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ABSTRACT

For calculations on molecules and solids it has proven
useful to replace the various core electrons with a pseudo-
potential. The most common method for doing this, that of

“Phillips andKleinman, suffers from the disadvantage that

the pseudopotential obtained is not unique. It has previously
been shown, however, th t the non-uniqueness problem can be
resolved by the use of ab-initio GI orbitals as the basis

for the potential. Such potentials have proven quite
satisfactory in replacing the core electrons in molecular and
solid-state calculations. Unfortunately, systems of ten or
more electrons are not accessible to GI, so that the approach
cannot be used for sodium, for example.

We have examined the GI orbitals and effective potentials
for 1Li, Be+, Bir+ and compared these orbitals and potentials
with those obtained from the usual Hartree-Fock formalism,
but employing an extra condition on the orbitals to ensure
unigqueness. It was found that a condition suggested (but
apparently never tried) by Cohen and Heine, that the Hartree-
Fock core orbitals be allowed to mix with the valence
orbital in such a way as to minimize the kinetic energy,
produced orbitals and potentials nearly identical to those
from the GI methed.

We then employed this method to obtain local potentials

2 2 2

for the ”S, "P and "D states of sodium. These potentials

were found to reproduce the spectrum of sodium quite well.
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These potentials were then used to study the energy levels
of sodium metal at the high symmetry points in the Brillouin

zone, employing the GI band structure formalism.



I. INTRODUCTION

This paper reports research on the use of pseudopotentials
in metals and on problems arising in the determination of
such pseudopotentials. The introduction of the pseudo-
potential into the theory of metals has allowed for certain
computational and conceptual simplifications which have been
found to be gquite useful.(1-5) Subsequently, it was shown
that the pseudopotential could be determined from the orbitals
obtalned from the Gi method.(6) These pseudopotentials
were then applied to the calculation of the band structure
of Li metal.(7) The problem that will be presented here
is what to do when the Gl wavefunction is not (and can at
present not be) calculated. That is, some way must be found
to obtain a Gl-like wavefunction which can be calculated,
say, from a Hartree-Fock wavefunction. We shall dezl first
with this problem, épecifically with regard to Na and then
deal with the application of the resulting potential to the

band structure of Na metal.
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II. THE MINIMUM KINETIC ENERGY ORBITAL

For the purposes of this discussion we will be concerned
with the Phillips-Kleinman (1) type pseudopotential, Their
development of the pseudopotential was a direct outgrowth
of the orthogonalized-plane-wave (OPW) method. The basic
“idea of their work (as given by Cohen and Heilne(5)) was to
find the equation satisfied by the "smcoth"™ part of the
valence orbital. That is if the valence orbital ¢ satisfies
an equation _

Ho = (Txv)¢ = EQP
where T=-3v*and V is in general some non-local operator,
then the "smooth" part is #° which is an eigenfunction of
some other Hamiltonian with the same eigenvalue,
s ¢s = § @S
Indeed, Cohen and Heine find that the Hamiltonian is of

the form
HPz Bt VR = Tyyev® = T o Veid

where VR is a repulsive potential which cancels much of

the attractive V. in the core region thus leading to a
smoother orbital. Thus the total effective potential,

Veff, is much weaker than V., This has two important
consequences: (1) the Fourier transforms would be expected
to be more rapidly convergent, and (ii) the potential

could be used as a perturbation to describe electron-phonon
interactions. Consequehtly. the ¥smooth" wave function

could easily be approximated by a few siample functions such
as a few plane waves. There are some problems, however, with

Veff. It is a non-local operator (5) (integral operator),
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it is not Hermitian (8) and it is not umique.(5) It has
been pointed out (6) the ¢° cannot be interpreted as a one
particle eigenstate_of an electron moving in the averaged
field of all of the other electrons.

