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Abstract
How do different parts of the brain work? The naive and somewhat ill-posed 

question nonetheless admits of a serious answer.  Different regions of the brain carry out 

their function principally through two components:  the pattern of inputs and outputs 

that connect a region with the rest of the brain, and the computational transformations 

implemented by neurons within the region itself.  Here we focus on the former problem 

and study the connectivity of the primate brain, with an emphasis on neocortex.

We develop a novel set of algorithms for modeling anatomical connectivity based on 

diffusion-weighted magnetic resonance (MR) imaging.  The approach is novel in several 

respects: it utilizes a new way of deriving a globally optimal solution from local message 

passing; it can be applied to the whole-brain level in a computationally tractable fashion; 

and it can flexibly incorporate much other information, such as constraints about the 

geometry of white matter tracts and high-resolution anatomical MR images.  The 

algorithm is first described as a hierarchical Bayesian model, and then applied to the 

diffusion MRI data obtained from two perfusion-fixed brains of macaque monkeys.  

Based on the connectivity output provided from applying our novel algorithm to 

high-angular resolution MR data, we next derive several new insights about the 

connectivity of the macaque brain.  We compare our results against those from 

published tracer studies, and we derive the relative weights of connections known from 

such prior studies.  We also demonstrate the ability of the algorithm to generate entirely 

novel connectivity data, both at the level of specific anatomical regions that are queries, 
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and also at the whole-brain level.  The latter permits new insights into whole-brain 

connectivity and its architecture.  

In addition to this focus on the structural connectivity of the macaque brain, we also 

analyze an extant set of public data of BOLD-fMRI from the macaque brain.  This data 

set yields information regarding the functional connectivity of the macaque brain that 

we put together with our new connectivity results in order to relate structural and 

functional connectivity, with several new discoveries about their relationship.

In the final chapter, we apply these methods to MR data we collected from the live 

human brain.  We provide an overview of structural and functional connectivity results 

obtained from this data set, and we apply the investigation to the brains of rare patients 

with agenesis of the corpus callosum, who lack the normal connection between the left 

and right hemispheres.  We close by illustrating the power of the approach to ask 

questions that integrate functional questions with connectivity information on which 

function must ultimately be based:  using connectivity profiles in order to segment 

cortical regions based on their pattern of inputs and outputs, with the aim of then 

querying these segmented regions using fMRI in cognitive activation studies.  The 

description of our algorithm, the demonstration of its reliability, validity, and application 

to yield new data, together with the extensive software libraries on which the work is 

based, will provide cognitive neuroscientists with an array of new tools to investigate 

brain function in both health and disease.
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C h a p t e r  1

INTRODUCTION

The neocortex of primates consists of hundreds, if not thousands, of densely 

interconnected regions.  Functional specialization within these regions is reflected in a 

complex profile of connections.  In the adult human cortex, the entire ensemble of 

cortical neurons are connected through approximately 60 trillion synapses (Shepherd et 

al., 1998).  The total length of myelinated axons in the human cortex reaches 

150,000  -  180,000  km (Pakkenberg and Gundersen, 1997; Pakkenberg et al., 2003) and 

axons occupy a large portion of our brains, with gray-to-white matter ratios ranging 

from 1.1 to 1.5 throughout our lifespan (Miller et al., 1980).  The degree of connectivity 

varies considerably among different brain regions and shares many architectural 

similarities with man-made transportation and communication networks.  Similar to the 

small-world property of most social networks, brain networks contain a few highly 

connected hubs that ensure short communication routes between any two brain 

areas (Bullmore and Sporns, 2009).

Although the brain resembles randomly generated scale-free and small-world 

networks in some respects (such as short average path length), the development of 

connectivity is highly organized in space and time and anything but random.  

Myelination of white matter extends well into adolescence and coincides with the 

development of cognitive abilities, language skills and increased proficiency in executive 

decision making: connections to primary sensory and motor cortices are the first to 

myelinate, followed by association cortices and last by higher-order regions such as 
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prefrontal cortex.  Differences in white matter structure predict individual performance 

differences for working memory, reading tasks and musical abilities.  White matter 

differences are also a hallmark of psychopathology, and constitute a current focus of 

investigation in regard to several psychiatric illnesses such as depression (e.g., Pezawas 

et al., 2005).   Neuronal activity in white matter stimulates myelination in vitro (Ishibashi 

et al., 2006), and new white matter connections are likely to contribute to reorganization 

and plasticity following brain injury also in neurological patients (Bridge et al., 2008).   

There is even evidence of white matter plasticity in healthy adults:  extensive practice of 

piano play has been found to alter music-related connectivity (Bengtsson et al., 2005).  

Unfortunately, the human brain loses about 45% of its myelinated connections between 

the ages of 20 and 80 years, at a rate of about 10% per decade (Marner et al., 2003).  An 

acute loss of myelinated fibers, for instance in multiple sclerosis, can result in severe 

impairments in domains such as cognitive abilities, attentional span, reasoning and 

problem solving skills.  The connectivity between neurons is essential for high-level 

cognitive functions and memory that is ultimately encoded in the synaptic connections 

between nerve cells.

Historically, connectivity has been primarily studied in rodents, cats and macaque 

monkeys.  By injecting chemicals and dyes into the cortex in vivo, the origins of fibers 

targeting an area can be traced with great precision.  From such studies, we have learned 

that the brains of both species are highly interconnected and are organized in partially 

hierarchical relationships (Young et al., 1995; Felleman and Van Essen, 1991; Hegde and 

Felleman, 2007).  Such ordered relationships between brain areas is based on the inferred 

information flow between locally interconnected areas, whereby higher-level areas 
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receive input from lower-level areas.  Yet, this ordering is only locally valid and a 

globally consistent, total hierarchy relationship does not exists (Hegde and Felleman, 

2007).  Compared to macaque connectivity, much less is known about networks in the 

human brain. Most tracers require active transport mechanisms, necessitating injections 

into live animals with subsequent sacrifice and histological examination, and thus 

cannot be deployed for studying human connectivity.  

Over the last decade, magnetic resonance imaging sequences have been extended to 

measuring microstructural aspects of white matter tissue (Basser and Pierpaoli, 1996; 

Basser et al., 2000; Le Bihan et al., 2001; Tuch et al., 2003).  By quantifying the effects that 

microscopic barriers have on locally diffusing water, diffusion-weighted MRI provides a 

unique way to image the parallel microstructural organization of axonal bundles.  

Diffusion-based tractography falls considerably short of matching the precision and 

reliability of classical tracing studies. Yet, it allows measurements of large-scale 

connectivity of the entire brain noninvasively.  

The capability of collecting high angular resolution images on a whole-brain level 

has so far not been matched with mathematical tools to trace fibers globally.   Here, we 

will introduce, validate, and apply a novel method for studying cortical connectivity on 

a whole-brain level.

First,  the current knowledge and various techniques for studying connectivity will 

be reviewed in chapter 2.  It will provide a quick overview of the neuroanatomy relevant 

to connectivity, of tracer-based methods for studying connectivity in vivo and we will 

review principles of diffusion-weighted MRI and extant tractography algorithms.  The 
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chapter concludes with an overview of the current state of our knowledge of cortical 

connectivity and its evolutionary implications.  

The next chapter provides an introduction to probabilistic methods relevant to 

tractography.  It reviews graphical models such as factor graphs, Bayesian belief 

networks and Markov random fields, and discusses inference algorithms such as 

message passing, belief propagation and Markov chain Monte Carlo sampling.  

Additionally, it provides details about the methods used to prepare the brain samples, 

the MRI diffusion sequences used and the anatomical and functional preprocessing 

pipeline.

Chapter 4 describes a novel, optimal whole-brain connectivity algorithm.  It first 

introduces ideas of global, model-based tractography in a Bayesian framework and then 

takes these concepts to the systems level by extending them to belief propagation and 

message-passing networks.  The algorithm finds all optimal pathways to all locations in 

the brain.  Unlike previous methods with exponential complexity, this algorithm 

converges to the optimal solution in a fixed number of steps and exhibits a low, 

polynomial complexity.  This new algorithm forms the core of the dissertation, and 

global tractography is the basis on which the subsequent results were obtained in the 

later chapters.

The limitations and advantages of tractography are explored in chapter 5.  We first 

study the reliability of fiber tracking by tracing callosal connections, both in mice imaged 

with a high field 11.7T MR system, and in humans imaged at 3T.  We then quantify the 

intrahemispheric agreement with information-theoretic measures. Next, we compare the 

tractography results with a large number of published tracer studies and quantify the 
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influence of fiber strength and distance on reliability.  Most importantly, we show that 

diffusion-based tractography can predict connectivity strength and is in close agreement 

with classical tracer results.  These results constitute an important validation of 

tractography and open the door for discovering likely new connections with 

tractography alone, research findings that we present in later chapters.

Measuring the connectivity weight parametrically with tracers is a laborious and 

technically challenging undertaking (as compared with just finding whether or not there 

is a connection at all, also not a trivial undertaking).  The practical hurdles have so far 

limited our knowledge of quantitative aspects of cortical information exchange.  

Diffusion-weighted magnetic resonance imaging (dMRI) techniques have made it easy 

to image efficiently the effects of axonal composition within larger cortical fiber tracts, 

and we will use this method to estimate the approximate connectivity strength of 

cortical tracts.  In chapter   6 we will report such weight estimates for neocortical 

connections of the macaque brain, highlighting some new discoveries with this 

approach.

MRI can measure anatomical and functional connectivity at the whole-brain level.  

To gain further understanding into the global function of the distributed cortical 

network, it is necessary to look beyond just pairwise interactions and to identify 

functionally relevant network properties and processing pathways.  Previously, 

distributed information processing has been analyzed in terms of interacting neuronal 

pathways and partial hierarchies of cortical processing steps.  In the second part of 

chapter   6 we introduce analytical techniques to obtain such pathways and partial 
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hierarchy information with objective, unsupervised clustering approaches and network 

analysis techniques.

Although the activity of cortical connections cannot be directly imaged with current 

MR techniques, the influence that an area has on a distant connected tissue can be 

inferred using functional MRI.   Functional MRI techniques are sensitive to the blood 

oxygenation level in the cortical capillaries and thus indirectly measure metabolic 

activity in surrounding gray matter   (Logothetis, 2008).  They are frequently used to 

measure the statistical coupling between metabolic fluctuations in distant cortical 

areas  (Fox and Raichle, 2007), so-called BOLD coherence.  This statistical coupling is 

thought to reflect functional connectivity between the regions, and thus is presumably 

mediated by the underlying structural connectivity, although this relationship has not 

been investigated.  We will show, in chapter 6 for macaques and chapter 7 for humans, 

that BOLD coherence between brain areas is primarily due to the anatomical strength of 

the connecting fiber tract.  A strong BOLD coherence was observed between the thalami 

and the corresponding ipsilateral cortical hemispheres and between homotopic cortical 

areas of both hemispheres. 

Taken together, the chapters in this dissertation provide a mathematical foundation, 

an application, validation, and derivation of new data on the connectivity of the primate 

brain.  The tools developed here can be used by other investigators to explore a number 

of specific research questions about differences in connectivity between different species, 

about connectivity between particular brain regions of interest, and about alterations in 

connectivity in neurological and psychiatric illness.
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C h a p t e r  2

BACKGROUND

This chapter will give a brief overview of neuronal microstructure and its relevance 

to structural and functional MR measurements.  Classical methods to study connectivity 

will be reviewed briefly, and an overview of principles of diffusion MRI and 

tractography will be provided.  Cortical function can be studied with functional MRI 

sequences by imaging blood flow and blood oxygenation changes.  The functional 

connectivity between brain regions can be quantified by a variety of methods, including 

spectral coherence methods of BOLD fluctuations.  The chapter concludes with an 

overview of the current knowledge about the evolution and global organization of 

cortical connectivity.

Neuronal Microstructure and MRI

Information is processed in the brain in a highly distributed way, relying on constant 

communication between spatially separated neuronal tissue.  At each length scale, the 

cortical tissue is organized differently and various physical properties of the 

microstructure of cortical connectivity can be imaged with MRI techniques.  The main 

communication mechanism of neurons relies on changes in electrical potential across the 

cell membrane.  To communicate, neurons are connected by extrusions of the cellular 

membrane, called axons at the sending end and dendrites on the receiving end 

(although there are some exceptions to this polarity as well)   (see figure 2.1).  These 

neurites form treelike structures that enable the cell to exchange information with 
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typically thousands to tens of thousands of other nerve cells.  Dendrites propagate the 

incoming information from neighboring neurons to the soma, the cell body of the 

neuron.  Outgoing electrical pulses are transmitted by the axon, often over long 

distances.  In addition to replenishing ionic gradients necessary for the transmission of 

electrical signals within the cells, a large fraction of a neuron’s energy budget is spent on 

interneuronal communication at synapses, the information-transmitting contact points 

between axons and, for the most part, dendrites.  The metabolic processes necessary to 

sustain synaptic function, such as vesicle turnover and neurotransmitter packaging for 

exocytosis, have a significant effect on local blood oxygenation and blood flow.  Changes 

in blood flow or oxygenation are measured with functional MRI. Consequently,  the 

fMRI signal reflects primarily synaptic activity, i.e., inputs to a neural region and 

intrinsic processing, rather than spiking outputs (Logothetis and Wandell, 2004). 

 Microstructural imaging, on the other hand, can be used to generate contrast 

between different types of tissue, based on a large number of different possible imaging 

parameters.  Diffusion-weighted imaging, the focus of this dissertation, exploits the 

directional anisotropy in the diffusion of water within tissue to infer the 

microanatomy of spatially oriented tissue (Basser and Pierpaoli, 1996).  The measured 

orientation field can be used to reconstruct the pathway of axonal bundles (Basser et al., 

2000; Conturo et al., 1999; Mori et al., 2002; Behrens et al., 2003a).  Although the 

structural elements relevant to MRI, such as synapses and axonal segments, are tiny, 

many neocortical tissue types are homogeneous and can be imaged unambiguously due 

to their bulk properties (Basser and Pierpaoli, 1996).  More microanatomically complex 

tissue types result in mixtures of signals and more sophisticated algorithms are 
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necessary to unmix the resonance signal (Basser, 2002; Jones and Basser, 2004; Tournier et 

al., 2004; Jian et al., 2007) and evaluate structural (Behrens et al., 2003b) or functional 

hypotheses   (Kriegeskorte et al., 2006).  The diffusion MRI signal is sensitive to the 

microstructure of tissue and hence not specific to axons nor neurons. Ultimately, the 

limiting factors for brain imaging are thus not technical constraints of MR imaging, but 

the biological granularity of neuronal representations and the organization of neurons 

into larger functional units.  Currently, the major limitation of diffusion MRI is the low 

amplitude of the magnetic resonance signal.  The low signal-to-noise (SNR) efficiency 

requires long imaging times and effectively limits the spatial resolution of MRI.
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Figure 2.1.  Morphology of a neuron.  The main functional compartments of a neuron 

are the  (1) cell soma (shown cut open to reveal internal compartments) containing the 

nucleus and various organelles involved in metabolism and protein synthesis,  

(2) dendrites receiving chemically encoded information at the synapses and  (3) axons 

transmitting action potentials (inset shows internal organization).  (4) Synapses are the 

contact points between axons and other cells.1

At the synaptic level, information is relayed chemically across the 20  nm wide 

synaptic cleft (see figure 2.2).  In agreement with the direction of action potential 

propagation, the axonal, transmitter-emitting site of the synaptic protuberance is 

referred to as the presynaptic site.  At the postsynaptic side, the neurotransmitter signal 

is received by membrane-bound receptors and encoded as an ion flux or as changes in 
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intracellular so-called second messenger molecules.  The synaptically generated currents 

change the membrane potential over small distances and thereby convey information 

from the dendrites to the soma.  The synaptic chemical and electrical processes are 

energy intensive and influence the blood oxygenation in the local environment of the 

neuron.  Such oxygenation changes, when occurring concurrently on millions of 

synapses, are detectable with fMRI.  At the soma, the voltage signal on the membrane is 

amplified by active ion channels and the electrical action potential is propagated along 

the axon.

Figure 2.2.  Electron microscopic image of a synapse. Presynaptic vesicles contain 

neurotransmitter that can be secreted into the synaptic cleft.  At the postsynaptic side, 

the neurotransmitter binds to membrane-bound receptors.2
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Neocortical axonal fibers are typically just 1 μm wide and can span the entire extent 

of the brain.  Most of our current knowledge about axonal processes stems from studies 

of peripheral nerves.  The morphology and functional variance of peripheral nerves are 

larger than in the cortex and provide insight into the trade-offs of size, speed and 

energyexpenditure of action potential propagation.  The majority of cortical axonal 

connections are local and the neuronal (and axonal) cell membranes are in contact with 

glial cells (astrocytes and oligodendrocytes) to supply oxygen, nutrition, and various 

auxiliary functions.  For long-distance connections, axons form hierarchical structures.  

In the peripheral nervous system, a nerve bundle encompasses multiple fascicles that 

each bundle axons and blood vessels (see figure 2.3).  Structurally, this hierarchical 

organization is supported by connective tissue.  Axons in the peripheral nervous system 

are enclosed by Schwann cells and interconnected by the collagen-rich endoneurium to 

form clusters of axons.  The cellular perineurium forms multiple concentric layers 

around each fascicle and is enclosed by the thicker epineurium that acts as a protective 

shell around peripheral nerve tracts.   It is important to note that the extra-axonal 

structures show a parallel organization in-line with axonal direction and that many 

intracellular diffusion barriers mirror this arrangement.  The fine, elongated 

microstructure of the axonal membrane, as well as of parallel aligned microfilaments 

and microtubules, are anisotropic diffusion barriers for the enclosed water.  The 

resulting local apparent diffusion anisotropy influences can be measured with diffusion-

weighted MRI (dMRI; Basser et al., 1994).
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Figure 2.3.  Confocal image of a profile through a peripheral nerve fascicle.  The axons 

show a parallel organization and are joined by connective tissue.  Diffusion MRI 

measures the joined effects of diffusion barriers such as cellular and intracellular 

membranes. It is, however, not specific to axonal neurons and contains contributions 

from connective tissue and potentially smaller blood vessels.3

Peripherally and centrally, distal axons can be enclosed by myelin sheets that 

electrically insulate the axons and minimize leak currents.  The alternation of mostly 

passive, electrically insulated stretches of membrane, together with actively amplifying 

zones containing voltage-gated channels (nodes of Ranvier) enable a very fast, saltatory 

form of action potential propagation.  The transmission speed of axons is primarily a 

function of axonal diameter and myelination, which specify the longitudinal resistivity 

and capacitance, respectively.  Fast axons, for instance in the motor and sensory systems, 

are typically larger and myelinated, whereas autonomic and pain fibers can be 

unmyelinated and as thin as cortical axons.  The pioneering work of Erlanger and 
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Gasser (1937) resulted in a velocity-based classification scheme for peripheral fibers that 

is summarized in table 2.1.

Table 2.1.  Classification of peripheral axonal fibers from Erlanger and Gasser (1937).  

The table shows the nomenclature for the figure type, together with its characteristic 

properties and an example of where in the nervous system it might be found.  

Table adapted from Longstaff, 2005, p. 12.

Fiber Type
(Erlanger/Gasser)

Mean Diameter 
(μm)

Mean Velocity
(m s-1)

Sample Location

Aα 15 100 Motor system

Aβ 8 50 Touch afferents

Aγ 5 20 Muscle spindles

Aδ 4 15 Skin temperature afferents

B 3 7 Unmyelinated pain afferents

C 1 1 Autonomic neurons

If axons were to randomly connect cortex, diffusion-weighted MRI could not resolve 

connectivity, since it would constitute a thin and highly distributed web of axons below 

the level of spatial resolution of the technique.  During brain development, however, 

axons follow chemical gradients and adhesive cues in a more orderly and often 

topographic manner.  As a result, the neurites travel in bundles of similar neuronal 

connectivity and with a highly parallel alignment.  Multiple bundles of axons form 

larger fascicles.  These larger fascicles connect adjacent and distant brain areas and are 

directly visible in anatomical dissections.  This high degree of organization makes it 

possible to study the microstructure of white matter with the relatively coarse imaging 
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resolution afforded by diffusion MRI in many parts of the brain.  Some of the major fiber 

tracts in the brain are summarized in table 2.2, together with their putative function and 

the symptoms that can arise when they are lesioned.  This emphasizes the point, often 

neglected in lesion studies, that damage to white matter can have profound 

consequences due to disconnection of target structures.  White matter diseases, such as 

multiple sclerosis and other demyelinating diseases constitute an important and major 

set of clinical presentations in neurology.  It should be noted that most of the brain is 

white matter in terms of volume, as can be seen in blunt dissection of a view of the 

medial aspect of a hemisphere shown in figure 2.4.

The fiber bundles seen in figure 2.4 suggest homogeneity within these macroscopic 

bundles.  However, this assumption of microstructural homogeneity does not always 

hold.  In many cases, the unit of imaging resolution, called a “voxel” and typically one to 

a few cubic millimeters in volume, contains multiple neuronal tissue types.  The issue is 

especially vexing when the organization of fibers is microscopically complex, combining 

multiple types or composed of axons that cross in several directions.  Below, we will 

discuss techniques aiming at decomposing the contribution from tissue types and 

orientation information in the case of crossing and branching fiber tracts.
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Figure 2.4.  White matter dissection of the human brain.  Dissection of the medial 

aspect of the right hemisphere of a human brain reveals white matter.  Large white 

matter tracts, occupying up to 45% of the neocortical volume, connect the different parts 

of the cortex and provide connectivity to subcortical structures, sensory and motor 

systems.
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functions based on Schmahmann et al., 2007, as well as possible clinical syndromes 

arising from lesion.  Table next page.



Fiber Tract Connections Putative Function Lesion Symptom

Uncinate 
fasciculus

Rostral temporal, 
Orbital and medial 
prefrontal cortex

Interaction between 
emotion and cognition; 
novel information, 
emotional response 
regulation for sound

Impaired learning for 
visual scenes and object-
reward associations, 
emotional memory

Cingulum 
bundle

Hippocampus and 
parahippocampal, 
Prefrontal areas 9 and 
46, rostral cingulate

Putative: motivational 
and emotional aspects 
of memory

Disruption of psychosocial 
behavior, obsessive-
compulsive behavior,  
impaired memory.

Fronto-
occipital 
fasciculus

Dorsal and medial 
parastriate and caudal 
posterior parietal,  
DLPFC, area 8

Spatial attention related 
to peripheral vision and 
motion

—

Superior 
longitudinal 
fasciculus I

Superior parietal, 
Premotor and 
supplemental motor 
areas

Higher order control and 
initiation of body-
centered action

—

Superior 
longitudinal 
fasciculus II

Caudal inferior parietal 
and IPS, Posterior 
prefrontal cortex

Perception and 
awareness

Hemi-inattention and 
hemineglect

Superior 
longitudinal 
fasciculus III

Rostral inferior parietal, 
Ventral premotor and 
prefrontal area 46

Gestural components of 
language and orofacial 
working memory

Cortical dysarthria, 
aphemia, oral and buccal 
apraxias

Extreme 
capsule

Superior temporal and 
insula, Area 45, 47 in 
orbital and dorsolateral 
prefrontal areas

Linguistic aspects of 
language

Putative: associative 
aphasia

Arcuate 
fasciculus

Caudal superior 
temporal, Caudal 
dorsal prefrontal cortex

Spatial processing and 
attention related to 
sound localization; 
language

Conduction aphasia

Middle 
longitudinal 
fasciculus

Superior temporal, 
Paralimbic regions

Spatial organization, 
memory and 
motivational valence

—

Inferior 
longitudinal 
fasciculus

Occipital, 
Temporal lobe

Object recognition and 
discrimination, memory

Putative: prosapagnosia; 
facial emotion recognition

Corpus 
callosum

Corresponding areas 
between hemispheres

Synchronization and 
transfer between 
homotopic areas

Lateralized functionality 
(split brain), Cognitive 
impairments (AgCC) 
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Classical Methods to Study Connectivity

All anatomical tracing methods require some form of transport mechanism to image 

axons, either relying on passive diffusion or on active cellular transport mechanisms.  

Passive diffusion mixes water only over short length scales.  Within 100  ms, water 

diffuses within a 10  μm radius at room temperature, but larger distances require a 

disproportionally longer mixing time.  The diffusion is inversely proportional to 

distance and passive transport is extremely slow with increasing length.  Some lipophilic 

dyes have been used to trace short-distance local connections.  These carbocyanine dyes 

(such as DiI and DiO) have the advantage that they can be used in postmortem tissue, 

but they have the disadvantage that they are not directionally specific (they diffuse 

anywhere along the axonal membrane) and that due to the considerations just noted 

they only diffuse rather short distances (millimeters).

To quickly transport vesicles and proteins, cells developed a fast, active transport 

mechanism.  Such particles are transported from the soma (where all protein translation 

occurs in neurons) to distant synapses (anterograde transport), as well as from axonal 

terminals inward (retrograde transport) via an actin-dependent mechanism.  The fastest 

components of  vesicular transport can achieve speeds of about 50-400 mm/day.  

Actively transported tracers first passively diffuse at the injection site in the extracellular 

space and are then taken up by the surrounding neurons via endocytosis or through 

transporters.  Once inside the cells, the transport mechanism typically propels the 

vesicle-encapsulated molecules along the neurites.  These tracers only work in vivo since 

they require ATP-dependent active transport, but they are considerably faster, more 
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specific, and often directionally transported.  Various retrograde and anterograde tracers 

have been developed for tracing cortical connectivity, and some of the more commonly 

used ones are summarized in table 2.3 below.   

The tracing of connectivity in the human brain has relied primarily on passive 

diffusion mechanisms in postmortem tissue.  Ex vivo, lipophilic tracer molecules have 

been used to trace larger fiber bundles.  Their passive diffusion rates are very slow and 

the obtained results, typically only for short distances of a few millimeters, are much less 

reliable than those obtained with modern, actively transported dyes.
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Table 2.3:  Commonly used neuronal tracers.  The specificity of many is still unclear; 

several of those listed under retrograde are also transported anterogradely.  

