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INTRODUCTION 

This thesis is a small contribution to the ambitious goal of understanding some 

of the more complex flows that are found in nature, namely, flows of fluids with 

a microstructure. There is a great diversity of such flows: suspensions, emulsions, 

polymeric solutions, ... , each exhibitting phenomena not found in the flow of ho

mogeneous Newtonian fluids. A bit of this diversity has been incorporated in this 

thesis: The first part of it is on some aspects of non-Newtonian fluid flow, and in 

the second part Brownian motion involving interfaces between Newtonian fluids is 

studied. 

Given the large amount of effort devoted recently to thenumerical simulation 

of non-Newtonian fluid fl.ow, the absence of mathematical proofs that any of the 

standard computational methods for solving the equations will converge except for 

nearly Newtonian flows seems somewhat disturbing. While there is evidence that 

investigators may have overcome the so-called "high Weissenberg-number problem," 

at least in specific cases, confidence in the numerical solutions would undoubtedly 

be increased by a rigorous mathematical foundation for the numerical algorithm. 

The first, and in many cases nontrivial, step towards this is to prove that a solution 

actually exists. In the first part of this thesis, a proof of existence without restriction 

on the parameters is given for a particular modified finitely extendible nonlinear 

elastic dumbbell model. A physical basis for the modifications is given. 

For numerical computation, the issue of stability of a flow is also an important 

one, as the small errors introduced by discretization are essentially perturbations in 

the flow, which, if they grow too fast, can make convergence impossible. An energy 

method calculation is given here for the same FENE dumbbell model considered 

in the existence proof ( except for the modifications) to show that for any fl.ow in 
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a bounded domain, at small enough Reynolds number and high enough Deborah 

number, all disturbances will remain bounded. While the estimate found for the 

highest Reynolds number and lowest Deborah number for guaranteed stability may 

be very conservative, the result is nevertheless useful in that it shows that if there 

is an instability, it must occur at a critical Reynolds or Deborah number. 

While the Brownian motion of a rigid particle has received much attention in 

the literature, and the Stokes-Einstein diffusivity of a rigid particle is a result al

most as well-known as the Stokes drag law, the Brownian motion of systems that are 

more complex hydrodynamically has only recently begun to be investigated. Most 

recent work on such systems has been for systems with rigid boundaries, e.g., sus

pensions of rigid spheres. In this thesis, the case of deformable fluid-fluid interfaces 

is considered. Since the understanding of the behavior of clusters or suspensions of 

particles can only follow an understanding of the behavior of a single particle, the 

two cases considered here are a drop in an infinite fluid, and an isolated particle 

in the presence of an approximately planar interface. Expressions for statistical 

quantities, such as the velocity autocorrelation, of the particle and drop motion are 

derived. In the case of the interface, the nature of its effect on the particle's be

havior, beyond the obvious fact that it changes the particle's mobility, is explored. 

Similarly, the surface-tension dependence of the drop's motion is investigated. 

Finally, in a slight digression, the problem of high-frequency oscillatory Stokes 

flow around two spheres, with specified velocity at their surfaces, is reduced to an 

infinite system of algebraic equations for the (frequency-dependent) coefficients in 

a spherical harmonic expansion of the solution. This is expected to be useful for 

computations of such flows where better accuracy than an approximate solution 

obtained by the method of reflections is desired. 
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CHAPTER I 

Existence of Solutions for all Deborah Numbers 
for a Non-Newtonian Model 
Modified to Include Diffusion 

Chapter I consists of the text of a paper 

submitted to Journal of Non-Newtonian Fluid lvfechanics 
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INTRODUCTION 

The question of existence of solutions and convergence of numerical methods for 

models proposed to describe non-Newtonian fluids has become particularly relevant 

on account of significant difficulties that have been encountered in computational 

studies. There is evidence that at least part of the problem may be due to intrinsic 

flaws in the model, namely, that they allow as mathematical possibilities phenomena 

that are physically unreasonable. In this paper, it will be shown by examining the 

conditions needed for a mathematical proof of existence, that attention can be drawn 

to the specific terms in the constitutive equation that could give rise to unphysical 

behavior. This should not be surprising, since the definition of "existence" generally 

has built into it a restriction to classes of functions that are physically reasonable. 

Only constitutive equations of the so-called "molecular" type that come from 

simple "dumbbell" models will be considered here. Bird et al. [1] discuss these 

models and their derivation in detail. In particular, the following (nondimension

alized) model (used by Chilcott and Rallison [2] in their numerical calculations of 

flow past a cylinder and sphere) will be used: 

where 

C 
Re u · 'v'u = -'v'p + 'v'2 u + D 'v' · (f(R)A); 

T f(R) 
u · 'v' A = A · 'v' u + 'v' u · A - --( A - I); 

D 

1 
f(R) = R2; 

1- L2 

(1.la, b) 

(1.2) 

and R 2 is the trace of A. Here, u is the velocity, Re is the Reynolds number, c is the 

dumbbell concentration, Dis the Deborah number, and A=< rr >, where r is the 
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end-to-end vector for a dumbbell and the brackets denote an ensemble average. The 

Deborah number D = r /T, where r is the polymer relaxation time, and T is the 

characteristic time scale of the flow. This is a FENE (finitely extendable nonlinear 

elastic) dumbbell, meaning that the two beads are connected by a spring that can 

be stretched by the flow, and which exerts a restoring force tending to bring the 

dumbbell back to its equilibrium extension. The words "finitely extendable" refer 

to the fact that the spring coefficient f(R) becomes infinite as R approaches L, 

(L being an adjustable model parameter) so that the (average) dumbbell extension 

can never exceed L. It has already been pointed out by Rallison and Hinch [3] 

that without this feature of finite extension, there are certain flows in which the 

dumbbell would extend to infinite length, a clearly nonphysical phenomenon. If it 

was attempted to prove existence of solutions for the equations of motion based upon 

such a model, ( or derivatives such as the Oldroyd model, which can be derived from 

a dumbbell model with a constant spring coefficient), it would immediately be clear 

that the possibility of infinite extension is an obstacle, since all currently available 

methods of proof require a priori estimates guaranteeing that all possible solutions 

lie in a compact subset of some reasonable function space, so that sequences of 

approximate solutions will converge to an element in that space. 

While the need for a bound on the extension of the dumbbell has been rec

ognized for some time by non-Newtonian fluid mechanicians, there are two other 

potential flaws in models such as the one above that seem not to have received 

much notice yet. It is the purpose of this paper to draw attention to them and to 

show that, once they are corrected, the existence of a solution can be guaranteed 

independent of the Deborah number. ·while no proof is provided here that solutions 

in some Sobolev space fail to exist without the modifications to the model suggested 
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here, it is certainly true that none of the currently available methods to prove ex

istence can be applied successfully. Our point of view is that this is an indication 

of problems with the model rather than any inadequacy of available mathematical 

theory. Undoubtedly it is possible to come up with a sufficiently generalized def

inition for a solution (i.e., the solution would be sought in a function space with 

sufficiently relaxed continuity and boundedness properties) that existence could be 

proved regardless of physically unrealistic aspects of the model. Since this would 

mean that the solution might be physically unrealistic, however, this seems to be 

a much less useful approach than modifying the model to disallow any undesirable 

behavior, and then proving existence. 

One of the problems with the model in (1.1) is brought to light in one of the 

essential steps of an existence proof, namely, getting an a priori estimate on A in 

the Sobolev space in which a solution is sought, which means that the components 

of A, as well as all their first-order partial derivatives, should be Lebesgue-square

integrable (which implies a certain degree of smoothness and boundedness). How

ever, a constitutive equation of the type given in (1.1) is really just an ordinary 

differential equation giving the derivative of A along a streamline. If a physically 

reasonable value of A is prescribed as an upstream boundary condition for a stream

line, and the velocity field is not too pathological ( this will be made more precise 

later by requiring that u lie in a Sobolev function space so that it and its first- order 

derivatives are square-integrable), then the terms on the right- hand side of (1.lb), 

which determine u •VA (the derivative of A along the streamline), will integrate 

to give bounded and continuous values of A along the streamline. If the streamline 

is closed, the constitutive equation is like an eigenvalue equation for u, since the 

value for A obtained by integrating along the streamline must equal the value at 
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the starting point of the integration. In this case it is less clear what conditions on 

u are necessary to ensure that v' A will be bounded. In any case, it is natural to 

ask the following question: Is there any limitation on the derivatives of A normal 

to a streamline? Is it possible to construct solutions in which A is discontinuous 

across streamlines? 

DISCONTINUOUS SOLUTIONS 

We begin by showing that discontinuous solutions can definitely be constructed for 

the case where the inlet conditions are allowed to be discontinuous. A very simple 

example is provided by uniform flow with a constant velocity U in the x direction. 

In this case the equations reduce to 

U8A = _ f(R) (A_ I)· 
ox D ' 

(2.1) 

0=-v'p+'v·A. (2.2) 

It is evident upon examination of (2.1) that an asymptotic solution for A as x -+ oo 

for any initial condition at x = 0 is simply A -+ I. Thus, sufficiently far downstream 

from any initial condition, the distribution for A will approach arbitrarily closely 

to being continuous. Nevertheless, if a discontinuity is specified for A at x = 0, a 

discontinuity of decreasing magnitude, at which 'v A = oo, will exist for all finite 

x. To demonstrate this behavior, (2.1) can be solved directly. Any solution of 

(2.1) for A that is independent of y will satisfy (2.2). It is convenient to solve for 

( = R 2 = Tr A rather than for A itself. For this purpose, (2.1) can be rewritten in 

the form 
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U d( = - ]_ 1 ( ( - 3)' 
dx D l - j_ 

£2 

(2.3) 

which, if ( 0 denotes the value of ( at x = 0, may be integrated to give 

( ) 

1-2--
1 ( - 3 L

2 
X 

exp(--((- (o)) - =exp[--]. 
£ 2 ( 0 - 3 DU 

(2.4) 

Since the solution depends only on x, it is clear that two solutions with different 

inlet conditions may be pieced together at some value of y, at which there will 

be a discontinuity in A. Equation (2.2) indicates that the pressure must also be 

discontinuous at this value of y. It may be seen from (2.4) that for any choice 

of inlet condition other than the equilibrium A = I, R 2 = 3, the discontinuity 

persists infinitely far downstream, though its magnitude decreases with increasing 

x. Although viscosity tends to smooth velocity gradients, it does not necessarily 

smooth gradients in A, since these can exist without a velocity gradient. 

The question remains as to whether it is possible to construct a solution with a 

discontinuity in A for smooth inlet conditions. Consider Equations (1.1 ), this time 

including time dependence, in the sense of generalized functions: 

Re (:+u-v'u) =-v'p+v'2u+ ;v'-(f(R)A) 

8A T f(R) at + u · v' A= A· v'u + v'u · A - ~(A - I). (2.5a,b) 

First, for a steady solution to have a jump in A, so that v' A will behave like a 

delta function, there must be a jump in v'u and/or p, since the delta function must 

be matched by another delta function in (2.5a). To show that the jump in A must 

necessarily be across a streamline, note that if the term u · v' A had delta-function 
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behavior, it could not be balanced by any other term in (2.5b) ( since only first 

derivatives of u appear in (2.5b) ). However, for an unsteady solution, if the position 

of the discontinuity were allowed to move ( analogous to a travelling shock wave), 

the u •VA term in (2.5b) could possibly be balanced by the time-derivative term, so 

that a jump would not necessarily have to be in a direction normal to a streamline. 

To derive conditions, analogous to the Hugoniot relations for shock waves, that 

a discontinuous solution must satisfy, the problem must be reformulated in "weak 

form." These conditions will actually be derived here only for the steady case, 

although how to extend this derivation to the case of a moving discontinuity will 

be obvious. As shown above, in the steady case, only the momentum equation has 

discontinuous terms, so it is not necessary to deal with the constitutive equation 

to derive jump conditions. The weak form of the momentum equation is, in index 

notation, 

-Re Uj __ i <pi+ p-' - --' --' - -f(R)Aji __ , dx = 0, l [ Ou· O<p· ou· O<p· c 8</>·] 
V OXj OXi OXj OXj D OXj 

(2.6) 

where this is to hold for all divergence-free test function vectors </> with compact 

support. Here, V denotes the flow domain, and S will be used to denote the 

discontinuity surface, v+ and v- will designate the two regions on either side 

of the discontinuity, and "+" or "-" will denote values of quantities in the limit 

of approaching the discontinuity surface from the v+ or v- sides, respectively. 

Within regions v+ and v-, this weak form can be rewritten as 
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-[ r + r l [-ef>ii!E_ + ~2~i ef>i +--=- /Jf(R)Aji ef>il dx. (2.7) 
iv+ lv- OXi oxj D OXj 

If the differential form of the equation (i.e. Equation (2.5a)) holds within v+ and 

v-, then the second two integrals are zero. The divergence theorem may be applied 

to the first two integrals, so that only boundary terms from along the discontinuity 

surface result, giving 

(2.8) 

Here, nj denote components of the outward-pointing normal to the region, so that 

clearly n; = -n-;. Since this equation is to hold for all test functions ef>, it must be 

that at all points on the surface of discontinuity 

Bu· c Bu· c 
{ [ ]

+ [ ]-} - -p5ii + fJ;,:,; + D f(R)Aii + -p5ii + ox; + D f(R)Aii nf = 0. (2.9) 

These are the jump conditions for steady flow. How to extend this derivation to 

the unsteady case by integrating by parts in the time t should also be clear. The 

velocity of the surface of discontinuity will appear when the time derivatives of 

integrals over the domain are taken. Again, this is analogous to the derivation of 

the Hugoniot relations for inviscid shock waves. 

It remains a challenge to prove or disprove the existence of discontinuous solu

tions satisfying these jump conditions without having discontinuous initial or bound

ary data. There certainly seems not to be any obvious reason that such a flow field 

could not exist. The condition (2.9) demonstrates that even velocity-gradient jumps 
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are not disallowed for a fluid of type (1.1 ), although viscosity is present. By com

parison, jump conditions allowing for discontinuous velocity gradients can not be 

derived for the steady N avier-Stokes equations, because there is no deviatoric stress 

term in the momentum equation that can balance the delta-function behavior of 

the viscous term. 

The uniform flow example given above at least demonstrates that a solution 

with discontinuous A can exist if the boundary data are allowed to be discontin

uous. The question that now arises is what such discontinuous solutions mean (if 

anything) physically. The flow variables that jump across the discontinuity in the 

particular example above are the components of A. However, A is the second mo

ment of the distribution of extension and orientation of the dumbbells, so that a 

jump in A means a sudden change in this distribution. This is not physically rea

sonable: clearly, dumbbells (if they are to model, and therefore behave like, polymer 

molecules) on either side of a streamline are not completely independent of each 

other; Brownian motion will continually move them across streamlines, and thus 

smooth any discontinuities in A. This is an important effect that is missing in all 

differential constitutive equations so far proposed. 
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MODEL MODIFICATION 

It turns out that this effect fails to be included ir most models because of the "local 

homogeneity" approximation made in their derivation. To see how this assumption 

eliminates Brownian motion of dumbbells across streamlines from the model, one 

can consider Phan-Thieu's [4] derivation for the dumbbell model as an example. 

Phan-Thieu's analysis starts with the stochastic differential equations governing 

the positions R 1 and R2 of the two dumbbell beads. The equations are stochas

tic because a Brownian (random) force on each bead is included. After changing 

variables to R(c), the center-of-mass of the dumbbell, and R, the end-to-end vector 

for the dumbbell, the stochastic differential equations become (neglecting inertia 

associated with the mass of the beads): 

(El(c) - tu(R(c)) = r<c\t); 

· 6k0 < ) 
eR + N a2 /'\:R - eL(R c ) · R = f( t). 

(3.la) 

(3.lb) 

(Phan-Thieu's "internal viscosity" term has been omitted here.) Here, e is the hy

drodynamic resistance of one dumbbell bead (assumed constant); u is once again 

the velocity; L is the velocity gradient (a function of R(c) in general); k is Boltz

mann's constant; 0 is the absolute temperature; N is the number of sublinks in a 

dumbbell; a is the length of a "sublink"; and /'\:(R) is the spring law. The important 

thing to note here is that there are two Brownian forces: f(c)(t) acts on the center 

of mass, and f(t) acts on the end-to-end vector; the two forces are uncorrelated. 

Clearly, the first of the two gives rise to motion of dumbbells across streamlines 

(without changing their orientation or extension!). It should be noted that one 

approximation has been made in writing (3.lb), namely that the difference in the 
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velocity field experienced by the two beads of a single dumbbell has been assumed 

to be L(R(c)) · R rather than u(R2) - u(R1), In other words, while the Equations 

( 3.1) allow for the fact that the velocity field may change in a nonlinear way over 

distances comparable to the size of an ensemble of dumbbells, it is assumed that it 

can be linearized on the length scale of a single dumbbell. The Fokker-Planck equa

tion corresponding to the stochastic differential equations can be derived, following 

Phan-Thien [4], as 

(3.2) 

Here, "</>(R(c), R, t) is the probability density function of the vector Markovian 

process (R(c), R)." The constitutive equation is the second moment of this equation, 

and is thus obtained by multiplying by RR, and integrating over R, the integration 

corresponding to an average over an ensemble of dumbbells. A few integrations by 

parts are necessary to make all the terms look like expectations; consequently, some 

surface terms are obtained, since the integration is over a finite range of possible 

values of R, but they are omitted because the probability density is assumed to 

go to zero as the two extremes of a maximally extended dumbbell (R-+ L) and a 

completely collapsed dumbbell (R-+ 0) are approached. After these manipulations, 

the result is 

8k0 
u-VA+-I e 

(3.3) 
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where the terms have been written in the same order as their antecedents in the 

Fokker-Planck Equation (3.2). Here, gradients with respect to the center of mass 

position R(c) have been written as V, since the variable R(c) in (3.1), (3.2) cor

responds to the position variable x in (1.lb). The only approximation made in 

obtaining this moment equation is the usual "preaveraging" assumption made in 

replacing the expectation of the nonlinear spring force by its value at the expecta

tion of R. If the above-mentioned assumption of linearization of the velocity on the 

length scale of a single dumbbell had not been made, some preaveraging assumption 

would be needed for the last term in (3.2) also, and there would be some correction 

to the last two terms in (3.3). Apart from this, no assumption of constancy of the 

velocity gradient over the averaging region has been made. If the Deborah number 

is defined as 

and the usual assumption is made that the isotropic term 

should be replaced by 

8k0 
-I e 

K(R)I 
IJ' 

(3.4) 

(3.5) 

(3.6) 

so that the quiescent state will correspond to an equilibrium value of A = I, then 

it can be seen that equation (3.3) is almost identical to (1.lb) (in the steady case). 

The one difference is the presence of the term 
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k0vz 
2l A, (3.7) 

which originates in the Brownian motion of the center of mass of the dumbbell. In 

other words, Brownian motion should give rise to a diffusion term in A, in addition 

to its other effect (namely, the Brownian force along the connector which turns out 

to prevent the dumbbell from collapsing to zero length by giving rise to an isotropic 

term). Since both these effects arise from the same cause, it is inconsistent to include 

one and not the other, which, in fact, is what is done. This diffusion effect is lost 

in derivations such as Phan-Thieu's because the local homogeneity assumption is 

taken to imply that the probability density ¢> can be factored into two parts, one 

a function of R only, and the other a function of R(c) only. This gives rise to two 

separate Fokker-Planck equations [4], one having gradients in R only, and the other 

having gradients in R(c) only. It is from the former that the constitutive equation 

is derived; thus all dependence on position is lost except the dependence implicitly 

left in the velocity gradient in the terms L • A and A• LT. There is no need to make 

this factoring assumption, however, as has been shown above. 

A relevant question at this point is the magnitude of the spatial diffusion term 

relative to other terms in the equation for A. Let U and d denote typical velocity and 

length scales for a fl.ow. Then, the magnitude of the diffusion term, the coefficient 

of which is essentially a Stokes-Einstein diffusivity, can be estimated as 

k0 L 

µad2 
(3.8) 

( where the hydrodynamic resistance has been estimated by µa, with µ being the 

solvent viscosity, and the magnitude of A has been estimated by the upper bound 

for its trace, namely L, the maximum extension). On the other hand, the convective 
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derivative term u • v7 A in the constitutive equation can be estimated as U L/d. The 

ratio is then 

k0 

µad 2 U" 
(3.9) 

If typical values of 0 = 102K, µ = 10-2 dyne/cm• s, a = 10-4 cm, U = l cm/s, 

d = 10 cm are taken, and it is recalled that k ~ 10-16erg/K, the dimensionless ratio 

is then on the order of 10-11 , because Boltzmann's constant is so small (in other 

words, because the Brownian diffusivity of a dumbbell is small). Thus, the diffusion 

term will be negligible except in regions of extremely high gradients of A. However, 

in such a region, it plays an essential role in tending to smoothen the distribution 

for A. 

It is significant that such a diffusion term should be included in the constitutive 

equation, because this actually results in a change of the apparent type of the 

equation from hyperbolic to parabolic. Much attention has been given recently [5] 

to the implications of apparent hyperbolicity of the constitutive equation, such as 

possible loss of evolution, and difficulties in both proving the existence of a solution 

and proving convergence of numerical approximate solutions. However, the present 

analysis suggests that the constitutive equation should really be unambiguously 

parabolic (this is ensured when the highest-order derivative term is a diffusion term). 

The presence of the diffusion term obviates the issue of whether the absence 

of "inlet" conditions in regions of closed streamlines will necessarily cause the fl.ow 

to be nonunique in those regions. (The fl.ow may of course be nonunique for other 

reasons, depending on the fl.ow parameters; this would be expected since the N avier

Stokes equations do not have unique solutions at higher Reynolds numbers.) As 

mentioned above, the constitutive equation without the diffusion term is like an or-
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dinary differential equation for A along a streamline, indicating that it is necessary 

to specify the value of A at one point on each streamline. This is straightforward 

only if there is a clearly defined surface on which the desired value of A is known 

(like a boundary condition) and through which all streamlines pass exactly once. 

Not all flows will have this property. Some may have closed eddies; the exact lo

cation of these and the conditions in them would be unknown until the entire flow 

is computed. There may be nonuniqueness of A in these eddies. However, with 

the diffusion term, boundary conditions for A are evidently necessary on the entire 

boundary of the domain (just as u must be specified on the entire boundary of the 

domain when the Navier-Stokes equations are to be solved), and it should not be 

necessary to know anything about the geometry of the streamlines to specify correct 

boundary conditions for a well-posed problem. On the other hand, specifying appro

priate values of A ( or possibly its normal derivative) on all the boundaries, including 

solid ones, rather than just at the "inlet" boundary, may itself be a problem, at 

least temporarily, since very little work has been done to determine anything about 

the distribution of dumbbell (macromolecular) configurations near solid walls. 

The absence of this important diffusion term is not the only problem that 

arises in proving the existence of solutions for the FENE model, Equations (la,b ). 

Another problem is that it seems to be impossible to prove mathematically that 

terms involving the spring-law f(R) remain bounded in all flow conditions (because 

f(R) becomes unbounded as R-+ L), since it cannot be assured that R is somehow 

prevented from getting arbitrarily close to L. (Examination of the existence proof 

given later in this paper will show that bounding these terms is essential for proving 

existence.) From a qualitative physical point of view, the existence of an unbounded 

force (i.e. R -+ L and f ( R) -+ oo) exerted by the fluid on the spring ( and vice versa) 
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in some region seems implausible. In order to balance the spring force, an extremely 

large velocity gradient would be required. Moreover, it is generally believed that 

the kinematics of a fl.ow will be modified in regions of high stress, so this type of 

singularity, in principle allowed by the constitutive model, never actually occurs. 

Unfortunately, this implausibility argument does not constitute a mathematical 

proof, and it is necessary for the existence proof to modify the model in such a 

way as to explicitly limit the maximum magnitude of the spring force. There is no 

question that the spring force should be bounded, since realistically a dumbbell, 

which corresponds in some sense to a polymer molecule, should not be able to 

withstand an infinite force trying to pull it apart. The question is whether the 

bound on the spring force is already implicit in the model or whether it must be 

explicitly built in as a modification. Since this question cannot be answered with 

complete certainty, the (perhaps redundant) modification will be made. 

The modification proposed here corresponds to the introduction of a "breaking 

function" g(R) that simply "turns o.fP' the dumbbell contribution to the bulk stress 

in the momentum equation, and the stretching and rotating of the dumbbell in the 

constitutive (moment) equation, whenever R exceeds some finite threshold value 

R 1 that may be placed as close to L as desired. One possibility, which is chosen 

here, is for the function g( R) to equal 1 for all R less than R1, and to ramp rapidly 

down to zero in the range R1 ::; R::; Rz, where Rz is still less than L. It should be 

noted that this is to a large extent an arbitrary choice; however, the existence proof 

given below will not work for a discontinuous g(R) (for example, if g(R) suddenly 

dropped to zero at R = R1 ). The model becomes 

1 
Re u ·'vu= -'vp + 'v2 u + D 'v · (g(R)cf(R)A); 
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u•VA=g(R) [A•Vu+VuT•A-f~\A-I)] +tv'2 A (3.l0a,b) 

(where E has been used to denote the nondimensionalized coefficient of the diffusion 

term). By this somewhat artificial mechanism, it can be guaranteed that the spring 

force does not exceed some finite threshold value. The function g(R) is denoted 

here as the "breaking function" because one interpretation of the resulting model 

is that g(R)c is the dumbbell concentration, which goes to zero in regions where R 

exceeds its threshold value at which the spring force f(R) starts to become greater 

than the maximum force that can be exerted on the dumbbell before it breaks. 

To continue with this interpretation, once dumbbells break in a certain region, 

they should cease to affect the flow ( which is ensured because the deviatoric stress 

term is "turned off'' in the momentum equation), and they should also cease to be 

affected by the flow (hence the factor g(R) in the constitutive equation). In any 

region where g(R) is less than 1 (i.e., dumbbells are breaking), there will still be 

convection and diffusion of (unbroken) dumb bells into the region, so the convective 

and diffusive terms are retained without modification in the constitutive equation. 

It is not claimed here that the above interpretation is rigorous; it should merely be 

viewed as providing an intuitive justification. Of course, the model (3.10) may seem 

somewhat simplistic, since, strictly speaking, if dumbbells are allowed to break, a 

conservation equation for the dumbbell concentration should also be included. In 

addition, it would perhaps be more realistic to allow a dumbbell to break into two 

smaller dumbbells rather than to consider it to essentially vanish when it breaks. 

However, the goal here is to find the simplest model that can be expected to give 

reasonable results, rather than to try to include every possible effect. In this spirit, 

it is conjectured that since the regions where the spring force will tend to be very 
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large will be only a very small fraction of the entire flow domain ( and perhaps 

nonexistent, since the threshold force can be chosen at any arbitrarily large, but 

finite value), the change in dumbbell concentration that is due to breaking will not 

be very significant, so that no conservation equation will be included here. This 

conjecture could be verified a posteriori by looking at a numerical solution to this 

model and seeing how large the regions are where g(R) -=I=- l (if, in fact, there are 

any) relative to the size of the whole domain. (In a numerical study, it will probably 

be desirable to choose the arbitrary upper bound on the spring force based on how 

large a number can be reasonably handled on the computer - a consideration that 

has no bearing on proving that the solution exists.) As a final comment we would 

only reiterate the following point: If the interaction between dumbbell stretching 

and local modifications in the flow is such that an unbounded spring force can never 

be obtained in a "real" flow, then the introduction of a mathematical bound on the 

spring force is superfluous, and the function g( R) will play no role in the behavior 

of the model (3.10). If, on the other hand, an unbounded spring force is possible 

with the original FENE model (1.1) (and this would be unexpected and interesting), 

then g(R) is essential to any proof of existence of solutions for arbitrary Deborah 

number D. 

It will now be shown that a solution to the modified model (3.10) with appro

priate boundary conditions can be guaranteed for a bounded domain, independent 

of the Deborah number. 
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FUNCTION SPACES 

Before giving the existence proof, the function spaces in which the problem is to 

be formulated must be introduced. This. is necessary to make precise the notion of 

"existence." It is also necessary to know exactly what Sobolev spaces the functions 

lie in, since Sobolev embedding theorems will be used later to get estimates on the 

norms of certain functions. The notation and definitions of these spaces are taken in 

large part from Ladyzhenskaya [6], and are just reviewed briefly here. The domain 

n on which a solution is to exist will be assumed to have a Lipschitz-continuous 

boundary. To begin with, the space L 2 (0) will be needed. This is the space of all 

scalar functions on n that are Lebesgue-square-integrable. The inner product on 

this space is defined by 

( 4.1) 

and the norm is given by 

( 4.2) 

Once this space has been defined, the Sobolev space W}(O) can be defined by 

W}(O) = { u: u E L2(0) and ::i E L2(0)} ( 4.3) 

with the inner product 

( 
Bu av) 

(u,v)w1 = -8' -8 
2 x· x· 

i i L2 
( 4.4) 

and the norm 
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l 

llullw1 = (u,u)i1 , 
2 2 

(4.5) 

which make it a Hilbert space. Note that for a bounded domain, the other obvious 

choice of inner product, 

(4.6) 

is equivalent to this one by Poincare's inequality. Now define the space Wf to be 

the closure of the set of all infinitely differentiable functions with compact support 

in 0. It can be shown that this is a subspace of Wf (0). 

Since only incompressible flows will be considered here, the velocity field will 

be divergence-free. It is therefore convenient to work with the space 

i(O) = {u E [W:f(0)] 3
: V · u = 0 ,} (4.7) 

where derivatives are interpreted in the generalized sense. The superscript "3" 

refers, of course, to the fact that u is a vector function with 3 scalar components. 

This space will be given the inner product 

( 4.8) 

and the norm 

1 

llullj = [u, u]J ( 4.9) 

Let H(O) denote the completion of i(O) in the metric generated by this norm. 

Its inner product and norm will be the same as for j, and will be indicated by a 
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subscript H instead of j_ (In fact, for the bounded domain n to be considered here, 

the spaces H(O) and i(O) are the same.) 

The variable A that appears in the constitutive equation will lie in the space 

(4.10) 

which will hereafter be denoted by H'. ( Of course, only 6 of the 9 components of A 

are actually independent, so the space [Wi ]6 could be used instead; however, this 

would not affect the results in any significant way.) It is also convenient to define 

H" = H X H' ( 4.11) 

which will be the space where the full solution vector 

( 4.12) 

(the 3 velocity components and the 9 components of A) will lie. The inner product 

on these compound spaces will be defined as the sum of the inner products on the 

component spaces: 

[A,x]H, = L [Aii,Xiilw} (4.13) 
i,j 

( 4.14) 

and as usual the norms will be defined by 

1 

IIAIIH· = [A, A]1, ( 4.15) 
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( 4.16) 

Finally, the space L4(f2) of all scalar functions whose fourth powers are Lebesgue 

integrable will be needed; its norm is 

( 4.17) 

At times it will be convenient to consider the velocity u as a member of 

( 4.18) 

and the tensor A as a member of 

( 4.19) 

FORMULATION 

The existence proof given here is similar in many ways to Ladyzhenskaya's [6] 

presentation for the Navier-Stokes equations. As in her version of the proof ( due 

originally to Leray), it is first necessary to reformulate the problem to allow for weak 

(i.e., generalized) solutions, rather than to leave the problem as a boundary-value 

problem for a system of differential equations. This is the purpose of this section. 

Continue to consider the stationary case, and for simplicity, a bounded domain with 

the flow driven by an external forcing function F(x), with no slip at the boundary 

(u = 0) and the dumbbells at equilibrium at the boundary (A= I). Of course, for 

most engineering purposes, flows driven by specified (nonhomogeneous) boundary 

conditions are of interest; it should be noted that the proof given below can be 
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easily modified to include such a case ( as Ladyzhenskaya does for the Na vier-Stokes 

equations). 

The model formulated as a system of differential equations thus becomes 

1 
Re u ·Vu= -Vp + v'2 u + D '7 · (g(R)cf(R)(B +I))+ F(x), 

u · v'B = g(R) [B ·Vu+ VuT · B +Vu+ VuT - f(:) B] + 1:V2B, 

(5.la,b) 

V · u = 0, (5.2) 

which are to hold in the domain 0, with boundary conditions 

u = O and B = O on 80 , (5.3) 

where a slight change of variables to B = A - I was made in order to make the 

boundary conditions formally homogeneous. As above, 

R2 = TrA = TrB + 3 , (5.4) 

and 

1 
f(R) = 

1 
_ &.. , 

£2 
(5.5) 

and the particular choice of the polymer-breaking function g(R) will be (with R 2 < 

L): 
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g( R) = l if R ::; R1 

R-R1 = 1 - --- if R1 < R < R2 
R2 - R1 - -

= 0 if R2 ::; R. (5.6) 

To use functional-analytic methods, the model must be reformulated in a generalized 

sense. The idea is to look for solutions 

(5.7) 

in the space H" ( defined above), but such solutions may not have derivatives defined 

at every point. So, in standard fashion, the inner product of the equations is taken 

with an arbitrary element 

(5.8) 

of H 11
, and this is integrated over the domain 0. This results in: 

1 { [Re u ·Vu+ Vp - 'v2u - ~ v7 · (g(R)cf(R)(B + I))] · </> 

+ [ u · VB - g(R)[B ·Vu+ 'vuT · B +'vu+ 'vuT - !(:;-) B] - Ev72B] : X }dx 

-1 F(x) • <f>dx = 0 , (5.9) 

which should hold for all 

(!) EH". (5.10) 
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As written, it is not obvious that these integrals exist except for certain G~) in H" 

that are smooth enough. This is fixed by a few integrations by parts ( and using the 

fact that u and </> are divergence-free): 

1 { -Re uu: "v</> +"vu: "v</>T + ;g(R)f(R)B: "v</> - B: (u · "vx) 

f(R) . 
+ g(R) [-B. "vu - "vuT. B - "vu - "vuT + l)B] : X + c"v A: "vxT}ax 

-1 F(x) · </>dx = 0 , (5.11) 

where the notation convention 

(5.12) 

is used. Now recall that 

(5.13) 

and 

(5.14) 
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EXISTENCE PROOF 

Now that the problem has been properly formulated, the actual proof of existence 

of solutions can be given. The proof will be in several steps; to assist in following 

the proof, the steps will first be outlined briefly here. A familiarity with Ladyzhen

skaya's presentation for the Na vier-Stokes equations is helpful here, since this proof 

is similar in outline. Step 1 involves viewing the weak formulation of the problem 

obtained in the previous section as a linear functional on the test functions. It is 

shown that this linear functional is bounded by deriving an estimate for its norm. 

Step 2 invokes the Riesz Representation Theorem to rewrite the action of the lin

ear functional on a vector function as the inner product of another (unique) vector 

function with it. The unique vector function thus defined by the linear functional 

must be shown to be completely continuous. This makes Step 3 possible, which 

involves rewriting the problem again, this time as an operator equation, with a 

solution corresponding to a fixed point of the operator. To assure existence of a 

fixed point (the desired solution!) the Leray-Schauder theorem is used; this is Step 

5. Before this, however, some a priori estimates satisfied by all possible solutions 

must be derived; this is Step 4. 

So to begin with Step 1, note that for a fixed CD EH", the integral 

i { -Re uu: v'</> + ;g(R)f(R)B : v'ef> - B: (u · v'x) 

+ g(R) [-B · "vu - "vuT · B - "vu - v'uT + f~) B] : X }dx (6.1) 

defines a linear functional of ( !) E H 11
• It will now be shown that this is a bounded 

linear functional, by estimating each of the terms. In deriving the estimates, fre

quent use will be made of the following two inequalities, valid for any space in which 
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W}(D) or a subspace of W}(D) is dense: 

(6.2) 

(6.3) 

Both these inequalities are proved by Ladyzhenskaya [6]; the latter is generally 

known as Poincare's inequality, and µ 1 is a constant depending on the domain. In 

all that follows, K will be a generic designation for a positive constant; i.e., it will 

not always be the same constant. 

IL Re uu: 'J\Qdxl '.'.Re~ [lo (u;u;)'dx] ½ [lo!::' dxl l 
i,J 

'.'.Re~ [lo ujdx] ¼ [lo uJdx] ¼ K\1¢\IH 
i,J 

(6.4) 

The fact that g(R) ::S 1 and that g(R) = 0 if R 2: R2 will be used in some of the 

following estimates. 

1 2 i 

::S; ~ f(R2 ) [1 Bfjdx] 
2 [1 !!~ dxr 

i,J 

::S KjJBIIH'il¢11H . (6.5) 
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11 B: (u · 'vx)dxl ~ fu 1 IB,;u, t~ I Jc;; 

:s L [ r IBijUkl 2 dx] ½ [ r I ~Xji /
2 

dx] ½ 
.. k lo lo Xk 
i,J, 

~ f [1 IB,;l4 dx] ¼ [1 lu,l4 dx] ¼ llxllH• 

:S L 16 [j IBij 12 dx] ½ [i "v Bij · "v Bijdx] ¾ [j luk 12 dx] ½ 
i,j,k O O O 

x [1 "vuk · "vukdx] ¾ KllxllH• 

:SL l6KIIBIIH1 lluilHIIXIIH1 

i,j,k 

(6.6) 

11 g(R)B ·'vu: xdxl ~ f 1 IB,; ::; Xkil dx 

~ ~ [1 IB,;l4dx]' [fnixkil 4
©;¼ l [1 (::;)' dxr 

i,J, " 

i,j,k 

(6. 7a) 

The estimate 

(6.7b) 

follows in a very similar way to the previous estimate. Analogously to (6.7a,b), the 

estimates 
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and 

can be obtained. Finally, 

So the entire functional is estimated by 

l {-Re uu: v'</> + ;g(R)f(R)B: v'</>- B: (u • v'x) 

+ g(R)[-B · v'u - v'uT · B + fc;)B] : X }dx 
$ KlluiiJill</>IIH + KIIBIIH•ll</>IIH 

+ KIJBIIH' llullHllxllH' + KIIBIIH1 1iui1HllxllH1 

+ KllullHIJBIIH 1 1ixllH1 + KllullHIIXIIH 1 

+ KllulJHllxllH' + KIJBIIH1 1lxllH1 

$ Kll(!)IIH" 
for a fixed (i) E {H"}. 

(6.8a) 

(6.8b) 

(6.10) 
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By the Riesz representation theorem, the functional can therefore be written 

as 

(6.11) 

where Mis a unique (9-component) element of H" depending nonlinearly on (i) E 

H". This completes Step 1. 