As was pointed out by Goddard (6), the way out of this
"dilemna may be found'by using a different basis for the
determination of the pseudopotential. That is, one begins
with the ab initlo atomic solution using the Gl wavefunction.
The'equations thus obtained are of the form

H,_' qb‘: £ ¢‘ <z i, N M= # electrons
where @' are the optimum orbitals and Hi is of the form

M,z T+ Voo + UM

Vnod = nuclese pokenbial , U &« averosed potential duc Yo obnee N-t etecheons .
In this case Hi is Hermitian and non-local and the & are
not orthogonal. The Gl valence orbital for an atom is a
smooth, nodeless orbital. This method, then, should form
a good basis for the determination of a pseudopotential.
(Note that the total Gl energy is lower than the total
Hartree-Fock energy.) What we wish to do is find a local
potential UP which satisfies the equation
(39" - B auf) b= e, 4,

P is a function only of r. If ¢g is nodeless, as

where U
the Gl valence orbital is, this equation may be simply

inverted to obtain

A b
U?(r) = E‘_ + 2:“ + z'--—-—V ?b('
@,

Furthermore, 1if one uses §ﬁ§) = @ce) , then the equation

reduces to

f - . lnuc - w) .l. é_l—@
Uty = &t =% 2en 26 I
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The total effective potential, Veff, thus becones
Veu () = Up(r) - -2—335

As was pointed out by Goddard, the potential and thus the
Hamiltonian have none of the previous difficulties (i.e.
it is Hermitian, local, and unique). Such pseudopotentials
have been now used féf molecular calculations with very
good results (9); as wall as for band structures (7).

The problem of finding the pseudopotential is then reduced
to the problem of performing the atomic GI calculation.
Things are not gquite that simple. At present only atoms
through Ne may be calculated with existing Gl prograams.
Therefore, to attack problems of pnysical interest one must
find an alternate route to the pseudopotential. One would
hope to be able to retain the advantageous features of the
Gl pseudopotential, so that one might try to find a ¥"pseudo-G1*"
wavefunction to use in the foregoing formalism. We shall
now look at this aspect.

Cohen and Helne (5) suggested several methods for
choosing ¢° so that it is unique. That is, since #° is
not unique, it 1s possible to introcduce an extra constraint
on ¥° to make it unique. One way suggested (although
apparently never tried) was to choose ®° to be the "smoothest"

possible function; l.e. to minimize the quantity
Jivesttsr

. f¢5"’ ¢S A.T
This is equivalent to minimizing the Kinetic energy of ¢°,

that is, to finding the ®°for which
(s | T 1 @5)
(@51 ¢%) ’
is a minimum. Thus the "smoothest® orbital for use in a

Y
T:-1 @
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pseudopotential determination is the minmum kinetic energy
orbital. However, the Gl orbital is also a smooth nodeless
orbital. Is there a connection? MNore specifically, we
wish to’investigate the connection between the Gl valence
orbital and the minimum kinetic energy (referred to here-
after as MKE) valencé‘orbital for an atom.

First of all, for Hartree-Fock wavefunctions it is
possible to mix an arbitrary amount of an orbital for a
closed shell with an open shell orbital to form a new open
shell orbital. Consider the case of Li. Here we have the
Hartree-Fock wavefunction ¥ which may be written

@ z A (Pt by B )
where A is the antisymmetrizer. If we construct a new 2s
orbital Qé such that
s = < bt G Pus
and then evaluate the energy, we find that

' (A(¢\5N ¢155 ¢7_‘5°L“ MIA (d’ss& ¢ B Bes “)>
(AP dun s o) LA (Busx s B G 60D

( ¢>‘su ¢\5/.3 %"50( 3] \A(¢L5N¢t56 Qa:.é 3);
< Gusth ¢t5/5 ¢a§ ol \ A(‘bts‘*qbtsﬁ Ges °‘>

But we have,
A (d>;5 X ¢is 3 (¢ dis A Co Qg )0(>

i

CzA (@ts‘i Céi.sﬁ (5;5 D()
C. ¥

i

Thus we hav¢
(D% bisB b itinl ¢ )

= ( Disx Qus 3 ¢z§ | Ce f[’)

- E (Cb‘Sd ¢155(Ct¢x:*Cz¢¢_5>u ‘ Cs @)
{ Pk dus (CPustads) o | @)




, 6
where H Y = EY originally. So we see that the energy
of the system is left invariant under this transformation.

