbon arc lamp.

In terms of the transmission of the optical system equation

(III.1) can be rewritten:

o= KW [0()T M@ () ({=)dx - (r.2)

where T()) is the transmission of the optical system, k contains
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geometrical factor and the ion beam velocity and the other
quantities are the same defined above.
Assuming that the cross-section varies lincarly within

the band

H

o)) Og + O3 X

we have

Il

P = e kW [0y [ ¢)T O)adx + 6, [oG)T (1) 2" dx]

Defining

X = [OTOA AN/ [o) T () adr

and

M= LOO)TOrd/ [T M dx,

equation (fII.3) can be written:

P - .;e_ = KWo () [ 600 T 0)da
1

By identifying individual bandpass filters with a subscript m,

we can write

1l

0 (\ma) = Prp/KWaum [0 R) T () da

= (je)ll.l / ji1< }\lnl Wn‘i’:‘ (III- 4)

For the fiiters used in the work by Smith and Burch no

significant error was introduced by assuming Apms, = Ams-

(IIL. 3)



-7

Then we can {inally write;
0Oy = Uody 7Bk A W, (II. 5)

The value of the cross-section for the filter m =7
(x = 5280 A) wasd etermined and the other measurements were
made relative to this wavelength. The estimated error in the
measurement is about 2%. Now, these relative measurements
can be put in absolute scale with 10% of error, using the earlier
values of absolute cross-sections. When that was done, the
results showed that all calculations presented a discrepancy of
20% in the values of o across the spectral range of 4000 A to
13,000&. This result reactivated the theoretical calculations
of o(H"), as discussed in the last section.

This method has been also used with the photo-detachment

cross-sectionof O, C7, 87, I, OH", su.8

2. jS}\lgr Methods

It is possible by means of shock-wave heating to produce
an atmosphere of negative halogen atomic ions with concentrations
of the order 10" cm?’, over a region with lateral dimensions of
order 10 cm. As photodetachment cross-sections are of the order
of 107" cmz, absorption of light by Begative ions should be
observable photographically. With this technique, photédetachment

absorption specira have been observed for ", C17, Br and I". 9
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Tunable laser light sources, with their inherent advantages
of higher photon flux and narrow bandwidth, and particularly dye
lasers in the range 3500 - 70004, are now being used to make a
major improvement in photodetachment studies. The use of
these sources in photodetachment studies was initiated by
Lineberger. Several measurements have been done by now,
namely photodetachment of 87, OH™, OD™, NO, and alkali-
atoms electron-affinities. 10

More recently the use of ion cyclotron techniques was
introduced in the study of photodetachment processes. These
techniques made a great improvement in the production of the
ion heams, since the ion cyclotron spectrometer can be used
to generate, trap and detect the negativé ions. Since in these
systems the ions can be trapped efficiently for long periods of
time, high negative ion densities are not needed, and a wide
variety of ions can be studied. These techniques were introduced
by Brauman and co-workers, and have been apllied to the photo-

detachment of several species like PH, 11 NO, , 12 OH , 13

NH,  and AsH, . 14
~ With the rapid development in the lasers technology it is
probable that in the near future, tunable lasers in a wide region

of the spectrum will be available, solving at least the problem

of light source.
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Section IV

The Random Phase Approximation
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]
1. Philosophy of the EOM Method"™

The main problem in quantum mechanics is the calculation of
the wave function for a given system froni which all the informa-
tiont about the system can be extracted. This is implied in the
solution of the Schroedinger equation for the given system, but,
since it can be exactly solved only for H and He%, we have to use
approximate methods for dealing with larger systems of chemical
interest. Several ab-initio as well as semi-empirical procedures

! Sometimes we are in-

have been developed for this purpose.
terested not in a specific property of a certain state of the system
but in something involving two different states of the system, for
instance transition energie‘s and transition moments. To obtain
those, information via wave-function will have t'o be éa]_culated for
both states involved to extract the information. The best way
possible to get accurate enough wave functions involves the use of
extensive configuration interaction procedures.

Now, suppose that instead of trying to obtain accurate wave
functions, we decide to concentrate efforts in obtaining relative
propertics between the states, namely, the energy of the excited-
states relative to the ground state and the respective transition
moments. It is possible to develop such an approach, where equa-
tions are set up to calculate directly those observable properties
without worrying about total wave farctions.

This is the philosophy behind the Equations of Motion Method,

that is to obtain the best possible values for the observables with-

out trying to get accurate wave functions.
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Besides being a realistic approach, the EOM method presents
important properties. First of all, it is ; rigorous exact equation
and to solve it exactly would correspond to exactly solving the
ScHroedinger equation for the sysfenl. Since this is impossible,
appi‘oximate schemes for the EOM have been proposed, the RPA4
being its lowest order appr‘oxi_mation. In addition, the sum-rules
for oscillator and rotational strengths are satisfied in this
approach.5 Another interesting property is that the length and
velocity forms of the oscillator-strengths are identical in the RPA
approximation.6 This is a very useful property, since it can be
used as a check for the basis set used to set up the equations.

We proceed now with a brief discussion of the method.

2. The Equation of Motion®

The basic idea is to find an operator O)T which, acting on the
ground state of the system |0), generates an excited state [A) and

solves the equation of motion for its amplitudes. So by definition:

1-
o)\k|0> = ) (Iv. 1)
Similarly, one can define OA such that:

Then, for any hamiltonian H and the-operators defined above, the

following relations hold:
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1. e At _ o, ot
[1,0,1{0) = (B, -Eo)0,[0) = #n 0,]0

Ii 0 1 0 = ~-nd 0 O = O

So, if the form of the operator’ O)T was known, we could calculate
the transition frequencies. Unfortunately, in general it is not
possible to find an operator O)T such that its commutator with the
Hamiltonian is proportional to it, the constant of proportionality
being the transition frequencies, when applied to a given state.

So, we have to try an approximate form for O)T. Before doing that,
let's put equations (IV.3) in another form. First, premultiply the

first by 6O)L, a variation in 0., and the second by 601 and close

A
both with the ground state to get:

1

(0[50, [H, ozj[o> hw)\<0]60)\0:]0)

(IV. 4)

1

(0[60I[H, 0, 7] 0) -hw)\(OIGO}TO)\[O)

Now, take the difference between one equation and the hermitian
conjugate of the other to get:
(0] {60, ,[H, 0713 0) = #w (0] {50,073} 0)
A, td }\ 1 )\ )\’ )\

+ " (Iv. 5)
(0| {GOA’ [H, OA]}|0> = -hw)\<0| {607\’ 0)\}! 0)

Instead of (IV.5) the equations of motion are usually written
in a more symmetrical form. Introducing the definition of the

double commutator:
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e S +
2[60)\,1{,0)\] [6OA,LH, oA)] ] _[[50}L,Hj,o}\]

we can write (IV.5) as

(0| [60,, H, 07110y = 4w, (0] [60,, 0, ] 0) (IV. 6)

Equations (IV.5a} and (IV.6) are identical only when |0) is

the true ground state, since in this case:
et 1 _ ., d + _
o] [ L0, 60,1, B3| 0) = in £ (0[[0}, 80 J[0 = 0

This last remark is important because in general we have to
accept some approximation for the true ground state [0), in which
case the result above may not hold.