Table adapted in part from Oztas, 2003.

Direction Mechanism Tracer Type

Anterograde Phaseolus vulgaris leucoagglutinin 
(PHA-L)

Monosynaptic

Radiolabelled 
amino acid

Tritiated glycine
Tritiated proline

Polysynaptic

Retrograde Horseradish peroxidase (HRP)
Wheat germ agglutinin

Mostly 
Monosynaptic

Nissl reaction Methylene blue
Toluidine blue
Thionin
Cresyl violet

Stains neurons

Fluorescence Lucifer yellow, Fast blue, Nuclear 
yellow

Viruses Herpes simplex
Adeno virus
Pseudo rabbies

Polysynaptic

Toxins Cholera toxin-B
Tetanus toxin-fragment

Isotropic 
diffusion

Carbocyanine DiI, DiO
DiAsp

Membrane-bound 
(polysynaptic)
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Due to the reliance of most tracers to be actively transported within the neurites, and 

the ethical infeasibility of injecting tracers into live humans, our knowledge of human 

brain connectivity is comparatively sparse and generally inferred from tracer studies in 

other species.  Tracer studies in human brains have been restricted to passively diffusing 

tracers that have revealed some information about intrinsic, local connections in the 

brain, as noted above.   Response of the brain to injury can reveal connectivity 

information too, through processes such as Wallerian degeneration.  After cortical 

injuries to a brain area, e.g., after a stroke, there is both anterograde, and in some cases 

also retrograde, degeneration in distal processes and cells.  The degeneration in a 

formerly connected area can be quantified postmortem, and such observations have 

been used historically to make some very macroscopic inferences about connectivity.

Tractography

To reconstruct fiber tracts, physical measurements about apparent water diffusion 

over the length of several micrometers are imaged at resolutions several orders of 

magnitude more coarse.  Mathematical models are necessary to bridge this gap between 

the relatively poor spatial resolution of imaging techniques and the underlying  

microphysical processes.  The most promising of the current algorithms aim not to 

resolve, but to model the uncertainties resulting from the scale mismatch (Behrens et al., 

2003b; Jbabdi et al., 2007; Sherbondy, 2008).  Many heuristics and, more recently, explicit 

probabilistic models have been proposed to tackle the problems.  The next paragraphs 
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provide a short overview of such fiber tracking algorithms and earlier, simpler 

approaches that do not account for the scale mismatch.

For simple white matter architectures without crossing or splitting fibers, simpler 

line integration approaches can be suitable and are computationally very efficient (Mori 

et al., 1999).  Such algorithms identify the primary or most likely orientation in each 

voxel and extend the fiber tract estimate according to the estimated orientation.   

Mathematically this estimated orientation is a tensor, and therefore these earliest 

methods gave the name diffusion tensor imaging, or DTI, that is still commonly applied 

to all tractography methods today (even those not actually using a tensor model).  The 

precision of such single-fiber tensor estimates can be increased by adapting high order 

filters, such as Euler’s approximation and Runge-Kutta methods (Basser et al., 2000).  

Uncertainty bounds on such estimates can be estimated with bootstrap methods.  They 

differ fundamentally from more sophisticated methods, such as the method of Jbabdi et 

al. (2007) described below, in that they do not compute a probability distribution, but 

deterministically operate on the highest or most probable values alone.

To bridge the gap in length scale, one would like to construct models of how the 

shape and location of anatomical fiber tracts change bulk molecular diffusion 

measurements.  An elegant method has been proposed by Jbabdi et al., 2007, detailed in 

figure 4.5.  The authors start with a geometric model of a fiber tract.  They incorporate 

prior knowledge about the smoothness and the typical shape of cortical connections into 

a Bayesian model, and then construct a hierarchical probabilistic model to directly link 

the anatomy of a fiber to the diffusion-weighted MR measurements.  The levels of the 

hierarchical model correspond to physical realities at decreasing length scales.  At the 
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highest level, the approach begins with the assumption that two selected regions of 

interest are connected by a fiber tract, although it is important to keep in mind that this 

need not be monosynaptic. The model then incrementally refines its resolution at every 

hierarchy level, carefully bridging the decreases in length scale with probabilistic models 

describing the increase in uncertainty of the physical processes.  Geometrically, the fiber 

locations are splines that are controlled by 2 control points in the source regions and a 

set of 3 additional points controlling the shape.  At the next level, the spline-based 

pathway implicates anisotropic diffusion and orientation measurements that are 

consistent with the tangents along the curve specified by the spline.  The implied 

constraints on the orientation distributions then predict the differences in magnetic 

resonance signal between diffusion-weighted and unweighted images.

Figure 2.5.  Hierarchical Bayes model used to constrain pathway geometry.  

(a) Bayesian model of connectivity (c), spline (K, L, F) and partial volume model 

parameters.  (b) Potential connections between two regions are modeled by a planar 

Catmull-Rom spline with 5 control points.  The random variables of the model are 
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shown in circles and the dependencies between the variables are indicated by arrows.

Figures are reproduced from Jbabdi et al., 2007.

Given a particular spline-based model, one would expect a diffusion-related 

attenuation along the pathway in the direction of the spline’s tangents.  If two areas are 

not connected, then a white matter tract should not be found and potential spline 

pathways should travel through a few voxels that do not contain white matter, or 

contain orientations inconsistent with the pathways. These two possibilities specify two 

alternate prior hypotheses: either the regions queried are connected, or they are not.  

Bayesian inference techniques can be used to compute from the posterior observations 

the likelihood for both of these prior conditions and the ratio between the log-

likelihoods provides an estimate of how strongly the measured data favor one or the 

other hypothesis.  The basic idea of Bayesian inference is to estimate the likelihood 

distribution over hidden parameters by applying Bayes rule.

In the case of tractography, the number of observable data points along the pathway 

and the model search space can be very large.  To limit the effect of overfitting, 

additional prior constraints need to be added to the model.  In the model of Jbabdi et al., 

2007, the position of control points is restricted to a planar space and the central control 

point is fixed at the halfway plane between the source and the target regions.  The 

algorithm is initialized with a distribution of control points describing potential 

pathways and the likelihood of those control points and the associated pathways is 

computed.  A Monte Carlo sampling procedure is deployed to generate likely pathways 

similar to ones with a good fit and further iterations result in a convergence against a 

stable, ergodic distribution of control points.
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Distributed inference methods have been applied to the tractography problem 

before, although not in a Bayesian framework.  Campbell et al., 2005, used information 

about the reliability of local orientation information to expand the wave front of 

potentially connected regions.  Highly likely connections are thereby identified by the 

algorithm and connectivity information is propagated to neighboring voxels in parallel.

Many recent tractography algorithms combine elements from several of the above 

methods.  Table 2.4 shows an overview of the historically relevant algorithms.  In 

chapter 4 we will extend the Bayesian approach to fiber tracking to a global belief 

propagation network.  Similar to previous methods, the pathway cost function is 

Bayesian and includes global smoothness constraints similar to spline-based fitting 

procedures.  Unlike previous methods, the algorithm does not use a sampling approach 

and  it finds all globally optimal pathways to each gray and white matter location.

Orientation 
distribution

Interpolation
method

Global 
fiber 

model

Whole 
brain 

estimation

Guaranteed 
optimal 
solution

Mori et al. 1999. Tensor - - - yes

Basser et al. 2000. Tensor Euler, 
Runge-Kutta

- - yes

Lazar et al. 2003. Tensor Deflection - - yes

Behrens et al. 
2003.

ODF Euler - - -

Campbell et al. 
2005.

ODF - Wave front - -

Jbabdi et al. 2007. ODF Splines Bayesian - -
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Orientation 
distribution

Interpolation
method

Global 
fiber 

model

Whole 
brain 

estimation

Guaranteed 
optimal 
solution

Belief propagation ODF 1st and 2nd 
order 
smoothness 
priors

Bayesian yes yes

Table 2.4:  Overview of fiber tracking algorithms.  Tractography algorithms differ by 

their assumptions about the measurements and either model a single 

orientation (“tensor”) or multiple orientations (“orientation density function”, ODF) per 

voxel.  Global pathways are generated either by line integration methods, or hierarchical 

Bayesian models that constrain the geometry of the tracts.  For probabilistic tissue 

models (“ODF”), information can be propagated by heuristics or according to Bayesian 

models.  Previous probabilistic methods only sample from the most likely connections 

and do not optimally solve the tractography problem on a whole-brain level.  The 

connectivity belief propagation algorithm, in contrast, finds all Bayesian optimal 

solutions to every voxel in the brain.

Reconstructing the path of cortical fibers based on apparent diffusion speed 

measurements is challenging due to the limited spatial and angular resolution of MR 

scanners as noted above.  The fiber reconstruction step is prone to accidental mislabeling 

of close-by fibers and it is limited to bigger bundles that are visible at imaging 

resolution.  The large number of parallel axons within large fiber bundles induces a 

strong isotropy of water diffusion and thus MR measurements.  Smaller bundles 

produce less profound changes in the magnetic resonance signal and are hence more 

difficult to trace.  A major challenge is posed by crossing and neighboring pathways.  

Similar to first generation chemical tracers that could bleed into adjacent fibers, the 

mathematical reconstruction of possible fiber locations can occasionally connect 
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segments of adjacent, but distinct pathways.  To maximize the sensitivity of the image-

based reconstruction, and reduce its error rate, the brains comprising our data set were 

scanned with high spatial resolution in high-field MR systems (9.4T and 7T).  To alleviate 

the risk of joining unconnected pathways, we used a reconstruction method that 

examines all potential connections and assigned a likelihood value to each possibility, 

akin to the approach by Behrens et al. (2007) but at the whole-brain level.  By adjusting 

the threshold for the connection certainties we can restrict our analysis to the most 

probable connections, and trade off the algorithm’s reliability against its sensitivity.

Functional Connectivity and Ultraslow Oscillations

Each cortical connection contributes to aspects of cognitive function.  Impairments in 

connections, after stroke, as a result of surgery, following white matter disease, or due to 

genetic variations, can result in profound changes in cognitive ability.  Most cortical 

areas are either directly connected or communicate through at most 2 synaptic 

transmission steps.  The resulting interaction is thus very fast and below the time 

resolution of magnetic resonance imaging.  Assuming a synaptic transmission time of 

tens of milliseconds, one would expect interactions below 100 ms, or about 10 Hz.  

However, due to the slowness of haemodynamic responses (Figure 2.6), only slower 

changes below approximately 0.5 Hz can be detected using functional MRI.  One might 

thus have expected it to be impossible to image functional connectivity using MRI, yet 

surprisingly there appears to be a low-frequency correlate at the level of temporal 

resolution of BOLD fMRI.
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Figure 2.6.  Individual normalized hemodynamic response. This hemodynamic 

response curve is normalized to demonstrate that there are no differences in the rise and 

fall slopes. In the nonnormalized curves, the nonprimary areas show a much lower level 

of response and a lack of poststimulus undershoot (see below).4

Although the coupling of brain areas cannot be observed at the causal frequency 

band, the electrophysiological interactions on this fast timescale induce systematic 

coupling also at considerably slower frequencies. These lower frequency couplings are 

evident in the multispectral nature of the electroencephalogram (EEG), but they also 

result in haemodynamic correlates.  The phenomenon has been mathematically modeled 

by Watts and Strogatz (1998).  They studied weakly coupled physical and biological 

systems and found that above a critical coupling threshold, the systems start to 

synchronize and that this synchronization is a stable property of weakly coupled 

oscillators.  The systems synchronize at their intrinsic oscillation frequencies that can be 

28

4 Image reproduced from http://www.radiology.northwestern.edu/images/nr/investigate-hrf-2.gif



orders of magnitudes slower than the speed of physical interaction between the 

oscillators.  An illustrative examples are a species of fireflies that developed light sensors 

to synchronize their bioluminescent activity at a frequency of several seconds (Strogatz, 

2001).  The speed of information transmission via the lights is almost 10 orders of 

magnitudes faster than the actual synchronized blinking frequency of the individual 

fireflies.  Cortical columns exhibit intrinsic rhythms of seconds and minutes (Buzsáki, 

2006) and the activity between distant cortical, but connected areas is weakly coupled.

The slow frequency coupling can be directly observed with BOLD imaging.  In 

chapter 7 we show that the degree of coupling is not due simply to a direct effect of 

distance, but is primarily related to the strength of anatomical connectivity between two 

brain areas, relatively independent of their distance.  Coherence of slow frequency 

oscillations has been studied electrophysiologically by Leopold et al. (2003) in monkeys.  

The authors placed an electrode grid across the lunate sulcus and measured the cross-

electrode coherence as a function of the distance between selected electrode pairs.  They 

found that gamma frequency coherence (in the range of 40-100 Hz) changes as a function 

of distance and that the fluctuations in the power of the gamma frequency band predicts 

the coherence in slower frequency bands.  One important technical detail is the 

frequency dependence of the electrode-brain interface.  Due to various electrolytes, one 

might expect a dampening of signals in higher frequencies.  Logothetis et al.   (2007) 

measured the impedance of their electrode system across a wide range of frequency 

ranges and found no effect of the electrode transfer function on the measured coherence.  

Given these electrophysiological observations, BOLD imaging is hence a powerful tool 

to measure the very slow frequency changes in the 0.1-0.01 Hz range.
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The functional significance of the low frequency components detectable with BOLD-

fMRI is, for the most part, unexplored.  This is mainly due to technical limitations, since 

most electrophysiological recording equipment, even if run in “DC” mode, have 

intrinsic high-pass filters, typically filtering out signal below 0.5 Hz.  Figure 2.7 shows 

the power of a local field potential recorded with a Eckhorn multielectrode array 

(Leopold et al., 2003).  Although on first sight, the 1/f power law seems to stop any 

measurable signal at around 0.5-1 Hz, with the appropriate amplifier system, no such 

attenuation in the ultraslow frequency bands is observed (Vanhatalo et al., 2002; Miller et 

al., 2007).  Some validation studies have been conducted to distinguish the ultraslow 

EEG frequencies from respiration and motion artifacts that overlap in the same 

frequency range, demonstrating the presence of real signal.  Little is know about the 

functional role of this frequency range; power changes within it have been linked to 

vigilance and self-initiated motor behavior (Gilden et al., 1995).  In chapters 6 and 7 we 

show that the ultraslow oscillations are related to the underlying anatomical 

connectivity and that the coherence observed between two BOLD signals can be 

predicted by the strength of connectivity between two areas.
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Figure 2.7.  Grand mean power spectrum and coherence of the raw LFP signal during 

an entire recording session. Data were acquired from 15 electrodes in a monkey.  For the 

data shown here, the monkey was awake and seated, but not engaged in any particular 

task. His scanning movements around the dim recording room determined the structure 

of his visual input. (a) Power spectral density of the LFP, averaged over all 15 electrodes. 

(b) Mean pairwise cross coherence between all electrode pairs in the array.  The 

differently colored lines are different recording conditions, but all show substantial 

residual power and coherence even at low frequencies.

Figure reproduced from Leopold et al., 2003.

It is important to remember that magnetic resonance imaging cannot directly 

observe chemical or electrical neuronal activity.5  The most commonly used techniques 

are sensitive to change in either blood flow (rCBF) or the oxygenation of hemoglobin 
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(BOLD), two measures often but not necessarily correlated.   To measure functional 

changes and functional connectivity, both techniques utilize the fact that the blood 

supply to neuronal tissues is actively coupled to the metabolic activity of cortical tissue.  

If a cortical area increases its activity, which occurs mostly through the metabolic 

demands of synaptic events such as vesicle cycling, this metabolic activity will trigger an 

increase in local capillary blood flow and an increase in  blood oxygenation.  Both effects 

affect MR imaging sequences and can be used to determine whether a brain area 

changes its metabolic activity as a result of experimental manipulations.

In chapters 6 and 7, we are interested in using statistical dependencies between 

distant oxygenation responses as an indicator of a functional coupling between two 

brain areas.  One difficulty of this approach is that many other global signals, such as 

blood pressure regulation, respiration and head motion, can affect the measured MR 

signal in the same frequency band.  Various experimental controls have been conducted 

to rule out such signals as the sole explanation of observed long-distance correlations.  

However, it is not clear whether anatomical connectivity directly predicts ultraslow 

synchronization between distant brain areas.  In chapter 6 we show that the predicted 

strength of anatomical connectivity obtained by diffusion-weighted tractography 

predicts the degree of ultraslow functional synchronization.  Moreover, this correlation 

between the two measures is substantially better than the association between such 

functional coherence and the binary connectivity information of chemical tracer studies.

One aspect of measuring functional synchronization indirectly with BOLD-fMRI is 

that the BOLD response acts as an effective low-pass filter.  Synchronization in frequency 

bands above about 0.5 Hz is thus not measurable, and the analysis needs to be restricted 
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to ultraslow oscillations.  In this thesis, we restricted ourselves to largely stationary 

background functional coupling that can be observed even at rest, and did not analyze 

dynamic changes in cortical functional connectivity, but EEG and LFP studies show that 

different frequency bands react differently, and in some cases, in opposite direction, to 

task demands and stimulus changes.

In the functional connectivity and resting-state literature, ultraslow coherence is 

assumed to be a uniform process.  Due to the low-pass filtering properties of BOLD-

fMRI together with the slow drift components caused by technical aspects of the MR 

measuring equipment, the analysis is pragmatically restricted to the band-pass filtered 

signal in the 0.1-0.01 Hz frequency band.  BOLD signals from two spatially separate 

regions are then correlated and the correlation coefficient is either taken as a direct 

indicator of functional connectivity, or explained in a vector autoregression or nonlinear 

framework.  In either case, since the power in these ultraslow frequency ranges is 

disproportionally higher than power in the somewhat higher frequency ranges 

measured for standard functional BOLD-fMRI, one needs to deploy a spectral 

decomposition to analyze coherence in the ultraslow  frequency spectrum.

Current Knowledge of Connectivity

During evolution, and in particular the evolution of mammals and their unique 

neocortex over the past several 100 million years, brain organization and notably white 

matter has undergone dramatic changes.  Many species have explored new habitats and 

developed complex forms of interactive behavior that required new cognitive 

inventions, and often relied both on more processing power (larger brains) and more 
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integrated processing (more connectivity).  Brain anatomy and development are tightly 

related and feature specialized cortical architectures enabling new behavioral and 

cognitive abilities.  The new capabilities are supported by enlarged neuronal white and 

gray matter, particularly in the prefrontal cortex during the recent phylogeny of 

mammals, and by a further specialization of already existing neocortical areas (Stevens, 

2001; Cherniak et al., 2004; Sereno and Tootell, 2005).  The expansion and specialization 

of gray matter has been accompanied by a disproportionately large expansion of white 

matter (Figure 2.8).  Across species, neocortical white matter expanded at an exponential 

rate of about 4/3 the power of the neocortical gray matter volume (Hasenstaub in 

Allman, 2000, p. 165).  The highest degree of connectivity can be found in the most 

highly encephalized mammals: primates.  Relatively little is known about the changes in 

white matter organization itself and how the cortical fiber network has evolved to 

support new functionality. However, some general themes can be surmised.  As brains 

evolved to be larger and larger, this required not only exponential volumes of white 

matter to achieve the same degree of interconnectivity, but also posed a problem with 

respect to the speed of communication.  Mammals had evolved myelin to subserve rapid 

axonal conduction, and therefore fast communication between distal brain regions could 

use myelinated axons.  But such myelination in turn increased the size of the axon and 

contributed to the ever-growing volume of white matter in brains that were already very 

large.  This trade-off between communication and sheer volume requirements has likely 

been a limitation on brain expansion, and may have resulted in the increased apparent 

modularity of large brains (cf. Ringo et al., 1994).
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Across species, increases in gray matter volume are predictably linked to increases in 

white matter by the power law relationship  (Zhang and Sejnowski, 2000) mentioned 

above.  The log-log ratio is constant across primate species (and about 4/3) with white 

matter volume increasing faster than the gray matter, as one would expect from 

expansion of surface and volume within a growing sphere. At first sight, this constant 

white-to-gray matter relationship might suggest a simple organization of white matter 

mirroring the expanding gray matter.  However, white matter connectivity is highly 

specific and forms very structured communication networks that themselves constitute 

an important topic for evolutionary investigation.  In their seminal study, Felleman and 

van Essen (1991) analyzed neocortical connectivity between visual areas of the macaque 

brain.    The study used anatomical criteria about the direction of fibers, such as the 

originating and terminating cortical layer, and the direction of tracer transport, to 

classify each visual connection as feedforward or feedback.  If two areas are connected, 

they are, in most cases, bidirectionally linked.  The overall connectivity pattern shows an 

interesting structure.  The organization of visual feedforward connections is consistent 

with a hierarchical processing architecture (see Chapter 6).   This means there are distinct 

“levels” of connectivity, such that a “lower” area can route information to a “higher” 

area only through regions intermediate in the hierarchy.  This anatomical finding mirrors 

our current understanding of visual information processing: visual features are extracted 

from the retinal image and are then iteratively refined.  At the bottom of the hierarchy, in 

the primary visual cortex, basic local orientation information is encoded and higher-

level areas represent increasingly complex, global features.  At the top of the hierarchy, 
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visual information leads to high-level memory representations in the hippocampus 

(Kreiman et al., 2000, 2002).  

Figure 2.8.  The ratio of neocortical white matter relative to the volume of neocortical 

gray matter in insectivora and primates.  The red line indicates a log-log ratio of 1, the 

black line corresponds to the observed power law relationship with an exponent of 

1.318.  The white matter volume increases disproportionally when the gray matter 

volume expands.  

Figure reproduced from Allman, 2000, p. 116.
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C h a p t e r  3

METHODS

This chapter will provide an overview of the mathematical and imaging techniques 

used throughout the thesis.  It will first introduce computational networks, namely 

factor graphs, Bayesian networks and Markov random fields.  These methods are used 

in the subsequent chapter to develop new fiber tracking algorithms.  The anatomical and 

functional structure of networks will be analyzed with graph theoretical and low-

dimensional embedding techniques.  Two examples, the Dijkstra shortest path 

algorithm, and locally linear embedding, are discussed below.  Additionally, an 

overview of the MR image acquisition and processing steps is provided.  A description 

of the probabilistic fiber tracking used for parts of the thesis and the application of the 

spectral multitaper analysis conclude this chapter.

Graphical Models, Factor Graphs, Belief Networks, and 

Markov Random Fields

Extracting meaning by fitting complex models to high resolution data sets can be 

challenging.  Frequent applications include the recognition of objects in images or the 

search for characteristic behavioral patterns in dense social networks.  The key to solving 

these high dimensional problems is often to take advantage of local neighborhood 

relationships in the data.  Graph theory is a powerful mathematical tool to capture the 

local structures of such problems and for developing inference algorithms on top of the 

network structure.
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A very useful computational class of models are factor graphs (Kschischang et al., 

2001).  Many complex computational and probabilistic problems can be simplified by 

factoring them into smaller, more tractable subfunctions.  Similar to prime factorization, 

where any natural number can be expressed as a product of prime numbers, many 

functions can be written as a product of simpler factor functions.  A function g that is 

defined over three variables could for example be expressed as the product of three 

simpler functions (f1, f2, f3).

g (X1, X2, X3) = f1 (X1, X2) f2 (X2, X3) f3 (X1).

In general:

g (X1, . . . , Xn) =
m∏

i=1

fi (Sj) Sj ⊆ {X1, . . . , Xn}
.

A particularly practical property of factor graphs is that a recursive partitioning of a 

function into factors results in a hierarchical, treelike graphical model.  Statistical 

inference methods on such hierarchical, loop-free models are exact, whereas inference on 

circular graphs, such as loopy belief propagation, may yield only approximate results.

In practice, the functions specified by graphical models can span thousands, and in 

the case of fiber tracking millions of locally interdependent variables.  To visualize 

complex relationships in coding theory, a special graphical notation for factor graphs has 

been developed by Tanner (1981).  The Tanner graphs shows the relationship between 

variables and factors of a network.  Variables appear as a circles and factors are shown as 

squares (e.g., Figure 4.2 for a later example).  The domain of a factor, the set of variables 

a functions acts on, are the edges of the graph.
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Solving large problems with thousands or millions of variables can be 

computationally challenging.  By exploiting the locality of relationships through graphs, 

it is often surprisingly simple to approximate functions locally and to solve the global 

function by propagating information through the network.  The exchange of local 

variable information in factor graphs is called message passing.  The values that a factor 

function receives from its neighboring variables are called messages (Frey and Dueck, 

2007).

For probability networks, the local computations are often simple arithmetic 

operations.  Common inference mechanisms for factor graphs include sum-

product   algorithms for computing conditional probabilities, max-product to obtain 

maximum likelihood estimates and min-sum algorithms for decoding problems.  For 

finding pathways in diffusion images, we will for instance use a version of a max-

product algorithm to identify all maximum likelihood solutions.

Factor graphs only specify the functional relationships between variables, without 

constraining the actual function.  In contrast, Bayesian and Markov networks describe 

conditional probabilities and are spanned by parent-child edge relationships.  Factor 

graphs are well suited for networks with many overlapping relationships.  They are 

most useful for studying problems with complex, but local connectivity.  Typical 

applications include low-level machine vision and identifying interaction patterns in 

gene and social networks.

An interesting subset of computational networks are directional factor graphs.  Similar 

to Bayesian networks, they restrict edges to parent-child relationships.  Directed factor 

graphs are closely related to Markov random fields and Bayesian networks (see Jensen 
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and Nielsen, 2007) and can express most instances of such models.  They offer an 

alternative view of the information flow in such networks and they will be used in later 

chapters in conjunction with Bayesian formulations to describe the message propagation 

aspects of the fiber tracking algorithm.