The next step, (Step 2), is to show that the operator taking (i) to M (i) is 

completely continuous on H". By definition, the operator is completely continuous 

if for any sequence 

(6.12) 

in H" such that 

( 
u(m)) -+ ( u) 
B(m) B (6.13) 

weakly in H 11
, it follows that 

(6.14) 

So consider a weakly convergent sequence and estimate the inner product 

[ ( 
u(m)) ( u(n)) (<p)] 

M B(m) - Jvl B(n) ' X H" 

=-(I)+ (II) - (III) - (IV) - (V) - (VI) - (VII) - (VIII), (6.15) 

where 
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(6.16a) 

(II)= L ;g(R(m))J(R(m))B(m): 'vcpdx L ;g(R(n))f(R(n))B(n): 'vcpdx, 

(6.16b) 

(6.16c) 

(6.16/) 

(6.16g) 
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These eight terms are estimated using Holder's inequality, the two inequalities 

(6.2) and (6.3), and integration by parts. For example, the necessary steps for term 

(I) are shown in detail below; first it is rewritten as 

(I)= 1 Reu(m>(u(m) - u(n)): "v</>dx 

+ 1 Re u(n)(u(m) - u(n)): "v</>dx , 

and then it is estimated by 

+Re~ [1 ju~m\u;m) - ut)) j
2 

dx] ½ [1 (;:; )2 dx] ½ 
i,J 

~ Re Y; [1 (u~m))4dx] ¼ (1 (u;m) - u;n))4dx] ¼ [1 (!!;) 2 dx] ½ 
i,J 

+ [1 (u~n))4 dx] ¼ [1 ( u;m) - u;n))4 dx] ¼ [1 (::; )2 dx] ½ 

~ Re K jju(m) ll(L4(0)]J u(m) - u(n) ll(L4(0)]J¢jjH 

+ Re K l!u(n)ll(L4(0)]Ju(m) - u(n)ll(L4(0)]J¢jjH 

Similarly, term (II) is first rewritten as two integrals: 

(6.17) 

(6.18) 
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In estimating (II), use is made of the fact that g(R)f(R) has an upper bound of 

f(R 2 ) (recall that for R 2::: R2 the dumbbells have all broken, so that g(R) = 0). 

l(II)j::; ;f(R2) foi(B(m) -B(n)): '7</>jdx 

+; foi(g(R(m))f(R(m))- g(R(n))f(R(n)))B(n): '7<Pldx 

::; KIIB(m) - B(n) 11(£4(0)]9 ll<PIIH 

+ Kllg(R(m))f(R(m)) - g(R(n))f(R(n)) II £
4
(0) IJB(n) II [£

4
(0)]9 [1¢11 H 

(6.20) 

By rewriting term (III) as 

it is clear that 

(III)= lo (B(m) - B(n)): (u<m) · Vx)dx 

+ 1 B(n) : ( ( U(m) - U(n)) · X) dx , 

l(III)I ::; KIIB(m) - B(n) ll(L4(f2)]9 liu(m) ll(L4(f2)] 3 llx11H' 

+K IIB(n) ll(L4(f2)]9 liu(m) - u<n) ll[L4(f2)] 3 llx11H' 

Now rewrite Term (IV) as 

(6.21) 

(6.22) 
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+ 1 g(R(n)) [B(m) - B(n)] . v'u(m) : xdx 

+ 1 g(R(n))B(n). (v'u(m) - v'u(n)) : xdx 

= (IV a)+ (IVb) + (IV c). (6.23) 

Now the finite extensibility of the dumbbells will again be used; this means that R 

is bounded by R 2 ( and certainly by L !). Since R 2 = Tr A = Tr B + 3, the diagonal 

components of B are therefore bounded. Since the equations are frame-invariant 

(this concept is discussed in detail in [7]), the off-diagonal components of B are also 

bounded. (This fact could have been used earlier in any of the estimates involving 

B, but it may be useful to make it clear exactly where the finite extensibility is 

really needed.) Consequently, 

(6.24) 

To estimate (IVb), use the fact that g(R)::; 1 always: 

(6.25) 

Term (IV c) is somewhat more involved, since an integration by parts is necessary: 

(6.26) 
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where for convenience h(R) denotes the derivative of g(R) with respect to R2 rather 

than R. Note that h(R) is bounded except at R = 0 and R = R 2 (where it is 

discontinuous), but since it is defined everywhere except on a set of measure zero, 

it exists as a generalized derivative, and its points of discontinuity can be ignored 

as far as the integrals are concerned. Again, by using the fact that all components 

of B are bounded, it should be clear that 

l(IV c)I ~ KIIBIIH 1 llu(rn) - u(n) ll(L4(0)]3 llxll[L4(0)] 9 

+ KIIBIIH1 II u<=) - u<n)ll[L4(0)]3 llxll[L4(0)] 9 

+ Kilu(rn) - u<n) ll[L4(0)]3 llxllH1 (6.27) 

Term (V) can be handled in a very similar way to term (IV), and the result is the 

same as for (IV). Terms (VI) and (VII) take fewer (analogous) steps to estimate 

than (IV) and (V), because their integrands do not contain the B factors; thus 

(VI), (VII)~ Kllg(R(rn)) - g(R(n))IIL4(n)IJu<=)1JHllxll[L4(0)]9 

+KJJu<=) - u<n) ll[L4(0)]3 llxllH1 

Finally, term (VIII) is rewritten as 

from which the estimate 

(6.28) 

(6.29) 
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(6.30) 

is easily obtained, where again the fact that g(R)f(R) is a bounded function has 

been used. 

All the above estimates of the eight integral terms can be put together to 

obtain: 

I [M (;:::) -M (;:~) '(~)] H,,I 

< K IJu(m)II Jlu(m) - U(n)II 114>11 
- I (L4(0)] 3 (L4(0)] 3 I H 

+ K Jlu(n)Jl(L4(0)]Ju<m) - u(n)ll(L4(0)]3114>IIH 

+ K IIB(m) - B(n)ll[L
4
(0)]9114>IIH 

+ K llg(R(m))f(R(m)) - g(R(n))f(R(n)) IIL
4
(0) IIB(n) II (L4(0)] 9 ll</>IIH 

+ K IIB(m) - B(n)ll(L4(0))911u(m)ll(L4(0))3 llxllH1 

+ K IIB(n)ll(L4(0)]9 llu(m) - u(n)ll(L4(0)]311x11H, 

+ K llg(R(m)) - g(R(n))IIL4(n)llu(m)IIHllxll(L4(0)]9 

+ K IIB(m) - B(n)ll(L4(0)]9 llu(m) IIHllxll(L4(0)] 9 

+ K IIBIIH•llu(m) - u(n)ll(L4(0)]311xllrL4(0)] 9 

+ K IIBIIH1 ilu(m) - u(n) ll(L4(0)]3 llxllrL4(0)] 9 

+ K llu(m) - u(n) ll(L4(0))3 llxllH1 

+ K llg(R(m)) - g(R(n))IIL4(n)llu(m)IIHllxll(L4(0)] 9 

+ K llu(m) - u(n)ll(L4(0)]311xllH· 
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(6.31) 

To simplify this, note first that u(m) and u(n) are bounded in [L4 (0)] 3 and in H, 

and that B(m) and B(n) are bounded in [L4 (0)] 9 and in H'. Then note that 

and 

This allows the inequality to be rewritten as 

Now by choosing 

it is clear that 

I [ M (;~::) - M (;~::) '(!)] H,,I 
:SK [llu(m) - u(n)ll(L

4
(0)] 3 

+ IIB(m) - B(n) 11(£4(0)] 9 

+ llg(R(m))f(R(m)) - g(R(n))f(R(n))t4(0) 

+ ljg(R(m)) - g(R(n))IIL4(0)] 

X II! IIH" 

(<p)= (u(m))- (u(n)) 
X M B(m) M B(n) ' 

(6.32) 

(6.33) 

(6.34) 



I-39 

+ I( jjB(m) - B(n) 11(£4(0)]9 

+ I( llg(R(m))f(R(m)) - g(R(n))f(R(n))IIL
4
(0) 

+ I( jjg(R(m)) - g(R(n))IIL4(0) (6.35) 

At this point, recall the fact ( a proof of which is given by Ladyzhenskaya [6]) that if a 

sequence is weakly convergent in W:f, H, H', or H", then it is strongly convergent 

in [L4 (0)]q, where q = l, 3, 9, 12, whichever is the appropriate dimension of the 

space. In considering the behavior of this expression as n and m ---t oo the fact that 

g(R)f(R) is a bounded and continuous function of R should be noted; this implies 

that if 

(6.36a) 

is a strongly convergent sequence, then 

(6.36b) 

is also strongly convergent. From these remarks and the above inequality, it is clear 

that 

(6.37) 

as m, n ---t oo. This concludes the proof that the operator M is completely contin

uous, and thus completes Step 2. 

At this point, the statement of the problem is: 

Find (;) E H" such that 



I-40 

[M(;), (!) ]H,, + [u,<fo]H + 1:[B,x]H1 

-1 F(x) • rpdx = 0 (6.38) 

holds for all ( ! ) E H", where M is completely continuous as a function of ( i ) . Now 

comes Step 3, the reformulation of the problem as that of guaranteeing existence 

of at least one fixed point of a certain operator. For a reasonable forcing function 

F(x), the Riesz representation theorem can again be applied to assure existence of 

an element F in H' such that 

(6.39) 

Note that 

(6.40) 

Clearly, it is possible to define a new operator M(; ), which is also completely 

continuous, such that 

Thus the problem becomes: 

Find ( : ) E H" such that 

[ M (; ) ' c~) ] H" + [ (; ) ' c~ ) ] H" 

-[ ( ! ) ' c~)] H" = O 

holds for all ( 4>) E H", which can be restated as: 
X 

(6.41) 

(6.42) 
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Find ( i) E H" such that 

(6.43) 

which is equivalent to looking for a fixed point of the completely continuous operator 

(6.44) 

This completes Step 3. By the Leray-Schauder theorem, at least one fixed point 

will exist if it is true that all possible solutions of 

(6.45) 

for .\ E [O, 1] lie in a bounded subset of H". This equation can be rewritten as 

(6.46) 

That all possible solutions are bounded in this space will now be shown (Step 4, 

the derivation of a priori estimates). 

First, take the inner product of (6.46) with 

(6.47) 

The first term of this is 

.\ [M (;), (f(~)I)] H" = ~ 1 {-B: (u · v'(f(R)I)) 

+ g(R) [-B • Vu - v'uT • B + f~) B] : f(R)I }dx 
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= ~ 1 {-(R2 + 3)[f(R)]2
u · v1 R2 

- 2g(R)f(R)B : v'u 
+ g(R)~(R)]2 (R2 + 3) }dx . (6.48) 

By noting that (R2 + 3)[f(R)] 2 'v" R2 = v1 q(R), where q(R) is some function, and by 

then integrating by parts, recalling that u = 0 on the boundary, and that v1 • u = 0, 

it can be shown that 

(6.49) 

The next term in the inner product is 

[(;),(/(~)I)] H" = 1 v'B: v'(f(R)I)dx 

= 1 v1 R2 
• v1 f(R)dx 

= 1[f(R)] 2 v1R2 
• v1R2 dx, (6.50) 

and the last term in the inner product of (6.46) with (6.47) is zero by orthogonality. 

The result is the following equation, which must hold for all possible solutions: 

~ 1 [-2g(R)f(R)B : v'u + g(R)~(R)]
2 

(R2 + 3)] dx 

+ 1[f(R)]2v1R2 
• v1R2 dx = 0 . (6.51) 

Equation (6.51) will be used soon. Now take the inner product of (6.46) with ( ~ ). 

The first term is: 
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,\[M(;),(~)]H,, =A fo{-Re uu:\lu 

+ ;g(R)f(R)B : \lu }dx , (6.52) 

where once again the first term in the integrand integrates to zero on account of 

continuity and the fact that u = 0 on the boundary. The next term is 

(= 1 \lu:Vudx= [u,u]H), 

and the third term is, of course, ..\[F, u]H, all resulting in the equation 

,\ lo ;g(R)f(R)B: Vudx+ [(~), (~)]H,, -..\[F,u]H = 0. 

Substitute (6.51) into this to get 

[( u), (u)] + ,\!~ f g(R)[f(R)]2 (R2 + 3)dx 
0 0 H" 2 D }0 D 

+~; 1 [J(R)] 2 V R2 
• V R2 dx = ..\[F, u]H , 

(6.53) 

(6.54) 

(6.55) 

which, recalling that g(R) = 0 if R > R2, and that the domain O was assumed 

bounded (with some finite volume Vn), gives 

[ ( ~) , ( ~)] H" + ~ ; 1 [J ( R) ]2 V R
2 

. V R
2 
dx 

~ -~; [!(~2
)]

2 

(R~ + 3)Vn + ..\KIIFIIHiiuiiH (6.56) 

By definition, [u, u]H = llulJk and, since J(R) ~ 1, 
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(6.57) 

from which it is clear that llul!H and IIR2 llw1 are bounded. As mentioned above, 
2 

the point wise bound on R 2 = Tr B + 3 implies that all components of B are bounded 

pointwise. To get a bound on B in H' from the bounds on u in H and R 2 in Wz1 
which have just been obtained, take the inner product of (5.lb) with B to get 

which gives 

0 = 1 g(R)B ·vu: Bdx + 1 g(R)vuT. B : Bdx 

-In g(R~(R)B: Bdx +€lo v 2B: Bdx, (6.58) 

(6.59) 

the desired bound. Thus, the Leray-Schauder theorem can be applied (Step 5) to 

assure existence of at least one fixed point. Since it was shown earlier that a fixed 

point corresponds to a weak solution of the original problem, this completes the 

existence proof. It should be possible to extend the methods that Ladyzhenskaya 

[6] uses for the Navier Stokes equations on unbounded domains to this problem. 
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CHAPTER II 

Criteria for General Stability 
of Bounded Flows 

of a Non-Newtonian Fluid 
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Serrin [1] has given stability criteria for general solutions to the Navier-Stokes 

equations. He was able to obtain these because the presence of the viscosity term 

makes it possible to place an upper negative bound on the rate of growth of the 

energy integral for sufficiently low Reynolds number. While many flows of interest 

are at a higher Reynolds number than his results apply to, it is nevertheless useful 

to know that a large class of flows are stable if they are sufficiently slow. One of 

the implications of this result is that it implies the existence of a critical Reynolds 

number associated with the onset of instability for a quite general class of flows. 

Given the interest in non-Newtonian flows and their stability, it would clearly be 

useful to know if a similar stability result can be obtained for low enough Reynolds 

number and (possibly) some range of Deborah number. It will be shown here that 

criteria similar to Serrin's criteria for universal stability can be derived for a FENE 

dumbbell model used by Chilcott and Rallison [2] to describe non-Newtonian fluids. 

The equations for this model are 

(au ) c Re ot + U · 'vU = -'v P + 'v2 U + D v' · [f(R)A], (1) 

'v · u = 0, (2) 

8A T f(R) 2 ot + U · 'v A= A· 'vU + ('vU) · A - ---ys-(A - I)+ c'v A, (3) 

where the spring force f(R) is given by 

1 
f ( R) = 1 - R2 I £2 ' (4) 
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with 

R 2 = Tr A, (5) 

so that the force becomes infinite at the "maximum extension" L. The use of a 

finitely extendible dumbbell model will be shown to be critical to the derivation of 

these criteria, as without the bound on the moment of the end-to-end displacement 

vector, certain integrals cannot be bounded. 

The assumption will thus be made that the presence of the nonlinear spring 

term, which tends to contract the dumbbells more and more strongly as they ap

proach their maximum elongation, will keep the dumbbell "lengths" R < L. This 

assumption should in no way restrict the physical meaning of the results here. For 

indeed, if it was possible to achieve a solution to the equations that violated this 

inequality, starting with initial conditions that did not, it would mean that the 

equations allowed completely meaningless behavior (from a physical standpoint). 

If R exceeds L, the spring force changes sign, corresponding to a force tending to 

push the two ends of the dumbbells apart! 

Since the goal here is to present a mathematical proof of stability, it is desirable 

to justify this assumption from a mathematical standpoint also, especially since 

the constitutive equation does not correspond exactly to the original model of a 

dumbbell in a flow with certain stochastic forces acting on it. The assumption 

of preaveraging is made in deriving the constitutive equation, so that while it is 

clear that an actual dumbbell cannot overcome an infinite spring force with the 

result that its beads fly apart, it is not entirely clear that all possible solutions of 

the equations of motion will satisfy R < L. Therefore, some comments will now 

be made to provide some (mathematical) justification for the assumption that the 

average length of the end-to-end vector R in the FENE dumbbell model (1) cannot 
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exceed L, the value of Rat which the spring force becomes infinite. 

It is convenient to speak in terms of generalized function solutions. If R exceeds 

L anywhere in the flow domain, there will be some streamline or streamsurface on 

one side of which f(R) > 0 and on the other side of which f(R) < 0, and on which 

f(R) = oo. Thus, around this surface, f(R) will behave like the function 8'(x-x 5 ), 

where 8 is the Dirac delta function, and X 5 is any point on the surface. This implies 

that the term 

~ v' · [J(R)A] 

in the momentum Equation (1) will behave like 8"(x - X 8 ). The only term that 

could possibly balance this is v'2 u, and this would mean that the velocity u itself 

would behave like 8(x - X 8 ). However, this would leave the term u • v'u as an even 

stronger singularity ( actually not definable in terms of generalized functions) that 

could not be balanced by anything. From this argument it appears that the model 

equations do not admit solutions with R < L in part of the domain (there will 

always be such a region if physical boundary or initial conditions are imposed), and 

R > L in the rest of the domain. 

Following Serrin, consider an undisturbed flow with velocity v, pressure q, and 

moment tensor B (with trace S2
), occupying a region of space V, with a prescribed 

velocity on its boundary S. The flow perturbation will be denoted by u , p, A, R2 

for the velocity, pressure, moment tensor, and its trace, respectively. The equations 

for the total flow are 

8u 8v 
Re8t + Re8t + Re(u + v) • v'(u + v) 
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8A 8B 
8t Di + ( u + v) · v' ( A + B) 

=(A+ B) · v'(u + v) + (v'[(uf + (vf] •(A+ B) - f(R
2

; S
2

) (A+ B - I); (7) 

(8) 

8B T f(S 2
) ot + u · v'B = B · v'u + (v'u) · B - ---:v-(B - I) . (9) 

Subtracting Equation (8) from (6) gives 

8u 
Reat + Reu · v'u + Reu • Vv +Rev• v'u 

1 1 
=-v'(p)+v'2 u+ nv'•[f(R2 +S2 )(A+B)]- nv'·(f(S2 )B) (10) 

In a slight deviation from the usual approach to stability analyses, where Equation 

(9) would be subtracted from (7), and the resulting difference used, here only equa

tion (7) will be used. In fact, only the trace of (7), given by the following equation, 

will be used. 

f(R2 + s2) 
2A: Vu+ 2B: Vu+ 2A: v'v + 2B: v'v - D (R2 + S 2 

- 3) (11) 

If the inner product of u with Equation (10) is taken, and the result is integrated 

over the entire flow domain, the following is obtained: 
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Re !!_ f u · udV 
2 at Jv 

+Re iv u ·(Vu)· udV + Re 1 u · (Vv) • udV Re 1 v •(Vu)• udV 

= - iv u · V(p)dV + iv u · V
2
udV 

+~ f u · (V · [/(R2 + S 2 )(A + B)])dV - ~ f u • V • (f(S 2 )B)dV (12) 
D}v D}v 

Regardless of what boundary condition the fl.ow must satisfy at the boundary S, 

the disturbance flow must satisfy u = 0 on the boundary. This, and the fact that 

V • u ( continuity) can be used when some of the terms in (12) are integrated by 

parts to give 

Re !!_ f u . udV + Re f u · ( V v) · udV 
2 &tJv Jv 

= - 1 Vu : V udV 

-~ iv f(R 2 + S 2 )(A + B): (Vu)dV +~iv u · V[f(S2 )B]dV (13) 

Now multi ply ( 11) by 

(14) 

and integrate over the entire fluid domain, to get 

= -1
- f f(R 2 + S 2 )2A: VudV + J_ f f(R2 + S 2 )2B: VudV 

2D}v 2D}v 
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+ 2~ iv f(R2 + S 2 )2A : VvdV + 2~ iv f(R2 + S 2 )2B : VvdV 

-~ f f(R2 + s2) f(R2 + s2) (R2 + 52 - 3) . (15) 
2D Jv D 

If the second integral on the left side of (15) is integrated by parts, the result can 

be seen to be zero by first noting that 

(16) 

where 

(17) 

and then using continuity again. This leaves 

_l_ f og(R2 + s2) dV 
2D lv ot 

= 2~ iv f(R2 + S 2 )2A : VudV + 2~ iv f(R2 + S 2 )2B : VudV 

+ 2~ iv f(R2 + S 2 )2A: VvdV + 2~ iv f(R2 + S 2 )2B : VvdV 

-~ f f(R2 + S2)f(R2 + s2) (R2 + 52 - 3) . (18) 
2D Jv D 

Now, Equation (18) and Equation (13) are added together to give 

Re a J 1 a J 2 2 - - u · udV + - - g( R + S )dV 
2 ot v 2D ot v 

= -Re iv u · (Vv) · udV - iv Vu : VudV 

+]_ f u. V[f(S 2 )B]dV 
D Jv 
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+~Iv f(R2 + S2
)A: v'vdV +~Iv f(R 2 + S 2

)B : v'vdV 

~ { f(Rz + S2)f(R2 + sz) (Rz + sz - 3) . 
2D lv D 

(19) 

The various terms in (19) will now be considered. First, as shown by Serrin [1], 

if-mis a lower bound for the eigenvalues of the matrix '\lv (the velocity gradient 

of the undisturbed flow), then 

u · (v'v) · u 2:: -mu2
• (20) 

This allows the term 

-iv v'u: v'udV (21) 

to be bounded above by 

(22) 

The term 

Iv v'u: v'udV (23) 

can be bounded below by a Poincare inequality if it is assumed that the domain V 

is bounded; as shown by Serrin, 

(24) 

where 
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3+v113 2 
a= 7r ' 2 

and d is the maximum distance between any two points in the flow domain. 

The next term to be bounded is 

(25) 

:::; /(3 + q)L2 (9j\7vlma:z:) L2 (9lv'vlmaaz:) r lf(R2 + 5 2)ldV ' (26) 
lv2 

where lv'vlmaai: is an upper bound on the components of the base-flow velocity 

gradient over the entire domain. Similarly, 

f f(R2 + 5 2 )B : \7vdV :s; / f(R2 + S2 )B : v'vdV + f f(R2 + 5 2 )B : \7vdV 
lv lv1 lv2 

:::; /(3 + q)L2 (9jv'vlmaaz:) + L2 (9jv'vlmaai:) r lf(R2 + 5 2)ldV . (27) 
lv2 

Here, the assumption that the components of A and B are bounded by L 2 has been 

used. 

Next, let q be an arbitrary number greater than 0, and divide the flow into two 

regions: V1 , where R 2 + S2 :s; 3 + q, and V2, where R 2 + 5 2 > 3 + q. Then note that 

J_ f f(R2 + 52)f(R2 + 52\Rz + 52 - 3) 
2D Jv D 

~ ~ f [t(R2 + S2
)] 

2 

dV - Dl 
2 

f (3 + q)f(3 + q)dV. (28) 
2D h2 2 J½ 

Finally, observe that 
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With all the above estimates, Equation (19) gives 

+ ~ /v' • [f(S2 )B]lma:i: iv /u/dV 

+2L2 (9/v'vlma:i:) r lf(R2 + S 2 )/dV 
lv2 

Now the Schwarz inequality will be used: 

(30) 

(31) 

for any function p, where V is now also used to denote the volume of the domain 

V. Let p = /ul = u; the result is 

(32) 

which, when substituted into (30) gives 

Re a J 1 a J 2 2 -- u•udV+-- g(R +S )dV 
2 at v 2n at v 

::::; Read-2 fv u 2 dV - ad-2 fv u 2 dV 
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1 

+~Iv· [f(S2 )B]lmaxv(fv u2 dV) 
2 

1 

+2L2 (9l'i7vlmo,)V [Iv, [f(R2 + S2
)]

2 dV] > 

-
2

~ 2 / [f(R2 + S 2
)] 

2 

dV + 
2

~ 2 / (3 + q)f(3 + q)dV (33) 
lv2 lv1 

The left-hand side of this equation is the time derivative of an "energy" for the 

system. This "energy" will be denoted by E = E 1 + E 2 , where 

Rej E1 = - u-udV; 
2 V 

(34) 

l ( 2 2 
E2 = 2D lvg(R +s )dV. (35) 

Then (33) can be written as 

1 

+2L2 (9l'i7vlmo,) [L [J(R2 + S2
)]

2 dV] > 

-~ ( [f(R2 + S2)r dV 
2D lv2 

1 
+ 

2
D 2 (3 + q)f(3 + q)V + 2f(3 + q)L2 (91Vvlmax)• (36) 

From this equation it should be clear that if the Reynolds and Deborah numbers 

satisfy 

2a 2a 2 2 
d2 - Re d2 + Re D Iv· [J(S )B]lmax V < 0, (37) 
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the flow will remain bounded, even though it cannot be proved from this that it 

actually goes to zero. This is because with this condition the terms on the right

hand side of (36) that dominate at large values of E1 and E2 are negative. Growth of 

the disturbance can therefore not continue unbounded. For small enough Reynolds 

number and large enough Deborah number, this condition can be satisfied for any 

bounded base flow in a bounded domain. 
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CHAPTER III 

Brownian Motion 
of a Slightly Deformable Drop 
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The Brownian motion of a drop in another fluid is of interest in such appli

cations as emulsions or liquid-liquid extraction. There is reason to believe that its 

motion when subjected to small random forces that are due to fluctuations in the 

surrounding fluid may be somewhat different from a solid particle. A solid particle 

in an infinite fluid will undergo translational and rotational diffusion because of 

its Brownian motion. The particle, being solid, has a finite number of degrees of 

freedom ( three for translational, and from zero to two for orientation depending on 

its degree of rotational symmetry). In the case of a sphere, this diffusivity is given 

by the Stokes-Einstein result. For a particle of arbitrary shape, there will be both 

translational and rotational diffusivities. Essentially, the diffusivity will still be the 

amount of thermal energy associated with a degree of freedom divided by the mo

bility of the particle associated with that degree of freedom. However, translation 

and rotation become coupled for a particle of arbitrary shape. 

The case of a deformable drop is yet more complicated because there are an 

infinite number of degrees of freedom. "Rotation" does not have a well-defined 

meaning in this case. While it is possible to define an "angular velocity" of a drop by 

integrating the vorticity over its volume, this will not be done here, since it does not 

relate directly to the motion of the surface. Instead, the motion of the surface will 

be divided into center-of-mass translation and deformations of the surface that leave 

the center of mass fixed. While for a rigid particle the Stokes-Einstein diffusivity 

can be derived using the simple equilibrium argument first presented by Einstein [1], 

it is not clear whether this method can be generalized to the case of a deformable 

body. 

To investigate how the differences between drops and rigid particles affect Brow

nian motion, a single drop in an infinite fluid will be considered here. Its diffusivity 
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and velocity-autocorrelation function will be calculated, as well as the correlation 

functions associated with its deformation, in terms of the density, viscosity and 

surface tension. Gravity will be neglected here even though the drop density will 

not necessarily be assumed to be the same as the surrounding fluid density. As 

in other physical problems ( such as suspensions) where the geometrical configu

ration changes with time, a distinction must be made between "short-time" and 

"long-time" diffusivities. In this analysis, the diffusivity to be calculated will be 

short-time in the sense that the drop will be assumed not to have moved far from 

its initial position over the averaging time interval, but long-time insofar as the 

diffusivity will not be a function of the drop configuration, but rather will be the 

result of an average over all possible configurations of the drop weighted in some 

appropriate way according to their probabilities. 

A key step in the understanding of Brownian motion is the determination of 

a fluctuation-dissipation theorem, which relates the fluctuation variables to macro

scopic properties. The fluctuation-dissipation theorem for the drop will show how 

the random thermal energy of the fluid molecules gets partitioned between transla

tion of the center of mass of the drop and deformation that is centrally symmetric. 

Its derivation is a two-step process: first, correlations of the fluctuating variables at 

equilibrium must be determined using thermodynamics; then, the time-dependent 

hydrodynamic problem must be solved to obtain correlations of the fluctuating vari

ables at different times, up to a constant that must be determined by comparison 

with the equilibrium results. 

EQUILIBRIUM RESULTS FROM THERMODYNAMICS 

As stated above, the first step in deriving the fluctuation-dissipation theorem 

is to determine how the energy is partitioned among the various spherical harmonic 
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modes at equilibrium. In choosing the fluctuating variables, it is convenient to 

decompose the deformation into spherical harmonic modes. The drop shape will be 

described in spherical coordinates ( r, 0, cf>) by 

r =a+ 17( 0, </>, t) , (1.1) 

where 

00 00 n 

(1.2) 
n=Om=-n 

It will be assumed here that 1J is small relative to the drop radius; in other words, 

when nondimensionalized with respect to a, 17 will be of order e, with e < < 1. Since 

77 includes not only deformations of the drop shape relative to a sphere, but also 

center-of-mass translations, it is important to justify the assumption that enough 

Brownian events occur before the drop has moved even a small fraction of its radius 

to allow meaningful statistical analysis. Einstein [1] estimates that a 0.001 mm rigid 

Brownian particle in water will move 0.8 microns in a second. Chandrasekhar [2] 

states that a Brownian particle will experience about 1021 collisions in a second. 

Clearly, the drop will not have to move far before such quantities as a diffusivity 

will be well-defined. 

Since the objective here is to study Brownian motion of a drop (with no 

mass transfer) at constant temperature, a canonical ensemble is the natural choice 

from the statistical mechanical viewpoint. (The canonical ensemble consists •of a 

large number of systems, each with a fixed volume, temperature, and number of 

molecules.) According to standard statistical thermodynamic theory, the choice of 

ensemble determines which form of energy ( e.g., internal, Gibbs, Helmholtz) ap-
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pears in the probability distribution for the states of the system. As shown in Hill 

[3] for a canonical ensemble at equilibrium, the probability of a certain interface 

configuration is related exponentially to the energy associated with it: 

E(71) 
P[77] ex exp[- KT ] , (1.3) 

where ,-;, is Boltzmann's constant, and Tis the absolute temperature, and the ref

erence state with respect to which the energy will be measured will be taken as the 

spherical (undeformed) state. The energy can be considered to be a function( al) of 

the a~, since the set of values of these coefficients completely describes 77: 

E[77(0,q,)] = E[{a~}]. (1.4) 

The energy associated with a certain state (i.e., a certain shape and center-of

mass velocity) of the drop consists of two parts: potential energy associated with 

surface tension, and kinetic energy if the center of mass of the drop has a nonzero 

velocity. As mentioned earlier, gravitational potential energy will be ignored. More

over, it will be assumed that the kinetic energy associated with deformation rates 

is negligible; this is consistent with the assumption to be made later for the time-· 

dependent hydrodynamic problem that the Reynolds number of the flow is very 

small. By thermodynamics, the potential energy associated with a certain deforma

tion is equal in magnitude to the work done against surface tension in isothermally 

and reversibly deforming the drop from the undeformed state (which is chosen as 

the reference state) to that particular deformed state . (When the drop is deformed 

reversibly, work is done only against surface tension; there is no viscous dissipation, 

because the process occurs "infinitely" slowly.) By the definition of surface tension, 

the work done in isothermally increasing the drop surface area by SA is just 
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W =,8A, (1.5) 

where I is the surface tension. So it is necessary to calculate 8A for a given defor

mation 77. For convenience, define a function II by 

II(r,0,<p)=r-a-17(0,<p), (1.6) 

where a is the radius of the drop in its spherical state. Then the deformed drop 

surface is the solution to II = 0, and the unit normal to the surface is given by 

so that 

v'II 
n(r,0,¢) = lv'III' 

e - 1 e !t.!l - e - 1 -!t.!l r r 0 80 rf> rsin0 8¢ n(r,0,¢) = -----------1. 
[1 + _l_ (!t.!l) 2 + 1 (!t.!l) 2] 2 

r 2 80 r 2 sin2 0 8,f> 

(1.7) 

(1.8) 

Now consider a point ( a + 17( 0, <p), 0, <p) on the surface, and the element of area 

dA within d0 and d<p of this point. If the surface element were on a sphere of radius 

a+ 17, the area element would be 

dA' = ( a + 17 )2 sin0d0d¢. (1.9) 

However, since the surface element is in general tilted (i.e., n =J. er), this is just the 

projected area; the actual area is 

dA' dA' 
dA=--=--, 

COSOt. Il · er 
(1.10) 

where a is the angle between the surface normal and er. Thus, 
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2 . [ 1 (877 2 1 877)2]½ 
dA =(a+ 17) sin0d0d</> 1 + r2 80) + r2sin20 (8</> ' (1.11) 

with r = a+ 17. The deformation will be assumed to be small, say of 0( E), (large 

amplitude or rapidly varying deformations are very improbable since the probability 

goes exponentially like the energy). Therefore, this expression will be approximated 

for small 77 by the terms up to 0( E2 ) ( the reason for carrying the approximation to 

this order will become clear below): 

[ 
2 2 1 ( 877 ) 2 1 ( 877 2] . dA = a + 2a17 + 17 + 2 80 + 

2
sin2 0 8

</>) sin0d0d<f>. (1.12) 

The change in area ~A is, of course, the integral of this over the ranges of ef> and 0, 

minus the area of the undeformed spherical drop, 41ra2 • However, the fluid inside 

the drop is assumed to be incompressible, leading to the condition 

4 3 
V = -1ra 

3 ' 

where V is the drop volume, which is also given by 

r1r r21r r+TJ 
V = lo lo lo r

2 
sin0drdef>d0 , 

which, if the r-integral is done, results in 

This expression can also be approximated for small 77 as 

4 111:1211: V = -1ra3 + a2 17sin0d0def>, 
3 0 0 

(1.13) 

(1.14) 

(1.15) 

(1.16) 
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from which the incompressibility condition 

r'/r r21r 
lo lo TJSin0d0d<f> = 0 (1.17) 

is obtained. This simplifies the expression for the area change to 

f1r {21r [ 2 1 (0Tf)2 1 OTJ 2] . 
~A= lo lo T/ + 2 80 + 2sin20(oq>) SinOdOd<f>. (1.18) 

To evaluate the change in surface area, the expression for T/ in terms of spherical 

harmonics is substituted into this formula for the area change: 

1 dPlml(cos0) dPt 1(cos0) 
+ 2 d0 d0 

- ":'k Plml(cos0)P!kl(cos0)] • ei(m+k)<l>sin0d0d<p. (1.19) 
2sin2 0 3 

The integration with respect to cp can be easily done since 

12
1r ei(m+k)<l>dcp = 2tr5m,-k 

(where 5 is, of course, the Kronecker delta), so that 

~A =211" 11r f t f ar;:a;m [rlml(cos0)P)ml(cos0) 
O n=O m=-n j=O 

1 dPlml( cos0) dP)ml( cos0) 
+ 2 d0 d0 

2 

+ 
28

: 20 Plm1(cos0)Pjml(cos0)] sin0 d0. 

(1.20) 

(1.21) 
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In evaluating the portion of this integral associated with the derivatives of the 

associated Legendre polynomials, it is helpful to make the change of variables x = 

cos0 and then integrate by parts (form 2:: 0): 

_ /71' dP;:i( cos0) dPT ( cos0) . 
I = Jo d0 d0 sin0 d0 

= _n ___ j_ (1 - x 2 ) dx 1
1 dPm dPm 

_ 1 dx dx 

[ 
dPr:n] 1 = P;:i (l - x 2

) -
3 

dx -1 
(1.22) 

Since the P:" are associated Legendre polynomials, and satisfy the differential equa

tion 

(1.23) 

the remaining integral in (1.22) can be expressed in the form 

I= f 1 p;:i [i(j + l) - m2 2] PT dx. 
-1 1- X 

(1.24) 

Now by changing variables from x back to cos0 and substituting the result into the 

expression for .6.A, 

.6.A = 21r sin0 d0 

+ (1.25) 

is obtained. Finally, using the orthogonality property of the associated Legendre 

polynomials 
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2 (n+m)!
8 

. 
2n + 1 ( n - m) ! nn 

(1.27) 

the expression (1.25) can be expressed in the form 

271" ~ ~ ama-m [i + _n(~n_+_l_)] 2 (n + !ml)! 
Lt Lt n n 2 2n+l(n-lml)!. 
n=Om=-n 

(1.28) 

Since r, must be real, it follows that 

(1.29) 

(with the overbar denoting complex conjugation), and consequently, 

(1.30) 

To get the constraint on the a: imposed by imcompressibility, the decomposition 

for r, in spherical harmonics is substituted into the incompressibility condition: 

/7r r27r oo n r7r r27r 
lo lo r,sin0d0d</> = L L a: lo lo p~ml ( cos0)sin0eim</> d0d</> , 

0 0 n=Om=-n O 0 

(1.31) 

which implies that ag = 0. Henceforth, the n = 0 harmonic will not even be 

included in the complete decompositions, since this dilitational mode is disallowed 

by incompressibility. This completes the calculation of the component of the energy 

associated with surface tension. 

Now the other component of the energy, the kinetic part, will also be expressed 

in terms of the a:. It will be assumed here that the kinetic energy is due entirely 
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to the purely translational motion of the drop. This is actually only a good ap

proximation for a high-density, high-viscosity drop. Otherwise, the kinetic energy 

associated with the motion of the surrounding fluid and the circulation inside the 

drop must be included. If a more generally valid solution is desired, so that these 

other components of the kinetic energy must be included, it is useful to note that 

whereas in principle this kinetic energy could be obtained by integrating ½ pu2 over 

the fluid volume, it is much easier to deduce it by looking at the unsteady force on 

the drop needed to "accelerate" any of its modes an,m( t) from the stationary state 

to a quasi-steady motion. In this unsteady force, there will be a term analogous to 

the "added mass" term in the unsteady force on a rigid particle, which will represent 

the force needed to overcome the fluid inertia, rather than the viscous dissipation. 

From this force term, it should be possible to deduce the kinetic energy of the fluid 

associated with quasi-steady motion of a mode, just as it can be deduced from the 

added mass term in the unsteady drag on a rigid particle that the kinetic energy of 

the fluid in which a particle is translating with steady velocity U is just ½mAU2 , 

where mA is the added mass. Since this requires knowledge of the time-dependent 

response of the system, it will not be considered in this section. 