Calling |¢) the approximate ground state, we finally get:
(@L80 B, 0 1[¢) = [0, 0] I|¢) (IV. 7)

which is the equation of motion we try to solve. The only approxi-

mation made up to now was to take |[¢) as the true ground state.

3. Solutions to the Equations of Motion. The RPA Approximation

Before discus.sing the sclution of the equation of motion we
will introduce briefly some concepts of second quantization, since
that is the common language in nlan/y:;body theory. For an intro-
ductory but very clear discussion of second quantization the reader
is referred to the books by Mattuck,7 La.nda.u8 and Rairnes.9 A

full coverage of the subject is given in a boolk by Bcrezin.l
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In the second quantization formalisy , instead of specifying a
system by giving the spatial and spin coordinates of all its consti-
tuents, it is specified by giving the occupation number of each of
its levels. Then, given a system and basis set, it will be specified
by giving the occupation number of each single particle state. The
system is then described by a set of numbers, the occupation num-

bers, and can be represented as:
»
Y = Inl' nz: 113, AR 11N>

where n,,n,, ...etc. are the occupation numbers for levels 1,2,...
etc. For fermions, following the Pauli exclusion principle, the
occupation numbers may assume only the values 1 or 0. For a
given system in the ground-state, the highest filled single-particle
state is called the Fermi-level. The various excited states can be
formed by removing a particle from a state below the Fermi-level
and placing it in a state above the Ferrni-level. The picture can
be further simplified if, referring to the ground state, we keep
track only of the particles being transferred and the empty states
left behind, in the formation of the excited states. The empty
states are called '"holes'" and the single-particle states above the
Fermi-level are called particles. This simplified description is
called the '"particle-hole" description.

To form the excited state frorm a given ground state,

Ucreation' and ‘'annihilation' operators are defined in the following

way:
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iy
Ny, Ny ee s,y e, Ny = (1-ng)(-1) !nl,nz,...,ni+l,...,nn)

Ci 1

i

ci.!nl,ne, S TP .nN) = ng(-1) |ny,ng, .. -1, .,nn>

These definitions apply to fermions; there are cequivalent definitions
for. bosons. We will be dealing only with fermions and all proper-
ties related to these operators will be valid for fermions. In the
definitions above we have:

(-I)Ei _ (_1)E(nl+n2+,.°., n;_i)

An excitation out of the ground state can be described by the-

successive application of these operators. For instance:

Caca[11100...) = [L1001...)

The following properties involving these operators can be derived

by applying them to a given state and following the definitions:
o _ t ot _
Lo dy = Gelepedy = Lepody = 0

‘with the sign + indicating the anticommutator. To express the
usual quantum operators in terms of creation and annih'il;'ltion
operators, we just require equality hetween the matrix elements of
the operator in both formalisms. For instance, for a one-body

operator, 0, we can write:
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oij = <q’>i{o[¢j> = f qsi' O¢jdv

This operator can be expressed in second quantization formalism

by:

0. ¢, ¢
! k{

which can be checked by taking the matrix element:

i

(0 0...1; 0...]0%[0 0... Zou<oo...1...lcc|oo I...)

Similarly, it can be shown that any two-body operator becomes

ZO nC

kimn

>

m n

where

= f ¢:(1)¢f(2)0 $,(1)$_(2)dv,dv,

kfmn

Just one more definition and we will be back to the equations
of motion. Now, to avoid confusion/l,et us label ‘the particle states
with letters m, vn, p,q and hole states v, 5,1, v. Then let us define
a particle-hole pair creation and annihilation operator by the

relations:

7
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- T
C (my) = ¢ , (,Y
C(my) = cTc
Y Y ‘m

Now, in the RPA approximation to the equations of motion,
the ground state |0) is taken as the Hartree-Fock ground state
[HF). But, since it is admitted that the true ground state is not
simply |HF), the form of the operator O;\r should express the
possibility of the |A> state being formed by excitation from the
| HF ) ground state as well as from ''de-excitations' from the true
correlated ground state. In other words, particle-hole creation as
well as annihilation operators should be included in O)T. In the RPA
approximation, only single excitations are considered and the

11

operator is written:

ofasm) = 2, {YmY(AS)CIny(SM) - zmy(AS)ch(S"M')} (IV. 8)

where Y and Z are the amplitudes for the excitation and 'de-exci-

1-

tation' processes, and Crny(SM) is now a spin adapted particle-
hole pair creation operator defimed:11
t t t
C 00) = ANZ {c c +c_,c }
rny( ) ( ) mo  yor mp B
f _ t - _
C (I1M) = -c C q M= +1
my ma  yp
-anzyel e -t e ) M=o
mo vo mp -y
T ‘M = -1

Cmﬁcyd



where o and B denote spin states. In (IV.8)

c__ €M) = (-1)™Mc

(S - M)
my my

Now, substituting (IV.8) in (IV.7) and using the Hartree-Fock
wave function, the equation for the amplitudes Y and Z in the RPA

approximation is obtained and can be written in a matrix form as

11
as:

A°(S) B°(S) Y{(1S) Y(S)
' = (AS) (Iv.9)
-B°F(S)  -A°T(S) Z{\S) Z(\ S)

where the elements of the A and B matrices are given by;11

Aoy ne(S) = (HF|[C (SM),E, Cgé(SM)](HF)
= 5mn6y6 (em - ev) - Vm&ny + 65, 0(2 Vméyn)
(IV.10)
ﬁny, ns8) = - (HF| [Cmy(SM), H, cn6(§'ﬁ)][HF>
- (—l)s anéy + 6S, o (2 Vifnnyé)

In equations (IV.10), ¢, are the HI orbital energies and Vijﬂk are

the usual two-electron integrals. Then, given a |HF) the matrices
A and B are set up and (IV.9) is so]:ved for the amplitudes Y( S)
and Z(AS) and w(xS). These ampli;:‘;des are elements of the transi-
tion density matrix Poy? which can be used to determine matrix

: . . 12 .
elements of any one-particle operator, In our case we are interested

in the dipole maatrix elements.
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Now, we are interested in determining the transition moinents

between two excited states, A, and )\j, (‘)‘i M.[)Lj), when (OINL!)\i)
and (OlMMJ) are known.