Markov random fields emphasize the locality of interactions in large graphs.  Nodes 

are typically only locally connected.  The Markov property between variables follows 

directly from the connectivity structure of the graph:  two nodes are conditionally 

independent if they do not share a common edge.  The local neighborhood relationships 

are a complete model of the statistical dependencies of a node; a variable is conditionally 

independent of all graph nodes, given its neighboring variables.  The classical example 

of a Markov random field is the Ising model that describes spin-spin interactions in 

physical chemistry.  It turns out that fiber tracking shares many similarities with the 

Ising model.  Neighboring orientation distributions are coupled in a similar way as spin 

states are in the simpler Ising model.

Frequently deployed inference methods in Markov random fields include Markov 

chain Monte Carlo (MCMC) sampling and loopy (recursive) belief propagation.  With 

growing complexity, such methods become computationally expensive and can often 

only approximate results.  For nonloopy Markov random fields and equivalent 

hierarchical Bayesian networks, exact and fast inference methods exist.

Bayesian networks share many commonalities with Markov fields.  They capture 

conditional probability relationships between variables.  An important application of 

Bayesian networks is the estimation of complex hidden variables, such as identifying 

class membership of visually distinct objects or the estimation of global shape properties 
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of fiber tracts through a diffusion MRI volume.  Bayes networks offer an intuitive way of 

expressing complex interactions between various variables, such as local diffusivity of 

tissue, partial volume effects and noise sources.

Although not identical, the expressiveness of the various directed graphical models 

is quite comparable.  When describing and analyzing the properties of the whole brain 

fiber tracking algorithm, the different notations can provide distinct insights into the 

various aspects of statistical inference.  Markov random fields best explain the locality of 

interactions between variables, whereas hierarchical Bayesian networks will be used to 

link the algorithm to existing Bayesian tractography models.  The computational aspects 

and the information flow through the inference network can be best highlighted using 

factor graphs and message passing analogies.

Previous Bayes algorithms applied to fiber tracking often estimate the complete 

posterior distribution over the network of hidden variables.  Such fiber tracking  

approaches produce maps of the distributions of many possible pathways.  For many 

practical applications, it is sufficient to identify the best paths and compute the exact 

probability of all optimal solutions, for example using maximum likelihood solutions. 

The maximum likelihood solution in a Markov field can be obtained with the Viterbi 

algorithm.  A network can be thought of as a series of local states with a finite, at times 

very large, number of states.  Multiple sequences of states (e.g., pathways through the 

brain) through the network lead to a final state (e.g., a voxel in a distant brain region 

whose connectivity has been identified).  To identify the best path, a cumulative metric is 

deployed when evaluating different possibilities at every node.  Only the most likely 

pathways are kept for each state and all other possible, but less likely paths are 
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discarded.  The search history leading to a state can be stored and used to backtrace the 

sequence of local events.

Path Analysis and Dimensional Embedding

The cortical network of specialized, interconnected areas, on first sight, appears very 

complex and random.  Its topology has been compared to the properties of many real-

world networks, such as national transportation networks and social graphs 

(descriptions of social relationships and interactions among people).  Although it is quite 

densely connected, many characteristics of its connectivity, such as node degree 

distributions, clustering and centrality coefficients make it similar to randomly 

generated graphs where new nodes preferentially attach to existing nodes with high 

connectivity.  Depending on the exact generative rules, the resulting networks are scale-

free, with a power law distribution of the node degree, and show small world properties 

such as short pathways between nodes.  In many respects the cortical network shows 

similar properties, indicating that generative rules such as preferential attachment are 

important during evolution and brain development.

Yet, brain connectivity is not randomly generated.  Instead, it has evolved to  

selectively process information and support ecologically relevant cognitive and 

behavioral abilities.  Similar to gene networks that need to constantly adapt enzyme 

production, the cortical network structure needs to be able to adaptively route 

information from primary sensory areas to high-level networks and integrate higher-

level representations with lower-level information processing.
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Assuming that the amount of information transfer is correlated with the anatomical 

size of a fiber pathway, path-analysis methods can be applied to identify the supposedly 

optimal routes of information through the densely interconnected cortical architecture.  

Optimal routes can be identified with the Dijkstra shortest path algorithm (Dijkstra, 1959).  

Starting from a start node, it identifies the distance to all connected nodes and updates 

their distance value.  Subsequently, the most closely connected node of the start node is 

visited and the algorithm is repeated.  Each node is only visited once and the algorithm 

efficiently identifies the shortest distance to each node from the start node.  This 

algorithm will be later used to study the weight-based network distance of cortical areas 

and to compare this measure to the known hierarchical ordering of areas, such as the 

Felleman and van Essen hierarchy of visual areas mentioned earlier.

Such path-analysis methods can only estimate a multinode connectivity value 

between brain areas.  The algorithm would, however, not be able to identify distinct 

parallel pathways of similar length originating in the same primary area.  In such a case, 

for example when comparing the dorsal and ventral visual processing streams in the 

parietal and temporal cortex, it assigns similar distance values to areas in distinct 

pathways that have a similar hierarchy level.   To identify separate pathways, we will 

use unsupervised clustering methods to segregate pathways that show distinct 

connectivity profiles.  Our method of choice is locally linear embedding (Roweis and 

Saul, 2000), an algorithm that first compares feature values, that is the connectivity 

profile of areas, to identify similar nodes.  In a second step it reduces the number of 

features to a lower dimensional manifold while maintaining the neighborhood 

relationship as far as possible.  The resulting embedding is an excellent representation of 
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the original similarity relationship and can identify pathways by identifying clusters of 

distinctly connected areas.

Anatomical and Diffusion Imaging

Studying brain connectivity for the entire brain is a computationally challenging 

task.  A single in vitro scan of the macaque brain generates several gigabytes of data.  

Just to reconstruct the diffusion signal from the MR signal attenuation requires multiple 

days of computation.  Reconstructing the likely location of originally histologically or 

functionally defined cortical areas is equally challenging and is at present only partly 

automated.  The main step of then combining the diffusion signal with the cortical maps 

to reconstruct all likely fiber pathways and their probabilities could take weeks or 

months on conventional software and hardware.  We developed our own, highly 

optimized implementation that efficiently estimates the probabilities with high 

reliability for the entire brain.

Figure 3.1 gives an overview of our anatomical processing pipeline.  We first 

identified gray and white matter in the T1-weighted images using automated and 

manual segmentation tools.  Using this tissue classification, 2-dimensional manifolds 

matching the gray-white matter boundary were reconstructed, anatomical landmarks 

identified, and histological parcellation maps were projected onto the surface.  These 

reconstruction steps, mostly carried out with the software Caret 5.5, are documented in 

detail below. 
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Figure 3.1. Overview of the Anatomical and Diffusion Processing Steps.  Each set of 

steps in the pipeline is indicated, together with the primary software used (90-degree 

rotated text to the right).  Anatomical and diffusion processing are ultimately integrated 

in order to derive connectivity between segmented cortical regions of the brain.

Preparation and MR imaging of Monkey Brains

Two brains from two young adult cynomolgus monkeys (Macaqua fascicularis) were 

obtained as described earlier (Parvizi et al., 2006); both had been used in prior studies by 

Professor Josef Parvizi (Department. of Neurology, Stanford University Medical School), 

who kindly provided them for our study.  Briefly, the monkeys were exsanguinted and 
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transcardially perfused with 4% paraformaldehyde in 0.1 M phosphate buffer.  Brains 

were then stored refrigerated after fixation.  A few weeks before scanning, the brains 

were immersed in multiple exchanges of 1 mM sodium azide phosphate buffer to wash 

out the paraformaldehyde.  The samples were subsequently immersed for at least 

3  weeks in a gadolinium solution (ProHance, Bracco Diagnostics), a paramagnetic 

contrast agent that shortens T1 relaxation time.  For imaging, the whole brains were 

mounted in perfluoropolyether (Fomblin PFPE, Solvay Solexis, USA)  and imaged in 

9.4T and 7T magnetic resonance systems (Bruker Biospin, Rheinstetten, Germany) at the 

Caltech Brain Imaging Center.  To minimize temperature-dependent changes in the 

magnetic resonance signal, the gradient coils were insulated from the sample by a layer 

of self-adhesive polychloroprene.

T2 relaxation time of gray matter was determined in an initial series of spin-echo 

scans using different echo times. We first obtained 9 high resolution anatomical images. 

The images were subsequently averaged to improve the signal-to-noise ratio.  Apparent 

diffusion speed was then obtained from the average of a custom high-angular resolution 

diffusion-weighted spin-echo sequence (Tyszka et al., 2006). Diffusion-weighting was 

applied in 72 directions with a nominal b-value of 3000 s/mm (actual values ranged 

from 2905 to 3104).  In addition, 7 nondiffusion-weighted scans were 

obtained (b = 1.96 s/mm2).
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Anatomical Scans and Cortical Parcellation

High resolution anatomical scans were obtained using a Fast Low-Angle Single 

sHot   (FLASH) gradient echo sequence.  The images were taken with an in-plane 

resolution of 100  μm and a slice thickness of 150  μm.  To increase the signal-to-noise 

ratio, we scanned 9 volumes that were coregistered using FSL to obtain an averaged 

volume that we then used to reconstruct the individual brain topologies.  At higher field 

strength, T1 tissue contrast is inverted compared to lower field strength: white matter 

has a faster T1 decay constant than gray matter and thus appears darker in the images.  

Most software for reconstructing brain tissue anatomy is optimized for low field scans.  

To enable automatic reconstruction with current software, we smoothed the averaged 

volumes with an anisotropic diffusion filter in Amira   (Mercury Computer Systems, 

Chelmsford, MA) and used a custom Bayesian classifier to segment white and gray 

matter.  Subsequently, we inverted the class intensity means – by increasing the average 

intensity of the white matter voxels and reducing intensity of gray matter voxels – to 

resemble a T1 contrast at lower field strength.  Using these images, the gray-white 

matter boundary was reconstructed in Caret   5.5 (Van Essen, 2002).  The software 

computes the class statistics for the tissue classes, reconstructs a 2-dimensional Euclidian 

manifold along the gray-white-matter boundary and automatically corrects many 

topological errors of the manifold reconstruction.  We converted the output manifold 

back into a volume format and inspected each hemisphere in detail.  Misclassified tissue 

was manually corrected with Caret and the itkSnap 1.4.1 editor (Yushkevich et al., 2006).  

The improved masks where again reconstructed into 2-dimensional manifolds with 

Caret.  The process was repeated a few times until the surface resembled the gray-white-
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matter boundary in sufficient detail (Figure 3.2).  The resulting 2-dimensional cortical 

surfaces were deformed into a spherical representation that forms the canonical basis for 

Caret's realignment procedure.

Figure 3.2. Reconstruction of Cortical Surface and Localization of Histologically 

Defined Areas.  Left: the high resolution anatomical image of a macaque brain obtained 

on a 9.4T Bruker MR system.  Middle image shows the surface reconstruction of a 

standard atlas of the macaque cortex.  Right image: Probabilistic parcellation map of 

cortical areas.  Each color shows the boundaries of a histologically defined area (Lewis 

and van Essen, 2000b).  The intensity and saturation of a color indicates the percentage 

agreement among different individual brains. 

Cortical areas can be defined by anatomical, histological, genetic, connectivity, or 

functional boundaries  (Toga et al., 2006).  Characterizing such boundaries in a single 

hemisphere would be an enormous undertaking.  Hence, it would be very beneficial if 

whole-brain fiber tracking could be performed using atlas-based regional boundaries.  

To test whether such an approximation would be sufficient to measure connectivity, we 

mapped the histologically and electrophysiologically defined cortical parcellation maps 

onto the reconstructed surfaces.  We used a computerized registration procedure (Van 

Essen, 2002) to align the cortical surface of 4 parcellation atlases and the scanned brain.  
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The realignment procedure uses location, shape and size of sulci and gyri to adjust for 

the differences in folding pattern and area size between individual brains.  For each 

hemisphere, we identified 26 anatomical landmarks on the reconstructed surface (Van 

Essen et al., 2001) and aligned the topologies of the individual cortices with a standard 

macaque brain template (F99UA1 template, van Essen, 2000).  The alignment for every 

hemisphere was inspected manually and adjusted if necessary.  Two parcellation atlases 

were used for the fiber tracking reported here, one for visual areas (Lewis and van Essen 

2000b) and one covering the whole brain (Paxinos, 2000) (Figure 3.2).  The atlas of visual 

areas maps functionally and histologically defined boundaries of about 90  visually 

responsive areas (Lewis and van Essen, 2000b) in the occipital, parietal, and temporal 

lobes.  For studying full-brain connectivity, a more comprehensive map with the 

approximate location of about 150 areas covering all cortical lobes was used (Paxinos, 

2000).  Although such a fine-grained parcellation with precise borders is certainly 

beyond the specificity of diffusion imaging and fiber tracking, we found, on average, a 

better agreement between the fiber tracking results and tracer-based results when using 

finer compared to coarser cortical classification schemes.  Seed regions for the 

probabilistic fiber tracking were identified by inverting the surface-based template 

registration procedure.  The parcellation boundaries along the cortical surfaces were 

used to create 1 mm-thick gray matter sheets, located just above the white matter border.  

These masks were used as seed regions for the subsequent fiber tracking step.
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Figure 3.3. Lateral view of probabilistic parcellation map of Lewis and 

van Essen (2000b).  Shown here is the probability, among four monkey brains, of finding 

a particular region of cortex within a specified anatomical parcel (indicated by the 

different colors for the different parcels, and by their saturation for the probability).  The 

surface is a smoothed reconstruction of the gray-white matter boundary.
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Figure 3.4. Landmarks used for alignment of areas on surface map.  The same 

probabilistic parcellation atlas as shown in figure 3.3 was inflated so as to visualize all of 

cortex; the dotted lines indicate major sulci and gyri that were used for alignment 

between brains.

Diffusion Imaging

Apparent diffusion speed maps were obtained  using a diffusion-weighted spin-echo 

sequence with a 500 μm isotropic voxel size and 72 distinct directions.  The nominal b-

value of the diffusion scans was 3000 s/mm2 (actual values ranged from 2905 to 3104).  

7 nonweighted spin echo images (b = 1.96 s/mm2) were interspersed between blocks of 
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12 diffusion-weighted images to monitor temperature- and tuning-related changes in 

MR resonance.  No significant changes in the baseline MR signal were detected and the 

nonweighted images were collectively used to estimate the apparent diffusion coefficient 

maps.  The entire imaging procedure took approximately 20 hours per brain.

After the anatomical reconstruction and parcellation of cortex described above, we 

had obtained the approximate location of most cortical regions.  The surface-based 

boundaries of the regions were used to label the corresponding voxels in the anatomical 

scans.  The anatomical scans were normalized for nonuniform intensity biases inherent 

to the imaging equipment with N3 (Sled, 1997) and aligned to the reference frame of the 

diffusion-weighted images with the FSL software.  Using this affine transformation, 

voxel labels were transfered from the anatomical to the diffusion image space using a 

nearest-neighbor interpolation.    We then used the diffusion-weighted MR data and 

seeded the fiber tracking algorithm in these regions to compute the likelihood that any 

two are connected.  For this step, we deployed our fast probabilistic fiber tracking 

implementation applied to the reconstructed mixture of diffusion orientations obtained 

from the diffusion toolbox of FSL 4.0.

Probabilistic Fiber Tracking

To compute the path of a global fiber, the tractography algorithms rely on local, 

voxel-based estimates of diffusion anisotropy.  It is possible to model the observed 

direction-dependent diffusion-based MR signal attenuation as the net effect of local 

diffusion barriers.  The FSL software computes an approximation of the likelihood of 
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oriented diffusion barriers.  The nonlinear model is fitted with a Markov chain Monte 

Carlo (MCMC) procedure (Behrens et al., 2003a, Behrens et al., 2007).  

After modeling the fiber orientation in every voxel, the fiber tracking algorithm 

generates potential pathways by joining likely orientations in adjacent voxels (Behrens et 

al., 2003b).  Due to its probabilistic nature, the algorithm can estimate fiber tracks 

through regions of uncertain connectivity, such as crossing fiber bundles and gray 

matter, better than previous, deterministic approaches.  However, such a tracking 

through neural tissue with complex connectivity can result in erroneous connections.  

The approach of probabilistic fiber tracking is to trace all possible connections and 

compute the likelihood for each of them.  Our implementation of this approach 

computes the connectivity for the complete brain between every parcellated cortical area 

and each voxel within it.  Unlike previous approaches, this whole-brain analysis requires 

a substantially higher number of samples to achieve stable estimates of the posterior 

distribution for the high resolution diffusion scans.  Our software was developed to be 

optimized for the AltiVec vector processing units available on modern PowerPC 

microprocessors and achieves substantially higher sampling speeds than comparable 

implementations on other processors.  The optimization enabled us to complete the 

tractography for an entire brain within hours, thus producing a whole-brain 

“connectome” map.

Mathematically, probabilistic fiber tracking algorithms compute the likelihood of a 

fiber pathway.  The likelihood is computed by sampling from the posterior distribution 

using a Markov chain Monte Carlo procedure.  Each sampling step is referred to as a 

particle and sampling from the Markov chain corresponds to propagating the virtual 
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particle through the conditional orientation models in each voxel.  Here, we were 

interested to estimate whether two areas are likely to be connected, given the likelihood 

of potential pathway locations.  We used the density of virtual particles in the target 

region to judge whether two areas might be connected.  To compute the particle density, 

we seeded a source area with a density of 1000 particles per voxel, and then counted, for 

every other cortical area, how many particles reached the target region.  For each target 

area, we divided the total number of particles reaching the target area by the size of the 

size of the area.  We found that this density results in the best agreement with tracer 

studies.
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Combining Functional Imaging and Fiber Tracking in 

Humans
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Figure 3.5. Outline of the Human Structural and Functional Processing Steps.  This 

processing flowchart adds to Figure 3.1 also the functional (BOLD) pipeline and shows 

how functional (BOLD), connectivity (diffusion) and anatomical (structural MR) 

information are combined to explore both structural and functional connectivity.  The 

particular pipeline shown here is for the human brain data, but similar flowcharts apply 

to the data from the monkey brain, where the functional data was obtained from a 

public archive.
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Multitaper Analysis of BOLD Time Series

Functional connectivity is frequently studied by assessing the correlation of the 

BOLD signal between two areas in a broad frequency band.  Due to the 1/f power 

spectrum of the BOLD signal, this overemphasizes the very low frequency components.  

To study the BOLD coherence in different, narrower frequency bands, it would be 

possible to band-pass filter this signal multiple times and estimate correlation or 

coherence coefficients in each case.  As the number of frequency bands increases, the 

filter would need to be temporally widened to decrease the leakage between different 

frequency bands.  To reduce leakage across frequency, then, optimal filter weights can be 

determined with a Slepian filter.  The nonobvious solution is an eigenvector that 

represents the weights with the least leakage.  The solution of this leakage problem has 

multiple eigenvalues that capture orthogonal weights.  Multitaper methods use the first 

few solutions or “tapers” to compute spectral power with minimal leakage (Pesaran et 

al., 2002, Mitra and Pesaran, 2008).  This optimal noise filtering in the temporal and 

frequency domain is very desirable for high-noise signals such as BOLD time series.  In 

chapter 6 and 7 we show the application of using the complex BOLD spectra of the MRI 

signal to efficiently compute the cross-coherence across brain regions.  The BOLD 

coherence so measured can then be combined with structural and diffusion MRI 

(Figure  3.5) to provide a highly multimodal imaging approach to investigating both 

brain structure and brain function.   We present some examples of such integration for 

both the monkey and the human brain in the chapters below.
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C h a p t e r  4

BELIEF PROPAGATION OF CONNECTIVITY

Diffusion-weighted magnetic resonance imaging provides relatively high resolution 

information about the microstructure of white matter.  A key challenge is how to 

integrate this information, often sampled at thousands to millions of different locations, 

in order to derive global connectivity estimates.  Current approaches choose seed 

locations and then trace potential pathways independently.  An exhaustive search with 

such methods quickly becomes computationally intractable, and hence all current 

model-based approaches avoid this problem either by estimating a single likely pathway 

(deterministic algorithms) or sparsely sampling the theoretical distribution of all 

pathways (probabilistic algorithms); neither guarantees an optimal solution and both 

suffer from false negative and false positive results.

Here we present a novel algorithm predicated on message passing that rapidly 

converges to a globally optimal solution among all possible pathways through the entire 

brain network.  The algorithm implements a routing algorithm based solely on local 

decisions yet provides a solution at the level of the whole brain.  Each node takes into 

account connectivity information that it receives from its adjacent neighbors.  At each 

voxel location, global information, for example about the curvature of the pathway, and 

local diffusion information are combined into a globally optimal connectivity estimate.  

The effective resolution of the algorithm can be further enhanced by supplementing the 

diffusion data with high resolution white matter priors from T1-weighted, anatomical 

scans.
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Model-Based Fiber Tracking

Many previous methods solve the fiber tracking problem either by starting at a seed 

location and tracing potential connections deterministically through the orientation field, 

or by evaluating many randomly generated pathway candidates independently, one by 

one. Algorithms thereby need to, either implicitly or explicitly, judge the reliability and 

goodness of fit of their fiber estimates.  Formally, models of potential connections (M) are 

compared against the acquired imaging data   (y) and a goodness of fit between the 

model parameters and the data is computed.  In the case of Bayesian models, the 

likelihood distribution over the model space of different pathways P (M|y) is typically 

approximated by the tractography algorithms.6

P (M | y) =
P (y | M) · P (M)

P (y) .

For most models, the likelihood function P (M|y) is complex and cannot be solved 

analytically.  Instead, sampling techniques, such as Metropolis-Hastings, Gibbs, or 

Markov chain Monte Carlo methods  (MCMC), are applied to estimate the likelihood 

distributions from the data.  If the likelihood function is sufficiently complex, sampling 

quickly becomes computationally expensive when applied on a whole-brain level.  The 

sampling procedures need to evaluate each and every pathway candidate independently 

and thus become very slow on a global scale.
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A typical model evaluates pathways by scoring the agreement between the 

observations at multiple voxels along a pathway (y1, ..., yn).  In a Bayesian framework, 

the conditional probability of local diffusion signals is calculated from a global model.  

The observation model P (y|M) for instance estimates the probability that anisotropic 

diffusion components would be observed along a particularly shaped pathway.  

Observations that are consistent with the curve’s shape are assigned a high probability, 

while discordant orientations are less likely, but might occasionally be observed due to  

thermal and other equipment noise.

P (M | (y1, . . . yn)) =
P ((y1, . . . , yn) | M) · P (M)

P ((y1, . . . , yn))  .

The actual estimation of a model’s likelihood value is often straightforward.  The MR 

observations in different voxels are independent and the conditional probabilities can 

simply be multiplied.  The observations yi can thereby correspond to adjacent voxels 

chosen by a sampling procedure  (Behrens et al., 2003b, Sherbondy, 2008) or represent 

selected points along a globally defined curve (Jbabdi et al., 2007).

P (M | (y1, . . . yn)) =
∏

i

P (yi | M)
P (yi)

P (M)
.

For complex likelihood functions P (M|y), an exponentially large number of random 

samples are required to reliably identify the most likely pathway shape.  The main 

challenge with current models is that small local variations of the pathway 

description (M) can results in drastic changes of the global pathway shape.  For example, 

if a pathway is modeled by a Catmull-Rom spline, a change in position of one of the 

control points alters the path and thereby the sampled voxels for the adjacent spline 
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segments.  Each variation of the model, however small, hence needs to be evaluated 

independently.  To increase the speed of convergence, the model complexity is often 

artificially limited, for instance by restricting the analysis to only planar splines with 

only 2 effectively free control points (Jbabdi et al., 2007).  Nonplanar curves or curves 

that cannot be expressed by varying the location of only 2 control points, thus cannot be 

found by such algorithms.

An otherwise intractable model space can become computationally tractable if the 

global pathway can be divided into local segments.  When estimating the model, one 

could then take advantage of the fact that many similar pathway candidates will share 

common segments.

P ((m1, . . . ,ml) | y) =
∏

i

P (yi | f (m1, . . . ,ml))
P (yi)

P (f (m1, . . . ,ml))
.

For global pathway models, local changes still influence the global shape of the 

pathway.  For Catmull-Rom splines, for example, a change of a control point influences 

the pathway in the adjacent segments.  To leverage the existence of commonly shared 

pathways, the mathematical representation of initial segments needs to be conditionally 

independent of subsequent continuations of the track.

  P (y | f (m1, . . . ,mn)) = P (y | f (m1, . . . ,mn,mn+1, . . . ,ml)).

If the above condition is met, the model space up to length  n can be evaluated 

independently of further continuations of pathways.  Subsequent extensions are then 

efficiently computed by extending the precomputed model space of length n to length 

n + 1 .  Figure 4.1 aims to illustrate the pathway fitting for the case of a splitting fiber.  
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Different pathway candidates for the first (m1, m2) segment would be evaluated and the 

associated likelihood values stored.   In subsequent steps, different continuations of the 

tract, for example to the (m3, m4) or the (m’3, m’4) segments, can be evaluated based not 

only on their agreement with local measurements, but also on how well the new global 

pathway resembles a smooth curve.  Different continuations will extend different initial 

segments, thereby performing a truly global search. 

  

Figure 4.1. Segmentation of the model space.  The algorithm evaluates possible 

pathway candidates for the start of a fiber and assigns a likelihood value to each 

candidate.  Subsequently, the pathways are extended, and multiple continuations of the 

initial segments are possible.  Although a local fiber tract candidate might initially fit 

better, subsequent continuations can result in the selection of locally suboptimal, but 

globally optimal pathway estimates.  
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Recursive Estimation of Fiber Tracks

To estimate the likelihood function efficiently, it is necessary to find a recursive 

definition of M, such that the relevant properties of f (M) = f (m1,...,ml) can be described 

by the combination of local pathway information (ml) with one descriptor summarizing 

the prior history of the pathway (m*l-1).  Local curvature and expected fractional 

anisotropy information can be represented by the local vector  ml, and likelihood 

information about the curvature, length and shape of the pathway are stored in m*l-1.

 
P ((m1, . . . ,ml) | y) =

∏

i

P
(
yi | g

(
ml,m∗

l−1

))

P (yi)
P

(
g

(
ml,m

∗
l−1

))

.

