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ABSTRACT

The central problem of this thesis is the study of suims of dis-
joint partial permutation matrices ('permutation decompositions''),
This problem has as its origin the result of G, Birkoff that an order
n (0,1)-matrix having k 1's in every row and column can be written as
a sum of k permutation matrices (partial permutation matrices of
""'size' and order n),

The thesis divides into two main parts. In the first part
(Chapters II, III) we first deal with the existence of permutation decom-
positions of a given (0, 1)-matrix where each of the summands has a
specified size and secondly, with some applications consisting of refor-
mulating certain identification problems of Combinatorics in terms of
permutation decompositions, The general existence problem remains
unsolved, For more than two distinct sizes in the proposed permutation
decomposition of a (0, 1)-matrix A, a more subtle invarient than numbers
of 1's in submatrices of A is required,

The second part of this thesis is concerned withg"transversals”
of permutation decompositions, The specific goal is to make some
contribution toward resolving the conjecture of H, J. Ryser that every
odd order latin square has a '"transversal'., Chapter IV is preliminary,
and deals with ''generalized traces' of 3-dimensional (0, 1)-matrices.

A more fruitful approach is considered in Chapter V, There the con-
jecture of Ryser is generalized and the apparently central concept of a

"'square' n-tuple of positive integers is introduced, Such square ''lists"



arc characterized in terms of tournament scorc vectors, A weaker
structure than a latin square, that of a '"pair configuration', is also
introduced and for such structures the concept of a square list is more
intimately connected with the existence of a '"transversal'. The gen-

eralized conjecture is proven only in special cases,
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I. INTRODUCTION AND GENERAL TERMINOLOGY

An n-tuple of positive integers will be called a list (of length
n). If in a particular case 0 entries are allowed, then such a list will

be called a non-negative list, A permutation matrix of size p is a

(0,1)-matrix containing p l's, no two of which are in the same line

(row or column). A matrix sum

A=P +P,+...+P, (1.1)

where A is a (0,1)-matrix and the Pi are permutation matrices will be

called a permutation decomposition of A, The integer array

L=1‘P1+2'P2+...+£‘Pz (1.2)

will be referred to as a partial latin square. No implicit assumption

that such a partial latin square can be completed to a latin square is to
be read into this definition [1]. Let p, be the size of P in (1.1) or
(1.2). The permutation decomposition (1. 1) and‘ the partial latin square
(1, 2) will both be said to have list (pl, Posenes pn). Such a list will also
be called feasible for the (0,1)-matrix A when A has such a decomposi-
tion (1.1). In the second chapter we will consider the problem of
determining all feasible lists for a given (0, 1)-matrix.

Certain natural questions which can be asked of a given (0,1)-
matrix A, e.g., if it is permutable into circulant form, can be reformu-
lated equivalently by asking whether A has a permutation decomposition
of a particular form. Some such considerations will be found in

Chapter III. The concept of a ''gencralized tracc" of a 3~dimensional



(0, 1)-matrix will be introduced in Chapter IV, Although this conccpt is
rclated to problems on the existence of "transversals' of a decompo-

sition (1. 1), it does not appear to be the most fruitful approach to such
questions, A conjecture on the existence of a ''transversal'' for each of
the permutation decompositions in certain (large) classes will general-
ize the conjecture of Ryser [15, p. 72] that every latin square of odd

order has a transversal. Material concerning this generalization forms

the substance of Chapter V,



I. EXISTENCE OF DECOMPOSITIONS

WITH SPECIFIED LIST

As will quickly become apparent, the problem of determining
all feasible lists of a given (0,1)-matrix (in terms of some other
invarients of the matrix) increases in complexity with the number of

distinct integers appearing in the list (pl, PysesesP The simplest

l,)'
case is that of an order n (0, 1)-matrix and list{n,n,...,n). Itis

resolved by the following well-known theorem,

THEOREM 2.1 (G. Birkoff)

An order n (0,1)-matrix is a sum of { size n permutation

matrices iff every line of A has sum {.

The condition that every line sum of A is = g is clearly neces-
sary and the sufficiency of this condition can be proved in several ways,
e.g., [13, p. 57]). Since %A is doubly stochastic it follows that
Theorem 2.1 is a special case of Birkoff's Theorem for double sto-
chastic matrices, namely that they form the convex hull of the permuta-
tion matrices of that order., Alternatively, Theorem 2,1 can easily be

derived from (and is essentially equivalent to):

THEOREM 2,2 (Kbnig-Egervary)

The maximal number of 1's, no 2 in a line, in a (0, 1)-matrix,

is equal to the minimum number of lines containing all the 1's,

In turn, this is equivalent to the ""Max~Flow Min-Cut'" Theorem

of Ford and Fulkerson and to the ''labelling process'' of the Theory of
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Flows in Networks [3], Because of these and other essentially cquiva-
lent formulations, theorems of the general nature of Theorems 2.1,
2,2, 2.3, etc, can be proven in many settings, With the necessity of
choosing one we will prove Theorems 2,4, 2.7 by using the "Max-Flow
Min-Cut'" Theorem which will be started after certain notation is intro-
duced, The advantages of using this theorem are in the brevity of
proofs and in the '"standard form'' that such proofs take, The theorems
to follow constitute a selection and by no means exhaust the use of the
Max-Flow Min-Cut Theorem in ''list-type'' problems.

The following notation and terminology is that of [3]. An
{undirected) graph is a finite set of elements (Egie_s_) together with a
collec_';:ion of 2-subsets of these nodes (_a_z_‘_g_s_._ between the nodes), Nodes
x,y are adjacent if the 2-subset {x, vy} is an arc of the graph., In an
undirected graph such an arc will be denoted either (x,y) or (y,x)
whereas in a directed graph exactly one of (x,y), (y,x) holds for every
arc {x,y}. We introduce a function (capacity function) whose domain is
the set of all arcs and whose range is the non-negative real numbers,.
Its value on the arc (x,y) will be denoted c(x,y). A directed graph
having two distinguished nodes, s(''source'') and t ("'sink'') and having a
capaéity function c¢ defined on all arcs will henceforth be termed a

network, A flow of value v from s to t in a network”( is a non-

negative real valued function f, defined on all arcs of 7( (a typical value

being denoted f(x, y)) satisfying:



v, X=38

Z {f(an) 'f(Y:X)} = 0, X* s ort (2-1)
-v, x=t

f(x,y) < clx,vy) (2.2)

The sum in (2. 1) is over all y for which there is an arc (x,y) or

(y,x) with the convention that if (x,y) isn't an arc of ), then f(x,y) =
0. Inequality (2, 2) is to hold for all arcs (x,y) 67?. If g is a real-
valued function defined on the arcs ofn and if X,Y are collections of
nodes of Y, then by (X, Y) we will mean the totality of all (directed)
arcs (3;, y) with x€X and y €Y. Also g(X, Y) denotes 2. g(x,y) the sum
being over (X, Y). A cut in 7] is a collection of arcs (X,X) with s €X,

t €X, where X is the set of all nodes of N not in X. The cut capacity of

(X,X) is ¢(X,X). We can now state the Max-Flow Min-Cut Theorem of

Ford and Fulkerson [3, p. 117]:

THEOREM 2,3

For any network N the maximum value ("maximum flow") of v
in (2. 1) is equal to min ¢(X,X) (""minimum cut capacity'), Here
the maximum is computed over all real valued f consistent

with (2. 2) and the minimum is computed over all cuts.