Since the translational kinetic energy is ½mn U • U, where mn is the mass of 

the drop, and U is the velocity of the center of mass of the drop, first the center of 

mass X must be expressed in terms of the a~. By definition, the center of mass X 

lS 

X = - 3
- / xdV, 

47ra3 Jn (1.32) 

where the integral is over the drop volume. This can be rewritten (using spherical 

coordinates) as 
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3 1,r 12,r 1a+71(8,4') 
X = --

3 
r[cos0ez + sin0cosef>ez + sin0sin</>ey] 

4-ira 0=0 </i=0 r=0 

x r 2 sin0 dr d0 def>. (1.33) 

Since the deformations are assumed to be very small, and only the 0( E) approx

imation is sought here, this expression can be linearized in T/ ( after the trivial 

r-integration is done) to give 

3 11r 1z1r a4 X = --
3 

[- + a3 ry] [cos0ez + sin0cos<f>ez + sin0sinef>ez] 
4-ira 0=0 </i=0 4 

x sin0d0d<f>. (1.34) 

4 

Clearly, the ~ term integrates to zero, since if the sphere were undeformed its 

center of mass would be at the origin. Thus, 

X = 2_ f1r f
2

1r 17( 0, </>) [cos0ez + sin0cosef>ez + sin0sinef>ez] sin0d0def>. (1.35) 
4-ir J 0=0 J </i=0 

Since orthogonality relations are known for the spherical harmonics P;:1'( cos 0)eim</i, 

it is convenient to express cos 0, sin 0 cos</>, and sin 0 sin</> in terms of surface spher

ical harmonics: 

(1.36) 

(1.37) 
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(1.38) 

so that the integral (1.35) can be rewritten as 

x sin 0d0d<f>. (1.39) 

Doing the </>-integration (using (1.20)) gives 

311r X--
41r 0=0 

00 

L 21r [ a~P~( cos B)Pi°( cos 0)ez 
n=O 

1 - 2( a;;:- 1 + a~)P~ ( cos0)Pl ( cos0)e:e 

- ~( a;;:- 1 
- a~)P~ ( cos0)Pi1( cos0)ey] • sin0d0, 

2i 
(1.40) 

and then doing the 0-integration (using (1.27)) gives 

(1.41) 

It is convenient now to write the number a:, which in general is complex, as 

(1.42) 

where b: and c: are real, so that 

(1.43) 
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where both b":: and c":: are real numbers. Then (1.41) simplifies to 

(1.44) 

Thus, the velocity of the center of mass of the drop is 

(1.45) 

and the kinetic energy of the drop motion is 

E 1 [(db~)
2 

(dbi)
2 (dci)2] 

kin = 2mD dt + 4 dt + 4 dt . (1.46) 

At this point the probability distribution for interface deformations ( described 

by {a"::(t)}) can be written (using (1.28)) as 

{ 
1 [m db0 2 db1 2 dc1 2 

P[{a"::}]=Nexp -,_,T -f[(dt1) +4(dt1) +4(d/)] 

+ 21r7 f;.J; .. d;:'[(b;:')2 + (c;:')']]} , (1.48) 

where 

dm=[l+n(n+l)] 2 (n+lml)! 
n 2 2n + 1 (n - lml)! 

(1.49) 

and N is a normalization constant, chosen so that if Pis integrated over all possible 

values of {a"::}, the result is 1. Note that the independent variables 

n = 0,1,2, ... ; m = -n, ... ,o, ... ,n 

db0 db1 dc1 
1 1 1 

dt ' dt ' dt ' 

(1.50) 

(1.51) 
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can be thought of as coordinates in phase space, with (1.50) being the position 

coordinates ( configuration space) and (1.51) being equivalent to coordinates in mo

memtum space. It can be seen from Equation (1.48) for the probability distribution 

function that it can be factored into functions each of which depends on only one of 

the b~ or c~ or their time derivatives. In fact, the probability distribution is just 

the composite of independent Gaussian distributions; i.e., the spherical harmonic 

modes ( and their time derivatives) of different order and degree are independent. 

Hence, if particular values of m and n are chosen, the probability distribution 

for b~ alone is 

P(bm) _ N [ 271"1'dm (bm\27 
n - n,m exp - K.T n n J J , (1.52) 

where N n,m is now a normalization constant for this distribution only. (This nor

malization constant is chosen so that this probability integrated over all possible 

values of b~ (i.e., all real numbers), gives 1.) The same equation holds for c: by just 

replacing b~ with c~ in (1.52), from which it follows that b~ and c~ will have the 

same autocorrelations. In the following section, a fluctuation-dissipation theorem 

for the drop will be derived; for this, the equilibrium autocorrelations of the b~ and 

c~ will be needed. They are computed by noting that the probability distribution 

has the general form 

P(x) = Nexp[-qx 2
], (1.53) 

where q is some constant, N is the normalization constant, and x stands for one of 

the b: or c~. Thus, the expectation of x 2 is simply 
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1 
2q 

This shows that the expectations of b~b~ and c~c~ are given by 

(1.54) 

(1.55) 

with d~ as given above. This relation holds for all m, n except m = 0, n = 0, since 

incompressibility necessitates bg = cg = 0. Note that this shows the qualitatively 

correct dependence on T, ;, and n, m: as the temperature goes up, the mean-square 

fluctuations should increase; as the surface tension goes up, the fluctuations should 

decrease, and they should also decrease as m and n increase, since larger n and/ or 

m correspond(s) to smaller wavelength, i.e., higher energy, deformations. For zero 

surface tension, the fluctuations become infinite, as expected, since the drop loses 

its integrity in this limit. 

The equilibrium autocorrelations for the center-of-mass velocity components 

will also be needed, and these are calculated similarly: 

(1.56) 

(1.57) 

and similarly for b~ and c}: 

(1.58) 
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This is, of course, just the familiar form of equipartition that holds for the velocity 

of a rigid particle, too. 

THE TIME-DEPENDENT PROBLEM 

The fluctuation-dissipation theorem gives the autocorrelations of the param

eters specifying the interface configuration (b: and c:) at different times. The 

equilibrium results calculated in the previous section are needed to get the abso

lute magnitudes of the correlations, but to obtain the time-dependent part, it is 

necessary to solve the time-dependent hydrodynamic problem. This consists of de

termining the fl.ow field due to a (stochastic) forcing that is assumed to model the 

Brownian fluctuations. The Brownian (thermal) energy, which is of the magnitude 

of ""T for each degree of freedom, will be assumed to cause only small fluctuations 

in the drop shape. With the assumption that the interface deformations due to fluc

tuations are small in amplitude, it is possible to expand the boundary conditions 

about the spherical state, and still work in spherical coordinates (i.e., a domain per

turbation). It will also be assumed that the Reynolds number for the fluctuating 

velocity field is small, so that the equations for fluid motion inside and outside the 

drop are the unsteady Stokes equations. Thus, for the interior flow 

(2.1) 

(2.2) 

where Pi is the pressure, ui is the fluid velocity, and p1 ,µ1 are, respectively, the 

density and the viscosity of the fluid inside the drop; similarly, for the exterior flow, 
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(2.3) 

"v • u 0 = 0. (2.4) 

(The subscripts "i" and "o" refer to inside and outside, respectively.) For a time

independent flow with boundary conditions to be applied at a sphere, Lamb's [4] 

general solution, involving spherical harmonics, is a natural choice. Lamb discusses 

briefly the general solution for the time-dependent case, and Yang [5] has expressed 

this solution explicitly in vector notation. If the velocities ( and pressures) are 

Fourier-transformed according to 

u(w) = - u(t) eiwtdt , 1 ;_= . 
271" -oo 

(2.5) 

(2.6) 

(the same formulas hold for the pressure by replacing u with p), then Yang's form 

for the general solution in spherical coordinates (r, 0, rJ>) is: 

2 2 . 
+[(n + 1)1Pn-1(h1r) - n1J,n+1(h1r)h1 r ]v'cp~ 

+ n(2n + l ),Pn+1 (h, r )hi\O~r] , (2.7a) 

00 

l =LP~' (2.7b) 
n=l 
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for the inside flow, and 

+[(n + l}fn-1(h2r) - n?Pn+1(h2r)h~r2]v'<p~ 

+ n(2n + l}<Pn+1(h,r)hl\o:r] , 

00 

P
0 = I: P~(n+l) , 

n=l 

for the outside flow, where 

i i i O 0 
Pn, 'Pn, Xn, 'Pn, Xn 

(2.8a) 

(2.8b) 

are general spherical harmonics of order n ( the specific choice is determined from 

the boundary conditions), and the 

are spherical harmonics of order -(n + 1). The functions 'IPn and fn are defined by 

(2.9) 

(2.10) 

where 
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are Hankel functions of the second kind of order n + ½, and 

are Bessel functions of the first kind of order n + ½. The symbols h 1 and h2 are an 

abbreviated notation for 

(2.11) 

(2.12) 

with the positive branch of the square root function being taken. 

While Yang (5) presented this solution in dimensional form, it will be found 

convenient later to work with dimensionless variables here. To avoid introducing 

any additional complications in the notation, the same symbols will be used below 

for the nondimensional velocity, pressure, and spherical harmonics as were used 

in Yang's solution above. Since henceforth everything will be dimensionless, there 

should be no confusion. The characteristic velocity used to make u dimensionless is 

kT / µ 2a2 ; the characteristic pressure is kT / a3
; the interface deformation 77 and the 

position variables are nondimensionalized by a; the characteristic time is µ2a3 /kT; 

the spherical harmonics 'Pn are nondimensionalized by kT / µ2a, and the spherical 

harmonics Xn by kT / µ2a2. The outside (i.e., subscript 2) fluid parameters are used 

in the nondimensionalization, so that later on, when limits of the inside viscosity 

going to zero and to infinity are taken (to compare with the cases of a bubble 

and a rigid particle), none of the dimensionless variables will become infinite just 
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because of the way they were nondimensionalized. ·with this, the general solution 

in dimensionless form becomes 

00 

i= LP~' 
n=l 

for the inside flow, and 

U" = t [i~ v'p".(n+l) - f,(Vifir)v' X (rx~) 

+ [( n + l )f n-1 ( v1inr) - nf n+1 ( v1inr )( iD)r2 ]\l 'P~ 

+ n(2n + I)fn+1(Vifir)(i!l)<p~r] , 

00 

'P
0 

= L 'P~(n+l) ' 
n=l 

for the outside flow. Here, the dimensionless parameters that appear are 

Pl 
a=-, 

P2 

.X - µ1 
- ' µ2 

/3 _ kTp2 
- µ~a' 

(2.13a) 

(2.13b) 

(2.14a) 

(2.14b) 

(2.15a) 

(2.15b) 

(2.15c) 
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(2.15d) 

and the dimensionless variable 

(2.16) 

To determine the particular choice of the spherical harmonics Pn,1Pn, Xn ap

pearing in the general solution (2.13),(2.14), boundary conditions must be invoked. 

The boundary conditions to be applied at the interface ( r = l + ry( 0, </>, t)) for this 

time-dependent problem are continuity of tangential velocity, 

(2.17a) 

where t denotes either of two independent unit vectors tangent to the surface; the 

kinematic condition 

8ry 
8t ' 

(2.17b) 

where n is the outward normal to the interface; continuity of tangential stress, 

t. n. O'i = t. n. o-0
; (2.17c) 

and finally, continuity of normal stress, 

(2.17d) 

The function y( 0, </>, t) which appears in (2.17d) represents the random normal stress 

on the interface caused by collisions of fluid molecules with it (nondimensionalized 

by kT/a3
). It is convenient to decompose y also in spherical harmonics, 
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00 00 n 

y(0, <p, i) = L Yn(t) = L L y:(t)PJml(cos0)eimcp. (2.18) 
n=O n=Om=-n 

Such a decomposition is always possible for a continuous function of 0 and </J; 

it is being assumed here that an individual realization of the stochastic function 

y is the average, on some length-scale intermediate between the drop size and the 

mean free path of the fluid molecules, of the force per area caused by fluid molecules 

im.pinging on the surface, so that this assumption of continuity of y is reasonable. 

Since the flow is driven only by this random normal stress, the velocity and in

terface deformation, and also the pressure ( apart from the term that is independent 

of 0 and ef>) are of the same order as y, namely, O(E). (The 0- and ¢>-independent 

part of the pressure would be present even if there were no flow and the drop were 

perfectly spherical; it balances the surface tension term for the constant curvature 

of a sphere.) Hence, if the boundary conditions ( which are actually to be evaluated 

at r = l + Tl) are expanded about r = l, the corrections ( due to the displacement 

of the interface by 77) are of 0( E2 ) and are thus negligible for the 0( E) problem 

being solved here. In other words, the boundary conditions can simply be applied 

at r = l with no changes, the only exception being the surface tension term r'v • n. 

For this term, it is necessary to determine 'v • n to first order in Tl· The result is 

1 [ cos0 817 a2
,,, 1 82 77] 

'v · n = 2 - 2 277 + sin0 80 + 802 + sin2 0 8¢>2 + H.O.T. (2.19) 

The first member in the right-hand side of (2.19) is the 0- and ¢>-independent term 

mentioned above, and it can be ignored, since it is part of the trivial 0(1) solution 

( corresponding to a completely quiescent fluid and a perfectly spherical drop). Since 

the boundary conditions will be imposed by requiring all terms of each degree of 

surface harmonic to balance, it is desirable to simplify the surface tension term 



III-24 

(2.20) 

appearing in the normal stress condition so that it appears as a sum of surface 

spherical harmonics, rather than a sum of various derivatives of spherical harmonics. 

The associated Legendre polynomials P:" in the surface harmonic expansion (1.2) 

for Tl satisfy (1.23), which, if the change of variables x = cos 0 is made, becomes 

d
2 
P:"( cos 0) cos 0 dP:"( cos 0) [ ( l) _ ~] pm( 0) = o 

d0
2 + . 

0 
d

0 
+ n n + . 2 n cos . 

sm sm () 
(2.21) 

Since by (1.2) 

n 

T/n = (2.22) 
m=-n 

it follows that 

(2.23) 

which can be rewritten as 

fJ2i/n cos0 8i/n A 1 82 i/n 
802 + sin0 80 + n(n + l)T!n + sin2 0 8</>2 = O. (2.24) 

From (2.24) it is clear that the surface tension term (2.20) can be rewritten as 

r = 
S.T.Term = 2 :E [2 - n(n + l)Ji/n• (2.25) 

n=l 
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Since only the 0( €) approximation of the flow field is being computed here, it 

is consistent to ignore the higher-order corrections to the unit vectors, which change 

the boundary conditions only at 0(€2
): 

n =er+ H.0.T. 

{ 
eo + H.0.T. 

t= 
e,t, +H.0.T. 

(2.26a) 

(2.26b) 

For application of the stress boundary conditions, it is convenient to use Brenner's 

[ 6] result that ( after nondimensionalization), 

0 r O [8u 0 

U
0

] 1 ( 0) er · o- = - -p + -- - - + - 'v r · u , 
r or r r 

(2.27a) 

(2.27b) 

It can be shown (as done by Yang in dimensional form) that 

0 1 ~ [ 2(n + 2) 0 

er• CT = ; ~ - (if2) 'vp_(n+l) 

-Q~(Viar)'v x (rx~) + R~(Viar)V<p~ 

(2n + l)S0 ( r.;::; ) o o ] 
- r2 n viur 'Pnr - P-(n+l)r (2.28a) 

for the exterior flow, and 

i 1 ~ { [ 2( n - l) i 
er· er =; ~ A (iO)a Vpn 
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(2.28b) 

for the interior flow, where 

Q~(z) = -z2 fn+1(z) + (n - l)fn(z), (2.29a) 

(2.29c) 

(2.30a) 

(2.30c) 

Since the general solution is in terms of Fourier-transformed variables, the next 

step is to Fourier-transform the boundary conditions. The only change from the 

boundary conditions in time given above is that the velocity, pressure and stress 

are replaced by their Fourier transforms, and 

OT/ 
8t 
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is replaced by 

Now, the general solution will be substituted into the boundary conditions in order 

to obtain algebraic equations for the arbitrary spherical harmonics that appear in 

it. First, the kinematic condition gives 

_ iO ~ijn = ~{~ &p~ 
fi ~ ~ ,an &r 

n=O n=l 

(2.31a) 

and 

_ iO ~ A = ~{_!_ &p°_(n+l) 
fi ~ T/n ~ iO Or 

n=O n=l 

+ [(n + l)fn-1 ( Jifir) - nfn+l ( Jifir) (iO)r2
] 
0
;~ 

+ n(2n + l)f n+t ( v'ifir) (ifl)<p~r} , (2.31b) 

which gives the two equations ( to be satisfied for n = 1, 2, 3, ... ) 

(2.32a) 
r=l 

and 
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+ [n( n + 1 )f n-1 (Jin)+ n( n + 1 )iO/ n+l (Jin)] <p~ (2.32b) 
r=l 

By the methodology developed by Brenner [6], the condition of continuity of tan

gential velocity at the drop surface will be satisfied by requiring that 

r=1 

and 

r=1 

8u0 

=r-r 
or 

r=l 

= r · y' X u 0 

(2.33) 

(2.34) 
r=1 

Similarly, the condition of continuity of tangential stress at the drop surface will be 

satisfied by requiring that 

, (2.35) 
r=l r=1 

and 

(2.36) 
r=l r=l 

It can be shown that Equations (2.34) and (2.36), which imply that there is no 

torque on the drop, necessitate that 

X~ = 0; (2.37 a) 
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x~ = o. 

Equation (2.33) leads to the conditions (for n = 1,2,3, ... ): 

n(n - 1) i 
·n Pn iua: 

(2.37b) 

+n(n + 1)
2 i~a 'fn+1 (ff) -n(n + l)(i~a)' 'Pn+2 (ff)] I'~ ,-l 

(n+l)(n+2) 0 

= in P-(n+l) 

+ [ n( n - 1 )( n + 1 )J n-1 ( ✓in) - n( n + 1 )( i!l)f n( ✓in) 

+n(n + 1)2(ifl)fn+1( ✓in) - n(n + l)(i!l)2 fn+2( ✓in)]\'~ =l · (2.38) 

Before applying the tangential stress condition, it is useful to note that 

r=l r=l 

-in ( 0 i) 3 ( o i) 1 ( o i) = -/3 Ur - Ur - - p - p + -erer: <T - <T 
r r 

(2.39) 
r=l 

It is also useful to note that 

. r . ( 0 _ i)] _ ~ _ [2( n + 1 )( n + 2) 0 Ro ( r-o ) n'P~ 
er ,er (T (T - L...J (in)r P-(n+l) + n VUlr r 

n=l 
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{
A [2(n - l)n i Ri ( (inc; )nrp~ 

+ (iO)ar Pn + n V Tr r 

(2.40) 

since this expression appears in both the tangential and the normal stress conditions. 

Equation (2.35) leads to the conditions ( again for n = l, 2, 3, ... ): 

2>.n(n-l)(n-2) i i i 
·n Pn - npn - 3pn 
i a 

++(n- 2)R~( ff)+ n dR~(f:r) 

-(2n + l)(n - 2)S~( ffr) -(2n + 1/s~( ~r)] r-, 

[
2(n+l)(n+2) 0 Ro( '7i )ncp':i, 

- (iO)r P-(n+l) + n ViHr -r-

(2n + l)So( f7n) o o ] 
- r2 n V iur 'Pnr - P-(n+1)r 

2(n+l)(n+2)(n+3) 0 0 o 
= - iO P-(n+l) + (n + l)P-(n+1) - 3p_(n+1) 

+A [ n(n - 2)R~( v'i!J) + n dR~~~r) 

-(2n + l)(n - 2)S~(v'illr) - (2n + 1) dS~~r)] 

-{A[2(n - l)n i Ri ( (inc; )ncp~ 
(iO)ar Pn + n V Tr r 
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_ (2n + 1) Si ( (i{i;; ) i ] _ i } 
r2 n V Tr 'Pnr Pnr (2.41) 

r=I 

Here, 

and 

dSf(z) 
dz = -2n(n + 2)(2n + l)zfn+1(z) + n(4n + 3)zfn(z) -- nzfn-1(z), (2.43) 

and similarly for the inside flow with the superscript "o" replaced by "i," and the 

functions f(z) replaced by 1P(z). In deriving these expressions from (2.29) and 

(2.30), the recursion relation 

(2.44) 

which also holds for 1Pn(z), was used. Also, extensive use has been made of the fact 

that the derivatives of the functions f n and 1Pn satisfy the relations 

Finally, the normal stress condition gives 

(2.45a) 

(2.45b) 
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1 ~ { [ 2( n - 1) i 
+er.;~ ). (iO)a "vpn 

_ ( 2n + 1) Si ( {ill;; ) i ] _ i } 
r2 n V Tr 'Pnr Pnr 

r = = 
= - 2 L[2 - n(n + 1)]1Jn + L Yn, (2.46) 

n=1 n=l 

which gives the equation 

-[2(n + l)(n + 2) 0 Ro( /:[i )n(f)~ 
( iO)r P-(n+1) + n V iHr r 

( 2n + 1) 50 ( r.-;::; ) 0 o ] 
- r2 n V Htr 'Pnr - P-(n+l)r 

{
>.[2(n - l)n i Ri ( {ill;; )n(f)~ 

( in )ar Pn + n V Tr r 

- ( 2n + 1) 5i ( ~ ) i ] 
r2 n V Tr 'Pnr 

(2.47) 

All of the above conditions are to be applied at r = 1. The above equations 

were simplified by making repeated use of the property of any spherical harmonic 

function Sn of order n that 

Br r 
(2.48) 
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The Equations (2.32a), (2.32b), (2.38), (2.41), and (2.47) constitute 5 equations 

from which the desired relation between the interface deformation ( or other flow 

variables) and the random normal stress is to be obtained. (There are two more 

equations, that determine Xn, but these are independent of the five, and thus are 

not needed here.) The 5 equations are 

and 

In these equations, A, B, ... are given by 

- n 
A=~, 

i~,a 

B = n(n + 1)1Pn-1 (ff) + n(n + 1) (~
0

)1Pn+1 (ff), 

0 __ (n+l) 
- in ' 

(2.49a) 

(2.49b) 

(2.49c) 

(2.49d) 

(2.49e) 

(2.50a) 

(2.50b) 

(2.50c) 

(2.50d) 
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E = n(n - l)(n + l)1Pn-1 (ff) - n(n + l)(n + 2) i~a 1Pn+1 (ff) 
- n(n -1) 

F = ·r. ' iua 

G = n(n - l)(n + l)fn-1(Ji"n)- n(n + l)(n + 2)(i11)fn+1(Ji"n) 

fl-(n+l)(n+2) 
- i11 ' 

- 2n(n-1)2.\ 
I= ·n -n + 2, 

i a 

(2.50e) 

(2.50!) 

(2.50g) 

(2.50h) 

(2.50i) 

- [ (ina) ( ~) (ina) ( ~) J = ,\ 2n(n+l)(n+2)2 T 1Pn+1 VT -2n(2n+l)(n+l) T 1Pn VT 

+2n(n + l)(n -1)2
-,Pn-l (ff)] (2.50j) 

K = -2(n + :~(n + 2)2 + n + 3, (2.50k) 

L = [ 2n( n + I)( n + 2) 2i!lf n+I ( ✓in) - 2n(2n +I)( n + l )( iil)f n( ✓in) 

+2n(n + 1 )( n - l )2 fn-1( ✓in)] (2.501) 

- 2.\n(n -1) 
M = ·n -1, 

i a 
(2.50m) 

- [ (ina) ( ~) ( ~)] N = -2.\n(n + 1) (n + 2) T 1Pn+1 y T - (n -1)7/Jn-1 VT 

0
- __ 2(n + l)(n + 2) 

- i11 + l, 

P = 2n(n + 1) [(n + 2)(i11)/ n+1( Jin) - (n - l)fn-1 (Jin)], 

and finally, 

(2.50n) 

(2.500) 

(2.50p) 
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- r 
Q = --[2 - n(n + 1)]. 

2 

This system of equations can be rewritten in matrix form: 

A 0 B 0 -in 
p~ T 

0 c 0 jj -in 0 

T P-(n+1) 

F -H E -6 0 <p~ 

I -k J -L 0 <p~ 

M 6 if p -Q T/n 

(2.50q) 

0 
0 
0 (2.51) 
0 

Yn 

The desired result is the solution to this linear system of equations for the flow 

variables in terms of the imposed random normal stress y. The solution for the 

deformation can be written as 

(2.52) 

where G~(O) is the "transfer function" which, when multiplied by the input, gives 

the output. It is given by: 

(2.53) 

where 

F E -G F -H E 
R = -C i j -L - D I -k j 

M if P M 6 if 

= -c[P(]P + LN)- E(iP + LM) - a(iir - j111)] 

-fJ [ - F(kir + j6) + iI(iir - jJvI) + E(i6 + KM)] , (2.54) 

-iI E -6 F -H -6 
S=A -k J -L -D j -k -L 

M N p M 6 p 
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= -l[-n(lP + LN) - E(-kP + Lo) - G(-KN Jo)] 

-B [P(-kP +Lo)+ H(iP + LM) - G(io + KM) J ' 

6 0 iJ 0 6 D 
r = l -H -E -G +B F -H -G 

-k j -L i -k -L 

= l[c(-EL + GJ) + iJ(-H J + Ek)] 

+B [-6(-PL + ci) + b(-Pk + ni)]. 

(2.55) 

(2.56) 

The solutions for the other fl.ow variables, which are needed in the calculation given 

below for the 0( € )
2 correction to the diffusivity, can also be written in terms of 

transfer functions: 

o G~o,2(r.)~ . 
P-(n+l) = H Yn, 

The transfer functions appearing here are given in Appendix 1. 

(2.57) 

(2.58) 

(2.59) 

(2.60) 

With this solution to the time-dependent problem, it is now possible to ob

tain the fluctuation-dissipation theorems for the fluctuating variables T/n, or more 

precisely, for the time-dependent coefficients bn,m and Cn,m, and to compute the 

diffusivity and velocity autocorrelation of the drop. Up to this point, the Fourier 

transform has been used, primarily because Lamb's and Yang's general solutions 



III-37 

are given in Fourier-transformed variables. However, it should be noted that the 

variables such as particle velocity involved in the Brownian motion of the drop do 

not go to zero as t -+ oo. This is of course why the particle has a diffusivity. In 

such a case, the Fourier transforms will exist in the usual sense only for n having 

a nonzero positive imaginary component. This raises subtle points in inverting the 

transforms if the Fourier inversion formula (2.6) is to be used. The integrals will 

not exist in the usual sense and will have to be interpreted as generalized func

tions, which do not follow the usual rules of multiplication and differentiation. For 

this reason it is convenient to convert to Laplace transforms at this point, which 

can be done very simply. (Hauge and Martin-Lof [7], in their treatment of a solid 

Brownian particle, use Fourier transforms, and they also point out that it is more 

straightforward to convert to Laplace transforms before inverting.) To switch to 

Laplace transforms, consider everything to be motionless before t = 0 ( as pointed 

out by Hinch [8] in his treatment of a solid particle, this does not result in any loss 

of generality), and define the Laplace transform 

- 1 1= t A I X(s) = - e-s X(t)dt = X(n) , 
21r o O=is 

(2.61) 

(where X(n) is of course the same Fourier transform as defined in (2.5)) for which 

the inversion formula is 

11-y+ioo 
X(t)=-:- estX(s)ds. 

1, -y-ioo 
(2.62) 

In this inversion formula, 1 is chosen so that the path of integration is to the right 

of all the poles of X( s ). For a system initially at zero (i.e. the Brownian drop at the 

origin with zero velocity and acceleration, and motionless surrounding fluid), the 
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transfer function for Laplace-transformed "input" and "output" variables is related 

to that for Fourier-transformed variables by 

with 

11(0) = G(O) y(O); 

ij(s) = G(s) y(s). 

(2.63) 

(2.64) 

(2.65) 

Now the diffusivity of the drop will be computed. The diffusivity is the 3 x 3 

tensor defined by 

lim d 
D = -d < X(t)X(t) > . 

i --+ 00 t 
(2.66) 

Since, as observed above, the spherical harmonic modes decouple to first order, and 

only the first-order problem is being done here, the diffusivity will be diagonal. 

Furthermore, by symmetry, it must be that 

(2.67) 

Therefore, only the calculation for Dzz need be done here. From (1.44), 

(2.68) 

and from (2.44), f/1 = Gi(O)y1 • From (1.2), 

m=l 

T/1 = I: a rn plml (cos0)eirnef> 
1 1 ' 

(2.69) 
m=-1 
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and from (2.18), 

m=l 

fh = L y;:n Plml ( cos0)eim4>. (2.70) 
m=-1 

Because of (1.29), a~ = b~; all this may be combined to give 

(2.71) 

In terms of Laplace transforms this is 

(2.72) 

In the expression (2.55) for Dzz, b~ rather than b~ appears, so the inverse Laplace 

transform must be taken according to (2.62): 

(2.73) 

where ; is any positive real number; substitution of this into (2.68) gives 

The assumption will be made that the random normal stress that the drop 

surface experiences changes on a much faster time scale than the macroscopic drop 

deformation, since it is caused by a large number of microscopic events (namely, 

collisions of fluid molecules). Thus, for the calculation here, the random normal 

stress will be assumed to have essentially zero autocorrelation time: 
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< y(0, </>, t)y(0, </>, t + r) >= Cy5(r) , (2.75) 

where Cy is some constant (which will be determined below from the equilibrium 

autocorrelations.) Thus, specifically, 

(2.76) 

Note that in (2.74), the term 

(2. 77) 

appears (since the expectation operator<> can be commuted with the integrals). 

Substituting the formula for the Laplace transform into this gives 

(2.78) 

which, using (2. 76), becomes 

(2.79) 

Substituting this into (2.74) gives 
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The time derivative may be commuted with the integrals, resulting in the simpler 

express10n 

(2.81) 

These integrals can be evaluated by residue calculus. Here I is any real positive 

number; i.e., the transfer functions G'i should have poles only in the left half-plane 

for physical reasons. Since when n = 1 the coefficient Q = 0 by (2.50q), it is clear 

from (2.52) that Ci has a simple pole at the origin. Assume that the other poles 

of G~ are simple, and denote them by ri, with r 0 = 0. Then doing the s 1 integral 

gives 

(2.82) 

where Ri is the residue from the i-th pole ( except for the exponential term); i.e., 

(2.83) 

Similarly, doing the s 2 integral gives 

(2.84) 
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Now clearly, in the long-time limit, all the terms from poles Ti with negative real 

part will go to zero. Thus, only the terms for i = 0 and j = 0 will remain, giving 

ci,o] 
Dzz = [-(21ri)2(Ro) 2 

( 2:)2 • (2.85) 

The constant c:,o in (2.85) is as yet unknown and will now be determined from 

the equilibrium correlation (1.57). From (2.72) it is clear that 

where the dot over a variable indicates its time derivative. By again using the 

inversion formula (2.62), this implies 

which by manipulations very similar to those done in calculating the diffusivity, and 

in particular by using (2.79), can be reduced to 

What is needed, for comparison with the equilibrium correlation derived in Section 

1, is the long-time limit of this. If the s 1 integral is considered first, there will be 

residues from the poles of Gi and from the simple pole at s1 = -s2. It can be 

shown, however, that only the residue from s 1 = -s2 survives as t--+ oo. Thus, 

(2.89) 
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Combining (1.57) and (2.89) gives 

(2.90) 

for the coefficient in the autocorrelation of the component of the random stress, yf. 
From (2.85), the diffusivity is then 

(2.91) 

where 

lim ~ 1 . 
Ro= sG1 (is). 

s-+ 0 
(2.92) 

The transfer function Gf appearing in (2.91) can be simplified to 

01 = p_ Num , 
1 iO Denom 

(2.93) 

where 

Num = 24iO fz7/J2 -
72 

Ji7/J2 + [2rn__!_(1- ~ + 
24 

-
120

)]!o7/J2 ,\ ,\ iO ,\ ,\ ,\ 

72 12 
- iO /07/;1 - iO /o7Po; (2.94) 

Denom = 36i0 ,\ ~ 1 
/z7/J2 + 36i0fz7/J1 18i0fz7/Jo 

[ 
iO ,\ - 1] [ ,\ - 1 iOa] 

- 36T + 432-,\- fi7/Jo + 144a-,\- + 18T fo7P2 - 72afo7/J1. (2.95) 

In the above, the arguments of all the functions fn are -/ill, and the arguments of 

all the functions 7Pn are JiOa/ ,\. The functions involved in these expressions are 
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f ( ) i;i: [ 1 i ] 1 X = e- - +- i x3 x2 

f ( ) i;i: [ 3i 1 3 ] 
2 X = e- - - - + - j 

x4 x3 x5 

() 
i;i:[ i 6 15i 15] h x =e- ----+-+-; x4 x5 x6 x1 

.,. ( ) _ sinx. 
'f-'0 X - ' 

X 

.!. ( ) _ -xcosx + sinx. 
'f"l X - ' x3 

.,. ( ) -3xcosx + 3sinx - x 2 sinx 
'f-'2 X = 5 j 

X 

.,. ( ) = x 3 cosx - 6x2 sinx - 15xcosx + 15sinx 
'f-'3 X 7 • 

X 

(2.96a) 

(2.96b) 

(2.96c) 

(2.96d) 

(2.97a) 

(2.97b) 

(2.97c) 

(2.97d) 

The velocity-autocorrelation function for the drop is also of interest. In the 

long-time limit, this approaches the function 

. . iCl ,O 1,+ioo A A 

< b~(t)b~(t+r) >= -( Y) . e8 -.s2Gi(is)G~(-is)ds 
21r -y-ioo 

(2.98) 

(with c:,o given in (2.90)), which depends only on the time difference r. 

For the higher-degree spherical harmonic modes, n = 2, 3, ... , the equilibrium 

correlation gives < b:,b:, > rather than < b:,b:, >, so the calculation of c;,m is 

slightly different. Thus, 
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(2.99) 

which for t --+ oo and r = 0 gives the following expression, 

lim 1-y+ioo 1-y+ioo A A cn,m 
t--+ 

00 
< b:(t)b:(t) >= -i . . G~(is )G~(-is )-( Y ) ds, 

-y-ioo -y-ioo 271" 
(2.100) 

which, by comparison with the equilibrium correlations (1.55), gives 

Cnm K-T[ n(n+l)]-l( l)(n-lml)! ' = - 1+-'----'- n+-
Y 41r1 2 2 (n + !ml)! 

[1-y+ioo 

1
-y+ioo 1 i-l 

•i . . G~(is)G~(-is)-( )ds 
-y-ioo -y-ioo 271" 

(2.101) 

The time autocorrelation of the amplitude of the n, m mode is then (for long times) 

(2.102) 

with c;,m given by (2.89), and the transfer function G'~ given by (2.45). This is the 

fluctuation-dissipation theorem for the deformations; it relates the autocorrelation 

of the deformation amplitudes to the macroscopic properties of surface tension, 

viscosity and density. It is interesting to note that as the surface tension becomes 

very large, 

(2.103) 

which is independent of D. Thus, as the surface tension becomes large, the time 

dependence of the autocorrelations of the amplitudes of the higher-order harmonics 

approaches a delta function. 
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FIRST CORRECTION TO CENTER-OF-MASS MOTION DUE TO 

FINITE SURFACE-TENSION 

Since the spherical harmonic modes decouple to 0(e) (where€ denotes some 

measure of the magnitude of the deformation), to get any dependence of the mean

square displacement on surface tension, the 0( t 2 ) problem must be considered. 

In the 0( e2) boundary conditions, products of the 0( E) quantities appear. These 

products must be expanded in spherical harmonics, and in general the product of 

an n-th order harmonic with a j-th order harmonic will have a first-order term, 

no matter how large n and j get. Every order of harmonics in the 0( t) solution 

will thus contribute to the 0( t 2 ) first-order harmonics; i.e., every term in the 0( t) 

solution will contribute to the center-of-mass motion. While the complete second

order solution could be written out in terms of the Clebsch-Gordon coefficients for 

the expansion of products of associated Legendre polynomials, this is hardly worth 

doing in a treatment that is asymptotic and therefore approximate anyway. What 

is of more interest here is just an approximation of the effect of surface tension on 

the drop center-of-mass motion. The probability of a deformation corresponding 

to a spherical harmonic of order n decreases with increasing n, and the rate of 

decrease becomes rapid as the surface tension increases ( corresponding to a very 

"stiff'' drop.) Thus, to get an approximation to the effect of surface tension for the 

case of large surface tension, all the harmonics beyond the N-th one in the 0(t) 

solution could be assumed to be zero for purposes of calculating the 0(e2
) solution. 

The minimum value of N to get any dependence on surface tension is 2. 

Let the various fl.ow variables have the expansions 

(3.la) 
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. 2 . 
€pi+€ qi+ ... (3.lb) 

a,+ €2e + ... (3.lc) 

€Xi+ iSi + ... (3.ld) 

. 2 . 
€<.pi + € <I? i + ... (3.le) 

. 2 . 
€<7i + € IJi + ... (3.11) 

and similarly for the outside solution, with the superscript "i" replaced by "o." The 

time-dependent hydrodynamic problem solved in Section 2 was of course the 0(€) 

problem, involving ui,u0
, 1J, etc. The procedure that will be used here to calculate 

vi,v 0
, etc., is that outlined in Brenner's 1964 paper [6]. 