Since this information is contained in Y and Z, one expres-
sion relating <)‘ilMP‘j> and _Y()\i), Y(Aj), Z()\i) and Z()\j) will do the

job. From the definition of the operator O)T we can write:
(M) = (0o Mol o) (IV. 11)
J J A >‘j

The equation can be rewritten in terms of the double commutator

defined above as:
_ t +
()\i‘MMj) = <0[O)\i’M’OAj]IO> + .(%)(Ol[oki,O)\j]TlO)
+ @)o|T[0, , 0 7]0) (IV. 12)
1 J

In the RPA approximation, the last two terms of (IV.12)

t
, 0. )1 =6, .
A )‘j }‘i)‘j
evaluating the expectation value of the double commutator, we

1::13

vanish because [0 Introducing |[HF) = |0) and

ge

(Ale] xj> r~ z n};Y [Y;;()\i)YmY(A.) + Z ()\i)Zmy()\'j)]-

nv
ny J

g
-~

*[Tm by~ Ty Onm) (IV. 13)
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which allows us to calculate excited state - excited state transition
elements from the knowledge of the amplitudes Y and Z for exci-
tations from the ground state.

Higher order approximations to the equations of motion have
been proposed by McKoy ct ault.,12 and applied to the calculation of
transition frequencies and oscillator strengths of several mole-
cules.l4 Complete details of the derivations and results of the

applications can be found in the cited literature.
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PROPOSITION I

An RPA calculation of nuclear shielding constants

Since the expression for the nuclear shielding constant {for
diamagnetic molecules was developed by Ramsey, several attempts
have been made to calculate this property for small systems. The
main difficulty is the sum over all excited states and the continuum
which is a characteristic of all properties derived by second-order
perturbation theory. Several methods have béen proposed in} order
to avoid the sum over states. Variational approaches have been
proposed also. Besides that, a semi-—erﬁpirical model has'been
proposed, where the nuclear shielding is calculated as a sum of
various contributions. None of these methods is completely satis-
factory although some calculations using one or other methods agree
well with experiment.

We propose a solution where the sum over excited states
plus integration over the continuum is replaced by an effective dis-
crete summation over the states obtained by using the RPA (lower

order EOM) method.



I Introduction’

NSNS

Suppose a nucleus is surrounded by electrons in a magnetic
-
field of intensity H ext if the nucleus has a magnetic moment I?
the energy of interaction between the system and the field due to

this moment is:

AF = - B Hygeq) (1)
where
Hioear = Hext d-o0)

Equation (1) can be interpreted in the following way: since
the nucleus is surrounded by electrons in motion, there will be

besides the external field, H another field H' , proportional to

ext’

ﬁext’ due to this motion. If we write:
H' = - JHex (@)

the nucleus will experience a field,

> —y -

Hjgeal = Hext + B = Hg,

. 1s not too large. 2

and equation (1) is obtained, provided that H__,

The quantity ¢ is called nuclear shielding or screening con-

stant, but since B’ does not have to be in the same direction of
ﬁ)ext’ 0 is generally a second-order tensor. For most applications

the system is in rapid motion and the quantity actually measured is

the average of 0:
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while the components can be measured in solids3 and gases. 4

The importance of calculating this quantity becomes obvious
if we recall that it is this dependence on the local field in the elec~
tronic environment which makes NMR spectroscopy a powerful tech-
nique for structural analysis. _

Suppose a nucleus, of spin quantum number 1/2 for simplicity, is
in an external constant magnetic {ield, ﬁext‘ The interaction with
the field will give rise to two different spin~states, of different
energies, corresponding to the magnetic moments aligned parallel
or antiparallel to the external field. In general, for a nucleus with
spin quantum number I, there will be (2‘ I+ 1) such states. Now, if

another ﬁeid, H perpendicular to the original one is set oscil-

osel’
lating at a {frequency S, such that hS is equal to the energy spacing

4

between the two levels, nuclei will absorb energy from H osel’ and
these transitions can be detected. This is the general basis of NMR
spectroscopy.

In practice the resonance condition:

hSy = &y Py Hext 3)

can be achieved by varying the frequency of oscillation, S, or the
external field, ﬁext' Technicall}f/{{ is easier to keep constant the
f.requency and vary the external field. The {ield variation is made
by superimposing a very small secondary field to the primary strong

external field, the secondary field providing a sweep of -ﬁext .



The eﬁergy spacing depends on the value of " experienced by the
nucleus, and hence nuclei with the same /T can resonate at different
frequencies since their electronic environment can be different
causing 'different ﬁ)lo cal” In other words, the frequency of resonance
(or the field of resonance) will be a function of the screening constant
for the nucleus.

Practically in OI‘del‘ to avoid the problem of always specifying
both the magnetic field and frequency at which resonance occurs, it
has become common to define a scale of ""chemical shifts' for a
nucleus relative to scme standard compound containing the same

-

nucleus. So, if is the value of the field, at a given frequency

sample

—

})
v of osl?

nance field for the same nucleus in a reference molecule, the

—
for which a given nucleus resonates, and H o the reso-

"chemical shift", in parts per million, is defined by the relation:

Ho -
5 = ref_é sample ., {4° (4)

H

ref



II. General theory of the nuclear shielding

Pava e VoW W oW

Since the energy of interaction between the magnetic moment
of the nucleus, ﬁﬁ, and the external magnetic field, Eext’ is small,
we can use second-order perturbation theory to derive an expression
for g. The spin of the eleétroms can be neglected throughout the
derivation because the magnetic shielding fields originated by them
are much smaller than the contributions from orbital magneti‘c mo-
ment, as discussed by Van Vleck? and Wick.

The quantum-mechanical equation for a particle of mass m
and charge :an an external magnetic field, characterized by the
vector potential A , can be obtained from correspondence with clas-

sical mechanics if we remember that the momentum of the particle

has to be replaced by '
p=mV- (L) A (5)

Using equation (5) the hamiltonian for a many-particle

system in an external field will be:

L (p - a°

where V is the potential energy of the system.

The next steps involved in ohtaining Schroedinger equation
in a more conventional form are: (a) expansion of the square;
(b) choice of a gauge for A. Besides that, we will assume the

Born-Oppenheimer approximation. With this last assumption, the



masses and charges will be all equal in equation (§) (mj =

m = - @) since the kinetic energy of the nuclei doesn't

cieciren’ fj
appear anymore.
Then expanding the square, taking the coulomb gauge,
—
div A = 0 (which is the more convenient for magnetostatic prob-

lems) and the Born-Oppenheimer approximation, we get:

.2 —_— —_ .)2 ___).-“
A g, e R Y L & _RP|svye-EY (D)
-, imc 2mc 4

This is the time independent Schroedinger equation for a
system of spinless particles in an external magnetic field described
by A , in the coulomb gauge and Born—Oppenheimer approximation.

| To derive an expression for ¢ ali we need to know is the con-
tribution to the second order correction energy, due to the shielding.
From equation (1) this contribution is:

AEg = L i

Then to obtain an expression for ¢ all we need is the part
. —
of the energy correction linear in p H.

From equation (7) we can see that the perturbation can be

written:
3{; ! e Z K "p‘) + ez T —K 2 (8)
¥ D e .t N = e
mce j ) J mC2 Z]J ]

and from second-order perturbation theory we know that:
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(9)

Now, for simplicity, we assume that the origin of the vector
potential and the origin of the coordinates system coincide with the
nucleus whose shielding is of interest. With these assumptions,

the vector potential at electron j, Kj , can be written:

. _— . L X
A = 7 (Hyy X r;) + —:T-L (10)
]

where the first term is the vector potential at electron j distant
?j from the nﬁcleus of interest, due to the external magnetic field,
and the second term is the vector potential at the same electron
‘due to the magnetic moment of the nucleus of interest.