As a sample application of Theorem 2. 3 we consider a ''class
decomposition theorem', LetR = (rl, Torenes rm), Rt =(r',xr!',..., r'm)
be m-tuples of non-negative integers with r{ s T i=1,2,...,m which

we will denote more briefly by R!' <R, Similarly, letS = (sl, Soreses sn),



St = (s'l, 5:2,. .o 51‘1) be n-tuples of non-negative integers with S' <€ S,
By G(R,S) we shall mean the class of all m Xn (0, 1)~matrices having

row (column) sums R(S) and wherc

SE

m
L or, =
1

i=1

[
1l
[

holds, Let A' be an e Xf submatrix of an m Xn matrix A formed by the

intersection of rows {il ,1i ie} and columns {jl, Jpreees jf]. By

2, LS Y
o{A") (T(A")) we will mean these sets of row (column) indices of A',

Finally Nl(A) denotes the number of 1!'s in the matrix A,

THEOREM 2,4

Let A €G(R,S) and let G(R',S') be a class with R' sR and S' <S,

Then A can be written
A =B+R

with B €G(R',S!') and R a (0, 1)-matrix iff for every submatrix

A' of A we have

Nl(A') = 2 r! - 2, s!
ico(an b jénan

Proof

The implication to the right is simply a matter of counting 1's.
For convenience in the following diagram we take the submatrix A' as

occupying the upper left corner of A:



+—f —— — [ —b . e ———p
- - — - —
| (= e
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1 1 1
! 2 .l
AZ A3 BZ B3 RZ R3
u _ _ _ L
A B R
Then,

N,(A") = N, (BY)

v

Nl(B') - NI(B3)
= [N, (B") + N (B)] - [N, (B,) + N, (B,)]

= 2 r!- 2 s!
ico(an) * jfman ’

as wanted,

For the converse we use the Max~-Flow Min-Cut Theorem,
We first set up a network Y. The nodes of N are two distinguished
nodes s, t together with a node (Xi) for each row of A and a node (Yj) for
each column of A, All arcs are of one of the three forms: (s, Xi)’
i=1,2,...,m; (xi,yj) (iff aij = 1); (yj,t), i=1l,2,...,n and the cor-

responding capacities are:

C(S,X.) = 1'! ’ i=1,2,...,m
1 1

C(xi’yj) =1 (iff 2= 1)

C .’t = S'-’ '=1’2’o.o,n .

(YJ ) } j

From the Integrity Theorem [3, p. 19]of the Theory of Flows in Net-

works, ‘N has a flow of value T where




m n
T= 2 rl= 2 8!
i=1 j=1 3

iff A contains a (0, 1)-matrix B €G(R!', S"),

By the Max-Flow Min-Cut
Theorem (Theorem 2. 3) N has such a flow iff

T < c(X,X) (2. 3)

for all cuts (X,X). In the cut (X, X) let the nodes x, €X and the nodes

Yj €X define a submatrix A' in A, Then (2. 3) can be rewritten as:

m

2 r! <N;(A")+ 2

r! + 2 s!
i=1

ifotan 1 jéman
or,

Nl(A')z 2 rt- 2D gt
icg(any ?t

which completes the proof of the theorem.

A generalization of Theorem 2,1 due to Ryser [12, p, 551 ] is:
THEQOREM 2.5

An m Xn (m <n) (0,1)-matrix A has feasible list (m, m,..., m)

(2 terms) iff A€ G(R,S) withR = (£, 4,...,4) and S (4, 4,..., £).

Proofs of this result are also possible using the Max-Flow
Min~Cut Theorem or one of its equivalences.

In order to consider permutation decompositions whose sum-

mands are of a size strictly less than the minimal dimension (of the
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summands) we will need a lemma (Lemma 2, 6), This in turn will lead
to the best result of an "'existence type'' which has been obtained by

this author (Theorem 2. 7).

LEMMA 2, 6

A m xn (0,1)-matrix A has feasible list (p,pP,...,Pp) (£ terms)

iff it contains ¢p 1's and has every line sum < 4,

Proof

Several proofs of this lemma are now available in the literature,
Two methods of proof are given in [2, p. 18]. The following proof,
somev{hat of an improvement over one of the proofs of the present
author, is an unpublished result due to Richard A, Brualdi.

That the stated conditions are necessary is obvious so we turn
to a proof of sufficiency, Without loss of generality we assume m <n
and adjoin a (n-m) Xm 0 submatrix to A, so forming an order n (0,1)-
matrix A', -IZA' has all of its line sums <1 and by the proof of The
Theorem of Mendelsohn and Dulmage [7, p. 253 ] it follows that the
order n matrix%A can be imbedded in a doubly stochastic matrix B of

order 2n-p:

1
AIB1
. | O

Birkoff's Theorem for doubly stochastic matrices implies that B con-

1
4
B

B, are

tains 2n-p positive entries, no two in a line. Since Bl’ 2
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n X{n-p) and (n-p) Xxn matrices, respectively,
(2n-p) - (n-p) - (n-p) = p

of these positive entries are in%A', i.e., A has a partial permutation
matrix P of size p as a (0,1l)-summand. Furthermore, if lf, A'" has a
line sum = 1 then one of the 2n-p positive elements was in that line of
-1ZA' since the corresponding line of B1 or B2 is a line of 0's. Conse-
quently A -P contains (£-1)p 1's and has every line sum < ¢-1, The

above procedure can then be repeated until we obtain the desired

decomposition after j§ steps.

THEOREM 2,7

Let A = (aij) be a2 m xn (0, 1)-matrix of term rank p and let p!

be a positive integer < p.

(p"p',""pl’lil""’l) (2°4)

-5 =8 terms—-u—zz terms -

1

is a feasible list for A for all g <7 where

{ = min s
e+f+p'-m-n

the minimum being calculated over all e xf submatrices A' of

A for whiche+f >m+n-p' and [a] denotes the greatest integer

< a.

Proof

Using A we set up a network 7} Then using Lemma 2.6 we
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apply Theorem 2. 3 to get the desired result, The procedure is nearly
identical with the proof of Theorem 2,4. The nodes of % consist of the
two distinguished nodes s, t together with a node (xi) for each row of A

and a node (yi) for each column of A, All (directed) arcs of % and their

corresponding capacities are enumerated by:

i) C(S,Xi) = z, i= l,z,ooo’m
ii) c(xi, Yj) =1 iff aij =1
iii) c(yj,t) = 2, i=L2,...,n .,

From the Integrity Theorem [3, p. 19] of the Theory of Flows in Net-
works it follows that W has a flow of value gp' iff A has an m Xn sub-

matri}i: B with NI(B) = gp' and having all line sums < 4. Further, by

Lemma 2, 6, this is equivalent to A having feasible list (2.4). By

Theorem 2.3 7 has a flow gp' iff

p' <c(X,R) (2. 5)

for all cuts (X,X). In the cut (X,X) let X contain e nodes X X contain
f nodes Y; and let the corresponding e X f submatrix of A be denoted A,

Then (2. 5) can be rewritten as:

Lp' < Nl(A') + 4m-e) + Yn-1)

or,
Nl(A') 2 f(e+f+p!'-m-=-n)
from which the theorem follows,
Theorem 2. 7 can be stated in the equivalent form that:

) is a feasible list for A iff for all submatrices A!

(P 1Poseee sy P
1’52 £1+,17,2
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of A we have

==}
N.(AY) = 2 p.* (2. 6)
1 . i
i=40g+1
(with equality in the case A' = A) where {pl*, pz*, ... } is the sequence
. = - g{A!
conjugate to the sequence {pl, Ppseses pzl+£2} and Ag = g(A) - g(AY)
= (m+n) - (e+f), i.e., g{(B) is the sum of the dimensions of B, for a
name the ''girth'' of B, A stronger form of Theorem 2,7 (necessary
and sufficient conditions for feasibility of a list containing any two
positive integers) was obtained by Folkman and Fulkerson [2, p. 16]

and takes the form (2, 6).

THEOREM 2, 8

be a sequence of positive integers and {pi*} its conjugate sequence,

’I‘hen (Pl’pZ’ cee ’pf,l’p£1+1" .o ,pz1+£2) is a feasible list for a
(0, 1)-matrix A iff for every submatrix A' of A we have
-2}

N(A) 2 T p.*
i=pg+l !