However C, and C, were arbitrary in this development. In

1 2
particular, we wish to choose C1 and C2 in such a way that
(b’ | v | s )
(¢C$' } ¢L; )

be a minimug. We find that this is equivalent to dliagonalizing

the kinetic energy matrix, L and choosing the elgenvector

corresponding to the lowest eigenvalue. Note that T will

be block diagonal in symmetry types so that for Na, for

example, the new orbital ¢§ will be of pure S symmetrye.

We will further require this new MKE orbital to be normalized.

From the foregoing discussion, this 1s obviously no restriction.
Now we will compare the Gl and MKE orbitals.(10) First

++, all of which have the configuration

consider Li, Be*, B
(18)2 (28)., In Figure 1 we compare the MKE and G1 orbitals
for Li; for a more detailed comparison, a plot of the
differende between the two functions 1is given in Figure 2.
Note that the two orbitals are indeed very similar. Figures
3-6 give similar plots for Bet and B 7", where we find
similar close comparison between the MKE and Gl orbitals.
In all cases the differences in the wavefunctions are small,
with the largest differences in the care "region. (It should
be noted in passing that the Hartree- Fock energy in the G1
basis is lower than that of Clementi (11) for a basis set
optimized for Hartree-Fock.)

In Table 1 the MKE, G1, and experimental orbital ener=-

gies of the nS states are comparéd. The good agreement of

the MKE and Gi1 further verifies the validity of the methodo,
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Table 1

Comparison of MKE and Gl Qrbital Energiles

to 100 au using 500 gri& pointsa.

State Experimental G1i MXE

Li

223 -0.19814222 -0,19618189 -0.19625758
323 ~0.07418201 —0.07422112 -0.07483115
42g ~0.03861553 -0.03899702 -0,03896831
523, -0502363685 ~0.02383899 ~0.01605556
623 ~0.01594512 ~0.01606078 -0.01605556
Be+

22s ~0.66924203 -0.66595082 ~0.66621943
3%s -0.26723135 ~0.26776916 -0.27308570
423 —0.14314411 -0.10237338 ~0.14623585
523 -0.08505631 ~0.00718589 -0.09070003
625 -0.06070223 +0.05133327 ~0,06167763
Bt

2%3 ~1.3939247k ~1:389661450 -1.39001274
32s ~0.57286487 ~0. 58360070 -0.58338610
4Ps ~0.31090428 -0.25879529 ~0.25876554
523 ~0.19489679 ~0.07190142 ~0.07159464

MKE and Gl values obtained by numerical integration
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So far we have compared MKE with G! wavefunctions.
The Gl wavefunction of Li has the core orbitals coupled
in a singlet pair and'the valence electron in such a way as
to obtaln a doublet state. There is another way to couple
these three orbiltals into a doublet. In addition, there is
a method for optimizing the spin-coupling and the orbitals,
the Spin-Coupling Uptimized GI (SOGI) method (12). For these
systems the SOGI wavefunction is almost identical with the
Gl wavefunction. figures 7-12 compare the MKE and SOGI
orbitals for Li, Be+ and B Y7 (13). Here we see that in
the core reglon the SOGI orbital is somewhat lower than
the MKE orbital.

The conclusion is that MKE will provide a "“"pseudo-G1%
orbital for use in pseudopotential calculations. The MKE
orbital is not in general a "pseudo-SOGI" orbital, the
agreement of MKE and SOGI being best when SO0GI approaches
Gl.

It should be noted that other operators were tested
as possible candidates for use in the minimization criteria.

That is, wavefunctions % {or which
(¢1otL¥)
(Y1ey A

was a minimum for various operators O were also investigated.