First, it is useful to note that the unit vectors normal and tangent to the surface 

have expansions 

81} I 

te = ee + € 80 er = ee + t9; (3.2a) 

l 81] , 
tcf> = e</> + € sin0 8</> er= e</> + t</>; (3.2b) 

81] 1 87J , 
n = er - € 80 ee - € sin 0 8</> e</> = er + n . (3.2c) 

Next, the expansion of the surface-tension term is needed. It was shown above (1.8) 

that 

(3.3) 
r=l 

From this it follows that 



III-48 

[ 
f )2 'I] cos 0 01] l 8 2 

TJ l 
V · n = 2 + E -

21] - 802 - sin 0 80 - sin 0 8<p2 

2 [ 02 e cos 0 ae 1 02 e 
+c - 2e- 802 - sin0 80 - sin0 0</>2 

(3.4) 

The 0(1:)2 deformation e has a surface harmonic expansion, just like ry: 

00 

(3.5) 

It was shown earlier that each surface harmonic satisfies 

(3.6) 

which is just a consequence of Legendre's equation. Of course, the same equation 

holds with e substituted for 'IJ· With this, the expression for V · n can be simplified 

to 

00 

V • n = 2 + E :I)-)[2 - n(n + l)]'IJn 
n=1 

The kinematic velocity boundary conditions are 

[er+ m'] • [m" + ,, ( ~ ~:• + v')] 
= [er+ m'] • [eu" + e' (/);" + v 0

)] 
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(3.8) 

where all functions of r in this condition ( as well as the conditions to be given 

below) are to be evaluated at r = 1, since the correction for the interface being at 

r = 1 +cry+ c2 t + ... has already been made to 0(c2
). Continuity of velocity gives 

the conditions 

(3.9) 

Collecting the 0(c2 ) terms in these equations gives for the 0(c2 ) kinematic condi

tions: 

( 
OU 0 0) / o iO A 

=er• T/ar +v +n•u =-;ft; 

and for the 0( c2
) continuity of velocity conditions: 

The stress boundary conditions are given by 

= (e, + m'){ ,y +I'[-, j)2 - n(n + l)]ryn 

+,' f, (-[2 - n(n + l)](n + %;, 2ryn([2 - n(n + 1)] - l)rym)] }· 

Collecting the terms of 0( f. ) 2 in this gives 

(3.10) 

(3.11) 

(3.12) 
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= err [t, (-[2 - n(n + l)]e. + t, 2~.([2 - n(n + 1)] - l)~m) l 
+n' { y + r [- t,r2 - n(n + 1)]~. ]}- (3.13) 

These conditions may be rewritten as 

- er· E" + •r · E0 + err t, ([2 - n(n + l)]e.) 

= m' { y + r [- t,r2-n(n + !)]~-]} 
a O 00 00 

er· 77 ; + err L L 277n([2 - n(n + l)] - l)7Jm 
n=1 m=l 

I [ i + o]. - n . -u <J' ' 

(3.14) 

(3.15) 

(3.16) 

(3.17) 

to emphasize the fact that the right-hand terms are known, and the left-hand terms, 

which involve the unknown 0( t:) 2 fl.ow field, have the same structure as the 0( t:) 
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boundary conditions. For convenience, the right-hand sides of (3.14) and (3.15) will 

be denoted by the scalars Vi and V 0
, respectively; the right-hand-side of (3.16) will 

be denoted by the vector W; and the right-hand side of (3.17) will be denoted by 

the vector T. Thus, the boundary conditions at r = 1 become 

(3.18) 

(3.19) 

(3.20) 

(3.21) 

where 

00 . 

V i(0 ,I..) """'vi 0Ui I i 
''I-' = L..J n = -er . TJ or - n . u 

n=l r=l 

(3.22) 

00 o 0 

v 0 (0,4>) = I: v: = -er ·TJ 
0
: - n'. u 0 

n=l r=l 

(3.23) 

ou0 oui 
W(0, ¢>) = TJ- - TJ-or or (3.24) 

r=l 
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(3.25) 
r=l 

The 0( E )2 flow field has the same form of expansion as the 0( E) flow field: 

Ai ~ [ 1 't", i .,. ( /ilia ) 't", ( ~i ) 
V = ~ iO.a v qn - '/-'n y Tr v X r.:::.n 

00 

qi= L q~, 
n=l 

for the inside flow, and 

v· = t [ .~ '17 q".c n+l) - f n( v'illr) '17 X ( rB~) 

+ [(n + I)fn-1 ( vinr) - nfn+1( vinr)(i0.)r2 ]'v<P~ 

+ n(2n + l)fn+1(v'illr)(i!l)<!>~r] 

00 

qo = L q~(n+1) ' 
n=l 

(3.26a) 

(3.26b) 

(3.27b) 

(3.27b) 

Similarly, the 0( E )
2 stress on the (undeformed) sphere surface has the same form 

of expansion as the 0( E) stress does: 
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(3.28) 

for the exterior fl.ow, and 

(3.29) 

for the interior flow. 

Now these general solution expansions will be substituted into the boundary 

conditions. This step is very similar to what was done above for the 0( E) solution, 

so only the resulting equations will be given here. The kinematic conditions become 

(for n = 1, 2, 3, ... ): 

and 

i~ fn + - (ni~ 
1
\~(n+l) + [n(n + l)fn-1 (Jin)+ n(n + l)iOf n+1( -Ji"n)] <I>~ = Vr:'. 

(3.31) 
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Continuity of tangential velocity gives 

n(n - 1) i 
·r, qn 
iua 

+ [n(n l){n + l)'Pn-1 (ff) -n(n + 1) i~a 'Pn ( ff) 
+n(n + l}' i~a 'Pn+1 (ff) -n(n + 1) t~a) 

2 

'Pn+2 (ff)] <P~ =I 

(n+l)(n+2) 0 

- in q-(n+l) 

-[n(n - l)(n + l)fn-1(v'if!) - n(n + l)(in)fn(v'if!) 

+n( n + 1 )' {ff!)/ n+I ( v'ifi) - n(n + i )( iil)2 fn+2( v'if!)] <P: ,~, = -rv' · W, (3.32) 

and 

(3.33) 

Continuity of tangential stress leads to the conditions. (again for n = 1, 2, 3, ... ): 

2>.n(n-l)(n-2) i i 
·r, qn - nqn 
ZHU 

ina n V -x-r [ ff dR i ( rm; ) 
+>. n(n-2)R~( T) +n dr 

~ dsi({¥r)l 
-(2n + l)(n - 2)S~ ( y Tr) - (2n + 1) n dr ,\ <I>~ r=l 

2(n+l)(n+2)(n+3) 0 ( l) o + in q_(n+l) - n + q_(n+l) 
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-,\ [n(n - 2)R0 ( \/"in)+ n dR~( v'inr) 
n dr 

-(2n + 1 )(n - 2)S:( v"mr) - (2n + 1 /S~c;;nr)] ii>~ 
r=l 

= -r'v •T; (3.34) 

and 

(3.35) 

Finally, the normal stress condition gives 

[
2(n + l)(n + 2) 0 _ Ro( '7i )n<I>~ 

(iO)r q-(n+1) n viHr r 

( 2n + 1) so ( "A ) 0 o ] + r2 n ViHr <Pnr + q-(n+l)r 

-{,\ [2(n - l)n i _ Ri ( (m:;; )n<I>~ 
(iO)o:r qn n V Tr r 

(2n + l)Si ( fm;; );i;.i ] i } + r2 n V Tr '±'nr + qnr 

r A 

+2[2 - n(n + l)]en =er· T. (3.36) 

Clearly, it is necessary to have the surface harmonic expansions of Vi, V 0
, 

-r'v • W, r· 'v x W, -r'v •T, r· 'v x T, and er •T, which involve the O(c) solution, 

to be able to solve these equations for the 0( c) flow variables. However, since what 

is of interest here is only the contribution of the 0( c) solution to the diffusivity, only 

e ( the 0( c2 ) deformation) has to be solved for. Since the two equations involving 

3~ and 3~ decouple from the five equations involving q~,q~(n+I)' <I>~,<I>~, and en, 
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exactly as happened in the 0( E) problem, these two equations can be dispensed 

with. It is therefore not actually necessary here to expand r • v" x W and r • v" x T 

in surface harmonics . 

These surface harmonic expansions may be written as 

00 

Vi= LV~, 
n=l 

-rv" · W = 0, 

00 

-rv" • T = LT:, 
n=l 

00 

er• T =LT!, 
n=l 

(3.37a) 

(3.37b) 

(3.37 C) 

(3.37d) 

(3.37 e) 

where the expansion terms are calculated in Appendix 2. The five equations may 

then be written in a way completely analogous to the O(c:) calculation, as 

(3.38a) 

(3.38b) 

(3.38c) 

(3.38d) 

and 
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(3.38e) 

which in matrix form is 

A 0 iJ 0 -in 
q~ Vi T n 

0 c 0 iJ -in 
q~(n+l) vo T n 

p -H E -G 0 <l> i 0 n (3.39) 

i -K j -L 0 <Po 
n 

Ta 
n 

M 0 N p -Q fn Tb 
n 

The solution to this system is 

(3.40) 

where ti.a, ... are the determinants 

A 0 B 0 -i!.1 
/3 

0 c 0 iJ -i!.1 
T 

ti.a = p -H E -G 0 (3.41a) 

i -k J -L 0 
M 0 iv p -Q 

0 c 0 iJ 

..6..1 = 
p -H E -G 
i -k J -L (3.41b) 

M 0 N p 

A 0 B 0 

ti.2 = F -iI E -G 
i -K j -L (3.41c) 

M 0 N p 

A 0 B 0 

ti.3 = 0 c 0 D 
F -iI E -G (3.41d) 

M 0 N p 
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A 0 iJ 0 

~4= 
0 6 0 D 

(3.41e) p -iI E -G 
I -K j -L 

It is helpful to note that the determinant ~o was already computed for the 0( £) 

problem. 

From Appendix 2, 

oo oo n j 

LL L L fii· 1 (n,m,j,k;O)TJj,kP~,m+fii,Z(n,m,j,k;O)ru,k'P~,m; (3.42) 
n=l j=l m=-n k=-j 

2 2 n j 

LL L L fI
0

•
1
(n,m,j,k;O)ryj,kP~,m+fI

0
•
2
(n,m,j,k;O)TJj,k'P~,m; (3.43) 

n=l j=l m=-n k=-j 

Tto = 
' 

oo oo n j 

LL I: L { H3
(n,m,j,k;O)TJj,kT/n,m + H4

(n,m,j,k;O)TJj,kYn,m 
n=l j=l m=-n k=-j 

Ai,5 i Ai,6 i 
+H T/j,kPn,m + H T/j,k'Pn,m 

+ fto,5 o + fio,6 o } T/j,kP-(n+l),m T/j,k'Pn,m i (3.44) 

oo oo n j 

~~ ~ ~ fto,7 o +fio,8 o 
L.J L.J L.J L.J T/j,kP-(n+l),m T/j,k'Pn,m 
n=1 j=l m=-n k=-j 
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A i, 7 i A i,8 i A 9 
+H T/j,kPn,m + H T/j,k'Pn,m + H T/j,kT/n,m , (3.45) 

where the transfer functions fI (which are functions of n,m,j,k,D.,) are given ex

plicitly in Appendix 2. Consider now only translation in the z-direction, which 

corresponds to the degree 1, order 0 surface harmonic. The 0( E) displacement 6 ,o 

in the z-direction is: 

l oo oo n j 

ei,o=~I:I: I: I: 
O n=l j=l m=-n k=-j 

{ 

A [HA i,1 ( · k· A) i + HA i,2( · k A) i ] .u.1 n, m,J, , H T/j,kPn,m n, m,J, ; H T/j,k'Pn,m 

+~3 [ H3(n, m,j, k; D.)T/j,kT/n,m + H4(n, m,j, k; D.)T/j,k'Yn,m 

A i,5 i A i,6 i 
+H T/j,kPn,m + H 'T]j,k'Pn,m 

+fio,5 o + fio,6 o ] 
T/j,kP-(n+l),m T/j,k'Pn,m 

~ [fio,7 o + fio,8 o 
- 4 T/j,kP-(n+1),m T/j,k'Pn,m 

A i, 7 i A i,8 i A 9 ] } 
+H T/j,kPn,m + H T/j,k'Pn,m + H T/j,kT/n,m · (3.46) 

From Section 2, the 0( E) flow variables are given by 

A 1 A 

T/n,m = Gn,mYn,mi (3.47a) 

i - c;i,2 A 0 

Pn,m - n,mYn,m, (3.47b) 



III-60 

0 - (Jo,2 A • 

P-(n+l),m - n,mYn,m, (3.47c) 

i _ (Ji,3 A • 

'Pn - n,mYn,m, (3.47d) 

0 (Jo 3 A 

'Pn = n',mYn,m; (3.47e) 

where the transfer functions G are given there. By using this, the 0( <:: )
2 displace

ment can be expressed as 

l oo oo n j 

6,o = r LL L L Yn,m(D)i)j,k(D) 
O n=l j=l m=-n k=-j 

{ G~;m(O)G),.(O) [ LI., ( n, 0)11'·' ( n, m,j, k; 0) + LI.,( n, 0)11'•5
( n, m,j, k; 0) 

-L\.4( n, 0)11'·' ( n, m,j, k; 0) l 
+G~'.m(O)G),. (0) [ LI., ( n, 0)11'•2

( n, m,j, k; 0) + LI.,( n, 0)11'·' ( n, m, j, k; 0) 

-L\.4( n, 0)11'•' ( n, m,j, k; O)l 

+G~·.'.,JO)G),,(O) [-LI.,( n, 0)11°•'( n, m,j, k; 0) + LI.,( n, 0)11°•5 (n, m,j, k; 0) 

-L\.4(n, O)l1°•1 (n, m,j,k; oi] 

+G:::,':.(O)G),,(O) [-LI.,( n, 0)11°•2
( n, m,j, k; 0) + D.,(n, 0)17°•6

( n, m,j, k; 0) 
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-A4(n, f!)H 0
•
8

( n, m,j, k; fl)] 
+G~,m(O)G],k (0) [ ~3( n, O).H3( n, m, j, k; 0) - ~4( n, O).H9 ( n, m, j, k; 0)] 

+GJ,.(f!)t.3 ( n, n)H'( n, m, j, k; f!)} · (3.48) 

It is convenient to define a new transfer function Ge(n,m;O) so that 

l oo oo n j ~ 

6,o(O) = z- LL L L Ge(n, m; O)iJn,m(O)i)j,k(O). 
O n=l j=l m=-n k=-j 

(3.49) 

The mean-square displacement due to the deformation 6,0(0) is 

lim 1 1-y+ioo 1-y+ioo 1 oo oo n j 

< 6,06,0 >= t-+ 00 (21ri)2 -y-ioo -y-ioo ~O ~ ~ m~n k~j 

(3.50) 

(Note that since the expectation of odd powers of i) is zero, because i) is assumed 

Gaussian, there is no 0( E )
3 contribution to the mean-square displacement consisting 

of the expectation of products of 0( E) flow variables with 0( E )
2 flow variables.) This 

expression includes the contributions from harmonics of all degrees. As pointed out 

earlier, it is not really necessary to include contributions from all the higher-degree 

modes, since the probability weighting of a mode T/n,m decreases significantly as 

n and m increase. Thus, to obtain a good approximation, the summation could 

be truncated to include only the contributions from the first- and second-order 

harmonics. 
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It can be seen from this expression that this first correction to the mean-square 

displacement 0vill include surface-tension dependence, since it includes autocorrela

tions of Yn,m for n greater than 1, and these were shown earlier (in the equilibrium 

calculation, as well as in the transfer function) to depend on surface tension. Since 

it is assumed that the random stress y can be modelled by Gaussian white noise, 

the autocorrelations of a product like 

can be obtained by adding all possible pairwise correlations: 

< Yn,m(is1)Yj,k(is1) >< Yn,m(is1)Yj,k(is2) > + 

< Yn,m(is1)Yn,m(is1) >< Yj,k(is1)Yj,k(is2) > + 

(3.51) 

(3.52) 

Since, just as in the 0( E) calculation, the determinant .6.o appears in the numerator, 

evidently the poles of the transfer function Ge( n, m; is) will be the same as those 

for the transfer function G of the 0( E) calculation in Section 2. 

DISCUSSION 

The above analysis has given general expressions for a number of statistical 

quantities related to the Brownian motion of the drop. Expressions for the mean

square displacement and deformations have been found for small times, when the 

drop has not moved or deformed much relative to its initial position and shape, 

but there have nevertheless been enough collisions to make averaging meaningful. 

Fluctuation-dissipation theorems for the spherical harmonic coefficients describing 

the drop motion have been given. 



III-63 

It is also interesting to consider what has been learned in a more qualitative 

sense. Before doing any calculations, a number of arguments could have been put 

forth as to how the deformability of the drop might affect its mean-square displace

ment. The molecules of the surrounding fluid impinge upon the drop and thereby 

transfer energy to it; it might be reasoned that some of this Brownian energy causes 

center-of-mass translations, whereas the rest of it gets "consumed" in deforming the 

drop in a centrally symmetric way. This would suggest that the diffusivity of a drop 

would decrease as surface tension decreased, all other things being equal. 

Another viewpoint involves a consideration of the effect of mobility. The 

asymptotic analysis of Taylor and Acrivos [9] for the steady sedimentation of a 

slightly deformed near-spherical drop gives a positive first correction in Weber num

ber for the drag force on the drop; given that the diffusivity of a solid particle is 

the ratio of kT (Brownian energy) over the steady drag, it seems reasonable to con

jecture that the diffusivity of a drop will also depend on the steady drag and will 

therefore be less for a deformable drop, since the drag force on it will be greater. 

On the other hand, statistical mechanical theory predicts that a certain amount 

of thermal energy will be associated with each degree of freedom, regardless of how 

many degrees of freedom there are. Each translational degree of freedom gets energy 

kT /2, whether there be one, two or three; in other words, the viewpoint that there 

is a fixed amount of thermal energy which must somehow be distributed among 

all the modes of motion seems not to be appropriate. In light of this, it might be 

reasoned that the addition of deformational modes simply gives more ways in which 

energy can be transmitted from the surrounding fluid molecules to the drop, and 

that therefore there will be more motion, i.e., higher diffusivity. This argument can 

be summed up as: "more modes means more energy means more motion." 
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Examination of the quantitative results obtained in the previous sections indi

cates that this last line of reasoning is the most appropriate. If the surface tension 

becomes infinite, the quantity Q also becomes infinite, from which it can be seen 

from Equation (2.53) for the transfer functions that G~ -----+ 0 unless n = 1. This, of 

course, just reflects the obvious fact that a drop with infinite surface tension will 

not have the higher-order harmonic components of the fl.ow field associated with 

deformation, and therefore will not have any 0(1:) correction to its mean-square 

displacement. Changing the surface tension does not affect the 0( €) mean-square 

displacement at all (this can be seen from the fact that Q = 0 for n = 1). Thus, all 

other things being equal, a drop with finite surface tension compared to a drop with 

infinite surface tension will have a larger mean-square displacement. (The 0( 1:) cor

rection to the mean-square displacement can, of course, take on only nonnegative 

values.) 

It is not unreasonable that the change in mobility due to deformation should 

not be the factor determining the trend in the surface-tension dependence of mean

square displacement, since it has been shown by Happel and Brenner [10] that the 

average mobility of a slightly deformed sphere with deformation of 0( €) is, at least 

to O(c), exactly the same as the mobility of the sphere with the same volume as 

the deformed particle. Since the net random force on the drop should take on 

all directions with equal probability, it should be the average mobility that affects 

the mean-square displacement, and this average mobility is at least approximately 

independent of surface tension. 

The above comments have been with regard to the mean-square displacement, 

rather than the diffusivity, because if the classical definition of diffusivity is used, 

namely, that it is one-half the infinite time limit of the rate of growth of the mean-
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square displacement, the 0( e) correction will be zero in all cases, because the trans

fer functions go to zero as O --+ 0. However, it is important to note that this 

infinite-time limit may be "too long," first in the sense that the particle displace

ment may become too large for the small-displacement analysis used in deriving the 

transfer functions to be still valid, and moreover, that the particle may move signifi

cantly due to the relaxation of its deformations ( represented by the 0( e) correction) 

before the surface-tension independent diffusivity "wins out", as it evidently will, 

eventually. 
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Appendix 1 of Chapter 3 

In this appendix, the linear system of equations 

A 0 B 0 -in 
p~ T 

0 6 0 b -in 0 

T P-(n+l) 

F -H E -G 0 <p~ 

I -1{ j -L 0 <p~ 

M 6 fr p -Q T/n 

is solved to give 

o GA o,2(") A . 
P-(n+1) = H Yn, 

o QAo,3(")A 
'Pn = H Yn, 

where the transfer functions G are given by 

0 B 0 m -73 
6 0 b m 

{;.i,2 ( n) = fin -73 
-iI E -G 0 
-k j -L 0 

A iJ 0 m 
-73 

0 0 b m 
{;.i,3 (fl) = -fin -73 

p E -G 0 
I J -L 0 

A 0 0 m 
-73 

0 6 b m 
{;.o,2(0) = Yn -73 

F -H -G 0 
i -k -L 0 

= (l) (Al.1) 

(Al.2a) 

(Al.2b) 

(Al.2c) 

(Al.2d) 

(Al.3a) 

(Al.3b) 

(Al.3c) 
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A 0 iJ iO 
-73 

0 c 0 iO 

6°13 (0) = -vn -73 (Al.3d) p -fI E 0 
i -k J 0 
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Appendix 2 of Chapter III 

In this appendix, the P~ ( cos 0) = cos 0 component of the surface harmonic expan

sions of the following quantities will be determined: Vi, V 0
, -r "v • W, r • "v x W, 

-r"v • T, r • "v X T, and er• T, where 

V i(0 ,./..) ~ vi Olli I i 
' 'f-' = L..,; n = -er . 1J or - n . u (A2.1) 

n=l r=1 

= a o 
v 0 (0, </>)=I: vi= -er. 11 a: - n'. u 0 

n=l r=1 

(A2.2) 

8u0 Bui 
W(0, </>) = 17- - 17-

Br or 
(A2.3) 

r=l 

(A2.4) 
r=l 

(Throughout this appendix, all quantities are to be evaluated at r = 1, even if this 

is not explicitly indicated, unless they appear inside an r-derivative, in which case 

they are first to be differentiated and then evaluated at r = 1.) These expressions 

all involve products of spherical harmonics. 

Expansion of Vi and V 0 

Recall that 
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u~ ~ _ Pn + 00 { 1 [) i 

- ~ ia:O or 

and that x~ = 0. From this it follows that 

Next, note that 

By recalling that 

Bui 
e ·

r or 
r=l 

= au~ = ~{ n(n -1) i 
~ L.J .,. Pn ur i~ ,a 

n=1 

(A2.5) 

(A2.7) 



III-70 

+ [(n + l)'l'n-1 ( ffr) -n'Pn+1 ( ffr) i~a r'L~nO 8:0~} 

(where again the fact that x~ = 0 has been used), it follows that 

= [Loo ·] . ~ { n( n - 1) i 
17J L..t ·n. Pn 

2HQ 
j=l n=l 

(A2.9) 

[ ( r;n;; ) ( r;n;; ) ( r;n;; ) + n(n + l)(n - l)V'n-1 y Tr - n(n + 1) y Tr V'n y Tr 

2 ( {in:; ) ( {in:; ) ( {in:;) 2 
( {in:;)] i} +n(n + 1) y Tr 1f'n+1 y Tr - n(n + l) y Tr 1Pn+2 y Tr 'Pn 

1 [ = 817j l = { 1 8p~ 
+ sin 0 ~ aef> ~ iailrsin0 8</> 

(A2.10) 

Consider the various products appearing in this expression: 

i i 
17}Pn, 17n'Pn, 
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Only the order 1, degree O (i.e., P1° = cos 0) terms in their surface harmonic expan

sions are desired here. These are given by: 

j n 

PTJjP~ = L L T/j,kP~,mI1(n,m,j,k) 
k=-j m=-n 

j n 

- L L T/j,kP~,m[ 8m,-k(:,ms},n+l + 8m,-k(!,ms},n-1], (A2.ll) 
k=-j m=-n 

j n 

L L T/j,kP~,mI2(n,m,j,k), (A2.12) 
k=-j m=-n 

(A2.13) 

where 

(71" /271" 
I1(n,m,j,k) = lo lo Pj(cos0)eikrf>p;;,(cos0)eimrf>cos0sin0d<f;d0; (A2.14) 

• (71" ( 271" 8Pj( cos 0) ikr/> 8P;;,( cos 0) imr/> . 
I2(n,m,;,k) = Jo lo 

80 
e 

80 
e cos0sm0d<f;d0; (A2.15) 

I 3(n,m,j,k) = (71" /
2

71" ~PJ(cos0)(ik)eikrf>p;;,(cos0)(im)eimr/> cos0sin0d<f;d0, 
lo lo sm 0 

(A2.l6) 

and where, for convemence, P denotes the operator that projects a function of 

0, <p onto its P1° component. By taking advantage of the following properties of 

associated Legendre polynomials: 
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0 m ( 0) ( n - m + l) m ( 0) ( n + m) m ( 0) 
COS Pn cos = ( ) Pn+l COS + ( ) Pn-l ,·;os ; 

2n + 1 2n + 1 
(A2.17) 

f1r P;;-( cos 0)Pf ( cos 0) sin 0d0 = 5n,i 
2 t + m ~;; 

Jo 2n + 1 n- m. 
(A2.18) 

it can be seen that 

= 2-rrb [ 2(n-m+l) (n+m+1)! 5 , 
m,-k (2n + 1)(2n + 3) (n - m + l)! J,n+l 

2(n + m) (n + m - 1)! 
5 + (2n + 1)(2n - 1) (n - m -1)! j,n-l 

(A2.19) 

Similar general expressions can be derived for I2 and 13 • Thus, 
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(A2.20) 

By a similar procedure, it can be shown that 

Tro (O ,1..) ~ ~ ~ ~ { I ( . k) [(n + l)(n + 2) 0 

v1,o , '// = ~ ~ m~n /;;;:_j 7]j,k 1 n, m,J, iDa P-(n+1),m 

+ ( n(n + 1 )( n - 1 )f n-1 ( Jill) - n(n + 1 )( Jill)f n( Jill) 

+n( n + 1 )2
( Jill)/ n+1 ( Jill) - n( n + 1 )( Jill)' f n+2( Jill)) l"~,m] 

(A2.21) 

As discussed earlier, what will be determined here is only the 0( t:2 ) contribution to 

the diffusivity due to interaction of then= l and n = 2 modes of the 0( t:) solution. 

Therefore, the above (complete) sums giving V}, 0 and V1~0 will be truncated so that 

n and j take on only the values 1 and 2. It is convenient to rewrite these truncated 

expressions as 
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2 2 n j 

LL L L fii, 1(n,m,j,k;D)TJj,kP~,m+iii,2(n,m,j,k;D)ru,k<f!~,mi (A2.22) 
n=l j=l m=-n k=-j 

2 2 n j 

LL L L fI0
•1(n, m,j, k; D)TJj,kP~,m + H0

•
2
(n, m,j, k; 0.)TJj,k<f!~,m, 

n=l j=l m=-n k=-j 
(A2.23) 

where the transfer functions fI are given by 

fii, 2(n,m,j,k;0.) = 

. ( (~) (~) (~) I 1 (n,m,J,k) n(n+l)(n-l)'lf'n-1 VT -n(n+l) VT 'lf'n VT 

2( ~) ( ~) (ina) ( ~)) +n(n+l) VT 1Pn+1 VT -n(n+l) T 'lf'n+2 VT 

(A2.25) 

~01 . . (n+l)(n+2) 0 
H' (n,m,J,k;D) = I1(n,m,J,k) i0.a P-(n+1),m 

+I2(n,m,j,k) .
1
.., +l3(n,m,j,k) .

1
..,; 

ia~, ia~, 
(A2.26) 
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I,(n, m,j,k) ( n(n + I )(n - l)fn-1(v'ffi) - n(n + I)(v'ffi)fn( v'ffi) 

+n( n + I )2
( v'ffi)f n+1 ( v'ffi) - n( n + I )(ifl)f n+z( v'ffi)) 

+I2( n, m,j, k) [( n + l )f n-1 ( v"i"n) - nf n+l ( v"i"n)iD] 

Expansion of -r 'v • W 

Recall that 

ou0 Bui 
W(0, cf>)= 71- - 71-or or 

After some manipulations, it can be shown that 

r=l 

'l"'i' (Bui) o('l"'i' i) l'l"'i' i lou~ v· - =- v•U +-v·U +--, or or r r or 

and similarly for u 0
• Since by continuity 'v • ui = 'v • u 0 = 0, 

The 0( E) tangential velocity boundary condition was that 

8u 0 
__ r 

- or 
r=1 r=l 

this can be used to simplify to 

(A2.27) 

(A2.28) 

(A2.29) 

(A2.30) 

(A2.31) 
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(8u 0 aui) 
-v'•W=+v'77· ---

or or 
(A2.32) 

r=l 

Since the unit vectors in spherical coordinates do not depend on r, this can be 

rewritten as 

-v'. w = + 8ft [01lg - out] + l aft [au; - fJu~]-
80 or or sin 0 80 or or 

(A2.33) 

Since the condition of continuity of tangential stress at r = l was imposed on the 

0(€) solution, 

(A2.34) 

which is equivalent to 

8u 0 u0 l ou 0 

0 0 r =---+--
Or r r 80 

(A2.35) 
r=l r=l 

By the continuity of the O(c) velocity field on the sphere surfacer= l, 

u~I =uij , 
r=l r=l 

(A2.36) 

which implies 

80 

0UO - __ r 

- 80 (A2.37) 
r=l r=1 

From all this it can be deduced that 

(A2.38) 

and similarly, using the continuity of stress in the </> direction ( O"r<f> ), that 
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(A2.39) 

so a further simplification can be made to give 

-'v•W=O. (A2.40) 

Expansion of -r'v • T 

a i a O 00 00 

+er· 1J ; - er· 1J ; + er(L: L 2ryn([2 - n(n + 1)] - l)1Jm 
n=l m=l 

(A2.41) 
r=l 

On account of the length of this expression, it is convenient to rewrite it as the sum 

of several separate terms: 

where 

00 00 

1"4 = -'v · [err LL 211n[l - n(n + l)]11m] 
n=l m=l 

(A2.42) 

(A2.43a) 

(A2.43b) 

(A2.43c) 

(A2.43d) 
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(A2.43e) 

Consider first r1: 

00 

r1 = -[y + r (- 2)2 - n(n + 1)]11n)] v' · n' 
n=l 

00 

-v'[v+r(- 2)2-n(n+l)]11n)] •n'. (A2.44) 
n=l 

The first correction to the surface unit normal vector, n', was given above as n' = 

I 1 0 ( . 877 ) 1 8 ( 1 877 ) 
v'. n lr=l - sin0 80 smB ae + sin0 Oq> sin0 84> • (A2.45) 

By using Legendre's equation again, this can be rewritten as 

00 

v' · n'lr=l = - I:j(j + l)77j, (A2.46) 
j=l 

so that 

(A2.47) 

where as before P denotes the operator that projects a function onto its cos 0 

component. Next, expand r2: 
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(A2.48) 

Recall that 

(A2.49) 

from which it can be shown that 

+ Ri ( ~ r) n - 2 v' i + dR~( [¥-r) 1 i 
n VT r2 'Pn dr r v'cpn 

_(2n+l)(n-2)Si( ~r) i _(2n+l)dS~([i¥-r) i] n i } 
r4 n VT 'Pnr r3 dr 'Pnr - ;Pner ' 

(A2.50)) 

which in turn gives 

= ~{,\ [- 4(n - l)(n - 2) i 
~ if!a Pn 

r=1 n=l 

+ -2n(n-2)R~( :___::)+n(n-3) n y;:-r +n n y;:-r i ( ffn dRi ( [m; ) d2 Ri ( [m; ) ) 

>. dr dr2 'Pn 

- [n - (2n + l)(n - 2)]S~( -r) + [n + (2n + l)(n - 2)] n V ;:-( ff·na dSi( [m;r) 

,\ b 
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(A2.51) 

Putting this together gives 

j=l n=l k=-j m=-n 

{ 

. i [( 4>.(n-l)(n-2) ) . 11;,kPn,m - iOa -n(n+l) I 1 (n,m,J,k) 

+>.2(n-1)(n-2)J., nm. k 2(n-1)(n-2) . l 
(iD)ar2 ) ' ,J, ) + ,\ (iD)ar2 J3(n,m,1,k) 

· ~·na dSi( [m;;r) 
-[n - (2n + l)(n - 2)]5~( -r) + [n + (2n + l)(n - 2)] n V ;::-

,\ dr 

d
2
S~(/iFr)) 

+(2n + 1) dr2 I1(n,m,j,k) 

( 

i r;:n;; n -2 dR~(/iFr)) . 
+ Rn(yTr)-:;:z-+ dr I2(n,m,J,k) 

+( R~( {¥-rt;/+ dR~(~r},(n,m,j,k)]}- (A2.52) 

Similarly, 

j=l n=1 k=-j m=-n 

{ 

o [( 4(n+2)(n+3) ) T/j,kP-(n+1),m - in - n(n + 1) I1(n,m,j,k) 
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2(n + 2)(n + 3) 1 ( . k) 2(n + 2)(n + 3) 1 ( . k)l 
+ iO 2 n,m,J, + iO 3 n,m,J, 

o [ ( 2 ( 2)Ro (vin) ( 3) dR~( v'filr) d
2 
R~( v'filr) +rlj,klPn,m - n n - n i + n n - dr + n dr2 

-[n -(2n + l)(n - 2)]S~(✓i°n) + [n + (2n + l)(n - 2)]-dS_~_(0fl_i_Or_) 
. dr 

d
2 
S~( v'filr)) . ( 0 ~ dR~( v'filr)) +(2n+l) dr2 I1(n,m,y,k)+ (n-2)Rn(vi0)+ dr I2(n,m,j,k) 

+ ((n - 2)R~( vill) + dR~s~r)) I,(n, m,j,k)]}- (A2.53) 

Next, expand r4: 

00 00 

Pr4 = -P'\J · [ err L L 277n[l - n( n + 1 )]7Jj] 
n=lj=l 

00 00 

= -Pr LL 2[1 - n(n + l)](n + j + 2)1Jn1Jj 
n=lj=l 

oo oo n j 

= -r LL L L 2[1- n(n + l)](n + j + 2)11n,m1Jj,kI1(n,m,j,k). (A2.54) 
n=l j=l m=-n k=-j 

Next, expand rs: 

(A2.55) 

By the condition of continuity of stress that was imposed on the 0( €) solution, 

q 0 
- <Ti = 0 at r = 1. Now by the equations of motion, 
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o '7 i iD. [AO Ail '\7 • /J - V • /J = -- U - U l 

/3 
(A2.56) 

so that 

/ iD.[Ai AO] 
T5 = Il • 7f" U - U . (A2.57) 

By continuity of velocity at r = l, which was imposed on the 0( c) solution, [ui -

u.0
] = 0. Moreover, all 0 or <p derivatives of this difference will also be zero at r = 1. 

Since n' has only components in the 0 and cf> directions, it follows that Ts = 0. So, 

finally, 

oo oo n j 

Tt,o = LL L L {fI 3 (n,m,j,k;D.)r1j,k'T]n,m+fI4 (n,m,j,k;D.)r/j,kYn,m 
n=l j=l m=-n k=-j 

+fii,51]. pi + fji,6 77 • u,i J,k n,m ·13,k, n,m 

+jjo,5 o + jjo,6 o } 1Jj,kP-(n+1),m 'TJj,k'Pn,m , (A2.58) 

where 

A 3 • 
H (n, m,J, k; D.) 

= -r[2 - n(n + l)l[j(j + l)I1 (n, m,j, k) - I2(n, m,j, k) - J3(n, m,j, k )] 

-2r[l - n(n + l)](n + j + 2)I1(n, m,j, k); (A2.59a) 

fI 4 (n, m,j, k; D.) = j(j + l)I1 (n, m,j, k) - I2(n, m,j, k) - J3(n, m,j, k ); (A2.59b) 
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fii,s= [(-4.\(n l)(n-2) ) iD.a -n(n+l) I1(n,m,j,k) 

+.\2(n-l)(n-2)I . . 2(n-l)(n-2) l 
(iD)arZ z(n,m,J,k) + .\ (iD.)ar2 J3(n,m,j,k) ; (A2.59c) 

[ ( 
· {ifi;; dSi ( [m;; ) 

- n - 2n + l)(n - 2)]5~( V Tr)+ [n + (2n + l)(n - 2)] n V ;:-r 
dr 

n V ;:-r d25i( [m;; )) 
+(2n + 1) dr2 I1(n,m,j,k) 

(A2.59d) 

fio,5 = [(- 4(n + 2)(n + 3) ) . iD. -n(n+l) I1(n,m,J,k) 

+2(n+2)(n+3)I( "k) 2(n+2)(n+3) l 
iD z n, m,J, • + iD J3(n, m,j, k) ; (A2.59e) 

H0 ' 6 = [ (-2n(n - 2)R~( Jin)+ n(n _ 3) dR~( v"inr) + n d
2 
R~( v"inr) 

dr dr2 

-[n - (2n + l)(n - 2)]5~( Jin)+ [n + (2n + l)(n - 2)] dS~( v'filr) 
dr 
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d
2 
S~ ( \l'inr)) . ( 0 f7A dR~ ( \l'inr)) . +(2n+l) dr2 I1(n,m,y,k)+ (n-2)Rn(vin)+ dr I2(n,m,y,k) 

( 

0 f7A dR~( \l'inr)) . ] + (n - 2)Rn(viD) + dr J3(n,m,y,k) (A2.59f) 

Expansion of er · T 

[)i {JO 00 00 

er· T = 77[er ·er· ; - er· er· ; ] + r L L 277n([2 - n(n + 1)] - l)7]m 
n=l m=l 

(A2.60) 
r=l 

All components of the stress tensor O" are continuous across the boundary except 

the (r,r) component. Since n' has only 0 and <p components, 

(A2.61) 

With this, and the fact that the unit vector er does not depend on r, (A2.60) may 

be rewritten as 

00 00 

+ r L L 211n([2 - n(n + 1)] - 1)7Jm (A2.62) 
n=l m=l r=l 

which, using (A2.49) and the companion equation for the outside region, becomes 

er •Tl = 
r=l 

!__{ ! ~ _ [2(n + l)(n + 2) 0 Ro(Vifi )nrp~ 
77 J:i L,; ( "n) P-(n+1) + n 2 r ur r iH r r 

n=l 
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[
). [2(n - l)n i Ri ( /Tn;; )n<p~ 

+ ( in )ar Pn + n V Tr r 

00 00 

+r L L 277n([2 - n(n + 1)] - l)7]m (A2.63) 
n=lm=l r=l 

so that 

T{ o =Per· Tl = 
' r=l 

oo oo n j 
~~ ~ ~ HAo,1 o +HAo,8 o L.J L.J L.J L.J 1]j,kP-(n+1),m 1]j,k<pn,m 
n=l j=l m=-n k=-j 

h i, 7 i A i,8 i A 9 
+H 1]j,kPn,m + H 1]j,k<pn,m + H 1]j,k1]n,m, (A2.64) 

where 

HA o,1 _ [2(n + l)(n + 2)(n + 3) + + 1]r ( . k)· 
- iQ n 1 n,m,J, , (A2.65a) 

1-n dS
0 

( villr) l . +(2n+l)(n-2)S~(viH)+(2n+l) n dr I1(n,m,;,k); (A2.65b) 

HAi,1 __ [2n(n-l)(n-2)_ ]re "k)· - in n 1 n, m, J, , (A2.65c) 
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(A2.65d) 

H9 = r2([2 - n(n + l)] - l)I1 (n,m,j,k). (A2.65e) 
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CHAPTER IV 

On the Effect of a Fluid-Fluid Interface 
on the Brownian Motion of a 

Solid Particle 
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While the Brownian motion of a rigid particle in an infinite fluid has been 

studied initially by Einstein [l], and subsequently via a dynamic approach by Hinch 

[2], Hauge and Martin-Lo£ [3], Zwanzig and Bixon [4] and others, more general 

situations have begun to be considered only more recently. The case of clusters 

or suspensions of rigid particles has been investigated by numerous researchers, 

(Russell [5], Brady and Bossis [6], Felderhof and Jones [7], Brenner, Nadim and 

Haber [8],) and wall effects have also been considered (e.g., Gotoh and Kaneda 

[9].) However, Brownian motion in systems with free fluid interfaces seems to have 

received comparatively less attention. 