The information dependency of the above formalism can be visualized by a factor 

graph (figure 4.2).  In the graph, circles represent variables and squares symbolize 

functions. Arrows indicate the dependency relationships between the variables and 

functions.  Information about the geometry of the tract and the agreement with the 

observed data along the prior pathway is all conveyed in m*i.   A global pathway 

likelihood and shape descriptor m*i is computed based on prior pathway segments m*i-1, 

a local shape and a tissue model mi together with the local measurements yi.  The 

messages m*i are exchanged between adjacent nodes during the updating steps.  When a 

voxel receives information about a prior pathway (m*i-1), it evaluates this information in 

light of possible local extensions mi and of the voxel’s measurements yi.  
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Figure 4.2.  Factor graph of the message passing algorithm.  Each voxel summarizes 

local pathway information (mi) and diffusion measurements (yi), as well as global prior 

information (m*i-1) into global pathway descriptors (m*i).  The pathway descriptors are 

exchanged between neighboring nodes during the update or message passing process 

(i.e., each iteration of the algorithm).  The global pathway descriptors in a voxel contain 

the necessary information to evaluate the model fit of the associated fiber tracts.  The 

dashed lines show the boundaries of a voxel.  The arrows indicate the dependency of the 

random variables and information travels against the arrows during the updating steps.

The general factor graph in figure 4.2 can be further simplified into a hierarchical 

form.  Most global models can be rewritten such that the observed voxel data yi only 

depends on the local segment descriptors mi.  The algorithm is still capable of estimating 

global functions, since mi is conditioned on the global pathway descriptor m*i.
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Figure 4.3. Factor graph for a hierarchical local measurement model.  In a simplified 

model, global pathway descriptors (m*i) combine global prior (m*i-1) and local pathway 

information (mi).  The diffusion measurements in each voxel (yi) are purely a function of 

the local properties (such as local shape; mi) that are consistent with the global pathway 

estimate (m*i).

The graphical models in figure 4.2 and 4.3 do not yet specify the functions 

implemented by the updating rule.  It would for instance be possible, although 

impractical, to pass all local information along the path and concatenate all segment 

information into a complete vector m*n = (m1, ..., mn).  For such lossless algorithms, the 

size of the message to be passed would grow exponentially with each iteration and the 

resulting memory requirements would render it impractical.  In the following 

paragraphs we will present updating rules with small, constant message sizes that 
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capture the relevant global attributes of a pathway.  We first introduce a simple model 

that is similar to current wavefront and other flood-filling techniques, but that does not 

incorporate global shape constraints.  We then extend this model to find pathways with 

low curvature changes and finally add anatomical, T1-weighted information to increase 

the effective resolution of the algorithm.

The models will be presented in the form of a hierarchical Bayesian model.  The 

family of message passing algorithms is not limited to probability models and could 

handle consistent non-Bayesian cost or scoring functions equally well. The propagation 

of Bayesian information in a graphical model is called belief propagation. The 

measurement model of the factor graph can then be written as a conditional probability:

P ((m1, . . . ,mn) | y) =
∏

i

P
(
yi | mi,m∗

i−1

)

P (yi)
P (m∗

0)
.

Bayesian Model of Fractional Anisotropic Diffusion

The major challenge of fiber tracking is the length scale discrepancy between the 

microstructure of the imaged tissue and the much coarser sampling of the 

measurements:  axons are on the order of only a micron wide and a single voxel can 

contain millions of axons.  Diffusion imaging measures the diffusion barriers inside cells 

due in good part to axonal and other membranes.  High-angular diffusion imaging can 

quantify the fraction of different anisotropic diffusion barriers within a single 

voxel (Tuch et al., 2003, Behrens et al., 2003b).  High fractional values for an anisotropic 

diffusion component are a good indicator of the presence of white matter uniformly 

oriented in the direction of that component.  Figure 4.4 shows a hierarchical Bayesian 
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model estimating the fractional value f within a voxel (the voxel boundary is indicated 

by a dashed line).  In this algorithm, the observed diffusion measurements are modeled 

as a sum of anisotropic diffusion tensors and each component has a certain direction in 

space.  The expected magnitude of the resonance signal is a function of a number of 

variables, such as diffusion speed, two noise terms, and the direction of the diffusion-

weightings (Behrens et al., 2003a).

Figure 4.4. A simple hierarchical Bayes white matter model. The diffusion 

measurements in a single voxel (Y) are explained by a mixture of directional anisotropic 

diffusion components.  Each component has a direction and a fractional volume that it 

occupies.  The voxel model is fitted for each voxel (outlined by the dashed line).  

Globally, connectivity information (C) is modeled by a global pathway variable (F).  See 

text for a detailed description.

We extended the model of Behrens et al. (2007), to include a global pathway 

parameter (F).  This global parameter describes the expected fractional value of a fiber 
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track.  The global fractional value term (F) is then used to estimate the likelihood that 

two areas are connected (C).   Strong connections with a high density of aligned 

diffusion barriers will have high fractional values throughout the entirety of the tract.  

For possibly unconnected or weakly connected regions the expected global fractional 

value term will be low, but larger than zero, since various other anisotropic diffusion 

barriers exist in nonwhite matter.  The connectivity term (C) captures the relationship 

between the global fractional anisotropic term and the connectivity likelihood P (C|F).  

The likelihood function will be obtained from the diffusion measurements in later 

paragraphs (see figure 4.6).

To speed up computation, we estimate the hierarchical model in two separate steps.  

First, the posterior distributions over possible orientations and fractional values is 

estimated using the FSL diffusion toolbox (Behrens et al., 2007).  Second, the likelihood 

distributions P   (f|Y) are loaded into the program and are used to estimate the 

connectivity likelihood P(C|Y) using belief propagation.

Building on the fractional volume model, we first need to relate the global pathway 

term (F) to the observed fractional terms (fi) along the path.  Like streets and highways 

and many other man-made networks, the cortical communication network has a 

hierarchical organization where local denser connections are interconnected by fewer 

strong pathways.  Axons originating in the cortical gray matter first form smaller white 

matter tracts that can then join larger cortical fascicles, before exiting the bundles and 

connecting with the target tissue.  Figure 4.5 illustrates the theoretical measurement of 

fractional anisotropy values along a joining pathway configuration.  While the 
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underlying fractional contribution of the pathway (F) is constant, the observed fractional 

estimates (f1, f2) will increase after a second pathway joins (f3, f4).

Figure 4.5. Illustration of fractional volume terms along a pathway.  The actual 

contribution of a pathway (F) is the lower limit of the observed fractional terms (f1,...,f4).  

If a pathway joins a major tract, the observed fractional terms increase (f3,f4).

It is possible to recover the actual contribution of the traced pathway (F) from the 

individual measurements (f1,...,fn).  The expected value of the fractional terms  (fi) are 

always larger than the global pathway value.  We can hence write the conditional 

probability model for the fractional terms in the following form:

P (fi | F ) =
{

1 fi ≥ F
0 fi < F .

To complete the hierarchical model in figure 4.4, we estimated the connectivity 

likelihood function for the two macaque brains.  We first aligned the anatomical T1 scans 
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to the diffusion-weighted images and constructed a Bayesian classifier to segment white 

from gray matter.  The distribution of fractional values for both tissue classes are shown 

in figure 4.6 (blue and green lines).  Panel A shows the data from a brain scanned at 

9.4T  (white matter in blue, and marginal distribution in green), and the distributions 

from a second brain scanned at 7T are shown in panel B.
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Figure 4.6. Connectivity likelihood function.  Probability density functions of 

empirically obtained connectivity models.  (A) Data from a macaque brain scanned at 

9.4T and (B) scanned at a 7 T.  Anatomical white/gray matter classification was used to 

obtain the distribution of fractional f values in the brain P (f) (shown in green) and in 
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white matter P (f|c=1) (blue).  The likelihood functions for connected tissue P (c=1|f) 

are shown in red and in turquoise for unconnected regions P (c=0|f).

The actual connectivity likelihood function P   (c  =  1|f) can be obtained from the 

conditional and marginal distribution via Bayes rule (shown in red).  A prior 

connectivity probability of 33% was assumed and used as the Bayesian prior P (c=1). 

P (c = 1 | f) =
P (f | c = 1) · P (c = 1)

P (f) .

The connectivity likelihood function can be used as a Bayesian tissue classifier.  

Figure 4.7 shows the probabilistic classification of voxels using the maximum fractional 

anisotropy terms in each voxel to probabilistically classify a voxel as white matter.  

Voxels in large white matter tracts are reliably classified, whereas smaller tracts have 

smaller white matter likelihood values.

Figure 4.7. Diffusion-based white matter classification.  Bayes-optimal classification of 

a diffusion-weighted scan using high-angular resolution imaging.  The tissue model of 

figures 4.4 and 4.6 is used to estimate the white mater likelihood for each voxel.  The 

colors indicates the likelihood that a voxel contains white matter, high values (red 

colors) label regions where the fractional volume terms unambiguously support the 

existence of white matter bundles.  
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The upper bound of white matter connectivity strength can be traced with the 

hierarchical partial volume model of figure 4.4.  Figure 4.8 shows the global connectivity 

likelihood from a seed in the corpus callosum to each voxel in the brain.  It is important 

to note that this version of the algorithm is blind to the directionality of diffusion and 

thus traces through white matter regardless of directional information.  The proper fiber 

tracking model will be introduced in the next section.

Figure 4.8. White matter tracking using only fractional anisotropy values.  

Connectivity likelihood for a region in the corpus callosum.  A seed was placed in the 

corpus callosum (in the third slice shown, white arrow) and the global white matter 

connectivity model of figures 4.4 and 4.6 was used to compute an upper connectivity 

bound.  Each voxel’s value corresponds to the maximum likelihood that it could be 

connected through continuous white matter tract to the seed regions.  Unlike a fiber 

tracking model, orientation information is disregarded by this algorithm.

Bayesian Model of Fiber Orientation

The previous model traced continuous white matter regardless of global fiber 

orientation.  Fiber tracking algorithms can be greatly improved if global orientation 

information is integrated.  A particularly interesting approach is to model cortical tracts 

by splines.  Splines are curves with continuous derivatives and the tangent and 

curvature along the path changes in a smooth manner.  When tracing connectivity to 
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each location in the brain, it is not feasible to find a spline representation for each voxel.  

Instead, it is advantageous to take splines as a prototypical model and asses the 

divergence from the prototypic path in a hierarchical Bayesian model.  Rather than 

modeling splines directly, we chose to evaluate the divergence from the curvature 

smoothness constraint.  The overall continuity in orientation of a path can be quantified 

by the derivative along the curve.  To obtain a splinelike preference of the fitting 

procedure, the aggregated L1 norm of curvature changes can be computed.

G = 1−
∫ 1

u=0

∣∣∣∣
d 2

d u2
!t (u)

∣∣∣∣ du
 .

Sharp turns, as well as curved pathways, are typically not found in the brain.  

Mathematically, a very curved or curled pathway might fit the measurements slightly 

better than a straight or smooth connection.  Yet, the latter is more likely.  The G 

termscaptures the product of curvature changes along the pathway t(u). We 

implemented descriptors for cumulative curvature and orientation changes, and higher 

order or other constraints can be easily incorporated into the model.   Small changes in 

curvature will result in a large G values.  Bayesian priors for the straightness and 

curvature terms result in preferentially smooth and splinelike pathway fits (T).
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Figure 4.9. Hierarchical Bayesian model with curvature constraints. The diffusion 

measurements in a single voxel (Y) are explained by a mixture of directional anisotropic 

diffusion components.  Each component has a direction and a fractional volume that it 

occupies.  The voxel model is fitted for each voxel (outlined by the dashed line).  

Globally, connectivity information (C) is modeled by a global pathway variable (F) and a 

term constraining the curvature change along each pathway (G).  See text for a detailed 

description.

Diffusion imaging measures orientation discretely.  The conditional probability is 

then a product of the orientation or curvature changes between neighboring nodes along 

the pathway.

P (g | G) =
∏

i

P (gi | G)
P (gi)

P (G)
.
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When estimating the connectivity likelihood, the global straightness and curvature 

terms can be integrated out analytically. 

P (g) =
∫

G

∏

i

P (gi | G)
P (gi)

P (G)
.

Increasing the Effective Resolution by Including 

Anatomical Information

One of the disadvantages of diffusion imaging is its lower resolution, compared with 

other modern MR sequences typically used for structural imaging.  Anatomical 

sequences, optimized to enhance the tissue contrast between white and gray matter, can 

provide high-resolution pictures of the brain with relatively short acquisition times.  The 

effective resolution of fiber tracking can be enhanced by incorporating such higher 

resolution scans into the belief propagation algorithm.  The fiber pathway model (T) can 

be extended to generate predictions about the T1 resonance signal.  By comparing 

pathway candidates with the T1 images, pathways that might be consistent with the 

measurements at a lower resolution could be rejected at the high resolution.  The 

effective resolution of the fiber tracking algorithm can thereby be improved.  Figure 4.10 

shows the hierarchical Bayes model of the extended model.  In the enhanced model, the 

tract estimates (T) the expected T1 tissue contrast in addition to modeling the diffusion 

signal.  The MR resonance signal is modeled as function of that expectation (A) and an 

additional noise term (λ).
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Figure 4.10. Hierarchical Bayes model incorporating anatomical information.  The 

global pathway strength variable (F) is extended to include predictions about the T1-

weighted resonance signal.  The pathway model (T) predicts the T1-weighted intensity 

signal (A) in addition to the orientation and fractional volume parameters of the 

diffusion model.  The T1-weighted signal intensity is a function of the global pathway 

strength (F).  For strong pathways, a high partial volume is expected throughout the 

tract, and the appropriate intensity values are expected for the voxels along the pathway.    

Through Bayesian inference, the T1-weighted signal thus increases the effective spatial 

resolution by eliminating global pathway candidates that pass through T1 voxels that 

are inconsistent with a white matter tract. 

To simplify the implementation of the algorithm, the T1-weighted signal intensity 

can be combined with the fractional anisotropy volumes (f).  The relationship between 

the two measurements is shown in figure 4.11.  The graph plots the mean of the 

fractional anisotropy values for voxels of different T1-weighted intensities.  Intensities 

around the numerical value of 780 correspond to tissue with a large proportion of 
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oriented white matter.  The conditional distribution of T1 intensities for white matter can 

be modeled by a Gaussian distribution and used to compute the white matter (and thus 

pathway) likelihood for each voxel.

Figure 4.11. Distribution of partial volume coefficients as a function of T1-weighted 

MR signal intensity.  Plotted against the mean fractional anisotropy in a voxel (on the y-

axis) is the T1 value from structural MRI (on the x-axis).  T1-weighted intensities at the 

numeric value of 780 correspond to white matter tracts.  A Gaussian distribution was 

used as a Bayesian likelihood function to quantify the T1-weighted evidence for a 

passing fiber tract.

Belief Propagation of Connectivity

Fiber tracking can be described as a problem of finding a sequence of states, whereby 

each state represents a local pathway segment.  The states describe local orientations and 

partial anisotropy volumes in each voxel.  The path then traverses from its source to 

multiple destinations in the brain as a sequence of state transitions.  At each voxel 

76



location, the path could take various routes and the MR measurements in a single voxel 

might often be insufficient to resolve uncertainty about the precise location or 

orientation of a pathway.  The maximum likelihood solutions to such state transition 

problems can be efficiently computed by dynamic programming.  Probabilistic 

algorithms, in contrast, model the uncertainty by estimating or sampling from all 

possible combinations, as they estimate the posterior distribution across all potential 

connections.

In practice, it is often sufficient to find the best pathway and to estimate the 

likelihood that it exists.  It then becomes practical to evaluate all pathways to all possible 

locations and to compute the exact likelihood of each solution.  If the model can be 

formulated in a recursive way and the Markov assumption is fulfilled (i.e., the likelihood 

of future segments only depend on the local descriptor), then the most likely connections 

can be easily determined with a variant of the Viterbi algorithm.  The basic idea of the 

algorithm is that the local distribution of the model descriptors is sufficient for finding 

the most likely sequence of hidden states.  The distribution over all local states at step t 

can be used to compute the distribution of states for step t+1.

Message Passing Implementation

To find all optimal pathways, the above Bayesian model is implemented as part of a 

large message passing network.  A typical network contains hundreds of thousands of 

nodes, one for each voxel, and it takes a few hours to find all optimal solutions for a seed 

region.  The nodes form a multidimensional lattice   (L), spanning the 3-dimensional 

spatial domain of voxel locations (x).  At each of the voxel locations (x), the lattice tensor 
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contains multiple possible fiber orientations, enumerated by (j).  Each node additionally 

stores a discrete representation of the hidden variables of the Bayesian fiber tracking 

model.  

The distribution of possible orientations (θ, ɸ) is encoded in a unit vector (t) and this 

is associated with the fractional values (f) that are stored alongside, at each node.  The 

global strength and curvature values  (F) and (G) are sampled with the same spatial 

resolution (x) and angular resolution (j) as the orientation measurements.

L j
x =

(
!t j

x, f j
x, F j

x , G j
x

)
.

The posterior distribution of possible orientations   (t) is obtained from the polar 

representation of the FSL diffusion toolbox.  Representing all possible orientations 

would require vast amount of memory.  For example, a directional grid with a 10 degree 

spacing would result in over 600 directions.  We restrict the analysis to the 50 most likely 

orientations.  For high-angular resolution diffusion imaging, the discrete orientations are 

obtained by sampling from the theoretical orientation density function (ODF).  The 

attenuation of the magnetic resonance signal for each gradient direction is modeled as 

the effect of thousands of anisotropic diffusion components that can exist within the 

volume of a single voxel (Behrens et al., 2003; Jbabdi et al., 2007).  We used the estimator 

that is part of the FSL package to choose 50 orientations according to the computed 

ODFs.  Bidirectionality was obtained by adding the mirror-symmetric orientations of the 

50 direction samples.  At each voxel location, there are thus 100 directional samples.
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s!t j
x

!t ∈ R3, j ∈ [1, 100] ,
x ∈ R3, s ∈ N .

To encode multiple seed regions, an additional source or seed dimension (s) is 

introduced.   In the current implementation, the algorithm is distributed along the seed 

dimension over the nodes in a computational cluster.   The lattice is evaluated in parallel 

for all source regions:

sL j
x =

(
!t j

x, f j
x, sF j

x , sG j
x

)
.

The probability that a node at location (x) and orientation (j) is connected to a seed 

region is computed from two sources.  A fractional value term (F) describes the degree to 

which the pathway to (x) fits with the obtained measurements.  The second, curvature 

term (G) captures the plausibility of a pathway shape.  Less curved pathways are more 

likely than pathways with a high degree of curvature changes.  The likelihood for a 

pathway is calculated by combing those two independent information sources.

P
(
sc j

x

)
= P

(
sF j

x

)
· P

(
sG j

x

)
.

Neighboring nodes exchange those two terms during the message exchange step.  

Since the connectivity likelihood can be directly computed from F and G, the lattice does 

not need to explicitly store the connectivity values (c).  The F term captures the quality of 

the estimated fiber track.  Here, we use the minimum value of all fractional values along 

the candidate pathway to describe its fit with the measured volumes.  A pathway 
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consists of multiple partial pathways (indicated by k) through spatial locations xk.  At 

each spatial location, the pathway can correspond to one of the discrete orientations jk.

The fractional value and curvature information is exchanged and updated between 

neighbors during the message exchange step.  In addition to the minimum fractional 

value and cumulative curvature change along the pathway, neighboring nodes also 

exchange information about the measured orientations (t). First, the sending node (y) 

identifies a neighbor (x), by selecting one of the possible orientations (t).

y =
⌊

!t j
y · δ + x

⌋
.

Second, the receiving nodes compare their fractional value to the received global 

term and update an intermediate value (F).  To incorporate geometric constraints, the 

node compares its own orientation with that of the neighboring nodes and adds a 

penalty term (g) to an intermediate cumulative curvature product (G).  G increases with 

increasing discrepancy between the local curvature.  The state values for (F) and (G) are 

updated, if the associated likelihood for the intermediate values are larger than the 

previously found likelihood value.

F j
y ← F ij

xy

Gj
y ← Gij

xy if P
(
F j

y

)
· P

(
Gj

y

)
< P

(
F ij

xy

)
P

(
Gij

xy

)
.

By implementing the updating rules, the lattice implements a distributed maximum 

likelihood computation of possible pathways.  To show the equivalence of this message-

passing algorithm with other approaches, it is helpful to think about a pathway as a 

series of connected locations (x).  The pathway can be fully described by the tangent (t) 
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at each step and the associated quality or fractional value score associated with each 

orientation measurement.

P
(

f j1
x1

, !t j1
x1

, . . . , f jn
xn

, !t jn
xn

)

As outlined on the preceding pages, the above probability can be computed from the 

global (F) and (G)  terms that are associated with each pathway.  Since the minimum and 

product functions used to compute (F) and  (G) are separable, they can be computed 

iteratively.  This is achieved by introducing variables that represents the goodness-of-fit 

and curvature term of the pathway up to the second-to-last step (n-1).  The likelihood of 

the last step can be computed by integrating the fractional and curvature values of the 

last step (n).  The lattice represents exactly those (n-1) and (n) terms at each voxel 

location.  The (n-1) terms are stored in the sending node, and the (n) terms are calculated 

in the receiving node.

Next, we would like to show that the algorithm will find the globally optimal 

solution.  This is achieved by iterating over all possible pathway combinations up to a 

length n.  The number of possible pathways of length n through the lattice is limited.  A 

pathway is completely defined by 1) its seed location x0, 2) the direction at each step and 

3) the step length.  If we consider the seed location and the step length as fixed, the 

number of possible pathways is limited by the number of possible orientations at each 

step.  For the current implementation, this number is 100. 

xn =
⌊

!t jn
xn

· δ + xn−1

⌋
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The number of all possible pathways is thus 100n.  However, since the cost functions 

are separable, it is possible to optimize them locally to obtain the globally optimal 

solution.  For a cubic volume of size m, the number of necessary steps is m3 ⨉ 100 ⨉ n.  

At each iteration, nodes at every location exchange information with their neighbors.  

One iteration of the algorithm thus implements m3 propagation steps.  To iterate over all 

possible pathways, 100 ⨉ n global iterations are necessary.  Although the theoretically 

longest loop-free path is one that touches every voxel, white matter fibers typically 

consist of either very direct or U-shaped segments.  An exact solution can hence be 

obtained by scaling the number of iterations with the resolution of the imaging volume.  

For the results presented here, we use the length of the volume's diagonal.  All optimal 

fiber pathways shorter than the diagonal will be guaranteed to be found by the 

algorithm. For pathways that are longer than the volume’s diagonal, the computed 

likelihoods can underestimate the optimal solution.  In practice however, the algorithm 

converges very quickly and the numerical difference between early estimates and the 

exact solution are often negligible.

Results

To evaluate the performance of the algorithm we collected high-resolution diffusion-

weighted MRI images of two macaque brains (see methods).  First, we tested out the 

algorithm for a seed location in the corpus callosum.  Starting from the midline seed 

region, interconnections to both hemispheres are identified.  Figure  4.12 shows the 

propagation of likelihood information from the seed region to each voxel.  Starting with 
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a connectivity likelihood value of 1 at the seed location (panel A), the lateral callosal 

fibers are quickly traced in the first 50 (panel B) steps.  At each location, the algorithm 

iteratively tries possible orientations and continuously updates the neighboring voxels 

about newly found connections.  In this particular run, lateral connections are found 

first. within 100 iterations (panel C), the more superior and inferior pathway candidates 

are found within the first 200 iterations (panel D).  The updates are monotonic and 

converge quickly against the final, optimal solution.  Panel E and F show the likelihood 

after 500 and 1000 steps.

Figure 4.12. Propagation of Likelihood Information using Message Passing.  The 

figure provides an example application of the message passing algorithm, using a seed 

voxel in the corpus callosum (white arrow in first panel).  Subsequent panels show the 

results after iterations of 50, 100, 200, 500 and 1000 steps.  Each voxel estimates the 

likelihood that the particular location is connected to the seed region in the corpus 

callosum.  Unlike many previous algorithms that use simple voxels scores for fiber 

tracking, each location contains 100 instantiations of the hierarchical Bayesian model in 

Fig. 4.10.  The best connectivity likelihood value of the hundred models is shown for 

each voxel.  Neighboring voxels exchange their information about the models’ 
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parameters through message passing in each iteration,  efficiently propagating 

connectivity information through the volume.  At any time, the algorithm provides a 

lower bound of connectivity likelihood.  It converges very quickly and within a fixed 

number of steps against the true likelihood distribution.

Each voxel contains information about the optimal pathway from the selected seed 

region to each location.  This information can be used to compute tract-based statistics.  

Figure 4.13 shows a trivial application that measures the length of the optimal pathway 

to each location of the brain.  Other statistics, such as the average fractional anisotropy 

along the path or the membership of a path to one or multiple larger tracts can be easily 

computed.  Particularly in a clinical and surgical context, such data would be invaluable 

and can now be computed efficiently for individual brains.

Figure 4.13. Tract-based statistics: Distance along the path.  An interesting application 

of tractography is to compute tract-based spatial statistics (Smith et al., 2006).  

Previously, this method involved a multistep procedure of estimating the uncertainty 

boundary of tracts  and finding the pathway centers for every location along a tract.  

Due to our algorithm’s ability to find the optimal solutions to all locations, any tract-

based spatial statistic can be computed efficiently to every target location.  To illustrate 

this ability, we here computed the simplest tract statistic: its length.  Each voxel contains 

100 hierarchical Bayesian model instances (see Fig. 4.9) with pathway information to the 

seed location in the corpus callosum (indicated by the white arrow).  The length of the 

optimal pathway to each location is encoded by the color scale.
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The lattice presentation allows for an easy customization of the fiber tracking 

algorithm.  Different information maps that are used to identify fiber tracts are shown in 

figure 4.14.  Panel A shows the overall likelihood of connectivity with the midline corpus 

callosum seed after just 200 iteration steps.  Panel B shows the minimum fractional value 

along the best pathway to each voxel location.  The cumulative path orientation change 

field is shown in panel C.  The expected value of the fractional anisotropy term along the 

pathways (panel D) offers a quick global connectivity map after a few initial iterations.  