(with equality in the case A' = A),

The proof of this theorem requires considerably more machin-
ery than that developed for Theorem 2.7 and in particular in [2] the
""Circulation Theorem' from Network Flow Theory is used. Very
roughly, the basic idea is that for a given matrix A and integer values

P> 9, 2’1’ 1'2’ a circulating network is set up, the 1l's of the matrix
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corresponding to certain nodes of the circuit, By imposing unit
capacity on certain arcs the '""on-off' nature of the integral flow (of
a maximal circulation) through a node, as determined by the Circula-
tion Theorem, splits the (0,1)-matrix A into a matrix sum B+ C such
that Lemma 2. 6 is applicable to B and also to C with q replacing p.
From the nature of the proof it is clearly plausible that Theorem 2. 8
(i. e., necessary and sufficient conditions for two distinct integers in
the feasible list) is the best possible result of its kind that can be
obtained from Network Flow Theory or its equivalences.

It was also proven in [2] that if the non-negative list
P = (pl__‘, Pyieees pz) ma jorizes the non-negative list Q = (q1 sG55 000y ql)
where P is feasible for a (0, 1)-matrix A, then so also is Q feasible
for A, and that a maximal feasible list (p1 sPoseces pz) ("maximal" with
respect to the partial order defined by majorization) has exactly k
positive components where k = maximal line sum of A, This summa-
rizes all known results of an encouraging nature on the feasible list
problem. It is easy to find results of an opposite nature. For example,
the necessary and sufficient conditions of Theorems 2, 7, 2, 8 take the

form:

g >n-m(g) = min Nl(A')
A' of girth g

must be sufficiently large, Does a knowledge of all values of m(g) offer
a means of determining which lists are feasible for a matrix A? The
answer is '""no'" and we provide a counterexample, The following two

(0, 1)-matrices,
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]}
O O b = e
O O O = -

have identical values of m(g) namely:

O O = e

1 0 0O 1 0O
0 0 O 0 1
1 0 O B=] 0 O
01 0 0 O
0 01 0 O
g s5] 61781910
m(g)] ol 1]z2|4|6] 9

yet (5,3,1) is feasible for A but not for B.

o = = O O

- o = O O
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111, APPLICATIONS USING THE EXISTENCE OF

DECOMPOSITIONS OF SPECIAL FORMS

The object of this chapter is to show that some natural qﬁes-
tions concerning (0,1)-matrices can be equivalently reformulated in
terms of permutation decompositions. No attempt is made to be
exhaustive but rather, simply to give some examples, We will first

consider permuted forms of circulants,

THEOREM 3,1

A (0,1)-matrix A of order n can be permuted ({i.e., by permu-
tations of rows and columns) into circulant form iff
i) there are ''n-cycle' permutation matrices P*, Q* ("'n-
cyclic'" in the sense that they correspond to cyclic per-
mutations on n letters) such that P*AQ* = A,
or equivalently, iff
ii) there is a permutation decomposition of A, A =
P1+ P2+ .o +P£, with each Pi of size n and n-cycle

permutation matrices P¥*, Q¥ such that P*PiQ* =

P, i=1,2,..., 4

Proof

We first prove i). Let P,Q be size n permutation matrices

such that PAQ is a circulant:

4 d.
PAQ = 2 C ! (3.1)
i=1
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where C is the (row) permutation matrix corresponding to the cycle

(2,3,...,n,1) and the di are non-negative integers., Defince

p* - p-lcp
o* = ac ! (.2)
S0
p*aq* = p Yicpanc !
g 4,
-pl 3¢ 1Q'1
i=1
= A .

Conversely, given n-cycle permutation matrices, P*, Q™ with

P*AQ* = A we can write these n-cycles in the forms:

* - plep
o* = acin!
then
plecpaac it - A
SO

C(PAQ) = (PAQ)C

Since C is nonderogatory and C, PAQ commute then PAQ is a poly-
nomial in C [5,p. 7871, i.e., PAQ is a circulant,

We use the above equivalence to prove ii). If A can be per-
muted into circulant form (3. 1) then defining P*, Q* as in (3. 2) we

have



1
B>

P*AQ* _

1 4 4

Defining P, = PC'Q™",i=1,2,...,4, we have a permutation decom-

position of A and

. d,
P"‘PiQ"‘ = p-lcpplc IQ'IQC’IQ'1
d.
- p-lgig!
=P

The converse implication is trivial,
Let Pl(PZ) be an m-cycle (n~cycle) permutation matrix cor-
responding to a row permutation TTl(TTZ). For any i, 0 £i < mn there is

a unique representation

1=11n+12,0511<m,0512<n (3. 3)

and the Kronecker product P, X P, [(Pl)ijpz 1, is a permutation
matrix of order and size mn corresponding to a row permutation T

defined by
mi) = nl(il)n + TTZ(iZ) (3.4)

(For notational convenience we are indexing the rows of an order N
matrix 0,1,...,N-1), If TTk(i) = TTz(i) for some k, £ with 0 <k, 4 < mn

then for (3. 4) we have

k,. k,. _ _L,. L.
™ (11)n + m, (12) = m (11)n + n2(12)
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from which, using (3. 3) we have
k,. 4,. .
m, (i.) = ™. (i, =1,2
J( J) J( J) , j

which in turn imply k = 4 (mod m) and k = £ (modn). If (m,n) =1
then k = ¢ {mod mn), i.e., k = £ so the powers Trk(i) are distinct but
otherwise they are not, We conclude: P1 X P2 is an n-cycle matrix
iff (m,n) = 1.

Using this fact together with Theorem 3.1 we have, for

example:

COROLLARY 3,2

Let A, B be (0,1)-matrices of orders m,n, respectively, If A, B
are both permuted forms of circulants and (m,n) =1 then A X B

P, s
a CiiCulalll,

Let A = P1+P2+... +Pk’ B = Q1+Q2+... +Q£be permutation

decompositions with P(I)PiQ(l) = Pi’ i=1,2,...,kand P(Z)QjQ(Z) =Q

j’
p(1) (1)

i=1,2,..., 4 where
p(2) gl2)

are m-cycle permutation matrices and

are n-cycle permutation matrices, Then

k )
AXB= 2 2 P.xQ.
i=l j=1 ! J

is a permutation decomposition., We define the cycle permutation

matrices P = P(l) X P(Z), Q= Q(l) X Q(Z). Then
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P(P, X Q)0 = @) & P(Z))(Pi X Qj)(Q(l) x al2)y

- pWp oM 4 6 o

H

P.xQ,
1 J

So A X B is a permuted circulant by condition i) of Theorem 3. 1.

The condition {m,n) = 1 is necessary in the Corollary. An

example is given by A X A where A is the circulant

1 1 O
0 1 1
1 0 1

There are four distinct circulants, up to permutations of rows and col-
umns, in the class of order 9 (0, 1)-circulants having four 1's per line.

These four equivalence classes can be represented by the four circulants:

I c0+c1+02+c3
11 co+c1+c'?'+c4
111 co+<:1+c3+c4
v c0+c1+c3+c6

none of which is a permuted form of A X A, This follows, since a row
of A X A has inner product = 2 with four rows and = 1 with the other
four rows, The 4 X 9 submatrix determined by the former four rows
has one column sum = 0, Types II, III circulants have the same set

of inner products as A X A but the corresponding 4 X 9 submatrices have

all column sums positive,.
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It is of interest to note the close similarity of the statement of
Theorem 3,1 (i)) and a Theorem of E, T, Parker which we now state

in a form slightly more general than it appears in [9, p. 351 .

THEOREM 3, 3

Let A be a real non-singular matrix of order n. Suppose there

are size n permutation matrices P, Q such that
PAQ = A .

Then there are size n permutation matrices P', Q! such that

papl - A

where

PIAQ' = A'

Another problem which can be phrased in terms of permutation
decompositions is that of necessary and sufficient conditions that a loop
be a group. Let L be a loop of order n. Label its elements 1,2,...,n,
the identity (e) receiving the label 1. The multiplication table (Cayley
table) of £ can then be represented by a normalized latin square L of
order n based on the integers 1,2,...,n. L is '"normalized' in the
sense that the first row and column contain 1,2,...,n in their natural
order corresponding to e being a 2-sided identity.