Each additional rigid particle introduced into a multiparticle system adds a fi

nite number of degrees of freedom (the coordinates of the particle). Rigid particles 

have only translational and rotational degrees of freedom, and since the kinetic en

ergy associated with each is well-known ( depending only on the mass and moments 

of inertia), it is clear how Brownian energy is distributed to each of the modes. 

When more than one particle is present, the time-dependent system response will 

depend on the configuration, so the challenging problem is how to average properly 

over the different configurations to obtain the mean motion of a particle. 

The case of a rigid particle near a fluid-fluid interface is somewhat different, 

in that the interface introduces an infinite number of degrees of freedom, since it 

can take on an infinite number of different configurations. While this may also be 

true of an unbounded suspension, the behavior of one particle in a suspension is 

influenced by the detailed configuration of only a finite number of particles in its 

vicinity, beyond which the remaining particles affect it only in some averaged way, 

with their detailed configuration not being important. In contrast, even the portion 

of the interface that is near enough to the particle to influence it significantly can 
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take on an infinite number of configurations. Also, the interface can "store" energy 

in potential form because it has surface tension. H is natural to ask how the effect 

of this interface on the Brownian motion of a particle differs from the effect of other 

rigid Brownian particles placed in the proximity of the particle. 

In his thesis, Yang [10] studied this problem of the Brownian motion of a rigid 

particle in the presence of a fluid-fluid interface. His results seemed to indicate that 

the interface affects the motion of the particle only insofar as it changes its mobility. 

Since his work forms a good starting point for consideration of this problem, it 

will be summarized briefly here, along with some discussion that will attempt to 

elucidate the physical meaning of his results. 

Yang assumed that the complete fluid fluctuations could be modelled by con

sidering the flow to be driven by a random force on the particle and a random 

normal stress on the interface. The governing equations then became 

oui . 2 . 

P . - = - 'vpJ + µ . "v uJ. 
3 at 3 

' 
(1.1) 

(1.2) 

(where j=l,2, the particle is in fluid 2, µi, i = 1, 2 is the viscosity of fluid i, and 

Pi, i = 1, 2 is the density of fluid i) with boundary conditions of continuity of 

velocity at the interface 

u1 = u2' (1.3) 

the kinematic condition 
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i a,,., 
u =-

8t' 
(1.4) 

( where T/ is the displacement of the interface from the plane X3 0), the two 

conditions of continuity of tangential stress, 

(1.5) 

(where tis either of two independent vectors tangent to the interface), the normal 

stress condition 

( where n is the normal to the interface, 1 is the surface tension, l::..p is the density 

difference between the two fluids, g is of course the acceleration of gravity, and 

y is the random normal stress on the interface, assumed by Yang to model the 

fluctuations); and finally, the no-slip condition at the surface of the particle, Ix -

XI =a, 

u 2 =U. (1.7) 

Here, X denotes the particle position, U denotes its velocity, and a is its radius. 

The particle motion is described by the "Langevin equation" 

dU 
mpdt + B(t)[U] = F flue ( = F(t) + A(t)) , (1.8) 

where the right-hand side is the force on the particle due to the random fluctuations. 

As discussed below, Yang assumed that this can be divided into the "indirect" ran

dom force F(t) due to the flow created by the random normal stress y acting on the 
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fluid-fluid interface, and the "direct" random force A(t) due to the random thermal 

motion of the fluid molecules in the immediate vicinity of the particle. This separa

tion is of course artificial, since in fact there are random driving forces throughout 

the entire fluid. Nevertheless, it seems reasonable to focus on the Brownian forces 

acting in the immediate vicinity of the interface if what is desired is to determine 

whether the deformability of the interface ( which introduces extra macroscopic de

grees of freedom) affects the Brownian motion of the particle in some way beyond 

just the obvious fact that it changes the particle's mobility. 

Since the position of the particle boundary varies with time, the complete 

problem is nonlinear in the unknown particle position. Yang's investigation was 

a first approximation in the case that the motion of the particle is negligible on 

a length scale characterizing the flow field caused by interface fluctuations. The 

problem becomes linear in the particle position in this case, since the hydrodynamic 

force on the particle is calculated with the assumption that the particle remains at a 

fixed position. This will be referred to below as "Assumption l." His analysis also 

assumed that the fluctuations could be modelled by having only a random normal 

stress at the boundaries. This will be referred to henceforth as "Assumption 2." 

In later sections, the effect of weakening these assumptions will be considered. 

With these two assumptions, Yang could consider the particle diffusivity to 

consist of two separate contributions: one from the "direct" random force A(t), and 

the other from the "indirect" force F(x, t) created by the motion of the interface. 

This is possible because these two forces are uncorrelated, and the problem is now 

linear. (That is, the force on the particle as a function of time is a linear functional 

of the random normal stress. If the variation of the force with the particle's change 

of position were taken into account, then this relation would be nonlinear.) In the 
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actual problem (without Assumptions 1 and 2,) the diffusivity cannot be separated 

into two parts in this simple way, because of (a) the hydrodynamic interaction 

between the particle and the interface, and (b) the fact that the force created by 

the interface motion is a function of position as well as of time, and the particle's 

position is changing. With Assumption 1, the Langevin equation becomes 

dV I mp-d + B(t)[U] = F(x, t) + A(t), 
t x=X(t) 

(1.9) 

and with Assumption 2, it becomes 

dV I mp&+ B(t)[U] = F(x, t) x=Xo A(t), (1.10) 

where X 0 is the initial position of the particle ( assumed for simplicity to be ( 0, 0, d).) 

The force F in (1.10) is the hydrodynamic force on the particle due to the 

flow field created by interface fluctuations. The interface fluctuations arise, in turn, 

from the random normal stress y (appearing in (1.6)) that is assumed to model the 

thermal forces. The autocorrelation of F is needed to get information about the 

particle motion from the Langevin equation, and the autocorrelation of y is needed 

to get the autocorrelation of F. The important assumption that is made about y is 

that it has an essentially zero correlation time: 

< y(t)y(t + r) > ex 8(t - r). (1.11) 

This is the assumption that the time scale on which the random stress varies is 

much smaller than the time scale on which the interface fluctuates. Information 

about the spatial ( equilibrium) correlations of y must come from statistical thermo

dynamic considerations, via the usual assumption that the probability of a certain 
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configuration is related to the energy of the configuration by 

P[ ( l _ [- E[77(xa)]] 17 X 8 - exp T , 
"'B 

(1.12) 

where "'B is Boltzmann's constant, and T is absolute temperature. Since this is 

an equilibrium calculation, the energy here is due to surface tension and gravity. 

Yang found the equilibrium correlations of 77 (Fourier-transformed in the two spatial 

directions of the interface) to be 

< 11(k, t)11(k', t) >= KBT [ l l S(k + k'). 
21r (~p)g-,k•k' 

(1.13) 

Here, k and k' are wavevectors, ~p is the density difference across the interface, 

and I is the surface tension. It can be seen from this that the deformations with 

the highest amplitude on average are the ones with the longest wavelength. This 

makes Assumption 1 more plausible, since the wavelength of the deformation is also 

the length scale characterizing spatial variations in the flow. 

In calculating this force, Yang neglected the hydrodynamic interaction between 

the particle and the interface. In other words, he solved the hydrodynamic problem 

of Equations (1.1) and (1.2), subject to the boundary conditions (1.3), (1.4), (1.5) 

and (1.6), with no particle present. By assuming that the interface deformation is 

small, it is possible to linearize the nonlinear surface tension term in (1.6), and also 

to apply the boundary conditions at the undeformed interface to get a first-order 

approximation to the flow field. Since the problem is linear, with boundary condi

tions on a plane, it is convenient to Fourier transform in the two space directions 

tangent to the plane of the undeformed interface, as well as in time. The wavevector 

is denoted by k, and w is the frequency. Yang's calculations lead to the following 
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velocity field in fluid 1 (which occupies X3 > 0): 

and in fluid 2 (which occupies the region x3 < O; the particle is in fluid 2): 

Here, 

(1.16a) 

( 
2 iw)l/2 

0:2 = k - - i 
V2 

(1.16b) 

(1.17a) 

(1.17b) 

(1.18a) 

(1.18b) 

The solution for the interface deformation is 
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~(k ) _ y(k,w) 
r, ,w - H1(k,w)' (1.19) 

where 

~ 1,W [ ] H1(k,w) = k p2«l>2(k,w) + p1«l>1(k,w) 

- 2(µ2 - µ1) [k«1>2(k,w) + a:2W2(k,w)] 

-[(~p)g+,k2]. (1.20) 

By comparison with his equilibrium correlations (1.13) for the deformation, Yang 

finds that the spatial autocorrelation of the random normal stress is 

(1.21) 

It is noteworthy that the k-dependent factors in (1.21) outside the delta function 

will cause a "spreading out" upon taking inverse Fourier transforms, so that in 

physical space, the random stress will not be delta-correlated. 

The force on the particle is then determined from the flow field by using the 

unsteady Faxen's Law for a rigid particle in Fourier-transformed form. These hydro

dynamical calculations for the force give F(k, x 3 , w ), i.e., the force Fourier- trans

formed in the two space directions x 1 , x2 • By Assumption 1, which says that the 

particle does not move far before many Brownian events have occurred, the force 

on the particle at all times can be approximated by the force at the particle's initial 

position. Thus, it is necessary to express F at the fixed point Xo = (0, 0, d), which 

can be taken without loss of generality to be the initial position of the particle, in 
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terms of this Fourier-transformed solution. This is done using the inverse Fourier 

transform: 

(1.22) 

Thus the Fourier-transformed Langevin equation for particle motion due only to 

interface fluctuations is 

(1.23) 

By the usual methods of linear response theory, this Langevin equation can be used 

to get the particle velocity autocorrelation in terms of the force autocorrelation. 

The force autocorrelation has been related to the random stress autocorrelation 

via the Faxen's Law and the hydrodynamical results given above. Thus, Yang was 

able to compute the particle velocity autocorrelation. The particle diffusivity, if 

defined as the infinite-time limit of the rate of growth of the mean-square particle 

displacement, can be obtained from 

lim 
D = 

0
1rRu(d;w,-w), 

W-t 
(1.24) 

where Ru is the particle velocity autocorrelation. Yang found this limit to be zero. 

A number of questions arise on consideration of Yang's analysis. If some hy

drodynamic interaction between the particle and the interface were to be included, 

would this change the result that the diffusivity is zero? Even if the diffusivity (in 

the classical sense) is zero, does the mean-square particle displacement continue to 

grow with time in some sort of anomalous diffusion, or does the particle remain in 
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some finite region for all time? Is the time limit t ---t oo "too long" in the sense that 

for some time interval, the mean-square displacement will grow diffusively, but that 

after a very long time it will level off? What happens if Assumption 1 is weakened, 

i.e., if the particle moves significantly relative to the length scale characterizing the 

flow field created by interface fluctuations before a meaningful diffusivity can be de

fined? What happens if Assumption 2 is dropped? For instance, what if there are 

random tangential stresses at the interface in addition to normal stresses? Finally, 

why do the normal stresses on the surface have a finite length scale for autocorre

lation? Their physical origin is the collisions of fluid molecules with the surface, so 

that no correlation would be expected between the stress on nearby points on the 

interface. Each of these questions will be addressed below. 

The Spring Analogy to Surface Tension 

First, consider the question of whether using a better approximation to the 

hydrodynamic interaction between the interface and the particle could change the 

result that the interface fluctuations ("independent" of particle motion) do not give 

rise to a particle diffusivity. (For example, when the force on the particle due to the 

random fl.ow field is computed, instead of using a Faxen's Law for an infinite fluid, 

a Faxen's Law that takes into account the presence of the interface could be used.) 

It will be shown here that the answer is definitely "No" as long as Assumption 1 is 

retained. With Assumption 1, it is possible to use the technique of linear-response 

theory which is the standard method for dealing with hydrodynamic fluctuation 

problems. Without Assumption 1, the problem cannot be linearized, so it becomes 

a nonlinear stochastic differential system, for which very few techniques of solution 

are available. (The nonlinearity arises because the force depends on the particle 

position in a nonlinear way, and it is the particle position that is to be solved 
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for.) The Langevin equation without Assumption 1 takes the form of a differential 

equation driven by a stochastic field. This is equivalent to the problem that arises 

in stochastic quantization of field theory, for which perturbation methods (i.e., 

expansion about the initial position) have been developed and used extensively by 

physicists. It is unfortunately still an open problem as to how to deal with the 

case where the particle position changes by more than just a small amount relative 

to the length scale of the field it is placed in ( the field in this case being the flow 

field created by the interface motion). Thus, only the perturbation method will 

be discussed below, and it is hoped that it will at least help in the qualitative 

understanding of how Assumption 1 affects the result. 

The Fourier-transformed particle Langevin equation will be considered again: 

dU 1= 1= mpdt +B(t)[U] = _
00 

_

00 

F(k,d,w)dk1 dk1 +A(t), (1.25) 

and the way it is used to relate the particle velocity to the random stress will 

be reviewed. First, the particle velocity must be related to the random normal 

stress on the interface, for which the autocorrelations in space and time are known. 

Yang obtains this relation through several hydrodynamic calculations. In terms 

of Fourier-transformed variables, these relations take the form of multiplication by 

"transfer functions." First, the particle velocity is related to the force on the particle: 

( this comes from the Fourier- transformed Langevin equation) 

Hu(w)U = F, (1.26) 

where flu includes the particle inertia and the unsteady particle mobility. Then the 

force on the particle is related to the flow field generated by the interface motion, 

via the unsteady Faxen's Law: 
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F = HFa:z:(w)u(O,O,d,w) = HFa:z:(w) 1 u(k,d,w)dk, (1.27) 

where the fact that the particle position is approximated as (0, 0, d) for all time 

has been used. The undisturbed fluid velocity u(k, d, w ), which, unlike the particle 

velocity U ( w) (but like the force F(k, X3, w)) is Fourier-transformed in x 1 , x2 as well 

as in t, (it being a function of space as well as of time,) is in turn expressed in terms 

of the interface deformation ( the relation coming from solving the Stokes equations 

in the two fluids for small deformations): 

u(k, d, w) = H flow (k, d, w )ry(k, w); (1.28) 

and finally, the interface deformation is related to the random normal stress on the 

interface by the so-called "interface susceptibility": 

H1(k,w)17(k,w) = y(k,w). (1.29) 

Combining all these relations gives: 

A 1 A 1 A 1 U = A HFa:z:(w) H1zow(k,d,w) A y(k,w)dk. 
Hu(w) k Hr(k,w) 

(1.30) 

Yang assumed that the diffusivity of the particle is the limit as w - 0 of the Fourier 

transform of its velocity-autocorrelation function. Consequently, it is clear that if 

any of the factors ( or "transfer functions") in the above equation go to zero as 

w - 0, the diffusivity will also be zero. Now consider the factors, one by one. 

First, the function Hu clearly tends to the finite limit 6-rrµa, the steady drag on 

a solid sphere, as w - 0. Similarly, the factor HFa:z: goes to 61rµa, by the steady 

Faxen's Law for a rigid particle. These two statements can in fact be combined into 
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one: At very low frequency, a neutrally buoyant particle placed in a zero-Reynolds

number fl.ow field will move with the undisturbed fluid velocity. Consider next the 

function fI I, which determines how much interface deformation there is for a given 

imposed normal stress. Clearly, this is finite even in the zero- frequency limit. A 

constant normal stress will cause the interface to deform until the surface tension 

force balances the imposed force. Finally, consider the function Hjlow• Here is the 

key to the matter. As the rate at which the interface is deformed goes to zero, the 

flow field in the fluid caused by the interface motion goes to zero, at least in the case 

of an infinite planar interface considered by Yang. In the limit as the interface just 

remains fixed in some deformed state, there is no fl.ow at all. In other words, the 

function fI flow -+ 0 as w -+ 0. This is why the diffusivity is zero. This also makes it 

clear that including more sophisticated hydrodynamics will not change this result. 

Hydrodynamical interaction between the interface and the particle will not change 

the fact that fI flow -+ 0. 

Why is forcing a particle via a fluid medium different from forcing it directly? 

Clearly, the direct random force on the particle A( t) gives rise to a diffusivity similar 

to the Stokes-Einstein result but with the mobility modified from 61rµa to something 

else because of the presence of the interface. In contrast, F, the "indirect" force, will 

not. It turns out that the essential difference is due to the fact that the interface, 

when idealized as infinite, "can't go anywhere." Surface tension ( and gravity) act 

as a spring, pulling it back towards its initial position. This analogy will now be 

pursued to get a better understanding of the situation. 

Instead of an interface, consider another large solid particle, free to wander 

around, that is acted on by a random force. As above, consider only the particle's 

motion due to the motion of this larger particle, and not the motion due to the force 



IV-15 

A(t) that acts directly on the particle. Landau and Lifshitz [11] have determined 

the unsteady mobility of a particle in a viscous fluid (at zero Reynolds number): 

(1.31) 

where Fhyd is the hydrodynamic force on the particle, U is the particle velocity, R is 

the particle radius,µ is the fluid viscosity, pis the fluid density, and the circumflex 

indicates that the variables have been Fourier-transformed according to 

(1.32) 

and similarly for Fhyd• For convenience, rewrite this relation as 

(1.33) 

The large particle's motion is thus described by the Langevin equation 

(1.34) 

where F is the ("direct") random force on the particle, and mL is the mass of the 

large particle. This can be rewritten as 

F 
iI=-------

-iwmL - G1(w) 
(1.35) 

Landau and Lifshitz also give the velocity field in the fluid generated by the sphere's 

motion as (with r being the spherical coordinate of distance from the particle cen

ter), 
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u = Urer --;:- e r - -;- + + -ai e r - -;- +--A A [ 2 [A ikr ( 1 ) B] 1 'k ikr ( 1 ) ae ikr l 
r.; ik r 2 ik r 2 

1 'kA ikrvA 
--i e ' 

r 
(1.36) 

where 

(1.37) 

A - - 3R -ikR 
- 2ik e ' (1.38) 

(1.39) 

Write this relation as 

u = G2(r,w) · U. (1.40) 

Finally, there is an unsteady Faxen's Law that gives the force on the smaller sphere 

in terms of its velocity and the flow field that it is placed in. (This flow field will be 

taken as the field generated by the motion of the bigger sphere. Hydrodynamic in

teraction between the two spheres is being neglected here, as it will not qualitatively 

affect the result.) Clearly, if the sphere is neutrally buoyant and sufficiently small, 

this relation can be approximated by just having the small sphere move affinely with 

the fluid (i.e., with the undisturbed fluid velocity at its center). This is certainly 

true in the limit as w-, 0. Combining all this gives 
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(1.41) 

Here, U 8 denotes the velocity of the smaller sphere, and r 8 denotes its position in 

the spherical coordinate system centered at the larger sphere. It follows from this 

and linear response theory that 

Ru,- (1.42) 

where Ru. denotes the Fourier transform of the autocorrelation of the small sphere's 

velocity, and RF denotes the Fourier transform of the autocorrelation of the (ran

dom) force on the large sphere. Now within the framework of this calculation, RF 

should be given by the fluctuation-dissipation theorem given in, for example, Hinch 

[2]: 

(1.43) 

(The 1 /21r factor is the Fourier transform of the Dirac delta function.) Also, the 

diffusivity of the small sphere should be given by 

D = lim R 
0 

u. 
W--t 

(1.44) 

( this is shown in Hinch [2] among other sources.) Thus, 

lim G2(r8 ,w) 1 kT 
D= --~~----

w --t O [iwmL + G1(w)] 21r 61rµR 
(1.45) 

To see that the limit in (1.45) is nonzero, note that by (1.31) and (1.33), 
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(1.46) 

as w -+ O; also, it is clear that the flow field generated by the large sphere's motion 

will tend to the Stokes solution for steady motion of a sphere in this limit, so that 

(1.47) 

The main point that is illustrated by all this is that the small sphere has a nonzero 

diffusivity due only to the motion of the large sphere driven by a random force 

directly on the large sphere. 

It was pointed out above that while the effect of the interface on the small 

particle's diffusivity should be qualitatively similar to that of many particles ( or 

even just one) undergoing Brownian motion and thereby creating flow fields, the 

interface is not free to move an indefinite distance from its initial position. To 

model this feature, to the simplified case of a single large particle considered above, 

a spring tending to bring the large particle back to its initial position will be added. 

The spring force will be given by 

Fspr = kX, (1.48) 

where k is a spring constant, and X is the position of the large particle. Thus, the 

Langevin equation of the large particle is changed to 

A k A A A A 

-iwmLU = --. U + G1(w)U + F, 
iw 

so that the expression for the diffusivity is changed to 

(1.49) 



D = lim 
w _. 0 

If this is rewritten as 
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G2(rs,W) 
----'----'---- ---

l kT 

[iwmL + G\(w) +:;] 

D = lim wG2(rs,w) 1 kT 
w _. 0 [iw 2mL + wG1 (w) + ik] 21T' 61T'µR' 

(1.50) 

(1.51) 

and the fact that G1 and G2 go to a finite nonzero limit as w _. 0 is recalled, it 

becomes clear that adding the spring makes a significant difference: The diffusivity 

of the small particle is now zero! In fact, the diffusivity of the large particle is 

also zero for the same reason, namely, that the transfer function giving the large 

particle velocity in terms of the random force on it goes to zero as w -,. 0, because 

of the spring force. This is entirely analogous to the fact that H flow _. 0 in the 

same limit, as observed above in the discussion of Yang's analysis with a fluid-fluid 

interface instead of a large particle on a spring. Like the interface, the large particle 

cannot roam away farther and farther as time passes; instead, it approaches a finite 

mean-square displacement from its initial position. 

Is the particle "trapped" or does it diffuse anomalously? 

The fact that the diffusivity in the classical sense is zero does not necessarily 

mean that the mean-square particle displacement stops growing at long times. It 

means only that the rate of growth is slower than linear in time. The limiting 

behavior of the particle velocity autocorrelation at long times will now be considered 

in more detail, to determine whether the particle diffuses anomalously, or whether 

its mean-square displacement actually reaches a finite limit at large times. 

There is another reason for considering the long-time w _. oo limit more closely. 

The arguments made above that the particle is "trapped" because surface-tension 
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acts like a spring pulling the interface back do not hold if the interface simply 

undergoes rigid-body translation and if gravity effects are not present (f:)..p = 0.) 

Gravity is clearly also analogous to a spring force, because any displacement from 

the equilibrium fl.at state will give rise to a gravitational force tending to restore 

the interface to its flat state, and the larger the displacement, the larger the force 

(it is actually a linear relationship). Surface tension only exerts a restoring force if 

the displacement is not uniform, i.e., if the curvature becomes nonzero. If the entire 

interface were displaced by a constant distance, there would be no restoring surface 

tension force. Thus, if gravity were considered to be absent from the problem, 

it would seem that infinite wavelength disturbances (k -+ 0) might give rise to a 

nonzero diffusivity. In fact, when there is no density difference between the two 

fluids, the interface becomes unstable, and the equilibrium average amplitude of 

zero-wavevector (infinite-wavelength) disturbances becomes infinite. 

When the limit as w -+ 0 of the velocity-autocorrelation function ( which is an 

integral over the wavenumber vector k), is taken in Yang's analysis, there seems 

to be an implicit assumption that the limit commutes with the integral, i.e., that 

the integrand is uniformly continuous. A close examination of the integral reveals 

that taking the limit is not such a simple process. In fact, it can be shown that the 

major contribution to the integral comes from the neighborhood of k = 0, where 

the integrand is not uniformly continuous. This makes sense physically, since the 

limit w -+ 0 corresponds to taking the limit of long time, and in this limit only 

the infinite wavelength disturbances should survive. This may be compared with 

the calculation of transport coefficients via linear-response theory in Kreuzer [12], 

where both the limits k -+ 0 and w -+ 0 must be taken, and it is found that the 

w limit must be taken after the k limit to insure getting a nonzero result. In the 
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case of diffusion, this corresponds to the fact that if k is not allowed to go to zero 

first, the particle is confined to a finite region, and thus in infinite time, since its 

mean-square displacement can't grow beyond this finite region, it will not diffuse. 

This suggests that the limit is singular, and should be examined more carefully. 

So first, a change of variables must be made to make the integrand uniformly 

continuous. Second, the integrand itself contains another integral over a dummy 

variable which is a function of k. After the change of variables is made to insure 

uniform convergence, it also becomes a function of w. Thus, its asymptotic expan

sion as w -+ 0 must also be determined. At this point, it is important to note 

that it is necessary to go through these steps for two reasons: First, it must be 

determined whether the limit of the integral giving the diffusivity is really zero. It 

will be shown below that there is a factor in the integrand that tends to a delta 

function at k = 0 in the limit w -+ 0. This factor when integrated would give a 

finite result even though it goes to zero for all nonzero k. Whether or not the limit 

of the integral is still zero will thus depend on the asymptotic behavior of the other 

factors in the integrand. Secondly, even if the asymptotic behavior is still oc wP, 

where p is positive, so that the diffµsivity really is zero, it is of interest to know 

the value of p, so that it can be determined whether the mean-square displacement 

of the particle continues to grow in time even if slower than a diffusive rate (i.e., 

anomalous diffusion), or whether it asymptotes to a finite limit, so that the particle 

essentially never leaves a bounded region around its initial position. 

If the mean-square particle displacement asymptotes to Dtq, where q is a pos

itive number, and D is a diffusion coefficient (in a general sense), then the case 

q = 1 corresponds to the usual definition of diffusion, in the sense that Yang uses 

it. However, all other strictly positive values of q correspond to so-called anomalous 
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diffusion, in which the mean-square particle displacement still grows in time, but 

not at a linear rate. In particular, if O < q < l, then the diffusion coefficient as Yang 

calculates it, meaning the time derivative of the mean-square particle displacement 

(in the long-time limit), will be zero even though the mean-square particle displace

ment is growing in time. Therefore, to obtain a more complete understanding of 

the particle motion, the exponent p, discussed above (from which the exponent q 

can be determined), will be calculated here, since it is not given in Yang's thesis. 

Yang used the following expression for the diffusivity, 

lim 
D = 

0
7r(U(w )U(-w )), 

w-+ 
(1.52) 

and if the velocity autocorrelation function he obtained (i.e., with Assumptions 1 

and 2) is substituted into this, the result is 

D = lim fk=oo{ 611"µ2a [1 + a ~(l - i)] 
w-+ 0 Jk=O m V 2;; 

X [ 4>2( k, W )ek:i: 3 
( -ie1 + e3) + Ws( W )w 2 ( k, W )e°' 2 :e 3 (-~a.2 e1 + e3)] 

-
2
"a~,wi [i!i,(k,w).Ckx3 )(-ie1 + e3 ) + W,(w)>l!,(k,w)e0

'"' (- i~, e, + e,)]} 

x { 
6";,a [1+ a~(l -i)] 

x [ cl>2(k, -w )ek:i: 3 (-ie1 + e3) + Ws(-w )'1>'2(k, -w )e&2 :e 3 (-~i5t.2 
e1 + e3)] 

27ra3 p2wi [ ( . + m 4>2(k, -w )e kx3)(-ie1 + e3) 

+ w.(-w )'¥,(k, -w )e"'"' ( - i:, e, + ., ) l} 
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(1.53) 

where some of the quantities appearing here have been defined earlier in (1.16), 

(1.17), (1.18), and the rest are given by 

( 
2 iw)l/2 

0:1 = k + V1 ; (1.54a) 

( 
2 iw)l/2 

0:2 = k + V2 ; (1.54b) 

(1.55) 

(1.56) 

Since the derivation of this expression (which is just Equation (1.24) with all the 

transfer functions explicitly written) is given in Yang's thesis, it will not be repro

duced here. Since this integral is cumbersome, it is convenient to consider only the 

special case where the two fluids, though immiscible, have the same density and 

viscosity. The integrand simplifies considerably in this case, and there is no reason 

to suspect that the qualitative behavior in this case is any different from the case 

of general density and viscosity ratios ( except perhaps when they take on extreme 

values). 

In this special case, the expression for the diffusivity reduces to ( with only the 

(1,1) component shown here) 
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( 
. ) 1/2 

oo w k2 iw 

D _61rµaKBT lim 1 [hs 7 
11 - 2 0 e 1/2 

m 'Y w -t k=O k _ ( k2 _ i';) 

( 
. ) 1/2 

w k
2 
+ 7 [(k 2 iw)1/2 J] 

1/2 exp + - X3 

( k2 + i:) _ k V 

(1.57) 

where 

1
00 ds 

F(k) = A A ' 

-oo Hr(k, s )Hr(k, -s) 
(1.58) 

and Hr is now given by just 

A 2w2 pa 2 
Hr(k,w) = - k(k _ a) - ,k . (1.59) 

Now it should be clear that the terms 

( 
iw)l/2 

k- k 2 
- -

V 
(1.60) 
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are the reason why the integral is not uniformly convergent in this form. When 

k and w both go to zero, these terms vanish, but the order to which they vanish 

is unknown until what is generally called a "distinguished limit" is specified, i.e., 

the relative rate at which k and w go to zero. Thus, taking the w limit inside the 

integral in this form is clearly not legitimate. This difficulty can be removed by 

making the change of variables suggested by the form of the terms, namely, letting 

k = y'wu, (1.61) 

so that the diffusivity is now expressed as 

I . ) 1/2 

D 61rµa K,BT lim 1= [ ,,fwu-;r:. w \ U
2 

- ; 
11 = ---- e 3 ---'-----'---

m ,2 W ---, Q k=O ( 2 i) 1/2 u- u - -
V 

sin(a/if-) w(u2 
- t)1

12 

[ ( 2 i)l/2 J] 
+ ( /if-) 112 exp y'w u - - x3 

a .!!£. ( 2 i) V 
V U -; -U 

(1.62) 
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Now the limit may be commuted with the integral. As mentioned earlier, it is 

necessary to find the asymptotic expansion of the inside integral F( y'wu) as w -t 0. 

This is done in Appendix 1, where it is shown that 

k-t O, (1.63) 

which implies that 

w-tO. (1.64) 

If the other terms in the integrand are carefully expanded, it is then found that 

the entire integral goes like w 9 
/

4 • Thus, the particle is not undergoing anomalous 

diffusion; its mean-square displacement asymptotes to a finite limit as t -t oo. It 

remains essentially in a finite region. It is worthwhile to recall that this result is 

for the (unstable) case where the density of the two fluids are the same. Curiously, 

the instability does not affect this calculation; even the fact that infinite-wavelength 

deformations have infinite average amplitude when IJ.p = 0 is not enough to keep 

the particle moving outwards. If there was a density difference, the mean-square 

displacement would grow even more slowly at large times. 

The reason why infinite wavelength disturbances are not giving rise to a nonzero 

diffusivity can be traced back to the equilibrium calculations. The interface displace

ment ry(xs) has a mean- square equilbrium value, because the potential energy due 

to surface tension ( or gravity) has, after linearization, quadratic terms in the in

terface displacement. Loosely speaking, this means that the interface will continue 

indefinitely to wiggle a small amount around its initial plane. For the interface 

actually to diffuse, the (absolute) interface displacement (i.e., the average value of 
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17(xs) over the surface, a measure of how far the interface has left its initial plane), 

which may be denoted by h, would have to keep growing in time. This would be 

the case if there were a term quadratic in dh/ dt (rather than quadratic in h, as the 

gravitational energy is), in the potential energy expression. That this is so is clear 

by comparison with a particle, which diffuses because equipartition gives it a mean 

square energy of kT /2 for each translational degree of freedom and it has three de

grees of freedom corresponding to its kinetic energy mU2 /2. No such kinetic energy 

can be assigned to an interface if it is idealized as infinite, because it is not possible 

to associate a mass ( or inertia) to its rigid-body motion. Alternatively, if the kinetic 

energy associated with its rigid-body motion is taken to be the kinetic energy of 

all the fluid that it sets in motion, this energy would be infinite, and therefore the 

equilibrium correlation of dh/ dt would be zero. 

These considerations make it clear that the case of an infinite interface is dif

ferent from the case of a very large drop. It might be thought that to a very small 

particle near the large drop, the drop interface might cause the same effects as 

an infinite interface. This is not so, because the drop has translational degrees of 

freedom, and thus will diffuse, causing the small particle to diffuse, as shown above. 

It is also necessary to take into account the fact that in any real physical 

situation to which this analysis would be applied, the interface would not be infinite, 

but rather, the fluid would have boundaries. Suppose the two fluids were in a 

container. If the contained had a fixed volume and were entirely filled with the 

fluids, then the interface could not shift over by a constant amount because that 

would violate incompressibility. Even if the container were open and the top surface 

were free ( at atmospheric pressure) since the volume of the lower fluid is constant, 

the average absolute interface position would have to remain constant. This makes 
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it clear that in such a situation the interface has no translational degrees of freedom.. 

The only way that the interface could nevertheless give rise to a diffusivity of the 

small particle is if the transfer function referred to above as H flow did not have 

to go to zero as w -, O, i.e., in the steady limit. Above, it was stated that this 

function must always go to zero, but that was for an idealized infinite interface, 

where there are no boundary conditions, so there is always a solution to the problem. 

of finding the interface shape to support any applied steady norm.al stress. For a 

finite interface in a container, there are boundary conditions, namely, that the 

interface must meet the container walls at the contact angle, which is a property 

of the fluids and wall material. If there were no steady solution to the problem. 

of finding the interface shape to balance a given applied norm.al stress with these 

boundary conditions, then Hjlow would not have to go to zero as w does. Now it 

is known [13] that certain container shapes do not allow such a steady solution, 

for instance, containers having triangular cross sections. These nonexistence results 

are for the full nonlinear problem., however. It should be noted that in the above 

discussion it has been assumed that all displacements were small enough so that 

the equations ( and in particular the curvature term in the surface tension force) 

could be linearized, so that linear response theory could be used. The nonexistence 

results may not carry over to the linearized case. This would mean either that 

solutions would always exist for the magnitude of norm.al stress associated with 

random fluctuations, or that solutions actually would not exist in some containers, 

but it could not be proved that this leads to a nonzero diffusivity using linear 

response theory. A nonlinear stochastic system would have to be solved. This could 

be very difficult. 

None of these considerations change the essential observation that care must be 
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taken in idealizing an interface as infinite, as the results may not even be meaningful 

qualitatively. The actual nature of the boundaries, even if they are far away, may 

need to be known. It was pointed out earlier that taking into account fluid inertia 

(the part involving the square of the velocity, not just the part with acceleration) 

might change the above results, since then there would be kinetic energy associ

ated with steady interface motion. This could be done analytically by :finding an 

asymptotic solution for small Reynolds number. As a :final comment, it would also 

be interesting to see whether allowing the fluids to be slightly compressible would 

change the results qualitatively. 
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SECTION 2: AN ALTERNATIVE CALCULATION WITH A WEAK

ENED ASSUMPTION 1 

It has been shown above that with Assumptions 1 and 2, the mean-square 

displacement of the particle asymptotes to a finite value as t ---+ oo, rather than 

continues to grow at some rate slower than 0 (since its motion is not diffusive). If 

the force field the particle is placed in were white noise, the particle would definitely 

diffuse. Thus, the nature of the autocorelation of the force field must be such as 

to systematically tend to move the particle back right after it has pushed it out. 

Yang explains this in terms of the interface creating wavelike disturbances, with the 

particle essentially going around in circles. However, with Assumption 1, the fact is 

being neglected, that once the force field has pushed the particle away from its initial 

position, the particle now experiences the force at its new position. Even though an 

infinite time limit is being taken, so that loosely speaking the particle has plenty of 

opportunity to stray from its initial position, the force in the Langevin equation is 

still beiug evaluated at its iuitial position! It certainly seems reasonable to question 

whether the fact that the probability distribution for the particle position stops 

spreading after a very long time is perhaps just an artifact of this assumption. 

It was mentioned earlier that there is an available technique for dealing with 

the Langevin equation with a weaker assumption than Assumption 1. If the force 

can be expanded in a convergent Taylor series about the particle's initial position, 

then a type of approximate solution can be found, by a perturbation method that 

is very popular with physicists working with quantum field theory. The method is 

explained in Bern's thesis [14], and by Abrikosov et al. [15] among undoubtedly 

many other references. The perturbation scheme can be carried out efficiently to 

a large number of terms by using the "diagram technique," in which lines stand 
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for Green's functions; dots, crosses or other symbols for functions; and loops for 

autocorrelations (see Appendix 2 or [14]). While it may be necessary to use many 

terms to get a good approximation, what is mostly of interest here is the issue of 

whether using this method will qualitatively change the long-time behavior of the 

particle-position probability distribution. Will its mean square position now tend 

to infinity? Will it grow at a diffusive rate? 