Overall, this mean value is less sensitive than the orientation and minimum fractional 

value cost functions, its addition to a model can accelerate the convergence by guiding 

the routing during early estimation steps.

Figure 4.14. Contribution of fractional anisotropy and curvature information.  The 

panels show: (A) the integrated connectivity likelihood (C), (B) the fractional term F 

providing information about the minimum fraction value from the seed region to each 
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location, (C) the curvature bias term G computing the sum of curvature changes along 

the pathways (D) the mean fractional term along the path from the seed to each shown 

voxel for comparison.  See Fig. 4.9 for the Bayesian hierarchical model.

The overall aim of probabilistic fiber tracking methods is to integrate local 

orientation information throughout the volume.  The Bayesian models used in our 

implementation resemble the previous algorithm of Behrens et al., 2003b.  However, our 

way of optimally estimating connectivity globally provides a whole brain assessment of 

connectivity and results in more sensitive estimates for complex fiber architectures, such 

as those that are for example found for medial callosal fibers.  One of the main 

advantages of the fiber tracking algorithm is the systematic evaluation of all locations.  

Figure 4.15 shows the comparison between results for the same seed in the corpus 

callosum, when connectivity information is evaluated with a message passing (panel A) 

versus a sampling approach (panel B).  The results of both panels were obtained on the 

identical orientation flow field and using similar models for the pathway estimation.  

Due to the optimality of the estimation procedure, the message passing algorithm 

provides a more complete picture of the callosal pathways.
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Figure 4.15. Comparison between probabilistic tractography and belief propagation. 

Comparison between (A) message passing and (B) results from a probabilistic 

tractography algorithm (Behrens et al., 2007) using identical measurements and seed 

location in the corpus callosum on a macaque brain.

The precision of the algorithm can be further improved by including high resolution 

anatomical information.  Although the anatomical tissue contrast does not provide 

orientation information, it can eliminate inconsistent pathway estimates, thus potentially 

increasing the specificity of the global estimation and improving the location estimates 

of the maximum likelihood solutions.  Figure 4.16 illustrates the differences in resolution 

of a diffusion scan (panel A) and the sample section when scanned with a high 

resolution anatomical sequence (panel B).
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Figure 4.16. Comparison between the resolution of fractional anisotropy estimates 

(500 μm, left) and white matter likelihood that was computed from an anatomical scan 

(110 μm, right).

Sampling solutions sidestep the computational complexity of the fiber tracking by 

selectively estimating the most likely connectivity candidates only.  As a result, many, 

particularly medium-strength, pathways are not evaluated.  Figure 4.17A shows a 

normalized histogram of the distribution of evaluated (blue) and unevaluated (red) 

voxel locations.  Even for the most likely locations with connection likelihood of >0.30, 

the message passing algorithm identifies 4 times the number of voxels that are evaluated 

by the sampling approach.
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Figure 4.17. Message passing tractography identifies voxels not found with a sampling 

approach.  (A) Normalized histogram of connectivity likelihoods for voxels found by 

sampling (blue), and voxels not identified by a sampling approach (red). (B) Ratio of 

evaluated voxels as a function of connectivity likelihood, compared between message 

passing and sampling.
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The belief propagation algorithm finds the optimal pathway to every voxel in a finite 

number of steps.  The number of steps needed for convergence is a linear function of the 

maximum path length, typically a few hundred voxels.  In practice, we observe a fast 

convergence within a few steps toward the optimal solution.

Summary

To study global cortical organization, we introduced a novel connectivity algorithm 

based on message passing.  It optimally estimates connectivity on a whole-brain level in 

polynomial runtime.  Compared to previous methods, its effective resolution is 

increased by incorporating probabilistic tissue information from high-resolution 

anatomical scans.  Additionally, we have shown that diffusion-based fiber tracking can 

be used to estimate connectivity strength and that this information can be used to 

identify functionally relevant pathways and hierarchical information globally.
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C h a p t e r  5

WHAT ONE CAN DO AND CANNOT DO WITH TRACTOGRAPHY

Historically, cortical connectivity has been viewed as a binary property.  Most 

anatomical studies explore whether two selected regions are directly connected or not.  

The implicit assumption of these studies is that if two regions share a common direct 

connection, then they are part of a tightly coupled network, whereas unconnected 

regions are less likely to work together.  Yet, relevant for the functional importance of 

connectivity is not only whether two regions are connected by a fiber, but for example 

how strong a connection is and what importance a direct link (or nonconnection) plays 

in the context of the surrounding network.  Two regions could, for instance ,be part of 

the same processing pathway and engage, tightly coupled, in the processing of similar 

stimulus properties, even though they do not share a direct connection but communicate 

through massive fiber tracts with an intermediate region.

This chapter aims to explore to what extent fiber tracking -- when applied on a whole 

brain level -- can reveal such nonbinary information.  We first aim to quantify the 

reliability of fiber tracking by looking at two data sets: a 80 μm high-resolution scan of a 

mouse brain obtained in a 11.7T Bruker system and 2  mm resolution human scans 

acquired at 3T.  Since the reliability of fiber tracking is not only a property of the image 

quality and resolution, but more importantly of the complexity and size of the 

underlying fiber tracks, we first aim to quantify the difficulty of the fiber tracking 

problem in an information theoretic framework.  We bilaterally track callosal fibers from 

homotopic areas in both hemispheres of mice and men and estimate the two resulting 
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posterior connectivity distributions at the midsection of the corpus callosum.  The first 

measure we obtain for both estimates is the entropy or computational complexity of the 

fiber track estimate.  Second, we estimate the discrepancy between the left and right 

density functions using Kullback-Leibler divergence, a form of mutual information.  In a 

third step, we successively downsample our scans to quantify the dependence of fiber 

tract estimates on the resolution of the data.  Fourth, we introduce resolution-enhancing 

interpolation techniques to improve the reliability at all resolutions.

Fiber tracking is frequently deployed to study connectivity noninvasively.  It is often 

the only choice for studying connectivity in human brains.  We hence explored to what 

extent, and under what conditions, diffusion tractography could be used to discover 

novel connections.  The best model animal for human connectivity are macaques.  We 

acquired two data sets of macaque brains at a 9.4T and at 7T and identified the likely 

locations of more than a 100 distinct cortical areas.  We then compared the fiber tracking 

results on a whole brain level, for all pairs of possible interconnections, with results from 

hundreds of published tracer studies.  We found that fiber tracking produces largely 

valid predictions, but that they cannot be proved to constitute true connectivity in all 

cases.  However, we show that fiber tracking is an excellent tool for studying larger 

connections and that it provides excellent statistical predictions of connectivity.

The noninvasive nature of fiber tracking allows one to explore connectivity in clinical 

populations with altered brian connectivity.  We were interested in tracing fibers from a 

patient group with a congenital absence of the corpus callosum.  The brains of this 

patient groups exhibit a strong variability in the size and shape of ventricles and cortical 

92



midline structures.  We show that fiber tracking together with a surface-based 

reconstruction of cortical areas provide a good way to trace many connections reliably.

The most interesting aspect of diffusion-weighted imaging is the ability to directly 

assess the microstructure of neurons and axons.  Its primary application has been to 

image the ischemic effects of stroke.  Here we show that it can directly measure the 

strength of cortical connections by comparing its results with quantifications from tracer 

studies.

In the previous chapter a Bayesian belief propagation approach was introduced that 

identifies all optimal tracts.  This algorithm is the result of a long series of small, 

evolutionary improvements implemented by the author.  The algorithm and this chapter 

are the fruits of this search for the limitations and capabilities of fiber tracking.

Initially, we used the probabilistic fiber tracking method of Behrens et al. (2003).  To 

adapt it to a probabilistic model for whole-brain connectivity and high-resolution 

applications, we implemented the algorithm in assembler language to take advantage of 

the fast 128-bit vector engine of the G5 / PowerPC processor architecture.  Subsequently, 

better models for estimating the underlying orientation distribution from diffusion-

weighted data became available (Behrens et al., 2007). In the process of implementing 

the algorithm we incorporated various smaller improvements such as trilinear data 

interpolation and higher-order Runge Kutta pathway interpolation.  Finally, we 

formulated the main ideas in a global, belief propagation network framework.
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The various approaches do have their respective strengths.  The G5/AltiVec 

implementation is very fast, well suited to trace larger fibers and incorporates flow field 

and pathway interpolation.  It has been used for tracking pathways in the high-

resolution mouse and macaque data sets.  To facilitate comparisons, the human tract 

tracing was conducted with the same configuration.  Results for the memory-intensive 

belief propagation implementation are reported separately for the macaque data set.

Reliability of Fiber Tracking

Two challenges in tracking axonal connections in the brain are to track fibers that are 

small compared to the imaging resolution, and to track through voxels that contain 

multiple and crossing fibers.  Diffusion-weighted imaging with high angular resolution, 

together with probabilistic models of apparent diffusion, can help surmount these 

difficulties.  However, the relationship between the uncertainty in the apparent diffusion 

measurement and the uncertainty of the fiber track estimates remains poorly 

understood.

Probabilistic methods can greatly increase the sensitivity of fiber tracking.  Figure 5.1 

shows the tract estimates of olfactory connections in a C57BL/6 mouse brain when 

traced with a probabilistic method (A) and a deterministic algorithm (B).  Probabilistic 

methods can trace through tissue with a more complex microstructure when 

deterministic methods fail.  The deterministic tracts follow the tract initially in the 

olfactory bulb, but cannot continue the pathway through the complex lateral tissue 

adjacent to the seed region.
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Figure 5.1. Comparison of probabilistic and deterministic fiber tracking.  The fiber 

tracking was seeded in the volume of the right olfactory bulb (orange arrow) in a 80 μm 

resolution, 40-directional diffusion-weighted scan of a C57BL/6 mouse brain acquired 

on a 11.7 T Bruker MR microscope.  The position of the seed region with respect the 

mouse brain is shown in the inset on the bottom left of the top image.  Two algorithms 

were deployed: (A) a custom implementation of a probabilistic tracking procedure; 

(B) deterministic fiber tracking with identical curvature constraints.  The stream lines 

represent a random subset of pathways traced with both methods.  The color of the 
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streamline represents the orientation of the tangent along the path (blue: superior-

inferior, red: rostral-caudal, green: left-right).  The probabilistic model finds multiple 

pathways including connections across the anterior commissure (red arrow). The 

deterministic algorithm only traced the initial anterior-superior orientations within the 

olfactory bulb, but fails to trace through the more complicated, converging fiber 

architecture lateral to the olfactory bulb.

We studied the overall reliability of a probabilistic fiber-tracking (PFT) algorithm by 

looking at the agreement of fiber estimates for interhemispheric connections seeded in 

contralateral voxels. We were particularly interested in how the relatively low spatial 

resolution of diffusion-weighted (DW) EPI scans influences the reliability of PFT results. 

To address this question, we acquired high-resolution DW images of fixed mouse brains, 

downsampled the data sets, and compared the reliability of the fiber tracking results at 

the original and the reduced resolutions for different variants of the probabilistic 

algorithm.

A  parameter-free way to quantify the agreement between the two probability 

matrices is to compute the relative entropy between the two distributions.  We used a 

symmetric version of the Kullback-Leibler   (KL) divergence for this purpose.  KL 

divergence measures the disagreement between two distributions as the increase in 

entropy when using information for encoding samples from one distribution with the 

other.  KL divergence is an asymmetric measure and we computed the mean to compute 

a symmetric KL disagreement.  The fiber tracking algorithm computes, for every region, 

how likely it is connected to another region in the brain.  We used this likelihood 

distribution (Figure 5.2) to compute the KL distance for every brain area and then 

averaged the KL distance across all regions.  KL divergence is an entropy measure and 
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the disagreement can be quantified in bits. KL divergence does not make any 

assumption about the shape of the probability distribution to quantify the difference in 

the probability distribution and expresses the number of bits that are wasted when 

encoding the events from one distribution with the optimal code from the other 

distribution.  Thus, if the two distributions were identical, they would have a KL 

divergence of zero, and the larger the KL divergence, the larger the nonoverlap between 

the two distributions (i.e., the lower the reliability of the fiber tracking algorithm).

We next related the KL divergence back to spatial reliability in the brain.  Our 

approach was to ask how much spatial noise would result in an increase in KL 

divergence that was equivalent to a given number of bits (Table 5.1 and 5.2).

C57BL/6 mouse brain images were acquired from paraformaldehyde perfusion fixed 

samples. MR diffusion microscopy was performed with a 11.7T Bruker system using a 

conventional pulsed-gradient spin-echo sequence (256x150x130 μm matrix, 80 μm 

resolution, 40 directions). The human data was acquired with a 3T Siemens system using 

a diffusion-weighted EPI sequence (64x64x34 mm matrix, 3  mm resolution, 72 

directions) (Table 5.3).

The orientation density distribution was estimated using the FMRIB diffusion 

toolbox. Seed regions for fiber tracking were selected anatomically on a digital version of 

a Paxinos mouse brain atlas and the ICBM brain template that had been coregistered to 

the human brain. Custom software was used for the probabilistic sampling and Runge 

Kutta line integration.
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Figure 5.2. Example of a probability density function of fiber estimates from the 

primary motor cortices in a mouse brain. Probabilistic tractography was seeded in the 

(A) left and (B) right primary motor cortex of a C57BL/6 mouse brain volume.  Callosal 

motor connections were traced from both sides and the probability density function of 

the left and right estimate at the identical midline section are shown.  The color map 

indicates the proportion of particles reaching each midline voxel.  In this example, the 

estimates from the left are more extended compared to the right, but the most likely 

location of crossing is found in either case (yellow colors).

Seed region
80 μm 
PFT PFT+

160 μm
PFT PFT+

320 μm
PFT PFT+

Primary auditory cortex 5.80 bit 3.86 bit 3.96 bit 3.38 bit 1.72 bit 0.61 bit
Primary motor cortex Inf 1.7 bit 1.62 bit 2.12 bit 2.05 bit 0.55 bit
Primary sensory cortex 2.47 bit 2.49 bit 2.84 bit 2.28 bit 1.65 bit 0.55 bit
Basal amygdaloid nucleus 3.63 bit 2.46 bit 4.58 bit 3.14 bit 1.44 bit 0.95 bit
Central amygdaloid nucleus 5.26 bit 2.84 bit 5.27 bit 2.41 bit 1.56 bit 0.67 bit

Table 5.1: Reliability (Kullback Leibler divergence) of interhemispheric connections 

from the mouse brain. 

80 μm 160 μm 320 μm
PFT PFT+ PFT PFT+ PFT PFT+

Primary Auditory cortex 5.25 voxel 4.11 voxel 3.80 voxel 2.90 voxel 3.99 voxel 2.90 voxel
Primary Motor cortex - 5.06 voxel 2.69 voxel 3.78 voxel 3.80 voxel 1.81 voxel
Primary Sensory cortex 2.85 voxel 4.53 voxel 3.74 voxel 3.61 voxel 2.69 voxel 1.83 voxel
Basal amygdaloid nucl. 3.55 voxel 2.81 voxel 3.02 voxel 2.99 voxel 2.35 voxel 2.44 voxel
Central amygdaloid nucl. 3.71 voxel 1.90 voxel 3.76 voxel 2.68 voxel 2.17 voxel 1.88 voxel

Table 5.2: Spatial noise equivalent to KL divergence of table 5.1.
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PFT PFT+ PFT PFT+
Precentral gyrus 3.60 bit 2.17 bit 4.79 voxel 3.91 voxel
Postcentral gyrus 3.26 bit 2.00 bit 3.76 voxel 3.02 voxel
Superior occipital gyrus 3.83 bit 2.86 bit 3.76 voxel 3.81 voxel

Table 5.3: Reliability (Kullback Leibler divergence) of interhemispheric connections 

from the human brain.

Initial probabilistic fiber tracking estimates from the mouse brain were quite reliable 

at high as well as low imaging resolution. An improved PFT algorithm (PFT+) that used 

regularization of the orientation distribution function (trilinear interpolation, Runge 

Kutta integration) resulted in a significant improvement in reliability (p<0.001). The KL 

divergence provides a quantitative approach to study the reliability of probabilistic fiber 

tracking results. 
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Figure 5.3. Tractography improvement when combining both interpolation 

techniques.  The average KL divergence between left and right probabilistic estimates of 

callosal fibers is shown when different interpolation methods are used by the algorithm.  

The higher-order pathway interpolation provides slightly better results than the trilinear 

flow field interpolation.  The estimates can be further improved by interpolating both 

the orientation flow field and fiber path.

Tracing Anatomical Connection in the Absence of the 

Corpus Callosum

Tractography reconstructs fiber pathways by following the local orientation field.  If 

a large amount of noise is present, and when the size of a fiber is small compared to the 

100



imaging resolution, erroneous estimates can be produced.  With current diffusion-

weighted MRI methods, it is, for example, not possible to detect local synaptic 

connections, or the splitting or joining of finer fibers.  Similar to multisynaptic tracers, 

the diffusion-based tractography traces irrespective of synaptic connectivity and 

through intermediate areas.  For practical application, it is necessary to establish the 

specificity of the tracking and to what extent erroneous connections could be generated.

Here we trace connections in a group of rare patients with a congenital agenesis of 

the corpus callosum  (AgCC).  The only interhemispheric connections are the anterior 

and posterior commissures, while all callosal fibers are completely absent.  The failure to 

develop the corpus callosum results in a rearrangement of cortical midline structures 

such as the anterior cingulate cortex.  Most prominently, the ventricles are also enlarged 

and developing fiber tracts that would have otherwise formed the corpus callosum can 

form additional connectivity.  Identifying and tracking brain connectivity in an 

abnormally organized brain is challenging and we try to solve this problem by first 

applying a surface-based automatic parcellation technique to the cortex, and second by 

identifying pairs of interconnected brain regions that can be consistently tracked.  By 

combining computation anatomy with automatic full-brain fiber tracking, we produce a 

full-brain connectivity matrix, from hundreds of cortical and selected subcortical regions 

in both hemispheres. 

A group of 6 individuals with a complete agenesis of the corpus callosum were 

scanned in a 3T Siemens scanner.  First, we obtained 2-3 sets of anatomical T1-weighted 

images.  The T1 images were realigned and a white-gray matter tissue segmentation was 

performed.  The cortical surface was reconstructed with FreeSurfer and a probabilistic 
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surface map was aligned to the individual anatomy of each patient.  Subsequently, the 

likely outline of anatomically defined regions was identified on the cortex map and the 

location of these areas in the original T1 volume was determined.  Second, a 70-

directional diffusion-weighted EPI volume was obtained for each person (2  mm 

isotropic, 64x64x64 matrix).  A nonlinear partial volume model of local orientations was 

fitted to each voxel and the resulting orientation density function was used in a custom 

implementation of fiber tracking.  We traced the likely tracts from each of the 

anatomically defined seed regions identified from the anatomical scans.  For every target 

region, we determined the number and density of the tract estimates.  We classified two 

brain regions as connected if the particle density reached at least 1 particle per voxel (i.e., 

the number of traced particles matched the size of a region).  Regions with zero or only a 

few estimated paths were counted as likely not being connected. 

Figure 5.4 summarizes the reliability of fiber tracking between all regions.  Fiber 

tracking was conducted in all 6 brains and the color map shows in how many subjects a 

particular connection has been found.  If a connection is found in all 6  brains, it is 

marked by a red dot, if a connection is consistently not found in all cases, it is shown in a 

dark blue color.  Light blue and yellow colors indicate connections with inconsistent 

results (found in some individuals but not in others).  Overall, a high proportion of 

connections that are either consistently found (red) or consistently flagged as 

nonexistent  (dark blue) indicate a good reliability of the anatomical parcellation and 

fiber tracking.  As expected, connections between regions of the left and right 

hemispheres are typically not found at all in these acallosal brains.  The only exception 

are a few connections between homotopic regions in the two hemispheres (found on the 
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diagonal of the plot). These pathways are likely candidates for regions being connected 

by the anterior and posterior commissures, or possibly through intermediate subcortical 

structures.

Unlike after an acute surgical resection of the corpus callosum, patients with a 

congenital agenesis of the corpus callosum retain many functions that are otherwise 

affected by acute corpus callosum removal.  One hypothesis is that the remaining 

interhemispheric connections, subcortical and cortical, fulfill the compensatory role.  We 

aimed to identify the likely location of possible thalamo-cortical loops that could 

underly such compensatory abilities.  A number of ipsilateral thalamo-cortical 

connections were consistently found in all subjects, and in both hemispheres: to the 

calcarine suclus, the superior frontal gyrus and sulcus and to cingulate cortex.  These 

regions are candidates for the cross-hemispheric interactions too: in typically 3 out of 6 

brains, connections from the left thalamus to these right cortical regions and from the 

right thalamus to the left cortical regions were found.  The observed variability of results 

is, in part, a result of the limited resolution of fiber tracking, and of the difficulty of 

reliably identifying homologous cortical areas in the sometimes reorganized brains.
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Figure 5.4. Number of cortico- and subcortico-cortical connections found in six 

subjects with an agenesis of the corpus callosum.  The different colors encode the 

discrete (N=0-6) number of brains in which a connection was found; the symmetrical x- 

and y-axes plot anatomical regions (see Table 5.5 for detailed labels).

Subcortical region Left ID Right ID
Thalamus 10 49
Caudate 11 50
Putamen 12 51
Hippocampus 17 53
Nucleus Accumbens 26 58

Table 5.4: IDs of subcortical regions (from FreeSurfer).

104



Cortical region ID Cortical region ID
Cingulate Cortex
Cuneus / Gyrus
Inferior frontal gyrus
Middle frontal gyrus
Superior frontal gyrus
Frontomarginal gyrus
Insula
Inferior occipital areas
Middle occipital gyrus
Superior occipital gyrus
Fusiform gyrus
Lingual gyrus
Parahippocampal area
Orbital gryus
Paracentral gyrus
Supramarginal gyrus
Superior parietal gyrus
Postcentral gyrus
Precentral gyrus
Precuneus
Gyrus rectus
Subcallosl gyrus
Subcentral gyrus
Inferior temporal gyrus
Middle temporal gyrus
Superior temporal gyrus
Superior temporal gyrus
Frontopolar tranverse
Anterior lateral fissure
Medial wall
Occipital pole
Temporal pole

103 104
105
106-108
109
110
111
112-113
114
115
116
117
118
119
120
121
123
124
125
126
127
128
129
130
131
132
133
134-136
137
138-140
141
142
143

Calcarine sulcus
Central sulcus
Central insula
Cingulate sulcus
Anterior insula
Collateral traverse
Inferior frontal sulcus
Middle frontal sulcus
Superior frontal sulcus
Frontomarginal sulcus
Intermedius primus Jensen
Intraparietal sulcus
Anterior occipital sulcus
Lunate / middle occipital sulcus
Superior occipital sulcus
Occipital-temporal sulcus
Lingual sulcus
Orbital sulcus
Paracentral sulcus
Occipital-parieto sulcus
Pericallosal sulcus
Postcentral sulcus
Precentral sulcus
Subcentral sulcus
Suborbital sulcus
Subparietal sulcus
Temporal sulcus

144
145
146
147-148
149-151
152-153
154
155
156
157
158
159
160
161
162
163
164
165-167
168
169
170
171
172-173
174-175
176
177
179-181

Table 5.5: Cortical IDs from FreeSurfer.
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Validity of Tracking Fibers

The predictive power of tractography is not only determined by the spatial and 

angular resolution of the measurements, but -- and maybe more importantly -- by the 

overall organization and complexity of the fiber tracts themselves.  The different cortical 

fiber tracts have distinct functions and often group axons from similar cortical regions.

  Here we compare connectivity obtained from high-resolution diffusion MRI with 

results from a large number of published tracer studies.  First we show examples of 

tracer and tractography results for the well-studied visual area MT.  We then extend the 

fiber tracking to the whole brain and determine the sensitivity and specificity to predict 

connectivity.  We further try to distinguish between two classes of connections: larger 

fascicles that can be reliably traced, and smaller ones that are harder to assess.  We 

quantify the validity of fiber tracking for connections of different strength.

Area MT is central to visual motion processing and it is highly connected in the 

visual domain.  It receives strong connections from early visual areas and projects to 

areas in the parietal lobe.   We located the likely location of area MT by mapping a 

probabilistic histological atlas onto the reconstructed cortical surfaces   (see methods 

chapter).  The fiber tracking was seeded in a uniform 1 mm gray matter sheet, just above 

the white matter, covering the likely location of area MT.  The fiber tracking was 

performed with a fast, custom implementation of a probabilistic tractography algorithm.  
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Figure 5.6b shows the most likely connections in the early visual cortex.  Area MT 

projects to primary visual cortex V1, area V2, and we found an overlap of the projection 

with area V3.  Panel A shows the projections traced with Fast Blue (FB) for comparison.  

Similar to diffusion imaging, strong projections to the early visual areas V1, V2 and a 

weaker overlap with parts of V3 were found.  Unlike the tracer study, no connections to 

the ventral parts of area V4 nor to V4t was found by tractography at the chosen 

threshold in this hemisphere.

Figure 5.5. Projections from area MT: Identified with Fast Blue and with diffusion-

based tractography.  (A) Fast Blue (FB) labelled projections from area MT (blue dots, 

Figure from Lewis and van Essen, 2000) and (B) projections traced with probabilistic 

tractography from MT and are similar to A in early visual cortices (V1, V2, V3, V3A).

Although modern tracers have a high specificity and for example do not easily cross-

contaminate adjacent axons, their sensitivity and reliability can vary from study to study.  

Different tracers can introduce variance, and individual anatomical variability can make 

it difficult to reliably inject a precise amount of tracer into the same cortical layer in 
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corresponding areas of different individuals.  Figure 5.6 reproduced from Lewis and van 

Essen (2000) shows results from tracer injections in 3 monkey hemispheres.  Connections 

to dorsal area V4d were found in 2 out of 3 cases, connectivity to ventral V4v has not 

been studied and projections to V4ta have been found in one case and but not in another.  