Operators tried were 2J-K,J, K, T+V+2J, T+V+4J, T+V+4JT-2K,
Where

Kinetic Energy

Nuclear Potential Energy
Coulomb Operator
Exchange Operator.

nuu

R
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Using Li as a test case, none of these operators produced
a sultable smooth wave function. ©On the basis of this
evidence it was deciced to accept MKE as a workable method
and to procede from there.
To perform the band structure calculation for Scdium

2 2

it 1s necessary to have the wave functions for the 8, “p

and 2D states. We will want to expand the total potential
in terms of angular momentum eigenstates as follows (5,9),
V= T Ve 1ol

where Vg 1s the pseudopot:;tial for the angular momentum
eigenstatell) , and where UXLl is the angular momentum projection
operator. dere V4 is a functlion only of the radial distance
from the nucleas. It 1s expected that Vy=V, forl?2 so that
(a) can be written

V= (Vs-vy) 18)¢st +(Vp= Vg ) IPYCRL + Vy
First, however, it was necessary to solve the atomic
Hartree-Fock problem for the 2P and”zD states of sodium.
The results of these calculations are given in Tables 2 and 3.
The minimum Xinetic energy orbital for the various states
was determined. These are given in Figures 13 tol5 . Note
that for the sodium 2D state there are no d-like core states
and thus the 34 Hartree-Fock orbital 1is also the MKE orbital.
However the 3d orbital 1é nodeless (except at r=0, which is
no problem) so that there is no problem with the local
potential. The pseudopotentials obtained from these orbitals
are given in Figures 14 and 17. In Figure 16 U is plotted.
In Figure 17 the gquantity plottea is V=U-z/r. As a check,

the first few nS, nP and nD eigenvalues for the potentials



N Orbital

Exponent

orbitals
11.0
12.3685
8.0254
547059
3.6310
2.1537

31 1.1081

W W w wwerr n

Orbital Energy

orbitals

1Y

2 5.50

4 8.3937
L4 544206
L4 3..5646
L 2.2833
L 1.3241
4 0.8249
L 0.5717
4 0.3970

Orbital Energy

Total Energy

Potential Energy
Kinetic Energy
Virial Theorem
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Table 2
2

Sodium P State

Cls
«96304403

04217993
201595266
-.00283717
400160936
400033420
00012320
-40.55828221
Cap

47415056
.03542223
.27881382
.32284042
507346077

- 500482152
200274296
-.00145243
00042350
-1.59806892

-161.7863862
~323.5615637
161.7751775
-2.0000693

Coefficients

CZS

-.00378323
.13153565
40097719
«52792173
04743699

~-.00623148

-2.87428246

3p

-.04703084
-,00356619
02587554
-.02635041
201709544
«17730639
46070896
43548163
501043590
- 10945443
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orbitals
11.0

8.0254
547059
3.6310
2.1537
1.1081
0.,7083

WWwwwwwwe+ 0

Orbital Energy

p orbitals

2 5450
b 8.3937
L4 544206
L 345646
b 2.2833
L 1.7500

Orbital Energy

d orbitals

3.6667
3.4893
1.,7072
0.9032
0e5554
0.4007
0.2880

nnbnnon\nlw

Orbital Energy

total energy
Potential Energy
Kinetic Energy
Virial Theorem

orbital
Exponent

12.3685

23

Table 3
2

Sodium “D State

Coefficients

Cls
96403848
.. 04218093
01593954
-,00283232
.00160624
-,00033227
+00012386
-400004897

-40.64807965

C

2p
7435642
.03536698
.27918420
.32187251
07689641
-.00664195

-1.68549127

Caq
200172943
<00L471437
.03583736
219590693
48091369
40096624
.01239445

-0.05566411

-161.7326046
-323.4540279
161.7214232

-2,00006914

CZS
~.23502350
-.00378141

.13160038
+40112409
+52797880
04713876
-,00036803
.00213789

~2496197971
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were calculated and compared to experiment. This is reported
in Table 4. With this information, it is possible to move

on to the consideration of the band structure.