Let M be the normalized latin square obtained by permuting
the rows and columns of L to bring a particular different 1 to the
(1,1) position., The condition M = L for all n-1 possible M is a neces-

sary and sufficient condition that £ be a group. The essence of the
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proof of this statement is to be found in {16, p, 4], We will now give
a precisc and detailed proof,

For any I,p, l?,q, "r’ f's ¢ L consider the following structure in L

(3.5)

i

Upon arbitrary permutation of rows and columns of L the same entries
1, a, b still uniquely determine the same entry ¢, Thus the condition
M = L for all n-1 possible M is equivalent to Zassenhaus' rectangle

rule, namely that every subconfiguration

have the same integer in its (2, 2) entry.
If.( is a group, this condition is easily seen to be satisfied.
. _ -1 _
Referring to (3. 5) we have zpzr = e so that L= [p and

- -1 -
tots = (420027 4g) = (0, 2)(2 20)

i, e, , the integer c is uniquely determined by a,b so that M = L,

Conversely, if the rectangle rule holds, then again from (3. 5)
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we have Lpzr = e and (quzr)( zpas) = qu,s so that X satisfies
cd = e - (x'd){cy") = x'y' for all x', y'€L (3. 6)

In particular, since e is a 2-sided identity, from cd = e we have

(x'd)c = x' for all x'€ L (3. 7)

d(cx")

x'  forall x'€L (3. 8)

Also using (3. 7) we have dc = (ed)c = e so that for each element £ E,,(

there is a (unique) 2-sided inverse z-l EI, i,e., an element such

that M,-l =gty e, Consequently, (3. 6) can be rewritten

2 ey = xtyt forall g%,y €L (3. 9)

Finally we showx is associative and hence a group. Letx,y,z € cf

then from (3. 8)

(xy)z = (xy)(y l(yz))

which is of the form (3,9) so

(xy)z = x(yz)

completing the proof,
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IV. GENERALIZED TRACES OF 3-DIMENSIONAL

(0,1)-MATRICES
Consider an arbitrary permutation decomposition

A =P +P2+...+P

1 (4. 1)

y/

ofa mxn (0,1)-matrix A, From (4.1) we can define a 3-dimensional

{0, 1)=-matrix B = (bijk) by

1 if (P i=1l,.e.,m; j=1,...,n; k=1,...,4

Wiy = b

bijk
0 otherwise

Henceforth we will use expres%ions like "k-dimensional hyperplane' to

denote the k-dimensional analogue of the 2-dimensional concept of a

"line', So, if in the above definition we take the third subscript as a

"wertical' coordinate, then B is formed by stacking the Pi's one above

another and hence every ''vertical' 2-dimensional (hyper)plane of B

contains at most g 1's, We define a generalized diagonal of a mXnXx £

(0,1)-matrix as v = min(m,n, {) positions within B, no two in the same

(2-dimensional) plane, A generalized trace of B is the sum of the ele-

ments on a generalized diagonal, Note, if B has a generalized trace =t
then there is a m X n permutation matrix P of size = min(m, n) such that
P,P;j, j=12,...,t, have a 1 in the same matrix position where
Pil,IJ)iZ, .ee ’Piz is some relabeling of the terms of (4.1)., Sucha P

is one possible definition of a ''transversal' (of length t) of an arbitrary

permutation decomposition, It is closely related but not identical with
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the concept as it will be introduced in Chapter V,

Let B be a fixed 3-dimensional (0, 1)-matrix not nccessarily
constructed from some permutation decomposition (4. 1). We are inter-
ested in the generalized traces of B. First we summarize the situation
in 2-dimensions where the analogous problem has been completely
resolved by Mesner [6].

Let A be a mXn (0,1)-matrix, The trace sequence OCp =

{0'1:0'2,... ’ou} Of A.Where
‘&'(A)=cl<02<...<ou=E(A) (4. 2)

lists all distinct generalized traces of A, The maximum and minimum
values are determinable by thc? K&nig-Egervdry Theorem, namely
O{A) = term rank of A = minirﬂal number of lines containing all the 1's
of A and ¥(A) = min(m,n) - E(X) = min{m, n) - term rank of A =
min(m, n) - minimal number of lines containing all the 1's of X Here
A denotes the (0,1)-complement of A, Intermediate values are mainly

accounted for by Mesner's Theorem 1:

THEOREM 4, 1

Iet A be a mXn (0,1)-matrix such that neither A nor A is a
rearranged direct sum of J matrices (matrices all of whose
entries are = 1), Then for any integer ¢ satisfying ¥<¢ <0,

A has generalized trace 0.

The basic tool in Mesner's proof of Theorem 4,1 was
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LEMMA 4, 2

Let A be an order n (0, 1)-matrix with trace n, Then A hasg
no generalized trace = n-1 iff it is a simultaneous row and

column permutation of a direct sum of square J matrices,

A proof that a simultaneous permutation of a direct sum of
square J matrices can have no generalized trace n-1 is straight-
forward and Mesner's proof of the converse implication will be con-
sidered 1ate¥. The case not handled by Theorem 4.1, i.e., when A is
a rearranged direct sum of J matrices is lengthy but not difficult, and
available in [6, p. 91 1.

For a general (0,1)-matrix B of size m X n X £ both the problem
of (i) o(B) (clearly %(B) = min(m,n, £) - E‘(E)) and (ii) intermediate
values, are much more complicated. We will make only very modest
contributions to their solution, Of particular interest is E(BL) where
BL is the (0,1)-cube ('"'permutation cube'') constructed from the per-
mutation decomposition (1. 1) associated with an order n latin square L
of the form (1, 2). It has been conjectured by Ryser that 'E(BL) =n
when L is of odd order n [15, p. 72] and that always E(BL) zn-1,

For d-dimensional (0, 1)-matrices A with d > 2 we no longer
have a K¥nig-Egervary Theorem, a theorem which was solely respon-
sible for the useful equivalence of maximal generalized trace in the
2-~dimensional case, We can define ''term ranks' and 'covering
numbers' of d-dimensional matrices, d 2 2, relative to hyperplanes of

all dimensions k with 1 £k €d-1 but we will want to restrict ourselves

here to the case k = d-1; i, e., the term rank (p) of A will be the
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maximum number of 1's of A such that no two arc in the same (d-1)-

dimensional hyperplanc and the covering number (¢) of A is the

minimal number of (d-1)~dimensional hyperplanes which contain all
the 1's of A, The K¥nig-Egervary Theorem claims c = p in 2 dimen-
sions, the crux of the argument being in showing ¢ € p since ¢ 2 pis

a triviality for any dimension d. We conjecture the following:

CONJECTURE 4, 3

Let the term rank (p) and covering number (c) of a d-dimensional,
d 22, (0,1)-matrix be defined in terms of (d-1)~dimensional

hvperplanes. Then ¢ < (d-1)p.