The scheme is set up as follows. First, expand the force in the Langevin 

equation about the particle's initial position X 0 : 

dU I mp-+ B(t)[U] = F(x, t) 
di x=Xo 

= F(Xo, t) + e:v"F(Xo, t) · (X - X 0 ) 

+ e:2v"v"F(X0 , t): (X - Xo)(X - Xo) + .... (2.1) 

Then look for a solution of the form 

(2.2) 

Then by the usual procedure of collecting terms of each order in e:, the following 

equations are obtained: 

a2x< 1
) { ax<1)(t)} _ 

mp dt2 + B dt - F(Xo, t) 

m a2x(2) + B{ dX(2)(t)} = v"F(X t). (X(1) - X ) 
P dt2 dt o, 0 

a2x(3) B{ dX(3)(t)} = r7F(X ) . x(2) 
mp dt2 + dt v o' t 

+ v"v"F(Xo,t): (X(l) -Xo)(X(l) _ Xo) 

(2.3) 
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These equations have to be solved for the X(i) in terms of the force F at X 0 ( and 

its derivatives). Of course, what is actually known about F is the Fourier transform 

of its autocorrelation function. Thus, the solutions of these equations can only be 

used to get the autocorrelation of X, which is what is desired to determine the 

diffusivity. The fact that all these equations are of the form 

(2.4) 

where f(i) is the forcing function on the right-hand side, will be exploited. Take the 

Fourier transform of this "generic" equation: 

(2.5) 

where iJ is the unsteady mobility operator in Fourier space. It is just a multiplicative 

operator in this space, whereas it is a functional in time. From this it is easy to get 

~ ( i) - f( i) 
X - ~, 

[-w 2mp - iwB] 
(2.6) 

and the Fourier inversion formula now gives 

(2.7) 

These are the formulae to be used for solving the equations. From them, it is evident 

that 
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A (2) 1 Joo Joo [• A A (1) xj = . A ik1Fj(k1,k2,x3,w)X1 (w) 
[-w2mp - iwB] -oo -oo 

Now by noting that 

it is clear that 

+ ik2Fj(k1, k2, X3, W) 

d A A (1) + -d Fj(k1,k2,x3,w)[X3 (w)-d]dk1 dk2 
X3 

f/ 2
) = -iw.X~2

), 
J J 

1 1 

- [-w2mp -iw.B(w)] [-w12mp -iw'B(w')] 

X \ 1: 1: [-w2mp ~ iwfl(w)] 

Z3=d 

, { ik1 F';(k,, k2 ,d,w) 1: 1: F',(kr, k~, d,w)dkr dk~ 

+ ik2Fj ( k1, k2, d, W) 1-: 1-: F2 ( k~', k~', d, W )dk~
1 
dk~ 

(2.8) 

(2.9) 

+ dF';(k~::,d,w) 1.,-Jl: 1: F',(k;', k~ ,d,w)dk~dk~ - d] }dk1dk2 

J
oo Joo 1 

-oo -oo [-w'2
mp - iw' B( w')] 

· rk;F';(k;, k;, d,w') 1: 1: F',(k;", kt, d,w')dk;" dkt 

+ ik2Fj(k~, k~, d,w
1

) 1-: 1-: F2(kt, kg', d,w
1
)dk~

11
dkg' 

+ dF'j( k1, k2, d, w') I [Joo Joo F (km km d )dkm dkm - d] } 
d 

_ 1 1 , 2 , ,w 1 2 
X3 :2:3-d -oo -oo 
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(2.10) 

This expression is expanded into 27 terms in Appendix 3. It will not be necessary 

to deal with all these terms to answer the question of whether including these 

terms as first corrections to the velocity autocorrelation will allow the particle to 

"escape" from the bounded region it is essentially confined in to first-order. It is 

only necessary to observe that the terms are all of the general form 

(2.11) 

with the i1, i2, ... being general indices. Here, Q( w) -+ constant as w -+ 0. This is 

to be compared with the first-order approximation, which is of the form 

(2.12) 

It will be recalled that this latter expression behaved like w
914 as w -+ 0. If the 

asymptotic expansion of this integral for the first-order approximation, discussed at 

length earlier, is reexamined, and, in particular, if it is recalled that the variable k 

was changed to vwu to make it possible to approximate the integrand uniformly, 

it is found that the behavior of the above generic correction term can be found by 

inspection to be 

(2.13) 

Here, the factor 
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comes from the fact that by the first-order calculation, integrals of < FF > are 

known to behave like w 914, and the second-order terms look like < FF>< FF > 

(hence the squaring). The factor ( vw) 2 

is present because there are now the two 

additional factors kk in the integrand, and the change of variables gives a factor y'w 

for each factor k. The asymptotic behavior w 7 
/ 2 of the Fourier-transformed velocity

autocorrelation function means that correcting for the fact that the random forcing 

changes with position does not cause the particle to undergo any sort of diffusion, 

normal or anomalous, at least under the assumption that the forcing is only a weak 

function of position. 
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SECTION 3: AN ALTERNATIVE CALCULATION WITHOUT AS

SUMPTION 2 

While it may seem reasonable at first glance to model the :fluctuations using 

Assumption 2, namely, by putting only a random normal stress at the interface 

and a random force directly on the particle, in actuality there are :fluctuations 

throughout the entire :fluid. Moreover, there could be tangential as well as normal 

stresses at the interface. The discussion earlier about how motion of the particle 

due to interface :fluctuations is limited by the fact that surface tension acts like a 

spring pulling the interface back was valid for :fluctuations driven by normal stresses 

only. A :fluid element on the interface is free to move infinitely far in a tangential 

direction; there is no "spring analogy" for motion driven by tangential stresses. 

Thus, it is interesting to consider how alternatives to Assumption 2 could change 

the particle behavior. 

A classical finding of Landau and Lifshitz [11] is that the :fluctuations in an 

infinite :fluid are driven by a random stress tensor s with strength 

Hinch [2] has shown by applying a generalized Langevin analysis that for a rigid 

particle in an infinite :fluid, the "correct" (i.e., Stokes-Einstein) diffusivity, and the 

"correct" (i.e., in agreement with simulations) velocity autocorrelation long-time 

tail can be retrieved if the :fluctuations are modelled as driven by a random stress 

throughout the :fluid, with the same correlation as (3.1 ). Therefore, in the present 

work, the calculation of the diffusivity will be redone using this random stress 

instead of only the normal stress at the interface. In comparing the calculation to 
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be done below with Yang's approach of putting the driving random forcing only on 

the interface and the particle surface, it should be remembered that even though 

the particle will not be introduced in the calculation of the fluctuating velocity 

field here, since the random forcing is distributed throughout the fluid, some of that 

forcing corresponds to what was assigned to the particle surface by Yang. (This is 

just a consequence of the artificiality of Assumption 2, which puts all the forcing at 

the boundaries.) 

The strategy will be first to calculate the random flow field assuming there is 

a planar interface, but no particle. Then the particle will be placed in this flow 

field, and its motion will be calculated as if there is no interface ( except insofar 

as it generates the flow field). In this respect the calculation will be done just as 

in Yang's thesis, except, of course, that the random flow field will be different as 

discussed above. 

Thus, for the first step of the calculation, the equations of motion will be 

(3.2a) 

(3.2b) 

for fluid 1 (occupying X3 2:: O); and for fluid 2 (occupying X3 =:::; 0), 

(3.3a) 

(3.3b) 
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Here o: = p1 / p2 is the density ratio of the two fluids, and A = µ,1 / µ,2 is the viscosity 

ratio. The equations have been nondimensionalized, with the characteristic velocity 

taken to be kT / L 2 µ,, the characteristic stress and pressure kT / L 3
, and the charac

teristic length L (this is arbitrary; there is no length scale inherent in this problem 

until the wavelength of the interface disturbances is specified). S = p2kT / Lµ,~ is 

a Strouhal number. The tensor s is the random stress of (3.1). The boundary 

conditions at the planar interface X3 = 17( x1, x2) are the kinematic conditions 

(3.4a) 

continuity of tangential velocity 

(3.4b) 

continuity of tangential stress 

where t is either of two independent unit vectors tangent to the interface; and 

finally, the normal stress condition 

(3.4d) 

Here, r = 1 £ 2 /kT is a form of the reciprocal Capillary number, with , being 

the surface tension, and /3 = (p2 - p1 )gL4 /kT is a dimensionless measure of the 

gravitational force tending to restore the interface to its flat state. 
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Now Fourier transform these equations and boundary conditions according to 

1 100 1= 1= v = -( )3 v(x, t) exp[i(-k1x1 - k2x2 + iwt)]dx1dx2dt; 
21r -oo -oo -oo 

(3.5a) 

(3.5b) 

where v stands for any of the variables u(i),p(i),s(i), with i = 1,2. The equations 

(3.2) become, for fluid 1, 

(3.6a) 

(3.6b) 

(3.6c) 

(3.6d) 
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with the same equations holding for Fluid 2, if a and A are set equal to 1, and the 

superscript "(1)" is replaced by "(2)." 

Equations for the pressures p(l) and p<2) can be obtained by using continuity 

to eliminate the velocity. Taking ik1 times Equation (3.6a), plus ik2 times (3.6b ), 

plus _dd of (3.6c) gives 
:ll3 

( 'k )2 A(l) ( 'k )2 A(l) d
2 

A(l) - t 1 p - t 2 p - -p 
dx2 

3 

(3.7) 

which can be rewritten as 

(3.8) 

where cp = k? + k?, and 

(3.9) 

Similarly, the equations for the velocity can be rewritten as 

(3.10a) 
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(3.10b) 

(3.10c) 

with 

(3.lla) 

and the same equations hold for the components of uC 2
), with the superscript (1) 

replaced by (2), ,\ and a set equal to one, and c1 replaced by 

All these equations have the form 

which has the general solution 

u(x) = e-../cx 1x e2 VCY 1Y r(z)e-../czdzdy 

+ ae../cx + be-../cx, 

(3.llb) 

(3.12) 

(3.13) 

where a and b, which appear in the homogeneous solution, are arbitrary constants 

( determined by boundary conditions). The convention will be taken in the following 

that ✓ always stands for the positive branch. From this it is clear that the solutions 

are 
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(3.14a) 

(3.14b) 

(3.14c) 

(3.14d) 

and similarly for the pressure and velocity in fluid 2, if the superscript (1) is replaced 

by (2), and c1 is replaced by c2, and the constants Ai, Ai are replaced by Bi, Bi 

for i = 1, 2, 3, 4. Here, the quantities r have been defined for convenience by 

(3.15a) 

(3.15b) 

(3.15c) 
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The constants Ai, A~, Bi, B; are to be determined from the boundary con

ditions (3.4). Although the boundary conditions are in general nonlinear, only the 

first linear approximation for small flow and small deformation is sought here. Thus, 

the terms appearing in the boundary conditions, which are evaluated at x 3 = T/, 

are written as Taylor-series expansions about x3 = 0. Since only the first approx

imation is desired, it is easily verified that only the first term in the Taylor series 

must be retained; i.e., the terms are evaluated at x 3 = 0. The interface deforma

tion appears only in the linearized surface tension and gravity terms of the normal 

stress condition, and in the right-hand-side of the kinematic condition. Thus, the 

kinematic conditions (3.4a) become 

(3.16) 

After Fourier-transforming, this becomes 

(3.17) 

Substituting (3.14d) into this gives 

(3.18) 

Now consider the conditions of continuity of tangential velocity (3.4b ). To first 

order, they are 

(3.19a) 

(3.19b) 
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and after Fourier-transforming they become 

(3.20a) 

(3.20b) 

Substituting (3.14b,c) into these gives 

(3.21a) 

(3.21b) 

Continuity of tangential stress (3.4c) implies 

and 

These Fourier-transform to 

and 
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(3.23b) 

and substitution of (3.14b,c,d) into them gives 

(3.24a) 

and 

(3.24b) 

The last boundary condition is the normal stress condition (3.4d), which to first 

order is 

(3.25) 

This Fourier-transforms to 

(3.26) 

Substitution of (3.14d) into this gives 
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-Ai y'ci.\A~ -y'ci.\A4 +B1 +✓c;"B~ -vfc2B4+sg\o)-s~;) (0) = r(ki +ki)11+$17. 

(3.27) 

Thus, the boundary conditions provide 7 equations, namely, (3.18), (3.21), 

(3.24), (3.27), for determining the 17 unknowns Ai, Ai, Bi, Bi, i = 1, 2, 3, 4 and 

77, all of which are, of course, functions of the transformed variables w, k 1 , k 2 • Ten 

additional conditions come from the continuity equation and from the requirement 

that the flow should not grow exponentially in fluid 1 as x 3 -+ oo, and in fluid 2 as 

x 3 -+ -oo. Two of these conditions are immediate: Clearly, A~ = 0 and B~ = 0, so 

that the homogeneous pressure field doesn't increase exponentially. To derive the 

remaining conditions, it will be convenient first to rewrite the general solutions for 

the velocity field. First, by substituting the solution (3.14a) for the pressure into 

Equations (3.15), the following is obtained: 

(3.28a) 

(3.28b) 
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(3.28c) 

The continuity conditions will involve only the homogeneous parts of the solutions 

(i.e., the parts involving the unknown "constants" Ai, Bi, A~, B~, as opposed to the 

parts involving the stress fields). Use the letter w to denote this homogeneous part 

of the velocity field. Then it is clear from (3.14b,c,d) and (3.28) that 

The integrals in these equations can be evaluated to give 

Wil) = - ik1A1 (e-yep:z:3 - e-Fi:z:3) 
A( C1 - Cp) 

+ ik1A1 (eFt:z:3 - e-Ft:z:3) 
2).Jci( Fi+ y"c;) 

+ A;eFt:z:3 + A2e-Ft:z:3; 

(3.29a) 

(3.29b) 

(3.29c) 

(3.30a) 
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(3.30b) 

y"c;A1 ( eFi:z:3 - e-Fi:z:3) 
2,\✓c;-( Fi+ y'c;) 

+ A~eFi:z: 3 + A4 e-Fi:z:3. (3.30c) 

This time, the corresponding equations for the fl.ow in fluid 2 will be given explicitly, 

since they differ from those in fluid 1 in a less obvious way: 

(3.31a) 

(3.31b) 

(3.31c) 



Integration gives 

+ 
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y1c;B1 ( ey"c;:c3 - e-y'c2:c3) 
(cp - c2) 

y1c;B1 (ey'c2:c3 - e-y'c2:c3) 
2~(,lc;-~) 

B4ev'C2x 3 + B~e-v'C2:c 3 • 

(3.32a) 

(3.32b) 

(3.32c) 

From the fact that the homogeneous velocity solution should not grow expo

nentially at infinity, it is now immediately clear that 

(3.33a) 

(3.33b) 
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(3.33c) 

and similarly, 

(3.34a) 

(3.34b) 

(3.34c) 

Now impose the continuity requirement on the homogeneous velocity solution: 

and similarly for fluid 2, which gives 

ik1A2 + ik2A3 - ,Jc;:-A4 

+ [- Cp + Cp + FF ] A1 = O; 
,\( C1 - Cp) 2,\Jci"( Fi+ FF) 2,\( Fi+ FF) 

ik1B2 + ik2B3 + ,.;c;B4; 

[ 
Cp - y'c;y'c2 ] + --~--- B1 = 0. 

2y'ci( y'c; - y'ci) 

(3.35) 

(3.36a) 

(3.36b) 

(3.36c) 

(3.36d) 

Now all the 17 equations determining Ai,A~,Bi,B: (i = 1,2,3,4) and iJ have 

been derived. Since they are scattered throughout the above text, they are collected 

for convenience in Appendix 4. 
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The solution to this system of 17 algebraic equations is given in Appendix 5, 

since it is quite cumbersome. At this point the solution for the fluid velocity field is 

fully known in terms of the imposed random stress field. However, what is actually 

of interest is the velocity autocorrelation. From Appendix 5 it is evident that the 

velocity autocorrelation will involve not only terms like 

(3.37) 

appearing inside three-dimensional integrals, for Equation (3.1) can be used, but 

also terms like 

(3.38) 

(which arise because of the boundary conditions at x 3 = 0) appearing inside two 

dimensional integrals. If (3.1 ), which has a three-dimensional delta function, were 

substituted for these, the integral would formally give infinity, the value of the 

delta function when its argument is zero, because the range of integration would 

include the point where k1 = ki and k2 = k~. Of course, in actuality the stress 

field has a finite but macroscopically very small length scale, say La, over which it 

has a nonzero autocorrelation. Equation (3.1) holds on macroscopic length scales 

over which La can be approximated by zero. Thus, the delta function is only an 

approximation, and the real function has a finite height at zero. This height cannot 

be obtained without some further manipulations, however, since the coefficient in 

(3.1) gives only the area under the function. The way to evaluate terms like (3.38) 

will now be described. 

The desired autocorrelations, of the general form of Equation (3.38), are all of 

stress components at the interface, so instead of working with all components of s, 
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only components of n · s will be considered. To do this, it is first helpful to rewrite 

the desired autocor}·elations, which are of Fourier-transformed variables, to show 

explicitly the transform integrals: 

(3.39) 

To the order of approximation here, the interface is the plane x 3 = 0, so that the 

integrals here are over the surface that has e3 as unit normal. Thus, the divergence 

theorem can be applied, to give 

(3.40a) 

for Fluid 1, and 
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for Fluid 2. In these expressions, even though the stress field s< 1
) in Fluid 1 exists 

only for O :s; X3 :s; oo, and the stress field for Fluid 2 exists only for -oo :s; x3 :s; 

0, in writing these stress fields as the inverse Fourier transform of their Fourier 

transforms, for mathematical convenience, they have been imagined as extending 

to the entire space, so that complications of half-space Fourier transforms would 

not have to be introduced. For this purpose this extension is legitimate; however, 

the physically correct domains had to be used in applying the divergence theorem. 

By using the linearity of the expectation operator, (3.40a) can be rewritten as 

< n-s<1)(k1,k2,0,t)n•s( 1>(k~,k;,o,t') > 

= 1:_00 1:_001:0 1:-001:-001:0 

(3.41) 

and similarly for Fluid 2. By the usual methods of linear response theory, the 

autocorrelation 

(3.42) 

can be determined in terms of the known autocorrelation (3.1), which does not 

involve any derivatives. For convenience, rewrite (3.1) as 

( l) ( ) ( l) ( I I) < sij x, t skm X, t > 
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(3.43) 

where l = 1, 2. Then, 

&s(l)(x t) & (l) ( 1 t') 
( ij ' Smn x ' ) = -c~!) 811 (d )8(d )8(d ) 

& & i;mn 1 2 3 
X1 X1 

(3.44) 

(where, for brevity, d = ( d1 , d2, d3) = x 1 -xis introduced), with similar expressions 

where the partial derivatives with respect to x 1 are replaced by derivatives with 

respect to x2, or X3, and 

&s(l)(x t) & (l) ( d t') 
( ij ' Smn X + ' ) = -C~~) 81(d )8'(d )8(d ) 

& & i;mn 1 2 3 , 
X1 X2 

(3.45) 

with similar expressions where the partial derivatives with respect to ( x 1 ,x2 ) are 

replaced by derivatives with respect to (x1,x3), or (x2,x3). From this it follows that 

the (j, n) component of the tensor (3.42) is 

-[ci?in811 (d1)8(d2)8(d3) + c~?2n8(d1)8"(d2)8(d3) + c!~1n8(di)8(d2)811 (d3)] 

-Ci?2n8' ( di)8'( d2)8( d3) - c~?1n8'( d1 )8( d2)81 
( d3) - Ci?3n8( d1 )8' ( d2 )8' ( d3) 

Substituting (3.46) and (3.43) into (3.41) gives 
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[-cl:J1.8'' ( d, )S( d,)s( d,) - cl?,.•< d, )s" ( d, )S( d,) - ci?,.s( d, )S( d, )S" ( d,) 

-CiJ2n81(d1)81(d2)8(d3) - C~~>1n81(d1)81(d2)8(d3) - ct~n8(d1)18(d2)81(d3) 

-C~J1n8'(d1)8(d2)81(d3) - ct1n8(d1)81(d2)81(d3) - C~J2n8(di)81(d2)81(d3) 

( ·k ·k1 c< 1> ·k ·k1 c< 1> ·k ·k1 c< 1> ·k ·k1 c< 1> ) cc ')] + 1, 11, 1 ljl n + 1, 11, 2 lj2n + 1, 2 2 1 2jl n + 1, 2 2 2 2j2n u X - X 

(3.47) 

If it is assumed that the fluid is homogeneous, then the correlation coefficients, 

cfJ~n' which depend on temperature and viscosity, are independent of x 3 • In this 

case, all terms in the integrals involving 81(d3) or 8"(d3) , when integrated by parts, 

will give zero contribution. The rest of the integrals cancel, showing that 

(3.48) 

On the other hand, if the fluid is not homogeneous, and the cfJ~n depend on 

x 3 , the distance from the interface ( corresponding to either the viscosity, or the 

temperature, or both, varying in the x3 direction), then 
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5(t - t1)dx1 dx2dx 3 dx~ dx;dx;. (3.49) 

An interesting thing that has been recovered here is the observation made by Bren

ner [1 7] that an interface between two homogeneous fluids can be modelled as a 

finite region of rapid change in fluid properties rather than a (zero-volume) plane of 

discontinuity. The nonzero contributions to the integral in (3.49) will then come en

tirely from the small region of rapidly varying viscosity between the two bulk fluids. 

For the normal stress (j = 3, n = 3), the integral in (3.49), which depends on how 

rapidly the viscosity varies in this finite region, is accounted for in some lumped 

way by the surface tension and is therefore definitely nonzero. It corresponds to 

the autocorrelation (1.21) for the random normal stress on the interface, which 

was derived by modelling the interface as a discontinuity, with its own inherent 

properties distinct from the bulk (namely, surface tension), and having a random 

Brownian stress in addition to the fluctuating stresses in the bulk fluid. Whether 

or not the tangential stresses have a nonzero correlation, in the case where the 

two bulk fluids are assumed homogeneous, will depend on other fluid properties 

not included in Yang's analysis. These properties would presumably enter into the 

equilibrium correlations because there would be some component of the energy of 

the system associated with them. Thus, if the two fluids had "interfacial viscosity," 

the autocorrelation of the tangential stresses would be nonzero. 

It is, of course, also possible that the correlations will be nonzero because the 

bulk fluid is not homogeneous; i.e., the properties will not just vary rapidly in 

a small region around the interface, but will vary on a macroscopic length scale. 

This could occur if, for example, there was a temperature gradient in the fluid, 

or if surfactants were present on the interface. (Note that (3.48) also shows that 

some of the correlations would be nonzero if the fluid properties varied along the 
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interface.) In such a case there might well be a number of other effects not included 

in the analysis here, such as convective currents, or diffusion of surfactants. Also, 

if thermodynamic quantities such as temperature and concentration vary in the 

system, the equilibrium correlations may change. The internal energy appears in 

the probability distribution (1.12) for a canonical ensemble; this is appropriate only 

for an isothermal system. For a nonisothermal system, some other free energy must 

be used. Aside from these detailed considerations, it is interesting that it can at 

least be seen qualitatively from (3.49) how the tangential stresses at the interface 

could have a nonzero autocorrelation. 

Now all the above can be pieced together to get the fluid-velocity autocorrela

tion. While the particle velocity should really be obtained from the fluid velocity via 

the unsteady Faxen's Law, for simplicity, it will be assumed initially that the par

ticle moves affinely with the fluid. Since the limit of low frequency will be taken to 

get the diffusivity, this assumption is valid for a small enough particle. ( Of course, 

the unsteady Faxen's Law must be used to get the correct particle velocity autocor

relation, but that is another issue.) The full expression for the Fourier-transformed 

velocity at a distance x3 from the interface is 
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Again, the constants aij appearing here are given in Appendix 5. The autocorrela

tion function is by definition 

(3.48) 

and it has the form 

(3.49) 

where the tensor Cu can be determined from (3.47) in the obvious way (i.e., by 

taking the expectation of the product of the expression for the velocity evaluated at 

the unprimed argument times the expression for the velocity evaluated at the primed 

argument). Assumption 1 (the "frozen particle") is made again (for simplicity), 

and the assumption of affine motion is made, then the particle velocity is related to 

the fluid velocity by 

(3.50) 

Instead of being regarded as a variable, here x 3 is viewed as a parameter, namely, 

the distance of the particle from the interface. Now the particle diffusivity is given 

by 
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D = lim 'I'(w ), 
w-+O 

(3.51) 

where T( w) is the time-Fourier-transform of the particle autocorrelation defined in 

a different way, as for a stationary process: 

T(w)(r) =< V(t)V(t + r) >, (3.52) 

where it depends only on the time difference. By some manipulations ( transforming 

and inverse-transforming), it can be shown that 

(3.53) 

so that finally, the particle diffusivity is given by 

(3.54) 

In the expression for the velocity (3.45), some of the stress terms appear inside 

integrals over X3 ( these come from the particular solution for the velocity field 

driven by the random stress in the bulk), whereas other stress terms are not inside 

integrals, but are evaluated at x3 = 0 (since they come from imposing the boundary 

conditions). Since the purpose of the analysis is to determine whether the interface 

has any effect on the particle's diffusivity beyond the obvious change in mobility, 

it is the second type of stress term that should be considered, the type that is 
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evaluated at the interface, rather than is integrated over the bulk, and that thus 

depends on interface properties. Consider then the following two members of the 

expression for the velocity (3.45): 

(3.55) 

and 

(3.56) 

The term in (3.55), which involves the tangential stress in the "2" direction on the 

interface, will lead to the following term in the velocity autocorrelation: 

( s~;)(k1, k2, 0, w )s~;\k~' k;, O,w')) 

= (Cu)~1 (k1, k2, x3 ,w, k;, k;, x3, -w )( s~~\k1, k2, 0,w )sg)(k~, k;, 0, w')), (3.57) 

where a prime denotes evaluation at kL k~,w 1 instead of k1, k2,w. The term in 

(3.56), which involves the normal stress on the interface, gives rise to the following 

term in the velocity autocorrelation: 

( s~;)(k1, k2, o, w )sW (k~, k;, o, w')) 

= (Cu)~1 (k1, k2, X3, w, k~, k;, X3, -w )( sW(k1, k2, o, w )sW(k;, k;, o, w')). (3.58) 
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The superscripts "a" and "b" on ( Cu)f1 and ( Cu)~ 1 are merely to indicate that 

these each represent only one of a number of terms in the (1,1) component of the 

total velocity autocorrelation. Now by the calculation of the stresses at the interface 

given earlier, the stress autocorrelations appearing here can be written in the form 

of (3.49) (to show the delta correlation in time) as 

(3.59) 

and 

(3.60) 

where Sa and Sb are going to depend on the interface properties. Now by exami

nation of Equation (3.54), the contribution to the (1,1) diffusivity component from 

these terms will be 

100 100 100 100 Df1 = lim 
w-,.o -oo -oo -oo -oo 

(3.61) 

from (3.55), and 

100 100 100 100 D~1 = lim 
w-,.o -oo -oo -oo -oo 

(3.62) 

from (3.56). The integrands here turn out to be uniformly continuous, so that the 

limits can be commuted with the integrals. If it is assumed that the fluid proper

ties are such that the ( Cuni and ( Cu)t1 are nonzero, then whether or not these 
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contributions to the diffusivity are nonzero depends on the limits of the (transfer) 

functions sa and Sb. It is here that the difference between the tangential and the 

normal stresses at the interface is made evident. As w ----, 0, the transfer function 

sa, which relates fluid velocity to tangential stresses at the interface, approaches a 

finite limit. On the other hand, the transfer function Sb goes to zero in this limit. 

This latter result is consistent with the observation made in previous sections that 

the normal stresses at the interface cannot cause the particle mean-square displace

ment to grow indefinitely, because surface tension acts like a spring, preventing the 

interface deformations from growing indefinitely, and the surrounding fluid cannot 

be displaced with an amplitude growing faster than the interface displacements. 

There is, on the other hand, nothing to prevent an arbitrarily large displacement of 

a fluid element along the interface, and this is reflected in the fact that tangential 

stresses at the interface can give a contribution to the diffusivity. Whether or not 

real interfaces actually have such tangential stresses is, of course, open to question. 
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SECTION 4: A DIFFERENT DEFINITION OF PARTICLE DIFFU

SIVITY 

From the discussions in Sections 2 and 3 it is clear that as long as the "direct" 

forcing on the particle is ignored, if the mean-square displacement of the particle is 

plotted as a function of time, it will asymptote to a horizontal line. The definition 

of diffusivity that has been used in the above sections was the slope of this plot for 

very long times. It is of interest to see if the particle undergoes motion that can 

be regarded as diffusive at shorter times, specifically, short enough that its mean

square displacement has not approached the flat part, but long enough that there 

is still time for the particle to sample different interface configurations. The usual 

definition of the short-time diffusivity, which is the initial slope, will include the 

effect of the interface only insofar as it affects the particle mobility. Since the goal 

here is to determine whether the interface gives rise to other less obvious effects, 

the short-time diffusivity will not be calculated here (its calculation is essentially a 

purely hydrodynamic one). There is, however, yet another definition of diffusivity 

that can be used: the coefficient of any diffusion-type term that appears in the 

particle Fokker-Planck equation once the interface configuration variables have been 

"averaged out." This definition will now be made more precise. 

If the variables describing the entire system configuration are listed, namely the 

particle position X(t) and velocity U(t), and the interface deformation ry(t), it is 

clear that there is a Fokker-Planck equation for the entire system, i.e., an equation 

for the probability density P for finding the system in a particular configuration 

at a particular time, given some initial state. This equation will be linear in the 

probability density, although it will probably have nonconstant coefficients. One 

way to define a diffusivity might be to integrate this equation with respect to all the 
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coordinates except the particle position, and to try to rewrite the resulting equation 

in terms of a new probability density P' for just the particle coordinates ( where, of 

course, P 1 is just P integrated with respect to all the coordinates except the particle 

position). Were this possible, the diffusivity could then be defined as the coefficient 

of any "diffusion-type" term that appears in the resulting equation (i.e., any term 

involving '72 P'). However, since the coefficients of the Fokker-Planck equation for 

P are not constant, some assumptions about certain moments of P would have 

to be made before the integrated equation could be expressed solely in terms of 

P 1
• These assumptions could not be justified without knowing something about 

the actual solution. It should also be noted that since the interface configuration 

requires an infinite number of coordinates to describe it, "integrating" with respect 

to all the interface coordinates is integration over a function space rather than 

integration in the usual sense. 

A simpler approach in which the assumptions to be made are at least more 

evident, even if not more correct, is to start with the particle Langevin equation: 

dU 1= 1= mpdt + B(t)[U] = _
00 

_

00 

F[77(xs, t); (k, d,w)]dk1dk1 + A(t). ( 4.1) 

Here, the functional dependence of the indirect random forcing F on the interface 

deformation 77 has been explicitly shown. What is desired is to average out rJ. 

The only known probability distribution for 17 is the time-independent equilibrium 

distribution. The time-dependent (second-order) autocorrelations are known, but 

that is far less information than knowing the actual time-dependent distribution. 

In principle, higher-order autocorrelations could be calculated by making some as

sumption about the random forcing being Gaussian ( so that higher-order moments 
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would be given by products of second-order ones), and the probability distribution 

could be retrieved from all the autocorrelations of all orders ( or approximated by 

using a finite number of the autocorrelations). This would be a very complicated 

calculation, however. It would be simpler just to average over the equilibrium dis

tribution. The first problem that arises in doing this is that the forcing depends 

on time derivatives of 77 as well as on 77, if it is computed from the full unsteady 

hydrodynamic problem. The equilibrium distribution, coming from thermodynamic 

considerations, gives no information about time derivatives. This can be bypassed 

by assuming that the interface starts out with the initial configuration but that the 

fluid is initially quiescent. The relaxation of the system can then be calculated from 

the unsteady hydrodynamic equations with these initial conditions, and the force 

on the particle as a function of time due to the flow field can be calculated. The 

second problem, mentioned earlier, is that this averaging involves an integration 

over function space, which is essentially an infinite number of integrals. To put this 

integration in more concrete terms, choose a basis: 

( 4.2) 

so that any 77 can be written as 

( 4.3) 

To get an approximate result, truncate this expansion after N terms: 

( 4.4) 
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Then the interface configuration is approximately described by the finite set of 

coordinates { ao, a 1 , a2, ... , aN }. The average mean-square force then becomes 

f f · · · ( F[77(xs,t);(k,d,w)]F[17(xs,t);(k,d,w)]P(ao,a1,a2,.,.,aN)• (4.5) Jao Ja1 JaN 
The probability distribution for the truncated set of coefficients can be determined 

from the full probability distribution by renormalizing it. Yang [10] found the 

equilibrium probability distribution to be (cf. (1.12)) 

Here, N is a normalization constant, which cannot really be determined without con

sidering integration over some infinite-dimensional space. However, this equation 

gives the relative magnitudes of probabilities for different configurations 77, which is 

all that is needed to determine the normalized distribution for the projection onto 

a finite-dimensional space. 

A natural choice of a basis is the set of functions 

[
1,y · X] 

7Jm=exp---;;;-, ( 4.7) 

which are spatially periodic, with a decreasing wavelength as m mcreases. The 

maximum wavelength this set allows is y, which should therefore be chosen on the 

order of the maximum dimension of the system of interest. In fact, it will be far 

more convenient to consider these functions over only a bounded range (i.e., have 

1Jm = 0 outside this range), since they give infinity when integrated over the whole 

space. The choice of N, the number of terms in the expansion, is determined by 
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how far towards the other extreme of short wavelengths it is necessary to go; the 

shorter the wavelength, the more improbable the configuration, since it will have a 

higher energy associated with it because of surface tension. 

With this choice of basis, the probability distribution becomes 

(4.8) 

It is necessary now to have a solution to the hydrodynamic problem for flow 

with an interface initially stationary with a specified deformation away from the flat 

state. This is similar enough to the hydrodynamic problem solved in Section 3 that 

the equations can be taken from there with a few modifications. In Section 3 the 

problem of flow driven by an imposed stress throughout the fluid was solved. Only 

the homogeneous part of this solution is needed here, since the flow is driven by 

the initial interface condition rather than by a forcing in the equations of motion. 

From Section 3, the homogeneous velocity field in fluid 2 is: 

( 4.9a) 

( 4.9b) 
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( 4.9c) 

where the constants were determined from the boundary conditions, the application 

of which resulted in the equations in Appendix 4. Here, the quasi-steady problem 

is to be solved, so that the frequency w will be set to zero. This means that 

c1 = c2 = cp. The two kinematic conditions (A4.1) and (A4.2) must be replaced 

by the one condition 

(4.10) 

Also, there is no random stress field throughout the fluid in this problem, so that 

all the terms s~2 ( 0) that appear in Appendix 4 will not appear in the boundary 

conditions here. Apart from these changes, the same equations as in Appendix 4 

can be used. The solution to these equations is given in detail in Appendix 6, but 

will be written here as 

( 4.11) 

so that if affine motion is assumed (i.e., very small particle), the mean-square ve

locity is 

< w?)(k1,k2,x3)w?\k1,k2,x3) >= 

J Gi( k1, k2, x3 )iJ( k1, k2 )Gi( k1, k2, x3 )iJ( k1, k2 )P[iJ( k1, k2, t)]d17, ( 4.12) 

where now P[iJ(k1 ,k2 ,t)] is the probability density in Fourier space. This can be 

related to the density in physical space by the Plancherel theorem, which states that 
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the Fourier transform is an isometry; i.e., if f(x) and f (k) are a Fourier transform 

pair, then 

From this it is evident that 

Thus, the fluid-velocity autocorrelation becomes 

f Gi(k1, k2, x3)'1J(k1, k2)Gi(k1, k2, x3)ry(k1, k2)P[ij(k1, k2, t)] 

f P[ij(k1,k2,t)]d17 

( 4.13) 

( 4.14) 

( 4.15) 

Once again the assumption will be made that the particle velocity can be approxi

mated by the fluid velocity at the particle's initial position x1 = 0, x2 = 0. (To get 

a better approximation, the perturbative method discussed in Section 2 could be 

used.) With this simplest assumption, the mean-square particle velocity becomes 

If the basis of functions suggested earlier is used, this becomes 
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[JG;( ki, k2, x,) (t, a;i);( k1, k2)) G;(k1, k,, x,) 

(t, am,Jm(k1, k,)) P[,j(k1, k,)]da,da, · · · daN] 

[! P[,j(k1, k, )]da1 da2 · · · daN i-, dk1 dk2 . ( 4.17) 

Another way of approaching this is to regard the T/j 's as "trial functions," and the 

mean-square particle velocity as a functional. As more and more linearly indepen

dent trial functions are used, the estimate for the mean-square velocity improves. 

By analogy with the Stokes-Einstein result, where the particle diffusivity is 

twice the mean-square velocity divided by the steady mobility, the (dimensionless) 

particle diffusivity will be assumed, for simplicity, to be given by 

( 4.18) 

with <, UiUj > as given above in ( 4.17). More detailed calculations than the 

above could be carried out, for instance by using the Faxen's Law for the force 

on a finite-sized particle placed in a flow field rather than assuming affine motion. 

However, the above illustrates that a nonzero diffusivity can be calculated by this 

method. The assumption made here is that the equilibrium distribution of interface 

configurations gives a representative sample of the configurations that the particle 

sees as it undergoes random motion. While it has been shown earlier (subject to 

certain assumptions) that the particle will eventually asymptote to a finite mean

square displacement and will remain within a finite region, it is conjectured that 
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the diffusivity derived above gives the rate at which the particle's mean-square 

displacement grows for shorter times when it has not yet neared its limiting value. 
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Appendix 1 to Chapter IV 

In this appendix, the asymptotic expansion for k --+ 0 of the integral 

Joo ds 
F(k) = A A ' 

-= H1(k, s )H1(k, -s) 

where if 1 is given by 

and 

( 
2 is) 1/2 

a= k -- , 
V 

will be determined. Here the square-root sign will always refer to the positive branch 

of the square-root function. The difficulty lies in the fact that the integrand cannot 

be uniformly approximated, because the nature of the expansion of terms like 

will depend on the relative magnitudes of k and s. This motivates the following 

change of variables. Let 

s 
T=--• 

vk 2 ' 

(these have also been chosen to be dimensionless). A few manipulations then give 

that 
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To avoid dealing with the factor 2, let 2( = E, and define for convenience 

to get rid of some more factors temporarily. It also proves to be convenient to make 

one further change of variables, 

So, finally, the integral to be dealt with is 

where 

I( E) = 1= . d0 . . 
-

00 [-02 ~ - 1] [-02 ~ - 1] 
1-✓1-i0/E 1-✓1+i8/e 

The only evident way to deal with this integral analytically is to use contour 

integration. The poles can be found only approximately. If the following definitions, 

!(0)=-02 ✓1-i0/1: -1, 
1- Jl - i0/1: 

g(0) = -02 J1 + i0/1: - 1, 
1 - Jl + i0/1: 
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are made, then it is clear that if 0a is a zero off( 0), then -0a is a zero of g( 0). To 

solve the equation f ( 0) = 0, the square-root terms are collected on one side of the 

equation, and both sides of the equation are then squared, resulting in a quartic 

equation for 0. Two of its four roots are spurious solutions that arise from squaring. 