30
Table &

Comparison of Na S,P,D Pseudopotential Eigenvalues
with Experiment

State Pseudopotential Experimental
Eigenvalue (a) Orbital Energy (b)
3 %s -.18208873 ~.18885851
4 %s ~.07155570 ~-.07157907
5 %s ~.03775222 ~.03758500
6 %3 -.02324997 -.02313253
7 2s ~.01673595 ~.01566172
3 %p - 210944050 ~.11160045
 %p ~:05051122 -.05118027
5 °p -.02904466 -.02920329
6 °p - 01884940 -.01892309
7 2p -.01318114 -.01325214
3 %p ~.05563463 =.05593719
4 %p -.03102171 ~.03144279
5 2p -.02217508 -.02106511
6 %p ~.01514680 -.01395315
7 %D ~.01078597 ~.01024700

a. Obtained by numerical integration to 100 au.
Energies in hartree.

b. C. Moore, Atomic Energy Levels, Natl. Bur. Std.(U.S.)
Circ. No. 467 (U. S. Government Printing Office,
Washington, D.C.,1949)
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III. SODIUM BAND STRUCTURE CALCULATION

Recent work by O'Keefe and Goddard (7b) has been able
to explain many of the anomalous properties of Li metal
using a new approach to energy band calculations. This method
i1s based on the GI method and makes explicit use of ab ilnitio
‘pseudopotentials of the type discussed in the first part of
this paper. As has been pointed out, it is possible to
extend the determinétion of the pseudopotentials to larger
systems. From the application of these pseudopotentials to
the band structure problem, one would hope to gain further
insight into the nature of the alkall metals as well as
further verification of the theorefical basis.

The usual context for considering band structure in
solids is Hartree-Fock (14). In Hartree-Fock one has an
antisymmetrized product of spin orbitals as the total wave-
function. <The double occupancy requirement requires that
the spin orbitals be paired, with one palr having the same
space part and a different spin part. One of the great
benefits of viewing the total wave function in this manner 1is
that it allows us to view each orbital as a one particle
state which describes the motion of one particle in the
averaged field of all of the other particles. That is to
say, it allows for an independent particle interpretation.
However, there is & group of independent particle wavefunctions
which are more general than Hartree-Fock, These are the GI
wavefunctions (15). Now instead of having an antisymmetrized
product, which'can be WrittenAQ; where A is the antisymmetrizer,

the total wavefunction is written G)¥ where Gf 1s a more
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complicated operator operating on both the space and spin
wavefunctions. The Gf operator creates a wavefunction which
is an eigenfunction of 32, which satisfies the Paulil
principle, and which does not regquire double occupation of
the space orbitals. In particular, we wish to consider the
particular sort of coupling for which the operator is GFa

Consider the crystal to be composed of an even number
of centerss In a small portion of the theoretical infinite
crystal, this is no restriction. One would expect the entire
system to be a singlet in the ground state so that it should
be no restriction to consider a singlet system. For N
electrons, there will be N/2 orbitals for each spin, usually
denoted {é} and it} For Gp coupling, it is no restriction
to take all of the {9} orbitals to be orthogonal, and all
of the {®s} orbitals to be orthogonal. In general, the set
{1 will not be orthogonal to the set {&} o Gg. coupling
corresponds to taking all of the up spin orbitals and
coupling them to obtain maximum spin, taking all of the down
Spin orbitals: and coupling them to obtain maximum spin, and
then coupling the fwo sets to obtain a singlet. Another way
of saying this is to say that GF coupling provides the proper
treatment of spins for an alkali metal solid (16),

Within the Gy regime (17) we know that the total
wavefunction is invariant (i) under transformations of the
set {¢a}among themselves and the set {9.} among themselves,
and (ii) under transformations which take the set {¢.} into
the set {$,} and conversely. Symﬁetry transformations of

type (i) commute with the GF one-particle Hamiltonian but
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those of type (1i) do not. Thus the G, orbitals will have
&