Now let's make one further assumption that the field -ﬁex’c
is along the Z axis. Taking into account all the above assumptions,

substituting (9) in (10) and taking only terms linear in u H, we get

2 2
(2) 2 X. +Y.
AE" (uH) = pHO,, = ¢ zp,HZ <ol-4—Ljo> -
- 2mce : r.
J ]
e’ 1 SR
! Z — <0|Z sz‘n>
2mec nz0 E -Eg

’/;d’
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<Jn[Zj L, |0> (11)



From (11) the G, component can be calculated:

AE (2)(,11}{)

(o) = eI kit

V4 L

H

with sinrilar expressions for O x and ny. Taking the average

over all orientations of the system, we get

2

e’ 7 1 e Z 1
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] |

- This formula was first obtained by Ra,msey.8 The first term

9 expression for the diamagnetic shielding

corresponds to the Lamb
and thé second is referred to as the high-frequency or paramagnetic
contribution to the nuclear shielding.

We recall that Ramsey's formula is valid in the rather special
case where the origin of the vector potential and the origin of the
codrdinate system coincide at the nucleus of interest. Chan and

Das10

developed a more general expression allowing for an arbitrary
choice of the origin of the vector potential. The expression was
further generalized by Raynesll for the case where the origin of
coordinates, the gauge origin and the.nucleus of interest are located

at different points.



I Calculation of the nuclear shiclding constant

The calculation of the diamagnetic part of 0 poses no prob-
Iem and  in fact it has been calculated for atoms since Lamb9
developed the expression. For molecules it can also be calculated,
the accuracy depending only on the quality of the ground-state wave
function [0 > 'The great difficulty resides in the paramagnetic con-
tribution which involves the knowledge of all excited states and the
cbntinﬁum.

The calculation of nuclear shielding has been the subject of
several studies. We cite briefly some of the approaches. For a

review of the theory and methods of calculation, the reader is re-

12 Musher, 13 O'Reilly, 14

ferred to the papers by Lipscomb,
Flygare15 and Raynes. 11,16

Methods involving gauge transformation have been explored

17 18 19

by Kern and Lipscomb, Kurita and Ito, *° Chan and

Das, 10 and Hameka, 20

Sadley,
in an attempt to cancel or minimize the
paramagnétic term. In general the results are good only for pro-
tons in diatomic and triatomic molecules.

A variational method was introduced by Tillieu and (}uy‘?‘1
where the trial wave function has an explicit dependence on ﬁo_.
The same form of function was used by Das and Bershonz_z to the
-calculation of 0 H,. While the method seems to give reasonable
results for diatomic molecules, it fails when the wave function has

nodes. Another type of trial wave function was introduced by

Ishiguro and Koide23 to calculalc magnetic properties of H,, with



10.

reasonable results. Karplus and Kolkerzd‘ developed a variation-
perturbation method ‘and used it to calculate magnetic susceptibili-
t;es and shielding constants for diatomic molecules. The method
is good for H, F and Li nuclei but fails for other nuclei. Again
care is required if the wave function has ncdes.

Perturbed Hartree-Fock theories have been developed by
Lipscomb et al. 25 and applied to '5 diatomic molecules, and by
Pople et al. 26 for diatomic and small polyatomic molecules. Some
of the results are in agreement with experimental data.

From all the methods proposed the best results are obtained
by perturbed Hartree-Fock theory, which means a lot of computa-
tional effort and, at least for the moment, impossibility of studying

larger systems.



11.

Proyposition

We propose a different approach where, starting from
Ramsey's expression, the summation over excited states and inte-
gration over tlie continuum is to be replaced by an "effective’ sum-
mation over a discrete spectrum obtained with a RPA (lower EOM)Z,7
calculation. |

The spectrum generated by a RPA calculation has some
features that encourage us to use it in the study of second-order
magnetic properties, like nuclear shielding constants. It was

shown a long time ago by Dalgarno and Lynn28

that if a given set of
oscillator strengths for a given system satisfies the osciilator
strengths suni rules, this set can be used to obtain accurate values
of these properties which can be written as sums of oscillator

29

strengths. More recently Harris® has shown that the RPA method

satisfies the ogcillator strengths as well as rotational strengths
sum rules. Recently, a good test to the validity of these arguments
and applicability of the RPA approximation to the calculation of these

properties has been provided by Martin et al. 30

These authors
used the RPA approximation and a direct sum over states to caicu—
late second-order dipole properties and van der Waals coefficients,
using a basis set expansion and no eonfinuum like wave functions.
Results reported for H, and He are in"excellent agreement with
experimental results and other extensive calculations.

The ability of the RPA approximation to reproduce those

second-order properties using a discrete basis set encourages us



to investigate its applicahility to second-order magnetic properties.

ithough there is no sum-rule equivalent for the nuclear shielding
and other second-order magnetic properties, we believe that the
RPA thethod provides us with a good set of matrix elements and
excitat\ion energies, such that the complete sum over states and
integration over the continuum can be "effectively” replaced by a
discrete summation. This is basic'ally the philosophy of the EOM
method, namely, to get good matrix elements without trying to con-
struct elaborate wave functions.

Initially we would perform calculations on small diatomic
molecules for which good experimental results are known, and then
depending on the success of the method the calculations would be
extended to other small molecules. An interesting application

81 to be para-

should be BH (12 ) surprisingly found by Lipscomb
magnetic, although no experiments are yet available for comparison.
But we have to consider that the result by Lipscomb may be due to a
bad description of BH molecule in the Hartree-Fock treatment. 33
Since we use as zero;order a R wave function, the method
as it stands now would not be applicable to large molecules, but a
success of fhe method for small molecules would encourage us to
.semi-empiricize the method such that it could accept, for instance,
CNDOQ/2 wave functions. That would be another good test for the
RPA method, since it is Imown thaf the EOM matrix-elements are
particularly insensitive to the approximate ground state used to
set up them. 32

Finally we want to comment that magnetic susceptibilities

can ke calculated simultancously since all the matrix elements
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necessary to its calculation are used to calculate the nuclear

shielding constant.
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PROPOSITION 1T

An investigation of the effect of 0 correlation in

the ordering of excited singlet states of polyenes

Abstract

S e

Until recently the ordering of the excited singlet states of
polyenes seemed to be well established. Recent experiments as well
as theoretical calculations seem to indicate the existence of a low-
lying lAg state (trans-~polyenes) other than the well established 1Bu
state. On the other hand, another set of experiments and calcula~
tions seem to support the original orderiug.

Experiments are in progress in an attempt to clarify the situa-
tion. A more complete theoretical treatment is necessary in order
to understand the origin of the theoretical controversy as well as to
understand which factors are important to consider, if we want a
good theoretical model to describe the spectra of these molecules.