The other two are actually solutions to f ( 0) = 0. They can be shown to be given 

approximately by 

and 

so that g( 0) must have zeros approximately at 

and 

1 - i 1/4 0b = 1- --E 
2v'2 ' 

Figure 1 shows the relative location of these roots, as well as the branch cuts for 

the functions J1 + i0 / y1E and J1 - i0 / y1€, and the keyhole contour ( which avoids 

crossing the branch cuts so as to remain in a domain of analyticity), chosen for 

integration. This contour is closed in the upper half-plane, so that there will be two 

residues, from 0a and 0b. The residue from 0a is 

lim 0 - 0a 
0 -t 0a f(0)g(0)' 

which by L'Hospital's rule is 



IV-75 

lim 1 1 
0-, 0a f~ + g!!i... - g(0 ) df(0,.). 

d0 d0 a d0 

Similarly, the residue at 0b is given by 

lim 1 1 

0-, 0b f¥ti + g* - f(0b)dgi:&). 

After some tedious calculations it is found that (approximately) 

so that the sum of the residues is 

1 1 1 
~ 8 

Therefore, by the Cauchy integral theorem, 

I( ) - 21ri Jdown J Jup 
E - - - B - BP - B ' 

8 

where Itown is the integral going down on the left side of the branch cut, IBP is 

the circular integral around the branch point, and Itown is the integral going up on 

the right side of the branch cut. These integrals, which are easier to handle because 
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their integrands can be uniformly approximated for small 1:, will now be considered. 

First of all, since the integrand does not have a pole at the branch point, IBP will 

obviously go to zero as the keyhole contour is moved closer and closer to the branch 

cut. So it can be ignored. Now let the path along the branch cut (i.e., along the 

imaginary axis) be parameterized by the real number t, so that 0 = it. The angles 

a and o: shown in Figure 1 were chosen so that the desired positive branch of the 

square-root function can be obtained by choosing 

and 

( i0 ) I i0 I ·-1 - ,JE = 1 - V€ e"\ 

so that 

( 
i0) 1/2 I i011/2 fo/2 1+- =1+- e, 
V€ V€ 

and similarly, 

( 
i0 ) 1 /2 - I i0 11 /2 i&/2 1-- -1-- e. 
V€ V€ 

Along the branch cut for J1 + i0 / ,JE, it is clear that a = 0, and that a = -1r on 

the "left side" of the branch cut, whereas a = 1r on the "right side" of the branch 

cut. From all this it is clear that on the left side, 

( 
i0 )1/2 ·1 t 11/2 

1 + V€ = -i 1 - V€ ; 
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whereas on the right side, 

( 
i0)1/2 ., t 11/2 l+VE =il-VE ; 

( 
i0 )1/2 I t 

1

112 
1-- = 1+- . 

VE VE 
Substituting this into the integrands gives 

10 idt 
J~own + J1f/ = oo 

[-( it)2 (-i)f'F - 1] [-( it)2 ~ - 1] 
1-(-i)~ 1-~ 

1
00 idt 

+ 0 [-(it)2 i{tFi -1] [-(it)2 ~ -1] 
1-i~ 1-~ 

= 0 + o(l). 

In other words, the integrals along the branch cut contribute only at higher order. 

Th us, finally, 

lim I(c) = 1ri, 
c-+ 0 4 

a somewhat surprising result since it would be guessed by inspection that the inte

gral would be real ( since it contains two factors that look like complex conjugates) 

and that it would go to infinity as € -+ O, since naively bringing the limit inside the 

integral ( an illegitimate operation, of course) gives a divergent result. 

Thus, 
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as€-+ 0 , so that 

ask-+ 0 ' the desired result. 
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Appendix 2 to Chapter IV 

In this appendix, the rules for constructing diagrams to represent the perturbatioa 

solution of the stochastic differential equation 

L{X} = F(X(t), t), 

where Lis a linear operator with a known Green's function G, will be given. This 

shorthand notation is useful since these perturbation calculations result in many 

terms, even for just the first correction ( and higher-order corrections are extremely 

complicated). It gives a convenient and simple overview of the perturbation scheme. 

The symbols will stand for factors in the integrand. A thin line with an arrow 

(pointing forward in time) will stand for the Green's function. A thin line termi

nating in the symbol p( i) will stand for a factor of v' ... v'F ( with i v' operators) 

( all evaluated at the initial particle position X 0 ). A thick line terminating in the 

symbol X will stand for a factor of X - X 0 (the particle displacement), which, of 

course, is the variable being solved for. 

It is assumed that the function F(X(t), t) can be expanded in a Taylor series 

about X 0 so that 

L{X} = F(Xo, t) 

+ v'F(Xo, t) · (X(t) - Xo) 

+ v'v'F(Xo, t) • (X(t) - Xo)(X(t) - Xo) 

+ v'v'v'F(Xo, t) · (X(t) - Xo)(X(t) - Xo)(X(t) - Xo) 

+ ..... 
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Thus, the solution X(t) is the linear superposition of the solutions to the following 

series of equations, where some approximation for X must be substituted for X 

wherever it appears in the right-hand side: 

L{X} = F(Xo, t); 

L{X} = v'F(Xo, t) · (X(t) - Xo); 

L{X} = v'v'F(Xo, t) • (X(t) - Xo)(X(t) - X 0 ); 

L{X} = v'v'v'F(Xo,t) · (X(t) -Xo)(X(t) - Xo)(X(t) -X0 ); 

If it is recalled that the solution to L{X} = R, where R stands for a general 

right-hand-side term, is X = JG R, where G is the Green's function ( and the 

arguments of the functions are suppressed here for simplicity), then it is evident 

that the diagram representation of the solution is given by Figure 2, and then, by 

replacing the unknown solution by its approximations to various orders, the diagram 

representation of Figure 3 is obtained. To get the autocorrelations, these diagrams 

are "glued" together in all possible combinations. Any diagram with a "dangling" 

end, i.e., an odd number of random terms, will represent a zero correction. The 

diagrams for the autocorrelations are shown in Figure 4. 
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Appendix 3 to Chapter IV 

In this appendix, the first correction to the velocity autocorrelation of the 

Brownian particle considered in Section 2 of Chapter IV, which is due to the fact 

that the forcing depends on the particle's position, is given: 

< 0-~ 2
)( w )0-<2>( w') >= : A 

3 m (-iw)(-iw')[-iwmp + B(w)]2[-iw'mp + B(w1 )]2 

x 1_: 1_: 1_: 1_: 1_: 1_: 1_: 1_: I(k1,k2,k~,k;,k~
1
,k;

1
,kt,kt,w,w1

) 

dk1 dk2 dk~ dk; dk~' dk~ dkt dkt, 

where 

I(k k k l k' k" k" k111 k 111 
') 1, 2, 1, 2, 1, 2, 1, 2 ,w,w 

=( ik1Fj(k1, k2, d, w )F1 (k~', k;', d, w )ik~Fm(k~, k;, d, w1)F1 (kt, k;'1, d, w')) 

+\ ik1Fj(k1, k2, d, w )F1(k~', k;', d, w )ik;Fm(k~, k;, d, w1)F2(k~11
, kt, d, w')) 

+\ .k FA·(k k d )FA (k" k" d · )BFm(k~,k;,d,w')I FA (k 111 k 111 d ')) 
i 1 J 1, 2, ,w 1 1, 2, ,w 8 3 1' 2' ,w 

X3 X3=d 

+\ ik2Fj(k1, k2, d,w )F2(k~1
, k;', d, w )ik~Fm(k~, k;, d,w')F1 (kt, kt, d, w')) 

+\ ik2Fj(k1, k2, d,w )F2(k~1
, k;1

, d, w )ik;Fm(k~, k;, d, w1)F2(kt, k;'', d,w')) 

+\ .k FA·(k k d )FA (k" k', d )8Fm(k~,k;,d,w')I FA (km km d ')) 
i 2 J 1, 2, ,w 2 1, 2, ,w 8 3 1' 2' ,w 

X3 X3=d 

+\ BFj(k1,k2,d,w)1 FA (k 11 k" d )·k1FA (k' k' d ')FA (k 111 k 111 d ')) 
8 3 1, 2, ,w i 1 m 1, 2, ,w 1 1, 2, ,w 

X3 x3=d 

+( BFj(ki,k2,d,w)I FA (k" k" d )·k1FA (k' k' d ')FA (k 111 k"' d ')) 
8 3 1, 2, ,wi 2 m 1, 2, ,w 2 1, 2, ,w 

X3 x3=d 

( 8Fj(k1,k2,d,w)I FA (k" k" d )8Fm(k~,k;,d,w')I FA (k"' k"' d ')) + 8 3 1' 2, ,w 8 3 1 ' 2 ' ,w . 
X3 X3=d X3 2!3=d 
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It has been assumed that the forcing function F is Gaussian, since it is a linear 

functional of the random normal stress, which is assumed to have a Gaussian distri

bution. It is well-known [17] that if x1, Xz, X3, X4 are arbitrary Gaussian random 

variables with zero mean, then 

and 

with< · > as usual denoting the expectation operator, or ensemble average. There

fore, the above 9-term expression for the velocity autocorrelation can be expanded 

into the 27-term expression, 

I(k k k l k' k11 k 11 k"' k"' ') 1,2, i, 2, 1, 2, 1, 2,w,w 

=ik1ik~ ( Fj(k1, k2, d,w )F1 (k~', k;', d, w)) ( Fm(k~, k;, d, w1)F1(kt, kg', d, w')) 
+ik1ik~ ( Fi(k1, k2, d, w )Fm(k~, k;, d, w')) ( Fi(k~', k;', d,w )F1(k~11

, kg', d, w')) 

+ik1ik~ \ Fi(k1, k2, d,w)F1 (kt, kg', d,w')) \ F1(k~1
, k;', d, w )Fm(k~, k;, d,w')) 

+ik1ik; ( F'j(k1, k2, d, w )F1 (k~', k;', d, w)) \ Fm(k~, k;, d, w1)F2(kt, kg', d, w')) 
+ik1ik; ( Fj(k1, k2, d, w )Fm(k~, k;, d, w')) \ F'1 (k~', k;', d, w )F2(kt, kg', d, w')) 
+ik1ik; \ Fj(k1, k2, d, w )F2(kt, kg', d,w')) \ F1(k~1

, k;', d, w )Fm(k~, k;, d, w'))) 
. ( A A 11 11 )(8Fm(k~,k;,x3,w

1
) I A ( 111 111 d ')) +ik1 Fj(k1,k2,d,w)F1 (k1,k2,d,w) ox

3 
z

3

=dF3 k1 ,k2, ,w 

. ( A )OF'm(k~,k;,x3,w') I )( A ( 11 k'' d )FA (km k,,, d ')) +ik1 Fj(k1,k2,d,w 
O 

F1 ki, 2 , ,w 3 1 , 2 , ,w 
X3 Z3=d 
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+ik1 / Fj(k1, k2, d,w )F3(kt, kg', d, w')) / F1 (k~1, k;1, d, w) &Fm(k~;/~' x3' w') I ) 
\ \ X3 X3=d 

+ik2ik~ ( F'j(k1, kz, d,w )F2(k~1
, k;1, d,w)) (Pm(k~, k;, d, w1)F1(kt, k;'1, d, w')) 

+ik2ik~ ( Fj(k1, kz, d, w )Fm(k~, k;, d, w1
)) ( F2(k~', kg, d,w )F1 ( k~11

, kg1, d, w')) 

+ik2ik~ ( Fj(k1, k2, d, w )F1 (kt, kg', d, w')) ( F2(k~', k;1, d, w )Fm(k~, k;, d, w1
)) 

+( ik2Fj(k1, k2, d,w )F2(k~1
, k;', d,w)) ( ik;Fm(k~, k;, d,w 1 )F2(kt, kg', d,w')) 

+ik2 ( Fj(k1, k2, d, w )ik;Fm(k~, k;, d, w')) ( F2(k~1
, k;', d, w )F2(kt, kg', d, w')) 

+( ik2Fj(k1, kz, d,w )F2(kt, k;1', d,w')) ( ik;Fm(k~, k;, d,w 1 )F2(k~', k;', d, w)) 
'k (A (k k, d )A (k', k" d ))(&Fm(k~,k~,x3,w')I A ( ,,, ,,, ')) +i 2 Fj 1, 2, , w F2 1 , 2 , , w 

O 
F3 k1 , k2 , d, w 

X3 X3=d 

'k (FA (k k d )&Fm(k~,k~,x3,w,) I )( A ( " " ) A ( ,,, ,,, ,)\ +i 2 i , 1, 2, , w " F2 k1 , k2 , d, w F3 k1 , k2 , d, w , 
dx3 lx 3 =d I 

+ik2 / Fj(k1, k2, d, w )F3(kt, k;i', d, w')) / F2(k~1
, k;', d, w) &Fm(k~D k~, x3, w,) I ) 

\ \ X3 x3=d 

+ 'k'(&Fj(ki,k2,x3,w)I P.(k 111 k 111 d '))(FA (k" k" d )FA (k' k' d ')) 2 2 f) 2 1, 2, ,w 3 1, 2, ,w m 1' 2, ,w 
X3 X3=d 
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Appendix 4 to Chapter IV 

This appendix lists the 17 equations determining Ai,A~,Bi,B: (i = 1,2,3,4) and 

iJ. These are the "constants" ( actually functions of Fourier-transformed variables) 

appearing in the general solution for the velocity field ( driven by the random stress) 

that must be determined: 

A A l • h 

4 + 4 = -zw77; 

B B l • h 

4 + 4 = -2w77; 

and 

= r(ki + k~)iJ + /3iJ; 

(A4.1) 

(A4.2) 

(A4.3) 

(A4.4) 

(A4.5) 

(A4.6) 

(A4.7) 
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A~= O; (A4.8) 

B~ = O; (A4.9) 

(A4.10) 

(A4.11) 

A
l _ ,/i:;A1 
4-

2,\ fo ( fo + Jc;) ; (A4.12) 

(A4.13) 

(A4.14) 

B~ = _ Jc;B1 
2\l'c2( Fz + yrc;). 

(A4.15) 

(A4.16) 

(A4.17) 
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Appendix 5 to Chapter IV 

This appendix gives the solution to the system of 17 algebraic equations listed 

in Appendix 4: 

(A5.l) 

(A5.2) 

(A5.3) 

(A5.4) 

(A5.5) 

(A5.6) 

(A5.7) 

(A5.8) 

(A5.9) 
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A~= O; (A5.10) 

B~ = O; (A5.11) 

(A5.12) 

(A5.13) 

(A5.14) 

(A5.15) 

(A5.16) 

(A5.17) 

where 

Cp r,;-;:: 
a1=,--:;::=---===:--:--:---+ yCP ( ✓ci + .Jci)( Jci + -Xfo) -X( fo + .jci) ; 

(A5.18) 

a2 = - Cp 
( Jci + .jci)( y'C2 + -Xfo); 

(A5.19) 
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ik2 
as = -----; (A5.22) 

Fz+Ayci 

Cp 
a6 = (-Jc-;.+ ,;\yci)(Jci +FF); (A5.23) 

FF cp( Jci"A - -Jc-;.) -Jc-;. FF 
a1 - -- + ----~------'---- + ----'--~--· (A5 24) 

- 2-Jc-;_ 2-Jc-;_( -Jc-;_+ FF)( -Jc-;_+ Ayci) 2fo( -Jc-;_+ FF) ' . 

icpw(>.-1) . 
as = - ;;;:: , ~ + iwvcz; (A5.25) 

yC2 + AyCl 

-Jc-;_ +Ayci' 
(A5.26) 

(A5.27) 

Jci a7a3 - a2as fo a1as - a6a3 
a11 = ---------- + ---------

Jci + FF a1a1 - a2a6 fo + FF a1a1 - a2a6 

+iw( .Jez+ Ayic1"") - rep - /3; (A5.28) 

(A5.29) 
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yC2 a1a10 - a6as. 

Fz + vcP a1a1 - a2a6 ' 
(A5.30) 

(A5.31) 

(A5.32) 

(A5.33) 

(A5.34) 

(A5.35) 

a6a3 - a1as 
a19 = ; 

a11 ( a1 a7 - a2a6) 
(A5.36) 

(A5.37) 

(A5.38) 
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(A5.39) 

- ik1 ( Jci.X - y'c2) a1 r] · 
2Fz( Fz + FF) ' (A5.40) 

(A5.41) 

(A5.42) 

(A5.43) 

(A5.44) 
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1 [ 1 ik2 (1 - 2.XyfcI) 
a2s = ---- --kzw(.X- l) + -------a16 02 + Aylcl au 2.XF( ylci" + ftp) 

ik2(l - y1c1>. + 02) 
+----'-------'--a19; 

202( 02 + ftp 

_ ik2( y1c1>. - 02) a
17

] • 

202( 02 + ftp) ' 

ik2 ( yfci"A - 02) l 
- a1s · 202( 02 + ftp) ' 

1 [ 1 ik 2 
a31 = ;;;:: , r,:;:- - -kzw( >. - 1) - ( VC1 ftp) a16 

yC2 + AyC1 au C1 + Cp 

ik2(y1c1>. - 02) l - a19 202( 02 + Jcp") . 

(A5.45) 

(A5.46) 

(A5.47) 

(A5.48) 
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Appendix 6 to Chapter IV 

This appendix gives the solution for the constants appearing in the expression 

for the quasi-steady flow field that results when the interface initially has a specified 

deformation ry(x). 

A __ 2ik1 (3 + >.) rep+ /3 . 
2 - 8).2 + A + 3 ep 77, 

2ik2 (3 + >.) 
A3 = - (8).2 +). + 3)ep 77; 

A _ 2(1 - >.) (rep + /3) . 
4 - (8>.2 + >. + 3) FF 77, 

16). 
B1 = (8>.2 +). + 3) (rep+ /3)77; 

B2 = -(ik1)(7>. - 3)(rep + /3)(8>.2 +). + 3)ep77; 

B3 = -(ik2)(7>. - 3)(rep + /3)(8>.2 + >. + 3)epry; 

3(5>. - 1) rep+ /3 
B4 = (8).2 +). + 3) FF 17; 

(A6.1) 

(A6.2) 

(A6.3) 

(A6.4) 

(A6.5) 

(A6.6) 

(A6.7) 

(A6.8) 

The constants A~, A;, A;, A~, B~, B~, BL and B~ are given by equations (A4.8) 

through (A4.15) of Appendix 4, combined with the above equations (A6.1) through 

(A6.8). (For brevity, they will not be written explicitly here). 
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CHAPTER V 

On Unsteady Heat Conduction and Unsteady Stokes Flow 
with Two Spheres 
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While steady heat conduction and zero-Reynolds-number fluid flow around two 

spheres have been investigated by exploiting the separability of Laplace's equation 

in bipolar coordinates, the corresponding unsteady problems seem only to have been 

investigated by approximating the spheres as point forces, or by using the method 

of reflections, on account of the failure of the Helmholtz equation to separate in 

bipolar coordinates. There is reason to believe that more accurate hydrodynamics 

will show some effects missing in these solutions. For example, Hassonjee, Ganatos 

and Pfeffer [1] have solved for steady Stokes flow around clusters of more than two 

spherical particles by using addition theorems for spherical harmonics to expand the 

eigenfunctions in one coordinate system in terms of the other, with each particle 

having a spherical coordinate system centered on it. (This general idea was probably 

first used in electromagnetic theory for problems with two spheres, and it appeared 

in Jeffery's [2] paper on heat conduction). Hassonjee, et al. [1] found "multiparticle 

interaction effects ... which would not be present if only pair interactions of the 

particles were considered." While their solution method is still approximate in a 

sense, namely, in that only a finite number of eigenfunctions can be used in the 

solution expansion, it seems to approach the exact solution within a reasonable 

amount of computational time. 

This general approach of using more than one coordinate system can also be 

used for unsteady Stokes flow, since it is possible to expand the eigenfunctions of 

the Helmholtz equation in one spherical coordinate system in terms of the eigen

functions in the other spherical coordinate system. This should have application to 

suspensions of spherical particles moving with small amplitude but at high frequen-

c1es. 

In general, these expansions of eigenfunctions in one coordinate system in terms 
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of eigenfunctions in another coordinate system lead to an infinite nontriangular 

system of algebraic equations for the coefficients, so that it is not possible to solve 

for the first n coefficients without making the approximation that all the remaining 

ones are zero. It is in this sense that the solution is not quite "exact," although as the 

number of coefficients solved for is increased, any desired accuracy can be achieved. 

It should also be noted that for any given configuration, the linear system has only 

to be solved once, and the result is an essentially analytic solution for the entire flow 

field with some constants appearing in it that were determined numerically. Such a 

solution has the advantage that it gives complete information about the flow, and 

can be differentiated any number of times without losing accuracy. 

The fact that the infinite linear system is nontriangular is arguably an artifact 

of the eigenfunction basis chosen, since it is possible to choose a particular basis for 

the eigenfunctions to get a triangular system. This change of basis is actually just 

another way of viewing the "LDU" decomposition that is possible for any matrix. 

For suppose that the vector b is the vector of unknown coefficients in the general 

solution, to be determined from the boundary conditions. The solution u is then 

given by 

u=b•x, 

where xis the function basis chosen for the expansion of the solution. (For example, 

x might be a vector of spherical harmonics). Then application of the boundary 

conditions yields a system of equations 

M-b=f, (1.2) 
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where M is a known matrix, and f is a vector of boundary data. By decomposing 

M into the product of a lower and upper diagonal matrix, it can be seen that 

L · [U · b] = f. (1.3) 

Now if the new basis 

(1.4) 

is chosen, then the solution can be rewritten as 

b l I 
U= •X, (1.5) 

where the new coefficient matrix b' satisfies 

L-b= f, (1.6) 

a lower triangular system. Since in general these vectors and matrices will be 

infinite-dimensional, it is important to note several things. First, the decomposition 

of a matrix into the product L · U can be done recursively, starting with the first 

entries, so that it is possible to do the decomposition up to the first n x n block 

by knowing only the first n x n block of the matrix M. Secondly, the new basis is 

related to the old basis by the lower triangular matrix [u-1 jT, which again can be 

determined up to the first n x n block by knowing only the first n x n block of U so 

that the first n elements of the basis can be determined by knowing only the first 

n x n block of M. 

Infinite-dimensional systems arising from expanding solutions in one coordi

nate system in terms of another coordinate system have been encountered by other 
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researchers. For example, Haberman and Sayre [3] obtain an "exact analytical so

lution" for the motion of a Sl,herical particle in a cylindrical wall, in the form of a 

series for the stream function where the coefficients are the solutions of an infinite 

(square) system of algebraic equations. Like the solution of Hassonjee et al. for 

several spheres, it is not quite exact in the sense that it cannot be written explicitly 

in terms of known functions. However, they are able to obtain an excellent ap

proximation by solving for the first N coefficients, where N = 0(10). Systems like 

this are inherently ill-posed, however, in the sense that the solution vector elements 

must get progressively smaller in moving down the column ( a necessary condition 

for the series to converge). As more and more coefficients are simultaneously solved 

for, this imbalance in the magnitude of the unknowns (and the coefficient matrix) 

will create more and more problems. While this difficulty could be overcome by 

rescaling (i.e., renormalizing the basis functions), the above approach of changing 

the basis to make the system triangular seems more natural. 

UNSTEADY HEAT CONDUCTION WITH TWO SPHERES 

The problem of unsteady heat conduction with two spheres is interesting in 

its own right and is simpler than the unsteady Stokes flow problem, so it will be 

considered first here, to illustrate the general idea of change of basis. Rather than 

first derive the infinite system of algebraic equations, and then decompose it, the 

basis will be chosen "along the way." For further simplicity, only the axisymmetric 

case will be considered here, although it will be clear how to extend this analysis to 

the nonaxisymmetric case. Two spherical coordinate systems ( r1, 01) and ( r2, 02), 

with centers separated by a distance R, will be used (Figure 1 ). Since it is consistent 

to use the unsteady Stokes equations only for flows at high frequency where the 

particle displacement is small, R will be assumed constant in the following. Sphere 
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1 (2), of radius L 1 (L2), will be at the origin of system 1 (2). The heat equation 

can be Fourier-transformed to yield the Helmholtz equation 

(1.7) 

and the eigenfunction basis for this problem obtained by separation of variables 

( with no</> dependence) in spherical coordinate system 1 is { u~1
)} and { u~1

)}, where 

(1.8a) 

(1.8b) 

Similarly, the eigenfunction basis obtained by separation of variables in spherical 

coordinate system 2 is { u~2
)} and { u~2

)}, where 

(1.8c) 

-(2) -1/2H(2) (h )P ( 0 ) Un = r 2 n+.!. r2 n cos 2 • 
2 

(1.8d) 

The Bessel functions of the first kind, Jn+1.(hr), are bounded at r = 0, and go to 
2 

zero as r--+ oo. The Hankel functions of the second kind, H~11.(hr), diverge as 
2 

r --+ 0, but go to zero as r --+ oo. Since the eigenfunctions form a complete set for 

solutions of the equation (subject to the appropriate boundedness and continuity 

restrictions), the eigenfunctions of coordinate system 1 must possess an expansion 

in terms of the eigenfunctions of coordinate system 2 and vice versa. However, the 

expansion for the Hankel functions of coordinate system 1, which have a singularity 
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at r 1 = O, must involve only Bessel functions in coordinate system 2, since they do 

not have singularities at r2 = 0. In other words, 

00 

r-;
112 

H~~½(hr1)Pn(cos01) = L Cn,mr-:;
112 

Jm+½(hr2)Pm(cos02). (1.9a) 
m=O 

Likewise, the Bessel functions of coordinate system 1, which do not have any sin

gularities, must have an expansion in coordinate system 2 involving only Bessel 

functions: 

00 

r;:-
112 

Jn+½(hri)Pn(cos01) = L Cn,mr-:;1 12 Jm+½(hr2)Pm(cos 02). (1.9b) 
m=O 

These two expansions can be written as 

00 

U~l) = L Cn,mU~), (1.10a) 
m=O 

00 

U-(1) = ~ - (2) n LJ Cn,mUm. (1.10b) 
m=O 

Instead of expanding in the basis { u~1
)} and { ii,~1)}, the solution will be expanded 

in the special basis {q~1
)} and {q~1

)}, where 

n 

q(1) = ~ [a u(l) + ii ii,(1)] n L...J n,m n n,m n , (l.lla) 
m=O 

n 

IJ~l) = L [dn,mU~l) + dn,mU~1
)]. (1.llb) 

m=O 
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The constants an,m , iin,m, dn,m and dn,m, which can be considered as elements 

of lower triangular matrices A, A, D, and D, will be chosen below to satisfy the 

desirable transformation property. Thus, the solution will be expressed as 

00 00 

U = L bnq~l) + L bnq~l) 
n=O n=O 

oo n oo n 
~ b ~ [ (1) - -(1)] ~ b- ~ [d (1) d- -(1)] = LJ n LJ an,mUn + an,mUn + LJ n LJ n,mun + n,mUn . (1.12) 
n=O m=O n=O m=O 

This form can be used to apply boundary conditions on sphere 1. For applying 

boundary conditions on sphere 2, the expansions (1.10) can be used, to give 

U = L bnq;,_1
) + L bnq~l) 

n=O n=O 

oo n oo oo 
~ - ~ ~ (2) - ~ - (2) + LJ bn LJ [dn,m LJ Cm,jUj + dn,m LJ Cm,jUj ]. (1.13) 
n=O m=O j=O j=O 

Thus, the solution in coordinate system 1 is 

(1.14a) 

and the solution in coordinate system 2 is 

oo n oo oo 

U = L bn L [an,m L Cm,j + iin,m L Cm,j]r;-1
12 

Ji+½(hr2)Pj( cos 02) 
n=O m=O j=O j=O 
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(1.14b) 

Now the constants an,m, an,m, dn,m, dn,m, will be chosen to make the boundary 

conditions take a convenient form. On sphere 1, let the boundary condition be 

oo n 

f(0i) = L bn L [an,mL;:-
112 

Jm+½ (hL1) + an,mL;:-
112 

H~~½ (hL1)]Pm( COS 01) 
n=O m=O 

(1.15) 

The first thing that will be required of the matrices A, A, D, and D, is that 

(1.16) 

for all possible n and m (no summation over min this equation), where en is any 

constant depending only on n. If this is satisfied, then the basis for functions of 01 

in the boundary condition can be taken to be 

(1.17) 

and (1.15) can be rewritten as 

00 00 

/(01) = L fntn(01) = L bntn(01) 
n=O n=O 
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+ L bnentn(01), (1.18) 
n=O 

Thus, the boundary condition at sphere 1 will give the algebraic equations 

(1.19) 

for n = 0, 1, 2, .... 

On sphere 2, let the boundary condition be u = g(02); then 

00 

g(02) = L9iPj(cos02) 
j=O 

oo n oo oo 

= L bn L [an,m L Cm,j + iin,m L Cm,j]L;
112 

Ji+½(hL2)Pj(cos 02) 
n=O m=O j=O j=O 

(1.20) 

To have this equation take a convenient form, it will be required that 

n 

L [an,mCm,j + iin,mCm,j] = 0 (1.21a) 
m=O 

for j < n, and that 

n 

L [dn,mCm,j + dn,mCm,j] = 0 (1.21b) 
m=O 

for j < n. Then, for j = 0,1,2, .. 

oo n 

9j = L bn L [an,mCm,j + iin,mCm,j]L;1
12 

Ji+½(hL2) 
n=O m=O 

(1.22) 
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which, by the requirements (1.21) is 

j n 

9i = L bn L [an,mCm,j + an,mCm,j]L;-
112 

Ji+½ (hL2) 
n=O m=O 

(1.23) 

Now it must be shown how lower triangular matrices an,m, an,m, dn,m, dn,m, 

can be found to satisfy all these conditions. Apparently, it is possible to set D = 0, 

en = 1 for all n, and to make the diagonal elements of A and D arbitrary. Equation 

(1.16) can be solved to give the matrix A in terms of A and D: 

°'n,m = [L;
112

H~t½(hL1)]- 1 [dn,mL;
112 

Jm+½ (hL1) - an,mL;
112 

Jm+½(hL1)]. 

(1.24) 

If this is substituted into (1.21a) , the result is 

(1.25) 

Now it will be shown that Equations (1.25) and (1.21b) can be solved to give the off

diagonal components of A and D. This can be done by induction. Assume the rows 

1,2, ... ,k-1 of these matrices have been determined, and consider the diagonal com

ponents (which are arbitrary) to be known. Then if Equations (1.25) and (1.21b) 

are written out for n = k, j = 1,2, ... ,k -1, there result 2(k -1) simultaneous 

equations for the 2( k - 1) unknowns ak,k-1, ak,k-2, ... , ak,o, dk,k-1, dk,k-2, ... , dk,O · 

For example, the choice n = 1,j = 0 gives the equations 
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and 

(1.26b) 

which can be solved for d1,o and a1,o-

It will now be shown how to compute the coefficients Cn,m• First, an "addition 

formula" for Bessel functions given in Lebedev [4] will be used: 

as well as another formula for spherical harmonics given in Hobson [5] : 

n 

rf P;;,( cos 81) = L (:) (-1 )8r;Rs P.,( cos 82 ). (1.28) 
s=O 

If (1.27) and (1.28) are substituted into the left member of (1.9a), the result is 



V-13 

00 

= L Cn,mr-;1
12 

Jm+½(hr2)Pm(cos82)- (1.29) 

The orthogonality of the Legendre polynomials can now be exploited. If the equation 

is multiplied by Pk ( cos 82) sin 82 and integrated with respect to 82 from O to Tr, the 

result is 

C) (-1 )'rjR" !,'' c;,:+½ ( cos e, )P,( cos 0,)Pk( cos e,) sin 0,de,]. (1.30) 

The integral 

(1.31) 

can be evaluated as follows. First, use the Clebsch-Gordon series as given in Vilenkin 

[6]: 

s+k 

I: 
i=l•-kl 

i+•+le even 

Ps( COS 8)Pk ( COS 0) 

(2j + l)(j + s - k)!(s + k - j)!(j - s + k)!(g!) 2 

(s + k + j + l)![(g - s)!(g - k)!(g -j)!]2 Pj(cos8), 

where g = (s + k + j)/2. It follows that 

i=l•-lel 
i+a+k even 

(2j + l)(j + s - k)!(s + k - j)!(j - s + k)!(g!) 2 

(s + k + j + l)![(g - s)!(g - k)!(g - j)!]2 

(1.32) 
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(1.33) 

For this it is necessary to determine 

(1.34) 

Recall that 

1 

Pj( cos 0) = Cl ( cos 0), (1.35) 

and use the result from Gradshteyn and Ryzhik [7] that 

{21r en+½( 0)C½( 0, . Od(} _ 2n+ 1 r(l)f(n + l)f(2n) 
Jo m cos j cos J sm - j!m!f(n)f(n + 2) 

I'(j + l)I'(m + 2n + 1) .. 
X f(l)f( 2n + l) 4F3(-J,J + 1, 1, -n + 1; 1, 2n + 2, -2n + l; 1). (1.36) 

Thus, 

i=l•-kl 
i+•+k even 

(2j + l)(j + s - k)!(s + k - j)!(j - s + k)!(g!)2 

(s + k + j + l)![(g - s)!(g - k)!(g - j)!]2 

2n+1 f(l )r( n + l )f(2n) r(j + 1 )f( m + 2n + 1) 
X ---'--'----'----------~~---~ 

j!m!f(n)f(n + 2) f(l)f(2n + 1) 

4F3(-j,j + 1, 1, -n + l; 1, 2n + 2, -2n + 1; 1). (1.37) 

Here the quantity e( m, n, s, k) has been introduced for brevity. It is explicitly given 

by (1.37). It is useful to note a certain property of the function e, By recalling 

another expression for Gegenbauer polynomials, namely, 
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C
n+l ( 0) 1 an Pm+n( cos 0) 
m 2 COS = ---------~ 

(2n - 1 )!! d( cos 0)n 
(1.38) 

it can be seen by integrating the integral 

12

1r c::/ ½ ( cos 0)Ps ( cos 0)Pk ( cos 0) sin 0d0 (1.39) 

by parts ( s + k) times, and recalling that Ps( cos 0)Pk( cos 0) is an s + k-th order 

polynomial in cos 0, that 

e(m,n,s,k) = O for n > s + k + l . 

In summary, the matrix C = [cn,k] is given by 

(1.41) 

This identity must hold for all r2 < R, and in particular, the value r2 = l2 can be 

substituted in: 

(1.42) 
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where ~( m, n, s, k) is given explicitly by (1.37). 

UNSTEADY STOKES FLOW WITH TWO SPHERES 

The problem of unsteady Stokes flow with two spheres will now be considered. 

The two spheres, A and B, are separated by a distance R. This time the infinite 

system of algebraic systems for the eigenfunction coefficients will be derived without 

making any change of basis to force the system to be triangular. 

The general solution for unsteady flow with boundary conditions at two spheres 

can be written as 

U = UA + UB, (2.1) 

where UA is expressed in the spherical coordinate system centered on sphere A 

Here, 

iiA = t. [ i~ v'p~(n+t) - In( v'illr, )v' X (r,x!) 

+[(n + I)fn-1(vi0r1) - nfn+1(viOr1)(iO)ri]V<p1 

+n(2n + 1 )/ n+t ( v'illr, )( ifl)\"!r,]; 

00 

~A ~ A 
P = L..t P-(n+1)· 

n=l 

m=n 
A ~ A -(n+1)pm( Ll ) imef> 

P-(n+l) = L..t P-(n+l),mr1 n cos u1 e ; 
m=-n 

(2.2) 

(2.3) 

(2.4a) 
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m=n 
x: = L x:,mrf P:"( cos 01 )eim4>; (2.4b) 

m=-n 

m=n 
"\:""" u,A rn Pm(cos 0 )eim4> L...t rn,m 1 n 1 · (2.4c) 

m=-n 

The exact same expression holds for UB, with the superscript "A" replaced every

where by "B," and the coordinates (r1, 01, <p) replaced by (r2, 02, <p ). The summation 

is from n = 1 to n = oo because it is required that the flow :field go to zero far 

from the spheres, and that the spheres are not a source of fluid (this rules out the 

dilatational n = 0 harmonics). 

To get the solution of interest here, it is necessary to apply the boundary 

conditions at the surfaces of both the spheres. To apply the boundary conditions 

at the surface of sphere B, it is necessary to express UA in the ( r2, 02, <p) coordinate 

system. This will be done as follows. 

First, note that the following addition theorems hold for spherical harmonics. 

For negative harmonics, 

(2.5) 

where i = 1, 2. This result is from Jeffrey [2], and allows the spherical harmonics 

P-(n+I) of one coordinate system to be expressed in the other coordinate system. 