The strength estimate to V4tp varies from very strong (+++) in case 17 to weak (+) in 

case 18.  Unlike most tracer studies that occasionally report such variability, our fiber 

tracking results are more heterogenous.  The projection to area V4t not found in the 

above analysis were, for example, found in the other 3 hemispheres not shown here. 

TABLE 3. Summary of Ipsilateral Projections for 19 Injections of Parietal Cortex and the STS1

1Relative strengths are indicated by shading and icons (see text). Injections restricted to one architectonic subdivision are indicated by densely bordered columns. Estimated size
of injections from Table 1: S, small; M, medium; L, large. Vm, VIPm; Vl, VIPl; Lv, LIPv; Ld, LIPd. Note that some rows include two or more subdivisions, and some subdivisions
depicted in the flat maps were excluded from this table.

130 J.W. LEWIS AND D.C. VAN ESSEN

Figure 5.6. Variability of tracing results for injections in area MT.  Projections from 

area MT are traced in 3 hemispheres (subject 17, 18, 19).  Connections are quantified on a 
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scale from “-” (nonexistent) to “+++” (strong projections).  For multiple areas, results 

vary from case to case (see text for a discussion)

Figure is reproduced from Lewis and van Essen, 2000.

Anecdotally, fiber tracking result do (and sometimes do not) agree with tracer 

results, but very little is know about how valid tractography predictions are.  To assess 

the validity of the fiber tracking results, we compared them directly against the tracer 

results obtained from the CoCoMac database.  Although we currently have no 

quantitative estimate of the variability of tracer applications, the comparison is 

nevertheless useful and provides a lower bound on the validity of the fiber tracking 

method.  We identified the likely location of mostly visual, histologically defined cortical 

areas using the surface-based approach of Caret 5.5.  Fiber tracking was seeded in a 

1 mm gray matter sheet of each area.  Figure 5.7 shows the location of about 70 different 

locations of this atlas.  A large number of samples was drawn uniformly from each seed 

region and the location of likely pathways was estimated.  The intersections of pathways 

from a seed region with the other areas was used to compute the full-brain connectivity 

matrix.  The results from the 4 scanned hemispheres were averaged.
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Figure 5.7. Cortical parcellation atlas used for seeding the fiber tracking at the likely 

location of more than 70 distinct cortical areas.

For the mostly visual areas present in the Lewis and van Essen (2000) map, 

connectivity information was obtained from the CoCoMac database (Stephan et al., 

2001).  Unlike most tracers, fiber tracking does not differentiate between anterograde 

and retrograde connections from an area.  If either a retrograde or an anterograde 

connection was reported in the database, the connection was expected to be found by 

tractography.  Probabilistic fiber tracking does not classify connections into existing and 

nonexisting.  Instead, a connectivity likelihood value is computed for each pair of 

cortical areas.  Higher thresholds for the likelihood value produce more conservative 

estimates, whereas lower thresholds increase the sensitivity of the method at the cost of 

more false-positive mistakes.  Figure  5.8 shows the resulting ROC curve when the 
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sensitivity (y-axis) is plotted against the false positive rate (x-axis).  For high thresholds, 

with an error rate below 10%, a surprisingly large number of tracts can be 

identified (approximately 38% of all connections in the database).

Figure 5.8. ROC when comparing the diffusion-based fiber tracking with tracer based 

results. For every pairing between the cortical areas, we estimated the diffusion-based 

evidence that a fiber connects the pair.  If the evidence is strong, then it is very likely that 

the connection is indeed there and can be identified with a chemical tracing technique.  

By increasing the cutoff for the diffusion-estimate strength, we can raise the reliability of 

our algorithm. By decreasing the cutoff we can increase its sensitivity at the expense of 

increasing the number of wrongly identified connections. We compared our fiber 

tracking algorithm against some known cortical connections of the macaque 

brain (Young, 1993; Sporns et al., 2002) in order to generate the blue ROC curve shown. 

A’ = 0.72 (ROC curve area).
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Another method of quantifying the agreement with the CoCoMac data is to compute 

the odds ratios: the likelihood that a prediction is correct vs. the likelihood that a 

predicted connectivity does not exist (Figure 5.9).  Similar to the ROC analysis above, the 

odds ratio can be computed for different fibers of different strengths.  The ROC curve 

plots the hit rate against the global false positive rate, the proportion of all unconnected 

cortical pairs that are wrongly flagged when lowering the threshold.  In comparison, the 

odds ratio indicates how many of the identified connections above a chosen threshold 

do indeed exist divided by the proportion of chosen connections that were found to be 

unconnected in tracer studies.  The estimates are more volatile than the ROC curve, but 

may provide a better intuition into how reliable global tractography is.  At low 

thresholds   (>0.05) the odds ratio it is about 1:5 and it rises to 1:10 (and above) for 

stronger connections (>0.2).  Fiber tracking, especially of stronger connections, is hence a 

good method to identify potential pathways and can guide further anatomical studies.

112



Power of 
Fiber Tracking

0

7.5

15.0

22.5

30.0

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35

O
d
d
s 

R
at

io

Threshold Connection Weight

Figure 5.9. Odds ratio of correctness of fiber tracking as a function of connectivity 

strength.  Larger connections are easier to detect and result in more reliable predictions 

of connectivity.  We compared the whole brain connectivity matrix of the macaque cortex 

with a large number of tracer studies (obtained through the CoCoMac database, Stephan 

et al., 2001).  The probabilistic tractography estimates a weight or likelihood value for 

each connection.  Stronger connections are more likely to exist.  We identified potential 

connections by selecting all tractography results with weights larger than 0, 0.05, ..., 0.35.   

for each of the sets, we counted the number of true (positive) and false positive entries in 

the CoCoMac database.  This true-to-false positive or odds ratio is shown for each 

threshold value.

Distance is an important predictor of cortical connectivity.  Cortical areas are 

arranged to minimize wiring length and close-by regions are more likely to be connected 

than distant pairs.  To quantify the influence of distance, we computed the Euclidian 

distance between the centers of gravity of each region.  The resulting distance matrices 

were computed for each of the four hemispheres and then averaged.  We thresholded the 
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inverse of the distance matrix to test to what extent close regions are more likely found 

to be connected.  The resulting ROC curve can be directly compared to the validity 

results from the fiber tracking (figure 5.8).  For visual areas, we found that distance alone 

is a predictor of connectivity.  More distant visual areas are less likely to be connected 

and the fiber tracking cannot predict whether distant areas are connected with high 

reliability.

Figure 5.10. Comparison of average and single-case fiber tracking with predictions 

from distance.  For every pairing between the cortical areas, we estimated the diffusion-

based evidence that a fiber connects the pair.  If the evidence is strong, then it is very 

likely that the connection is indeed there and can be identified with a chemical tracing 

technique.  By increasing the cutoff for the diffusion-estimate strength, we can raise the 

reliability of our algorithm. By decreasing the cutoff we can increase its sensitivity at the 

expense of increasing the number of wrongly identified connections.  Spatially close 
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areas are more likely being connected (red curve) and fiber tracking improves if results 

from multiple hemispheres are combined (compare blue and black curve).

Weight Estimation

To understand the functional role an area has in a larger network, it is not only 

important to know to which other nodes it projects, but the different strength can give 

an insight about the potential information flow.  Two areas that are, for example, not 

directly connected are likely to be part of the same pathway if they are strongly 

connected through an intermediate region.  In contrast, two distant areas that are 

directly connected could be part of functionally distinct networks if their connection is 

weak.  The strength of fiber pathways greatly varies in different parts of the network.  

Early sensory areas are, for example, connected by massive fiber bundles, whereas many 

higher-level areas are connected by smaller bundles.  Fibers that contain millions of 

axons are indicative of high bandwidth transfer between the connecting brain areas, 

whereas smaller fibers might suggest a less central role of a particular connection in the 

distributed processing architecture.  Similarly, myelinated or unmyelinated axons 

conduct information at very different speeds and would be suited to different kinds of 

transmission.  Due to practical and technical challenges, explicit tracer studies of 

connectivity strength are rare and can be difficult to compare.

Diffusion imaging directly measures the net effect of anisotropic diffusion barriers 

and has been successfully deployed to image the effect of myelination and degeneration 
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of axons.  Currently, little is know about how such measurements of fractional 

anisotropy is related to the actual strength of a larger fiber bundle.  We here compare the 

strength of cortical projections from area V4, as measured by fiber tracking, with weight 

estimates obtained from a published tracer study (Ungerleider et al., 2007).

To estimate the reliability of our weight estimates, we determined the connectivity 

strength by fiber tracking from each cortical region.  Each region was seeded with a large 

number of particles proportional to the volume of the cortical area.  For each target 

region, the density of particles from each other area was counted.  The correlation 

between the weight estimates of the 4 hemispheres ranged from r=0.67 to r=0.76, with an 

expected value of <r>=0.72.  The reliability of our weight estimates could be further 

improved by averaging the results from two hemispheres.  We first averaged the results 

from the left and right hemispheres of each macaque.  The aggregated weight estimates 

correlated with r=0.70 (p < 0.01) between the two brains.  We then combined the weight 

matrices from the 2 left and the 2 right hemispheres and found a left-right agreement of 

r=0.75 (p < 0.01).  The two correlation coefficients are not significantly different and we 

finally combined the results from all 4 hemispheres for comparison with the tracer data.

Ungerleider et al. (2008) traced and quantified projections from the visual area V4 of 

the macaque in a total of 20 hemispheres.  The strength of each connection was classified 

as either light (1), moderate (2) or heavy (3).  We encoded the strength of each case 

numerically and computed the expected value for each projection.  When comparing the 

results to the tracer quantification we observed a nonlinear relationship between the raw 

tractography likelihood and the strength values.  To correct for the propensity to weight 

stronger connections disproportional higher, we applied a gamma correction xɣ (ɣ=0.33) 
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to the fiber tracking estimates.  This transformation maps the tractography-based 

density into a more linear weight space.  The resulting numerical values were linearly 

mapped into a range from 0 to 3 typically used in tracer studies to ease comparison  

(figure 5.11A).  The strength estimates vary between the different cases and tracer 

molecules used.  The average correlation coefficient between one case and the study’s 

mean was <r>=0.75.

We then transformed the particle density matrix obtained from fiber tracking into a 

similar scale ranging from 0 to 3 (figure 5.11B) and correlated the diffusion weights with 

the tracer average.  Overall, we found an excellent agreement between the tractography 

estimates and a single tracer quantification of r=0.66.  The weight of cortical connections 

can hence be quite reliably measured with tractography and we will use diffusion-

derived weight estimates to study the organization of the cerebral cortex in later 

sections.
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A)   Tracer-based connection strength

B)   Diffusion-based connection strengths
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Figure 5.11.  Weights of known connections.  A) Strength of connection to area V4 

estimated by quantifying dye staining (data from Ungerleider et al., 2007). B) Strength 

estimates obtained by the diffusion-based fiber tracking algorithm.  The correlation 

between our estimates and the tracer based strength (r = 0.66, p < 0.01) is comparable to 

the reliability of the tracer injections (<r> = 0.75).
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C h a p t e r  6

CONNECTIVITY OF THE MACAQUE BRAIN

Understanding the function of cortical regions requires knowledge of their inputs 

and outputs.  Yet many areas are so densely connected that their connectivity profiles 

reveal very little about their particular functional role in a network.  Tractography offers 

a novel way of measuring the strength of connections (see previous chapter).  Here, we 

analyze the strength of connections that are already known and make predictions about 

new connectivity.  Using path analysis, we use the pairwise strength information 

between areas to identify likely multinode pathways in the visual and motor domain.  

We show that such a strength-weighted multinode path distance correlates with 

anatomically defined hierarchy levels for visual areas.  Using dimensionality reduction 

methods, we visualize global connectivity of cortical regions and demonstrate an 

architecture that likely reflects functional modularity.   The results generate new 

hypotheses about connectivity as well as provide criteria for the application of similar 

methods to the study of the human brain.

Strength of Selected Cortical Connections

An important aspect of cortical information processing is the strength of 

connectivity.  An area might, for example, receive input from dozens of cortical areas 

and project to many parts of the cortex, but not every connection will be of equal 

importance for understanding the functional role of that area.   Here, we deploy 

tractography to quantify the strength of ipsilateral cortical projections between 91 mostly 
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visual neocortical regions of the macaque brain.  We report detailed results from three 

cortical areas: the middle temporal area (MT), the visual area 3 (V3) and the secondary 

somatosensory cortex (SII).

Area MT is central to visual motion processing and is densely connected with the 

majority of visual areas.  It received retinotopic input from all early visual areas: V1, V2, 

V3, V3A, V4 and V4t.  Its projections reach the dorsal parts of the medial superior 

temporal area (MST), the floor of the superior temporal sulcus (FST) and it also projects 

to the ventral intraparietal area (VIP) and connects with the parieto-occipital area (PO/

V6) (Maunsell and Vanessen, 1983, Ungerleider and Desimone, 1986, Lewis and Van 

Essen, 2000a).  The strength of most MT projections has been quantified with tracers and 

we were interested to apply the tractography method to quantify these well-studied 

connections of the visual stream.

Two perfusion-fixed, Gadolinium-treated macaque brains were scanned for about 

20  h in a 9.4T and 7T Bruker Biospin MR system.  Diffusion-weighted images (b-

value: 3000 s/mm2)  with 500 μm spatial resolution and 72-directional angular resolution 

were acquired as detailed in the earlier chapters.  Nine  high-resolution anatomical 

volumes (ca. 100 μm in-plane resolution, 150 μm slice thickness) were obtained and used 

to locate the likely location of 91  histologically defined areas (see method chapter for 

details).  A custom implementation of a probabilistic fiber tracking algorithm (Behrens et 

al., 2003b) was seeded in each of the cortical regions and the average connectivity 

likelihood to every other target region was determined (see previous chapter for details).  

A gamma correction xɣ   (ɣ=0.33) was applied to transform the tractography-based 
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density into a weight estimate (see previous chapter).  The strength was remapped to a 

numerical range from 0 to 3 that is typically used in tracer studies.

We first assessed the reliability of strength estimates for the connections to and from  

the middle temporal area (MT) and compared the reliability of the weight estimates 

measured between the four  hemispheres.  The singleton estimates were quite reliable 

with a mean correlation coefficient of <r> hemisphere =0.73 (expected value computed using 

Fisher’s transformation; Fisher, 1915).  Correlation coefficients between the different 

hemispheres ranged from r = 0.58 to r = 0.85 (p < 0.01).  By combining the weights from 

the 2 left and 2   right hemispheres the reliability of the estimates could be further 

improved (r left,right = 0.80, p < 0.01).  For the final analysis reported below, results of all 4 

hemispheres were combined into a single estimate.

Probabilistic tractography identifies likely pathways, but cannot trace single axons 

nor show monosynaptic connectivity.  To test the validity of the predictions, we 

compared the tractography results from area MT against results from published tracer 

studies.  The data was obtained from the CoCoMac database (Stephan et al., 2001, see 

previous chapter for details).  The tractography results predict MT connections well with 

an ROC value of A’  =  0.71, similarly to the validity observed on a whole-brain level 

(A’ = 0.73; see previous section).

The tractography weights of projections with area MT are shown in Fig. 6.1.  The 

graph shows a subset of all cortical regions, selected from the visual hierarchy diagram 

in Felleman and Van Essen, 1991, and the surface atlas of cortical regions used to locate 

the area boundaries in each hemisphere (Lewis and Van Essen, 2000b).  The strongest 

connections were found with the medial superior temporal (MST) area, the floor of the 
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superior temporal sulcus (FST), visual area 4 (V4) and area TE.  The numerical strength 

values of the largest tracts (with a weight larger than 1) are shown in table 6.1.  Strength 

values are computed based on the complete cortical map of 91 regions (Lewis and Van 

Essen, 2000b), including many subregions of larger cortical areas.  The atlas, for example, 

differentiates between the dorsal and ventral parts of many visual areas.  These 

subregions often do have different connectivity patterns and distinct roles in the dorsal 

and ventral processing stream.  Information about such smaller regions with the densest 

projections are reported in table 6.1.  Connections from area MT to area MST are, for 

example, the strongest in the medial and dorsal part of MST, and MT projections are 

stronger in area V4t than in V4 proper.  

The strength estimates are consistent with tracer results for area MT  (Ungerleider 

and Desimone, 1986, Lewis and Van Essen, 2000a).  The size of fibers to most areas in 

early visual cortex and in the temporal and parietal streams are moderate to light 

(Fig. 6.1).  Interestingly, connections from area V1 and V2 are found to be of moderate 

strength.  The strength quantifications in tracer studies differ between the dorsal and 

ventral parts of V1 and V2, generally reporting stronger projections from the dorsal 

areas. Our tractography method defines the strength as density per surface area and 

could potentially underestimate the quantification of tracer studies, particularly for large 

areas such as V1 and V2.  At the end of this chapter we will compare the density 

estimates from tractography and tracer quantifications with the strength of functional 

BOLD coherence.
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Figure 6.1. Strength of connections with area MT.  The strength of projections to or 

from area MT were quantified with a custom implementation of probabilistic 

tractography (see previous chapter for details).  The strongest projections were found to 

the medial superior temporal area (MST), the floor of the superior temporal areas (FST), 

and visual area 4 (V4) (see Table 6.1 below for numeric values).  Fiber tracts to early 

visual areas V1, V2, V3 and parietal areas are of moderate strength.  Cortical areas form 

functional streams that can be identified from connectivity strength information with 

unsupervised dimensionality reduction techniques (see later in this chapter).  The color 

of the areas indicate the membership in the different functional clusters (see Fig. 6.11).  

Negative results, connections with a tractography weight of 0 are indicated by a dotted 

line.
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Strongest 
projections

Strengt
h

Highest 
density

Tracer 
Strength

Area

FST 2.02 ++ FST
MST 1.84 MSTm/d +++ MSTdp
V4 1.66 V4t ? V4tp

Table 6.1. Strength of largest connections with area MT. The strongest connections 

were found with areas upstream of MT: to superior temporal areas FST and MST, V4 and 

temporally, to TE.  Within these areas, the strongest projections were found to the medial 

and dorsal subregions (MSTm/d, TE am/d, V4t).  Tracer studies report moderate (FST) 

to strong retrograde projections (MSTdp, V4tp).  Tractography results were obtained for 

91 cortical areas in 4 macaque hemispheres using a custom implementation of 

probabilistic tractography.
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Acronym Name Brodmann number
Occipital
V1 Visual area 1 17
V2 Visual area 2 18
V3 Visual area 3
VP Ventral posterior area
V3A Visual area 3A
V4 Visual area V4
VOT Ventral occipitotemporal
MT Middle temporal 21
Parietal
MST Medial superior temporal
PO Parieto-occipital
IPa
MDP Medial dorsal parietal
MIP Middle intraparietal
VIP Ventral intraparietal
LIP Lateral intraparietal
7a 7a 7
7b 7b 7
DP Dorsal prelunate
Temporal
FST Floor of superior temporal
TF/TH TF/TH
TE
Tpt
TPO
TAa
SomatosensorySomatosensorySomatosensory
SI Primary somatosensory 1, 2, 3
SII Secondary somatosensory 5
Cingulate
23 Ventral posterior cingulate area 23
24 Ventral anterior cingulate area 24
31 Dorsal posterior cingulate area 31
Frontal
FEF Frontal eye fields 8
9 Part of DLPFC 9
45 Inferior frontal / Broca 45
46 Middle frontal / DLPFC 46
11 OFC 11
13 Posterior insular cortex 13

Table 6.2. Cortical areas, their acronyms and Brodmann numbers.  The likely location 

of 91 cortical areas was identified by mapping an atlas (Lewis and van Essen, 2000) to 
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the cortical surface of each scanned hemisphere.  The acronyms of the areas shown in 

Fig. 6.1 are listed.

We next measured the strength of connections from area V3.  The visual area 3 is the 

highest early visual area before visual processing separates into the dorsal “where” and 

ventral “what” pathway (Milner and Goodale, 1993).  Similar to neurons in area MT, V3 

neurons prefers low spatial and high temporal frequencies and many are colorselective 

(Gegenfurtner et al., 1997, Tootell et al., 1997).    The V3 weight measurements found by 

tractography are reliable (r   left,right  =   0.88, <r>   hemisphere  =   0.88, p < 0.01) and the 

tractography agrees with tracer studies (A’ = 0.73).  The strongest V3 connections were 

found to area LOP and to V4 (Fig. 6.2).  Projections to V1, V2 and area PIP are overall 

less dense than to LOP and V4, but denser projections were found to dorsal V2 

(Table   6.3).  Unlike tracer results that are difficult to compare across studies, 

tractography provides globally consistent strength estimates for the whole brain.  In 

comparison with area MT, the projections from early visual cortex to V3 are, for instance, 

stronger than the respective MT connections.
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Figure 6.2. Strength of connections from V3.  The strength of projections to or from area 

V3 were quantified with a custom implementation of probabilistic tractography (see 

previous chapter for details).  Strong connections were found to early visual areas.  The 

densest V3 projections are to the lateral occipital area (LOP), dorsal V2 (V2d) and area 

V4 (see Table 6.3 below).  Cortical areas form functional streams that can be identified 

from connectivity strength information with unsupervised dimensionality embedding 

technique (see later in this chapter).  The color of the areas indicate the membership to 

the different functional clusters.
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Strongest projections V3 Strength Highest density Tracer
LOP 2.05
MST 1.09 MSTdp +++
PIP 1.56 x
PO 1.07 x
V1 1.29 x
V2 3.44 V2d
V4 2.65 x

Table 6.3. Strongest connections with area V3.  Connections are strong to all of early 

visual cortex (V1-V4, PIP, PO).  Dense projections are found to the lateral occipital area 

(LOP) and medial superior temporal area (MST).  Tractography results were obtained for 

91 cortical areas in 4 macaque hemispheres using a custom implementation of 

probabilistic tractography and connections with a strength value larger than 1 are 

reported.

Area SII has historically is a higher-level somatosensory area.  SII has connections 

with primary somatosensory cortex (Brodmann areas 3,2,1), area 7b and the insular 

fields (Friedman et al., 1986).  We estimated the strength of connectivity from Brodmann 

area 5 to visual, parietal, temporal and cingulate areas.  The combined estimates and 

weights computed for single hemispheres are reliable (r left,right = 0.81, <r> hemisphere = 0.76, 

p < 0.01).  In agreement with previous publications, strong connections to area 7b were 

found.  Additionally, connections to the granular and dysgranular insular fields (Ig/Id), 

the gustatory precentral opercular area (PrCO), and superior temporal areas (Ts) were 

quite strong, as were connections to Brodmann area 6 containing premotor cortex (PM) 

and the supplemental motor area (SMA).
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Strongest projections SII Strength Highest density Tracer
Ig/Id 2.33
PrCo 2.36
Ri 1.91
S1 1.85
Ts 2.33
6 1.20 6Vb
7 1.64 7b +++

Table 6.4.  Strength of connections to area SII.  SII is strongly connected to the granular 

and dysgranular insular fields (Ig/Id), the gustatory precentral opercular area (PrCO), 

and superior temporal areas (Ts),  and there are also connections to Brodmann area 6 

containing premotor cortex (PM) and the supplemental motor area (SMA).  

Tractography results were obtained for 91 cortical areas in 4 macaque hemispheres using 

a custom implementation of probabilistic tractography and connections with a strength 

value larger than 1 are shown.
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Figure 6.3.  Strength of connections of secondary somatosensory cortex.  The strength 

of projections to or from area SII were quantified with a custom implementation of 

probabilistic tractography (see previous chapter for details).  Strong tracts were found to 

parietal areas.  The connections to cingulate cortex (Brodmann areas 23, 31) and areas in 

the temporal parietal junction are of medium strength.  The color of the areas indicate 

the membership to the different functional clusters, and the width of connections as well 

as their yellow-orange-red color indicates their strength.
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Strength-Based Analysis for the Visual Motion Pathway

Strength information can provide insight into the relative importance of the direct 

input or output connections of an area.  Information processing, however, is highly 

distributed and to understand the function of a network, it is necessary to develop 

methods that go beyond analyzing pairwise connectivity.  Area MT, for example, 

receives its visual input via multiple routes:  Directly, from area V1, and indirectly from 

V1 via V2, and V3 (Ungerleider and Desimone, 1986).  The strength of these routes, from 

V1 to MT, can provide some insight about their relative importance.

Here we extend the concept of pairwise connectivity strength to quantify the 

strength of multinode pathways.  The problem of optimal information routing has been 

extensively studied in telecommunication networks.  To find an optimal path, routing 

algorithms assign each direct connection a cost or distance value.  If the cost functions 

are nonnegative, it is possible to find the best or shortest route efficiently with dynamic 

programming (Dijkstra, 1959).  For the analysis presented here, we chose the inverse of 

the weight matrix as the cost function of pairwise connectivity.  If two cortical areas are 

strongly connected, they are considered to be close in the routing space, whereas weakly 

connected areas will be placed at a greater distance.  Fig. 6.4 illustrates this placement of 

areas in an Euclidian routing space (B) based on their weights (A).
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Figure 6.4. Transforming a weight network into a distance network.  Possible 

pathways of information flow through the cortical network can be identified by 

quantifying the strength of connectivity.  A strong direct connection between two areas 

suggests that they are involved in joint processing of stimuli.  Similarly, two areas that 

are strongly, but indirectly, connected through an intermediate area are likely to be part 

of the same pathway.  Globally, the connectivity similarity between two areas can be 

defined as the shortest multinode path between them.  Here, we invert the (A) strength 

network obtained from tractography and obtain (B) the cortical connectivity distance 

network.  The shortest path for each area from primary visual cortex (Fig. 6.14) and from 

motor cortex (Fig. 6.15) were computed by the Dijkstra shortest path algorithm.  For the 

visual network, we found a good agreement of this connectivity distance with the 

hierarchy levels of visual areas when defined using anatomical criteria (Fig. 6.8).