We propose to investigate the importance of ¢ correlation
energy in determining the ordering of the excited states of these

compounds.



1. M{i\uctmn

Polyenes have been the subject of intensive studies since
Hausscr and coworkers first performed a detailed spectroscopic
study of these compounds. 1 His work has been reviewed by Mulliken, 2
Maccoll, 3 Bayliss4 and Plat. o Most of the earlier theoretical and
experimental work was done in the period between 1930-1950. The
interest in the subject was reactivated in the 1960's from a desire
to understand the spectral and phetochemical properties of the visual
pigments, where polyene chains play an important role as chromo-
phores.6

The main conclusions that came out from Hausser's work are:
(a) the linear polyenes all have a strong transition in the near ultra-
violet or visible with an oscillator strength varying between 1 or 2,
and increasing in magnitude with chain length; (b) the excitation
energy varies with increasing chain length converging to an asymp-

' (e¢) the fluorescence spectra of

totic value of about 18, 000 cm™
some of the compounds showed approximately the same vibrational
structure and intensity pattern as the absorption spectra, while for
others there is a separation between the first peaks in absorption
and emission, with this spacing tending to increase with the number
of double bofxds; (d) fluorescence and absorption spectra display
differeﬁt spectral shifts when the polyéne is transferred from one
solvent to another. While fluorescence is practically unaffected,
the absorption, for instance for diphenyl polyenes, occurs at lower

- energies as the solvent polarizabilily increases.



Early theoretical descriptions7 using either FEM08 or
I_.C‘.l&()vl\,i()2 yield qualitatively correct results. In the free-electron
molecular model the resulting orbitals alternate symmetry (Ag, By
Ag. ..) as energy increases. LCAO-MO results predict a ground-
state of A o symmetry followed by a Bu and two other A o states. Then
both models explain the strong allowed transition (lAg — lBu) and the

lower intensity of the next higher singlet transition (*A_ — JLAg), al-

though they differ in the ordering of the third and highef excited
states. In their simplest form both FEMO and LCAO-MO fail to
account for the energy gap for the first transition as the chain length
increases. Both models predict a zero gap, althougl} in the FEMO
model the inclusion of a sine wave to the poéential well gives a con-
stant ehergy gap but still in poor a,greeme»nt with experimental results.
Valence bond calculations have been performed also. 9 These calcula-

tions predict a low-lying excited state of A _ symmetry in conflict

g
with PTEMO and LCAO calculations. But these VB caiculations are
inexpressive since both ground and first excited states have been
represented by covalent structures, while the singlet excited state
is almost certainly expected to be dominated by ionic structures.

Then, until recently, the ordering of the singlet excited
states scemed to be well established and understood even by using
very simple theories. .

Recent experiments suggested the existence of a low-lying

excited state of 'A e symmetry. Some theoretical results tend to

support its existence while some other calculations, as well as



experimental results, tend to coniradict it.. We proceed with a brief
account of these results. For a recent review the reader is referred
to the paper by Hudson and Kohler, _10 although these authors, being
advocates of the existence of this new state, tend to emphasize the

experimental evidences which suggest its existence.

I RecentvEx eriments and Theoretical m

It seems that the whole story began with Hudson and Kohler's

10

experiment in the o, w diphenyloctatotraene (DPO). Their high

resolution optical absorption and emission spectra in crystal matrices
at the liquid helium temperature indicate a transition to a singlet

state-excited state at lower ernergy than the sirong ‘A lBu tran-

g
sition. The transition to the "discovered" state is only weakly al-

lowed (f = 0. 06 relative to f = 1. 5 for the ‘A 1Bu a-" transition).

11

g
In an accompanying paper, Shulten and Karplus

presented PPP~CI
calculations on the all trans butadiene, hexatriene and octatetraene.
These authors showed that if in addition to single excitations, double
excitations are included in the CI, there is a reordering of the states,
the lowest-lying singlet being now of Ag symmetry. With this reorder-
ing the weak transition in DPO could be understood on a basis of a
forbidden transition 'A_— ‘A . They concluded that this transition

g g
should be a characteristic of all polyenés and related compofids.
That reordering has been noted some time ago by Koute<:k§r12
in going from a single to a full PPP-CI calculation on the same com-

pounds. Thus the real contribution front Schulten and Karplus was



to show that the ordering of stales cbtained with a full PPP-CI is
the same as the one obtained with a S + D CI (single + double exci-
tations). The relative energics cannot be compared because of the
difference in parametrization.

In another experiment Moore and Song13 measured the DPQ
excitation and fluorescence spectra and their polarization, at 7T7°K.
They observed a weak low-lying transition which they interpreted as
resulting from dimeric stacking of the DPO molecules. They report
that many polyenes form aggregates at concentrations as low as
107 M, and that these aggregates are responsible for the Weak
transition observed. I their interpretation is éorrect that could
be the cause for the weak transition obhserved by Hudson and Kohler,
since the DPO concentration used was hig‘h enough to allow for the
formation of these aggregates.

More recently, two photon absorption studies of DPO have
been performed. 14 The preliminary results seem to indicate the
existence of a state lAg below the allowed 1Bu. Again the concentra-
tion of DPO was high enough to allow formation of aggregates, but
besides that, the authors themselves seem to agree that the results
must be examined more carefully. 15

Even considering that the weak transition in.DPO is due to
a forbidden transition JLAg — lAg, this Py no means implies that a
similar transition should be observegwin all poly‘enes, mainly those
without bulky substituents like phenyl groups. -

In fact, 1,3 butadiene has been studied experimentally by



g» state has been

found, while the existence of one such state slightly above the lBu

. . 1
several authors and no evidence of a low-lying "A

has been observed (see Table II).

16

Electron impact spectra of 1, 3 butadiecne™™ and 1, 3, 5 hexatri-

a.ne17 have been reported recently. No transition 1Ag — A o was
observed below the J'Ag - lBu for bu"cadiene.

More recently, Gavin and Ric:e18 presented data {rom
vacuum-ultraviolet spectra of cw and trans 1, 3, 5 hexatriane. They
didlmt observe any low-lying band that could be attributed to a sym-
metry forhidden A g - lAg transition. They carried out an analysis
of the spectrum, determining positions, intensities and widths for
the absorption bands of both isomers. Besides that, they performed
a PPP-CI calculatioh using different parametrizations, and with
single and single + double excitations. The reordering of states
with the S + D excitations was again observed, but a much better
agreement between experiment and calculation was obtained with a
single excitation calculation. The authors reported that further work
on octatetraene was in progress, and we have been informed that
again no band for the new state was observed. 19

At this point it seems that ab-initio calculations of these
molecules are more than justified, and in fact some calculations
for butadiene have been reported, but not for any higher member of
the series.