Little progress has been made with this conjecture. The
weaker inequality ¢ € dp is a triviality since we can cover all 1's in the
matrix by the d hyperplanes through each of p l's, no two in a (d-1)-
dimensional hyperplane, For p =1 the cases d = 3, d = 4 have been
verified exhaustively as has the case d = 3, p= 2,

The conjectured upper bound is always attainable at least in
the case where the existence of a finite projective plane of order n = d-1
is known. This follows since the existence of a projective plane of
order n z 3 is equivalent to the existence of n-1 orthogonal latin squares
of order n which are in turn equivalent to the existence of an nzx(n+1)
array of integers ¢ {1,2,...,n} such that each nz X 2 subarray consists
of all the 2-samples of {1,2,...,n} [13, p. 82]. Viewing the array as
the coordinates of n2 1's in a (ntl)-dimensional, order n (0, 1)-matrix

A, we have ¢ = n = d-1 since A has the same number of 1's in each
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(d-1)~dimensional hyperplane, Also from the "A=1"" property of a
projective plane it follows that each pair of d-tuplcs agrce in exactly
onc coordinate, so in particular p=1. For general p we take the
direct sum B of p copies of A so that the term rank and covering num-
ber are each multiplied by a factor p, i.e., ¢ = (d-1)p. The n = 2 case

is handled similarly since the array

(1 1 1
1 2 2

A=l g
LZ 2 1~

has the desired properties.
The above-described nzx(n+1) array can also be interpreted as
a (0, 1)-matrix, namely the incidence matrix of the affine plane of order

n. For example we view A above as:

1 0 1 0 1 0

1 0 0 1 0 1

0 1 1 0 0 1

0 1 0 1 1 0
IIlH IIZII Hlll IIZII
\_—V.___J | S

1st .« o . ath
coordinate coordinate

and in this way we can obtain a (0, 1), 2-dimensional, and slightly more
general formulation of Conjecture 3.1, Let A be an arbitrary m xn
(0, 1)-matrix and let d = d(A) (""dimension'' of A) be the minimum num-

ber of parts into which the columns of A must be partitioned such that
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in cach row there i8 at most once 1 in cach part, Lot p = p(A) bhe the
maximum number of rows of A such that every pair has inncr product
= 0, Finally, let ¢ = el(A) denote the 1-width of A (the minimum
number of columns of A which contain at least one 1 in every row).

Then the reformulation is:

CONJECTURE 4, 4

A (0,1)-matrix having d >1 and no row of 0's satisfies

e <(d-1)p.

A small contribution toward resolving this conjecture is given
by the following theorem but a corresponding result for an arbitrary
number of rows of the incidence matrix of a finite projective plane

remains unproven.

THEOREM 4, 5

Iet A be an m X n (0, 1)~-matrix having row sums = r >1, column
sums = s and such that every pair of rows has a positive inner

product, Then ¢ < (d-1)p.

Proof

If s=1thenm=1andif m=1 then ¢ =1. Similarly s =m
implies ¢ = 1, In all these cases the conclusion is immediate so there
is no loss in assuming s <m, s >1 and m >1, Also, since every pair
of rows has a positive inner product then p{A) =1 and el(A) <r so we
can further restrict ourselves to the case where d(A)~1 <r, i.e., where
d(A) <r. The maximum number of columns of A such that no two have

a positive inner product is
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8
and therefore from the definition of d(A),

d(A) =

[m/s]
But mr = ns son = (m/s)r and

n
d(A) 22— 2z1r ,
[m/s]
The remaining case has d(A) = r where s |m and every row contains
exactly one 1 within each part of a partition of the columns of A deter-
mined by d(A). Clearly el(A) = m/s so defining an average inner

product (-):) among distinct pairs of rows of A we have the following

inequalities:
=~ _ ns(s-1) _ r(s-1)
ME D) T mer ot
m-1
d(A) =T 2—&_—1—
m-1 (A)_m-l_m_ m-s g
s-T ~ 1 T s-T " 7§ T s(s-
m-1
el(A) <= < d(A)
or,

el(A) < d(A)-1

in all cases, which completes the proof,
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We now turn to the problem of intermediate values in the trace
sequence of a 3-dimensional (0,1)-matrix B, There does not appear to
be any simple alternative description of those B which omit an integer
between T(B), o(B) in (4. 2). A few mild constraints can be obtained
on such '‘gaps' and one such result will be considered in Theorem 4. 7.
First we will consider a procedure for obtaining some (0, 1)-cubes B
having trace n, no generalized trace n-1 from the corresponding 2~
dimensional analogues described in Lemma 4, 2,

Let A be an order n (0,1)-matrix having trace n but no gen-
eralized trace = n-1, Consider an arbitrary partition P = {pl, Ppseens pr}
of the columns of A into (non-empty) parts P,. Form an order n (0,1)-

cube ;B according to the following rule:

For eachi=1,2,...,n if the ith

column of A is in Pj then the
ith horizontal plane of B has the kth column of A as its ktP

column for all k € Pj and all other entries are set = 0,

Now consider the patterns of the positive elements of two of the line sum
matrices of B, Clearly the pattern formed by the vertical line sums is
that of A, The other pattern we will want to consider is formed by the
horizontal line sums which are in the direction of the columns of A,
Since A has trace n, B has trace n and the elements of the diagonal of
A cause the second pattern of B to be that of a simultaneous permutation
of the rows and columns of a direct sum of square J matrices. From
the construction it follows that these two patterns completely deter-

mine B in the sense that a position in B contains a 1 iff it projects onto

a non-zero element in both patterns. DBut then B has no generalized
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trace = n~-1. For suppose it did and consider the projected images of
the n elements of a generalized diagonal of sum = n-1 in the two pat-
terns, Since both patterns are patterns of simultaneous permutations
of direct sums of square J matrices it follows that the image of the 0
element of the generalized diagonal is a non-zero element in both
patterns, Since the patterns determine B this 0 is a 1--a contradiction
showing there is no generalized trace = n-~1.

Although this construction produces a large class of cubes it
does not exhaust the class ﬂf) of order n cubes having trace n but no
generalized trace = n-1. So far it has proven impossible to find a
characterization of those B € D’S’) which are constructable from a
2-dimensional A € ﬂf_lz), and which has a generalization characterizing
all cubes in 40’513). We will now consider Mesner's proof of Lemma 4. 2
since an attempt at an analogous proof in 3 dimensions sheds con-

siderable light on the difficulties of characterizing 3513).

Proof of Lemma 4. 2

As previously noted, the sufficiency of the conditions is straight-
forward so we will restrict ourselves to showing that if A has trace n
and no generalized trace = n-1 then A is a simultaneous permutation of
a direct sum of square J matrices. First note that A can have no

principal order 2 submatrix of the form

(4. 3)
0 1

or its transpose, since otherwise A has a generalized trace = n-1.
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Thus,

1 1 0O
1 1 1 (4. 4)
0 1 1

since again A would have a generalized trace = n-1. Thus,

a,,=1 and a., =1-a..=1 |,
ij jk 1)

Defining an equivalence relation '"~'"" on the n integers 1,2,...,n by

then we have i ~i, i~ j=-j~1i, i~jand j~k »i~ k so the equivalence
classes defined by ~ correspond to (simultaneously permuted) sum-
mands of square J matrices and the lemma follows,

Note that the truth of Lemma 4. 2 and the fact that equivalence
relations define equivalence classes are essentially equivalent state-
ments, It is also of interest that although there are higher order (n = 4)
principal subconfigurations (''forbidden' configurations) which are
excluded from the (0, 1)-matrix A if it is to be aﬁzlz), such subconfig-
urations themselves contain a subconfiguration (4. 3) (or its transpose)
or a subconfiguration (4.4). It is in these aspects that the same

approach fails forﬂf). We can introduce a triadic relation:

(i, j, k) iff bijk =1
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so that if B eﬂf’ we have (i,i,1), (i,],J) —(j,i,4), (i, j, k) and
(j, k, j) »(k,1,1), etc. and in general if in any principal order n' sub-
configuration of A n'-1 1's can be found, no two in a plane, then
another implication holds, However, not only do we lack an analogue
of equivalence classes, but also it can be shown that even restricting
B ¢ ‘0’;3) to those which have at most one 1 per plane is not sufficient
to eliminate the existence of forbidden configurations of any order Kk,
1 <k £n which contains no forbidden subconfiguration of a smaller
order,

As a final topic in this chapter we will consider a previously-

mentioned mild constraint on the 3-dimensional trace sequence,

LEMMA 4, 6

IfBisamXxnxX £(0,1)-matrix with full trace VvV = min{m, n, 9)

but with no generalized trace = y-1 or v-2 then B = J,

Proof

).