For positive harmonics, there is a result from Hobson [5] 

nm( ) n~ n-s m ( 0 )Rs (n+m)! 
r1 Pn cos 01 = L...t r2 Pn-s cos 2 - 1 ( )'. 

s. n +m- s. s=O 
(2.6) 

This allows the spherical harmonics Xn and 'Pn of one coordinate system to be 

expressed in the other coordinate system. 
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The functions f n are defined by 

(2.7) 

where H(z) are Hankel functions. These functions satisfy the addition theorem 
n+½ 

(see Lebedev [4]) 

Thus, 

Finally, the vector r1, which appears in the general solution (2.2), must be 

expressed in the coordinate system centered on sphere B: 

(2.10) 

By noting that 

(2.11) 

r1 cos 81 = R - r2 cos 82, (2.12) 
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and that the law of cosines gives 

(2.13) 

all the above may be combined to give 

(2.14) 

the desired expression. Since the vector operator 'v can be easily expressed in either 

coordinate system, at this point, everything in the solution (2.2) has been expressed 

in the ( r2, 02, <p) coordinate system. Putting this altogether gives 

[( )( ~n A ~ n-s m Rs (n+m)! im</>)] 
· 'v X R + r2 m~n Xn,m ~ r 2 Pn-s(cos02)-:;y (n + m _ s)! e 

+ [( n+ 1) 
2
.~;(: ~);)! Cf} n- ~ + p )f n+p-1 ( v'iflR)'fn+p-l ( v'ifl,2 )c;-½ ( cos02 )) 

-n (~:~~r (I)n + ¾ + p)fn+p+1(v'iiiR)1/Jn+p+1(v'iiir2)C;+¾(cos02)) 
p=O 
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."r"7[~n A ~n-spm( B)Rs (n+m)! im¢,] 
v L...J 'Pn,m LJ r2 n-s cos 2 - 1 ( _ )' e s. n+m s. m=-n s=O 

(1,·.n) [ ~n A ~ (n - s)(n - s -1) n-s pm ( B )Rs (n + m)! im¢,] 
H LJ 'f'n,m LJ z Tz n-s COS 2 -, ( )I e r 2 · s. n + m - s . 

m=-n s=O 

( e"' [R cos 02 - r 2 cos(20,)] - e,, [R sin 02 ])} • (2.15) 

Now the the boundary conditions will be applied. Let the prescribed boundary 

condition on sphere 2 be 

u = V 2 (0, ef>,w), (2.16) 

and, in keeping with Brenner's method for solving flow problems with spheres, use 

the spherical harmonic expansions 

(2.17a) 

00 

-rv' · V2 = LY;; (2.17b) 
n=l 

00 

r • v' X V2 = L z,;. (2.17c) 
n=1 

As shown by Yang (8] for the unsteady case, 
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+(n + l)2(iO)r2fn+1(✓i"nr2) + (n + l)(iO)r2fn(✓i"nr2) 

+( n + 1 )(i0)2rUn+2( ✓ifir,)) I":;], 
00 

r2 · "\7 x uB = - :I: n(n + l)fn( ✓in"r2)x!-
n=1 

(2.18a) 

(2.18b) 

(2.18c) 

Thus, to apply the boundary conditions, it is first necessary to determine what 

(2.19) 

(2.20) 

and 

(2.21) 

are in the coordinate system 2. This is done by substituting (2.14) for uA into 

(2.19), (2.20), (2.21), and applying the operators. The resulting three expressions 

are given in Appendix 1, since they are lengthy. In obtaining (Al.4), (Al.5), (Al.6) 

of Appendix 1, use was made of the recursion relations 



V-22 

(2.22a) 

(2.22b) 

In calculating 

(2.23) 

it is helpful to first note that uA has the generic form 

(2.24) 

where P, Band cl? are harmonic, F, G and Hare scalar functions, and R, as before, 

is the constant vector R cos 02 er2 - R sin 02 e02 • It can be shown from this that 

8 F [ R cos 02 + r2 83 R . 0 83 ] R . 0 8( H cl?) 
+ 802 r2 802 + sm 2 8r2 - sm 2 802 · (2.25) 

In the above, 

F(r,, 02 ) - -
2
.~;: ~);)! l~(n+ ~ +p)fn+p( ✓ilJR)'Pn+p( ✓ior,)c;+½ (cosB,)]; 

(2.26a) 
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(2.26b) 

(2n + 1)! . 
H(r2,02)=n(2n+l) 2n-ln! (in) 

X (I)n + ~ + p)fn+p+1( 0DR)1Pn+p+1( 0Dr2)c;+1 (cos02)); (2.26c) 
p=O 

m=n n-m Rs ( )1 
';::;" _ ( "\:"""' A "\:"""' n-spm ( 0 )- n + m · imtf>). ..... - LJ Xn,m L..J r2 n-s cos 2 I ( - )' e ' s. n + m s. m=-n s=O 

(2.27a) 

[ 
mL=n A nL-m (n - s)(n - s - l) n-spm ( 0 )Rs (n + m)! im..i.] 

<.P = u, ---r cos -~e 'f' 
r n;m 2 2 n-s 2 I ( )1 • r 2 s. n + m - s. m=-n s=O 

(2.27b) 

The boundary conditions at the surface of sphere 2 ( r2 = a2 ), in which the ex

pressions in Appendix 1 appear ( with r 2 set equal to a2 ), are given in Appendix 

2. 

To obtain algebraic equations from the boundary conditions (A2.1), (A2.2), 

(A2.3), the usual procedure will be taken of multiplying by 

(2.28) 
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and integrating over 82 and </>, to exploit the orthogonality of the surface spherical 

harmonics. The first step is to rewrite the sums 

oo m=n 

(2.29) 
n=l m=-n 

as 

00 00 

~ ~ (2.30) 
m=-oon=lml 

(where it is understood that n =/- 0), and to do the </> integrals using 

(2.31) 

For convenience, after doing this operation, replace the index k by m ( a mere 

change in notation at that point). The resulting three algebraic equations are given 

in Appendix 3 as Equations (A3.1), (A3.2), (A3.3). The various theta integrals 

appearing in these three equations are evaluated in Appendix 4. They are abbrevi

ated by 11, 12, ... , as defined in this appendix. These values for the integrals can be 

substituted into Equations (A3.1), (A3.2), and (A3.3) to give, :finally, the algebraic 

t. £ th ffi . t A B A B A B B equa ions or e coe c1en S P-(n+l),m' P-(n+l),m' Xn,m, Xn,m, 'Pn,m, 'Pn,m• Y 

the symmetry of the geometry of the two spherical coordinate systems, the other 3 

equations can be obtained from the following three equations by exchanging sub

scripts "1" and "2," and exchanging superscripts "A" and "B." The three algebraic 

equations resulting from applying the no-slip condition at sphere B are 

00 [ l a<,1) B . + a(.2) 1? + a(3)_ A a(4)_ A a(s)_ A 
3,mP-(3+1),m 3,m'P3,m ~ n,J,mPn,m n,J,m'Pn,m n,J,mXn,m 

n=lml 
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= x~ 2 (j + m)! 
J,m (2j + 1) (j - m)! 

(2.32a) 

= y? 2 (j + m)! 
J,m (2j + 1) (j - m)! 

(2.32b) 

= [ l c(l) B + /3) A + /4) A + /5) A 
n,mXn,m ~ n,j,mPn,m n,j,m'Pn,m n,j,mXn,m 

n=lml 

= z~ 2 (j + m)! 
J,m (2j + 1) (j - m)! 

(2.32c) 

where the coefficients are given in Appendix 5. 

In summary, the problem of unsteady Stokes flow around two spheres with 

specified velocities at their surfaces ( and vanishing flow at infinity) has been re

duced to the solution of an infinite system of algebraic equations. To obtain actual 

numerical values, the system can be truncated to N equations, where N can be 

chosen as large as necessary to get the desired accuracy. For cases where the two 

spheres are separated by a distance on the order of their size, this method should 

give more accurate results than the method of reflections. 
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Appendix 1 to Chapter V 

In this appendix, the three quantities 

(Al.1) 

(Al.2) 

(Al.3) 

are given, where UA is expressed in coordinate system 2. The first of these quantities 

appears in the normal velocity condition on sphere 2; the other two appear in the 

two tangential velocity conditions. 

TERM IN NORMAL VELOCITY CONDITION. 

(2n -1)! [~( 1 ) ( r:;:;. ) ( r:;:;. ) n+½( )] 
- 2n-2(n - l)! -;;:'o n + 2 + P fn+p viO.R "Pn+p viftr2 Gp cos02 

R 
[ 

m=n n-m Rs ( )I l A n-s m n + m · • imcp · - L Xn,m ( L r2 Pn-s(cos02)-, ( _ )' (im)e ) 
r2 s. n + m s . m=-n s=O 
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·( ifl)(R2 + ri - 2Rr, cos e,) l 
. [ mL=n A nL-m (s - n) n-spm ( fl )Rs (n + m)! im¢] 

'Pn m r2 n-s cosu2 - 1 ( )' e ' r2 s. n + m - s . m=-n s=O 

+n(2n + 1) (!:~~(' (I) n + % + p )f n+p+1 ( v'inR)1Pn+p+1 ( v'inr2 )c;+½ ( cos02)) 
p=O 

(·A)[~n A ~(n-s)(n-s-1) n-spm ( fl )Rs (n+m)! im¢] 
1-H L.J 'Pn m L.J 2 r2 n-s cosu2 1 ( )' e ' r2 s. n + m - s . m=-n s=O 

(Al.4) 

TERM IN FIRST TANGENTIAL VELOCITY CONDITION 

~{ 1 [~n A (l)n+l ~(n+s)s(s-l)(r2)
8 

m im¢] 
r2~ iO m~nP-(n+l),m R ~ s+m r~ R Ps (cos02)e 

- 2.(::(: ~)~ )! l~( n + ~ +P )f n+p( v'illR)(-v'illr, )'Pn+p+1( v'illr, )c;+½ ( co,02)] 

R [ ~n A (n~ n-spm ( O )Rs (n+m)! (. ) im</>)] 
. r2 m~n Xn,m ~ r2 n-s cos 2 "":;f ( n + m - s )! im e 

-
2
J::(: ~)~ )! [t.( n + ~ +P )f n+p( v'illR)'Pn+p( v'illr, )c;+½ { cos0,)] 

[ 

m=n n-m Rs ( + ) I l 
R(m~n x1,m ~ (s - n - l)r;-s+

2 p;::_ 9 (cos02)-:;y- (n: m r:_ ~ )! (im)im</>) 

[ 
(2n - 3)! 

+ (n + l)2n-3(n - 2)! 
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00 

(2)n -~ + p)fn+p-1(.JinR)(-v'iDr2)1Pn+p(v'iDr2)C;-½(cos02)) 
p=O 

•(in)(2r2 - 2R cos 02 )] 

. [~n A n~(s-n)rn-spm ( 0 )Rs (n+m)! im¢] 
LJ I.Pn,m LJ 2 n-s cos 2 I ( + )le 

m= -n s=O r2 s. n m - s . 

[ 
~n A n~ (n - s)(n - S -1) n-s-2pm ( 

0 
)Rs (n + m)! im¢] 

LJ I.Pn,m LJ 2 rz n-s cos 2 ' ( )' e r2 s. n+m-s. m=-n s=O 

(2 )
(2n + 1)! 

+n n + l 2n-ln! 

· (f (n + ~ + p)fn+p+1( v'iDR)(-.Jinr2)1Pn+p+2( v'iDr2)c;+¾ ( cos02)) 
p=O 

(
"")[~ A n~(n-s)(n-s-1) n-s-Zpm ( 0 )Rs (n+m)! im¢] 
iH LJ I.Pn m LJ 2 Tz n-s cos 2 I ( )I e ' r2 s. n + m - s . m=-n s=O 
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(in){ [ I=n 'P1,m nf (s - n)(n - s ~ l)(n - s - 3) 

m=-n s=O 

nsm( 0)Rs (n+m)! im</>]([R 0 J) •r2 - Pn-s cos 2 - 1 ( _ )' e cos 2 + r2 
s. n + m s. 

[
~ A ~(n-s)(n-s-l) n-spm ( O)Rs (n+m)! im<t>]}} + L..J 'Pn m L..J 2 r 2 n-s cos 2 1 ( )' e ' r2 s. n + m - s . m=-n s=O 

(Al.5) 

TERM IN SECOND TANGENTIAL VELOCITY CONDITION 

= ~ [( n + 1 )-(2_n_-_3_)!_ 
r2 sm02 2n-3 (n - 2)! 

•( ifl )(2Rr2 sin 0,)] 
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. [ ~n A ~ ( n - s )( n - s - 1) n-s pm ( 0 ) Rs ( n + m )! ( • ) im<f,l 
L....t 'Pn,m L....t 2 r2 n-s cos z 1 ( )' im e r 2 s. n + m - s . m=-n s=O 

+r, { ~ 
2
}~:(: ~)~)! [t,(n + i + p)fn+p(✓i!JR),,bn+p( ✓i!lr,)C;'+\co,02)]} 

[
Rcos02( ~n X~,m 1!f'(n-s)(n-s-l)r;-s-zp;;,_

8
(cos0z)R; ( (n+r:_)! )'eim<t>) 

m=-n s=O s. n + m s . 

B m=n n-m Rs ( )1 
R · 0 ( ~ A ~ ( l) n-s-Zpm ( 0 ) n + m • im<f,) 

- Slll z BB L....t Xn,m L....t n - s - r2 n-s cos z - 1 ( _ )' e z s. n + m s . m=-n s=O 

m=n n-m Rs ( )I l · A n-s-1 m n + m · im<f, 
+Rsm0z ( L Xn,m L (n - s)r2 Pn_s(cos0z)-1 ( _ )' e ) 

s. n + m s . m=-n s=O 

-Rsin02 

( '") [ ~n A ~ (n - s)(n - s -1) n-spm ( 0 )Rs (n + m)! im<f,] 
iu L....t 'Pn,m L....t 2 rz n-s cos 2 I ( )' e r2 s. n + m - s . m=-n s=O 

(
'") [ ~n A ~ (n - s)(n - s -1) n-s 8P;:1'_ 8 (cos0z) Rs (n + m)! im<f,J] 
iu L....t 'Pn,m L....t z rz 0 I ( )' e r2 z s. n + m - s . m=-n s=O 

(Al.6) 



V-31 

Appendix 2 of Chapter V 

In this Appendix, the three velocity conditions for sphere 2 are given. 

FIRST CONDITION 

~ [ ( n + l) [ ~ B pm( 0 ) im<I>] 
~ a2(ifl) m";;:n P-(n+1),m n COS 2 e 

+n t n:, l) f n-1 ( v'ifia,) + { n +1 )f n+ 1 { v'ifia, ){ ill )a,) mt.n 'l'!,m P:'( cos 02 )eim,;] 

+ t { i~ [Jnn P.<(n+1),m(!)n+l f C: J :, ( ~), P;"(cos0,)eim¢] 

(2n - 1)! [~ 1 l'A l'A n+1. l 
- 2n-2(n - l)! ;;:'o(n + 2 + P)fn+p(vzDR)1Pn+p(viDa2)Cp 2 (cos02) 

R 
[ 

m=n n-m Rs ( )I l A n-s m n + m · • im</> · - L Xn,m L az Pn-s(cos02)-1 ( ) 1(im)e 
a2 s. n + m - s . m=-n s=O 

•( i!l){R2 + a) - 2Ra2 cos 02 )] 

[ 
~ A ~ ( s - n) n-spm ( 0 ) R

8 
( n + m )! im</>l 

L....J 'Pn,m L...J a2 n-s cos 2 1 ( )I e a2 s. n + m - s . m=-n s=O 
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SECOND CONDITION 

+(n + 1)2(iO)a2fn+1(\/ina2) + (n + l)(iO)azfn(\/inaz) 

+( n + 1 )( ifl) 2 al/n+2( v'ffia,)) [j~• 'P~,mP:'( cos 02 )eim;,]l 

oo { 1 [ m=n A 1 n+ 1 

+az ~ if! m~n P-(n+1),m (R) 

· f C: ;r(•.l I) ( ~). P;"(cosO,)e'm•] 

(A2.1) 

( 2n - 1) ! [~ 1 r:;::; r:;::; r:;::; n+ 1. l 
-

2
n-Z(n _ l)! ~(n + 2 + p)fn+p( Y iOR)(-v if!a2)1Pn+p+1( vi0a2)Cp 2 

( cos02 ) 

· ~ 0 [ (R sin 02) 
az Slll 2 

m=n n-m Rs ( )I l A n-s m n + m · • im</> ( L Xn,m L az Pn_ 8 (cos0z)-1 ( _ )' (im)e ) s. n + m s. m=-n s=O 
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[ 
(2n - 3)! 

+ (n+l)2n-3(n-2)! 

·(f)n -~ + p)fn+p-1(v'inR)(-villa2)1Pn+p(v1inr2)C;-½(cos02)) 
p=O 

·(iil)(2a, - 2R cos 02 )] 

. [ ~ A ~ (s - n) n-s pm ( 0 )Rs (n + m)! imrp] 
L..J t..pn,m L..J a2 n-s cos 2 - 1 ( )I e a2 s. n +m- s. m=-n s=O 

. [~n A ~(n-s)(n-s-1) n-s-2pm ( 0 )Rs (n+m)! imrp] 
L..J t..pn,m L..J 2 a2 n-s cos 2 -, ( )' e a2 s. n +m- s. m=-n s=O 

(2n + 1)! 
+n(2n + 1) 2n-ln! 

· (f cn + ~ + P )f n+p+I ( v1iOR)(-vills2)1Pn+p+2( v'ina2 )c;+i ( cos02)) 
p=O 
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(iD) [ ~n A ~ (n - s)(n - s -1) n-s-2 pm ( 0 )Rs (n + m)! im,P] 
~ 'Pn,m ~ 2 a2 n-s cos 2 I ( )' e a2 s. n + m - s. 

m=-n s=O 

n 8 m ( 0 )Rs (n + m)! im,P] ([ J) •a2 - Pn-s cos 2 - 1 ( _ )le Rcos02 + a2 
s. n + m s . 

[
~ A ~(n-s)(n-s-1) n-spm ( e)Rs (n+m)! im,PJ}} + ~ 'Pn,m ~ 2 a2 n-s cos 2 1 ( )' e a2 s. n +m - s. 

m=-n s=O 

00 

(A2.2) 

THIRD CONDITION 

-(t. n(n + l)J.( v'inr.)) C~. x;',mP:'(cos 02)e;m1,) 

+ : [en+ 1) (2n - 3)! 
a2 sm02 2n-3(n - 2)! 
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·( i!l )(2Ra, sine,) l 
m=n A n-m (n 

·[ L <pn,m L 
m=-n s=O 

s)(n-s-1) n-spm ( 0 )R., (n+m)! (. ) im¢] 
2 a2 n-s cos 2 -, ( )' im e a2 s. n + m - s . 

[ 

m=n n-m Rs ( ) r 
R cos 02 ( L X~,m L (n-s )(n-s-l)a;-s-2 P;:"_.,( cos02)-

1 
( n + r:_ · )' eim¢) 

m=-n s=O s. n+m s. 

m=n n-m s I 

R · 0 8 ( L A L( l) n-s-2pm ( 0 )R (n+m). im"') - - s1n 2 - X n - s - a cos 2 - e '+-' 
80 n,m 2 n-s I ( + _ )1 

2 m=-n s=O s. n m s . 

+( ~n XA n~(n - s)(n - s + l)an-s-1 pm (cos0 )Rs (n + m)! eim¢)] 
m~n n,m ~ 2 n-s 2 s! (n + m - s)! 

m=n n-m Rs ( )I l · A n-s-1 m n + m · im¢ 
+Rsm02 ( L Xn,m L (n - s)a2 Pn_.,(cos02)-1 ( _ )' e ) 

s. n + m s. m=-n s=O 

-Rsin02 

( .")[ ~n A ~ (n - s)(n - s -1) n-spm ( 0 )R" (n + m)! im¢] 
iu L-J <pn,m L-J 2 a 2 n-s COS 2 1 ( )'e a2 s. n + m- s. 

m=-n s=O 
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00 

=I:Z~ (A2.3) 
n=1 
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Appendix 3 of Chapter V 

FIRST EQUATION 

f [~:i;;[p~(n+1),m 1-rr P;;,(cos02)Pf(cos02)sin02d02] 
n=lml 0 

+n((n: l) fn-1(v1ina2) + (n + l)fn+1(v1ina2)(iO)a2) 

'P~,m 1,• P,7'{cosO,)Pf(cos82)sin82d82] 

J, • P;" ( cos 02 )Pf ( cos 02 ) sin O, dB,] 

n-sR
8 

(n+m)! c· )] •a --~-~-im 2 s! (n + m - s)! 

[ 

(2n - 3)! = n-m l . . 
+ (n + l) 2n-3(n _ 2)! ~ ~ (n - 2 + P)/n+p-1(v1iD.R)1Pn+p-1(v1ina2) 

A (s-n) n-sRs (n+m)! ] 
·r.p a -

n,m a2 
2 s! ( n + m - s )! 

/7r 1 lo p;::_s( cos02)c;- 2 
( cos02 )Pf ( cos 02) sin 02d02 
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· ( R 11r cos 02c;+! ( cos02)P;:_s( cos02)Pf ( cos 02) sin02d02 

+a, 1,· c;+< ( co, e,) P;;'_, ( cos 0, )Pk ( cos e, ) sin e, dB,) } 

SECOND EQUATION 

~ [(n + l)(n + 2) [ B 11r m( 0 ) m( 0 ) . ] L.J i0a
2 

P-(n+1),m 
O 

Pn cos 2 Pj cos 2 sm 02 
n=lml 

+(n + l)(iO)a2fn(viOa2) + (n + l)(i0)2a~fn+2(viOa2)) 

·[\O:;',m 1,• P,;"( cos O,)Pt( cos 0,) sin 0,de,]] 

00 

{ 1 [ A ( 1 ) n+l 
+a2 L iO P-(n+1),m R 

n=lml 

(A3.1) 
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1• C ;+ ½ ( cos 02 )P;:_, ( cos 0, )Pf ( cos 02 ) sin 02 d02)] 

'!Pn+p( v'inr2) 11r c;-½ ( cos02 )P:;-_
8

( cos02 )Pf ( cos 02) sin 02d02 

+n (~:~~t (n + ~ + p)fn+p+1(v'in"R)(v'ina2)(iO) [ ('I/Jn+p+2(v'ina2)(R2 + a~) 

A (s-n) n-sRs (n+m)! ) 
·<.p a -

n,m a2 
2 s! ( n + m - s )! 
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[ ( R2 + a~) 11r c;+t ( cos02 )P:;_s ( cos02 )Pt( cos 02) cos 02 d02 

-2Ra, 1.· cos o,c;+½ ( cos 0, )P::'~,( cos 0, )Pr( cos O,) sin O,dO,]) · ( iil) l 
[ 

A (n-s)(n-s-1) n-s-2R8 (n+m)! ] 
. ~ a -

n,m a~ 2 s! (n+m-s)! 

( 
'") [ A ( n - s )( n - s - l) n-s-2 
iu ~nm 2 a2 

' a2 

1
1r m ( 0 )Cn+J( ) m( ) . )R8 

(n+m)! J] +a2 Pn-s cos 2 p cos02 Pi cos 02 srn02d82 - 1 ( _ )' 
o s. n + m s . 

. {[ A (s-n)(n-s-l)(n-s-3) 
(in) ~nm 3 

' a2 

n-sRs (n + m)! ] 
•a2 7(n+m-s)! 

([R 11r c;+t (cos02)P:;_s( cos02) cos 02PF( cos 02) sin02d82 
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+a217r c;+i ( cos02)P;:_s(cos02 )Pf ( cos 02) sin 02d02J) 

[ 
A (n-s)(n-s-1) n-sRs (n+m)! 

+~------a------
n,m a~ 2 s! (n + m - s )! 

THIRD EQUATION 

(2n + 1 )! 3 ) ( r.;::; ) ( r.;::; ) 
-n 

2
n-ln! (n + 2 + P fn+p+l viOR 1Pn+p+1 viOa2 

J, • c;:+ l ( cos 0, ) p:;:_, ( cos 0, )Pt ( cos e, ) sin e, d0, • (if!) ( 2Ra, ) l 

(A3.2) 
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[ 

A (n-s)(n-s-1) n-sR8 (n+m)! (' )] 
· 'Pn,m 2 a2 -, ( )' im a2 s. n + m - s. 

oon-m[ (2n-l)! ( 1 . )] 
+a2 ~ ~ - 2n_2(n - l)! (n + 2 + p)fn+p(.JillR)1Pn+p(.Jilla2) 

[ Rx:,m(n - s)(n - • - l)a;-•- 2 

11!" 0Cn+½( 0)Pm ( 0)Pm( 0) · 0d0 Rs (n+m)! 
COS 2 p COS 2 n-s COS 2 j COS 2 Slll 2 2 - 1 ( ) 

o s. n + m - s ! 

R8 (n + m)! ) 
s! (n + m - s)! 

( 
R8 (n + m)! + X~,m[2(n-s)+(n-s)(n-s-l)]a;-s-l_

1 
( )' 

s. n+m-s. 

1.· c;+ ½ ( cos o, )P:::. ( cos 0,) Pt ( cos o, ) sin o, dO,) l 

11r8P;:1'_ 8 (cos82)8C;+½(cos82)Pm( 
0

). 
0

d
0

)Rs (n+m)!) 
+a2 80 80 j COS 2 Slll 2 2 - 1 ( )I 

o 2 2 s. n + m - s . 

( 

A ) n-s-1 Rs (n + m)! 
+R Xn,m(n - s a2 - 1 ( )' s. n+m-s. 
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oo n-m[ (2 + 1)1 3 
-R ~ ~ n(2n + l) 2:_1n! · ( ( n + 2 + p )f n+p+1 ( v'iOR)1/Jn+p+l ( v'ina2)) 

(iO) [r.pA (n - s)(n - s - l) an-s R 8 (n + m)! 
n,m a~ 2 s! (n+m-s)! 

f-rr ac;+ ¾ ( cos 02) . 2 0 pm ( 0 ) m ( 0 )d0 ] 
10 802 

sm 2 n-s cos 2 Pj cos 2 2 

+n(2n + 1) (~:~~r ((n + 1 + p)fn+p+1(v'inR)1/Jn+p+1(00a2)) 

(iO)[r.pA (n-s)(n-s-l)an-sR" (n+m)! 
n,m a~ 2 s! (n + m - s)! 

(A3.3) 
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Appendix 4 to Chapter V 

The various theta integrals appearing in the algebraic conditions obtained from 

the boundary conditions using orthogonality are evaluated here. First, there is the 

well-known fact that 

(A4.1) 

Next, define functions 

(A4.2) 

(A4.3) I2(P, n, m, s,j) = 111' c;+½ ( cos 02)P;;_s( cos 02)Pt ( cos 02)sin02d02; 

l3(p,n,m,s,j) = 11(' c;+½(cos02)P:;_
9
(cos02)Pt(cos02)cos02sin02d02; (A4.4) 

(A4.5) 

1f' n+.!.( ) 
I ( ") 1 dCp 

2 

COS 02 pm ( 0 ) m( ) s p,n,m,s,J = 
0 

dBz n-s cos 2 Pj cos02 d02; (A4.6) 

(A4.7) 

(A4.8) 

. 11(' dc;+½(cosfh)dP;::_s(cos02) m • 
Is(p,n,m,s,J) = 

0 
cos02 dB

2 
dB

2 
Pj (cos02)sm02d02; 

(A4.9) 

(A4.10) 
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. f 1r 8P;:1:_s( cos02) 80;+½ ( cos02) m . 
I1o(p,n,m,s,J) = Jo 

802 802 
Pj (cos02)sm02d02; (A4.11) 

( 
.) /1rpm ( 0 )8c;+½(cos02) m( 0 ) 0 . 2 0 d0 I11 p,n,m,s,J = Jo n-s cos 2 

802 
Pj cos 2 cos 2 sin 2 2· 

(A4.12) 

By use of identities like 

(A4.13)) 

. 2 0 dP;::( cos 02) ( )Pm ( 0 ) 0 pm( 0 ) sin 2 d
02 

= n + m n-l cos 2 - n cos 2 n cos 2 , (A4.14) 

_l_dC;_(cos02) = _2, 0 A+l( 0 ) 
. 0 d0 /\ n -1 cos 2 , 

Sln 2 2 
(A4.15) 

and 

(A4.16) 

it can be shown that 

I2(P, n, m, s,j) =l1(p, n, m + 1, s,j + 1) - I1(P, n, m + 1, s,j -1); (A4.17) 

I ( .) j - m + lI ( . ) j + m I ( . ) 
3 p,n,m,s,J = 

2 1 
2 p,n,m,s,J + 1 + 

2 1 
2 p,n.m,s,J -1; 

n+ . n+ 
(A4.18) 

. (j-m+l) . (j+m) . 
I 4 (p,n,m,s,J) = (2j + l) I 1(p,n,m,s,J + 1) + (2j + l)I1(p,n,m,s,J -1); 

(A4.19) 
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fs(p,n,m,s,j) = - 2I(p-1,n + 1,m,s + 1,j); (A.4.20) 

. 3 j-m+l . 
h(p,n,m,s,J)=(-2)(n+ 2)[ 

2
n+

3 
I(p-1,n+l,m,s+l,J+l) 

+ in++n;I(p -1,n + 1,m,s + 1,j-1)]; (A.4.21) 

. . ( n - s )(j + m) . 
I1 (p, n, m, s,J) =Ii(p, n, m, s + 1,J) - (2j + l) I1(p, n, m, s,J + 1) 

(n - s)(j + m) . 
- (2j+l) I1(p,n,m,s,J-l); (A.4.22) 

fs(p,n,m,s,j) = - (2n + l)(n - s + m)J3(p- l,n,m,s + 1,j) 

(2n+l)(n-s)(j-m+l) . 
+ (2j + l) [4(p- l,n + l,m,s + 1,J + 1) 

(2n + l)(n - s)(j + m) . 
+ (2j + l) J4(p - l,n + l,m,s + 1,J - l);(A4.23) 

[9(p, n, m, s,j) = - (2n + l)I1(P - 1, n + 1, m, s + 1,j) 

(2n+l)(j-m+l) . 
+ (2j + l) J3(p- l,n + 1,m,s + 1,J + 1) 

(2n+l)(j+m) . 
+ (2j + l) l 3 (p -1,n + 1,m,s + 1,J -1); (A4.24) 

I1o(p,n,m,s,j) = - (2n + l)(n - s + m)I1(p- l,n + 1,m,s,j) 

- (2n + l)(n - s)I1 (p -1,n + 1,m,s + 1,j); (A4.25) 

. (j-m+l)(j-m+2) . 
I11(p,n,m,s,1) = - (2n + 1) (2j + l)(2j + 3) l3(p- l,n + l,m,s + 1,J + 2) 

[(j+1)2+j2 -2m2
] . 

-(2n + 1\2j + 3)(2j + l)2(2j - l)I3(p-1,n + l,m,s + 1,J) 

(j+m)(j+m-1) . 
- (2n + 1) (2j + l)(2j - l) [3(p- l,n + l,m,s + 1,J - 2). 

(A.4.26) 
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Appendix 5 to Chapter V 

This appendix gives the constants appearing in the algebraic equations for the 

ffi . t A B A B A B th t lt f 1 . coe c1en s P-(n+l),m'P-(n+l),m' Xn,m,Xn,m, 'Pn,m, 'Pn,m a resu rom app y1ng 

the boundary conditions at sphere B. Recall that the equations are (for j = 1, 2, 3, .... 

and m = 1, 2, ... ,j): 

= x~ 2 (j + m)!. 
J,m (2j + 1) (j - m)!' 

(A5.1) 

= y~ 2 (j +m)!_ 
J,m(2j + 1) (j - m)!' 

(A5.2) 

= [ l /1) B + /3) A + /4) A + c(5) A 
n,mXn,m I: n,j,mPn,m n,j,m'Pn,m n,j,mXn,m 

n=lml 

= z~ 2 (j + m)! 
J,m (2j + 1) (j - m)! 

(A5.3) 

In these equations, 

(1) (j+l) 2 (j+m)!_ 
aj,m- a2(iD.)(2j+l)(j-m)!' 

(A5.4) 

(2) ·((j+l) ~ . ~ . ) 2 (j+m)! 
aj,m=J a

2 
/j-1(viD.a2)+(J+l)f;+1(viD.a2)(iD.)a2 (2j+l)(j-m)!; 

(A5.5) 
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(s -n) n s((R2 2)I ( ') · --'--~a2 - + a2 2 p,n + l,m,s + l,J 
a2 

-2Ra2J3(p,n+l,m,s+l,j))R; ( (n+m)!)'l 
s. n+m-s. 

(A5.6) 

(2n + 1 )! [ oo n-m 3 
+ n(2n + 1) 2n-ln! ~ ~ (n + 2 + p)fn+p+1(MR)1/Jn+p+1(Ma2) 

(
·.n)(n - s)(n - s -1) n-sRs (n + m)! 

• '/,H a -
a~ 2 s! ( n + m - s )! 

• ( RI3 (p, n + 1, m, s + 1,j) + a,I,(p, n + 1, m,s + 1,j))] }; (A5.7) 

oo { (2n-1)! [oo n-m 1 . . 
a~

5
,},m - n~I - 2n-2(n - l)! ~ ~ (n + 2 + p)fn+p(.JinR)1/Jn+p(.Jina2) 

R ( .) n-s Rs ( n + m )! (. )] } · -12 p,n,m,s,J a2 - 1 ( )' im ; 
a2 s. n + m- s. 

(A5.8) 

b~l) = [(j+l)(j+2)[ 2 (j+m)!]· 
J,m ifla2 (2j+l)(j-m)!' 

(A5.9) 

b(.2! = i((j
2 

- l) fj-1(✓in"a2) + (j + l)2(ifl)a2fj+1(✓in"a2) 
J, a2 
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+ (j + l)(iD)a2fj(Jin"a2) + (j + l)(iD)
2
a~fH2(v'illa2)) · (2j: l) g ~ :~:; 

(AS.10) 

b~~j,m = a2 f { i~ [(!) n+l 

n=lm.l 

f(n+s)s(s-l)(a2)
8 

2 (s+m)! 8 ·]· (AS.ll) 
s=m. s + m a~ R (2s + 1) ( s - m )! sJ ' 

(4) ~ { (2n-l)! [~~ 1 ~ ~ 
bn,j,m=a2n~I - 2n-Z(n-l)! ;;:'o~(n+ 2 +p)fn+p(viDR)(-viDa2) 

.!. (r-o) R(n-sRs (n+m)! (' )I( ·))] 'f"n+p+1 viHa2 · - a2 - 1 ( )' im 2 p,n,m,s,J 
a2 s. n +m - s. 

(2n-l)! [oon-m 1 . . 
- 2n-2(n - l)! ~ ~ (n + 2 + P)fn+p(v'iD.R)1n+p(v'iD.a2) 

(( ) n-s+2R
8 

(n+m)! (' ) ( ·))]} · s-n-l a2 - 1 ( _ )' im I2 p,n,m,s,J ; 
s. n + m s. 

(A5.12) 

(5) ~ { (2n-3)! ~ n~( 1 ~ 
bn,j,m = a2 LJ (n + 1) 2n_3 (n _ 2)! L.J LJ (2 - n - p)fn+p-1(viDR) 

n=lml p=O s=O 

(v'ina2)1n+p(v'ina2)lz(p,n- l,m,s -1,j) 

+ n (~:~~r (n + ~ + p)fn+p+1( Jin"R)( v'ffia2)(iD) [ ( 1n+p+2( ✓in"a2)(R2 + a~) 

-2a21n+p+1(v'ina2))I2(p,n + l,m,s + l,j) 

+ (2R1n+p+1( v'illa2) -1n+p+2( v'illa2)(2Ra2 ))l3(p, n + l, m, s + l, j)] 
. (s-n)an_.,R 8 (n+m)! ) 

a2 2 s ! ( n + m - s) ! 

00 n-m [ (2n - 3)! 1 . . 
+ ~ ~ (n + 1) 2n_ 3 (n _ 2)! ((n - 2 + p)fn+p-1(v'inR)1n+p-1(v'ina2) 

I2(p,n - l,m,s -1,j)) 
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(2n + 1)! ( 3 r:;::; r:;::; 
- n 

2
n-ln! (n + 2 + p)fn+p+1(viOR)'l/;n+p+1(viOa2) 

[(R' + al)I4 (p, n, m,s,j) - 2Ra,I,(p, n + 1, m, s + 1,j)]) · (i!l)l 
. [(n-s)(n-s-l)an-s- 2R 8 (n+m)! ] 

a~ 2 s ! ( n + m - s) ! 

(2n + 1)! 00 
n-rn 3 

+ n(2n + 1) 2n-ln! LL ((2 - n p)fn+p+1(ViOR)(ViOs2) 
p=O s=O 

~t. ( r.;::; )) ( 'r'I) [ ( n - s )( n - s - 1) n-s-2 'f'n+p+2 V iua2 iu 2 a2 a2 

( RJ3(p,n + l,m,s + 1,j) + a2I2(p,n + l,m,s + 1,j)) R's ( (n + r:_)! )'] 
s. n + m s. 

00 
n-rn (2n + 1)! 3 +LL n(2n + 1) 2n-ln! ((n + 2 + p)fn+p+1(ViOR)VJn+p+1(Vi0a2)) 

p=O s=O 

(in){ [(s - n)(n - s - l)(n - s - 3) . an-s R 8 (n + m)! ] 
a~ 2 s! (n+m-s)! 

([RJ3(p, n + 1, m, s + l,j) + a2I2(P, n + 1, m, s + 1,j)J) 

[
(n-s)(n-s-1) n-sR8 (n+m)! + -"---'-'----'-a ---"----'--

a~ 2 s! ( n + m - s )! 

I,(p, n + 1,m,s + 1,j)]} }; (A5.13) 

(A5.14) 
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- n (~:~~r (n + ~ + p)(ifl)fn+p+1(✓ifiR)1Pn+p+1(✓ifia2) 

((R' + al)I,(p, n + I, m, s + l,j) - (2Ra2 )I6 (p, n + I, m, s + l,j)) 

( 2n + 1) ! ( 3 ) ( r.;::; ) ( t:n ) 
- n 2n-ln! n + 2 + p fn+p+l vinR 1Pn+p+l VtHa2 

I,(p, n + I, m, s l,j) · ( m)(2Ra,) l 
[
(n-s)(n-s 1) n-sR8 (n+m)! c· )] 

• a - im 
a~ 2 s ! ( n + m - s) ! 

00 n-m [ (2n + 1)1 3 
- R~ ~ n(2n + 1) 2n-ln! · ((n + 2 + p)fn+p+1(✓ifiR)1Pn+p+1(v'ina2)) 

. [(n-s)(n-s-l) n-sRs (n+m)! ·] 
(ifl) 2 a2 -,( )/12(p,n+l,m,s+l,J) 

a2 s. n + m - s. 

+ n(2n + 1) (~:~~r ((n + ~ + p)fn+p+1(✓ifiR)1Pn+p+1(✓ifia2)) 

(in)[(n-s)(n
2
-s-l)a~-.,R; ( (n+r:_)!)

1
I7(p,n+l,m,s+l,j)]](A5.15) 

a2 s. n + m s . 

(5) ~ ~ ~ [ (2n _ 1 )! 1 r.;::; r.;::; l 
cn,j,m = - n~I a2 f;:'o ~ - 2n_2(n - l)!(n + 2 + p)fn+p(viflR)1Pn+p(vifla2) 

[(R(( )( ) n-s-2[ ( .)Rs (n + m)! )) 
n-s n-s-1 a2 3 p,n,m,s,J -:;T(n+m-s)! 
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[ 
· ] Rs ( n + m) ! ) l + R((n - s)a;-s-1 Rl14(p,n,m,s,j) + a2I12(p,n,m,s,J) -:;T (n + m - s)! . 

(A5.16) 
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Sphere A 

FIGURE 1 

The two spherical coordinate systems, 
The plane i =Dis shown. 

Sphere B 