Buenker and Whittenzo' performed ab-initio calculations for

butadiene using a minimum basis set ({ixed-group lobe GTO),



including single excitations, S + D, and {full CI treatment. When

S + D excitations were included they noted the reordering of states
similar to the one predicted by PPP-CI treatments, the main feature
béing the appearance of a low-lying A g state before the lBu. How-
ever, in all CI's the transition energies are in complete disagree-
ment with experiments.

Shih et al. 21 improved the basis set used by Buenker and
Whitten by decomposing some of the fixed groups and adding diffuse
3pw functions at each carbon atom. These authors noted that when
some o core relaxation is allowed, a full 7-CI gives a low-lying 1Bu
state followed by a lAg state, but with transition energies still high
by ~0.5 eV. '

22 performed an extensive CI

More recently Hosteny et al.
calculation for butadiene, which can be characterized as a full 7-CI
with a frozen SCF o0 core. While some triplet states are in good
agreement with experiment, the singlets show again the reverse

order, and the transition energies not in agreement with experiments.

I0. Discussion and Proposition

The use of approximate schemes like the PPP method and
others has achieved a high degree of popularily because of its simpli~
city and thé possibility of its applicajion to the calculation of large

23 However the results have to be examined carefully. In

systems.
the specific case which we are dealing with now, the various PPP

calculations used different parameters. For instance, Schulten and



K_zz:t‘y.»lusll used a linear approximation for the resonance integrals?‘lg‘
and the O}mo?‘5 formula for the clectron repulsion integrals, and the
program parameters were obtained by fitling single excitation results
to‘ the spectral data. Gavin and Rice18 used the same approximation
for the resonance integrals hut the IviataganNishimotoZ6 formula for
the electron repulsion integrals. The parameters were scaled to
reproduce excitations for benzene, hexatriene and octatetraene.
Kouteck)'/rlz studied in detail how the ordering of states is affected
by a choice of the approximate formula for the electron-repulsion
integrals. Of course, the energy of the states in a simple PPP cal-
culation is a function of all parameters, but the reordering due to
the CI is mainly dependent on the choice of the electron‘»repulsio'n
integral approximation, which determineé the correlation energy.
These integrals can be written as a function of the internuclear

distance

Vij-

= v (Ry) (1)
He concluded that for a given molecule, correlation effects will be
more pronounced if the function (1) is a more steeply decreasing
function of the interatomic distance. According to this conclusion
large correlation effects are expected in the Mataga approxiniation
than in the original PPP. §Still larger correlation efiects wiil be
obtained if the integrals were calculated theoretically using Slater
orbitals. The calculations by Koutec_k{l showed a general tendency

for a low-lying g state to be shifted to lower energies, to a greater

extent, upon extension cf the CJI, than the lowest u state. This result



suggests that it is possible to find a set of realistic parameters such
that, even with a full CI, the g state will not be shifted below enough
to be the first singlet excited state. In fact that hids been recently
shown for butadiene, by Shinoda et al. 27 These authors used a reso-
nance integral abproximation proportional to the overlap integral and
a Mataga-Nishimoto like-approximation for thé repulsion integrals.
The parameters were adjusted to fit transitions in benzene. Three
different CI's were performed and in all cases, including the ones
with S + D excitations, the lBu state was found below the 2'A o and
in one of the treétments including S + D excitations, the transition
energies for these two states are in good agreement with experiments.
It is clear from the exposed above that approximate 7 electron
theories, as they stand now, cannot give an answer to this problem.
It is unfortunate thag simple theories which can be applied to the
calculation of large systems, present such ambiguities. Recently,

Freed28

decided to attack the problem of putting purely semi-empirical
theories in a more theoretical basis, trying to define a trué effective
Hamiltonian and true parameters. There are many guestions to be
answered yet, but the approach is very interesting and promising.

Now let us turn our attention to the few ab-initio calculations
performed up to now. Before that, one word about the quality that
can be expected from these calculations. First of all, the choice of
a good basis set is of fundamental importance. Secondly, the CI pro-

cedure has to be built in such'a way that, within the limitations of

time, money, etc., it includes the main correlation features
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necessary to describe a given state.

The basis set used by Buenker and Whittenzo

is much too
contracted, restricting its ability to describe different states with
d'if'ferent characteristics. Besides that, the CI treatment only cor-
related the four 7 orbitals and the highest 0 occupied orbital. Fol-
lowing the authors, the idea of including single ¢ — 7™ besides

7 — 7" excitations was suggested by the small energy difference
between that orbital and the occupied 7 orbitals. No diffuse functions
Were included in the basis set and that was pointed out by other
authors21 as one of the main r easons for the failure of the calcula-
tions, but we want to comment on this later.

Shih et al. 21 decomposed the original basis set of Buenker
and Whitten in different ways, obtaining ﬁmch more flexible basis
sets. For the calculation of # — 7* excited states 3pw diffuse func-
tions were added to each carboh atom. A full CI treatment was
undertaken where only the # MO's were allowed variable occupation.
The results of these calculations still showed the 2 1Ag stzite appear-
ing below the 1Bu. The best results were obtained using a full 7-CI
(PCMO), where the excited orbitals used in the CI expansion are the
ones obtained by the SCF treatment of the parent configuration. With
that procedure the 1 lBu state appeared below the 2 1Ag state, but
both transition energies are still high by ~0.5 eV. The niost
important fact to be noted is that the energy of 2 JLAg state did not
change at all with the CI (PCMO) while the 1 1Bu state was lowered

by 0.3 eV. Since this procedure allows some 0 core relaxation,
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that suggests its importance in the deécription of the 1B.u state. One
interesting question which emerges from these results is how much
of the improvement obtained was due to a better basis set and to the
0'core relaxation. Based only on these results all we can say is that
both effects are equally important.

Now let us see what happens if we try to improve even more
the basis set without taking care of 0 correlation. The answer for -
that can be found in the most recent calculation of butadiene, by

2
22 These authors used a double-g contracted GTQO's

Dunning et al.
basis set plus two diffuse 2‘17 functions on each_carbon atom. A full
7-CI with frozen SCF 0 core was carried out. The results for the
two low-lying singlets of Bu symmetry are higher by 1 eV and the
2°A g appears ~ (.3 eV below the llBu state. The results of some
of these calculations are presented in Table II.

It seems evident by now that no reliable calculation for the
singlet states of butadiene has ever been done, since an impoertant
factor, namely o correlation, has been practically neglected. The
importance of o correlation for the description of singlet Bu states
can be seen also from a VB point of view. First we should expect a
good similarity, between V and T states of butadiene and ethylene.
Now, while in the MO-CI picture the V and T states of ethylene are

isoconfigurational singlet and triplet arising from Z the

*
P core ﬂuﬂg ?
V state is purely ionic (1/v2) [A 5 - A ] and the T state is purely
covalent (1/¥2) [A -

be expected that the effect of the readjustment of the 5 electrons in

A= ] in the VB method. Therefore it is to
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the V state is much larger than in T and N states. A recent VB

calculation of butadiene by Campion and Karpluszg

shows that only
ionic structures contribute for states of Bu symmetry.