First consider the principal order v submatrix B' of B= (bijk

B' has trace v and no generalized trace = y-1 or y-2. We claim

P; ik

is also clear when there are exactly two distinct integers among i, j, k

=1 for (i, j,k) € B'., For i=j=k this is part of the hypotheses, It

since for example, one of the two nonplanar positions (i, i,j), (j,j, i) is
to be found in every plane numbered i or j and therefore B', and
hence B, has generalized trace y-1 (y-2) if one (both) of these positions
contains a 0. Finally, if i, j,k are three distinct integers, the prin-
cipal order 3 subcube containing bijk also contains bjij and bkki which

are both = 1 by the previous argument. Butb_ . =1andb .. =1 -
jij kki
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bijk = 1 if a generalized trace = v-1 i8 not to occur, Ilence BY = 1,
Now consider a position (i, j, k) ¢ B\ B, There are at most
two of i, j,k € {1,2,..., v} and hence the deletion of all three planes
through (i, j, k) will delete at most two of the v 1's of the main diagonal
of B, If only one 1 is deleted then we have constructed a generalized
trace = y-1 if bijk = 0. If two are deleted and bijk = 0 then it is in a
position (i, j, k) with i, j, k all distinct, two among {1,2,..., v} and one
not in {1,2,...,v}, e.g., (i,j,k) withi,j€ {1,2,...,v}, i # jand
k £{1,2,..., V}so that biii =1 and bjjj = 1 have been deleted., If we
replace these two of the v 1's on the main diagonal of B with bijk =0
and bjii = 1 we have constructed a generalized trace = y-1, Conse-
quently, in all cases bijk =1,

This lemma can be applied to show that gaps in the 3~-dimensional

trace sequence, when they occur, can be of length at most 1.

THEOREM 4, 7

IfanmXnX £ (0,1)-matrix B has no generalized trace = g where

T <0 <7, then it has both ¢ =1 as generalized traces.

Proof

Suppose B has a generalized trace = t but neither generalized
trace = t+l1 nor = t+2 where t+2 <@. Let u be the smallest integer
> t+2 for which there is a generalized trace = u in B, The planes of B
can be permuted to a matrix B1 having t 1l's in the initial positions on
its diagonal. Deleting all planes through these 1's we obtain a matrix

B2 having trace 0 and no generalized trace =1 or 2, From Lemma 4. 6
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(taking (0, 1)-complements) BZ is & matrix ol 0's 80 in particular B3

cannot contain any J subcube J, of order k >t (Buch o J, must contain

k

a 1 all of whose coordinates are 2k >t, i,e., sucha 1 would have to

le

be in Bz). On the other hand, B can also be permuted to a matrix B'1

having a leading principal order u submatrix B'2 with trace u and no

generalized trace = u-1 or u-2, Again using Lemma 4. 6, B’2 = J of

order u, a contradiction since u > t,
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V. ON THI CONJECTURIE TIAT KXVERY LATIN SQUARIS

OF ODD ORDER HAS A TRANSVERSAL

It has beenconjectured [15, p. 72] that in every latin square
of odd order n, n different symbols can be found with no two in the
same line, Or more briefly, the conjecture is that every latin square
of odd order has a transversal, This chapter will attempt to determine
the separate contributions of various substructures of an odd ordered
latin square to the (conjectured) existence of a transversal, In partic-
ular, we will consider how the existence of a transversal depends upon:
(1) all symbols filling a square array; (2) the array being of odd order;
(3) each symbol occurring the same number of times; (4) any row and
any c;olumn of the array having exactly one element in common, etc.

We first generalize our notion of a transversal, A transversal

of a partial latin square

L=1-P1+2-P2+...+£-P£ (5.1)

is a set of ¢ different symbols of L, no two in a line. These ¢ sym-
bols define a permutation matrix P of size g (the dimensions of P being
those of L) such that P, Pi have a 1 in the same matrix position for

each of the g Pi's of the permutation decomposition

A=P1+P2+"'+Pz (5. 2)

corresponding to (5.1). There will be no ambiguity in calling P a
transversal of the permutation decomposition (5, 2).

Let (p‘l, PyseeesP I,) be an arbitrary list and consider the set
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tion of the conjecturce of Ryser,

A list (p1 sPoyreces pn) is square if for every k~subset {i
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tee transversals? The conjecture which follows is then a genceraliza-

{1,2,...,n} we have

P; +P; t...tD, > K2
1 2 k

for allk=1,2,...,n. Equivalently (pl, Pyseces pn) is a square list iff

upon reordering and resubscripting such that

P SPy e spn

we have

p1+p2+...+pk2k‘, k=1,2,...,n .

CONJECTURE 5,1

found in the following considerations,

Every partial latin square L=1-P, +2*P_ + ... + £*P  with

1 2 )
i = < s <
list £ (pl, Ppsee- ,pz), P, 5P, S... P, has a transversal
iff
i) o( is square
and

ii) if Py + p2+ eee + P, = t2 for any t < 4 with p, even,
then there are an odd number of components of o(

equal to Py

We ask, which lists guaran-

We need to introduce one definition,

1,12,...,1k} of

Some indications of the possible truth of this conjecture can be

The conjecture does hold for the
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square list (pl, Pyseee ,pz) with P; = 2i-1, For consider any partial
latin square L based on such a list, For k=1,2,..., # the lincs
occupied by k integers, 1,2,...,k of L, no two in a linc, coqtain at
most 2k of the 2k+1 integers = k+l., Then for k=1,2,..., £-1 any set
of k integers 1,2,...,k, no two in a line, can be extended to an
analogous set of k+1 integers 1,2,...,kt+l, so L has a transversal.

Similarly, let

(Pl,---:Pt,PH_l:--:,Pz) (5-3)

be a square listwithp1 sz <... szandp1 +p2+... +pt=t2.

Further, suppose every partial latin square with list (pl, Ppseees pt)
has a transversal and a similar statement also holds for the (easily
shown) square list (pH_1 -2t, ..., pfl-Zt); Then every partial latin
square with list (5. 3) has a transversal. This follows since any trans-
versal of a sub-partial latin square with list (pl, Ppseses pt) is con-
tained within 2t lines of a partial latin square described by (5. 3). Also

if the conditions of Conjecture 5.1 fail on (pl, PysesasP they also fail

¢
on (p1 3PpsecesPpreces pz) and it follows there is a partial latin square

with list (5. 3) and no transversal, if the same statement can be said of

(pl, PoseessP ). Conjecture 5.1 has been checked for all 4 <4 using

LEMMA 5, 2

Let (pl, Poseees pn) be a square list with P < P, S... < P,
3 1 t ! t 1 f 1 t
Then there is a square list (pl, Pyaeees pn) with P < P, S... S P,

. 2
1 < = 1 t t -
pi pi’ 1= 1,2,... » and pl + pz + ... + P =n.
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Proof

= . sl = -
I.fpl + P, + ... + p,=n then we take pi =p; 1= 1,2,...,n,
Otherwise Py + P, + .00+ P, >n2 and let t be the smallest integer for

which Py + P, + ... + Py >k2 forallk 2t, We claim

plspzs-oo Spt_lspt-lspt_l_ls-o. spn (5.4)

and the kth partial sum of

p1+p2+...+pt_1+(pt-1)+pt+1+...+pn (5. 5)

is at least kZ for allk=1,2,...,n. By the definition of t, either t=1
in Which case p1 z 2 so (5.4) is satisfied and the kth partial sum of
(5. 5) is at lea.stk2 for k=1,2,...,nor t>1 and Py + ... 4+ Py =

(t-l)z. In the latter case using p, + ... + p, 2 kz for k = t-2 (when t >2)

1~
[AY

and for k = t we conclude Py 1 < 2t-3 and P, 2 2t-1 so P, - P 22,

t-1
Then (5. 4) holds and the ktP partial sum (k = 1,2,...,n) of (5.5) is
again = kz. The procedure can be iterated and after each step the total
sum is reduced by one, After (p1 + ... + pn) - n2 steps we have the
desired list,

A square list (pl, Poreses pn) with Py tpPy,t... + P, = nz will
be called an exact square list,

We now turn to some further properties of square lists, A

tournament score vector of length n is an n-tuple of non-negative

integers (ql, Apseees qn) listing the number of wins q; by the ith player
in a round-robin tournament between n competitors (allowing no draws).