Symmetries corresponding to the subgroup composed of elements
of type (1). Of all of the subgroups of the full symmetry
group of the molecule or solid, only those which do not

contain elements which transforms: the a orbitals and ©
‘orbitals into each other are possible symmetry sgroups for

the orbitals.. For the bcc space group, the most reasonable
subgroup 1s the sc space group. In Figure 18 the bcc srructure
is shown as two interpenetrating sc structures. Note that the

sites denoted a and b are not equivalent in the sc space group,

thus we should expeét a set of orbitals more concentrated
on the a sites and z.set of orbitals more concentrated on

the sites. However; since the two sets are related by a
lattice translation, they are equivalent and we need only
solve for one set,

7 This process leéds to a good deal of simplification
in terms of solving the problem. First of all, the problem
may be solved in the Wigner-Seltz cell of one of the two
interpenetrating cubic lattices. Such a Wigner-Seitz cell
is pictured in Figure 19. This cell is twice the size of
the bee cell, which means that the Brillouin zone is half
the size of the bcc Brillouin zone. Now the Fermi surface,
instead of lying entirely within the Brillouin zone will
extend past it in certain directions. In addition, each
Hartree-Fock band should be s?lit into two GF bands. Thus
we should havelas in the case with lithium, two partially

filled bands with a small band gép at the zone boundary.
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It is of interest to note that while GF provides the
first real justification for the idea of two translationally
equivalent lattices of opposite spin, the concept has been
around for a while. If was originally proposed by Slater (18)
for antiferromagnetic solids. Then when L8wdin (19) suggested
the use of projedted Hartree-Fock, he considered the idea
of an alternant molecular orbital which might be applicable
to systems satisfying Born-van Karman boundary conditions.
The AMO concept was applied to Benzene (20) and was later
used as a basis for disussing electron correlation in solids (25).
Unfortunately, the mathematics served to obscure the basic
points of the coupling, which the GF method does not, as
well as to make the problem seem sufficiently intractible
that it was not applied to any real solid. |

The actual calculation is done in the following manner.
First remember that the solution is for the orbital associlated
with the a site at the center of the Wigner-Seitz cell,
not for electrons on the b sites. I"'It.lx'thermore, we want to
solve the problem only with one cell using the total potential
within that cell. The potential arises from two sources,
an ion core on the a site and atoms at the corners. The
lon core gives the regular interaction of an electron with
the ion core, that 1s the pseudbpotential for the aton,
However, when the electron is close to a b site, the inter-
action is that of a spin up electron with a spin down atom,
which is a singlet negative ion. That means that the
potential from the b sites is a ﬁeéative ion pseudopotential,

(In actuality it turns out that the negative lon potential
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is too long range to be correct, however the correct potential
will be a negative ion like potential.) Furthermore, it is
assumed that the contributions to the total potential due
to the other ion cores 1s exactly cancelled by the electron
cloud of the otner cells. <Thus the Hamiltonian for the
system may be written

M= -3 98+ Ueore * 2. Up (F-R)

where U is the atomic pseudopotential, UBis the b site

CORE
potential and ﬁg runs over the corners. The wavefunction
is expanéed in terms of plane waves which fransform as the
irreducible representations of the cuﬁi That is, the one
electron elgenstate @ is expanded as

d vy = L C(R) exp L€ (KiKaii}
where 21 is chosen g: run over a sufficient nember of reciprocal
lattice vectors so that the solution converges. The potentials
are expanded in terms of projection operators as previously
explained. One then simply sets up the equations and performs
the necessary integrations over the Wigner-Seitz cell. In
so doing, we have found that it is not unduly complicated
to perform the integfations over the actual cubic cell rather
than over a sphere of the same volume or an inscribed sphere
as is usually done. In practice, what is done is first to
ignore the contribution of the b sites, assuming that their
contribution is small and to perform the calculation with
Just the ion core potential. These results would be expected
to be fairly correct although 1t was found in Li that the
ordering of certain states was véry dependent on using the

total potential. This calculation was done in two steps.
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These steps are a "zero order" calculation and a ®first order®
calculation described as follows.