Before putting the proposition in a final defined form, we
want to comment on the use of diffuse functions to describe these
"B, states. Since most of the SCF calculations use of Roothaan
approximation to the Hartree-Fock model, the use of extended basis
sets of AQ's, shall in principle give better results. Of course the
infinite expansion would be equivalent to the Hartree-Fock equations.
But since this is unpractical we hope to find a finite optimized basis
which give§ us a Hartree-Fock or near Hartree-Fock results, and
then include correlation effects. Then double-d and extended basis
sets are necessary for a good description of the molecular systems,
since minimal basis sets give, in general, a poor description even
of the ground state.

The use of diffuse functions has been shown to be important

in the description of the V state of ethylene. 30, 31

Now, since
butadiene can be viewed as formed by two ethylene units, we should
expect the V state of this compound (as well as for higher polyenes)
to be similar in character. There is no question about the importance
of these diffuse functions. But one thing we would like to know is
how diffused they really need to be ij} order to give a good descrip-—
tion of these states. This is an important point because the use of

these diffuse functions, while giving better results, gave rise to a

question about the character of these states,



13.

" In some of these calculations for the éthylene molecule where
diffuse pw functions have heen used, 30-32 e resultant V state is very
diffuse (Rydberg-like) while the T state is always valence-like. Qther
calculations which do not use standard CI techniques predict both

33-35

states being valence-like. Table I shows some of the calcula-

tions with their principal characteristics and resuits. The experi-
inental results seem to confirm the valence character of the V state. 36
Let us see if it is possible to unde1~stand why some of the CI calcula-
tions generate a Rydberg-like V state. At least for two of such cal-
culations, where a full 7~-CI with ¢ -core relaxation has heen done, 30,31
the lack of a good treatment of ¢ correlation energy, could be respon-
sible for such diffuseness. But in the calculation by Bender et al. R 32
all the S + D excitations, including those from the three highest occu-
pied o orbitals, were considered and they still got a diffuse V state.
While thé inclusion of ¢ correlation reduced the second-moment of
the ‘if; orbital ( (a?)) froni 49,1 to 35. 4 bohrz, it is improbable that
the inclusion of higher excitations would contract this orbital to such
an extent as to give a valence character to the state. So, it seems
that this diffuse character is being forced by the use of such high
diffuse p7 functions.

Now a short comment on two of the calculations in Table I
which used diffuse funections and predicted a valence character to

33 the diffuse

the V state. First, in the work by Ryan and Whitten
functions added are not so diffuse as in the calculations by Bender

et al. Besides that, the particular process of getting the o* orbitals



14,

to be used in the CI expansion makes impossible a direct comparison
between this calculation and the one by Bender etal., in respect to
the balance of 0 correlation versus use of diffuse functions. But the
importance of mixed (0—a*) (7 — 7*) excitations was so evident

in the work by Ryan and Whitten that it led Mulliken37 to use it as an
argument about the possibility of the V state being, ‘in reality, a

- mixed Vo V# state. The failure of the calculation by Dunning et al. 22
- on butadiene gives some support to this argument. About the calcu-

35 again since, at least for the moment, there

lations of Rose et al.,
is no established correspondence between the RPA, HRPA aud standard
CI techniques, nothing can be learned from those calculations about
the balance-of o correlation versus diffuse f'unctions in CI calculations.
Then, the proposition consists of é careful study of 0 correla-
tion and the use of diffuse functions in the description of the V state
of ethylene and butadiene, using standard CI techniques. For ethylene
we are more concerned about the diffuse character of this state pre-
dicted by CI calculations, while in butadiene besides the diffuse char-
acter, the reverse order of the singlet states has to be clarified.
Another interesting point to be checked is how effective a tight d
function compared with diffuse p# function, would be in providing a
gcod basis to describe the correlation effects. What we can learn

from these studies will be important to understand the properties of

higher polyenes.
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Table 1 (continued)

& For the ease of GTO's the contractions referred to the gaussian
sets of Huzinaga.

b Experimental transition energies: (N— V) =7.6eV, (N— T) =

4.6 eV (vertical transition energies).

€ From a natural orbital analysis.



"(ZLBT) €11 ‘9L ‘rwayd 'shyd L ‘-If 9100 H P ;

112 'd ‘L9861 HMJIOX MON ‘00uUsardSIdIuUl ‘U0SSEa[D 'S 'Po ¢, SOrjeuUrs] [BOIWAY)D Ul $8559201d

Kxewtad pue suoroesYy 3Sed,, Ul ‘JJOYI}S0Q ‘L T PUB JIBH J8p UeA 'V ‘£ ‘ewsxaduoad ‘H ‘H s

‘62 ‘o D

gC "IY

12 "I¢Yd q

02 "I/ 4

- - - - S 2 ) ) ez’ N g,z

200 * 60 "L €L gL | L84 - 90 '8 86 "L - smﬂm

- - - (9¢ 9 L% L9°9 L9°9 IL°L mﬁm

260 F26°¢ 1°9 9~ 166G 8S 6 G0 "L 09°9 ¥¢°01 smﬂﬁ

E0CFI8¥ 67 - - - v0°¢ G6 ¥ 3%°9 mﬁ, 1

¥0'0 F22°¢ ¢ €°¢ % '€ - Gy '¢ v ¢ Gg 'y nm:

muummﬁﬁ %owgmﬁ JUH01108TH 1eo1dO wmﬁmﬁ&j ; ‘1e 19 g ‘18 19 2UONTUM 91838
toxjoera uol  |poddear, uordwre) | AU9)SOH qrys + xoxueng

symsey jejuswiredxd SS9y [ed138I09y],

(AS ur) ouarpeIng g ‘1 SuBJI) JOJ SOLFISUI UOTITSURI) SWOS JO SUOTIRINO[RI ONIUT-(E JO SIfnsay  °II oTqel




18.

Table II (continued)

® Ref. 16.

h‘D. F. Evans, J.Chem. Soc. (Londen) 1735 (1960).

L 1. C. Jones Jr. and L. W. Taylor, Anal. Chem. 27, 228 (1955).

! W. C. Price and A. D. Walsh, Proc. Roy. Soc. London, 174, 220
(1940).
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Proposition 1IJ

Abstract

f-Diketones are well known to exist in a keto-enocl tautomerism.,
‘In these compounds the enol form is stabilized by a strong hydrogen
bond. The nature of this hydrogen bond has been the subject of
extensive studies, and some models have been proposed to account for
its properties.

We propose to study these compounds using high-resolution solid
state PMR. We believe that the results obtained by this technique could
bring some new evidences for the understanding of the nature of the

hydrogen bond,



B-Diketones are well known to exist in a keto~-enol tautomeric

equilibrivo:

\The e:j{istence of both forms can be clearly demonstrated by
PMR where two distinet pmr signals ére observed, 1,2 In some cases
" (for instance, X=Y=CH, and R=CN, NO,,SCN) the total enolization has
been observed by the absence of signal for the CHR group. 3 The intra-
moiecular nature of the hydrogen bond in (E) form can be proved
by studies of the H-bridged chemical shift dependence on solvent and in
solvent concentration. It has been shown that, provided the solvent is
not too basic., the chemical shift of that proton is independent of con-

2 The formation of the hydrogen hond

¢entration and solvent system,
can also be characterized by infra-red spectroscopy where a broad band
is observed in the region of -CH stretching.