Such n-tuples have been characterized by Landau and Ryser [4;14] by
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the conditions

tootaq 2 (D) (5. 6)

1°!

.., with equality for g = n. If the qi's are reordered such that

for all g-subsets {i 2,...,i£} of {1,2,...,n} and for all ¢=1,2,..

qi < qé <, . s q;l then (5. 6) is equivalent to
qi +al + +q = (4 L=1,2 n
1 2 ) E 2 FY s 3% e ) .

LEMMA 5,3

Let sl, sz, ceas Sk be positive integers and let r1 , rz, cean Ty
be non-negative integers satisfying:

i) r. €sr_ s,,., ST

1 2 k
.. J2 _
ii) r1+r2+... +r22(2), £=1,2,...,k-1
jii) r, + r, + +r s(k)
1 2 L B ] k 2 -
Then
k k
2 r.s. s 2 S.8,
i=1 't o=l b
i<j

with strict inequality when strict inequality holds in iii) (the right-

hand sum is to be taken = 0 when k = 1),

Proof

Define r; =r, i=1,2,...,k-l, r{( = rk ) - (r1+... +rk-—1
Then (r!,r',..., r{{) is a tournament score vector by the Theorem of
Landau and Ryser [4, 14] so there is an order k (0,1)-matrix A = (aij)

satisfying:

).



a,, =0 , i=1,2,...,k

ii

a. ., =1 ifft a. =1, Torall i#j

ij Ji

n\

Z/ a.. = r! 3 i=112)--0)ko
ij i

j=1

From these properties we have

and moreover

k k

20 r's. =2 2 r.S,.
. ii
i=1

1
k#rk.

Using this lemma we can '"'strengthen' the Landau-Ryser

with strict inequality if r

characterization of a tournament score vector.

LEMMA 5,4

IfT= (ql,qz,. . ’qn)’ a n-tuple of integers, satisfies
i) 9; - 941 <1, i=1,2,,..,n-1
.. ) _
ii) q1+q2+...+q22(2), £=1,2,...,n

with equality for ¢ = n then T is a tournament score vector,
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Proof

Suppose not, so that recording the components of T we have
t € ql £ '
4 = S T
and there is a smallest integer k such that q'1 + q'2 + ...+ q{( < (1;).
Let a permutation (jl’ jZ’ e jn) of (1,2,...,n) be defined by:
q. =q , i=1,2,...,n

and let

s = max {j.}
isisk °

The values i jZ’ .. partition the interval [0,s ] into k parts of

.’jk

lengths §19855000, 8 (s = S;ts, ... 4 sk) such that the closed

2
interval of length s, has its right-hand endpoint at ji' Then by i),

s k q'+ s, q!
Toq s DL, B
. i . 2 2
i=1 i=1

k si k
= 2 (2)+ 2 siqi

i=1 i=1
Lemma 5.3 can be applied to the second sum to give
s k rs. k
Eqi<2(21 + 20 s.s,

i=1 i=1 i,j=1 ')
i<j

) (sl+s2+...+sk) i (s)
2 2
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which contradicts ii) and so proves the lemma,
Lemma 5.4 gives the [ollowing determination of exact square

lists,

THEOREM 5,5

There is a 1—1 correspondence between exact square lists

sPoseeeasP)s <p, <... Sp_and tournament score vectors
P12 P2 Pyls Pp =P n

(qlsqz:-o' ’qn) satisfying ql - q1+1 <1l,i=1,2,...,n-1 given by

p, ¢*q,  Wwhere q; = P;-i (5.7)

Proof

I (ql, Apseees qn) is a tournament score vector with q; - qi+1

€1, i=1,2,...,n-1, then letting pi=qi+'1we have p1 sz < ... Spn

k
> opo= D oq+ 2 ikl K4l 2

. i 2 2
with equality for k = n., Conversely, if (pl, Pyeeees pn) is an exact
square list with Py < P, ... S P, then with q; = p;-i, (ql’ Apsennes qn)
satisfies the hypotheses of Lemma 5.4 and so is a tournament score
vector.

Some immediate consequences of Theorem 5.5 are the follow-
ing.
1) If (pl, Ppse-- ,pn) is a square list with Py < P, S... € P, then

k . . .
p. +p. +...+p, =2()+i, +i, +... +1, (i;,,1,5...,1, being pair-
i i, i 2 1 2 k'l 2 k

wise distinct),

2) The set of all exact square lists of length n partitions into disjoint
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classces with cach class determined by a different tournamoent score
vector of length n. The members of the class determined by

Q =(q1’q2’---:qn) with
qIqus,,. Sq_n (5. 8)

are in 1—1 correspondence (namely the correspondence (5. 7)) with the
s ] 1 1 s 1 _ !
reorderings SO L PR of Q with the property that 9 - 9 <1 for

i=1,2,...,n-1, Therefore in the class corresponding to Q we have

v.-1
o [HTha
TjT o ( t (5.9

exact square lists where the first product is over the number of

occurrences of

in (5. 8) (a term is taken =1 if Vj = 1) and the terms of the innermost

product are determined by

... = < = ... =
R e e T Dkt +t, = Tt 41,41

1 1 72 2

Zee. e =9 (5.11)
wHE HEte Lt
J
where (5.11) is a maximal length subsequence of (5. 8) in which (5. 10)
doesn't occur, Formula (5.9) can be established by induction on vj.
Let q(n) be the number of tournament score vectors (q1 I PR qn)

with q; $9 S... Sq and p(n) be the number of exact square lists

(pl,PZ, ces ,pn) with py Sp, <... < p,- For small n we have the
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following table. The values of gq(n) agree with those in [8, p. 68 ]. The

values of p(n) have been calculated using formula (5. 9) above.

n q(n) p(n)
1 1 1
2 1 2
3 2 5
4 4 16
5 9 59
6 22 247
7 59 1,111
8 167 5,302
9 490 26,376
10 | 1,480 | 135,670

n
From these data it is plausible that (—/%))ﬁc’l—(—rﬁ ~ 3. Note it has been con-

jectured tha , see, e.g., [8, p. 67] so that if both conjectures

¢ a(n+l) 4
o (nt1)
p{ntl)

are correct, then I OR 4/3.

3) From the correspondence (5. 7) it is reasonable to suspect that the
problem of determining an explicit formula for p(n) is at least no
simpler than the difficult and unsolved problem [10;11 ] of determining
an explicit formula for q{n). The number (pl(n)) of exact square lists

of length n having some proper square sublist can be determined from

the values p(k), k < n:

n-1 k+1
1
pym) = T (- T m opla, - )
k=1 i=1
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where the inner sum is over all sequences {onl,a . ,(xk} of length

2’"
k satisfying

0 = <A, Ciee < <q =n .
< 1 a"k n

0

This is immediate from the sieve formula by noting pO(n) = p(n) - pl(n)
is the number of length n square lists having no proper square sub-
list and by making use of the form of an exact square list having a
proper square sublist as noted in the comments following Conjecture 5.1.
We now turn to a consideration of partial latin squares and
begin by introducing some definitions. A graph has been defined in
Chapter II. An undirected graph each of whose nodes has been assigned
a positive integer such that adjacent nodes have distinct integers

assigned will be called a labeled graph, A maximal complete subgraph

of such a labeled graph is a complete subgraph on distinctly labeled
nodes and maximal in the sense that it isn't properly contained in any
other such subgraph. A latin graph is a labeled graph G for which there
is a partial latin square L and a l—1 correspondence between nodes
labeled i and partial latin square elements "'i'"" such that nodes labeled
i, j are adjacent in G iff the corresponding '"i', "j'" are in a line in L,

!
The derived graph G of a labeled graph G is a (undirected, unlabeled)

graph having as nodes the maximal complete subgraphs of G and an arc
between such nodes iff the corresponding maximal complete subgraphs

in G have a common node.