The “zero order" calculation is derived from the poten-
tials in the simplest way. Essentially, one uses the
Simplest form of the wavefunction which transforms as certain

irreducible representations of the cube. The Hamiltonian

is simply \ L
- 1 o2
t YV + Udne
UéORE means that for a state of a given symmetry, one

considers only the potential for that symmetry, i.e./=s

for s states, {=p for p states, etc. The matrix elements
between the simple plane waves give the energy eigenvalues,
the matrix elements of U being simply the Fourier transforms
of U. The low8st Fourier transforms for the sodium potentials
are given in Table 5. The energy eigenvalues for various
symmetry points on the Brillouln zone are given in Table 6
and in Pilgure 21 in the form of a band structure. The
dashed lines are drawn to approximate the free electron like
behavior one might expect and to show how the states might
be expected to comnect. The Fermi level is obtained by a
simple free electron formula.

The "first order" calculation is performed in much the
same way, however now the wavefunction is expanded in terms
of a fairly large set of plane waves., The Hamiltonian is
the one given above, again using only an a-site potential.
The plane wave sets are chosen so that they transform as the

desired irreducible representations of the cube. The eigen-
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Table 5

Transforms of Na Pseudopotentials

Vpp(S)

- 24973492
-.01234980
00970926
-.00089851
~. 00086445
.00546L427
.00537631
-.00024959
-.00170537
.00130678
-.00117322
-.00193491
.00722802
.00356753
~.00055689
.00058929
-.00142692
-.00191572
-.00089255
-.00182627
-.00190122
-.00166816
-.00022572

k in units of 27/a.,

Vpp(F)
~+.25304357
-.01405243

L01244227
. 00497590
+00505650
.00539531
.00918583
.005780173
.00411299
00687165
.00497857
.00347289
.00874300
.00816673
.00556175
L00642427
00468442
.00364075
.00526633
.00400162
.00318713
.00259169
00121641

Vpp (D)

~+33914545
-.08620550
-.03660712
-.02804581
~.01743957
.05679202
.03538123
.02523715
.01737623
.02841361
02116104
01546911
~OL601014
003275728
002366743
.02660229
.02012500
.01608302
02233204
-.01748654
-.01437990
-.01227969
-.00782449
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Table 6

Elgenvalues_at High Symmetry Points

State

Zero Order
-e24973492
09147831
+06904559

-.18467300
~-e16157942

-.10360757
-.06870303

00738234
-.03092822

~.00992280

.02734030

First Order
-025467631
.+.09036017
603661126
03871223

-01884346L
-416815147
.08781648
09316348

-.11813079
-.10908693
-.07502271

~-«05209517
-.03802400
-.01631622

02503252
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values are then obtained by diagonalizing the Hamiltonian

matrix. These results are also given in Table 6.

The next step shodld be to perform the complete band
structure using both potentials, and then to correlate
the experimental evidence to the band structure. For
‘instance there are de Haas-van Alphen effect measurements
on the Alkali metals (21) which indicate that the Fermi
surface should be roughly spherical. There are also
measurements on the electron moments performed by Compton
scattering experiments (22) which give roughly the same
information. The optical absorption spectrum of sodium
shows a classical Drude region, an interband transition,
and an indirect interband transition (23). The direct
transition agreés éualitatively with the calculated results.
One relatively interesting property of sodium is the soft
X-ray emission spectrum (24). Here we find that near the
Fermi surface there is a surge in intensity which could be
explained gquite readily if the Xlstate were to lie above
the X; state. (Although either ordering could produce it,
theXlabove the X; is the more straight forward.)