The nature of the intramolecular hydrogen bond in the enol
tautomer has received considerable attention., One of its interesting
- aspects is related to the chemical shift of the proton participating in

the hydrogen bond. In acetylacetone (2,4-pentanedione) the chemical

shift for this proton occurs at ~15,4 ppm relative to TMS (tetramethyl-



silane) and depending ou the substituents, it can be shifted even more
to down field. For instance, in case X=Y=¢ and R=H, the chemical
shift is ~ 17 ppm. This means that these protons are very disshielded.
In some cases these chiemical shifis show a temperature dependence
which suggests that more than one state with different chemical shifts
for the bridged hydrogen exist in equilibrium.

One of the most important questions to be answered is whether
the hydrogen bond in the encl tautomer is best described as a vinyl
alcohol group hydrogen-bonded to a carbonyl oxygen or whether the
potential function for the proton motion is a double minimum,

Many a.uthorsz’ 4-6 have tried to explain this large downfield
chemical shift, assuming that the bridged proton moves in a double

minimum potential, and due to the possibility of tunnelling the chemical

shift would be formed by two different contributions:

b= P, 8, + P, 5,

H

where P, and §; are the chemical shift and probability of the proton
being in the first potential well and P, and §, for the second potential
well,

Acetylacetone has been theoretically studied by several

authors7'9

and the existence of a double minimum seems to be con-
firmed. DBut, for instance, if we take X=Y=CF,, the potential does
not show a double minimum. 8 For this case the chemical shift is
~13 ppm and this compound does not show temperature dependence in

the chemical shift, At first we could be tempted to relate the decrease



of & and the absence of temnerature dependence with the absence of the
double minimum. But in acetylacetone, where the double minimum is
present, an increase of § with temperature should be expected but a
decrease is observed, So it is not quite clear how important the
tunnelling mechanism is. For acetylacetone another type of enol-enol
tautomerism was proposec19 and in this case it was assumed that the
enol tautomer was present in two different forms in rapid equilibrium.
Thedle two forms would be a symmetrical form, with the hydrogen atom
at th.e same distance of both oxygen atoms and an asymmetﬂc state with
the hydrogen more localized in one of the -OH bonds. These states
would correspond to different excitations of the donor-acceptor
vibration levels. Because of the smail difference in energy betﬁveen
these two states, they would both be populated at room temperature and
would be in rapid equilibrium. With an increase of temperature, the
donor-acceptor vibration levels would be excited, and more protons
would be moving in an asymmetric potential, explaining that way the
decrease of chemical shift with increased temperature, That could be
the case for acetylacetone, but not for the hexafluor substituent.

The effects of B-substituents do not make the situation clearer.10
Table I shows some experimental results for symmetric and non-
| sy‘mmetric substituents, The only thing that is clear from these results
is that the chemical shift varies in the same direction as the electron-
donating ability of the substituent group. For symmetrical cases we
will probably have a double minimum potential. On the other hand, for

the case of -CF, and ~¢ groups, which differ strongly in their electronic



Table T

from ref, 10
?
[ |
O™M7 O
Substituent Substituent acse Gu:t“ K
- No. X Y {(ppm)  (ppm)  (ppm)
1y —CF, —CH, 1424 {423 =001
2y —CF, —2.C H,0 14-3b 1426 =004
3) --CF, --2-C,H,S¢ 14-50° 1448 =002
4y —CF, ---2-CH,S 14-64 1458 0606
(5) —CF, —C.H; 1500 1499 =007
6y —C¥, ~2-C H,0 1480 1479 =0-01
(1) —C,F, —2.C .S 15-10" 1511 —0-01
(8) --Cti, —-2 4,06~ 15407 1548 —0-08
—(CH,),CH,
(9 —CH, —2-CH,S: 1556 1565  —009
(18) —CH, --2-C,H,§ 15-66% 1575 —0-09
(1ty —CH, —3-C 1,52 15-90 15-86 -+0-04
{12y —CH, —p-NO-CH, 1592 1590 +0-02
(13) —CH, —4-CH, 1595 1595 000
(14) —CIH, —CH; 1611 16:16  —0-05
(15) —2C,H,0  —2.CH,S2 1561 1568 —~007
(16) —2-C,H,;0 —3-C,H,S= 15-50 1589 —0-09
a7y —2-C,H,0 —C,H; 16-3° 1619 -+0-11
T (18) —2.4.6- —CyH; 163 1624 -+0:06
(CH,),CH. :
(19) —2-C,H.Se  —3-CH,Se 1610 1611  ~001
{20) —2-C,H Se —C,H,; 16-31 1641 —G-10
21y —2-CH S —3-C,H,S¢ 16-12 1621 —0-09
(22) —3-C,t{,Se —C.H, 1663 1662 4001
2Q3) " —p-NO,-CH, —-C\H, 1644 1645  —0:05
“(24) —p-NO,-CH, —C.H; 1664 1665 —0:02
(25) —t-C,H, —CH, 16-7¢ 1571 —-001




and steric properties, we would expeet a very deformed potential,
However, the cheinical shift for this compound is almost the same for
acetylacetone,

It would be interesting to examine the behavior of these com-
pounds in a sitvation where a possible tunnelling mechanism is absent
or at least very ineffective, That would imply a low temperature study
and in such condition these compounds will be in solid phase,

Solid state NMR has been used for many years as a tool for the
study of solids. Chemical shiits are easily observed in liquid phase
due 1.30 the fact that the much stronger dipole-dipole interaction is
averaged to zero. But in solid state this is not the case and in general
what is observed is a broad line, and small effects like chemical shifts
cannot be measured.

Much effort has been made to develop techniques to try to
average to zero the strong dipole-dipole interaction allowing the
measurement of the chemical shift., Today multi-pulse technliques11
can be used for this purpose and chemical shifts are being measured

12 One of the great advantages of solid state NMR

with high accuracy.
is the possibility of measuring the conyponents of the tensor chemicai
sh ﬁt, since in the liquid phase only the average chemical shiit is
measured, The components can be very useful in explaining direction&l‘
properties of chémical bonds.

So we propose the utlization of high-resolution solid-state NMR

techniques to investigate the hydrogen bond in these compounds.

For compounds in which we would expect a symmetrical cr near



symmetrical double minimum, an abrupt change in 6 would indicate the
importance of the tunnelling mechanism., In the case of the hexafluor
acetylacetone we would expect no changes or very small changes, since
we .knox_v 2 priori that the potential has no double minimum. Now , a
iarge change in this case would indicate that another type of mechanism
is operative here, which could be a thesis subject for someone else,

starting with a more precise calculation of the potential,
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