THEOREM 5, 6

A labeled graph is latin iff the following three conditions hold:
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i) every node is in at most two maximal complete
subgraphs

ii) any two nodes are in at most one maximal complete
subgraph

iii) the derived graph is bipartite,

Proof

If a labeled graph G is latin, then the necessity of the condi-
tions is clear from the structure of any partial latin square LG cor-
responding to G. Conversely, let a labeled graph G satisfy the three
conditions; we will construct a corresponding partial latin square LG
by a ;simple induction on the number (IGI) of nodes of G, The result
is clear for |G| = 1. Now assume |G| >1 and let G1 be a subgraph of
G obtained by deleting a node (N) and all associated arcs. We claim
G1 also satisfies the three conditions of the theorem. This follows
since the deleted arcs take one of three forms: (a) all possible arcs
between N and all nodes of at most two maximal complete subgraphs of
Gl; (b) a single arc between N and a node of a maximal complete sub-
graph of Gl together possibly with all possible arcs between N and all
nodes of a distinct maximal complete subgraph of Gl; (c) at most two
arcs, one between each of N and a node in distinct maximal complete
subgraphs of Gl' If a node (M) of Gl were in three maximal com-
plete subgraphs of G1 then there exists three nodes of Gl’ one in each
of these maximal complete subgraphs, with no two adjacent, From the

relationship between G, G these nodes are not adjacent in G and M is

1

consequently in three maximal complete subgraphs of G--a contra-

diction showing i) holds for Gl' A similar argument proves ii) for G-
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iii) follows since the derived graph Gi is a subgraph of G', the derived
graph of G.
We now claim I..CT can be constructed by appropriately entering

the label of N into a partial latin square L which exists by the induc-

G.*
tion hypothesis. There are three possibilitiles. If N is an isolated node
of G then LG can be taken in the form of a direct sum of LCrl and the
label of N (note there is no restriction on the dimensions of LG). If N
is in a single maximal complete subgraph of G, consisting of at least
two nodes then its label can be entered somewhere in the line corre-
sponding to this maximal complete subgraph in Gl' The final case is
where N is in two maximal complete subgraphs of G, By condition iii)
one of these lines is a row and the other is a column, so their inter-
section determines a unique position in G. This position contains no
label since by i) N is the unique node in both maximal complete sub-
graphs and isn't a node of Crl. Moreover the label of N appears in
neither line in LGl since these lines are determined (condition ii)) by
the maximal complete subgraphs on distinctly labeled nodes in G. Thus
the label of N can be entered to form LG’ so completing the proof,

Note that a transversal of a permutation decomposition
A= P1 + P‘2 + ... + Pzwith list (pl,pz,... ,pz) is equivalent in a cor~
responding latin graph G, having P; nodes labeled "i" for i=1,2,..., 4,
to the existence of ‘I, distinctly labeled nodes, no two in the same max-
imal complete subgraph,

Some idea of the dependency of the existence of a transversal

in a (odd order) latin square can be obtained by weakening the conditions

found in Theorem 5.2, For example, let us call a labeled graph G a
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weak latin graph if every node of G is adjacent to at most two j-labeled

nodes for all j. By a '"transversal' of such a graph we will mean
exactly the notion described in the previous paragraph. Then all weak
latin graphs with list (pl, Ppysees ,pz), P SP, ... P, have trans-
versals iff P; =z 2i-1fori=1,2,...,4. The proof that such a list
guarantees the existence of a transversal is essentially the agrument
given following Conjecture 5.1 and will not be repeated here. Con-
versely, suppose p; 2 2i-1 for i=1,2,...,k-1 but Py # 2k-1, i.e.,
2k-3 < Py < 2k-2. Then it is sufficient to exhibit a graph G with list
(Pi’P’a’ cee ,p{() where P} = p'2 = ... = p{{ = 2k-2 and having no trans-
versal, since a graph described by smaller components can be found
)
as a _éubgraph. We construct G as k-1 copies of the graph G' on 2k
nodes labeled 1,1,2,2,...,k, k with every pair of distinctly labeled
nodes of G' adjacent,

Singling out condition i) of Conjecture 5.1, we would like to
weaken the form of partial latin squares to a structure for which the
existence of '"transversals' for all structures in the class described by
a list o(: (pl, pz, e pn) is completely determined by whether or not
fis square, It is believed this is accomplished with the following
definition,

Let (pl, Pprevnes pn) be a non-negative list and {xl 1 Xpseees xm}
be an ordered m-set of objects, From the latter we form 2m-1 ele-

ments v; of the two types: Ko X, U Xiqe Let SI’SZ" . ’Sn be sets

+1
with Si containing Py of the elements yj, such that each %, occurs at
most once among the P; yj's. Such a collection of sets and elements

will be called a pair configuration, We will say that such a configuration
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has a pair system of distinct representatives (also "transversal') if

therc is a mapping f: {Si} - {yi} such that no two I'(Si) contain i com-

mon X..

Generalizing what we mean by an incidence matrix, we can

completely describe the pair configuration by a (0,1, l——1)~array of

the form:
%2 7 *m
B s
51 Py
K
52 P2
: (0,1,1—1) :
Sn _ T Pn
where a ''pair",i,e,, "l—1" representing the element x, U X1 is

entered in columns i and i+l. A pair system of distinct representa-

tives in this array corresponds to n non-zero entries, one out of each

row, no two sharing a common column,

An example is perhaps in order; e.g., the partial latin square

Sy 5,
3
3
S 2% | 3
S;l2 |1 3%
S5 [ 1% 3
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the latin graph

and the pair array

e

"i"| o0 141 1—4~1 -2

BVALEE I | 111 1]0 -2

At
%

"3l 1117 111 -5

all describe the same combinatorial situation. In each case the unique
transversal is indicated by asterisks.

It is readily seen from examples that a necessary and sufficient
condition for a pair array to have a transversal, if such exists in a
form similar to the analogous Philip Hall Theorem for (0, 1)-arrays,
must involve ideas of ""overlapped' elements, Here two elements are
"overlapped'" by a third element if the third element shares a different
column with each of them. Moreover, in terms of overlapped elements,
the intuitive concept of a '"connected' pair array can be rigorously

defined, Necessary and sufficient conditions on the list (p1 sPosenes pn)
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in order that: (i) for all arrays with this list every t entries in dis-
tinct columns contain a pair of elements with an overlapping element
and (ii) the class of connected pair arrays with this list be non-empty,
are easily obtained but will not be proven here. In both cases the con-
ditions take the form of linear inequalities in the pi's. Further
structure within the class of all pair configurations with list (p1 2Py

.es pn) was previously alluded to, and is conjectured with:

CONJECTURE 5,7

Every pair configuration with list £ = (pl, Pysevss pn) has a pair
system of distinct representatives {(transversal) iff af is a

séuare list,

Possibly the sufficiency part of this conjecture can be proven
by induction on n although no such proof has yet been found. If in
applying such an induction argument there is a proper exact sublist of
fthen it follows that up to relabeling we have P; SP, S... = P,
<pt+1 Spt+2 £.,.. S P, for some integer t, 1 £t <mn, with
P + P, S A P, = tz. By the induction hypothesis the subarray on
the first t rows of the pair array has a transversal and the elements
of such a transversal occupy at most 2t columns, For i >t, row i has
zp, - 2t elements entirely outside these columns, (pt+1 - 2t, Pry2 " 2t,
cees P - 2t) is square and the induction hypothesis can again be
applied. The two partial transversals then together give a transversal

of the entire configuration.

Another technique is given by the use of a "left-hand element'’,
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i.,e., a non~zero element of a pair array which occupies a column
furthest to the left, Such an element can, without loss of generality,
be taken as a 1 and hence the remaining (n-1)-rowed pair array not
using this column must have row sums 2 P, - 1, Such a condition is
very restrictive and in particular this argument by itself proves that
every pair with list (pl’pZ" .- ,pn), p; = m, i=1,2,...,nhas a
transversal,

Using the above ideas and some constructions, Conjecture 5,7

has been verified for all n £ 5 and also for most lists with n = 6.
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