In the previous chapter we have shown that the relative weights of connections can 

be determined with tractography.  Here we extend this concept to multinode routes and 

evaluate all possible pathways from primary sensory and motor areas to many higher-

level regions. Fig. 6.5 illustrates two hypothetical pathways from a low level (at the 

bottom) to a high-level area (at the top).  For the illustrated case, the 2-node route on the 

left is more strongly connected than the more direct, weakly connected 1-step route at 

the center.  In the neocortex, most regions could theoretically exchange information often 
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through direct connections or through at most one intermediate region.   Functionally 

however, information processing is typically organized in functional streams and 

requires multiple, often sequential, processing steps.

Figure 6.5. Assessing multiple pathways between two brain regions.  Cortical 

processing is distributed in parallel pathways.  Information is sent from primary visual 

cortex to higher-level areas via multiple routes.  To visualize such routes of likely 

information flow, we transformed the strength information obtained by tractography 

into a distance network.  For a selected pair of regions, the length of the shortest path 

through those regions can be computed and provides a quantification of how central an 

area is for the information exchange between the selected area pair.  This analysis does 

not account for the direction of information flow.

We first studied the visual input paths to area MT.  MT receives input from most 

low-level visual areas: V1, V2, V3, VP and PIP (Maunsell and Vanessen, 1983, 
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Ungerleider and Desimone, 1986).  The direct input from V1 and an indirect pathway 

from V1 via V2 to MT are the most important.  To compare the relative importance of the 

indirect input paths to MT, we estimated all 15 pairwise connectivity weights between 

the visual areas V1, V2, V3, VP, PIP  and MT as described earlier.  We next computed the 

shortest paths from V1 and from MT to each of the four possible intermediate areas.  

Table 6.5 lists the scores for direct and indirect pathways to the intermediate areas.  Area 

V2 has the strongest connection with V1 (inverted weight score of d=0.24), whereas the 

direct connection to area MT  (d=6.21) is much weaker than the V1 to V3 connection 

(d=1.83) or the V1 to PIP connection  (d=1.83).  The strongest direct inputs to MT are 

from area V2 (d=3.77) and V3 (d=4.27).  The best multinode path thus passes through 

area  V2 (d=4.01), and is, according to our cost function, stronger than the direct 

connection (d=6.21) and the pathway through V3 (d=5.19).  

Path distance measure V1 V2 V3 VP PIP MT
Direct from V1 0 0.24 1.83 (-) 1.83 6.21
Direct from MT 6.21 3.77 4.27 24.73 9.81 0
Path from V1 0 0.24 0.92 0.88 1.45 4.01
Path from MT 4.01 3.77 4.27 4.40 4.97 0
Path score V1-MT (6.21) 4.01 5.19 5.28 6.43 (6.21)

Table 6.5. Path distance from area V1 to MT.  Motion information is computed in 

multiple, parallel processing steps from V1 to MT.  Tractography can identify possible 

pathways by scoring the strength of such multinode pathways.  The existence of a strong 

multinode pathway makes it likely that  a large amount of information is exchanged 

between the areas along such a path.  This table shows the computation of the pathway 

score (bottom row), based on the strength of direct connections (first two rows) and 

pathway length obtained by the Dijkstra shortest path algorithm (intermediate rows).  

Area MT received its input from primary visual cortex (V1) and from areas V2 and V3.  

135



The connectivity distance values, from V1 and from area MT are shown in the top rows.  

The path distance to each intermediate area from V1 and MT are computed below.  The 

direct distance was defined as the inverse of the strength of the respective fibers.  The 

distance of a path through an intermediate area is the sum of the shortest path to that 

area from V1 plus the path length from that area to area MT.  The pathway length 

through each intermediate area is shown in the bottom row.  The distance score for direct 

connection from V1 and MT is given in parentheses. 

Figure 6.6.  Routing distance for connections through potential intermediate areas 

from primary visual cortex to area MT.  Hypothetical routing distance for pathways 

between primary visual cortex and area MT through different intermediate areas.  

Shown are the tractography-derived route distances of the shortest multinode pathways 

from V1 to MT that pass through the individual cortical areas.   The inverted weight 

matrix was used to quantify the strength of each cortical connection and Dijkstra’s 

shortest path algorithm was used to identify the shortest route from V1 to each 
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intermediate region and from each intermediate region to MT (see Table 6.5 and text for 

details).  The length of the shortest route through each region is shown above: yellow 

and orange hues indicate a strong multinode connectivity from one area to both V1 and 

MT.  This analysis treats feedforward and feedback connections equivalently, since the 

directionality of connections cannot be obtained with tractography.

Strength-Based Pathway Analysis of the Visual Stream

Cortical information processing is highly distributed and the anatomical connectivity 

pattern shows aspects of small-world and scale-free networks  (Bullmore and Sporns, 

2009).  In the visual domain, the processing of stimuli proceeds through multiple levels 

that are characterized by increasing receptive field sizes and by an increase in 

complexity of the neuronal representations.  The organization of feedforward 

connections is consistent with a partial order of visual areas, whereby higher-level areas, 

by definition, receive inputs from lower-level areas.  Initially, this ordered organization 

was interpreted as a total hierarchy, whereby each area could be assigned one, globally 

consistent hierarchy level (Felleman and Van Essen, 1991; Scannell et al., 1995; Hilgetag 

et al., 2000).  However, cortical processing is organized in multiple, parallel streams, 

suggesting a partial hierarchical rather than a total ordering of areas.  Feedback 

connections play an important and often neglected role in stimulus processing.  

Feedback connection are, for example, thought to be responsible for the complex shape 

sensitivity in primary visual cortex (see Hegde and Felleman, 2007).

In the previous section we identified the shortest path from primary visual cortex to 

area MT and assigned a length score to each pathway.  Here, we apply this shortest path 

algorithm to the complete weight graph between 91 cortical areas.  The idea of the 
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graph-based algorithm is to identify the likely paths of information flow from primary 

visual cortex by following the strongest connections from area V1.  We use the Dijkstra 

shortest path algorithm (Dijkstra, 1959) to find the best network path to each area.  The 

length score of the path is a measure of multinode connectivity and it correlates, as we 

will show later, with the hierarchy level of an area.

The algorithm assigns a distance scores to each area that quantifies the multinode 

connectivity to area V1.  The order implied by this distance score, for example for early 

visual areas (V1 < V2 < V3 and V4), is in good agreement with the known functional 

organization of these areas and we will compare these scores with anatomically defined 

hierarchy levels later (see Fig. 6.8).  The relatively coarse resolution of the diffusion 

imaging does not allow the assignment of an exact hierarchy level and cannot replicate 

the precision of anatomical studies.  The strength of the tractography method is its 

whole-brain coverage and the possibility to compute approximate hierarchy levels for 

different parts of the cortex.   According to the visual pathway scores, clusters of high-

level areas, areas that do not receive strong inputs from early visual areas, are found in 

the intraparietal sulcus, on the ventral surface of the temporal lobe, medially for anterior 

regions of cingulate cortex and frontally in the dorsolateral prefrontal cortex (Figure 6.7).  

These cluster locations agree with known centers for action planning (intraparietal 

sulcus), high-level object and face recognition   (temporal cortex), behavioral 

monitoring (anterior cingulate) and behavioral inhibition (prefrontal cortex).
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A   Graph distance from primary visual cortex (lateral view)

B   Graph distance from primary visual cortex (medial view)
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C   Graph distance from primary visual cortex (flatmap view)

Figure 6.7. Routing distance from primary visual cortex.  Length of the best network 

route from primary visual cortex to each cortical area: (A) lateral view, (B) medial view 

and (C) flattened cortical map.  Connectivity strength between cortical areas were 

obtained with probabilistic tractography.  The direct connectivity distance between two 

areas was defined as the inverse of the connectivity strength.  Predicted from this 

distance metric, many weakly connected areas have their shortest connectivity path 

through one or multiple intermediate areas.  The length of this best multinode route 

from primary visual cortex is shown for each cortical area.  Clusters of high-level areas 

in the intraparietal sulcus, areas in the cingulate cortex and at the ventral surface of the 

temporal lobe are most distant from V1.  These clusters contain areas for high-level 

motor planning, and are involved in monitoring and correcting behavior.  Single areas 

can appear distant from V1 if the tractography did not identify strong pathways to these 

areas.
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We next wanted to know to what extent the weight-based pathway distance agrees 

with anatomically defined hierarchy levels.  Hierarchy relationships are exclusively 

defined by the input an area receives, irrespective of the strength of such connections: if 

an area receives input from areas with hierarchy levels of at most n and does not provide 

input to any areas of or below level n, it will be assigned the level n+1.  Fiber tracking by 

itself does not provide information about the originating or terminating layer of a 

connection and hence cannot discriminate between feedforward and feedback 

connections.  Yet, if weight information is available, it is possible to use pathway 

analysis in order to identify the likely flow information through the cortical network.  

Areas with similar hierarchy levels are likely to be more strongly connected than areas 

on distant levels of the hierarchy.  Felleman and van Essen (1991) defined the hierarchy 

level of an area as the node distance from primary visual area V1.  We defined the length 

of the shortest multinode pathway from primary visual cortex as an indicator of the 

hierarchy of an area in visual cortex.  The length of a direct connection between two 

areas was defined as the inverse of the diffusion-based strength estimate.  The multinode 

distance between two areas is the sum of the length scores of the shortest path between 

two areas (see previous section).  We then compared the multinode connectivity distance 

with the hierarchy relationships determined from tracer studies (Felleman and Van 

Essen, 1991).  Fig. 6.8 shows the correlation between the graph-based distance and the 

hierarchy of an area (defined by the y-position in figure 4 of Felleman and Van Essen, 

1991).  We found a good agreement (r = 0.75, p < 0.01) between the anatomical hierarchy 

levels and weight-based path distance (Fig. 6.8).  Global quantitative tractography is 

thus a good tool for studying (partial) hierarchical structures of the cortex.

141



Figure 6.8.  Multinode path distance of visual areas to V1 correlates with the hierarchy 

level of Fellman and van Essen (1991).  The multinode path distance of visual areas was 

computed using tractography-based connectivity weights (see Fig. 6.7).  This routing 

distance quantifies the connectivity strength of the strongest multinode pathway from 

primary visual cortex to a cortical area.  It correlates with anatomically defined hierarchy 

levels (r = 0.83, p < 0.001).  Each dot indicates the hierarchy level of an area (y-axis) and 

the path distance from V1 (x-axis).

Strength-Based Pathway Analysis of the Motor System

A large proportion of the macaque cortex is dedicated to the planning, preparation, 

and control of motor behavior (Rizzolatti et al., 1998).  We here study the importance of 
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cortical areas for motor behavior by calculating the path distance to primary motor 

cortex.  Similar to the analysis in the visual stream, the inverse of the pairwise 

connectivity strength was used as a distance function.  Dijkstra’s shortest path algorithm 

was used to compute the best multinode route from each area to primary motor cortex.  

In contrast to the analysis of multinode connectivity from primary visual cortex, the 

information flow in the motor domain is inverted, and information is routed towards the 

primary motor cortex.  Fig. 6.9 shows the path distance from each area towards M1.  

Many areas along the central sulcus are closely connected to the primary motor area.  

Interestingly, most medial areas in the cingulate cortex have stronger multinode 

pathways to M1 than to V1, in line with the importance of cingulate areas in high-level 

behavioral control (compare Fig. 6.7 and Fig. 6.9).  Clusters in the intraparietal sulcus 

and at the ventral surface of the temporal lobe are distant to the motor system.
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Figure 6.9. Routing distance from primary motor cortex.  The length of the multinode 

distance from a primary sensory area is a measure of hierarchy level of an area (see Fig. 

6.8 and 6.7).  The multinode route distance from primary motor cortex is shown on a 

flattened cortical map.  Connectivity strength between all cortical areas was derived 

with a custom implementation of probabilistic tractography. The inverted pairwise 

connectivity strength values were used to define a direct path distance between two 

areas.  The shortest multinode route between M1 and each cortical area was computed 

and the length of this shortest path is shown above.  Clusters in the intraparietal sulcus 

and on the surface of the ventral temporal lobe are the most distant from M1.  Areas in 

the cingulate cortex are more closely connected to primary motor cortex than to the 

visual network.
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Identification of Anatomical Subnetworks Using Locally 

Linear Embedding

The connectivity profile of cortical areas are signatures of their functional  role in the 

cortical network.  Functionally similar areas receive similar input and project to similar 

output regions.  In the previous sections we have shown that the strength of connections 

provides information about their relative importance.  Here, we deploy a dimensionality 

reduction technique, locally linear embedding (Roweis and Saul, 2000) — for the first 

time with anatomical data — to visualize the global organization of cortical connectivity.  

The algorithm fits a low-dimensional manifold — a 2-dimensional surface in our case — 

to the high dimensional data by analyzing local changes of the data distribution.  The 

algorithm first identifies, for each area, the   most similarly connected regions 

(“neighbors”).  The number of neighbors k used for the local embedding is the only free 

parameter of the LLE algorithm.  We observed reliable embedding results for the range 

of k = 6  to k = 9 , and chose k = 8  for all subsequent analyses.  For each neighborhood 

clique, the main axes of variance are determined by principal component analysis and 

then used to construct the low-dimensional embedding manifold.  Globally, the 

embedding preserved the local neighborhood relationships.  Areas that are similar in 

connectivity space will be close in the embedding map.  Local variations on the map 

signify systematic changes in connectivity between areas.

We first selected a subset of areas with the most reliable weight estimates for the 

embedding procedure.  The reliability of weight estimates depends on a number of 

circumstances: the anatomical localization of area boundaries requires proximate 
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anatomical landmarks that are not always present and complex white matter 

organization can negatively affect the weight estimation.  The 59 most reliable regions 

were identified based on the observed variance of the weight estimates across the 

4 hemispheres.  Fig. 6.10 shows the connectivity strength between these best 59 regions.  

The main axis of variance of this 59  ⨉   59 matrix was determined with principal 

component analysis  (PCA).  Regions are ordered according to the first principal 

component: roughly from somatosensory to motor areas.

Figure 6.10. Connectivity strength matrix.  The matrix shows the connectivity weights 

between 59 cortical areas with the most reliable estimates.  Regions are sorted according 
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to the first principle component of this connectivity matrix: from somatosensory to 

motor areas.  The weights are a direct transformation of the tractography density to a 

numerical range from 0 to 3.

 This subset of most reliable regions was analyzed by locally linear 

embedding  (LLE).  Fig.  6.10 shows the original weight estimates of the tractography 

algorithm.  For all further analyses, known false positive results – defined from cases  

where no connectivity had been found in the CoCoMac database (see Fig  5.9 and 

Fig. 5.10) – were remove from the weight matrix.  Fig. 6.11 shows the results of the LLE 

analysis.  Multiple clusters are identified: visual areas (on the left, in green), 

somatosensory areas (at the bottom, in red), motor areas (on the right, in purple) and 

executive areas (on the top, in blue).  
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Figure 6.11. Similarity between areas based on the connectivity profile.  The 

connectivity profiles of 59 cortical regions (Fig. 6.8) were embedded in a 2-dimensional 

manifold by locally linear embedding (Roweis and Saul, 2000).  The dimensionality 

reduction technique preserves local neighborhood relationships: areas with similar 

connectivity will appear close on the 2-dimensional map.  Systematic differences across 

regions appear as local changes in position and generate the stringlike appearance of the 

embedding.  The similarity in connectivity mirrors the know functional organization.  

Multiple clusters are found: visual areas (in green on the left), somatosensory areas (red), 

motor and premotor areas (purple) and prefrontal areas (blue).  The hue was assigned 
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according to the angular position of an area on the map (e.g., green to the top left, blue to 

top right, etc.). 

A   Similarity between areas of the left hemisphere
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B   Similarity between areas of the right hemisphere

Figure 6.12. Similarity between areas based on the connectivity profile for the left and 

right hemisphere separately.  To assess the split-half reliability of the embedding 

technique we performed the locally linear embedding separately for the data of the two 

left hemispheres (A) and for the right hemispheres (B).  The connectivity profiles of the 

59 most reliable cortical regions were embedded in a 2-dimensional manifold by locally 

linear embedding (Roweis and Saul, 2000).  The dimensionality reduction technique 

preserves local neighborhood relationships: areas with similar connectivity will appear 

close on the 2-dimensional map.  Systematic differences across regions appear as local 

changes in position and generate the stringlike appearance of the embedding.  The 

similarity in connectivity mirrors the know functional organization.  Multiple clusters 

are found: the two visual streams, somatosensory areas, motor and premotor areas and 

prefrontal areas.  The hue was assigned according to the angular position of an area on 

the map.
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In the previous sections we have shown that weights can identify the most relevant 

input or output connections of an area and that they can be used to trace likely 

multinode pathways to an area.  Clusters of similarly connected regions can be 

identified with locally linear embedding in an unsupervised fashion.  Each of these 

methods characterizes a different aspect of the anatomical organization.  We next tried to 

visualize the network properties revealed by these analysis methods in a single diagram.  

Fig. 6.13 summarizes the results for visual  areas: the weight estimates, the graph-based 

path analysis and the clustering using locally linear embedding.  LLE assigns each node 

a 2-dimensional coordinate that characterizes its membership with similarly connected 

regions (“clusters”).  The angular position in the LLE embedding space identifies the 

membership in a cluster.  In figure 6.13, we have taken this LLE angular position to 

define the x-position of each area, grouping the mostly visual areas into separate 

processing streams. The routing distance from primary visual cortex is a good predictor 

of the hierarchy level of visual areas (see Fig. 6.8).  The path distance defines the y-axis of 

each region in the plot: low-level areas appear at the bottom of the plot and higher-level 

areas are at the top.  The weights of the 100 strongest connections are shown and the 

color of these connections reflects their relative strength.  The hierarchy or path distance 

score is most reliable for the strongly connected low level areas.  It for example identifies 

the hierarchical relationship between V1, V2, V3 and V4.  Areas involved in higher0level 

processing, such as area 7a, 7b, the perirhinal cortex (Brodmann 36) and the dorsolateral 

prefrontal cortex (Brodmann 45) received high hierarchy scores (Fig.   6.13). The x-

position of a region (corresponding to the angular position in the 2-dimensional LLE) 
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correlates with the membership in functional streams and was used to select the hues for 

coloring the areas.  The LLE embedding procedure separates areas of the ‘what’ and 

‘where’ pathways.  Within the dorsal stream, the embedding separates motion-selective 

areas (e.g.,  MT and LIP) from areas involved in planning reach and eye movements 

(e.g., MDP and MIP).

  

Figure 6.13. Tractography-based visual hierarchy. Visual information processing is 

organized into parallel streams.  Areas within each stream have similar connectivity 

profiles.  This organization can be revealed by locally linear embedding (LLE) (Roweis 

and Saul, 2000), an unsupervised dimensionality reduction technique (see Fig. 6.11).  
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Within each stream, areas at adjacent hierarchy levels are strongly connected.  The most 

likely pathways from primary visual cortex (V1) to each area are obtained by graph-

based pathway analysis (Fig. 6.7).  The connectivity strength of a pathway correlates 

with anatomically defined hierarchy levels (Fig. 6.8).  The x-coordinate of each area in 

the plot  shows the cluster membership in the LLE analysis (the angle in a polar 

coordinate system in embedding space).  Similarly, color indicates the cluster 

membership; gray areas have a more ambiguous cluster membership.  The y-position 

corresponds to the multinode pathway distance from V1.  The weights of the 100 

strongest connections are shown to illustrate important connectivity within and between 

pathways.  The width and color of connections indicates their strength (stronger 

connections are red, lighter connections are shown in yellow).

Fig. 6.13 shows the embedding and hierarchy information for only a few selected 

visual areas.  Fig. 6.14 provides an overview of the connectivity information of all 

cortical areas of the Lewis and van Essen (2000) atlas.  In additional to the ventral and 

dorsal visual stream, areas are grouped into a premotor stream (including the posterior 

cingulate), a frontal stream (including the orbitofrontal cortex, Brodmann areas 12 and 

11) and the dorsolateral prefrontal cortex (DLPFC, Brodmann 46).  The orbitofrontal 

cortex is involved in valence processing and goal-directed action selection (Schoenbaum 

et al., 1998; O’Doherty et al., 2001; Gottfried et al., 2003; Anderson et al., 2003).  The 

dorsolateral prefrontal cortex (Brodmann 46), and the insular cortex (Brodmann 13) have 

been implicated in emotional awareness and decision making (Craig, 2009).
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Figure 6.14. Tractography-based hierarchy of cortical areas based on their multinode 

connectivity to V1.  Information processing is organized into parallel streams.  Areas 

within each stream have similar connectivity profiles and this organization can be 

revealed by an unsupervised dimensionality reduction technique.  Within each stream, 

areas at adjacent hierarchy levels are strongly connected and the likely pathways from 
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primary visual cortex (V1) to each area can be revealed by a graph-based pathway 

analysis.  The x-position of each area was determined with locally linear embedding (see 

Fig. 6.11) and was used to assign colors to each area too.  The y-position corresponds to 

the multinode pathway distance from V1.  The 100 strongest connections are shown to 

illustrate important connectivity within and between pathways.  The width and color of 

connections indicates their strength (stronger connections are red, lighter connections 

are shown in yellow).

The previous analyses have shown the cortical organization based on the path 

distance to the primary visual cortex.  In the macaque, many areas are involved in high-

level motor control and the hierarchy levels of such areas can be estimated with graph-

based methods (see Fig. 6.9).  Fig. 6.15 summarizes the connectivity information for the 

motor hierarchy.  The motor hierarchy score is calculated as the path distance from M1 

that determines the y-position of each area.  The algorithm is otherwise identical to the 

analysis of the visual hierarchy (see Fig. 6.14) and locally linear embedding is used to 

group all areas according to their similarity of their respective connectivity profiles (see 

Fig. 6.11).  Lower level motor areas, such as area 4C and premotor area 6, are placed 

close to primary motor cortex by the path analysis.  Similarly, the posterior cingulate 

cortex (Brodmann 24) is classified as being relatively low in the motor hierarchy.  Part of 

the motor hierarchy are subregions of Brodmann area 8 that includes the frontal eye 

fields.  In agreement with the involvement of Brodmann area 5 (SII) in motor control, the 

connectivity algorithm places this area low in the hierarchy.  Most visual areas are not 

directly involved in motor control. The pathway scores of many purely visual areas 

likely does not provide useful information about their involvement in behavioral and 

motor control.
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Figure 6.15. Tractography-based hierarchy of cortical areas based on their multinode 

connectivity to M1.  Information processing in organized into parallel streams.  Areas 

within each stream have similar connectivity profiles and this organization can be 

revealed by an unsupervised dimensionality reduction technique.  Within each stream, 
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areas at adjacent hierarchy levels are strongly connected and the likely pathways to 

primary motor cortex (M1) from each area can be revealed by a graph-based pathway 

analysis.  The x-position of each area was determined with locally linear embedding (see 

Fig. 6.11) and was used to assign colors to each areas too.  The y-position corresponds to 

the multinode pathway distance from M1.  The 100 strongest connections are shown to 

illustrate important connectivity within and between pathways.  The width and color of 

connections indicates their strength (stronger connections are red, lighter connections 

are shown in yellow).

Functional Subnetworks Based on Ultraslow Oscillations of 

Blood Oxygenation

Most of the brain’s energy expenditure is related to ongoing activity  (Raichle and 

Mintun, 2006).  This “default mode” of spontaneous brain synchronization has been 

thought to reflect ongoing conscious mental activity (Morcom and Fletcher, 2007), yet  

temporally coherent activity of BOLD activity in the oculomotor, somatomotor and 

visual systems has however been shown to persist during deep anesthesia in macaques 

(Vincent et al., 2007), at isoflurane levels known to induce the complete loss of 

consciousness (0.8%-1.5%).  Under deep anesthesia, the BOLD correlations have been 

found to mirror the awake synchronous activity in humans and macaques.  Anecdotally, 

the reported correlations agree with anatomical connections between the frontal eye 

fields and intraparietal areas.  Anatomical similarities were also found for the 

precuneus / posterior cingulate cortex and prefrontal BOLD correlations.  This BOLD 
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activity under anesthesia could thus reflect baseline communication between connected 

regions regardless of the level of consciousness (Vincent et al., 2007).

To test this hypothesis globally, we obtained this publicly available data set (Vincent 

et al., 2007), reanalyzed the BOLD coherence pattern and compared the strength of 

pairwise cortical coherence with the strength of the anatomical connections.  The data 

consists of multiple 15 min gradient-echo EPI runs that were acquired on a 3T Siemens 

Allegra scanner (TR = 3.02 s, TE = 25 ms, 90º flip angle, 1.5 mm in-plane resolution and 

1.6  mm slice thickness) in 8 macaques.  The BOLD images were transformed to atlas 

space, resampled to 1.5  mm isotropic resolution and temporally filtered to retain 

ultraslow BOLD oscillations above 0.0025 Hz (Vincent et al., 2007).  We reconstructed the 

cortical surface of the atlas brain and located 91 cortical regions as described previously.  

The mean BOLD signal across all gray matter voxels in each of the 91 regions were 

extracted for each run.  The temporal coherence between the time courses for all cortical 

regions was estimated with multitaper analysis (Mitra and Pesaran, 1999; Mitra and 

Bokil, 2008).  The resulting 91x91 coherence matrices were combined across the 84 

available runs.

Traditionally, ongoing neocortical activation is analyzed by either correlating signals 

to a default mode region (such as the posterior cingulate cortex or the precuneus) or by 

identifying independent combinations of signals with principal or independent 

component analysis.  Here, we chose a different approach to group distributed activity 

into similar clusters.  Rather than comparing the signal with prototypical signals, we 

clustered regions based on their full coherence profile using locally linear 

embedding  (LLE).  Each region was projected into a high-dimensional feature space, 
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whereby the coherence values to all cortical regions define the coordinates of each region 

in this 91-dimensional feature space.  A 2-dimensional manifold is fitted to distribution 

of areas by LLE.  The resulting 2-dimensional map is shown in Fig. 6.17.  We found three 

clusters of regions that exhibit similar coherence profiles.  The biggest cluster spans the 

visual domain and includes somatosensory and primary motor cortex (blue areas in 

Fig. 6.17).  The two other clusters have their most characteristic regions in the prefrontal 

cortex (red and green in Fig. 6.17).  Regions in the intraparietal sulcus belong to either of 

the two frontal clusters, consistent with the previous findings of frontal-parietal 

correlations (Vincent et al., 2007).