While the present study indicates that we should expect
to find good agreement with experimental values, only a
complete band structure calculation, which includes the
correct projection operators and the potentials on both

sites could form a valid basls for comparison.
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IV. CONCLUSION

First we see that the minimum kinetic energy orbical
does form a good basis for unique, Hermitian, local poten-
tials. While this method 1s somewhat limited in the sense
that one must start with a Hartree-Fock orbital which
describes one electrbn, it is still good where this condition
is met. Second, the basic method developed for lithium does
represent a valid development in that it will work for a
second test case, sodium. This method should also be appli-
cable to potassium, however the heavier alkall metals may
not be accessible due to relativistic effects. Finally, we
find for socdium a predominantly free electron like band
structure similar to that of lithium but with a larger

energy gap at the X point.
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APPENDIX A

The general pseudopotential formalism for atoms and molecules,
essentlally as given by Cohen and Heine.(5)
in an atom or molecule.

Suppose we wish to solve for the valence orbital, ¢,

First we expand ¥ in a few orbitals
.Xn which have been drﬁhogonalized to the core states ¢t.
Thus we have

Y2 ¥ qCntkn ()
where Kn = = ¥, (9:,0.)0¢ (&)
the fn being suitable smooth functions. Now we define
C,b = Z“ (’_“Q“ . (3)
Subsitution of (3) into (1) gives

fl

g

1!

7:\"\ Cw (‘c'\ —Z{; (¢£ ,'Fn) ¢‘£‘)

(4)
L Cn - Lt (s, Tacntn) @ (8)
Cb - L (@ @) ¢é—

]

(6)
We know that ¥ satisfles the equation HY =EY¥, Thus we
have substituting (6) for~¢,

Weé - Ty (<I>e.¢> H Qe

-

E¢ - Ti¢ ($e,8)E Pt

()
Mg + Ty (E-Et) (¢e3P) P = EP (8)
Thus if we define '
Ve = T (E-EBi) (9,0) ¢t (4)
we see that we have the Phillips~Kleinman (1) form
(Rt VRY ¢ = E¢

where now VB is a non-local potential and ¢ is a smooth
"pseudo-orbital®, PFurthermore, V~ is repulsive since Et’
the core engrgies, are lower thaﬁ 2, and therefore serves
to cancel some of the attractive potential in H.
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We will now demonstrate the non-uniqueness of the

“pseudo-orbital",¢ , and thus of the potential.

If Cn is a
set of coefficlients of energy E then so is

Ca' 2 Cn+ Ly G (n,dt)

Thus we have

(1)
(]5‘ = Z,\ Cn' $u = f_,‘c-\'\{:n + Z\-\i-h At ((‘nxﬂf’t\‘(’n

= 3:,\ Cakn 4 ch\k L (Sfm¢*)‘c" -
But L, (Fndi) bn = @y

—

(\2)

Thus we have

¢ = Pt YT, P
Now we have for ‘1"

(v3)
¢ = ¢+IQQ{;(]{)¢-‘ZH (d)t‘sqb"ZgQi:(l)t)(ﬁt'

b+ Tiaebe - Ty (P, )¢ - Tyt (s)
¢ - Zt (¢t.¢)¢£

—

(14)

—

(16)
And so we have that ¢ may be replaced by ¢+dP where

d¢ =TiQ:Pt and the valence orbital Y 1s unchanged.
Furthermore.

Q—\\\J‘;W (O+ Zeaude) = ECe+ Ly Qede)

(17)
MO + Ly auaWdy VRGP + Tap VR

o
—

E¢ + T, OLtE ¢ 0\8)
He -+ zL (Br-€)ay @y + V' + VRIEC\HA& = E@
However,

(1)
from the definition of VR we have that

VR Tiovd = Ty Oy e (E-Bu) (Per,y ) Gur (20)
($e . e = dep
VR TeQuge = 2t CQp (E-E¢) ¢

Thus the second and fourth terms’ of the left-hand side of (19)
cancel to glve
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R 4 VR
(RiveY ¢ = B9

t
-
©-

{l

Therefore, the local potential is not uniquely determined.
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