Figure 6.17. BOLD clusters of similarly, functionally connected brain regions.  The 

color code shows the cluster membership (the angular position in the embedding plot), 

projected onto the cortical surface of the template brain for reference in identifying 

regions.  Three clusters were identified and are shown in blue, red and green colors.  

Similarly colored brain regions have a more similar functional connectivity profiles, 
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whereas distinctly colored regions fall into separate clusters.  The coherence between 

areas of each cluster are shown in Fig. 6.18.

Unlike previous analyses, locally linear embedding groups regions based on the 

similarity in their coherence profile, rather than based on the similarity of the signal per 

se.  For further analysis of the connectivity profiles we selected the most characteristic 

regions for each cluster.  The embedding technique assigns a 2-dimensional coordinate 

to every profile.  This 2-dimensional Cartesian coordinate can be converted into a polar 

system, whereby the angle corresponds to the cluster membership and the radius 

indicates the distinctiveness of a region.  Fig. 6.18 shows the coherence profile for the 

most characteristic regions of each cluster.  Interestingly, only the visual cluster shows a 

strong widespread within-cluster coherence.  Regions belonging to the frontal clusters 1 

and 3 have relatively sparse coherence profiles.
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Figure 6.18. Coherence between areas of different clusters determined by BOLD 

coherence in anesthetized macaques.  Clusters of areas with similar coherence profiles 

were identified with locally linear embedding (LLE) (see Fig. 6.17).  The coherence 

between the most characteristic regions of each cluster are shown in a logarithmic color 

scale (strongest coherence in red).  Only the cluster of visual areas (blue areas in 

Fig. 6.17) shows a strong coherence, areas of the other two clusters have sparse 

coherence profiles.  The coherence values were computed by multitaper analysis (Mitra 

and Bokil, 2008) of the BOLD signal in anatomically defined cortical regions of eight 

isoflurane-anesthetized macaques (Vincent et al., 2007).
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Importance of Strength Information for Functional 

Networks

Under anesthesia, the temporally coherent activity overlaps with the anatomical 

projection pattern in the oculomotor and visual system (Vincent et al., 2007).  It has been 

suggested that this background, ‘always-on’ activity reflects anatomical connectivity 

irrespective of the level of consciousness or wakefulness.  Here we test this hypothesis 

directly, by comparing the degree of temporally coherent activity with results from a 

large number of published tracer studies.  The BOLD coherence between 176 cortical 

regions   (Paxinos atlas) was computed from a total of 21  h of BOLD recordings in 

8 anesthetized macaques (Vincent et al., 2007).  

The neocortical connections form a very dense network of interconnected regions, 

and not every connection might contribute equally to the observed coherence pattern in 

the brain.  In the previous section we have shown that the strength of connections can 

identify the most important input and output of a region, and that the modified strength 

measure is a good function to identify functionally relevant pathways through the 

cortical network.  In humans, tractography-based connectivity strength correlates with 

BOLD signal coherence between cortical regions (Hagmann et al., 2007).  Yet, little is 

known about  this relationship under anesthesia.  Here, we correlated the 91x91 

anatomical weight matrix obtained with tractography for high angular resolution 

diffusion-weighted scans of 4 macaque hemispheres with the coherence matrix 

computed from 15 min BOLD runs in 8 macaque monkeys under deep anesthesia.  We 

first identified the percentiles of connections based on their relative strength.  For each 
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connectivity strength segment, we computed the average complex BOLD coherence 

value.  Fig. 6.19 shows the mean absolute value of the coherence.  The stronger two area 

are connected, the higher is their observed BOLD coherence.  The coherence mean and 

the connectivity strength show a strong correlation relationship (r = 0.79, p < 0.01).  This 

relationship is independent of distance and the correlation is unaltered if distance is 

removed from either the coherence or strength distribution with linear regression.

Figure 6.19. Prediction of BOLD coherence as a function of anatomical connectivity 

strength.  Ultraslow BOLD coherence (0.01-0.25 Hz) between different brain regions 

depends on the strength of anatomical connectivity between the regions (r = 0.79, 

p < 0.01).  Weakly connected regions show a small increase in coherence and the largest 

coherence values were observed for areas with strong connectivity.  The strength of 

cortical connections was obtained with a custom implementation of probabilistic 

tractography.  The blue line shows the mean coherence values and the red lines the 
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standard error of the estimates. The coherence values were computed by multitaper 

analysis (Mitra and Bokil, 2008) of the BOLD signal in anatomically defined cortical 

regions of eight isoflurane-anesthetized macaques (Vincent et al., 2007).

Given the strong correlation between the strength of anatomical connectivity from 

tractography and BOLD coherence, we next tested whether binary connectivity per se, 

regardless of its strength, influences coherence.  We obtained the published results of 

tracer injections for each of the possible cortical pairs from an online database 

(CoCoMac, Stephan et al., 2001).  Only information from tracer studies that used similar 

definition of cortical areas as the Paxinos atlas were included in the analysis.  

Information about  1454 area pairs were retrieved from the database: 703 connections 

were found to be connected (48%) and for 751 pairings negative results are reported in 

the database (52%).  We then computed the average BOLD coherence for connected and 

unconnected cortical pairs.  Only a small difference in BOLD coherence between regions 

that are directly connected was found, compared to regions that do not share a direct 

connection (p=0.06; t=1.87) (see Fig. 6.20).  Connections as defined from tracer studies 

thus do not bear a strong relationship to the ultraslow BOLD coherence between regions.
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Figure 6.20.  Binary connectivity does not predict coherence.  The coherence between 

connected areas (“x”) and unconnected areas (“-”)  is not significantly different (p=0.06, 

t=1.87).  The mean coherence values across all connected and unconnected pairs are 

shown above.  The error bars show the standard error of the mean estimates.  

Anatomical connectivity information was obtained from the CoCoMac database.   The 

coherence values were computed by multitaper analysis (Mitra and Bokil, 2008) of the 

BOLD signal in anatomically defined cortical regions of eight isoflurane-anesthetized 

macaques (Vincent et al., 2007).

Tractography provides globally consistent strength estimates.  In contrast, the 

quantification in tracer studies depends on many technical details.  It, for example, 

varies with the amount of injected tracer, and the location and depth of the injection site.  

When we compared connections with weak, medium and heavy tracer results, an 

analysis of variance (ANOVA) found no difference between the average BOLD 

coherence values (p = 0.16, F = 1.74).
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Figure 6.21.  Tracer results do not predict coherence.  More strongly connected 

regions (“++” / ”+++”) do not show a higher degree of coherence than weakly 

connected regions (“+”) (p = 0.16, F=1.74).  Anatomical connectivity information was 

obtained from the CoCoMac database.  The coherence values were computed by 

multitaper analysis (Mitra and Bokil, 2008) of the BOLD signal in anatomically defined 

cortical regions of eight isoflurane-anesthetized macaques (Vincent et al., 2007).

Summary

Tractography can be used to reliably measure the strength of cortical connections.  

The strength is a good indicator of the relative importance of the different input and 

output connections of an area.  More importantly, tractography allows for the estimation 

of weights globally.  Using path analysis, it is then possible to quantify and compare the 

strength of parallel multinode pathways to an area.  The strength or distance of such 

multinode pathways correlates with anatomically defined hierarchy levels in the visual 

system.  Similar regions have similar connectivity profiles and locally linear 
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embedding (LLE), an unsupervised dimensionality reduction technique, can be used to 

identify functionally similar regions.  Functionally, the strength of BOLD coherence 

between cortical areas is strongly correlated with the strength of connections, but not 

with the (binary) connectivity obtained from tracer studies.
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C h a p t e r  7

EXPLORING CONNECTIVITY OF THE HUMAN BRAIN

Neurophysiological signals such as BOLD fMRI are highly variable.   Spontaneous 

BOLD fluctuations in the anesthetized macaque are synchronized via large 

intrahemispheric fiber tracts (see previous chapter).   Less is known about the influence 

that subcortical  and interhemispheric loops have on ultraslow BOLD oscillations.  To 

explore these effects, we studied the global pattern of ultraslow BOLD coherence in the 

awake human brain, while participants performed a visual attention and discrimination 

task.  Similar to the results in the anesthetized macaque, we find strong correlations 

between the anatomical strength of intrahemispheric cortical connections and the degree 

of BOLD coherence between two cortical areas.  Across hemispheres, only the 

corresponding areas are strongly coupled.    Subcortical areas have a strong effect on  the 

apparent cortical coherence pattern and can explain much of the similarity in the 

apparent spontaneous BOLD synchronization between many areas.

In the second part of this chapter we study how fiber tracking can be used to reveal 

functional specialization in the fusiform gyrus.  We show, in a small pilot study, that 

tractography predicts the site of the face patch within the fusiform gyrus.  The location 

of the FFA coincides with the subregion with strong connectivity to the lingual gyrus.
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Large-Scale Coherence Networks in Humans

To explore the relationship between the cortical coherence patterns of ultraslow 

BOLD oscillations (<0.5  Hz) and the anatomical connectivity, we conducted a visual 

attention and discrimination experiment.  Grayscale photographs of faces and houses 

were presented to five participants.  In each trial, one pair of houses and one pair of face 

photographs was shown.  The participants paid attention to either the horizontal or 

vertical image pair, while maintaing fixation at a cross in the center of the screen.  The 

five participants were instructed to report whether the two images were identical or 

different by pressing one of two buttons (see Vuilleumier et al., 2001 for detailed 

description of the task).  Two additional ‘localizer’ runs and 2-3 anatomical scans were 

obtained for each subjects.  During the localizer blocks, faces and houses were presented 

centrally while subjects who performed a simple 1-back memory task for centrally 

presented digits.  Scanning was performed in a 3T Siemens scanner with an 8-channel 

head coil.  Standard EPI imaging procedures were used (TR=1.5s, TE=30ms, flip angle of 

75º, 3mm in-plane resolution, slice thickness of 4.5mm, 64x64x25 matrix).  Anatomical 

ROIs were automatically identified by the “FreeSurfer” software on the individual 

cortical surfaces.  The anatomical scans were aligned to the functional BOLD images 

using FSL.  Prior to the alignment procedure, spatial MR intensity biases were removed 

with a nonuniformity-correction algorithm (Sled, 1997) and the spatial alignment was 

manually verified.  The anatomical surface-based labels were then used to label the 

respective voxels of the functional scans.  Preprocessing of the EPI images was 

performed in SPM5.  The acquired images were corrected for slice timing and head 

motion.  No spatial smoothing nor spatial atlas normalization was performed.  
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Correlates of translational and rotational motion and any correlation with a full event-

related design matrix were removed from the BOLD signal in each voxel.  The residuals 

of this regression were extracted from SPM.

For each anatomical region, the average BOLD signal across all voxels of an ROI was 

extracted.  To correct for global signal drifts inherent to the scanning equipment, 

respiration artifacts, residual effects of head motion and other artifacts such as global 

blood pressure changes, we extracted the MR time courses from metabolically inactive 

regions in each subjects’ ventricles and a subcortical white matter location.  Any 

correlates of these signals in the extracted signals of each region were removed.

The coherence between the different BOLD time courses were computed by 

multitaper analysis (Mitra and Bokil, 2008).  The estimation bias inherent to the 

multitaper coherence analysis was corrected with the CMTM procedure7.  Coherence 

values were obtained for an ultraslow frequencies range (0.01-0.33 Hz)  for all possible 

pairs of anatomical regions.  The resulting coherence value is a complex number that 

quantifies the phase difference and similarity (“correlation”) between two signals at a 

particular frequency.  We computed the mean of the complex value first across all 

sessions, then across subjects and the relevant frequency range.  This analysis identifies 

pairs of brain regions that show coherent signals with a stable phase difference across 

sessions and subjects.  The amplitude of the BOLD coherence between all regions in the 

0.01 Hz frequency band is shown in Fig. 7.1. 
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Figure 7.1. BOLD coherence between cortical and subcortical regions.

Ultraslow fluctuations of BOLD-sensitive MR signals (0.01 Hz) between subcortical and 

cortical areas are highly correlated.  The amplitude of the average coherence for each 

possible pairing between anatomically defined brain regions is shown here.  Strong 

coherence was observed between 1) the subcortical ROIs and the ipsilateral cortical 

regions, 2) many cortical areas within a hemisphere and 3) between corresponding areas 

in the left and right hemispheres.  Participants were performing a visual discrimination 

and attention task (see text for details).  Any correlates of motion and of stimulus- and 

task-evoked activity, physiological and background fluctuations of the BOLD signal 

were removed via multiple regression prior to the coherence analysis. 
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Our exploratory analysis of the 22 BOLD sessions reveals strong coherence between 

subcortical regions and many ipsilateral cortical spontaneous BOLD fluctuations (see top 

rows in Fig.  7.1).  Slow thalamo-cortical neuronal oscillations (<15  Hz) have been 

observed in the awake cat   (Steriade, 1997) and during sleep (<1  Hz) (Steriade and 

McCarley, 1990; Steriade, 2000).  Two of the participants suffer from  a rare, autosomal 

recessive, genetic disease, Urbach-Wiethe disease (Hofer, 1973), which resulted in  

calcification of the amygdala.  No significant or otherwise apparent differences in the 

coherence pattern compared to the healthy subjects was observed.  For the final analysis 

reported here, results from all participants were combined.  The subcortical-cortical 

synchronization of oscillations is assumed to be caused by weak neuronal coupling 

between neurons.  It is conceivable that this weak coupling is not specific to a single 

frequency and similarly synchronizes the ultraslow intrinsic oscillations in subcortical 

and cortical areas (see Leopold et al., 2003).  Cortical BOLD coherence is stronger 

between areas within the same hemisphere than between (nonhomolog) areas in 

different hemispheres.  No significant difference between the left and right hemisphere 

was found.  Interestingly, we also found strong coherence between the corresponding 

regions of the left and right hemisphere.  Homolog areas are strongly connected through 

the corpus callosum and the high degree interhemispheric connectivity could explain 

the observed coherence pattern (Fig. 7.2).
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Figure 7.2.  Comparison of BOLD coherence between corresponding and 

noncorresponding areas in the left and right hemisphere.  The coherence between 

spontaneous ultraslow (0.01-0.33 Hz) BOLD fluctuations are stronger between 

corresponding regions in the left and right hemisphere (“Homolog Left-Right”).  

Interhemispheric correlations between noncorresponding regions (“Nonhomolog”) are 

lower than the average coherence observed between areas of the left or right hemisphere 

(“Left” / “Right”).  The standard error of the mean coherence estimates is shown on top 

of each bar.  This bar graph summarizes the coherence information across many 

regions (see Fig. 7.1).

If spontaneous activity is caused by weak loops between the subcortical and cortical 

regions (see Steriade and McCarley, 1990, Crick and Koch, 1998), then it should be 

possible to improve the cortical coherence analysis by removing the influence of the 

subcortical-cortical loops.  To obtain coherence information that exclusively reflects 

cortical interactions, we performed a multiple regression analysis on the artifact-
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corrected BOLD time course of each cortical region.  We entered the signal from each 

subcortical region, the motion and design matrix as regressors into the model.  

Subsequently, the multitaper coherence analysis was performed between the residual 

BOLD time series in each cortical region.  The absolute value of the coherence is a 

measure of similarity of   the BOLD signal largely due to cortico-cortical 

interactions   (Fig.  7.4).  The mean absolute coherence value within the left and right 

hemisphere (r left = 0.0950, r right = 0.0959) are very small and not significantly different on 

the left and right (p  =  0.19, paired t-test).  The interhemispheric coherence between 

corresponding areas is strong (r homolog = 0.25) and significantly higher that the coherence 

between nonhomolog areas of the left and right hemisphere (r   non_homolog   = 0.08, 

p   difference  < 0.01; t-test).  Intrahemispheric regions are slightly more coherent than 

interhemispheric, noncorresponding areas (r = 0.10 vs. 0.08, p < 0.01; t-test). 
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Figure 7.3.  Subcortical interactions cannot explain callosal coherence.  The coherence 

of spontaneous ultraslow (0.01-0.33 Hz) BOLD fluctuations are stronger between 

corresponding regions in the left and right hemisphere.  Interhemispheric correlations 

between noncorresponding regions are lower than the average coherence observed 

between areas of the left or right hemisphere.  The coherence values, when corrected for 

subcortical influences, are lower than the apparent coherence values (compare to 

Fig. 7.2).
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Figure 7.4.  Cortical coherence pattern can in part be explained by subcortical BOLD 

fluctuations.  Spontaneous BOLD fluctuations are coherent between cortical and 

subcortical regions (Fig. 7.1).  The subcortical-cortical interaction produce apparent 

cortical coherence patterns that obscure cortico-cortical interactions.  We removed 

correlates of all subcortical signals with multiple regression and computed the coherence 

of the residuals of this analysis in the ultraslow frequency band (0.01-0.33 Hz) using 

multitaper analysis (Mitra and Pesaran, 2008).  The absolute value of the mean coherence 

between cortical regions is shown.  Strong coherence values are observed between 

corresponding regions in the left and right hemisphere (see Fig. 7.3).  The estimates of 

the coherence pattern are very reliable and highly correlated between the left and right 

hemisphere (r = 0.88, p < 0.001).
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The intrahemispheric coherence patterns between corresponding regions in the left 

and right hemispheres are very similar (r = 0.88, p < 0.001).  The similarity between the 

two hemispheres suggests that our method can reliably discriminate between more 

strongly correlated and less coherent regions.  Such strongly correlated regions, for 

example in the ‘default mode’ network, have been extensively studied.  Less is known 

about the relationship between intra- and interhemispheric BOLD coherence for such 

regions.  We tested this hypothesis, that cortical hubs – areas with strong coherence 

within a hemisphere – are also more strongly coupled across the corpus callosum.  We 

compared the mean coherence of an area within one hemisphere to the coherence value 

of its corresponding area in the other hemisphere.  The intrahemispheric coherence 

strongly correlates the interhemispheric coherence (r = 0.53, p < 0.001), suggesting that 

strongly coherent regions typically synchronize cortical regions within a hemisphere and 

with the corresponding regions in the opposite hemisphere. 

 

Weight Information and Functional Connectivity

To test the hypothesis that strong anatomical connectivity implies strong coherence 

in the awake human brain, we performed global probabilistic fiber tracking.  The 

tractography was seeded in each anatomical region as labelled by the “FreeSurfer” 

software.  The connectivity likelihood to each other anatomical regions was measured 

with probabilistic tractography (see methods) and computed the BOLD coherence 

between all regions.  To control for the effect of distance, we computed the Euclidian 
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distance between the center of mass of all areas.  We then identified sets of brain region 

pairs that are either not connected, or that are weakly, medium or heavily connected.  We 

further split these sets of pairings into regions with similar distances.  The absolute 

coherence for each pair in a set was converted to a z-score using Fisher’s transform and 

the mean z-score is shown in Fig.  7.5.  The anatomical connection strength correlates 

with coherence.  Strongly connected regions, whether they are distant and close-by, 

show strong coherence in their ultraslow BOLD oscillations.  The degree of coherence is 

monotonically related to the strength of connectivity between two brain regions.

Figure 7.5. Monotonic relation between structural and functional connectivity.

BOLD coherence between pairs of cortical regions is primarily related to the strength of 

fibers connecting them.  Strongly connected regions show strong BOLD coupling, 
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independent of the distance between the cortical regions.  The observed correlations 

between connectivity strength and ultraslow BOLD coherence suggests that ultraslow 

intrinsic oscillations in cortical tissue is synchronized by long range connections and that 

the degree of coherence is related to the strength of connectivity.  The finding cannot be 

explained by  nonfunctional artifacts, such as respiration and blood pressure regulation.  

Leopold et al., 2003 have shown that ultraslow LFP oscillations correlate with the power 

envelope of neuronal gamma activity.  It is hence possible that the anatomical 

connectivity synchronizes the overall activity of neurons in distant cortical areas and 

that the degree of synchronization is a primarily a function of the anatomical 

connectivity between them.

Connectivity of the Fusiform Gyrus and Face-Selective 

Activation

Face processing is distributed over multiple face patches in the temporal lobe (Tsao 

et al., 2003, Moeller et al., 2008).  In humans, the face patch in the fusiform gyrus has 

been extensively studied (Kanwisher, 2000, Kanwisher et al., 1997).  The anatomical 

location of these fusiform face patches varies from person to person and little is known 

about the relevance of its position.  Functional specialization implies a specialization of 

anatomical connectivity (Passingham et al., 2002) and in order to process facial 

information, the face patches receive visual input from visual cortex and project to 

upstream face patches (Moeller et al., 2008).  Here, we were interested to use 

tractography to identify subregions of the fusiform gyrus with distinct connectivity 

profiles.  We then correlated the location of such connectivity-based anatomical 
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landmarks with the location of face-selective BOLD activity.   This analysis is exploratory 

in nature.  For this pilot experiment we analyzed 6 fMRI sessions from 3 subjects.

For each subjects, a minimum of 2 face localizer runs, 2-5 T1-weighted anatomical 

images and a 72-directional diffusion-weighted data sets were acquired.  Scanning was 

performed in a 3T Siemens scanner with an 8-channel head coil.  Standard EPI imaging 

procedures were used (TR=2.0s, TE=30ms, flip angle of 80º, 3mm in-plane resolution, 

slice thickness of 3.5mm, 64x64x32 matrix).  Anatomical regions of interest were 

identified for each individual brain using “FreeSurfer”.  The fusiform gyrus and its 

adjacent anatomic regions were used as seed regions for probabilistic tractography.  

Fiber tracking was performed from the occipital pole, the inferior occipital cortex, the 

lingual gyrus, the parahippocampal gyrus, the the inferior, the middle and the superior 

temporal gyrus.  The connectivity likelihood from each of these seven region to each 

voxel in the fusiform gyrus was estimated.  The connectivity density maps were 

projected onto the individual cortical surfaces and smoothed with a Gaussian kernel to 

improve the signal-to-noise ratio.  Subsequently, the region with the strongest 

connection was determined for each fusiform voxel.  This maximum likelihood 

classification for an individual brain is shown in Fig. 7.6.  The plot shows, for each voxel, 

the identity of the most likely connected region.  It should be noted that the participant 

shown here had a bilateral calcification of the amygdala.  Up to the present, we have not 

found any anatomical (or functional) differences between the amygdala lesion 

participants and the normal subjects in the fusiform gyrus and the data from all subjects 

were combined for the following analysis.
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Figure 7.6. Connectivity-based segmentation of the fusiform gyrus.

The anatomical connectivity strength of each voxel in the fusiform gyrus was 

determined with a probabilistic tractography algorithm.  The identity of the seed 

region that is most strongly connected to each fusiform voxel is shown in its 

respective color.  Seven anatomically defined regions adjacent to the fusiform 

gyrus were automatically identified with “FreeSurfer”.  Fiber tracking was 

started in each regions and traced with a fast custom fiber tracking 

implementation to the fusiform gyrus.  The density of connectivity samples was 

projected on the cortical surface.  The figure shows the parcellation for a 

participant (AP) with calcification of the amygdalae.
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To assess the correspondence between the anatomical connectivity of the 

fusiform gyrus and its function specialization, we identified face-selective voxels 

by centrally presenting faces and houses to the subjects.  The EPI images were 

preprocessed in SPM and corrected for slice timing and head motion.  The BOLD 

signal was correlated with the presentation of faces and houses and with the 

participants’ key presses related to a numerical 1-back memory task.  The beta 

regression coefficients of the main contrast between face and house presentations 

were extracted from SPM.   The fusiform gyrus was parcellated into multiple 

subregions based on their connectivity to the the anatomical regions adjacent to 

the fusiform gyrus.  For each of the subregions, the mean of the beta values of the 

face-house contrast was estimated.  This number provides a good estimate of the 

relative face selectivity of a subregion, but its absolute value differs from subject 

to subject.  To correct for individual differences, we normalized the mean scores 

across the seven subregions to yield a cumulative score of 1.  This procedure 

gives every subject an equal weight in the analysis, regardless of differences in 

the absolute size of the beta regression weights.  The resulting normalized 

coefficients were compared in an analysis of variance in  R (implemented via the 

more general linear mixed-effect model; see Pinheiro and Bates, 2000).  The 

normalized activation is significantly different between subregions (F=5.11, 

p < 0.001) and no laterality effect was found.  That largest activation was found 
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in the subregion of the fusiform gyrus that is most strongly connected to the 

lingual gyrus (Fig. 7.7).   The lingual gyrus has been found to be the likely source 

of the N170 face-selected EEG component (Scott et al., 2006) and shows face-

selective changes in regional cerebral blood flow for various face tasks in PET 

(Nakamura et al., 2000).

5. Diffusion Imaging
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Figure 7.7. Face selectivity of connectivity-defined subregions of the fusiform 

gyrus.  Largest than expected face selectivity was found for a subregion of the 

fusiform gyrus that is most strongly connected to the lingual gyrus.  Normalized 

beta values of the BOLD contrast for face vs. house presentations are shown for 

each subregion. (see text for details)
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Summary

Spontaneous cortical BOLD fluctuations are synchronized through cortical tracts.  

The fiber strengths determines the coherence in the ultraslow frequency band: the 

stronger a connecting tract, the larger is the observed coherence between two brain 

areas, within and across hemispheres.  A substantial fraction of apparent 

intrahemispheric cortical coherence is due to subcortical-cortical interactions.  

Many functionally defined cortical areas show a high degree of individual variance.  

Such functional differences could reflect an underlying variability in anatomical 

connectivity.  Tractography could reliable identify landmarks based on connectivity and 

we showed in a pilot experiment how such an algorithm can be applied to study face-

selective patches in the temporal lobe.
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